
DeviceNet®
Fieldbus Interface for S300 / S600 / S700

Edition: February 2020
Translation of the original manual

For safe and proper use, follow
these instructions.
Keep them for future reference.

Record of Document Revisions :

Edition Remarks
12 / 2002 First edition
07 / 2003 New Layout, Object description altered, minor corrections, valid from firmware version S600

5.55
03 / 2004 several corrections, valid also for S300 from firmware version 1.0
01 / 2006 Chapter 1 restructured, several changes, wording updated
09 / 2006 New design
08 / 2007 Branding, S700 new, standards
12 / 2009 Branding, minor corrections, symbold acc. to ANSI Z535
12 / 2010 New company name
07 / 2014 Design of cover page, warning notes updated
04 / 2016 Safe voltage changed to 50V, warning symbols updated, european directives updated
07 / 2016 Use as directed updated
11 / 2018 Layout of the warning notes updated, user expertise updated, new readers note on cover page
02 / 2020 Layout updated

Trademarks
Windows is a registered trademark of Microsoft Corporation.
DeviceNet is a registered trademark of Open DeviceNet Vendor Association, Inc. (ODVA).

Technical changes which improve the performance of the device may be made without prior notice!
This document is the intellectual property of Kollmorgen. All rights reserved. No part of this work may be reproduced
in any form (by photocopying, microfilm or any other method) or stored, processed, copied or distributed by electronic
means without the written permission of Kollmorgen.

2 Kollmorgen | kdn.kollmorgen.com | February 2020

1 Table of Contents

1 Table of Contents 3
2 General Information 9

2.1 About thismanual 9
2.2 Target group 9
2.3 Using the PDF Format 9
2.4 Use asdirected 10
2.5 System requirements 10
2.6 SymbolsUsed 10
2.7 Abbreviationsused 11
2.8 Application notes 11
2.9 Basic features implemented through DeviceNet 12

3 Installation / Setup 13
3.1 Important Notes 13
3.2 Installation 14

3.2.1 Installation of the expansion card 14
3.2.2 CombinedModule / NetworkStatusLED 14
3.2.3 Front view 14
3.2.4 Connection technology 14
3.2.5 Bus cable 15
3.2.6 Connection diagram 17
3.2.7 Setup of station address 17
3.2.8 Setup of transmission rate 17
3.2.9 Controller setup 17

3.3 Setup 18
3.3.1 Guide to Setup 18
3.3.2 Error handling 18

3.4 Response to BUSOFF communication faults 19

4 DeviceNet Overview 20
4.1 FunctionalityChart 20
4.2 Overview of Explicit and Polled I/O (assembly) messages 20
4.3 Motion Objectswith Explicit Messaging 21

4.3.1 Object: Parameter 21
4.3.2 Object: Position Controller Supervisor 21
4.3.3 Object: Position Controller 21
4.3.4 Object: BlockSequencer 21
4.3.5 Object: Command Block 21

4.4 I/OObjects 22
4.4.1 Object: crete Input Point 22
4.4.2 Object: Discrete Output Point 22
4.4.3 Object: Analog Input Point 22
4.4.4 Object: AnalogOutput Point 22

4.5 Communication Objects 23
4.5.1 Object: Identity 23
4.5.2 Object: Message Router 23
4.5.3 Object: DeviceNet 23
4.5.4 Object: Assembly 23
4.5.5 Object: Explicit Connection 23
4.5.6 Object: Polled I/OConnection 23

4.6 Firmware-Version 24
4.7 Supported Services 24

S300-S600-S700 DeviceNet | Table of Contents

Kollmorgen | kdn.kollmorgen.com | February 2020 3

4.8 Data Types 24
4.9 Saving to Non-volatile Memory 24

5 Explicit messages 25
5.1 Position Controller Supervisor Object (class0x24) 25

5.1.1 Error Codes 25
5.1.1.1 Object State Conflicts – 0x0C 25

5.1.2 Supervisor Attributes 25
5.1.2.1 Attribute 0x05: General Fault 25
5.1.2.2 Attribute 0x0E: IndexActive Level 26
5.1.2.3 Attribute 0x15: Registration Arm 26
5.1.2.4 Attribute 0x16: Registration Input Level 26
5.1.2.5 Attribute 0x64: Fault Code 26
5.1.2.6 Attribute 0x65: Clear Faults 26

5.2 Position Controller Object (class0x25) 27
5.2.1 Error Codes 27

5.2.1.1 Object State Conflicts – 0x0C 27
5.2.2 Position controller attributes 27

5.2.2.1 Attribute 0x01: Number of Attributes 27
5.2.2.2 Attribute 0x02: Attribute list 27
5.2.2.3 Attribute 0x03: Opmode 28
5.2.2.4 Attribute 0x06: Target Position 28
5.2.2.5 Attribute 0x07: Target Velocity 28
5.2.2.6 Attribute 0x08: Acceleration 28
5.2.2.7 Attribute 0x09: Deceleration 29
5.2.2.8 Attribute 0x0A: Move Type 29
5.2.2.9 Attribute 0x0B: TrajectoryStart/Complete 29
5.2.2.10 Attribute 0x0C: In Position 29
5.2.2.11 Attribute 0x0D: ActualPosition 29
5.2.2.12 Attribute 0x0E: ActualVelocity 30
5.2.2.13 Attribute 0x11: Enable 30
5.2.2.14 Attribute 0x14: Smooth Stop 30
5.2.2.15 Attribute 0x15: Hard Stop 30
5.2.2.16 Attribute 0x16: Jog Velocity 30
5.2.2.17 Attribute 0x17: Direction 31
5.2.2.18 Attribute 0x18: Reference direction 31
5.2.2.19 Attribute 0x19: Torque 31
5.2.2.20 Attribute 0x28: Feedback resolution 31
5.2.2.21 Attribute 0x29: Motor resolution 32
5.2.2.22 Attribute 0x65: Save Parameters 32
5.2.2.23 Attribute 0x66: Amplifier Status 32
5.2.2.24 Attribute 0x67: TrajectoryStatus 32

5.3 Parameter Object (class0x0F) 33
5.3.1 Error Codes 33
5.3.2 Parameter Attributes 33

5.3.2.1 Attribute 0x01: Parameter Value 33
5.3.2.2 Attribute 0x04: Descriptor 33
5.3.2.3 Attribute 0x06: Data Length 34
5.3.2.4 Attribute 0x64: Parameter Number 34

5.4 BlockSequencer Object (class0x26) 35
5.4.1 Attribute 0x01: Block 35
5.4.2 Attribute 0x02: BlockExecute 35
5.4.3 Attribute 0x03: Current Block 35
5.4.4 Attribute 0x04: BlockFault 35
5.4.5 Attribute 0x05: BlockFault Code 35

S300-S600-S700 DeviceNet | Table of Contents

4 Kollmorgen | kdn.kollmorgen.com | February 2020

5.4.6 Attribute 0x06: Counter 35
5.5 Command BlockObject (class0x27) 36

5.5.1 BlockTypes 36
5.5.2 Command 0x01 –ModifyAttribute 37

5.5.2.1 Attribut 0x01: Blocktyp 37
5.5.2.2 Attribute 0x02: BlockLink# 37
5.5.2.3 Attribute 0x03: Target Class 37
5.5.2.4 Attribute 0x04: Target Instance 37
5.5.2.5 Attribute 0x05: Attribute # 38
5.5.2.6 Attribute 0x06: Attribute Data 38

5.5.3 Command 0x02 –Wait Until Equals 38
5.5.3.1 Attribute 0x01: BlockType 38
5.5.3.2 Attribut 0x02: Blockverknüpfungsnummer 38
5.5.3.3 Attribute 0x03: Target Class 39
5.5.3.4 Attribute 0x04: Target Instance 39
5.5.3.5 Attribute 0x05: Attribute # 39
5.5.3.6 Attribute 0x06: Timeout 39
5.5.3.7 Attribute 0x07: Compare Data 39

5.5.4 Command 0x03 –Greater Than Test 40
5.5.4.1 Attribute 0x01: BlockType 40
5.5.4.2 Attribute 0x02: BlockLink# 40
5.5.4.3 Attribute 0x03: Target Class 40
5.5.4.4 Attribute 0x04: Target Instance 40
5.5.4.5 Attribute 0x05: Attribute # 41
5.5.4.6 Attribute 0x06: Compare Link# 41
5.5.4.7 Attribute 0x07: Compare Data 41

5.5.5 Command 0x04 – LessThan Test 42
5.5.5.1 Attribute 0x01: BlockType 42
5.5.5.2 Attribute 0x02: BlockLink# 42
5.5.5.3 Attribute 0x03: Target Class 42
5.5.5.4 Attribute 0x04: Target Instance 42
5.5.5.5 Attribute 0x05: Attribute # 43
5.5.5.6 Attribute 0x06: Compare Link# 43
5.5.5.7 Attribute 0x07: Compare Data 43

5.5.6 Command 0x05 – Decrement Counter 44
5.5.6.1 Attribute 0x01: BlockType 44
5.5.6.2 Attribute 0x02: BlockLink# 44

5.5.7 Command 0x06 – Delay 45
5.5.7.1 Attribute 0x01: BlockType 45
5.5.7.2 Attribute 0x02: BlockLink# 45
5.5.7.3 Attribute 0x03: Delay 45

5.5.8 Command 0x08 –Motion task 46
5.5.8.1 Attribute 0x01: BlockType 46
5.5.8.2 Attribute 0x02: BlockLink# 46
5.5.8.3 Attribute 0x03: Target Position 46
5.5.8.4 Attribute 0x04: Target Velocity 46
5.5.8.5 Attribute 0x05: Incremental 46
5.5.8.6 Attribute 0x64: O_C 47
5.5.8.7 Attribute 0x65: O_ACC 47
5.5.8.8 Attribute 0x66: O_DEC 47
5.5.8.9 Attribute 0x67: O_TAB 47
5.5.8.10 Attribute 0x68: O_FT 47

5.5.9 Command 0x09 – Jog 48
5.5.9.1 Attribute 0x01: BlockType 48

S300-S600-S700 DeviceNet | Table of Contents

Kollmorgen | kdn.kollmorgen.com | February 2020 5

5.5.9.2 Attribute 0x02: BlockLink# 48
5.5.9.3 Attribute 0x03: Target Velocity 48

5.6 Digital Input Object (class0x08) 49
5.6.1 Attribute 0x03: Value 49

5.7 DigitalOutput Object (class0x09) 49
5.7.1 Attribute 0x03: Value 49

5.8 Analog Input Object (class0x0A) 49
5.8.1 Attribut 0x03:Wert 49

5.9 AnalogOutput Object (class0x0B) 50
5.9.1 Attribute 0x03: Value 50

5.10 IdentityObject (class0x01) 50
5.11 Message Router Object (class0x02) 51
5.12 DeviceNet Object (class0x03) 51
5.13 Connection Object - Explicit (class0x05) 52
5.14 Connection Object - Polled I/O (class0x05) 53

6 Polled I/O messages 54
6.1 I/OCommand Assemblies 54

6.1.1 Control Bits and Data Fields 55
6.1.2 Running a Stored Sequence through DeviceNet 56
6.1.3 Data Handshaking 57
6.1.4 Command Assembly 0x01 – Target Position 58
6.1.5 Command Assembly 0x02 – Target Velocity 59
6.1.6 Command Assembly 0x03 – Acceleration 60
6.1.7 Command Assembly 0x04 – Deceleration 61
6.1.8 Command Assembly 0x05 – Torque 62

6.2 I/OResponse Assemblies 63
6.2.1 StatusBits and Data Fields 63
6.2.2 Response Assembly 0x01 – ActualPosition 65
6.2.3 Response Assembly 0x02 – Commanded Position 66
6.2.4 Response Assembly 0x03 – ActualVelocity 67
6.2.5 Response Assembly 0x05 – Torque 68
6.2.6 Response Assembly 0x14 – Command/Response Error 69

7 Appendix 71
7.1 DeviceNet PLC Examples 71

7.1.1 Overview 71
7.1.2 Amplifier Setup for the Examples 72
7.1.3 Polled I/OAssemblies 72

7.1.3.1 Sending Command Assemblies – ControlLogix 73
7.1.3.2 Reading Response Assemblies – ControlLogix 74
7.1.3.3 Data Handshaking - ControlLogix 75
7.1.3.4 Sending Command Assemblies – SLC500 76
7.1.3.5 Reading Response Assemblies – SLC500 79
7.1.3.6 Data Handshaking - SLC500 81

7.1.4 Explicit Messages 82
7.1.4.1 Explicit Messagesand ControlLogix 83
7.1.4.2 Explicit Messagesand SLC500 84

7.1.4.2.1 SLC500 Explicit Message Request Structure 84
7.1.4.2.2 SLC500 Explicit Message Response Structure 85
7.1.4.2.3 SLC500 Explicit Messaging Sequence 85
7.1.4.2.4 SLC500 Explicit Messaging Example Code 86

7.1.5 Example 1: SimpleMove 87
7.1.5.1 SerialCommand Sequence 88
7.1.5.2 DeviceNet Command Sequence 89

S300-S600-S700 DeviceNet | Table of Contents

6 Kollmorgen | kdn.kollmorgen.com | February 2020

7.1.5.3 ControlLogixProgram 90
7.1.5.4 SLC500 Program 90

7.2 Baud Rate Switch Settings 90
7.3 MAC ID Switch Configuration 90
7.4 Network LED 90
7.5 Listing of DeviceNet Commands 90

7.5.1 Data Types 91
7.5.2 Explicit Messages 91
7.5.3 Polled I/OMessages 94

7.6 Default Input/Output Configuration 96
7.7 Error Messages 96
7.8 Index 97

S300-S600-S700 DeviceNet | Table of Contents

Kollmorgen | kdn.kollmorgen.com | February 2020 7

--- / ---

S300-S600-S700 DeviceNet |

8 Kollmorgen | kdn.kollmorgen.com | February 2020

2 General Information
2.1 About this manual

This manual describes the setup, range of functions and software protocol of the SERVOSTAR
300 (S300), SERVOSTAR 600 (S600) and S700 servo amplifiers with the DeviceNet™ com-
munication profile. It forms part of the complete documentation for these servo amplifiers.
The installation and setup of the servo amplifier, as well as all standard functions, are described
in the corresponding instructions manual.

Other parts of the complete documentation for the digital servo amplifier series:

Title Publisher
Instructions manual for the servo amplifier Kollmorgen
Setup Software Online-Help with Object Reference Kollmorgen

Additional documentation:

Title Publisher
DeviceNet Specification, Volumes I, II, Release 2.0 ODVA
CAN Specification Version 2.0 CiA e.V.
ISO 11898 ... Controller Area Network (CAN) for high-speed communication ISO

ISO 11898 ... Controller Area Network (CAN) for high-speed communication

2.2 Target group
This manual addresses personnel with the following qualifications:
Transport: Only by personnel with knowledge of handling electrostatically sensitive

components.
Unpacking: Only by electrically qualified personnel.
Installation: Only by electrically qualified personnel.
Setup : Only by qualified personnel with extensive knowledge of electrical engin-

eering and drive technology.
Programming: Software developers, DeviceNet project-planners
The qualified personnel must know and observe IEC 60364/ 60664, and regional accident pre-
vention regulations.

Qualified Personnel only!
During operation there are deadly hazards, with the possibility of death, severe injury or material
damage.

The user must ensure that the safety instructions in this manual are followed.
The user must ensure that all personnel responsible for working with the servo amplifier have
read and understood the instructions manual.

Training courses are available on request.

2.3 Using the PDF Format
This document includes several features for ease of navigation

Cross References Table of contents and index include active cross references.
Table of contents and
index

Lines are active cross references. Click on the line and the appro-
priate page is accessed.

Page/chapter numbers in
the text

Page/chapter numbers with cross references are active links.

S300-S600-S700 DeviceNet | 2 General Information

Kollmorgen | kdn.kollmorgen.com | February 2020 9

S300-S600-S700 DeviceNet | 2 General Information

2.4 Use as directed
Please observe the chapters "Use as directed” and "Prohibited use" in the instructions manual for
the servo amplifier.
The DeviceNet interface serves only for the connection of the servo amplifier to a master via the
DeviceNet bus. The servo amplifiers are components that are built into electrical apparatus or
machinery, and can only be setup and operated as integral components of such apparatus or
machinery.
We only guarantee the conformity of the servo amplifier with the directives listed in the EU Declar-
ation of Conformity, if the components that we specify are used, and the installation regulations
are followed.

2.5 System requirements
Servoamplifier SERVOSTAR 600, serial No. 730266000 or higher or SERVOSTAR 300 or
S700
DeviceNet expansion card for the servo amplifier
Master station with a DeviceNet interface (e.g. PC with DeviceNet card)

2.6 Symbols Used
Symbol Indication

Indicates a hazardous situation which, if not avoided, will result in
death or serious injury.

Indicates a hazardous situation which, if not avoided, could result
in death or serious injury.

Indicates a hazardous situation which, if not avoided, could result
in minor or moderate injury.

Indicates situations which, if not avoided, could result in property
damage.

This symbol indicates important notes.

Warning of a danger (general). The type of danger is specified by
the text next to the symbol.

Warning of danger from electricity and its effects.

Warning of danger from automatic start.

10 Kollmorgen | kdn.kollmorgen.com | February 2020

2.7 Abbreviations used
Abbreviation Meaning
ACC Acceleration
BOI BOI Bus Off interrupt
CAN Controller area network
CCW Counter clockwise
COS Change of state
CW Clockwise
EMC Electromagnetic compatibility
ISO International Standardization Organization
LED LED Light-emitting diode
LSD Least significant digit
MAC ID Media access control identifier
M/S Master/slave
MSD Most significant digit
N/A Not applicable
ODVA Open DeviceNet Vendor Association
S300 SERVOSTAR 300
S600 SERVOSTAR 600

2.8 Application notes
Specific examples for individual chapters can be found in the appendix of this manual.

S300-S600-S700 DeviceNet | 2 General Information

Kollmorgen | kdn.kollmorgen.com | February 2020 11

S300-S600-S700 DeviceNet | 2 General Information

2.9 Basic features implemented through DeviceNet
When working with the position controller that is integrated in the digital servo amplifiers, the fol-
lowing functions are available:

Setup and general functions:

homing, set reference point
jogging, with a variable speed
provision of a digital setpoint for speed and torque control

Positioning functions:

execution of a motion task from the motion block memory of the servo amplifier
execution of a direct motion task
absolute trajectory

Data transfer functions:

transmit a motion task to the motion block memory of the servo amplifier. A motion task con-
sists of the following elements:

position setpoint (absolute task) or path setpoint (relative task)
speed setpoint
acceleration time, braking time, rate-of-change/jolt limiting (in preparation)
type of motion task (absolute/relative)
number of a following task (with or without pause)

Transmit a non-motion task to the motion block memory of the servo amplifier

In addition to motion tasks, the following task types can be modified through DeviceNet:

modify attribute
wait until parameter = value
branch if greater than/less than
decrement counter
delay
read a motion task from the motion block memory of the servo amplifier
read actual values
read the error register
read the status register
read/write configuration and control parameters
read actual values from analog and digital inputs
write control values to analog and digital outputs

Transmission rate and procedure:

bus connection and bus medium: CAN-standard ISO 11898 (CAN high-speed)
transmission rate: 125, 250, 500 kbit/s

12 Kollmorgen | kdn.kollmorgen.com | February 2020

3 Installation / Setup
3.1 Important Notes

High Voltages up to 900 V!

Risk of electric shock. Residual charges in the capacitors can still have dangerous levels several
minutes after switching off the supply voltage. Power and control connections can still be live,
even though the motor is not rotating.

Install and wire up the equipment only while it is not electrically connected.
Make sure that the control cabinet is safely isolated (lock-out, warning signs etc.).The indi-
vidual supply voltages will not be switched on until setup is carried out.
Measure the voltage in the intermediate (DC-link) circuit and wait until it has fallen below 50V.

Automatic Start!

Risk of death or serious injury for humans working in the machine. Drives with servo amplifiers in
fieldbus systems are remote-controlled machines. They can start to move at any time without pre-
vious warning.

Implement appropriate protective measures to ensure that any unintended start-up of the
machines cannot result in dangerous situations for personnel or machinery.
The user is responsible for ensuring that, in the event of a failure of the servo amplifier, the
drive is set to a state that is functional safe, for instance with the aid of a safe mechanical
brake.
Software limit-switches are not a substitute for the hardware limit-switches in the machine.

Install the servo amplifier as described in the S300/S700 or S600 instructions manual. The wiring
for the analog setpoint input and the positioning interface is not required.
Because of the internal representation of the position-control parameters, the position controller
can only be operated if the final limit speed of the drive at sinusoidal² commutation is not more
than 7500 rpm. At trapezoidal commutation, the permitted maximum speed is 12000 rpm.
All the data on resolution, step size, positioning accuracy etc. refer to calculatory values. Non-lin-
earities in the mechanism (backlash, flexing, etc.) are not taken into account.
If the final limit speed of the motor has to be altered, then all the parameters that were previously
entered for position control and motion blocks must be adapted.

S300-S600-S700 DeviceNet | 3 Installation / Setup

Kollmorgen | kdn.kollmorgen.com | February 2020 13

S300-S600-S700 DeviceNet | 3 Installation / Setup

3.2 Installation

3.2.1 Installation of the expansion card
To fit the DeviceNet expansion card into a servo amplifier, proceed as follows:

Remove the cover of the option slot (refer to the instructions manual of the servo amplifier).
Take care that no small items (such as screws) fall into the open option slot.
Push the expansion card carefully into the guide rails that are provided, without twisting it.
Press the expansion card firmly into the slot, until the front cover touches the fixing lugs. This
ensures that the connectors make good contact.

l Screw the screws on the front cover into the threads in the fixing lugs.

3.2.2 Combined Module / Network Status LED
State LED To indicate:
Not powered / not online off Device is not online.

The device has not completed the Dup_MAC_ID test
yet.
The device may not be powered.

Operational AND online, con-
nected

green Das Gerät läuft im normalen Zustand, ist online, und die
Verbindungen sind im etablierten Zustand.

Das Gerät ist einem Master zugewiesen.
Operational AND online, not
connected
or
Online AND needs con-
figuration
.

flashing
green

The device is operating in a normal condition and the
device is online with no connections in the established
state.

The device has passed the Dup_MAC_ID test, is
online, but has no established connections to other
nodes.
This device is not allocated to a master.
Configuration missing, incomplete or incorrect.

Minor fault and/or connection
time out

flashing
red

Recoverable fault and/or one or more I/O Connections
are in the Timed–Out state.

Critical fault or critical link fail-
ure

red

The device has an unrecoverable fault; may need
replacing.
Failed communication device. The device has detec-
ted an Error that has rendered it incapable of com-
municating on the network (e.g. Duplicate MAC ID, or
Bus–off).

3.2.3 Front view

3.2.4 Connection technology
Cable selection, cable routing, shielding, bus connector, bus termination and transmission times
are all described in the “DeviceNet specification, volumes I, II", published by ODVA.

