Skip to main content
blog | Brushed or Brushless: Choosing the Right Motor for the Application |
|
2 minute read

There isn’t much of a debate really between brushed and brushless motors. For new builds and applications, brushless motors account for upward of 90% of the total market. Brushless motors remove the wear and arcing associated with using brushes and are generally more efficient and durable. Legacy systems can often benefit from replacing existing brushed motors with brushless, but in a few cases a brushed motor could be the preferred choice when the control electronics need to remain very simplified. We’ll break down the benefits of brushless motors and then explain why in certain situations brushed motors may be a better choice. 

Brushed and Brushless: What’s in a Name?  

The main difference between the two motors is in the name: one has brushes and one doesn’t. Brushed DC motors have a slotted iron core with windings that are attached to a commutator. The brushes carry the current to the windings. In brushless motors, on the other hand, electronic commutation determines the sequence for energizing the stator windings rather than using a physical commutator and brushes. They have a simpler mechanical construction but have more complex microprocessors and control architectures, with upward of eight wires needed for the motors and controls.

If brushless motors are simple mechanically and complex logically, then brushed is the opposite. They have more complex mechanical construction due to the commutator bars and brush assemblies, but they only need two to four wires for the motor and control. This makes them easier to control through a linear torque-speed relationship. However, brushes and commutators on the motors wear out, limiting motor life, and because they spark when in use, brushed motors are generally unsuitable for hazardous locations.  

Still, brushed motors can have an advantage in applications that require a large through bore, as this can be as large as 70% of the motor’s outer diameter. The through bore can be used, for example, as a route for lead wire, as a mounting area for other hardware, or as an optical path.

Comparing Performance 

In most applications, a brushless motor has a general performance advantage over brushed. It has higher power, a smaller form factor, higher torque density, higher speeds, more complex controls for more precise velocity and position, and it easily dissipates heat. Less internal friction due to the lack of brushes also makes for a more efficient and longer-lasting motor.  

It might seem then that brushed motors don’t have as much performance to offer their brushless counterparts motors, but they do have other advantages. Because of the high number of slots, brushed motors have lower torque ripple than brushless (for more on torque ripple see our blog Cogging Torque and Torque Ripple: What You Need to Know. They also have high stall torque and smooth, high torque at low speeds.  

Brushed or Brushless: Which to Use 

When it comes to new builds and applications where high performance and complex control is needed and part of the system design, brushless is the default choice. However, when specific performance requirements are needed for an application, brushed motors can be a better fit. When paired with simple controls, they are useful in certain applications:  

  • Positioning systems that require a steady hold of the load. The high stall torque (“stand-still” operation) provides this. 
  • Speed control systems that can use the high torque at low speeds (<100 rpm). 
  • Large through bore diameter to OD ratio. 
  • Legacy applications with brushed motors where moving to brushless could be cost prohibitive due to required upgrades in the control architecture. 

When to Upgrade to Brushless 

Brushed motors in a legacy system can be updated to a brushless motor, but it will require more than just swapping out one motor for another. Contrasted to the simple motor controls of a brushed motor, brushless motors use electronic means to determine the sequence for energizing the stator. This will require upgrading the electronic controls for the system. The motor is just one component of a system, so it’s important to look at the system as a whole to determine if it would benefit from changing to a brushless motor or staying with the current architecture.

While modern, high-performance systems use brushless motors, brushed motors can provide benefits for legacy systems or new systems that require a high stall torque, high torque at low speeds or simple controls. Kollmorgen has the engineering and product expertise, with a broad portfolio of standard and easily modified motors, to service existing analog systems, develop a new brushless system, or upgrade a system from a brushed to brushless motor. 

Consult an Expert

TBM Series Frameless

Our TBM series provides direct drive frameless motors designed to be directly embedded in the mechanical structure of your systems, minimizing weight, size and inertia without sacrificing performance.

Learn More

KBM Series Frameless

The KBM series offers high performance, long life, simple installation in a motor kit that can be embedded directly in your mechanical design. A huge selection of standard motors and cost-effective modifications ensure a perfect fit.

Learn More

Engineer the Exceptional

Learn how to engineer exceptional machines, robots and vehicles with the highest-performing, most reliable motors, drives, automation solutions and more.

Learn More

Related Resources

Kollmorgen Helps Salvagnini Build More Energy-Efficient Metal-Bending Machines >

Innovation, competency, service. Through 60 years in business, these three commitments have helped the Salvagnini Group achieve global leadership in the field of sheet-metal processing equipment. As the #1 worldwide supplier of panel benders, and one…

Compact, Efficient Motion Powers a Submersible Robot for In-Service Inspection of Fuel Storage Tanks >

Kollmorgen has helped many companies in a variety of industries increase performance, quality, throughput, and reduce costs. Read about our partners' successes here.
Kollmorgen Direct Drive Technology Enhances the Accuracy and Throughput of Electric Vehicle Battery Production

Kollmorgen Direct Drive Technology Enhances the Accuracy and Throughput of Electric Vehicle Battery Production >

As electric vehicles promise cleaner, more sustainable transportation, the need for reliable lithium-ion batteries is skyrocketing. Battery manufacturers are looking for innovative ways to maximize production quality and speed.
Compliant Robotic Tooling Mitigates Risk and Delivers a Human Touch in Finishing Operations

How Compliant Robotic Tooling Delivers Safety and Precision in Finishing Operations  >

Force-controlled blending or finishing operations typically rely upon human operators who can provide subtle compliance in grinding, deburring or polishing. Unfortunately, these operations create inherent risks for these workers—from injuries to…
Kollmorgen Azure Surgical Robotics Story

Enabling New Surgical Possibilities with High-Torque, Low-Temperature and Compact-Size Motors >

A new collaborative surgical robot helps surgeons do their best work, in more types of surgery, delivering better outcomes. TBM2G servo motors make it possible.

Explore Space and Other Worlds with Kollmorgen’s Space-Worthy Motors >

Space exploration continues to evolve, and Kollmorgen can help with collaboratively engineered motors to withstand the extreme environments of space.

5 Harshest Environments for EO/IR Motion Control >

Electro-Optical/Infrared (EO/IR) Systems are used to provide long distance visual and thermal imaging for a variety of applications. Often used in satellites, planes, and military applications, there are two main components found in EO/IR systems:…
Motioneering for Frameless, Kollmorgen

Motioneering for Frameless Motor >

Sizing a traditional servo or stepper motor is simple with the Motioneering sizing tool, but what about sizing a frameless motor? Are there any special considerations for these parts? Learn just how easy it is to size frameless motors using…

For next-generation surgical robots, minimize the axial length of your robotic joints >

What if you could design and build a surgical robot that help doctors perform less invasive, more precise operations and achieve better patient outcomes? While the results of any surgery depend on the challenges of the specific case and the skill of…