Skip to main content
blog | Stop, hold and go safely: Motion tuning for vertical loads |
2 minute read

When designing motion for applications such as vertical gantries and hoists, you need to take special care to ensure operator safety and operational efficiency. Let’s discuss best practices for meeting the particular challenges involved.

The problem: Gravity never compromises

When a load in a servo system stores potential energy—either by gravity or spring effect—one or more servo motors must hold part or all of the load with absolute stability and reliability even when the motor is not moving. In most industrial applications, the weight and thus the potential energy of that load can vary widely from day to day or even moment to moment.

Decelerating these variable loads to a stop or accelerating them from a stop greatly magnifies these forces compared to a horizontal application in which the load is supported primarily by structural elements such as beams, struts and bearings rather than by a motor, gearing, brakes or other mechanical elements.

You absolutely can’t afford for the load to drop, possibly resulting in wasted product, operational interruptions or even human injury.

Moreover, as inertial loads and potential energy vary throughout and between production runs, you want the system to maintain consistent throughput. You want safe brake control, so that operators can interact with the production line as needed without shutting down equipment or giving in to the temptation to bypass safety features such as gates and cages. And you want a way to routinely test for safe braking capabilities with minimal disruption.

All of these needs are made more challenging by the relentless nature of gravity. Because gravity doesn’t care about safety, you have to make safety your top priority—without compromise.

Tune your axis right the first time

When tuning and setting brake parameters—such as deadband and brake engagement time—it’s easy to make hypothetical assumptions that don’t hold true under real-world conditions. These false assumptions lead to an overly iterative process of tuning and testing that can drag out your development cycle and potentially even lead to safety issues.

For example, it would be wrong to assume that the ideal brake delay time could be zero. Zero isn’t possible, as there is always delay and reaction time involved in brake actuation. When a servo system transitions from moving a load to holding it in a fixed position, there is an infinite dither as the feedback device reports the axis position and the servo drive responds with voltage and current commands intended to bring it to the target position. This happens continuously and very quickly. However, by its nature a servo system is a dynamic system, always making tiny adjustments and never coming to complete stasis.

At a certain point, you will want to interrupt this dithering and hold the load stationary while the machine completes its next process. At this point, the servo system must remove power from the axis and employ a holding brake to stop the motion and hold the vertical load absolutely stable. When it’s time to move the load again, the opposite must happen: The system must remove the brake and apply torque seamlessly to accelerate the load without a jolt—and, certainly, without dropping it.

Neither the control commands nor the brake application happen instantaneously. Accounting for the delays in the control and brake systems—no matter how miniscule—is critical when designing for vertical load applications. While initially tuning the drive, the biggest challenge is often that design engineers can’t foresee the many different types of loads that will be carried by the system.

Because they can’t know the physics involved in handling a complete range of lighter and heavier loads, engineers struggle to tune the drive so that it can brake and accelerate these loads without significant delays or jarring motions. Additionally, the axis may need to lock and remain solidly in place for an entire shift or weekend, so the control methodology must be absolutely trustworthy.

Given these challenges, engineers must size for the correct maximum load while also accounting properly for lighter loads. To get it right the first time—minimizing risk as well as excessive testing and rework—it’s crucial to factor in the correct deadband and brake engagement times. Kollmorgen engineers have considerable experience tuning vertical loads, and they can help you apply methods that have proven successful in a variety of vertical applications.

Ensure reliable operation every time

To ensure continuous, reliable operation, you need to specify a reliable motion system. This encompasses both the system’s features and its components.

For example, the Safe Brake Control functionality incorporated into Kollmorgen’s next-generation AKD2G servo drives allows the motion system to move an axis into position, remove power from the servo motor while employing the brake in a coordinated manner, and hold the load securely in place with no need to shut down the equipment. This is a huge productivity gain, for example when an operator needs to safely open a gate and take something on or off the production line. The axis can then be restarted as quickly and smoothly as it had been stopped, and production can continue with virtually no interruption.

Kollmorgen’s Safe Brake Control also includes a server safety signal that can be used to deploy two brakes for a single motor. This provides the redundancy needed to ensure reliable braking in any circumstance, in accordance with customer needs as well as industry guidelines and regulatory requirements.

Safe Brake Test functionality allows for testing of motor brakes by applying torque from the motor with the brake engaged, monitoring the system to ensure that no movement occurs. Because this testing capability is incorporated into the AKD2G drive, operators can test the braking system on their preferred schedule with minimal disruption. On-drive functional safety features also eliminate the need for external solutions that depend on complex and potentially error-prone integration between the controller, safe PLC and drive.