14 Kollmorgen | kdn.kollmorgen.com | February 2020

3.2.5 Bus cable
To meet ISO 898, a bus cable with a characteristic impedance of 120 should be used. The max-
imum usable cable length for reliable communication decreases with increasing transmission
speed. As a guide, you can use the following values which we have measured, but they are not to
be taken as assured limits.

General characteristic Specification
Bit rates 125 KBit, 250 KBit, 500 KBit
Distance with larger bus con-
nections

500 m at 125 KBaud
250 m at 250 KBaud
100 m at 500 KBaud

Number of nodes 64
Signal environment CAN
Modulation Basic bandwidth
Coupling medium DC-coupled differential transmit/receive operation
Isolation 500 V (option: optocoupler on the transceiver's node side)
Typical differential input imped-
ance (recessive state)

Shunt C = 5pF
Shunt R = 25kΩ (power on)

MMin. differential input imped-
ance (recessive state)

Shunt C = 24pF + 36 pF/m of the permanently attached stub
cable, Shunt R = 20kΩ

Absolute max. voltage range -25 V to +18 V (CAN_H, CAN_L) The voltages for CAN_H
and CAN_L refer to the ground pin of the transceiver. The
voltage is higher than that on the V-terminal by the amount of
the forward voltage drop of the Schottky diode. This voltage
drop must be < 0.6 V.

Grounding:
The DeviceNet network must only be grounded at one point, to avoid ground loops. The circuitry
for the physical layer in all devices are referenced to the V-bus signal. The ground connection is
made via the power supply for the bus system. The current flowing between V- and ground must
not flow through any device other than the power supply.

Bus topology:
The DeviceNet medium utilizes a linear bus topology. Termination resistors are required at each
end of the connecting cable. Stub cables are permitted up to a length of 6 meters, so that at least
one node can be connected.

Termination resistors:
DeviceNet requires a termination at each end of the connecting cable.
These resistors must meet the following requirements: 120 Ω, 1% metal-film, 1/4 W

Important: don't install the termination resistors at the end of stub cables, but on both ends of the
connectiing cable.

S300-S600-S700 DeviceNet | 3 Installation / Setup

Kollmorgen | kdn.kollmorgen.com | February 2020 15

S300-S600-S700 DeviceNet | 3 Installation / Setup

Network Power supply:
Power taps for DeviceNet should have the following characteristics:

Specified ratings for power supply and network currents (24V)
Fuses or circuit breakers to limit current on the bus if current limiting in the power supply is
insufficient.
10 ft. maximum cable length from power supply to power tap

16 Kollmorgen | kdn.kollmorgen.com | February 2020

3.2.6 Connection diagram

With S600 terminals AGND and DGND (connector X3) must be joined together !

3.2.7 Setup of station address
Three different ways to set the station address (device address) for the servo amplifier:

Set the rotary switches on the front panel of the option card to a value between 0 and 63. Each
switch represents one decimal digit. To set the amplifier to address 10, set the MSD (most sig-
nificant digit) switch to 1 and the LSD (least significant digit) switch to 0.
Set the rotary switches on the front panel of the expansion card to a value greater than 63. The
station address can now be set using the ASCII commands DNMACID x, SAVE, COLDSTART
where x is the station address.
Set the rotary switches on the front panel of the expansion card to a value greater than 63. The
station address can now be set through the DeviceNet object (class 0x03, attribute 1). This is
typically done through a DeviceNet commissioning tool. All drive parameters will be saved to
the non-volatile memory when the value is set. The amplifier must be restarted after modifying
the address.

3.2.8 Setup of transmission rate
Three different ways to set the DeviceNet transmission rate:

Set the rotary baudrate switch on the front panel of the option card to a value between 0 and 2.
0=125kbit/s, 1=250kbit/s, 2=500kbit/s.
Set the baudrate switch on the front panel of the expansion card to a value greater than 2. The
baud rate can now be set using the terminal commands DNBAUD x, SAVE, COLDSTART
where x is 125, 250 or 500.
Set the baudrate switch on the front panel of the expansion card to a value greater than 2. The
baud rate can now be set through the DeviceNet object (class 0x03, attribute 2) to a value
between 0 and 2. This is typically done through a DeviceNet commissioning tool. All drive
parameters will be saved to the non-volatile memory when the value is set. The amplifier must
be restarted after modifying the baud rate.

3.2.9 Controller setup
Some master controllers request an EDS file (electronic data sheet) for configuring each
DeviceNet node. The S300/S700 and S600 EDS file can be found on the Kollmorgen web site
and on the product CDROM.

S300-S600-S700 DeviceNet | 3 Installation / Setup

Kollmorgen | kdn.kollmorgen.com | February 2020 17

S300-S600-S700 DeviceNet | 3 Installation / Setup

3.3 Setup

3.3.1 Guide to Setup
Only professional personnel with extensive knowledge of control and drive technology are
allowed to setup the servo amplifier.

Automatic Start!

Risk of death or serious injury for humans working in the machine. The drive performing
unplanned movements during commissioning cannot be ruled out. Make sure that, even if the
drive starts to move unintentionally, no danger can result for personnel or machinery.
The measures you must take in this regard for your task are based on the risk assessment of the
application.

Check assembly /
installation

Check that all the safety instructions in the instructions manual for the
servo amplifier and this manual have been observed and imple-
mented. Check the setting for the station address (➜ # 17) and baud
rate (➜ # 17).

Connect PC, start
setup software

Use the amplifier's setup software to set the parameters.

Setup
the basic functions

Start up the basic functions of the servo amplifier and optimize the cur-
rent, speed and position controllers. This section is described in the
online help of the setup software.

Save parameters When the parameters have been optimized, save them to the servo
amplifier.

Start bus com-
munication

Requirement: the software protocol must be implemented in the mas-
ter. Adjust the station address and the transmission rate of the servo
amplifier to match the master (➜ # 17).

Test communication Connect to the servo amplifier with a master device. Try view-
ing/modifying a parameter with explicit messaging (Position Controller
Object class 0x25, inst ance 0x01, Target position attribute 0x06 → ter-
minal parameter O_P).

Setup position con-
troller

Setup the position controller, as described in the setup software online
help.

3.3.2 Error handling
Several parameters may be used to control DeviceNet error handling. Bus off events are detected
by the amplifier when there is a problem with the DeviceNet network. Default behavior is to auto-
matically reset communications whenever possible. To hold the amplifier in a disconnected state
when bus off errors are detected, set the BOI attribute of the DeviceNet object to 0 (class 0x03,
instance 1, attribute 3).
By default, the amplifier sets a node-guarding warning n04 when a communication timeout occurs
(the timeout behavior is typically controlled automatically by the PLC). To disable the node-guard-
ing warning, set the terminal parameter EXTWD=0.

This service is not supported in the S300/S700.
To view DeviceNet status information for debugging purposes, type DNDUMP in the setup soft-
ware terminal window.

18 Kollmorgen | kdn.kollmorgen.com | February 2020

3.4 Response to BUSOFF communication faults
The communication fault BUSOFF is directly monitored and signaled by Level 2 (CAN controller).
This message may have various causes.
Some examples:

telegrams are transmitted, although there is no other CAN node connected
CAN nodes have different transmission rates
the bus cable is faulty
faulty cable termination causes reflections on the cable.

The DeviceNet Object (class 0x03, attributes 3 and 4) determines the response to a BUSOFF con-
dition.

S300-S600-S700 DeviceNet | 3 Installation / Setup

Kollmorgen | kdn.kollmorgen.com | February 2020 19

S300-S600-S700 DeviceNet | 4 DeviceNet Overview

4 DeviceNet Overview
The DeviceNet communication profile follows the ODVA standard Position Controller Device pro-
file.

4.1 Functionality Chart
DeviceNet™ ODVA Requirements
Device Type Position Controller
Explicit Peer-to-Peer Messaging N
I/O Peer-to-Peer Messaging N
Baud Rates 125, 250 and 500 kB
Polled Response Time <10ms
Explicit Response Time < 50ms (except parameter object, < 500 ms)
Master/Scanner N
Configuration Consistency Value N
Faulted Node Recovery Y
I/O Slave Messaging
Bit Strobe N
Polling Y
Cyclic N
Change-of-State (COS) N

4.2 Overview of Explicit and Polled I/O (assembly) messages
The servo amplifiers with DeviceNet expansion card support two main types of DeviceNet com-
munication: Explicit Messaging and Polled I/O Messaging.
Typically, Explicit Messaging is used to configure the amplifier and Polled I/O is used to control
movement. Most PLC’s will support both types of messaging simultaneously. The objects
described in the next sections are all accessed though Explicit Messaging. Chapter 6 describes
the use of Polled I/O.
Explicit Messages allow you to access a single parameter value at a time. The desired parameter
is selected by specifying the class object number, instance number and attribute number in an
explicit message. Polled I/O messages combine many control and status bits into 8-byte com-
mand and response messages. They are less versatile than explicit messages (only certain para-
meters are accessible), but several control values may be changes within one message. For this
reason, Explicit Messaging is better for configuration and Polled I/O is better for motion control.
Most amplifier configuration is done within the Position Controller Object (class 0x25), which
encompasses most parameters necessary for motion control. Modify parameters in this object to
set the operational mode (torque, velocity, position) and configure motion. View parameters to
read the amplifier status words. Additional amplifier configuration may be done through the Para-
meter Object (class 0x0F). This is a vendor-defined object which exposes vendor configuration
parameters. Any drive parameter with a DPR number (see the ascii.chm reference) less than 256
may be accessed through the Parameter Object.
Motion sequences may be pre-programmed into the amplifier through the Command Block Object
(class 0x25). These blocks correspond to the SERVOSTAR motion tasking feature. Positioning
moves, time delays, and parameter modification blocks may be linked together to create a motion
block program that is stored in the amplifier. Once the stored block program has been configured,
it may be executed through either the Block Sequencer Object or with the Polled I/O Command
Message block number field and start block bit.
Polled I/O is used for most motion control. Control bits in a command message are used to enable
the amplifier, do a controlled stop of the motor, initiate motion, and initiate stored motion block pro-
grams. Command messages can also set the target position, target velocity, acceleration, decel-
eration and torque parameters. Status bits in a response message display error states and the
general state of the amplifier. Response messages can also display the actual position, com-
manded position, actual velocity and torque.
See the appendix for examples.

20 Kollmorgen | kdn.kollmorgen.com | February 2020

4.3 Motion Objects with Explicit Messaging
The following DeviceNet objects are used to configure an amplifier and control motion.

4.3.1 Object: Parameter
Class Code 0x0F
Instance # 1-255
Description The parameter object gives direct access to amplifier configuration parameters

4.3.2 Object: Position Controller Supervisor
Class Code 0x24
Instance # 1
Description The position controller supervisor handles errors for the position controller.

4.3.3 Object: Position Controller
Class Code 0x25
Instance # 1
Description The position controller object is used to set the operating mode (torque, velocity,

position), configure motion profiles, and initiate movement.

4.3.4 Object: Block Sequencer
Class Code 0x26
Instance # 1
Description This object handles the execution of motion blocks or motion block chains

4.3.5 Object: Command Block
Class Code 0x27
Instance # 1 bis 255
Description Each instance of the command block object defines a specific motion block.

These blocks can be linked to other blocks to form a motion block chain.

S300-S600-S700 DeviceNet | 4 DeviceNet Overview

Kollmorgen | kdn.kollmorgen.com | February 2020 21

S300-S600-S700 DeviceNet | 4 DeviceNet Overview

4.4 I/O Objects
The following DeviceNet objects are used to control the amplifier’s on-board I/O ports.

4.4.1 Object: crete Input Point
Class Code 0x08
Instance # 1-4
Description The discrete input point objects give access to the amplifier’s four digital inputs.

4.4.2 Object: Discrete Output Point
Class Code 0x09
Instance # 1-2
Description The discrete output point objects give access to the amplifier’s two digital outputs.

4.4.3 Object: Analog Input Point
Class Code 0x0A
Instance # 1-2
Description The analog input point objects give access to the amplifier’s two analog inputs.

4.4.4 Object: Analog Output Point
Class Code 0x0B
Instance # 1-2
Description The analog output point objects give access to the amplifier’s two analog outputs.

22 Kollmorgen | kdn.kollmorgen.com | February 2020

4.5 Communication Objects
The following DeviceNet objects handle communication between the amplifier and a controller.
These are typically not accessed directly by a user’s PLC program.

4.5.1 Object: Identity
Class Code 0x01
Instance # 1
Description This object provides identification of any general information about the device.

The Identity Object is present in all DeviceNet products.

4.5.2 Object: Message Router
Class Code 0x02
Instance # 1
Description This object provides a messaging connection point through which a client may

address a service to any object class or instance residing in the physical device.

4.5.3 Object: DeviceNet
Class Code 0x03
Instance # 1

Description
This object provides the configuration and status of a DeviceNet port. Each
DeviceNet product supports only one DeviceNet object per physical connection
to the DeviceNet communication link.

4.5.4 Object: Assembly
Class Code 0x04
Instance # 1

Description

This object binds attributes of multiple objects, which allows data to or from each
object to be sent or received over a single connection. Assembly objects can be
used to bind input or output data. An input produces data on the network and an
output consumes data from the network.

4.5.5 Object: Explicit Connection
Class Code 0x05
Instance # 1
Description This object manages the explicit messages.

4.5.6 Object: Polled I/O Connection
Class Code 0x07
Instance # 2
Description This object manages the I/O messages.

S300-S600-S700 DeviceNet | 4 DeviceNet Overview

Kollmorgen | kdn.kollmorgen.com | February 2020 23

S300-S600-S700 DeviceNet | 4 DeviceNet Overview

4.6 Firmware-Version

4.7 Supported Services
The DeviceNet objects support the following services:

Get_Single_Attribute (service code 0x0E)
Set_Single_Attribute (service code 0x10)
Reset (service code 0x05, class 0x01, instance 1, attribute 0 or 1, data length = 0)
Save (service code 0x16, class 0x0F, instance 1, attribute 0, data length = 0)

For additional information, we recommend that you review this entire document.

4.8 Data Types
The table below describes the data type, number of bits, minimum and maximum range.

Data Type Number of Bits Minimum Value Maximum Value
Boolean 1 0 (false) 1 (true)
Short Integer 8 -128 127
Unsigned Short Integer 8 0 255
Integer 16 -32768 32767
Unsigned Integer 16 0 65535
Double Integer 32 -231 231 - 1
Unsigned Double Integer 32 0 232 - 1

4.9 Saving to Non-volatile Memory
Amplifier parameters are typically stored in RAM and only stored to non-volatile memory when a
SAVE is commanded through Explicit Messaging. A save operation can be initiated over
DeviceNet with either of two methods:
1. Save service of the Parameter Object. Transmit the following explicit message:

Service: 0x16
Class: 0x0F
Instance: 0x00
Attribut: 0x00
Data Length: 0

2. Save attribute of the Position Controller Object. Transmit the following explicit message:

Service: 0x10
Class: 0x25
Instance: 0x01
Attribut: 0x65
Data Length: 1
Data Value: 1

24 Kollmorgen | kdn.kollmorgen.com | February 2020

5 Explicit messages
Typically, Explicit Messages are used to configure the amplifier and setup drive parameters. See
(➜ # 20, DeviceNet Overview) for more information.

5.1 Position Controller Supervisor Object (class 0x24)
The position controller supervisor handles errors for the position controller.

5.1.1 Error Codes
The amplifier returns one of the following codes when an error is generated while communicating
via Explicit Messaging.

Action Error Error Code
Set Attribute Not Settable 0x0E
Set or Get Attribute Not Supported 0x14
Set or Get Service Not Supported 0x08
Set or Get Class Not Supported 0x16
Set Value is Out of Range 0x09

5.1.1.1 Object State Conflicts – 0x0C
Three conditions could cause the amplifiers to return this error code. To proceed, check and clear
the condition.

Condition Solution
On hard or soft limit and then issuing a command
to move in the direction of the limit

Move in opposite direction of the limit

Issuing a command not support in the current
mode (i.e., trying to do registration in velocity
mode)

Change the mode to fit the application or
issue the proper command

Trying to enable a faulted amplifier Correct the fault before enabling the amp-
lifier.

5.1.2 Supervisor Attributes
The following attributes are supported in the Position Controller Supervisor class. The instance
number always equals 1 in the class/instance/attribute mappings for the Position Controller Super-
visor.

5.1.2.1 Attribute 0x05: General Fault
Description When active, this indicates that an amplifier-related failure has occurred,

(Short Circuit, Over-Voltage, etc.). It is not related to the FAULT input. It is
reset when the fault condition is removed.

Access Rule Get Default none
Data Type Boolean Non-Volatile N/A
Range 1 = Fault condition exists

0 = No fault exists
See also Fault code, ERRCODE

(ASCII)

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 25

S300-S600-S700 DeviceNet | 5 Explicit messages

5.1.2.2 Attribute 0x0E: Index Active Level
This attribute is not supported in the S300/S700

Description This attribute is used to set the active level of the indexing input.
Access Rule Get/Set Default none
Data Type Boolean Non-Volatile N/A
Range 0 = Low active 1 = High active See also N/A

5.1.2.3 Attribute 0x15: Registration Arm
This attribute is not supported in the S300/S700

Description Set the value to 1 to arm the registration input. The values reads 0 when
triggered

Access Rule Get/Set Default none
Data Type Boolean Non-Volatile N/A
Range 0 = registration triggered (Get)

1 = registration armed (Get/Set)
See also N/A

5.1.2.4 Attribute 0x16: Registration Input Level
This attribute is not supported in the S300/S700.

Description This attribute returns the actual value of the registration input.
Access Rule Get Default none
Data Type Boolean Non-Volatile N/A
Range 0 = Low, 1 = High See also N/A

5.1.2.5 Attribute 0x64: Fault Code
Description Read the amplifier fault code words
Access Rule Get Default none
Data Type Double Integer Non-Volatile no
Range See also General Fault, Clear Faults,

ERRCODE (ASCII)

5.1.2.6 Attribute 0x65: Clear Faults
Description Set to 1 to clear amplifier faults.
Access Rule Set Default 0
Data Type Boolean Non-Volatile no
Range 0 = do nothing

1 = clear faults
See also General Fault, Clear Faults,

CLRFAULT (ASCII)

26 Kollmorgen | kdn.kollmorgen.com | February 2020

5.2 Position Controller Object (class 0x25)
The position controller object is used to set the operating mode (torque, velocity, position), con-
figure a direct motion block or jog, and initiate movement.

5.2.1 Error Codes
The amplifier returns one of the following error codes when an error is generated while com-
municating via Explicit Messaging.

Action Error Error Code
Set Attribute Not Settable 0x0E
Set or Get Attribute Not Supported 0x14
Set or Get Service Not Supported 0x08
Set or Get Class Not Supported 0x16
Set Value is Out of Range 0x09

5.2.1.1 Object State Conflicts – 0x0C
Three conditions could cause the amplifiers to return this error code. To proceed, check and clear
the condition.

Condition Solution
On hard or soft limit and then issuing a com-
mand to move in the direction of the limit

Move in opposite direction of the limit

Issuing a command not support in the current
mode (i.e., trying to do registration in velocity
mode)

Change the mode to fit the application or issue
the proper command

Trying to enable a faulted amplifier Correct the fault before enabling the amplifier.

5.2.2 Position controller attributes
The following attributes are supported in the Position Controller class. The instance number
always equals 1 in the class/instance/attribute mappings for the Position Controller.

5.2.2.1 Attribute 0x01: Number of Attributes
Description The total number of attributes supported by the unit in the Position Controller

Class.
Access Rule Get Default
Data Type Unsigned Short Integer Non-Volatile N/A
Range Unsigned Short Integer See also Attribute list

5.2.2.2 Attribute 0x02: Attribute list
Description Returns an array with a list of the attributes supported by this unit in the Pos-

ition Controller Class. The length of this list is specified in Number of Attrib-
utes.

Access Rule Get Default
Data Type Array of Unsigned Short Integer Non-Volatile N/A
Range Array size is defined by Attribute

1.
See also Number of Attributes

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 27

S300-S600-S700 DeviceNet | 5 Explicit messages

5.2.2.3 Attribute 0x03: Opmode
Description This attribute is used to get or set the operating mode.

0=Position (OPMODE 8).
1= velocity (OPMODE 0).
2=Torque (OPMODE 2).
This attribute must be set before any move is attempted!

Access Rule Get / Set Default 0
Data Type Unsigned Short Integer Non-Volatile No
Range 0 = Position Mode

1 = Velocity Mode
2 = Torque Mode
3 = Other (read only)

See also Trajectory Start/Com-
plete, OPMODE (ASCII)

5.2.2.4 Attribute 0x06: Target Position
Description This attribute specifies the target position in counts.

Set Start Trajectory=1 (attribute 11) or the Polled I/O Start Trajectory/Load Data
bit to initiate the positioning move.

Access Rule Get / Set Default 0
Data Type Double Integer Non-Volatile No
Range -231 to 231 See also Actual Position, Incremental

Mode Flag, Mode, O_P
(ASCII)

5.2.2.5 Attribute 0x07: Target Velocity
Description This attribute specifies the target velocity in counts per second. Use target velo-

city for position opmode and jog velocitiy (attribute 22) for velocity opmode.
Units are determined by the amplifier setup (VUNIT, Position controller attrib-
utes 40-41).

Access Rule Get / Set Default According to setup
Data Type Double Integer Non-Volatile Yes
Range Set to a positive number See also Actual Position, Incremental

Mode Flag, Mode, O_V (ASCII)

5.2.2.6 Attribute 0x08: Acceleration
Description This attribute specifies the acceleration for positioning and homing (ACCR)

when in position opmode and the acceleration for constant velocity (ACC)
when in velocity opmode. Units are determined by the amplifier setup
(ACCUNIT, Position controller attributes 40-41) All position moves initiated
through a Command Assembly or Command Block Object use this accel-
eration rate. To set different acceleration rates for multiple motion blocks
(tasks) requires the motion block to be setup using the amplifier setup soft-
ware.

Access Rule Get / Set Default According to setup
Data Type Double Integer Non-Volatile Yes
Range Set to a positive number See also Deceleration, ACC (ASCII),

ACCR (ASCII)

28 Kollmorgen | kdn.kollmorgen.com | February 2020

5.2.2.7 Attribute 0x09: Deceleration
Description This attribute specifies the deceleration for positioning and homing (DECR)

when in position opmode and the acceleration for constant velocity (DEC)
when in velocity opmode. Units are determined by amplifier setup (ACCUNIT,
Position controller attributes 40-41) All position moves initiated through a Com-
mand Assembly or Command Block Object use this deceleration rate. To set
different deceleration rates for multiple motion blocks (tasks) requires the
motion block to be setup using the amplifier setup software.

