Skip to main content
blog | How to Calculate RMS Torque |
|
2 minute read

Block and TackleBlock and Tackle Series Volume 3 – How to Calculate RMS Torque

Question:

How do I calculate RMS (Root Mean Square) Torque for a given axis motion profile in my application?

Answer:

In our last Block and Tackle posting, we touched on operating a motor in a hotter ambient temperature. For this posting, we take a look at the Root Mean Square (RMS) Torque and why it is important. Typically an axes’ motion profile is broken up into multiple segments, each segment is found to require a specific torque for a specific amount of time to complete the desired motion. For example, this can include torque required to accelerate, traverse (against an external force and/or friction), decelerate, and dwell. Each of these segments affects the amount of heating the motor experiences and thus the equivalent steady state continuous requirement utilized to select the correct motor. The RMS Torque calculation considers not only the amount of torque, but also the duration of that torque (by segment). Our example below illustrates how to calculate Trms of your motion profile.

The below motion profile would be broken up into eight (8) different segments, each with a required torque Tx and time tx.
Motion Profile with Segmentation
 
 
 
To calculate Trms, use this equation:
RMS Torque Formula

Where T1 = torque required by and during segment 1, and t1 = time duration (t1-t0) of segment 1, etc.. Note the additional torque required by the motor to over come some external/thrust force (greater than friction alone) during segment 2, and the lack of this required torque during the dwell segment 4 and 8.

Going back to the example motion profile above and the chart of that motion profile:

Motion Profile Table with Segmentation

Therefore, if you do the math – and we will spare you writing this into a very long equation, the result is:

Trms = RMS Example = 2.74 lb-ft or 3.715_Nm (1.35582_Nm/lb-ft.)

Consult an Expert

AKMA Servo Motors

The lightweight AKMA servo motor is designed for harsh environments like food and beverage processing, and delivers performance and reliability.
Learn More

Engineer the Exceptional

Learn how to engineer exceptional machines, robots and vehicles with the highest-performing, most reliable motors, drives, automation solutions and more.

Learn More

Related Resources

Which Servo Position Feedback Device Is Right for Your Application?

Which Servo Position Feedback Device Is Right for Your Application?  >

Choose the right feedback device for your application. Learn how to achieve maximum performance, efficiency and value with a multi-turn absolute rotary encoder.
Kollmorgen’s new SFD-M high-resolution encoder offers multi-turn absolute feedback at zero incremental cost

Kollmorgen’s new SFD-M high-resolution encoder offers multi-turn absolute feedback at zero incremental cost >

Kollmorgen’s battery-free SFD-M encoder provides absolute 16-bit multi-turn positioning data at system power up with zero incremental cost. Eliminate homing sequences and maintain positioning accuracy through 65,536 complete motor revolutions for a…
What are the differences between DC, BLDC and AC servo motors?

What are the differences between DC, BLDC and AC servo motors? >

Understand the differences between DC servo motors, BLDC servo motors and AC servo motors. Selecting the right type for your application is critical for optimal performance, efficiency and longevity.
Choosing the Right Feedback Device: Why the Smart Multi-Turn Feedback Device Stands Out

Choosing the Right Feedback Device: Why the Smart Multi-Turn Feedback Device Stands Out >

Learn the basic functions of feedback devices and how to select the right device for your servo system. We will compare a variety of feedback devices for performance, features and price, and evaluate the benefits of these technologies in various…
Understand Cogging vs Torque Ripple for Optimized Motion Control

Understand Cogging vs Torque Ripple for Optimized Motion Control  >

Servo motors can be subject to torque disturbances that may impact the required motion performance of your system. There is a great deal of hype in the marketplace about “zero-cogging” motor designs, leading many to believe that zero-cogging equates…
How to Set Motor Phasing for Effective Axis Control

How to Set Servo Motor Phasing for Effective Axis Control >

Motor phasing is a key engineering element in the control of a brushless servo motor. Brushless servo systems do not use mechanical commutation. Instead, the commutate electronically based on feedback and motor phasing. Establishing the correct…

Accelerating the Development of Next-Generation Prostheses and Exoskeletons >

Learn how Kollmorgen servo technology is helping OEMs accelerate the design of next-generation prostheses and exoskeletons.

From the Factory to the Farm: Unleashing the Power of Kollmorgen's Servo Motor Technology >

As smart automation increases farm productivity, there is a need for powerful, precise motors that can handle a wide range of heavy-duty tasks, day in and day out. But even the most advanced technology doesn’t change the basic nature of farming.

Stop, hold and go safely: Motion tuning for vertical loads >

When designing motion for applications such as vertical gantries and hoists, you need to take special care to ensure operator safety and operational efficiency. Let’s discuss best practices for meeting the particular challenges involved.