Beyond the drive, the entire motion system matters for reliable operation. For example, cables are often specified almost as an afterthought. But poor-quality cables on the communication bus can be susceptible to electromagnetic interference that causes feedback issues and position errors. Brake power cables that aren’t specified with the right wire gauge can cause the brake to spontaneously revert to closed, causing unexpected brake run-through and operational problems.

For vertical load handling, absolute reliability is the only option. A motion partner that can deliver dependable components designed to work together, simplify integration, and provide powerful tools for motion programming and tuning can help you achieve reliable success.

Get the support you need, on your terms

Don’t go it alone. When you source products from motion vendors rather than a true motion partner, you are the sole expert for fitting the products together and making them work. If they should fail, you’re on the hook. Collaboration with motion experts is a better and, frankly, safer approach.

Kollmorgen has more than 100 years of motion experience, proven in the industry’s highest-performing, most reliable motors, drives, programming tools, automation solutions and more. Our engineers have unrivalled experience helping machine and robotics designers achieve their goals in virtually every motion-dependent industry.

Count on our self-service support options such as our online design tools, e-learning opportunities, knowledge base and the community of experts in the Kollmorgen Developer Network. And when you need one-on-one help, know that you can contact us anytime to chat online or over the phone with engineers who know our products—and your industry’s applications—inside and out.

We want you to succeed—on your terms.

Consult an Expert

AKMA Servo Motors

The lightweight AKMA servo motor is designed for harsh environments like food and beverage processing, and delivers performance and reliability.
Learn More

AKM™ Series Servo Motor

Our best-in-class, high-performance servomotors offer a wide range of mounting, connectivity, feedback and other options. More than 500,000 standard models are available along with co-engineered modifications to suit almost any application requirement.

Learn More

Engineer the Exceptional

Learn how to engineer exceptional machines, robots and vehicles with the highest-performing, most reliable motors, drives, automation solutions and more.

Learn More

Related Resources

Adjusting Standard Motion Profiles to Optimize Operating Speed and Time >

Adjusting Standard Motion Profiles to Optimize Operating Speed and Time: Learn more about simple profile adjustments that can preserve motion, move time and provide memorable profiles.​​​​

Accelerating the Development of Next-Generation Prostheses and Exoskeletons >

Learn how Kollmorgen servo technology is helping OEMs accelerate the design of next-generation prostheses and exoskeletons.

Kollmorgen and Stereotaxis Advance the Precision and Safety of Surgical Robots >

Kollmorgen’s advanced motion products and expertise are helping save and improve lives. Learn how the new Genesis surgical robot incorporates torque-dense AKM servo motors with specialized, integrated encoders to revolutionize cardiac ablation…
Ground satellite 

AKD2G 24A Data Sheet >

Kollmorgen’s new AKD2G 24A servo drive delivers 3x the continuous current capacity and offers a rich feature set for simple integration in complex applications. 
Kollmorgen Express Delivery significantly shortens lead times for the company’s most popular motion products

Kollmorgen Express Delivery significantly shortens lead times for the company’s most popular motion products >

Motion leader Kollmorgen announces a new classification for select products that can be delivered within an accelerated timeframe.

From the Factory to the Farm: Unleashing the Power of Kollmorgen's Servo Motor Technology >

As smart automation increases farm productivity, there is a need for powerful, precise motors that can handle a wide range of heavy-duty tasks, day in and day out. But even the most advanced technology doesn’t change the basic nature of farming.
Surgical robotic arms in operating room.

Advanced Surgical Robots: Designing Compact, Powerful Motion for the Next Generation >

Learn the key criteria for designing axially compact arm joints that minimize space, maximize torque, and deliver precision performance in surgical robots.
Kollmorgen’s low-temperature servo technology simplifies cleaning of solar energy heliostats

Kollmorgen’s low-temperature servo technology simplifies cleaning of solar energy heliostats >

The development of photovoltaic and thermal solar energy—along with China’s rapidly growing capacity to manufacture them—has opened many new opportunities for sustainable energy production in international markets. At the same time, the demand for…
Kollmorgen White Paper, Monitoring and controlling brakes through on-drive functional safety technology

Monitoring and controlling brakes through on-drive functional safety technology >

How can you ensure the safety of vertical loads while complying with ISO 13849-1? On-drive safety functions offer a no-compromise way to simplify brake testing.