Access Rule Get / Set Default According to setup
Data Type Double Integer Non-Volatile Yes
Range Set to a positive number See also Acceleration,, DEC (ASCII),

DECR (ASCII)

5.2.2.8 Attribute 0x0A: Move Type
Description This bit is used to define the position value as either absolute or incremental

in OpMode 8
Access Rule Get / Set Default 1
Data Type Boolean Non-Volatile No
Range 0 = absolute Position

1 = Incremental Position
See also Target Position, Trajectory Start /

Complete, O_C bit 0 (ASCII)

5.2.2.9 Attribute 0x0B: Trajectory Start/Complete
Description Set high (1) to start a trajectory move. Reads high (1) while in motion and low

(0) when motion is complete.
Access Rule Get / Set Default 0
Data Type Boolean Non-Volatile No
Range 0 = Move Complete

1 = Start Trajectory (In Motion)
See also Hard Stop, Smooth Stop

5.2.2.10 Attribute 0x0C: In Position
Description This flag, when set, indicates that the motor is within the deadband distance to

the target
Access Rule Get Default 1
Data Type Boolean Non-Volatile N/A
Range 0 = Not in position

1 = In position
See also Trajectory Start/Complete,

INPOS (ASCII)

5.2.2.11 Attribute 0x0D: Actual Position
Description The absolute position value equals the real position in counts. This is set to re-

define the actual position.
Access Rule Get / Set Default 0
Data Type Double Integer Non-Volatile No
Range -231 to 231 See also Incremental Mode Flag, Target

Position, PFB (ASCII)

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 29

S300-S600-S700 DeviceNet | 5 Explicit messages

5.2.2.12 Attribute 0x0E: Actual Velocity
Description This attribute specifies the actual velocity. Units are determined by the amp-

lifier setup (VUNIT, position controller attriute 40-41)
Access Rule Get Default 0
Data Type Double Integer Non-Volatile No
Range Positive read value See also Target Velocity, PV (ASCII)

5.2.2.13 Attribute 0x11: Enable
Description This flag is used to control the enable output. Clearing this bit sets the enable

output inactive and the currently executing motion profile is aborted.
Access Rule Get / Set Default 0
Data Type Boolean Non-Volatile N/A
Range 0 = Disable

1 = Enable
See also Actual Position, EN (ASCII)

5.2.2.14 Attribute 0x14: Smooth Stop
Description This bit is used to bring the motor to a controlled stop at the currently imple-

mented deceleration rate.
Access Rule Get / Set Default 0
Data Type Boolean Non-Volatile No
Range 0 = No Action

1 = Perform Smooth Stop
See also Acceleration, Deceleration,

Hard Stop, Trajectory
Start/Complete, STOP
(ASCII)

5.2.2.15 Attribute 0x15: Hard Stop
Description This bit is used to bring the motor to an immediate stop.
Access Rule Get / Set Default 0
Data Type Boolean Non-Volatile No
Range 0 = No Action

1 = Perform Hard Stop
See also Smooth Stop, Trajectory Start/

Complete,DECSTOP (ASCII)

5.2.2.16 Attribute 0x16: Jog Velocity
Description This attribute is used to set the target velocity in velocity mode. The Direction

attribute is used to select the direction of the velocity move. The Trajectory
Start attribute is used to begin motion. Units are determined by the amplifier
setup (VUNIT, position controller attributes 40-41)

Access Rule Get / Set Default 0
Data Type Double Integer Non-Volatile Yes
Range Positive See also Mode (velocity), Direction, Tra-

jectory Start/Complete, J (ASCII)

30 Kollmorgen | kdn.kollmorgen.com | February 2020

5.2.2.17 Attribute 0x17: Direction
Description Set this bit to control the direction of the motor in velocity mode. Read this bit

to get the actual direction of motion.
Access Rule Get / Set Default 1
Data Type Boolean Non-Volatile No
Range 0 = negative Direction

1 = positive Direction
See also Mode (velocity), Reference

Direction, J (ASCII)

5.2.2.18 Attribute 0x18: Reference direction
This attribute is not supported in the S300/S700

Description Defines positive direction (when viewed from the motor shaft side)
Access Rule Get / Set Default 0
Data Type Boolean Non-Volatile Yes
Range 0 = positive Clockwise Motion

1 = positive Counter-Clockwise
Motion

See also Direction, DIR (ASCII)

5.2.2.19 Attribute 0x19: Torque
Description Set a new torque command in torque mode or read the current torque com-

mand. The Trajectory Start attribute is used to begin motion
Access Rule Get / Set Default 0
Data Type Double Integer Non-Volatile No
Range -3280 to 3280

(3280 = peak torque))
See also Mode (torque), Trajektory

Start, T (ASCII)

5.2.2.20 Attribute 0x28: Feedback resolution
Description Number of actual position feedback counts (or amplifier internal units) in one

revolution (PGEARO). The resolution is generally 1048576 counts/turn for
PRBASE = 20 or 65536 counts/turn for PRBASE = 16. The Motor Resolution
and Feedback Resolution attributes are used to define the desired resolution
of user units for position in terms of internal units. Velocity and acceleration
units may be defined in terms of position units, depending on the values of
VUNIT and ACCUNIT.
Position[internal units] = Position[user units] * FeedbackResolution / MotorRes-
olution
Example: if PRBASE=20 for 2^20 bits per revolution in the internal position
units, set Feedback Resolution = 1048576.
Now for user units of 1000 counts/rev, set Motor Resolution = 1000.

Access Rule Get / Set Default 1048576
Data Type Double Integer Non-Volatile Yes
Range positive See also Motor resolution, PGEARO (ASCII),

VUNIT (ASCII), ACCUNIT (ASCII),
PRBASE (ASCII)

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 31

S300-S600-S700 DeviceNet | 5 Explicit messages

5.2.2.21 Attribute 0x29: Motor resolution
Description Number of user-defined steps in one revolution of the motor (PGEARI). The

Motor Resolution and Feedback Resolution attributes are used to define the
desired resolution of user units for position in terms of internal units. Velocity
and acceleration units may be defined in terms of position units, depending on
the values of VUNIT and ACCUNIT.
Position[internal units] = Position[user units] * FeedbackResolution / MotorRes-
olution
Example: if PRBASE=20 for 2^20 bits per rev. in the internal position units, set
Feedback Resolution = 1048576.
Now for user units of 1000 counts/rev, set Motor Resolution = 1000.

Access Rule Get / Set Default 10000
Data Type Double Integer Non-Volatile Yes
Range positive See also Feedback resolution,, PGEARI (ASCII),

VUNIT (ASCII), ACCUNIT (ASCII),
PRBASE (ASCII)

5.2.2.22 Attribute 0x65: Save Parameters
Description Set to 1 to save drive parameters to non-volatile storage.
Access Rule Set Default 0
Data Type Boolean Non-Volatile No
Range 0 = Do nothing.

1 = Save parameters.
See also SAVE (ASCII)

5.2.2.23 Attribute 0x66: Amplifier Status
This attribute is not supported in the S300/S700. Read DRVSTAT using the Parameter Object
(class 0x0F) Non-Volatile 0x2D, Attribute 0x01.

Description Read the amplifier status words. See the ASCII reference for a description of
the status bits (DRVSTAT).

Access Rule Get Default
Data Type Double Integer Non-Volatile No
Range See also DRVSTAT (ASCII)

5.2.2.24 Attribute 0x67: Trajectory Status
Description Read the amplifier trajectory status words. See the ASCII reference for a

description of the status bits (TRJSTAT).
Access Rule Get Default
Data Type Double Integer Non-Volatile No
Range See also TRJSTAT (ASCII)

32 Kollmorgen | kdn.kollmorgen.com | February 2020

5.3 Parameter Object (class 0x0F)
Most drive parameters can be read and or written through the Parameter Object. This includes
many drive parameters also available through the Position Controller (class 0x25), Block Sequen-
cer (class 0x26), and Command Block Object (class 0x27).
The Parameter Object, which gives direct access to amplifier configuration parameters is a
vendor-defined object.
In an explicit message to the parameter object, the instance number corresponds to the DPR num-
ber for the desired parameter. This DPR number may be found in the ascii.chm command ref-
erence. Only parameters 1-254 can be directly accessed with the instance number, since the
instance field is only 1 byte. Instance 255 is a special instance which means ‘use the Parameter
Number attribute’. See (➜ # 34, Attribute 0x64: Parameter Number) for accessing parameters 255
and higher.
The data length for Set Value commands can be determined from the ‘Data Type Bus/DPR’ field
of ascii.chm. Float types are scaled by 1000 to get an integer value.
Amplifier commands such as Jog, Home, and Save are executed by sending a Set Value com-
mand with a data length of 1 and a value of 1. Reading the value or setting the value to 0 will not
execute the process.
For example, send the following explicit message to initiate homing (Move Home = MH, DPR/in-
stance = 141):
[class=0x0F, instance=141, attribute=0x01, data length=1, data value=0x01].

5.3.1 Error Codes
The amplifier returns one of the following error codes when an error is generated while com-
municating via Explicit Messaging.

Action Error Error Code
Set Attribute Not Settable 0x0E
Set or Get Attribute Not Supported 0x14
Set or Get Service Not Supported 0x08
Set or Get Service Not Supported 0x08 Set or Get Class Not Supported 0x16
Set Value is Out of Range 0x09

5.3.2 Parameter Attributes
These are attributes supported by the unit in the Parameter Object Class.

5.3.2.1 Attribute 0x01: Parameter Value

Description
Directly access the parameter value. Check the command reference for the
data type and read/write access rule. Float types are multiplied by 1000 to get
an integer value. Set the value to 1 to execute an amplifier process (eg Move
Home).

Access Rule depends on the parameter and is
given in ascii.chm in the Type field.

Default

Data type depends on the parameter and is
given in ascii.chm in the Format field.
The byte length is given by Data
Length parameter.

Non-Volatile

Range See also Descriptor, Data
Length, ascii.chm

5.3.2.2 Attribute 0x04: Descriptor
Description The descriptor will be 0x00 for read/write parameters and 0x10 for read-only

parameters
Access Rule Get Default
Data type Unsigned Short Integer Non-Volatile
Range See also

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 33

S300-S600-S700 DeviceNet | 5 Explicit messages

5.3.2.3 Attribute 0x06: Data Length
Description Length of the parameter in bytes
Access Rule Get Default
Data type Unsigned Short Integer Non-Volatile
Range See also

5.3.2.4 Attribute 0x64: Parameter Number
Description Parameter number to access with instance 255. To access parameters with a

DPR number greater than 254, load the desired DPR number into the Para-
meter Number attribute, then use the Parameter Object instance 255 to access
the parameter. Note that this is a class attribute, so use instance 0 when set-
ting the Parameter Number.

Access Rule Set Default 0
Data type Unsigned Integer Non-Volatile No
Range 1 to max DPR number in use See also

Example: read the value of VLIM, DPR #290.
Set the Parameter Number = 290 (service=Set, class=0x0F, instance=0x00, attribute=0x64, value-
e=0x0122). Read the value (service=Get, class=0x0F, instance=0xFF, attribute=0x01).

34 Kollmorgen | kdn.kollmorgen.com | February 2020

5.4 Block Sequencer Object (class 0x26)
This object handles the execution of Motion Blocks or Motion Block chains. Motion sequences
may be pre-programmed into the amplifier through the Command Block Object (class 0x27).
These blocks correspond to the servo amplifier motion tasking feature. Positioning moves, time
delays, and parameter modification blocks may be linked together to create a motion block pro-
gram that is stored in the amplifier. Once the stored block program has been configured, it may be
executed through either the Block Sequencer Object or with the Polled I/O Command Message
block number field and start block bit.

5.4.1 Attribute 0x01: Block
Description Defines the starting Command Block instance number to execute. The block

number corresponds to the number in a MOVE [block #] command.
Access Rule Get / Set Default N/A
Data type Unsigned Short Integer Non-Volatile N/A
Range 1 to 255 See also Block Execute, MOVE (ASCII)

5.4.2 Attribute 0x02: Block Execute
Description Executes the starting command block defined by Attribute 01 (= MOVE).
Access Rule Get / Set Default 0
Data type Boolean Non-Volatile N/A
Range 0 = Clear or Complete

1 = Execute Block (set/get)
See also Block, Block Fault, MOVE

(ASCII)

5.4.3 Attribute 0x03: Current Block
Description Command block instance number of the executing block. 0 while homing.
Access Rule Get Default N/A
Data type Unsigned Short Integer Non-Volatile N/A
Range 1 to 255 See also Block, Block Execute,

TASKNUM (ASCII)

5.4.4 Attribute 0x04: Block Fault
Description Set when a block error occurs. When a block fault error occurs, block exe-

cution stops. This bit is reset when the block fault code (5) is read.
Access Rule Get Default 0
Data type Boolean Non-Volatile
Range 0 = No Block Faults

1 = Block Fault Occurred
See also Block Execute, Block Fault

Code

5.4.5 Attribute 0x05: Block Fault Code
Description This attribute defines the specific block fault. Read value to clear the fault.
Access Rule Get Default N/A
Data type Unsigned Short Integer Non-Volatile N/A
Range 0 = No Fault

1 = Invalid or Empty Block
2 = Command Time-out (Wait Equals)
3 = Execution Fault

See also Block Fault

5.4.6 Attribute 0x06: Counter
This attribute is not supported in the S300/S700.

Description This value is used as a global counter for motion tasks. To view from a serial
terminal, type M LOOPCNT.

Access Rule Get / Set Default 0
Data type Double Integer Non-Volatile No
Range Positive See also Decrement Counter Command (Block

Object)

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 35

S300-S600-S700 DeviceNet | 5 Explicit messages

5.5 Command Block Object (class 0x27)
Motion sequences may be pre-programmed into the amplifier through the Command Block
Object. These blocks are stored in the amplifier as Motion Tasks and can be viewed using the
amplifier's Setup software. Positioning moves, time delays, and parameter modification blocks
may be linked together to create a motion block program that is stored in the amplifier. Once the
stored block program has been configured, it may be executed through either the Block Sequen-
cer Object or with the Polled I/O Command Message block number field and start block bit.
Each instance of the Command Block class defines a specific command or a specific Motion Task
that is stored in the amplifier. For example, Command Block instance #4 corresponds to motion
task #4 and can be viewed from the Position->Position Data->Motion Task Table screen in the
setup software or with an ORDER 1 command from the serial terminal.
The first two attributes of the Command Block Object are always the same: Block Type and Block
Link Number. Begin defining each block (motion task) by setting attribute 1 the Block type (1 to 9).
Attributes 3-7 of each block or motion task are defined by the value of Block Command. For this
reason, they cannot be set until the Block Type has been set. See the appendix for an example of
setting up a motion block program with DeviceNet.

5.5.1 Block Types
The block type is determined by the value of the first attribute. The other attributes are defined by
the Block Type; for this reason, the Block Type must be set before the other attribute values.

Block command Other Attributes Description
1 = Modify Attribute Link, Class, Instance, Attribute,

Data
Set the value of any DeviceNet
accessible attribute.

2 = Wait for Attribute
Value

Link, Class, Instance, Attribute,
Timeout, Data

Delay until a DeviceNet accessible
attribute equals a desired value.

3 = Greater Than Test Link, Class, Instance, Attribute,
Alternate Link, Data

Test the value of a DeviceNet access-
ible attribute and branch to an altern-
ate block if the attribute value is
greater than the test value.

4 = Less Than Test Link, Class, Instance, Attribute,
Alternate Link, Data

Test the value of a DeviceNet access-
ible attribute and branch to an altern-
ate block if the attribute value is less
than the test value.

5 = Decrement Counter Link This block decrements the global
counter in the Command Block
Sequencer object.

6 = Delay Link, Time This block causes the sequencer to
delay for a given number of mil-
liseconds before continuing with the
next block.

8 = Initiate Trajectory Link, Target Position, Target
Velocity, Incremental

Execute a positioning move.

9 = Velocity Change Target Velocity Execute a velocity profile.

Only command 0x08 Motion Task is supported in the S300/S700.

36 Kollmorgen | kdn.kollmorgen.com | February 2020

5.5.2 Command 0x01 – Modify Attribute
This command is not supported in the S300/S700

5.5.2.1 Attribut 0x01: Blocktyp
Description 0x01 = Modify Attribute. The Block Command specifies the command to be per-

formed by the task block. The value is stored in a different format in the low
byte of O_C2 (see Appendix for more information).

Access Rule Get / Set Default N/A
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-

volatile (stored in ROM). Block
instances 181-255 are volatile
(stored in RAM).

Range 0x01 = Command 01 See also Command Map Appendix, O_C2
(ASCII), ORDER (ASCII)

5.5.2.2 Attribute 0x02: Block Link #
Description This attribute provides a link to the next block instance to execute. When this

block is complete, the link block is executed. Set this attribute to 0 to stop
motion after this task is complete – a next task will not be executed. The value
is stored in O_FN.

Access Rule Get / Set Default 0
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-

volatile. Block instances 181-255
are volatile.

Range 0 to 255 See also O_FN (ASCII), ORDER (ASCII)

5.5.2.3 Attribute 0x03: Target Class
Description This attribute defines the class number of the object to be accessed. The value

is stored in the upper byte of O_ACC1.
Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-

volatile. Block instances 181-255
are volatile.

Range See also Position Controller Class, Para-
meter Class, ORDER (ASCII)

5.5.2.4 Attribute 0x04: Target Instance
Description This attribute defines the instance number of the object to be accessed. The

value is stored in O_DEC1.
Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-

volatile. Block instances 181-255
are volatile.

Range See also Sections in this document describ-
ing class attributes, ORDER
(ASCII)

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 37

S300-S600-S700 DeviceNet | 5 Explicit messages

5.5.2.5 Attribute 0x05: Attribute #
Description This attribute defines the attribute number of the object to be accessed. The

value is stored in the lower byte of O_ACC1. The attribute referenced by the
class, instance and attribute numbers in the command must be settable for this
command to execute.

Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volatile.

Block instances 181-255 are volatile.
Range See also Sections in this document describing

class attributes, ORDER (ASCII)

5.5.2.6 Attribute 0x06: Attribute Data
Description This is the new attribute data. The value is stored in O_P.
Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volatile.

Block instances 181-255 are volatile.
Range See also ORDER (ASCII)

5.5.3 Command 0x02 – Wait Until Equals
This command is not supported in the S300/S700
This command is used to wait until an attribute equals a desired value.

5.5.3.1 Attribute 0x01: Block Type
Description 0x02 = Wait Until Equals. The Block Command specifies the command to be

performed by the task block. The value is stored in a different format in the low
byte of O_C2 (see the Command Map Appendix for more information).

Access Rule Get / Set Default N/A
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are volat-
ile.

Range 0x02 = Command 02 See also Command Map Appendix, O_C2
(ASCII), ORDER (ASCII)

5.5.3.2 Attribut 0x02: Blockverknüpfungsnummer
Description This attribute provides a link to the next block instance to execute. When this

block is complete, the link block is executed. Set this attribute to 0 to stop
motion after this task is complete – a next task will not be executed. The value
is stored in O_FN.

Access Rule Get / Set Default 0
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range 0 to 255 See also O_FN (ASCII), ORDER (ASCII)

38 Kollmorgen | kdn.kollmorgen.com | February 2020

5.5.3.3 Attribute 0x03: Target Class
Description This attribute defines the class number of the object to be accessed. The value

is stored in the upper byte of O_ACC1.
Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volatile.

Block instances 181-255 are volatile.
Range See also Position Controller Class, Parameter

Class, ORDER (ASCII)

5.5.3.4 Attribute 0x04: Target Instance
Description This attribute defines the instance number of the object to be accessed. The

value is stored in O_DEC1.
Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volatile.

Block instances 181-255 are volatile.
Range See also ORDER (ASCII)

5.5.3.5 Attribute 0x05: Attribute #
Description This attribute defines the attribute number of the object to be accessed. The

value is stored in the lower byte of O_ACC1. The attribute referenced by the
class, instance and attribute numbers in the command must be settable for this
command to execute.

Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volatile.

Block instances 181-255 are volatile.
Range See also Sections in this document describing class

attributes, ORDER (ASCII)

5.5.3.6 Attribute 0x06: Timeout
Description Maximum time in ms to wait for the parameter to equal the desired value. A

fault is issued if the timer expires. If set to 0, motion tasking will wait without
faulting. Stored in O_FT

Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volatile.

Block instances 181-255 are volatile.
Range See also O_FT (ASCII), ORDER (ASCII)

5.5.3.7 Attribute 0x07: Compare Data
Description The attribute is compared to this value. If they are equal, motion will continue;

otherwise, the amplifier will wait. The value is stored in O_P.
Access Rule Get / Set Default
Data Type Dependent on

Attribute #
Instance Block instances 1-180 are non-volatile.

Block instances 181-255 are volatile.
Range See also ORDER (ASCII)

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 39

S300-S600-S700 DeviceNet | 5 Explicit messages

5.5.4 Command 0x03 – Greater Than Test
This command is not supported in the S300/S700. This command is used for conditional linking or
branching in a linked chain of commands. When the block is executed, it will test the value of a
DeviceNet accessible attribute and branch to an alternate block if the attribute value is greater
than the test value.

5.5.4.1 Attribute 0x01: Block Type
Description 0x03 = Greater Than Test. The Block Command specifies the command to be

performed by the task block. The value is stored in a different format in the low
byte of O_C2 (see the Command Map Appendix for more information).

Access Rule Get / Set Default N/A
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range 0x03= Command 03 See also Command Map Appendix, O_C2
(ASCII), ORDER (ASCII)

5.5.4.2 Attribute 0x02: Block Link #
Description Description This attribute provides a link to the next block instance to execute.

When this block is complete, the link block is executed. Set this attribute to 0 to
stop motion after this task is complete – a next task will not be executed. The
value is stored in O_FN.

Access Rule Get / Set Default 0
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range 0 to 255 See also O_FN (ASCII), ORDER (ASCII)

5.5.4.3 Attribute 0x03: Target Class
Description This attribute defines the class number of the object to be accessed. The value

is stored in the upper byte of O_ACC1.
Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range See also Position Controller Class, Parameter
Class, ORDER (ASCII)

5.5.4.4 Attribute 0x04: Target Instance
Description This attribute defines the instance number of the object to be accessed. The

value is stored in O_DEC1.
Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are volat-
ile.

Range See also ORDER (ASCII)

40 Kollmorgen | kdn.kollmorgen.com | February 2020

5.5.4.5 Attribute 0x05: Attribute #
Description This attribute defines the attribute number of the object to be accessed. The

value is stored in the lower byte of O_ACC1. The attribute referenced by the
class, instance and attribute numbers in the command must be settable for this
command to execute.

Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range See also Sections in this document describing
class attributes, ORDER (ASCII)

5.5.4.6 Attribute 0x06: Compare Link #
Description If the attribute value is greater than the test value, branch to the block specified

in this attribute instead of the block specified in attribute 2. The value is stored
in O_DEC2.

Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range 1 to 255 See also ORDER (ASCII)

5.5.4.7 Attribute 0x07: Compare Data
Description This attribute is the comparison data for the conditional test.

If the test attribute’s value is greater than the compare data, the normal link
(Attribute 2) is ignored and the next block executed is the compare link block
(Attribute 6).

