Skip to main content
blog | 5 Harshest Environments for EO/IR Motion Control |
2 minute read

Electro-Optical/Infrared (EO/IR) Systems are used to provide long distance visual and thermal imaging for a variety of applications. Often used in satellites, planes, and military applications, there are two main components found in EO/IR systems: sensors and the motion system. The sensors, cameras, etc. need to operate during the day and night in many environmental conditions to present a clear image. The motion control (motors) of an EO/IR system must provide smooth, error free movement in the azimuth and elevation axes. While both the sensors and motion systems need to be reliable in many environmental conditions, let’s take a look at the 5 Harshest Environments for EO/IR Motion Control Systems.

1) Fog:

For EO/IR systems the concerns for clouds and fog are not only around the ability for the system to see. The EO/IR sensors are usually mounted on a platform that moves and when entering clouds and fog, these movable objects are then susceptible to the moisture in the air as well as any air pressure changes (especially for high altitude uses). To ensure that the movements of these platforms will continue to operate after the introduction of wet conditions, special attention is paid to the motion system. It will need to resist rust and work with air pressure changes. Motion suppliers need to pass military standard 810 G testing for humidity and altitude. (MIL-STD 810 G 506.5)

2) Humidity:

Like fog, humidity introduces liquid to the motion control of the EO/IR system. Humidity also makes heat dissipation more difficult as the motion control system works to handle the changes in the torque needed for accurate targeting. The further away from the desired target, the more precise the angular degree of rotation will need to be in order keep the object visible. Motion systems need to continue working in the moist environments and torque feedback will need compensate for additional heat. (MIL-STD 810 G 507.5)

3) Vibration:

Vibration is a condition of the environment, both in transportation of the EO/IR components as well as when the system is connected to an operating platform. Vibration is motion. It’s never a friend to motion control systems. This extra motion can cause loose connections within a system, airgap differences between rotor and stator, and feedback issues during motion correction. In short, using a rugged motion control system is necessary to mitigate the effects of vibration. Vibration is usually a part of an EO/IR system on a moving platform whether aerial, naval, celestial, or terrestrial. (MIL-STD 810 G 514.6)

In addition, using the motion control system to mitigate vibration in the system (also known as motion/image stabilization) allows for clear target identification. Image stabilization works by counter-acting the vibration using the motion control system to move in equal but opposite directions thus providing a neutral motion environment. (No MIL-STD, but awesome none-the-less)

4) Sand:

It gets everywhere. It’s also relentless. We’re essentially trying to keep small particles out of the EO/IR motion system. Generally, the design of the EO/IR system would prevent sand and particles from ever reaching the motion system, but even the motors will need to pass MIL-STD 820 G 510.5.

5) Salt:

Like sand, it gets everywhere. It’s also very corrosive. Motion systems susceptible to salt and corrosion will require prevention and, at the motor level, may include special coatings. In addition, salt is an electrolyte, which can affect the electronics within a motion system. Understanding the ramifications of salts and other corrosives to the motion system and how to prevent corrosion and unwanted electrical activity is a key discussion to have with a motion system supplier. (MIL-STD 820 g 509.5)

Do you agree with Top 5 Harshest Environments list or would you change any of these top 5?


Consult an Expert

TBM2G Series Frameless

These next-generation frameless motors deliver high torque density for your most compact, lightest electromagnetic package, standard sizing for harmonic gearing, and scalable design to keep you on top of your global production needs.

Learn More

TBM Series Frameless

Our TBM series provides direct drive frameless motors designed to be directly embedded in the mechanical structure of your systems, minimizing weight, size and inertia without sacrificing performance.

Learn More

Engineer the Exceptional

Learn how to engineer exceptional machines, robots and vehicles with the highest-performing, most reliable motors, drives, automation solutions and more.

Learn More

Related Resources

Kollmorgen Azure Surgical Robotics Story

Enabling New Surgical Possibilities with High-Torque, Low-Temperature and Compact-Size Motors >

A new collaborative surgical robot helps surgeons do their best work, in more types of surgery, delivering better outcomes. TBM2G servo motors make it possible.
Surgical robotic arms in operating room.

Advanced Surgical Robots: Designing Compact, Powerful Motion for the Next Generation >

Learn the key criteria for designing axially compact arm joints that minimize space, maximize torque, and deliver precision performance in surgical robots.

Explore Space and Other Worlds with Kollmorgen’s Space-Worthy Motors >

Space exploration continues to evolve, and Kollmorgen can help with collaboratively engineered motors to withstand the extreme environments of space.
Motioneering for Frameless, Kollmorgen

Motioneering for Frameless Motor >

Sizing a traditional servo or stepper motor is simple with the Motioneering sizing tool, but what about sizing a frameless motor? Are there any special considerations for these parts? Learn just how easy it is to size frameless motors using…

For next-generation surgical robots, minimize the axial length of your robotic joints >

What if you could design and build a surgical robot that help doctors perform less invasive, more precise operations and achieve better patient outcomes? While the results of any surgery depend on the challenges of the specific case and the skill of…
Kollmorgen, Signs You Should Consider a Frameless Motor in Your Machine

Signs You Should Consider a Frameless Motor in Your Machine >

Big machines require big solutions. Right? But what if higher-performance machines could benefit from compact, space-saving, lightweight, more efficient embedded solutions?
Kollmorgen, How to Design Collaborative Robots to Improve Cycle Time

How to Design Collaborative Robots to Improve Cycle Time >

Is production demand pushing your cobot design to its performance limit? Do rigorous operation requirements cause overheating? Would you like to design a cobot with no compromises to performance or cycle time?

Three Design Considerations that Indicate a Machine Needs a Frameless Motor >

Engineers often face challenges when incorporating servo motors into a new machine design. Choosing between a housed motor or a frameless torque motor shouldn’t be one of them. This blog reveals three design considerations that indicate why a…
Kollmorgen TBM2G Frameless Motor Selection Guide

TBM2G Selection Guide >

TBM2G motors deliver next-generation torque in a more compact electromagnetics package. Designed for direct embedding in your machine, these 48 VDC motors help you engineer each axis to be smaller, lighter, stronger, faster, smoother.