Skip to main content

Surgical robotic arms in operating room.

When surgeons perform delicate, often life-saving surgeries with the aid of a surgical robot, they expect complete freedom to manipulate essential instruments at various angles, in extremely tight incisions, and without constraint.

Meeting these critical expectations means designing robotic arm joints that are axially compact and positioned both independently and closer together. How do you accomplish this while simultaneously delivering the necessary torque, speed and precision? Read this white paper to learn key design considerations including gearbox and servo motor selection, and how to approach the overriding size challenge in robotic joints.

Fill out this short form

to view this White Paper

-OR-

Login / Register

to gain access to Kollmorgen content

Privacy Statement - By sending us your contact details you agree that your personal data/user behavior can be electronically stored and processed. If you no longer wish to receive the enewsletter, you can unsubscribe at any time.

CAPTCHA

Incorporating Frameless Motors Into an Environmentally Resilient Design

Daily washdowns, deep-sea submersion, high radiation, high vacuum, hazardous atmospheres: When a housed servo motor can’t provide the protection you need in a compact form factor, consider embedding a frameless servo motor. Read this white paper to learn how.

Learn More

Achieving Ultimate Motion Precision Using Frameless Servo Motors

Frameless motors aren’t just for robotic joints. Compact actuators, sensor system gimbals, submersible propulsion systems and other applications benefit from direct drive precision and compact design. Learn how to directly embed a frameless motor in your mechanism.

Learn More

Engineer the Exceptional

Learn how to engineer exceptional machines, robots and vehicles with the highest-performing, most reliable motors, drives, automation solutions and more.

Learn More

Related Resources

Incorporating Frameless Motors Into an Environmentally Resilient Design

Incorporating Frameless Motors Into an Environmentally Resilient Design >

Daily washdowns, deep-sea submersion, high radiation, high vacuum, hazardous atmospheres: When a housed servo motor can’t provide the protection you need in a compact form factor, consider embedding a frameless servo motor. Read this white paper to…
Achieving Ultimate Motion Precision Using Frameless Servo Motors

Achieving Ultimate Motion Precision Using Frameless Servo Motors >

Frameless motors aren’t just for robotic joints. Compact actuators, sensor system gimbals, submersible propulsion systems and other applications benefit from direct drive precision and compact design. Learn how to directly embed a frameless motor in…
Kollmorgen helps packaging automation solutions provider meet the need for on-demand “right-sized” packaging

Kollmorgen helps packaging automation solutions provider meet the need for on-demand “right-sized” packaging >

Kollmorgen's expertise in motion control components for packaging machinery helped Packsize tackle demanding challenges to create game-changing packaging automation solutions.
Functional Safety 101 White Paper

Functional Safety 101: The What, Why and How >

Mandates and regulations aside, more customers are demanding functional safety. But no two applications are exactly the same, and there isn’t a one-size-fits-all solution. This whitepaper reveals how equipment manufacturers can stay up to speed.
TBM2G Frameless Motors for Propulsion Systems and Extreme Environments

Tech Sheet: TBM2G Frameless Motors for Propulsion Systems and Extreme Environments >

Servo motors are often used in extreme environments — for example, submersible vehicle propulsion systems, spacecraft, semiconductor manufacturing under high-vacuum conditions, hygienic equipment subject to high-pressure washdowns, and more.
Embedding TBM2G Frameless Motors into Gimbal and Precision Actuator Systems

Tech Sheet: Embedding TBM2G Frameless Motors into Gimbal and Precision Actuator Systems >

A gimbal is a pivoting support that permits rotation of an object around an axis. Additional degrees of freedom can be obtained by combining or nesting two or more gimbals, with their axes of rotation at 90° apart.
Embedding TBM2G Frameless Motors into Compact Rotary Actuators

Tech Sheet: Embedding TBM2G Frameless Motors into Compact Rotary Actuators >

An electric rotary actuator produces rotary motion to drive a load. In its simplest form, a direct drive motor is coupled directly to the load. Often, rotary actuators also incorporate a gearbox to increase torque while reducing speed. Appropriate…
Have You Considered a Frameless Motor?

Have You Considered a Frameless Motor?  >

When most engineers think of a brushless DC servo motor, they’re likely to visualize a housing with a flange to accept mounting bolts, connectors to accept power and data cables, and a rotor shaft that couples to the load. That’s the most common…

Exoskeletons at Scale: Accelerating the Transition from R&D to Full-rate Production >

The exoskeleton market is still in its infancy — but evolving quickly and ripe with opportunity. It’s a double-edged sword for OEMs who must identify the most impactful applications and crack the code on full-scale production, which presents a new…