Access Rule Get / Set Default
Data Type Dependent on Attribute # Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range 1 to 255 See also ORDER (ASCII)

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 41

S300-S600-S700 DeviceNet | 5 Explicit messages

5.5.5 Command 0x04 – Less Than Test
This command is not supported in the S300/S700.
This command is used for conditional linking or branching in a linked chain of commands. When
the block is executed, it will test the value of a DeviceNet accessible attribute and branch to an
alternate block if the attribute value is less than the test value.

5.5.5.1 Attribute 0x01: Block Type
Description Description 0x04 = Less Than Test. The Block Command specifies the com-

mand to be performed by the task block. The value is stored in a different
format in the low byte of O_C2 (see the Command Map Appendix for more
information).

Access Rule Get / Set Default N/A
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-

volatile. Block instances 181-255
are volatile.

Range 0x04 = Command 04 See also Command Map Appendix, O_C2
(ASCII), ORDER (ASCII)

5.5.5.2 Attribute 0x02: Block Link #
Description This attribute provides a link to the next block instance to execute. When this

block is complete, the link block is executed. This value must be non-zero for
the delay command. The value is stored in O_FN

Access Rule Get / Set Default
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-

volatile. Block instances 181-255
are volatile.

Range 1 to 255 See also O_FN (ASCII), ORDER (ASCII)

5.5.5.3 Attribute 0x03: Target Class
Description This attribute defines the class number of the object to be accessed. The value

is stored in the upper byte of O_ACC1.
Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-

volatile. Block instances 181-255
are volatile.

Range See also Position Controller Class, Para-
meter Class, ORDER (ASCII)

5.5.5.4 Attribute 0x04: Target Instance
Description This attribute defines the instance number of the object to be accessed. The

value is stored in O_DEC1.
Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-

volatile. Block instances 181-255
are volatile.

Range See also ORDER (ASCII)

42 Kollmorgen | kdn.kollmorgen.com | February 2020

5.5.5.5 Attribute 0x05: Attribute #
Description This attribute defines the attribute number of the object to be accessed. The

value is stored in the lower byte of O_ACC1. The attribute referenced by the
class, instance and attribute numbers in the command must be settable for this
command to execute.

Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-

volatile. Block instances 181-255
are volatile.

Range See also Sections in this document describ-
ing class attributes, ORDER
(ASCII)

5.5.5.6 Attribute 0x06: Compare Link #
Description If the attribute value is less than the test value, branch to the block specified in

this attribute instead of the block specified in attribute 2. The value is stored in
O_DEC2.

Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-

volatile. Block instances 181-255
are volatile.

Range 1 to 255 See also ORDER (ASCII)

5.5.5.7 Attribute 0x07: Compare Data
Description This attribute is the comparison data for the conditional test.

If the test attribute’s value is less than the compare data, the normal link (Attrib-
ute 2) is ignored and the next block executed is the compare link block (Attrib-
ute 6).

Access Rule Get / Set Default
Data Type Dependent on Attribute # Instance Block instances 1-180 are non-

volatile. Block instances 181-255
are volatile.

Range See also ORDER (ASCII)

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 43

S300-S600-S700 DeviceNet | 5 Explicit messages

5.5.6 Command 0x05 – Decrement Counter
This command is not supported in the S300/S700.
This command is used to decrement the global counter (Block Sequencer class 0x26, instance 1,
attribute 6). Combine this block with Modify Attribute and Less Than Test blocks to implement
loops and branches within your block program.

5.5.6.1 Attribute 0x01: Block Type
Description 0x05 = Decrement Counter. The Block Command specifies the command to

be performed by the task block. The value is stored in a different format in the
low byte of O_C2 (see the Command Map Appendix for more information).

Access Rule Get / Set Default N/A
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range 0x05 = Command 05 See also Command Map Appendix, O_C2
(ASCII), ORDER (ASCII)

5.5.6.2 Attribute 0x02: Block Link #
Description This attribute provides a link to the next block instance to execute. When this

block is complete, the link block is executed. Set this attribute to 0 to stop
motion after this task is complete – a next task will not be executed. The value
is stored in O_FN.

Access Rule Get / Set Default 0
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range 0 to 255 See also O_FN (ASCII), ORDER (ASCII)

44 Kollmorgen | kdn.kollmorgen.com | February 2020

5.5.7 Command 0x06 – Delay
This command is not supported in the S300/S700.
This command is used to delay a linked chain of commands.

5.5.7.1 Attribute 0x01: Block Type
Description 0x06 = Delay. The Block Command specifies the command to be performed

by the task block. The value is stored in the low byte of O_C2 (see the Com-
mand Map Appendix for more information).

Access Rule Get / Set Default N/A
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range 0x06 = Command 06 See also Command Map Appendix, O_C2
(ASCII), ORDER (ASCII)

5.5.7.2 Attribute 0x02: Block Link #
Description This attribute provides a link to the next block instance to execute. When this

block is complete, the link block is executed. Set this attribute to 0 to stop
motion after this task is complete – a next task will not be executed. The value
is stored in O_FN.

Access Rule Get / Set Default 0
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range 0 to 255 See also O_FN (ASCII), ORDER (ASCII)

5.5.7.3 Attribute 0x03: Delay
Description This attribute sets the delay in milliseconds. The value is stored in O_FT.
Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range See also O_FT (ASCII), ORDER (ASCII)

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 45

S300-S600-S700 DeviceNet | 5 Explicit messages

5.5.8 Command 0x08 – Motion task
This command is used to initiate a positioning move and wait for completion. The acceleration
and deceleration are stored in O_ACC1 and O_DEC1 of ORDER 0. Bits 0x800 in O_C and 0x100
in O_C2 of the task are set to 1 so that the acceleration and deceleration are taken from task 0
rather than the current task. This allows global values for DeviceNet motion blocks.

5.5.8.1 Attribute 0x01: Block Type
Description 0x08 = Initiate Trajectory. The Block Command specifies the command to be

performed by the task block. The value is stored in a different format in the low
byte of O_C2 (see the Command Map Appendix for more information)

Access Rule Get / Set Default N/A
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range 0x08 = Command 08 See also Command Map Appendix, O_C2
(ASCII), ORDER (ASCII)

5.5.8.2 Attribute 0x02: Block Link #
Description This attribute provides a link to the next block instance to execute. When this

block is complete, the link block is executed. Set this attribute to 0 to stop
motion after this task is complete – a next task will not be executed. The value
is stored in O_FN.

Access Rule Get / Set Default 0
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range 0 to 255 See also O_FT (ASCII), ORDER (ASCII)

5.5.8.3 Attribute 0x03: Target Position
Description This attribute defines the target profile position in position units. The value is

stored in O_P
Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range See also O_P (ASCII), ORDER (ASCII)

5.5.8.4 Attribute 0x04: Target Velocity
Description This attribute defines the target profile velocity in profile units per second. The

value is stored in O_V.
Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range See also O_V (ASCII), ORDER (ASCII)

5.5.8.5 Attribute 0x05: Incremental
Description This flag defines if the motion is incremental or absolute. The value is stored in

bit 0 of O_C
Access Rule Get / Set Default 0
Data Type Boolean Instance Block instances 1-180 are non-

volatile. Block instances 181-255
are volatile.

Range 0 = Absolute Position
1 = Incremental Position

See also O_C (ASCII), ORDER (ASCII)

46 Kollmorgen | kdn.kollmorgen.com | February 2020

5.5.8.6 Attribute 0x64: O_C
This attribute is not supported in the S600.

Description This attribute provides direct access to the O_C ORDER parameter. O_C is
also automatically modified when the Block Command (Command Block
Object, Attribute 0x01) is set to Command 0x08 Motion Task.

Access Rule Get / Set Default N/A
Data Type Unsigned Long Integer Instance Block instances 1-180 are non-

volatile. Block instances 181-255
are volatile.

Range See also O_C (ASCII), ORDER (ASCII)

5.5.8.7 Attribute 0x65: O_ACC
This attribute is not supported in the S600.

Description This attribute provides direct access to the O_ACC ORDER parameter. O_
ACC is also automatically modified when the Block Command (Command
Block Object, Attribute 0x01) is set to Command 0x08 Motion Task.

Access Rule Get / Set Default N/A
Data Type Unsigned Long Integer Instance Block instances 1-180 are non-

volatile. Block instances 181-255
are volatile.

Range See also O_ACC (ASCII), ORDER (ASCII)

5.5.8.8 Attribute 0x66: O_DEC
This attribute is not supported in the S600.

Description This attribute provides direct access to the O_DEC ORDER parameter. O_
DEC is also automatically modified when the Block Command (Command
Block Object, Attribute 0x01) is set to Command 0x08 Motion Task.

Access Rule Get / Set Default N/A
Data Type Unsigned Long Integer Instance Block instances 1-180 are non-

volatile. Block instances 181-
255 are volatile.

Range See also O_DEC (ASCII), ORDER (ASCII)

5.5.8.9 Attribute 0x67: O_TAB
This attribute is not supported in the S600.

Description This attribute provides direct access to the O_TAB ORDER parameter. O_TAB
is also automatically modified when the Block Command (Command Block
Object, Attribute 0x01) is set to Command 0x08 Motion Task.

Access Rule Get / Set Default N/A
Data Type Unsigned Long Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range See also O_TAB (ASCII), ORDER (ASCII)

5.5.8.10 Attribute 0x68: O_FT
This attribute is not supported in the S600.

Description This attribute provides direct access to the O_FT ORDER parameter. O_FT is
also automatically modified when the Block Command (Command Block
Object, Attribute 0x01) is set to Command 0x08 Motion Task.

Access Rule Get / Set Default N/A
Data Type Unsigned Long Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range See also O_FT (ASCII), ORDER (ASCII)

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 47

S300-S600-S700 DeviceNet | 5 Explicit messages

5.5.9 Command 0x09 – Jog
This command is not supported in the S300/S700.
This command is used to execute a velocity profile. Since the move is of infinite duration (until
stopped), the block cannot be linked to a following task.

5.5.9.1 Attribute 0x01: Block Type
Description 0x09 = Velocity Change. The Block Command specifies the command to be

performed by the task block. The value is stored in a different format in the low
byte of O_C2 (see the Command Map Appendix for more information).

Access Rule Get / Set Default N/A
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range 0x09 = Command 09 See also Command Map Appendix, O_C2
(ASCII), ORDER (ASCII)

5.5.9.2 Attribute 0x02: Block Link #
Description This attribute typically provides a link to the next block instance to execute.

Since a Velocity Change command cannot have a next block, this attribute
should not be set.

Access Rule Get / Set Default 0
Data Type Unsigned Short Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range 0 See also O_FT (ASCII), ORDER (ASCII)

5.5.9.3 Attribute 0x03: Target Velocity
Description This attribute defines the target profile velocity in profile units per second. The

value is stored in O_V.
Access Rule Get / Set Default
Data Type Double Integer Instance Block instances 1-180 are non-volat-

ile. Block instances 181-255 are
volatile.

Range See also O_V (ASCII), ORDER (ASCII)

48 Kollmorgen | kdn.kollmorgen.com | February 2020

5.6 Digital Input Object (class 0x08)
The digital input objects access the amplifier’s four digital inputs. Instances 1-4 correspond to
digital inputs 1-4.

5.6.1 Attribute 0x03: Value
Description This attribute will read 1 when the digital input is high. Instances 1-4 cor-

respond to digital inputs 1-4.
Access Rule Get Default none
Data Type Boolean Instance N/A
Range 0 = Input is inactive

1 = Input is active
See also IN1 to IN4 (ASCII)

5.7 Digital Output Object (class 0x09)
The digital output objects access the amplifier’s two digital outputs. Instances 1-2 correspond to
digital outputs 1-2. To configure the amplifier for DeviceNet control of the digital outputs, set
O1MODE=23 and O2MODE=23.

5.7.1 Attribute 0x03: Value
Description Set this attribute to 1 to set the digital output high. Instances 1-2 correspond to

digital outputs.
Access Rule Set Default none
Data Type Boolean Instance N/A
Range 0 = set output low

1 = set output high
See also O1MODE / O2MODE (ASCII),

O1 / O2 (ASCII)

5.8 Analog Input Object (class 0x0A)
The analog input objects access the amplifier’s two analog inputs. Instances 1-2 correspond to
analog inputs 1-2.

5.8.1 Attribut 0x03: Wert
Description Voltage on the analog input, in millivolts. Instances 1-2 correspond to analog

inputs 1-2.
Access Rule Get Default none
Data Type Integer Instance N/A
Range -10000 to 10000 See also ANIN1 / ANIN2 (ASCII)

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 49

S300-S600-S700 DeviceNet | 5 Explicit messages

5.9 Analog Output Object (class 0x0B)
This object is not supported in the S300/S700.
The analog output objects access the amplifier’s two analog outputs. Instances 1-2 correspond to
analog outputs 1-2. To configure the amplifier for DeviceNet control of the analog outputs, set
ANOUT1=6 and ANOUT2=6.

5.9.1 Attribute 0x03: Value
Description Set to the desired output voltage in millivolts. To configure the amplifier for

DeviceNet control of the analog outputs, set ANOUT1=6 and ANOUT2=6. The
value is stored in AN1TRIG / AN2TRIG.

Access Rule Set Default none
Data Type Integer Instance N/A
Range -1000 to 10000 See also ANOUT1 / ANOUT2 (ASCII),

AN1TRIG / AN2TRIG (ASCII)

5.10 Identity Object (class 0x01)
Identity Object 0x01
Object Class ID Description Get Set Value Limits
Attribute Open 1 Revision

2 Max. Instance
X None Supported 3 Number of Instances

4 Optional attributes list
5 Optional services list
6 Max Id of class attributes
7 Max Id of instance attrib-

utes
DeviceNet Services Parameter Options

Services Get_Attributes_All
Reset

X None Supported Get_Attribute_Single
Find_Next_Object_instance

Object Instance ID Description Get Set Value Limits
Attribute Open 1 Vendor X =(452)

2 Device type X =(16)
3 Product Code X =(3)
4 Revision X =(1,1)
5 Status (bits supported) X
6 Serial number X
7 Product name X SERVOSTAR
8 State
9 Config. Consistency

Value
10 Heartbeat Intervall
DeviceNet Services Parameter Options

Services Get_Attributes_All
X Reset 0,1
X Get_Attribute_Single

Set_Attribute_Single

50 Kollmorgen | kdn.kollmorgen.com | February 2020

5.11 Message Router Object (class 0x02)
Message Router Object 0x02
Object Class ID Description Get Set Value Limits
Attribute Open 1 Revision

2 Max. Instance
X None Supported 3 Number of Instances

4 Optional attributes list
5 Optional services list
6 Max Id of class attributes
7 Max Id of instance attributes
DeviceNet Services Parameter Options

Services Get_Attributes_All
X None Supported Get_Attribute_Single
Object Instance ID Description Get Set Value Limits
Attribute Open 1 Object list

2 Maximum connections supported
X None Supported 3 Number of active connections

4 Active connections list
DeviceNet Services Parameter Options

Services Get_Attributes_All
Get_Attribute_Single

X None Supported Set_Attribute_Single

5.12 DeviceNet Object (class 0x03)
DeviceNet Object 0x03
Object Class ID Description Get Set Value Limits
Attribute Open 1 Revision X

2 Max. Instance
X None Supported 3 Number of Instances

4 Optional attributes list
5 Optional services list
6 Max Id of class attributes
7 Max Id of instance attributes
DeviceNet Services Parameter Options

Services X Get_Attribute_Single
X None Supported
Objekt Instance ID Description Get Set Value Limits
Attribute Open 1 MAC ID X

2 Baud rate X
X None Supported 3 BOI X X

4 Bus-off counter X X
5 Allocation information X
6 MAC ID switch changed
7 Baud rate switch changed
8 MAC ID switch value X
9 Baud rate switch value X
DeviceNet Services Parameter Options

Services X Get_Attributes_All
X Set_Attribute_Single

X None Supported X Allocate M/S connection set
X Release M/S connection set

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 51

S300-S600-S700 DeviceNet | 5 Explicit messages

5.13 Connection Object - Explicit (class 0x05)
Connection Object 0x05
Object Class ID Description Get Set Value Lim-

its
Attribute Open 1 Revision

2 Max. Instance
X None Supported 3 Number of Instances

4 Optional attributes list
5 Optional services list
6 Max Id of class attributes
7 Max Id of instance attributes
DeviceNet Services Parameter Options

Services Reset
Create
Delete

X None Supported Get_Attribute_Single
Find_Next_Object_instance

Object Instance Connection type Max. connection instances
M/S Explicit message 1 Server Client 1 Total
Production trigger(s) Cyclic COS App.

trig.
Transport type(s) Server X Client
Transport class(es) 2 3 X
ID Description Get Set Value Lim-

its
Attribute Open 1 Status X

2 Instance Type X
3 Transport class trigger X
4 Produced connection ID X
5 Consumed connection ID X
6 Initial comm. characteristics X
7 Produced connection size X
8 Consumed connection size X
9 Expected packet rate. X X
12 Watchdog time-out action X X
13 Produced connection path len X
14 Produced connection path X
15 Consumed connection path len X
16 Consumed connection path X
17 Production inhibit time
DeviceNet Services Parameter Options

Services X Reset
Delete
Apply_attributes

X Get_Attribute_Single
X Set_Attribute_Single

52 Kollmorgen | kdn.kollmorgen.com | February 2020

5.14 Connection Object - Polled I/O (class 0x05)
Connection Object 0x05
Object Class ID Description Get Set Value Lim-

its
Attribute Open 1 Revision

2 Max. Instance
X None Supported 3 Number of Instances

4 Optional attributes list
5 Optional services list
6 Max Id of class attributes
7 Max Id of instance attributes
DeviceNet Services Parameter Options

Services X Reset
Create
Delete

X None Supported Get_Attribute_Single
Find_Next_Object_instance

Object Instance Connection type Max. connection instances
M/S poll 1 Server Client 1 gesamt
Production trigger(s) Cyclic X COS App.

trig.
Transport type(s) Server X Client
Transport class(es) 2 X 3
ID Description Get Set Value Lim-

its
Attribute Open 1 Status X

2 Instance Type X
3 Transport class trigger X
4 Produced connection ID X
5 Consumed connection ID X
6 Initial comm. characteristics X
7 Produced connection size X
8 Consumed connection size X
9 Expected packet rate. X X
12 Watchdog time-out action X X
13 Produced connection path len X
14 Produced connection path X
15 Consumed connection path len X
16 Consumed connection path X
17 Production inhibit time
DeviceNet Services Parameter Options

Services X Reset
Delete
Apply_attributes

X Get_Attribute_Single
X Set_Attribute_Single

S300-S600-S700 DeviceNet | 5 Explicit messages

Kollmorgen | kdn.kollmorgen.com | February 2020 53

S300-S600-S700 DeviceNet | 6 Polled I/O messages

6 Polled I/O messages
Typically, Polled I/O (Assembly) Messages are used for real-time data and motion control. See (➜
20, DeviceNet Overview) for more information.

6.1 I/O Command Assemblies
Polled I/O Messaging is a method of transmitting a group of control bits and a data command and
receiving back a group of status bits and a data value response. This method of communication is
preferred, as explicit messaging can transmit only a single value at a time. Polled I/O and Explicit
Messaging may be used simultaneously for communications between the controller and the amp-
lifier. In this section, the format of each Command Assembly is defined and examples of each are
provided.
Command assemblies contain control bits which are defined the same for each type of command.
In addition to the control bits, a command assembly may be used to send one data command at a
time (target position, target velocity, acceleration, deceleration or torque). The command type is
specified in the Command Assembly Type field.
The amplifier will respond to each Command Assembly it receives by transmitting a Response
Assembly (➜ # 63, I/O Response Assemblies). The response assembly has status bits which are
defined the same for each type of response.
In addition to status bits, a response assembly can transmit one data value at a time (actual pos-
ition, commanded position, actual velocity, actual torque or error code). The response type is spe-
cified in the Response Assembly Type field of the command assembly. A command assembly
may contain both a Command Assembly Type and a Response Assembly Type to transmit a com-
mand and request a response in the same assembly.

The command is ignored unless a valid command assembly type is specified in byte 2 (valid com-
mand assembly types are 0 through 5).

Data outside the range of the attribute will result in an Error Response Assembly. This applies to
all Command Assemblies, except Assembly 5 (torque).
The amplifier must be homed before motion is begun in position mode. Failure to home the amp-
lifier will result in a an amplifier alarm that must be cleared before amplifier operation can con-
tinue.

54 Kollmorgen | kdn.kollmorgen.com | February 2020

6.1.1 Control Bits and Data Fields
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 Enable Reg Arm Hard Stop Smooth Stop Dir Relative Start Block Load / Start
1 Block Number
2 Command Axis = 001 Command Assembly Type
3 Response Axis = 001 Command Assembly Type
4 Data Low Byte
5 Data Low Middle Byte
6 Data High Middle Byte
7 Data High Byte

Enable Setting this bit enables the amplifier. See also Enable (class 0x25 Pos-
ition Controller, attribute 0x11).

Registration Arm Arm the registration input. This bit is not supported in the S300/S700.
Hard Stop Setting this bit causes the amplifier to stop immediately (without decel-

erating). See also Hard Stop (class 0x25 Position Controller, attribute
0x15).

Smooth Stop Setting this bit causes the amplifier to decelerate to a stop. See also
Smooth Stop (class 0x25 Position Controller, attribute 0x14).

CAUTION: To stop motion, issue either HARD STOP or SMOOTH STOP only. Changing either
one of these bits at the same time as the Start Trajectory bit causes indeterminate action from the
controller.
Direction This bit is used only in velocity opmode. Positive direction=1 and negative

direction=0. See also Direction (class 0x25 Position Controller, attribute
0x17).

Relative This bit is used in only in position mode. This bit indicates whether the pos-
ition specified in bytes 4 through 7 of the Command Assembly 1 – Target
Position, is absolute (0) or relative (1). See also Incremental Position Flag
(class 0x25 Position Controller Object, attribute 0x0A).

Start Block Executes programs previously generated and stored in the amplifier. To
execute a motion program previously generated through either the Com-
mand Block Object or Graphical Motion Tasking (PC software), put the
starting block number in Block Number and transition this bit high (1). The
Load/Start flag must be zero (0) while transitioning Start Block. See also
Block Execute (class 0x26 Block Sequencer, attribute 0x02).

CAUTION: Setting Start Block high (1) and issuing a transition from 0 to 1 for Load/Start sim-
ultaneously causes indeterminate action.
Load/Start This bit is used for data handshaking between the controller and amplifier.

To transmit a command to the amplifier, set the Command Type and load
data into the data fields, then toggle Load/Start high. The amplifier will
accept data only when Load/Start transitions from 0 to 1. If the command
type matches the operating mode (Target Position in position mode, Tar-
get Velocity in velocity mode, Torque in torque mode), the amplifier will
start motion when the data is loaded. When the data has been loaded suc-
cessfully, the amplifier will set the Load Complete response flag high.

Block Number Used with Start Block to run a Command Block (motion task) sequence
previously defined in the amplifier.
This field indicates the block instance to begin executing when Start Block
transitions from 0 to 1. The Block Number field is used only to execute
Command Blocks (motion tasks), not to modify them.
To modify Command Blocks, send Explicit Messages to the Command
Block Object. See also Block (class 0x26 Block Sequencer, attribute
0x01).

Command Axis The amplifier supports only one axis, so this value must always be 1. Any
other value will cause a COMMAND_AXIS_INVALID error response.

Response Axis The amplifier supports only one axis, so this value must always be 1. Any
other value will cause a RESPONSE_AXIS_INVALID error response.

S300-S600-S700 DeviceNet | 6 Polled I/O messages

Kollmorgen | kdn.kollmorgen.com | February 2020 55

S300-S600-S700 DeviceNet | 6 Polled I/O messages

Command Assembly
Type

The target position, velocity, acceleration, deceleration and torque may be
modified with a command assembly. Set the command type to the
desired command number (described in following sections). Set the com-
mand type to zero (0) to give no command in the assembly.

Response Assembly
Type

Set the response type in the command assembly to determine what data
will be returned in the response assembly. The actual position, target pos-
ition, actual velocity, and actual torque are available. See Polled I/O
Response Assembly for more information. Set the response type to zero
(0) to not request a data response (a response assembly with valid status
bits will still be returned).

Data Bytes Load data for the desired command type into the data fields, least sig-
nificant byte first.

6.1.2 Running a Stored Sequence through DeviceNet
A motion tasking sequence may be setup in the Amplifier program (Graphical Motion Tasking) or
through DeviceNet (see the Command Block object) and then executed later through DeviceNet.
See the setup software online help for instructions on creating a motion tasking sequence with the
PC software.
To execute a motion block sequence, set Block Number equal to the index of the block to begin
executing and transition the Start Block bit high. Enable must be high and the stop and Load/Start
bits must be low. The Appendix contains examples of creating stored sequences with the Com-
mand Block Object and executing them with Command Assemblies.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0
Enable Reg Arm Hard Stop Smooth

Stop
Dir

(Vel Mode)
Incre-
mental

Start
Block

Trajectory Start

1 Block Number
2 0 0 1 0 Input Command Assembly Type (0000)
3 0 0 1 0 Output Response Assembly Type
4 0
5 0
6 0
7 0

To stop an executing sequence, set the Smooth Stop or Hard Stop bit high.

56 Kollmorgen | kdn.kollmorgen.com | February 2020

6.1.3 Data Handshaking
Data handshaking is used to transmit data commands with Polled I/O Messaging. To transmit a
command to the amplifier, set the Command Type and load data into the data fields, then toggle
the Load/Start bit high. The amplifier will accept data only when Load/Start transitions from 0 to 1.
If the data is loaded successfully, the amplifier will set the Load Complete response flag high.
Load Complete will be cleared by the amplifier after Load/Start is cleared by the controller.
If the data does not load successfully due to an error in the command assembly, the amplifier will
load an error response into the response assembly (Response Type = 0x14, byte 4 = Error Code,
byte 5 = Additional Code, bytes 6-7 echo command assembly bytes 2-3). See Polled I/O
Response Assembly 0x14 – Command/Response Error for more information.

Polled I/O Handshaking Sequence Example
1. Controller loads a valid Command Type
and data into the command assembly with
Load/Start low (0).

Load a Target Position command of 1000. C:
0x80 0x00 0x21 0x20 0xE8 0x03 0x00 0x00
Enable=1, Load/Start=0, Command Axis=1, Com-
mand Type=1, Response Axis=1, Response
Type=0 (none), Data=1000

2. Amplifier clears the Load Complete flag in
the response assembly when Load/Start is
low in the command assembly.

Respond with status flags. No command yet. R:
0x84 0x00 0x00 0x20 0x00 0x00 0x00 0x00
Enabled=1, In Position=1, Load Complete=0,
Response Axis=1, Response Type=0 (none),
Data=0

3. Controller checks that the Load Complete
flag in the response assembly is low to
ensure that the amplifier is ready to receive
data. Controller sets the Load Data flag in the
command assembly.

Set the Load Data flag.
C: 0x81 0x00 0x21 0x20 0xE8 0x03 0x00 0x00
Enable=1, Load/Start=1, Command Axis=1, Com-
mand Type=1, Response Axis=1, Data=1000

4. Amplifier sees the Load/Start flag transition
high and attempts to execute the command
specified in the Command Type field on the
data in the Data bytes. If successful, the amp-
lifier sets the Load Complete flag. If the com-
mand fails or the command assembly is
invalid, the amplifier will set Response Type
to Error and load error information in the
response assembly Data fields. If the com-
mand matches the operating mode (e.g. Tar-
get Position in positioning mode), the
amplifier will start motion.

If no error, execute the requested command R:
0x81 0x00 0x80 0x20 0x00 0x00 0x00 0x00
Enabled=1, In Motion=1, Load Complete=1,
Response Axis=1, Response Type=0 (none),
Data=0

If there was an error (e.g. data out of range):
R: 0x80 0x00 0x00 0x34 0x09 0xFF 0x21 0x20
Enabled=1, Load Complete=0, Response Axis=1,
Response Type=0x14 (Error), Error codes-
s=0x09FF (Invalid Attribute), bytes 6-7 echo com-
mand assembly bytes 2-3.

5. Controller waits for either the Load Com-
plete flag to transition high or for an Error
Response Type in the response assembly,
then clears Load/Start. Ready for next com-
mand

Clear Load/Start
C: 0x80 0x00 0x21 0x20 0xE8 0x03 0x00 0x00
Enable=1, Load/Start=0, Command Axis=1, Com-
mand Type=1, Response Axis=1, Data=1000

S300-S600-S700 DeviceNet | 6 Polled I/O messages

Kollmorgen | kdn.kollmorgen.com | February 2020 57

S300-S600-S700 DeviceNet | 6 Polled I/O messages

6.1.4 Command Assembly 0x01 – Target Position
This Polled I/O command assembly is used to start a trajectory (Position Opmode only) of the spe-
cified distance.
The trajectory can be absolute or relative, depending on the value of the Relative bit. In position
Opmode, a move will begin as soon as the target position is loaded. For this reason, load the tar-
get position last, after velocity, acceleration and deceleration. The target position stored here cor-
responds to the Target Position attribute of the Position Controller object (class 0x25, instance 1,
attribute 0x06). The value may also be accessed through the serial terminal command O_P. This
assembly only affects motion task 0 – Command Blocks (motion tasks) 1-255 are unaffected.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0
Enable Reg Arm Hard Stop Smooth Stop Dir Relative Start Block Load /

Start
1 Block Number
2 Command axis = 001 Command Assembly Type (00001)
3 Response axis = 001 Response Assembly Type
4 Target Position Low Byte
5 Target Position Low Middle Byte
6 Target Position High Middle Byte
7 Target Position High Byte

See Control Bits and Data Fields for bit descriptions.
Shown below is an example for the servo amplifiers. The target position is set to 1000 position
units, or 0x000003E8 in hexadecimal. The Enable bit is set since setting this value will initiate
motion; the Relative bit is set to indicate a relative position move; the Load/Start bit is set to begin
handshaking. In this example, the Response Assembly Type is set to response assembly 3 –
Actual Velocity. The amplifier will transmit the actual velocity when it responds to this command.
See the Data Handshaking section above for details on sending a Polled I/O command. Follow
the correct sequence with the command assembly Load/Start bit and the response assembly
Load Complete bit. Check for an error response by looking for the Error Response code 0x14 in
the Response Assembly Type field of the response assembly.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 0 0 0 0 1 0 1
1 0
2 0 0 1 0 0 0 0 1
3 0 0 1 0 0 0 1 1
4 0xE8
5 0x03
6 0x00
7 0x00

58 Kollmorgen | kdn.kollmorgen.com | February 2020

6.1.5 Command Assembly 0x02 – Target Velocity
This Polled I/O command assembly is used to change the target velocity in position or velocity
opmode. The Dir bit sets the desired direction in Velocity Mode and is ignored in all other modes.
In Velocity Mode, the move will begin as soon as the target velocity is loaded. In Position Mode,
movement will not start when the target velocity is loaded.
In position opmode, the velocity stored here corresponds to the Target Velocity attribute of the Pos-
ition Controller object (class 0x25, instance 1, attribute 0x07). In velocity opmode, the velocity
stored here corresponds to the Jog Velocity attribute of the Position Controller object (class 0x25,
instance 1, attribute 0x16). This assembly only affects motion task 0 – Command Blocks (motion
tasks) 1-255 are unaffected.
The units are determined by the amplifier setup (VUNIT, Position Controller attributes 40-41).

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0
Enable Reg Arm Hard Stop Smooth Stop Dir Relative Start Block Load /

Start
1 Block Number
2 Command axis = 001 Command Assembly Type (00010)
3 Response axis = 001 Response Assembly Type
4 Target Velocity Low Byte
5 Target Velocity Low Middle Byte
6 Target Velocity High Middle Byte
7 Target Velocity High Byte

See Control Bits and Data Fields for bit descriptions.
Shown below is an example for the servo amplifiers. The target velocity is set to 20000 count-
s/sec, or 0x00004e20 in hexadecimal. The Enable bit is set to enable the amplifier; the Direction
bit is cleared, so motion will be in the negative direction if the amplifier is in Velocity Mode; the
Load/Start bit is set to begin handshaking. In velocity mode, the amplifier will immediately accel-
erate or decelerate to -20000 counts/sec. In position mode, the target velocity will be loaded for
the next trajectory. In this example, the Response Assembly Type is set to response assembly 1 –
Actual Position. The amplifier will transmit the actual position when it responds to this command
(refer to Response Assembly 0x01 – Actual Position for more information).
See the Data Handshaking section above for details on sending a Polled I/O command. Follow
the correct sequence with the command assembly Load/Start bit and the response assembly
Load Complete bit. Check for an error response by looking for the Error Response code 0x14 in
the Response Assembly Type field of the response assembly.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 0 0 0 0 0 0 1
1 0
2 0 0 1 0 0 0 1 0
3 0 0 1 0 0 0 0 1
4 0x20
5 0x4E
6 0x00
7 0x00

S300-S600-S700 DeviceNet | 6 Polled I/O messages

Kollmorgen | kdn.kollmorgen.com | February 2020 59

S300-S600-S700 DeviceNet | 6 Polled I/O messages

6.1.6 Command Assembly 0x03 – Acceleration
This Polled I/O command assembly is used to change the acceleration in position or velocity
opmode.
The acceleration value stored here corresponds to the Acceleration attribute of the Position Con-
troller object (class 0x25, instance 1, attribute 0x08). When in velocity opmode, the drive para-
meter ACC is set. When in position opmode, the drive parameter ACCR is set.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0
Enable Reg Arm Hard Stop Smooth Stop Dir Relative Start Block Load /

Start
1 Block Number
2 Command axis = 001 Command Assembly Type (00011)
3 Response axis = 001 Response Assembly Type
4 Acceleration Low Byte
5 Acceleration Low Middle Byte
6 Acceleration High Middle Byte
7 Acceleration High Byte

See Control Bits and Data Fields for bit descriptions.
Shown below is an example for the S600 amplifiers. The acceleration is set to 20000 counts/sec²,
or 0x00004e20 in hexadecimal. The Enable bit is set to enable the amplifier; the Load/Start bit is
set to begin handshaking. In this example, the Response Assembly Type is set to response
assembly 1 – Actual Position. The amplifier will transmit the actual position when it responds to
this command (refer to Response Assembly 0x01 – Actual Position for more information).
See the Data Handshaking section above for details on sending a Polled I/O command. Follow
the correct sequence with the command assembly Load/Start bit and the response assembly
Load Complete bit. Check for an error response by looking for the Error Response code 0x14 in
the Response Assembly Type field of the response assembly.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 0 0 0 0 0 0 1
1 0
2 0 0 1 0 0 0 1 1
3 0 0 1 0 0 0 0 1
4 0x20
5 0x4E
6 0x00
7 0x00

60 Kollmorgen | kdn.kollmorgen.com | February 2020

6.1.7 Command Assembly 0x04 – Deceleration
This Polled I/O command assembly is used to change the deceleration in position or velocity
opmode.
The deceleration value stored here corresponds to the Deceleration attribute of the Position Con-
troller object (class 0x25, instance 1, attribute 0x09). When in velocity opmode, the drive para-
meter DEC is set. When in position opmode, the drive parameter DECR is set.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0
Enable Reg Arm Hard Stop Smooth Stop Dir Relative Start Block Load /

Start
1 Block Number
2 Command axis = 001 Command Assembly Type (00100)
3 Response axis = 001 Response Assembly Type
4 Deceleration Low Byte
5 Deceleration Low Middle Byte
6 Deceleration High Middle Byte
7 Deceleration High Byte

See Control Bits and Data Fields for bit descriptions.
Shown below is an example for the servo amplifiers. The deceleration is set to 20000 counts/sec²,
or 0x00004e20 in hexadecimal. The Enable bit is set to enable the amplifier; the Load/Start bit is
set to begin handshaking. In this example, the Response Assembly Type is set to response
assembly 1 – Actual Position. The amplifier will transmit the actual position when it responds to
this command (refer to Response Assembly 0x01 – Actual Position for more information).
See the Data Handshaking section above for details on sending a Polled I/O command. Follow
the correct sequence with the command assembly Load/Start bit and the response assembly
Load Complete bit. Check for an error response by looking for the Error Response code 0x14 in
the Response Assembly Type field of the response assembly.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 0 0 0 0 0 0 1
1 0
2 0 0 1 0 0 1 0 0
3 0 0 1 0 0 0 0 1
4 0x20
5 0x4E
6 0x00
7 0x00

S300-S600-S700 DeviceNet | 6 Polled I/O messages

Kollmorgen | kdn.kollmorgen.com | February 2020 61

S300-S600-S700 DeviceNet | 6 Polled I/O messages

6.1.8 Command Assembly 0x05 – Torque
This Polled I/O command assembly is used to change the torque. This can only be used in torque
mode. Motion will begin as soon as the value is loaded.
The torque value stored here corresponds to the Torque attribute of the Position Controller object
(class 0x25, instance 1, attribute 0x19). The value may also be accessed through the serial ter-
minal command T.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0
Enable Reg Arm Hard Stop Smooth Stop Dir Relative Start Block Load /

Start
1 Block Number
2 Command axis = 001 Command Assembly Type (00101)
3 Response axis = 001 Response Assembly Type
4 Torque Low Byte
5 Torque Low Middle Byte
6 Torque High Middle Byte
7 Torque High Byte

See Control Bits and Data Fields for bit descriptions.
Shown below is an example for the servo amplifiers. In this example, the torque (current) is set to
3.0A in a 6.0A peak amplifier. Torque units are scaled to 3280=peak current, so the command
value is 3280*3.0/6.0=1640 torque units, or 0x00000668 in hexadecimal. The Enable bit is set to
enable the amplifier; the Load/Start bit is set to begin handshaking. In Torque Mode, motion will
begin as soon as the torque command is loaded. In this example, the Response Assembly Type is
set to response assembly 1 – Actual Position. The amplifier will transmit the actual position when
it responds to this command (refer to Response Assembly 0x01 – Actual Position for more inform-
ation).
See the Data Handshaking section above for details on sending a Polled I/O command. Follow
the correct sequence with the command assembly Load/Start bit and the response assembly
Load Complete bit. Check for an error response by looking for the Error Response code 0x14 in
the Response Assembly Type field of the response assembly.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 0 0 0 0 0 0 1
1 0
2 0 0 1 0 0 1 0 1
3 0 0 1 0 0 0 0 1
4 0x68
5 0x06
6 0x00
7 0x00

62 Kollmorgen | kdn.kollmorgen.com | February 2020

6.2 I/O Response Assemblies
Polled I/O Messaging is a method of transmitting a group of control bits and a data command and
receiving back a group of status bits and a data value response. This method of communication is
preferred, as explicit messaging can transmit only a single value at a time. Polled I/O Messaging
is a method of communicating to devices a group of specific commands. This method of com-
munication is preferred, as it is faster than explicit messaging. Polled I/O and Explicit Messaging
may be used simultaneously for communications between the controller and the amplifier. In this
section, the format of each Response Assembly is defined and examples of each are provided.
In Polled I/O Messaging, the amplifier transmits a response assembly when it receives a com-
mand assembly from the amplifier. The response assembly has status bits which are defined the
same for each type of response. In addition to status bits, a response assembly can transmit one
data value at a time (actual position, commanded position, actual velocity, actual torque or error
values). The response type is specified in the Response Assembly Type field of the command
assembly. A command assembly may contain both a Command Assembly Type and a Response
Assembly Type to transmit a command and request a data value in the same assembly.

6.2.1 Status Bits and Data Fields
Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0
Enable
state

Reg
level

Home
level

Current dir General
fault

In
Position

Block
Executing

in Motion

1 Executing Block Number
2 Load

complete
Block
fault

Following
error

Negative
SW limit

Positive
SW limit

Negative
HW limit

Positive
HW limit

Fault input
active

3 Response Axis = 001 Response Assembly Type
4 Data Low Byte
5 Data Low Middle Byte
6 Data High Middle Byte
7 Data High Byte

Enable State This bit reflects the enable state of the amplifier. See also Enable (class 0x25
Position Controller, attribute 0x11).

Registration
Level

The actual level of the registration input. Digital input 2 must be configured for
registration.

Home Level This bit reflects the level of the Home Input of the amplifier.
Current Direction This bit reflects the actual direction of motion. When the drive is not in motion,

this bit shows the direction of the last commanded move. See also Direction
(class 0x25 Position Controller, attribute 0x17).

General Fault This bit indicates whether or not a fault has occurred. See also General Fault
(class 0x24 Position Controller Supervisor, attribute 0x05).

In Position This bit indicates whether or not the motor is on the last targeted position
(1=On Target). See also Incremental Position Flag (class 0x25 Position Con-
troller, attribute 0x0C).

Block Executing When set, indicates amplifier is running a block command program. See also
Block Execute (class 0x26 Block Sequencer, attribute 0x02).

Executing Block
number

Indicates the number (instance) of the currently executing block when the
Block Executing bit is high (1). See also Current Block (class 0x26 Block
Sequencer, attribute 0x03).

In Motion This bit indicates whether a trajectory is in progress (1) or has completed (0).
This bit is set immediately when motion begins and remains set for the entire
motion. See also Start Trajectory (class 0x25 Position Controller, attribute
0x0B).

Load complete This bit indicates that the command data contained in the command message
has been successfully loaded into the device. Used for handshaking between
the controller and amplifier – see Data Handshaking.

Block Fault This bit is set to indicate that an error has occurred in the command block pro-
gram sequencing. Read the Block Fault Code (class 0x26 Block Sequencer,
attribute 0x05) to clear the error. See also Block Fault (class 0x26 Block
Sequencer, attribute 0x04).

S300-S600-S700 DeviceNet | 6 Polled I/O messages

Kollmorgen | kdn.kollmorgen.com | February 2020 63

S300-S600-S700 DeviceNet | 6 Polled I/O messages

Following Error This bit indicates when a following (static or dynamic) error occurs. Clear
faults to continue motion (class 0x24 Position Controller Supervisor, attribute
0x64 – Clear Faults).

Negative SW
Limit

This bit indicates when the position is less than or equal to the Negative Soft-
ware Limit Position.

Positive SW Limit This bit indicates when the position is greater than or equal to the Positive
Software Limit Position.

Negative HW
Limit

This bit indicates the state of the Negative Hardware Limit Input.

Positive HW
Limit

This bit indicates the state of the Positive Hardware Limit Input.

Fault Input Active This bit indicates the state of the Emergency Stop input. One of the digital
inputs 1-4 must be configured as an emergency stop, e.g. IN1MODE=27.

Response Axis The amplifier supports only one axis, so this value must always be 1. The
value is echoed from the command assembly.

Response
Assembly Type

Set the response type in the command assembly to determine what data will
be returned in the Data field of the response assembly. The actual position,
target position, actual velocity, and actual torque are available. The response
assembly echoes the Response Assembly Type from the command
assembly, except when there is an error in the command assembly. If the com-
mand assembly is invalid, the response assembly’s Response Assembly
Type will be set to 0x14 (Error Response) and an error code will be returned
in the Data field.

Data Bytes Response data for the desired response type will be loaded into the data
fields, least significant byte first.

64 Kollmorgen | kdn.kollmorgen.com | February 2020

6.2.2 Response Assembly 0x01 – Actual Position
This Polled I/O response assembly is used to return the Actual Position of the motor (in position
units).
The actual position returned here corresponds to the Actual Position attribute of the Position Con-
troller object (class 0x25, instance 1, attribute 0x0D). The value may also be accessed through
the serial terminal command PFB.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0
Enable
state

Reg
level

Home
level

Current dir General
fault

In
Position

Block
Executing

in Motion

1 Executing Block Number
2 Load

complete
Block
fault

Following
error

Negative
SW limit

Positive
SW limit

Negative
HW limit

Positive
HW limit

Fault input
active

3 Response Axis = 001 Response Assembly Type (00001)
4 Actual position Low Byte
5 Actual position Low Middle Byte
6 Actual position High Middle Byte
7 Actual position High Byte

See Status Bits and Data Fields for definitions of the individual bits and fields.
Shown below is an example for the servo amplifiers. The actual position is 10,000 position units,
or 0x00002710 in hexadecimal

Enable State = 1 (enabled)
Registration Level = 0 (not active)
Home Level = 0 (not on the home flag)
Current Direction = 1 (positive direction)
General Fault = 0 (no faults)
in position = 1 (in position)
Block Executing = 0 (command block program not executing)
In Motion = 0 (not in motion)
Load Complete = 1 (Command Assembly data was loaded successfully)
Block Fault = 0 (no fault)
Following Error = 0 (no error)
Negative SW Limit = 0 (not on limit)
Positive SW Limit = 1 (on limit)
Negative HW Limit = 0 (Negative direction limit switch inactive)
Positive HW Limit = 1 (Positive direction limit switch active)
Fault Input Active = 0 (emergency stop inputs inactive)
Response Axis = 001
Response Assembly Type = 00001
Data = 0x00002710

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 0 0 1 0 1 0 1
1 0
2 1 0 0 0 1 0 1 0
3 0 0 1 0 0 0 0 1
4 0x10
5 0x27
6 0x00
7 0x00

S300-S600-S700 DeviceNet | 6 Polled I/O messages

Kollmorgen | kdn.kollmorgen.com | February 2020 65

S300-S600-S700 DeviceNet | 6 Polled I/O messages

6.2.3 Response Assembly 0x02 – Commanded Position
This Polled I/O response assembly is used to return the commanded position of the motor (in pos-
ition units).
The value may also be accessed through the serial terminal command PTARGET.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0
Enable
state

Reg
level

Home
level

Current dir General
fault

In
Position

Block
Executing

in Motion

1 Executing Block Number
2 Load

complete
Block
fault

Following
error

Negative
SW limit

Positive
SW limit

Negative
HW limit

Positive
HW limit

Fault input
active

3 Response Axis = 001 Response Assembly Type (00010)
4 Commanded position Low Byte
5 Commanded position Low Middle Byte
6 Commanded position High Middle Byte
7 Commanded position High Byte

See Status Bits and Data Fields for definitions of the individual bits and fields.
Shown below is an example for the servo amplifiers. The commanded position is 10,000 position
units, or 0x00002710 in hexadecimal.

Enable State = 1 (enabled)
Registration Level = 0 (not active)
Home Level = 0 (not on the home flag)
Current Direction = 1 (positive direction)
General Fault = 0 (no faults)
in position = 1 (in position)
Block Executing = 0 (command block program not executing)
In Motion = 0 (not in motion)
Load Complete = 1 (Command Assembly data was loaded successfully)
Block Fault = 0 (no fault)
Following Error = 0 (no error)
Negative SW Limit = 0 (not on limit)
Positive SW Limit = 1 (on limit)
Negative HW Limit = 0 (Negative direction limit switch inactive)
Positive HW Limit = 0 (Positive direction limit switch inactive)
Fault Input Active = 0 (emergency stop inputs inactive)
Response Axis = 001
Response Assembly Type = 00010
Data = 0x00002710

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 0 0 1 0 1 0 1
1 0
2 1 0 0 0 1 0 0 0
3 0 0 1 0 0 0 1 0
4 0x10
5 0x27
6 0x00
7 0x00

66 Kollmorgen | kdn.kollmorgen.com | February 2020

6.2.4 Response Assembly 0x03 – Actual Velocity
This Polled I/O response assembly returns the actual velocity of the motor. The units are determ-
ined by the amplifier setup (VUNIT, Position Controller attributes 40-41).
The actual velocity returned here corresponds to the Actual Velocity attribute of the Position Con-
troller object (class 0x25, instance 1, attribute 0x0E). The value may also be accessed through the
serial terminal command PV. The units are determined by the amplifier setup (VUNIT, Position
Controller attributes 40-41).

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0
Enable
state

Reg
level

Home
level

Current dir General
fault

In
Position

Block
Executing

in Motion

1 Executing Block Number
2 Load

complete
Block
fault

Following
error

Negative
SW limit

Positive
SW limit

Negative
HW limit

Positive
HW limit

Fault input
active

3 Response Axis = 001 Response Assembly Type (00011)
4 Actual velocity Low Byte
5 Actual velocity Low Middle Byte
6 Actual velocity High Middle Byte
7 Actual velocity High Byte

See Status Bits and Data Fields for definitions of the individual bits and fields.
Shown below is an example for the servo amplifiers. The actual velocity is 10,000 position unit-
s/sec, or 0x00002710 in hexadecimal.

Enable State = 1 (enabled)
Registration Level = 0 (not active)
Home Level = 0 (not on the home flag)
Current Direction = 1 (positive direction)
General Fault = 0 (no faults)
in position = 1 (in position)
Block Executing = 0 (command block program not executing)
In Motion = 0 (not in motion)
Load Complete = 1 (Command Assembly data was loaded successfully)
Block Fault = 0 (no fault)
Following Error = 0 (no error)
Negative SW Limit = 0 (not on limit)
Positive SW Limit = 1 (on limit)
Negative HW Limit = 0 (Negative direction limit switch inactive)
Positive HW Limit = 0 (Positive direction limit switch inactive)
Fault Input Active = 0 (emergency stop inputs inactive)
Response Axis = 001
Response Assembly Type = 00011
Data = 0x00002710

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 0 0 1 0 1 0 1
1 0
2 1 0 0 0 1 0 0 0
3 0 0 1 0 0 0 1 1
4 0x10
5 0x27
6 0x00
7 0x00

S300-S600-S700 DeviceNet | 6 Polled I/O messages

Kollmorgen | kdn.kollmorgen.com | February 2020 67

S300-S600-S700 DeviceNet | 6 Polled I/O messages

6.2.5 Response Assembly 0x05 – Torque
This Polled I/O response assembly returns the actual torque (current) of the motor.
The actual torque returned here corresponds to the Torque attribute of the Position Controller
object (class 0x25, instance 1, attribute 0x19). The value may also be accessed through the serial
terminal command T.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0
Enable
state

Reg
level

Home
level

Current dir General
fault

In
Position

Block
Executing

in Motion

1 Executing Block Number
2 Load

complete
Block
fault

Following
error

Negative
SW limit

Positive
SW limit

Negative
HW limit

Positive
HW limit

Fault input
active

3 Response Axis = 001 Response Assembly Type (00101)
4 Torque Low Byte
5 Torque Low Middle Byte
6 Torque High Middle Byte
7 Torque High Byte

See Status Bits and Data Fields for definitions of the individual bits and fields.
Shown below is an example for the servo amplifiers. The actual torque (current) is 3.0A in a 6.0A
peak amplifier. Torque units are scaled to 3280=peak current, so the actual torque value is
3280*3.0/6.0=1640 torque units, or 0x00000668 in hexadecimal.

Enable State = 1 (enabled)
Registration Level = 0 (not active)
Home Level = 0 (not on the home flag)
Current Direction = 1 (positive direction)
General Fault = 0 (no faults)
in position = 1 (in position)
Block Executing = 0 (command block program not executing)
In Motion = 1 (motion in progress)
Load Complete = 0 (no data loaded from the Command Assembly)
Block Fault = 0 (no fault)
Following Error = 0 (no error)
Negative SW Limit = 0 (not on limit)
Positive SW Limit = 0 (not on limit)
Negative HW Limit = 0 (Negative direction limit switch inactive)
Positive HW Limit = 0 (Positive direction limit switch inactive)
Fault Input Active = 0 (emergency stop inputs inactive)
Response Axis = 001
Response Assembly Type = 00101
Data = 0x00000668

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 0 0 1 0 1 0 1
1 0
2 0 0 0 0 1 0 0 0
3 0 0 1 0 0 1 0 1
4 0x68
5 0x06
6 0x00
7 0x00

68 Kollmorgen | kdn.kollmorgen.com | February 2020

6.2.6 Response Assembly 0x14 – Command/Response Error
This Polled I/O response identifies an error that has occurred. This response will always be
returned in response to an invalid Command Assembly. The Response Assembly Type field of
the response assembly usually echoes the matching field from the previous command assembly.
In case of an invalid command assembly, the Response Assembly Type field of the response
assembly will be set to 0x14 and error codes will be returned in the Data field.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

0
Enable
state

Reg
level

Home
level

Current dir General
fault

In
Position

Block
Executing

in Motion

1 Executing Block Number
2 Load

complete
Block
fault

Following
error

Negative
SW limit

Positive
SW limit

Negative
HW limit

Positive
HW limit

Fault input
active

3 Response Axis = 001 Response Assembly Type (10100)
4 Error code
5 Additional code
6 Copy of command message byte2 (command axis and type)
7 Copy of command message byte3 (response axis and type)

Error Code (hex) Additional Code (hex) DeviceNet-Fehler
0 FF NO ERROR
2 FF RESOURCE_UNAVAILABLE
5 FF PATH_UNKNOWN
5 1 COMMAND_AXIS_INVALID
5 2 RESPONSE_AXIS_INVALID
8 FF SERVICE_NOT_SUPP
8 1 COMMAND_NOT_SUPPORTED
8 2 RESPONSE_NOT_SUPPORTED
9 FF INVALID_ATTRIBUTE_VALUE
B FF ALREADY_IN_STATE
C FF OBJ_STATE_CONFLICT
D FF OBJECT_ALREADY_EXISTS
E FF ATTRIBUTE_NOT_SETTABLE
F FF ACCESS_DENIED
10 FF DEVICE_STATE_CONFLICT
11 FF REPLY_DATA_TOO_LARGE
13 FF NOT_ENOUGH_DATA
14 FF ATTRIBUTE_NOT_SUPP
15 FF TOO_MUCH_DATA
16 FF OBJECT_DOES_NOT_EXIST
17 FF FRAGMENTATION_SEQ_ERR
20 FF INVALID_PARAMETER

S300-S600-S700 DeviceNet | 6 Polled I/O messages

Kollmorgen | kdn.kollmorgen.com | February 2020 69

S300-S600-S700 DeviceNet | 6 Polled I/O messages

Shown below is an example for the servo amplifiers. The previous Command Assembly reques-
ted command 0x06 (not supported) and response 0x01. The amplifier returns Response
Assembly 0x14 (Command/Response Error) with Error Code = 0x08 and Additional Code = 0x01
(COMMAND_ NOT_SUPPORTED). Bytes 2 and 3 from the Command Assembly are echoed in
the Error Response Assembly.

Byte Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
0 1 0 0 1 0 1 0 1
1 0
2 0 0 0 0 0 0 0 0
3 0 0 1 1 0 1 0 0
4 0x08
5 0x01
6 0x26
7 0x21

70 Kollmorgen | kdn.kollmorgen.com | February 2020

7 Appendix
7.1 DeviceNet PLC Examples

7.1.1 Overview
DeviceNet provides three methods for controlling motion :

Explicit Messages (Explicit Messages are used to configure the amplifier)
Assembly Messages (Assemblies are used to control movement)
Command Block Sequences (when stored motion sequences may be executed without
much PLC involvement)

Most PLC’s will support both Explicit and Polled I/O (Assembly) messaging simultaneously. The
objects described in Section 4 are all accessed though Explicit Messaging. Section 5 describes
the use of Polled I/O command and response assemblies. Command Block Sequences can be
setup through Explicit Messsages and then controlled with either Explicit Messages or Polled I/O.
Explicit Messages allow you to access a single parameter value at a time. The desired parameter
is selected by specifying the class number, instance number and attribute number in an explicit
message. Assemblies combine many control and status bits into 8-byte command and response
messages. They are less versatile than explicit messages (only certain parameters are access-
ible), but several control values may be changes within one message. For this reason, Explicit
Messages are better for configuration and Assemblies are better for motion control.
Most drive configuration is done within the Position Controller Object, which encompasses most
parameters necessary for motion control. Modify parameters in this object to set the operational
mode (torque, velocity, position) and configure motion in the servo amplifier. View parameters in
this object to read the drive parameters and status words. Additional drive configuration may be
done through another supported object, the Parameter Object. This is a vendor-defined object
which exposes vendor configuration parameters. Any drive parameter with a DPR number less
than 256 (see the ascii.chm reference) may be accessed through the Parameter Object.
Polled I/O Assemblies are used for most motion control. Polled I/O consists of a Command
Assembly from the PLC to the servo amplifier and a Response Assembly from the servo amplifier
to the PLC. Control bits in a command message are used to enable the amplifier, perform a con-
trolled stop of the motor, initiate motion, or initiate stored motion block programs. Command mes-
sages can also set the target position, target velocity, acceleration, deceleration or torque
parameters. Status bits in a response message display error states and the general state of the
amplifier. Response messages can also display the actual position, commanded position, actual
velocity or torque.
Motion sequences or tasks may be pre-programmed into the amplifier through the Command
Block Object class. These blocks correspond to the servo amplifier motion tasking feature. Pos-
itioning moves, time delays, and parameter modification blocks may be linked together to create a
motion block program that is stored in the amplifier. Once the stored block program has been con-
figured, it may be executed through either the Block Sequencer Object or with the Polled I/O Com-
mand Message block number field and start block bit.

S300-S600-S700 DeviceNet | 7 Appendix

Kollmorgen | kdn.kollmorgen.com | February 2020 71

S300-S600-S700 DeviceNet | 7 Appendix

7.1.2 Amplifier Setup for the Examples
To test our examples, start by configuring your amplifier to match our example setup.
In the Basic Setup screen, set:

Acceleration units = ms->VLIM
Velocity units = rpm
Position units = counts

In the Position->Position Data screen, set:

Resolution = 1000 counts / revolution

In the Digital IO screen, set:

DIGITAL-OUT 1 = 23: Reserved

Digital output function 23 puts the digital output under field bus control. Save parameters and
restart the amplifier.
The examples in this section assume these units have been set. The amplifier must also be prop-
erly tuned and configured before continuing.
When the amplifier is properly configured, execute the following command sequence from the
serial terminal to test. The motor shaft should rotate 1 revolution in 1 second when the MOVE 0
command is entered.

Command Description
OPMODE 8 Put the amplifier in position mode.
EN Enable
MH Move Home
O_C 8193 Incremental move using user units
O_P 1000 Move 1000 counts (1 revolution)
O_V 60 Velocity=60 RPM
O_ACC1 10 Acceleration = 10ms to target velocity
O_DEC1 10 Deceleration = 10ms to target velocity
MOVE 0 Execution motion task 0

7.1.3 Polled I/O Assemblies
Assemblies are described thoroughly in the following sections: Typical Use of Explicit and
Assembly Messages, Command Assemblies, and Response Assemblies. See these sections for
information on the structure and use of command and response assemblies.
For Polled I/O Assembly messaging, the PLC initiates communication with a Command Assembly
and the amplifier responds with a Response Assembly. The PLC sends these messages at a reg-
ular ‘poll rate’. A handshaking protocol is used to ensure that data is transmitted correctly – see
the Data Handshaking section for a description of this protocol.

72 Kollmorgen | kdn.kollmorgen.com | February 2020

7.1.3.1 Sending Command Assemblies – ControlLogix
The servo amplifier may be controlled by Allen Bradley’s Logix 5000 Series PLC’s with DeviceNet
Scanners (1756-DNB) using Polled I/O Assembly Messages. Command Assemblies are sent
from the PLC to the amplifier to control drive motion. The format of the command assembly is
shown in section (➜ # 55, Control Bits and Data Fields). In order to communicate with the servo
amplifier via Assemblies, the amplifier must first be mapped into the PLC’s scan list (mapping is
not described in this document) and the Command Assembly must be mapped into the output
memory of the PLC. See your DeviceNet Scanner manual for instructions on setting up a scan list
and mapping input and output memory with RSNetworx. Ensure that you are using the correct slot
number. The servo amplifier command and response assemblies are both eight bytes long and
are each mapped into two 32-bit words in the PLC. Bytes 0-3 of the assembly are mapped into
bytes 0-3 of word 0 and bytes 4-7 of the assembly are mapped into bytes 0-3 of word 1. If you
have only a single servo amplifier in the PLC scan list and the scanner is in slot 1, your output file
mapping may look like this:

Output Word Description
Local:1:O.Data DN Scanner output memory
Local:1:O.Data[0] DN command word 0 (control flags, block number, command choice,

response choice)
Local:1:O.Data[1] DN command word 1 (command data)
Local:1:O.Data[2-123] Unmapped area of DN Scanner (available for other devices)

Once the outputs are mapped, you may modify the Command Assembly being sent to the amp-
lifier by writing to the appropriate output words. The new data will be transmitted on the next scan
cycle and will be transmitted each scan cycle until the output file is modified again. To test, try set-
ting the target velocity to 1000. The value can be checked through the terminal with the command
O_V. Change the PLC output command assembly (Scanner output data):

Byte Function Data Value (hex)
0 Command Flags – Disable 0x00
1 Block Number 0x00
2 Axis Instance; Command Assembly 2 – Target Velocity 0x22
3 Axis Instance; Response Assembly 1 – Actual Position 0x21
4 Target Velocity – Lower Word Lower Byte 0xE8
5 Target Velocity – Lower Word Upper Byte 0x03
06 Target Velocity – Upper Word Lower Byte 0x00
7 Target Velocity – Upper Word Upper Byte 0x00

Mapping this to the PLC memory should look similar to the table shown below:

Output Word Data Value (hex)
Local:1:O.Data[0] 0x2122_0000
Local:1:O.Data[1] 0x0000_03E8

For testing, you can modify the data directly from the Program Tags screen:

The command and data are now transmitted to the amplifier on each scan cycle, but the Data
Handshaking protocol must be used to load the data (see the Command Assemblies subsection
Data Handshaking for more information). Wait for the command assembly to transmit, then set the
Load Data bit high by writing 0x2122_0001 to command word 0 (Local:1:O.Data[0]). Now use the
serial terminal to read the value of O_V – it should equal 1000.

S300-S600-S700 DeviceNet | 7 Appendix

Kollmorgen | kdn.kollmorgen.com | February 2020 73

S300-S600-S700 DeviceNet | 7 Appendix

7.1.3.2 Reading Response Assemblies – ControlLogix
A Response Assembly is a Polled I/O message sent to the PLC from the amplifier in reponse to a
command assembly. The amplifier will send a response assembly each time it receives a com-
mand assembly from the PLC. If the command assembly is valid and the Response Assembly
Type field contains a valid response type, the amplifier will also load the requested data into the
response assembly. The data will be refreshed on each Polled I/O cycle until the command
assembly changes. The format of this assembly is shown in section (➜ # 63, Status Bits and Data
Fields). The response assembly must be mapped into the input memory of the PLC. See your
DeviceNet Scanner manual for instructions on setting up a scan list and mapping the memory with
RSNetworx. Ensure that you are using the correct slot number. See the previous section for a map-
ping diagram. If you have only a single servo amplifier in the PLC scan list and the scanner is in
slot 1, your input file mapping may look like this:

Input Word Description
Local:1:O.Data DN Scanner input memory
Local:1:O.Data[0] DN response word 0 (status flags, block number, response choice)
Local:1:O.Data[1] DN response word 1 (response data)
Local:1:O.Data[2-123] Unmapped area of DN scanner (available for other devices)

Once the inputs are mapped, you may read the latest Response Assembly received by the PLC
by reading from the appropriate input file. The input files will be updated by the PLC on each scan
cycle with data transmitted from the amplifier.
To test, use the output command assembly from the previous section. The example command
assembly requests the actual position (Response Assembly Type = 1). After writing this command
assembly to the output file, wait for the scan cycle to complete, then read the input file to get the
latest response assembly. The response assembly should look something like the following, with
the motor’s actual position in bytes 4-7:

Byte Function Data value (Hex)
0 Response Flags A – Disabled, In Position 0x04
1 Block Executing - none 0x00
2 Response flags B - Load complete, no errors 0x80
3 Axis instance 1; response assembly 1 - actual position 0x21
4 Actual position – Lower Word Lower Byte 0x00
5 Actual position – Lower Word Upper Byte 0x00
6 Actual position – Upper Word Lower Byte 0x00
7 Actual position – Upper Word Upper Byte 0x00

Mapping this to the PLC memory should look similar to the table shown below:

Input Word Data value (Hex)
Local:1:I.Data[0] 0x2180_0004
Local:1:I.Data[1] 0x0000_0000

You can view the data easily in the Program Tags screen. The value in Local:1:I.Data[1] should
change as you rotate the motor shaft by hand.

74 Kollmorgen | kdn.kollmorgen.com | February 2020

7.1.3.3 Data Handshaking - ControlLogix
Data handshaking is used to transmit data commands with Command Assemblies. To transmit a
command to the amplifier, set the Command Type and load data into the data fields, then toggle
the Load/Start bit high. The amplifier will accept data only when Load/Start transitions from 0 to 1.
If the data is loaded successfully, the amplifier will set the Load Complete response flag high.
Load Complete will be cleared by the amplifier after Load/Start is cleared by the controller. See
the Data Handshaking section for more information. The LoadData subroutine can be used to sim-
plify data handshaking. The subroutine is shown below.

To use LoadData, first copy a proper command assembly into Local:1:O.Data[0-1]. Then set
LoadState=1 and call the LoadData subroutine until LoadState has been reset to 0.

S300-S600-S700 DeviceNet | 7 Appendix

Kollmorgen | kdn.kollmorgen.com | February 2020 75

S300-S600-S700 DeviceNet | 7 Appendix

7.1.3.4 Sending Command Assemblies – SLC500
The servo amplifier may be controlled by Allen Bradley’s SLC-5/0X Series PLC’s DeviceNet Scan-
ners (1747-SDN/B) using Assembly Messages. Command Assemblies are sent from the PLC to
the amplifier to control motion. The format of the command assembly is shown in section (➜ # 55,
Control Bits and Data Fields) .
In order to communicate with the servo amplifiers via Assemblies, the drive must first be mapped
into the PLC’s scan list (mapping is not described in this document) and the Command Assembly
must be mapped into the output memory of the PLC. See your DeviceNet Scanner manual for
instructions on setting up a scan list and mapping input and output memory with RSNetworx.
Ensure that you are using the correct slot number. The amplifier command and response assem-
blies are both eight bytes long and are each mapped into four 32-bit words in the PLC:
If you have only a single servo amplifier in the PLC scan list and the scanner is in slot 1, your out-
put file mapping may look like this:

Output Word Description
O:1.0 DN Scanner Control Word
O:1.0/0 Enable DN Scanner Outputs
O:1.1 DN command word 0 (control flags, block number)
O:1.2 DN command word 1 (command, response)
O:1.3 DN command word 2 (data LSW)
O:1.4 DN command word 3 (data MSW)
O:1.5-31 Unmapped area of DN scanner (available for other devices)

Once the outputs are mapped, you may modify the Command Assembly being sent to the amp-
lifier by writing to the appropriate output file. The new data will be transmitted on the next scan
cycle and will be transmitted each scan cycle until the output file is modified again.

76 Kollmorgen | kdn.kollmorgen.com | February 2020

To test, try setting the target velocity to 1000. The value can be checked through the terminal with
the command O_V. Change the PLC output command assembly (Scanner output data) to the fol-
lowing:

Byte Function Data value (hex)
0 Command Flags – Disable 0x00
1 Block Number 0x00
2 Axis instance, command assembly 2 - target velocity 0x22
3 Axis instance, response assembly 1 - actual position 0x21
4 Actual velocity – Lower Word Lower Byte 0xE8
5 Actual velocity – Lower Word Upper Byte 0x03
6 Actual velocity – Upper Word Lower Byte 0x00
7 Actual velocity – Upper Word Upper Byte 0x00

Mapping this to the PLC memory should look similar to the table shown below:

Output Word Data Value (hex)
O:1.1 0000
O:1.2 2122
O:1.3 03E8
O:1.4 0000

For testing, you can modify the data directly from the Program Tags screen:

S300-S600-S700 DeviceNet | 7 Appendix

Kollmorgen | kdn.kollmorgen.com | February 2020 77

S300-S600-S700 DeviceNet | 7 Appendix

Alternately, a ladder program can load the desired values into the output words (note that the data
is displayed here in decimal):

The command and data are now transmitted to the amplifier on each scan cycle, but the Data
Handshaking protocol must be used to load the data. Wait for the command assembly to transmit,
then set the Load Data bit high by writing 0x0001 to command word 0 (Output Word O:1.1). Now
use the serial terminal to read the value of O_V – it should equal 1000.

78 Kollmorgen | kdn.kollmorgen.com | February 2020

7.1.3.5 Reading Response Assemblies – SLC500
A Response Assembly is a Polled I/O message sent to the PLC from the amplifier in reponse to a
command assembly. The amplifier will send a response assembly each time it receives a com-
mand assembly from the PLC. If the command assembly is valid and the Response Assembly
Type field contains a valid response type, the amplifier will also load the requested data into the
response assembly. The data will be refreshed on each Polled I/O cycle until the command
assembly changes.
The format of this assembly is shown in section (➜ # 63, Status Bits and Data Fields).
The response assembly must be mapped into the input memory of the PLC. See your DeviceNet
Scanner manual for instructions on setting up a scan list and mapping the memory with RSNet-
worx. Ensure that you are using the correct slot number. See the previous section for a mapping
diagram. If you have only a single servo amplifier in the PLC scan list and the scanner is in slot 1,
your input file mapping may look like this:

Input Word Description
I:1.0 DN Scanner Status Word
I:1.1 DN response word 0 (control flags, block number)
I:1.2 DN response word 1 (command, response)
I:1.3 DN response word 2 (data LSW)
I:1.4 DN response word 3 (data MSW)
I:1.5-31 Unmapped area of DN scanner (available for other devices)

Once the inputs are mapped, you may read the latest Response Assembly received by the PLC
by reading from the appropriate input file. The input files will be updated by the PLC on each scan
cycle with data transmitted from the amplifier.
To test, use the output command assembly from the previous section. The example command
assembly requests the actual position (Response Assembly Type = 1). After writing this command
assembly to the output file, wait for the scan cycle to complete, then read the input file to get the
latest response assembly. The response assembly should look something like the following, with
the motor’s actual position in bytes 4-7:

Byte Function Data value (hex)
0 Response Flags A – Disabled, In Position 0x04
1 Block Executing - none 0x00
2 Response flags B - load complete, no errors 0x80
3 Axis instance 1, response assembly 1 - actual position 0x21
4 Actual position – Lower Word Lower Byte 0x00
5 Actual position – Lower Word Upper Byte 0x00
6 Actual position – Upper Word Lower Byte 0x00
7 Actual position – Upper Word Upper Byte 0x00

S300-S600-S700 DeviceNet | 7 Appendix

Kollmorgen | kdn.kollmorgen.com | February 2020 79

S300-S600-S700 DeviceNet | 7 Appendix

Mapping this to the PLC memory should look similar to the table shown below:

Input Word Data value (hex)
I:1.1 0000
I:1.2 2180
I:1.3 0000
I:1.4 0000

You can view the data easily in the Program Tags screen.

80 Kollmorgen | kdn.kollmorgen.com | February 2020

7.1.3.6 Data Handshaking - SLC500
Data handshaking is used to transmit data commands with Command Assemblies. To transmit a
command to the amplifier, set the Command Type and load data into the data fields, then toggle
the Load/Start bit high. The amplifier will accept data only when Load/Start transitions from 0 to 1.
If the data is loaded successfully, the amplifier will set the Load Complete response flag high.
Load Complete will be cleared by the amplifier after Load/Start is cleared by the controller. See
the Data Handshaking section for more information.
The LoadData subroutine can be used to simplify data handshaking. The subroutine is shown
below.
To use LoadData, first copy a proper command assembly into I:1.1-4. Then set N47:0=1 and call
the LoadData subroutine until N47:0 has been reset to 0.

S300-S600-S700 DeviceNet | 7 Appendix

Kollmorgen | kdn.kollmorgen.com | February 2020 81

S300-S600-S700 DeviceNet | 7 Appendix

7.1.4 Explicit Messages
Explicit Messages are described thoroughly in the following sections: Typical Use of Explicit and
Assembly Messages, Explicit Messages, Supported Services. See these sections for information
on the structure and use of explicit messages.
Unlike Polled I/O Assembly Messages, Explicit Messages are sent only when explicitly requested
by the PLC program. The servo amplifier will respond to each Explicit Message with either a suc-
cess or error code.

82 Kollmorgen | kdn.kollmorgen.com | February 2020

7.1.4.1 Explicit Messages and ControlLogix
Use the ControlLogix message instruction MSG to transmit an explicit message to the servo amp-
lifier.

The tag used in the MSG block (SetModeMsg in the example figure) is of type MESSAGE and is
configured by clicking the ‘...’ button in the MSG block.

The Message Type for DeviceNet is ‘CIP Generic’. The section ‘Supported Services’ describes
the services available in the servo amplifier. Set Attribute Single and Get Attribute Single are the
most commonly used services. Select the Class, Instance and Attribute values for the parameter
you wish to set/get. These values are provided in the section ‘Explicit Messages’. The example fig-
ure uses Class 0x25 – Position Controller Object, Instance 1 (only valid instance for the Position
Controller Object), Attribute 3 (OpMode).
For a Set Attribute Single command, set Source Element to a variable holding the value you wish
to transmit and Source Length to the byte count of the parameter. For a Get Attribute Single com-
mand, set Destination to the variable where you wish to store the parameter value.
Next, click on the Communication tab and enter the path to the servo amplifier. Click on Browse to
find your scanner. The second element of the path will generally equal 2, referring to the external
DeviceNet connection – read your scanner manual for more information. The third element is the
node address (MACID) of the servo amplifier.
If any communication errors occur, the ER output from the MSG block will bet set and the error
code information will be printed on the bottom half of the message configuration screen. See the
Error Messages section for further information.

S300-S600-S700 DeviceNet | 7 Appendix

Kollmorgen | kdn.kollmorgen.com | February 2020 83

S300-S600-S700 DeviceNet | 7 Appendix

7.1.4.2 Explicit Messages and SLC500
With a SLC500 processor, explicit messages are transmitted by writing to the M0 file and received
by reading from the M1 file. If the scanner is in slot 1, the explicit message request structure is a
32-byte area in M0:1.224-255 and the explicit message response structure is a 32-byte area in
M1:1.224-255. See your scanner manual for more information.
For this example, create a 32-byte output buffer and a 32-byte input buffer. Explicit Message
requests are built in the output buffer, then copied to the M0 file. The response message in M1 is
copied into the input buffer for further processing.

7.1.4.2.1 SLC500 Explicit Message Request Structure
Byte 1 Byte 0 PLC output buffer M0 Memory

TX_ID = 1 TX_CMD = 1,4 WORD 0 WORD 224
PORT= 0 MSG_SIZE (in Bytes) WORD 1 WORD 225
SERVICE MAC ID (node address) WORD 2 WORD 226

CLASS WORD 3 WORD 227
INSTANCE WORD 4 WORD 228
ATTRIBUTE WORD 5 WORD 229

LOWER DATA WORD WORD 6 WORD 230
UPPER DATA WORD WORD 7 WORD 231

TX_ID The Transaction ID is an index into the scanner’s explicit message queue.
The scanner can queue messages to multiple devices and send them when it
is able.
For our purposes in this example, we always use Transaction ID 1.

TX_CMD The Transaction Command to perform on the transaction block specified by
TX_ID.
01: Send Explicit Message.
04: Clear response buffer (necessary before sending a new message with the
same TX_ID).

PORT 0 – Channel A. (typical choice)
1 – Channel B.

MSG_SIZE Size in bytes of all data after the MAC ID (words 3-7). For a message which
sets a boolean (1 byte) parameter, the message size will be 7; 2 bytes each
for the class, instance and attribute plus 1 byte for the data value.

SERVICE The DeviceNet service to perform. See the section Supported Services for
more information.
0x0E – Get.
0x10 – Set.

MAC ID The DeviceNet ID of the servo amplifier as specified by the two MACID
switches.
If the switches are set to 25 (the switches read as decimal), then this value
is set to 19h.

CLASS DeviceNet class to access. Examples:
Parameter Object – 0x0F
Position Controller Supervisor – 0x24
Position Controller Object– 0x25

INSTANCE DeviceNet instance number. Examples::
Always 0x01 for Position Controller Object.
Parameter number (DPR number in ascii reference) for Parameter Object.
Port number for Analog and Digital I/O.

ATTRIBUTE The attribute number of the attribute being accessed (set or get).
LOWER/UPPER
DATA WORD

The data value for a Set service.

84 Kollmorgen | kdn.kollmorgen.com | February 2020

7.1.4.2.2 SLC500 Explicit Message Response Structure
Byte 1 Byte 0 PLC Input buffer M1 Memory
TX_ID TX_STATUS WORD 0 WORD 224

PORT= 0 MSG_SIZE (in Bytes) WORD 1 WORD 225
SERVICE MAC ID (in Bytes) WORD 2 WORD 226

DATA WORD 3 - 31 WORD 227 - 255

TX_ID Transaction ID. Matches the TX_ID in the request message.
TX_STATUS The Transaction Status for the transaction block specified by TX_ID.

0 – Ignore block (empty)
1 – Transaction completed successfully
2-15 – Scanner error (see Scanner documentation)

PORT 0 – Channel A. (typical choice)
1 – Channel B.

MSG_SIZE Size in bytes of all data after MAC ID (the data field).
SERVICE Echoes the service code from the command message, setting the upper bit for a

response.
0x1E – Get.
0x90 – Set.
0x94 – DeviceNet Error. Error code follows in the Data section.

MAC ID The DeviceNet ID of the servo amplifier as specified by the two MACID switches.
DATEN Response data (length in bytes given by MSG_SIZE)

7.1.4.2.3 SLC500 Explicit Messaging Sequence

1. Create 32-byte request and response buffers. The example uses N11 for a request (output)
buffer and N12 for a response (input) buffer.

2. Clear the scanner transaction block which you wish to use (selected with the TX_ID field) by
loading TX_CMD 0x04 (clear response buffer). For example, to clear transaction block 1, set
TX_ID=0x01 and TX_CMD=0x04 in the output buffer (WORD 0 = 0x0104), then copy the
request buffer into M0:1.224-255.

3. Build an Explicit Message Request in the output buffer. Set TX_ID=0x01 to use transaction
block 1 and set TX_CMD=0x01 (transmit explicit message). Use the file copy instruction
(COP) to copy the data into M0:1.224-2554

4. Wait until the Explicit Message Response Available bit transitions to 1, indicating that an expli-
cit response message has been received. The flag is bit 15 of the 1747-SDN Module Status
Register (typically mapped to word 0 of the input file so the bit is I:1/155)

5. Use the file copy instruction (COP) to copy the data from M1:1.224-255 into the response buf-
fer

6. Test the TX_ID field to make sure it matches the TX_ID set in the request message. Test the
TX_STATUS value for an error (1 = success). Test the SERVICE value for a DeviceNet error
code (0x94 indicates an error).

7. Clear the scanner transaction block by loading TX_CMD=0x04 into the request buffer and
copying the buffer into M0:1.224-255. After the data is loaded, the Explicit Message
Response Available bit should transition to 0.

8. Send the next Explicit Request Message by continuing at step 3.

Note: SLC500 PLC’s sometimes take up to 2 seconds to process an explicit message command.
This delay is not controlled by the S600 in any way, as it responds to an explicit message com-
mand in less than 5 ms.

S300-S600-S700 DeviceNet | 7 Appendix

Kollmorgen | kdn.kollmorgen.com | February 2020 85

S300-S600-S700 DeviceNet | 7 Appendix

7.1.4.2.4 SLC500 Explicit Messaging Example Code
The SLC500 example program includes the subroutine EXP_MSG to handle most of the explicit
messaging sequence. To use the subroutine, simply build an Explicit Request Message in the
request buffer N11. Ignore WORD 0 (TX_ID and TX_CMD) as this is controlled by the subroutine.
Set N13:0 = 1 to start the EXP_MSG state machine. N13:0 is reset to 0 after the response mes-
sage has been loaded into the response buffer and the subroutine has completed.

86 Kollmorgen | kdn.kollmorgen.com | February 2020

7.1.5 Example 1: Simple Move
This example performs a simple operation, consisting of the following tasks:

1. Select positioning mode
2. Enable the servo amplifier
3. Home
4. Move one revolution
5. Wait until movement is complete
6. Set digital output 1 on
7. Delay 2 seconds
8. Set digital output 1off
9. Move back ½ revolution

S300-S600-S700 DeviceNet | 7 Appendix

Kollmorgen | kdn.kollmorgen.com | February 2020 87

S300-S600-S700 DeviceNet | 7 Appendix

7.1.5.1 Serial Command Sequence
This example may be executed manually from the serial terminal window in the amplifier setup
software with the following commands:

Command Description
OPMODE 8 Switch to position mode
EN Enable the amplifier
MH Move home
ACCR 10 acceleration time = 10ms
DECR 10 deceleration time = 10ms
O_V 60 target velocity = 60 RPM
O_P 1000 target position = 1000 counts (1 revolution)
O_C 10240

O_C2 256

command word = 0x2800 - user units for position and velocity; absolute move;
interpret O_C2
secondary command word = 0x100 - use ACCR and DECR for this motion task

MOVE 0 Execute motion task 0 (wait for move to complete
O1 1 Set digital output 1 high (wait 2 seconds for desired delay)
O1 0 Set digital output 1 low
O_P 500 Set the target position to 500 counts (½ revolution)
MOVE 0 Execute motion task 0

Test the example manually before continuing to ensure that the servo amplifier is configured prop-
erly.

88 Kollmorgen | kdn.kollmorgen.com | February 2020

7.1.5.2 DeviceNet Command Sequence
DeviceNet Command Serial Terminal

Verification
Set OpMode = Position_Mode
Explicit Msg Request: Service = 0x10, Class = 0x25, Instance=0x01, Attribute = 0x03,
Data = 0x00

OPMODE
8

Enable the amplifier
Polled I/O Command Assembly: set the Enable flag = 1 (byte 0, bit 7)
Word 0 = 0x2020_0080
Word 1 = 0x0000_0000

READY
1

Move Home
Explicit Msg Request: Service = 0x10, Class = 0x0F, Instance = 141
(MH command in the ascii reference), Attribute = 0x01, Data = 0x01

DRVSTAT
Bit 0x2000 is set

Wait Until Homed – Read Amplifier Status Word
Explicit Msg Request: Service 0x0E, Class 0x25, Instance = 0x01, Attribute = 0x66

Home has completed

Set Acceleration Rate = 10
Polled I/O Command Assembly: use command 0x03
Word 0 = 0x2023_0080
Word 1 = 0x0000_000A
Toggle bit 0 high to load (Data Handshaking)

ACCR
10

Set Deceleration Rate = 10
Polled I/O Command Assembly: use command 0x04
Word 0 = 0x2024_0080
Word 1 = 0x0000_000A
Toggle bit 0 high to load (Data Handshaking)

DECR
10

Set Target Velocity = 60
Polled I/O Command Assembly: use command 0x02
Word 0 = 0x2022_0080
Word 1 = 0x0000_003C
Toggle bit 0 high to load (Data Handshaking)

O_V
60

Set Target Position = 1000
Polled I/O Command Assembly: use command 0x01
Word 0 = 0x2021_0080
Word 1 = 0x0000_03E8
Toggle bit 0 high to load and begin motion (Data Handshaking).

O_P
1000
O_C
10240 = 0x2800
(User unit, 1 rev.)

Watch the Response Assembly – In Motion flag (byte 0, bit 0).
Wait until this bit transitions low (indicating that the move has completed).

The In Motion flag should
be high whenever the
drive is in motion.

Set Digital Output 1 On
Explicit Msg Request: Service = 0x10, Class = 0x09, Instance = 0x01 (for output 1),
Attribute = 0x03, Data = 0x01

O1
1

Delay 2 seconds (Set PLC timer to delay
for 2 seconds)

Set Digital Output 1 Off
Explicit Msg Request: Service = 0x10, Class = 0x09, Instance = 0x01 (for output 1),
Attribute = 0x03, Data = 0x00

O1
0

Set Target Position = 500
Polled I/O Command Assembly: use command 0x01
Word 0 = 0x2021_0080
Word 1 = 0x0000_01F4
Toggle bit 0 high to load and begin motion (Data Handshaking).

O_P
500
O_C
10240 = 0x2800
(User unit, ½ rev.)

S300-S600-S700 DeviceNet | 7 Appendix

Kollmorgen | kdn.kollmorgen.com | February 2020 89

S300-S600-S700 DeviceNet | 7 Appendix

7.1.5.3 ControlLogix Program
A ControlLogix program called S600_Example_1.ACD which implements this example is avail-
able from the website. The example assumes that a DeviceNet scanner is installed in slot 1 and
that an servo amplifier at address 1 is mapped into the lowest words of the scanner.
To begin the example sequence, configure the amplifier as described on page (➜ # 72), down-
load the program to the processor, enter run mode, and set Ex1State=1.

7.1.5.4 SLC500 Program
A SLC500 program called S600_Example_1.RSS which implements this example is available
from the website. The example assumes that a DevieNet scanner is installed in slot 1 and that an
servo amplifier at address 1 is mapped into the lowest words of the scanner.
To begin the example sequence, configure the amplifier as described on page (➜ # 72), down-
load the program to the processor, enter run mode, and set Ex1State (N16:0) = 1.

7.2 Baud Rate Switch Settings
For servoamplifiers, the baud rate switch may be set to 0 (125 KBaud), 1 (250 KBaud) or 2 (500
KBaud). If the switch is set to a value greater than 2, the baud rate is configurable through the ter-
minal parameter DNBAUD and through DeviceNet. If the switch is set from 0 to 2, the baud rate
cannot be controlled with DNBAUD or DeviceNet.

7.3 MAC ID Switch Configuration
Values 0 to 63 are valid. If the switches are set to a value greater than 63, the MAC ID is con-
figurable through the terminal parameter DNMACID and through DeviceNet. If the switches are
set from 0 to 63, the MAC ID cannot be controlled with DNMACID or DeviceNet.

7.4 Network LED
The Network LED indicates the status of this device on the DeviceNet network.

Device
state

LED Details

Not
powered /
not online

off Device is not on–line. Either network power is off or the device has not
completed the Dup_MAC_ID test

Online, not
connected

flashing
green

Device is on–line but has no connections in the established state. The
device has passed the Dup_MAC_ID test, is on–line, but has no estab-
lished connections to other nodes. This device is not allocated to a master.

Online, con-
nected

green The device is on–line and has connections in the established state. The
device is allocated to a Master.

Connection
time-out

flashing
red

The Polled I/O connection is in the timed-out state.

Critical link
failure

red The device has detected an error that has rendered it incapable of com-
municating on the network (Duplicate MAC ID, or Bus–off).

7.5 Listing of DeviceNet Commands
This appendix cross-references DeviceNet messages (both Explicit Message class/in-
stance/attribute mappings and Polled I/O Command/Response fields) to serial terminal com-
mands. For information of each serial command, look for the matching section in ascii.chm.

90 Kollmorgen | kdn.kollmorgen.com | February 2020

7.5.1 Data Types
Type Description Width (bytes) Min Max
BOOL Boolean 1
SINT Short Integer 1 -128 127
BYTE Bit string – 8 Bits 1
USINT Unsigned Short Integer 1 0 255
INT Integer 2 -32768 32767
UINT Unsigned Integer 2 0 655351
WORD Bit string -16 Bits 2
DINT Double Integer 4 -231 231 -1
UDINT Unsigned Double Integer 4 0 232-1
DWORD Bit string - 32 Bits 4
LINT Long Integer 8 -263 263-1
ULINT Unsigned Long Integer 8 0 264-1
LWORD Bit string - 64 Bits 8
EPATH DeviceNet path segments variable

7.5.2 Explicit Messages
Services:
Reset = 0x05, Get = 0x0E, Set = 0x10
Classes:
0x01=Identity Object, 0x24=Position Controller Supervisor, 0x25=Position Controller Object,
0x26=Block Sequencer, 0x27=Command Block, 0x0F=Parameter Object

Name Cls Inst. Attr Srvc Data Notes
Identity Object
Reset 0x01 0x01 0x00 R none Set value=1 to restart the amplifier. COLDSTART.
Default 0x01 0x01 0x01 R none Set value=1 to load default parameters and restart. RSTVAR,

SAVE, COLDSTART.
Serial Num-
ber

0x01 0x01 0x06 G UDINT SERIALNO

Position Controller Supervisor Object
General
Error

0x24 0x01 0x05 G BOOL =1 if any amplifier faults (ERRCODE). Also set on warnings for
n3 (position error), n8 (bad motion task), n9 (reference point
not set)

Clear Errors 0x24 0x01 0x65 G/S BOOL Set value=1 to clear faults. CLRFAULT.
Error Code 0x24 0x01 0x64 G DINT ERRCODE. Returns the hex value of the error code.
Position Controller Object
Mode 0x25 0x01 0x03 G/S USINT 0=Position (OPMODE 8). 1= velocity (OPMODE 0). 2=Torque

(OPMODE 2).
Target Pos-
ition

0x25 0x01 0x06 G/S DINT O_P. Sets O_C bits 0x2800 and O_C2 bits 0x100, units are SI
and ACCR/DECR override O_ACC1/O_DEC1.

Target Velo-
city

0x25 0x01 0x07 G/S DINT O_V. Units determined by amplifier configuration.

Acc 0x25 0x01 0x08 G/S DINT Velocity Mode: ACC. Position Mode: ACCR. Units set by
ACCUNIT,PGEARI.

Dec 0x25 0x01 0x09 G/S DINT Velocity Mode: DEC. Position Mode: DECR. Units set by
ACCUNIT,PGEARI.

Incremental
Flag

0x25 0x01 0x0a G/S BOOL O_C Bit 0. 0->ABS, 1->INCR.

Load/Profile
Handshake

0x25 0x01 0x0b G/S BOOL Get: 1 if in motion. Set 1 to move (type depends on Mode - attr
3).

In Position 0x25 0x01 0x0c G BOOL INPOS
Actual Pos-
ition

0x25 0x01 0x0d G/S DINT Get: read current position (PFB). Set: redefine position.
ROFFS=X, NREF=0, MH

S300-S600-S700 DeviceNet | 7 Appendix

Kollmorgen | kdn.kollmorgen.com | February 2020 91

S300-S600-S700 DeviceNet | 7 Appendix

Name Cls Inst. Attr Srvc Data Notes
Actual Velo-
city

0x25 0x01 0x0e G DINT abs(PV)

Enable 0x25 0x01 0x11 G/S BOOL EN
Smooth
Stop

0x25 0x01 0x14 G/S BOOL STOP. DECR is rate. Get returns 0.

Hard Stop 0x25 0x01 0x15 G/S BOOL Emergency stop. DECSTOP is rate. Get returns 0.
Jog Velocity 0x25 0x01 0x16 G/S DINT J. Positive value – direction depends on Direction attr23 Units

determined by amplifier configuration. Used only in Velocity
Mode.

Direction 0x25 0x01 0x17 G/S BOOL Get: current direction of motion (not the flag). S: direction flag
for J. 1->pos direction. 0->neg direction

Reference
Direction

0x25 0x01 0x18 G/S BOOL DIR (inverse). 1=pos, 0=neg (0 -> CW is positive). Can only set
when amplifier is disabled. You must save and restart the amp-
lifier after setting this variable.

Torque 0x25 0x01 0x19 G/S DINT New torque value (set Load bit - attr 11 - to move). Internal
counts. 3280 = peak torque. Similar to the T command, except
the new torque command isn’t executed until the Load bit is
set.

Save para-
meters

0x25 0x01 0x65 G/S BOOL SAVE. Write 1 to save parameters to EPROM. Get returns 0.

Drive Status 0x25 0x01 0x66 G DINT DRVSTAT
Trajectory
Status

0x25 0x01 0x67 G DINT TRJSTAT

Block Sequencer Object
Block 0x26 0x01 0x01 G/S USINT 1-255. Block number to execute (ORDER# for MOVEx).
Block
Execute

0x26 0x01 0x02 G/S BOOL Set to begin block execution. Reads 1 while executing a block
and 0 when complete. MOVE x.

Current
Block

0x26 0x01 0x03 G/S USINT Number of currently executing block. Reads 0 on jog.
TASKNUM.

Block Fault 0x26 0x01 0x04 G/S BOOL Set when a block error occurs. Reset when Block Fault Code is
read.

Block Fault
Code

0x26 0x01 0x05 G/S USINT 0=no fault, 1 = invalid or empty block data, 2 = command time
out (Wait Equals), 3 = execution fault.

Counter 0x26 0x01 0x06 G/S DINT (positive) counter for block looping. M LOOPCNT.
Command Block Object (all)
Block type 0x27 0x01-0xff 0x01 G/S USINT Command to execute, e.g. 0x01=Modify Attribute (see fol-

lowing sections). The value of Block Command determines the
format of attributes 3-7. The block command is stored in the 2
low bytes of O_C2 (see following sections for mapping of Block
Command value into O_C2). For motion tasks, bit 0x100 in O_
C2 is set so that ACCR and DECR are used for the accel-
eration and deceleration rates. Setting the block command
also modifies O_C - sets 0x800 (extended task type bit) for
most tasks and 0x2800 for motion tasks.

Block Link # 0x27 0x01-0xff 0x02 G/S USINT O_FN - Instance number of the next block to execute when this
block is done. 0 means no following task.

Command Block Object (with Block Command=1 Modify Attribute)
Modify Attribute - set the value of any DeviceNet accessible attribute.
Setting Block Command (attribute 1) = Modify Attribute will also set O_C bit 0x800 and O_C2=6.
Class 0x27 0x01-0xff 0x03 G/S USINT Class to access (e.g. 0x25 for Position Controller Object).

Stored in the upper byte of O_ACC1.
Instance 0x27 0x01-0xff 0x04 G/S USINT Instance to access. Stored in O_DEC1.
Attribute 0x27 0x01-0xff 0x05 G/S USINT Attribute to access (must be settable). Stored in the lower byte

of O_ACC1.
Data 0x27 0x01-0xff 0x06 G/S DINT New attribute data. Stored in O_P.

92 Kollmorgen | kdn.kollmorgen.com | February 2020

Name Cls Inst. Attr Srvc Data Notes
Command Block Object (with Block Command=2 Wait for Parameter Value)
Wait for parameter value - delay until a DeviceNet accessible attribute equals a desired value.
Setting Block Command (attribute 1) = 2 will also set O_C bits 0x880 and O_C2=2.
Class 0x27 0x01-0xff 0x03 G/S USINT Class to access (e.g. 0x25 for Position Controller Object).

Stored in the upper byte of O_ACC1.
Instance 0x27 0x01-0xff 0x04 G/S USINT Instance to access. Stored in O_DEC1.
Attribute 0x27 0x01-0xff 0x05 G/S USINT Attribute to access (must be settable). Stored in the lower byte

of O_ACC1.
Time-out 0x27 0x01-0xff 0x06 G/S DINT Maximum time to wait in ms. Fault if time-out is reached. 0 = no

timeout. Stored in O_FT.
Compare
Data

0x27 0x01-0xff 0x07 G/S DINT Value to wait for. Stored in O_P.

Command Block Object (with Block Command=3 Greater-Than Test)
Greater-than test - Test the value of a DeviceNet accessible attribute and branch to an alternate block if the attribute
value is greater than the test value.
Setting Block Command (attribute 1) = 3 will also set O_C bit 0x800 and O_C2=3.
Class 0x27 0x01-0xff 0x03 G/S USINT Class to access (e.g. 0x25 for Position Controller Object).

Stored in the upper byte of O_ACC1.
Instance 0x27 0x01-0xff 0x04 G/S USINT Instance to access. Stored in O_DEC1.
Attribute 0x27 0x01-0xff 0x05 G/S USINT Attribute to access (must be settable). Stored in the lower byte

of O_ACC1.
Alternate
Link Num-
ber

0x27 0x01-0xff 0x06 G/S USINT Block to branch to if true. Stored in O_DEC2.

Compare
Data

0x27 0x01-0xff 0x07 G/S DINT If the Attribute is greater than Compare Data, ignore the normal
link (attribute 2) and branch to Alternative Link (attribute 6).
Stored in O_P.

Command Block Object (with Block Command=4 Less-Than Test)
Less-than test - Test the value of a DeviceNet accessible attribute and branch to an altern-
ate block if the attri - bute value is less than the test value.
Setting Block Command (attribute 1) = 4 will also set O_C bit 0x800 andO_C2=4.

Class 0x27 0x01-0xff 0x03 G/S USINT Class to access (e.g. 0x25 for Position Controller Object).
Stored in the upper byte of O_ACC1.

Instance 0x27 0x01-0xff 0x04 G/S USINT Instance to access. Stored in O_DEC1.
Attribute 0x27 0x01-0xff 0x05 G/S USINT Attribute to access (must be settable). Stored in the lower byte

of O_ACC1.
Alternate
Link Num-
ber

0x27 0x01-0xff 0x06 G/S USINT Block to branch to if true. Stored in O_DEC2.

Compare
Data

0x27 0x01-0xff 0x07 G/S DINT If the Attribute is less than Compare Data, ignore the normal
link (attribute 2) and branch to Alternative Link (attribute 6).
Stored in O_P.

Command Block Object (with Block Command=5 Decrement Counter)
Decrement Counter - This block decrements the global counter in the Command Block Sequencer object. No addi-
tional attributes are defined for this command type. Setting Block Command (attribute 1) = 5 will also set O_C bit
0x800 and O_C2=9.
Command Block Object (with Block Command=6 Delay)
Delay - This block causes the sequencer to delay for a given number of milliseconds before continuing with the next
block. The block must have a Block Link in attribute 2. Setting Block Command=6 will also set O_C bits 0x880 and
O_C2=1.
Delay 0x27 0x01-0xff 0x03 G/S DINT Time to delay in ms. Stored in O_FT.
Command Block Object (with Block Command=8 Trajectory)
Trajectory - execute a positioning move. Setting Block Command=8 will also set O_C bit 0x3800 (SI units, extended
task) and O_C2=0x100 (use global acceleration and deceleration rates).

S300-S600-S700 DeviceNet | 7 Appendix

Kollmorgen | kdn.kollmorgen.com | February 2020 93

S300-S600-S700 DeviceNet | 7 Appendix

Name Cls Inst. Attr Srvc Data Notes
Target Pos-
ition

0x27 0x01-0xff 0x03 G/S DINT O_P

Target Velo-
city

0x27 0x01-0xff 0x04 G/S DINT O_V

Incremental 0x27 0x01-0xff 0x05 G/S BOOL O_C bit 0. 0->absolute move, 1->incremental move.
Command Block Object (with Block Command=9 Velocity Change)
Velocity Change - execute a velocity profile. Setting Block Command=9 will also set O_C2=0x165 and O_C bits
0x3800. This type of block cannot have a next block link since the velocity profile doesn’t have a definite end.
Target Velo-
city

0x27 0x01-0xff 0x03 G/S DINT O_V

Parameter Object
The instance number in the parameter object corresponds to the DPR number specified in the ASCII serial-terminal
command reference for drive parameters. Only parameters 1-255 are accessible.
Parameter
Value

0x0F 0x01-0xFF 0x01 G/S Typ Actual value of the parameter. The value is read-only if bit 4 of
attr#4 (descriptor-ReadOnly bit) is 1.

Descriptor 0x0F 0x01-0xFF 0x04 G WORD Read-only if bit 0x10 is set.
Data Size 0x0F 0x01-0xFF 0x06 G USINT Length of the data in bytes.
Discrete Input Point Object
Value 0x08 0x01-0x04 0x03 G BOOL 0=off; 1=on. Instance 1-4 —> IN1, IN2, IN3, IN4. These are the

onboard digital input available on connector X3.
Discrete Output Point Object
Value 0x09 0x01-0x02 0x03 S BOOL 0=off; 1=on. Settable only if O1MODE=23 / O2MODE=23, else

returns error 0x10 Device Conflict.
Is reset to 0 on any fault. Instance 1,2 —> O1, O2.

Analog Input Point Object
Value 0x0A 0x01-0x02 0x03 G INT Voltage on the input, in mV. Instance 1,2 —> ANIN1, ANIN2.
Analog Output Point Object
Value 0x0B 0x01-0x02 0x03 S INT Instance 1,2 —> AN1TRIG,AN2TRIG.

Set ANOUT1/2 = 6 for DeviceNet control. Value is the voltage
to output in mV. If ANOUT1/2 6, returns error 0x10 Device Con-
flict.

7.5.3 Polled I/O Messages
Name Byte Bit Value Notes
Command Assembly
Load Data/Start
Profile

0 0 0/1 To load data into the amplifier, set the Command Type and Data fields, then
transition this bit 0->1 to initiate data handshaking. If the command is accep-
ted, the amplifier will set the Data Loaded bit in the response assembly.
If the command type matches the amplifier mode, movement will start (Pos-
ition command in position mode, Torque command in torque mode, Velocity
command in velocity mode).

Start Block 0 1 0/1 Transition 0->1 to execute a Command Block or chain. The Block Number is
in byte 1 of the command assembly. Similar to MH [BlockNumber]

Incremental 0 2 0/1 O_C bit 0. 0 = absolute position. 1 = incremental. (Positioning mode only)
Direction 0 3 0/1 Controls direction of the motor in velocity mode. 1 = forward, 0 = reverse.

Only valid in velocity mode.
Smooth Stop 0 4 0/1 STOP. Immediate controlled stop. Uses DECR for rate.
Hard Stop 0 5 0/1 DECSTOP. Immediate fast stop
Reg Arm 0 6 0/1 Arm registration
Enable 0 7 0/1 EN. 1 = enable the amplifier. 0 = disable and stop motion.
Block Number 1 1-7 0-255 Block number to execute on a positive Start Block edge. MOVE [Block-

Number]

94 Kollmorgen | kdn.kollmorgen.com | February 2020

Name Byte Bit Value Notes
Command Type 2 0-4 0-5 command types follow. Set Load Data/Start Trajectory bit to load the com-

mand.
x00 No Operation 2 0-4 0 do nothing
x01 Target Position 2 0-4 1 O_P. Move will begin when this command is loaded in positioning mode.
x02 Target Velocity 2 0-4 2 Position mode: O_V. velocity mode: J and move will begin when this com-

mand is loaded.
x03 Acceleration 2 0-4 3 Velocity Mode: ACC. Position Mode: ACCR. Units set by ACCUNIT,

PGEARI.
x04 Deceleration 2 0-4 4 Velocity Mode: DEC. Position Mode: DECR. Units set by ACCUNIT,

PGEARI.
x05 Torque 2 0-4 5 T. Only works in torque mode.
Command Axis 2 5-7 1 This must always be 1. Any other value will invalidate the command

assembly.
Response Type 3 0-4 0-3,5,

0x14
Response types follow. The response data will be in the next response
assembly.

x00 No Operation 3 0-4 0 do nothing. Response data will be zeros.
x01 Actual Position 3 0-4 1 PFB
x02 Commanded
Position

3 0-4 2 PTARGET

x03 Actual Velocity 3 0-4 3 abs(PV). Steps/s. Absolute value of velocity.
x05 Torque 3 0-4 5 I
x14 Assembly
Error

3 0-4 0x14 Error code in response assembly: bytes 4-5=error code, 6-7=mirror com-
mand bytes 2-3.
ERROR CODES... Less than 8 bytes: x13 ff. Unsupported command: x08 01.
Unsupported Response: x08 02. Unsupported command axis: x05 01.
Unsupported response axis: x05 02. Get unsupported attribute: x14 02. Set
unsupported attribute: x14 01. Set unsettable attribute: x0E FF. Set invalid
value: x09 FF.

Response Axis 3 5-7 1 This must always be 1. Any other value will invalidate the command
assembly.

Command Data 4-7 Data depends on Command Type. Data bytes are in reverse order - the
least significant byte is first.

Response Assembly
Profile in progress 0 0 0/1 1 = a move has been commanded and is not complete. DRVSTAT bit

0x10000
Block in execution 0 1 0/1 1 = a block is in execution. Block number given in byte 1
In Position 0 2 0/1 INPOS. 1 = in Position
General Fault 0 3 0/1 1 = alarm. Faults, Warnings n3, n8, n9. ERRCODE.
Current Direction 0 4 0/1 Current Direction. 1 = Fwd. V positive or negative.
Home Flag 0 5 0/1 1=off the flag, 0=on the flag. Level of home input. DRVSTAT bit 0x40000
Reg. Level 0 6 0/1 Registration input level. IN2MODE must = 26
Enable 0 7 0/1 1 = enabled. READY.
Executing Block # 1 0-7 0-255 Block currently in execution. 0=no block executing. TASKNUM.

Fault Input 2 0 0/1
1 = Fault Input is active. Using Emergency Stop inputs. Check for input with
INxMODE=27 and input level low (active level low is fault).

Positive HW-Limit 2 1 0/1 DRVSTAT Bit 0x200. 1=active.
Negative HW-Limit 2 2 0/1 DRVSTAT Bit 0x400. 1=active.
Positive SW-Limit 2 3 0/1 DRVSTAT Bit 0x40. 1=active.
Negative SW-Limit 2 4 0/1 DRVSTAT Bit 0x20. 1=active.
Following Error 2 5 0/1 Following Error. DRVSTAT bit 0x04.
Block Fault 2 6 0/1 Error executing a block. 1 = Fault. Read Block Sequencer Object attr#5 to

clear.

S300-S600-S700 DeviceNet | 7 Appendix

Kollmorgen | kdn.kollmorgen.com | February 2020 95

S300-S600-S700 DeviceNet | 7 Appendix

Name Byte Bit Value Notes
Load Complete 2 7 0/1 Load Complete. Command data loaded successfully. Reset when

Load/Start bit is low.
Response Type 3 0-4 0-3,5,

0x14
Echoes Response Type from Command Assembly. See description above.

Response Axis 3 5-7 1 Echoes Response Axis from Command Assembly.
Response Data 4-7 Data depends on Response Type. Data bytes are in reverse order - the

least significant byte is first.

7.6 Default Input/Output Configuration
For the servo amplifier, the following input configuration is applicable:

O1MODE=23 (DeviceNet control of digital output 1)
O2MODE=23 (DeviceNet control of digital output 2)
ANOUT1=6 (DeviceNet control of analog output 1)

7.7 Error Messages
DeviceNet error messages are received when a command assembly or explicit request message
cannot be handled successfully by the amplifier. This is often caused by either an invalid mes-
sage or an invalid amplifier state.
The servo amplifier transmits an error response assembly in reply to a bad command assembly.
Response type 0x14 is loaded in the Response Assembly Type field and the error codes are
loaded in bytes 4-5. See section (➜ # 69, Response Assembly 0x14 – Command/Response
Error) for more information.
The servo amplifier will transmit an error explicit response message in reply to a bad explicit
request message. This response will have service code 0x94 and the error codes in the first two
data bytes.

Error Code (hex) Additional Code (hex) DeviceNet Error
0 FF NO ERROR
2 FF RESOURCE_UNAVAILABLE
5 FF PATH_UNKNOWN
5 1 COMMAND_AXIS_INVALID
5 2 RESPONSE_AXIS_INVALID
8 FF SERVICE_NOT_SUPP
8 1 COMMAND_NOT_SUPPORTED
8 2 RESPONSE_NOT_SUPPORTED
9 FF INVALID_ATTRIBUTE_VALUE
B FF ALREADY_IN_STATE
C FF OBJ_STATE_CONFLICT
D FF OBJECT_ALREADY_EXISTS
E FF ATTRIBUTE_NOT_SETTABLE
F FF ACCESS_DENIED
10 FF DEVICE_STATE_CONFLICT
11 FF REPLY_DATA_TOO_LARGE
13 FF NOT_ENOUGH_DATA
14 FF ATTRIBUTE_NOT_SUPP
15 FF TOO_MUCH_DATA
16 FF OBJECT_DOES_NOT_EXIST
17 FF FRAGMENTATION_SEQ_ERR
20 FF INVALID_PARAMETER

96 Kollmorgen | kdn.kollmorgen.com | February 2020

7.8 Index

A

Abbreviations 11
Additional documentation 9
Analog Input Object 49
Analog Output Object 50

B

Basic features 12
Baud Rate Switch Settings 90
Block Sequencer Object 35
Bus cable 15

C

Command Block Object 36
Communication Objects 23
Connection diagram 17
Connection Object - Explicit 52
Connection Object - Polled I/O 53
Controller setup 17

D

Data Types 24
Default Input/Output Configuration 96
DeviceNet Commands 90
DeviceNet Object 51
DeviceNet PLC Examples 71
Digital Input Object 49
Digital Output Object 49

E

Error Messages 96
expansion card 14

F

Functionality Chart 20

I

I/O Command Assemblies 54
I/O Objects 22
I/O Response Assemblies 63
Identity Object 50
Installation 14

L

LED 14

M

MAC ID Switch Configuration 90
Message Router Object 51
Motion Objects 21

N

Network LED 90

P

Parameter Object 33
Position Controller Object 27
Position Controller Supervisor Object 25
Power supply 16

R

Response to faults 19

S

Saving 24
Setup 18
station address 17
Supported Services 24
Symbols used 10
System requirements 10

T

Target group 9
transmission rate 17

U

Use as directed 10

S300-S600-S700 DeviceNet |

Kollmorgen | kdn.kollmorgen.com | February 2020 97

Service
We are committed to quality customer service. In order to serve in the most effective way, please contact your local
sales representative for assistance.
If you are unaware of your local sales representative, please contact the Customer Support.

Join the Kollmorgen Developer Network for product support. Ask the com-
munity questions, search the knowledge base for answers, get down-
loads, and suggest improvements.

Europe
KOLLMORGEN
Internet: www.kollmorgen.com/en-us
E-Mail: technik@kollmorgen.com
Tel.: +49 - 2102 - 9394 - 0
Fax: +49 - 2102 - 9394 - 3155

North America
KOLLMORGEN
Internet: www.kollmorgen.com/en-us
E-Mail: support@kollmorgen.com
Tel.: +1 - 540 - 633 - 3545
Fax: +1 - 540 - 639 - 4162

South America
KOLLMORGEN
Internet: www.kollmorgen.com/pt-br
E-Mail: contato@kollmorgen.com
Tel.: +55 - 11 - 4615-6300

Asia
KOLLMORGEN
Internet: www.kollmorgen.cn
E-Mail: sales.china@kollmorgen.com
Tel: +86 - 400 668 2802
Fax: +86 - 21 6248 5367

http://kdn.kollmorgen.com/
http://kdn.kollmorgen.com/
http://www.kollmorgen.com/en-us
mailto:technik@kollmorgen.com
http://www.kollmorgen.com/en-us
mailto:support@kollmorgen.com
http://www.kollmorgen.com/pt-br
mailto:contato@kollmorgen.com
http://www.kollmorgen.cn/
mailto:sales.china@kollmorgen.com

	Cover page
	1 Table of Contents
	2 General Information
	2.1 About this manual
	2.2 Target group
	2.3 Using the PDF Format
	2.4 Use as directed
	2.5 System requirements
	2.6 Symbols Used
	2.7 Abbreviations used
	2.8 Application notes
	2.9 Basic features implemented through DeviceNet

	3 Installation / Setup
	3.1 Important Notes
	3.2 Installation
	3.2.1 Installation of the expansion card
	3.2.2 Combined Module / Network Status LED
	3.2.3 Front view
	3.2.4 Connection technology
	3.2.5 Bus cable
	3.2.6 Connection diagram
	3.2.7 Setup of station address
	3.2.8 Setup of transmission rate
	3.2.9 Controller setup

	3.3 Setup
	3.3.1 Guide to Setup
	3.3.2 Error handling

	3.4 Response to BUSOFF communication faults

	4 DeviceNet Overview
	4.1 Functionality Chart
	4.2 Overview of Explicit and Polled I/O (assembly) messages
	4.3 Motion Objects with Explicit Messaging
	4.3.1 Object: Parameter
	4.3.2 Object: Position Controller Supervisor
	4.3.3 Object: Position Controller
	4.3.4 Object: Block Sequencer
	4.3.5 Object: Command Block

	4.4 I/O Objects
	4.4.1 Object: crete Input Point
	4.4.2 Object: Discrete Output Point
	4.4.3 Object: Analog Input Point
	4.4.4 Object: Analog Output Point

	4.5 Communication Objects
	4.5.1 Object: Identity
	4.5.2 Object: Message Router
	4.5.3 Object: DeviceNet
	4.5.4 Object: Assembly
	4.5.5 Object: Explicit Connection
	4.5.6 Object: Polled I/O Connection

	4.6 Firmware-Version
	4.7 Supported Services
	4.8 Data Types
	4.9 Saving to Non-volatile Memory

	5 Explicit messages
	5.1 Position Controller Supervisor Object (class 0x24)
	5.1.1 Error Codes
	5.1.1.1 Object State Conflicts – 0x0C

	5.1.2 Supervisor Attributes
	5.1.2.1 Attribute 0x05: General Fault
	5.1.2.2 Attribute 0x0E: Index Active Level
	5.1.2.3 Attribute 0x15: Registration Arm
	5.1.2.4 Attribute 0x16: Registration Input Level
	5.1.2.5 Attribute 0x64: Fault Code
	5.1.2.6 Attribute 0x65: Clear Faults

	5.2 Position Controller Object (class 0x25)
	5.2.1 Error Codes
	5.2.1.1 Object State Conflicts – 0x0C

	5.2.2 Position controller attributes
	5.2.2.1 Attribute 0x01: Number of Attributes
	5.2.2.2 Attribute 0x02: Attribute list
	5.2.2.3 Attribute 0x03: Opmode
	5.2.2.4 Attribute 0x06: Target Position
	5.2.2.5 Attribute 0x07: Target Velocity
	5.2.2.6 Attribute 0x08: Acceleration
	5.2.2.7 Attribute 0x09: Deceleration
	5.2.2.8 Attribute 0x0A: Move Type
	5.2.2.9 Attribute 0x0B: Trajectory Start/Complete
	5.2.2.10 Attribute 0x0C: In Position
	5.2.2.11 Attribute 0x0D: Actual Position
	5.2.2.12 Attribute 0x0E: Actual Velocity
	5.2.2.13 Attribute 0x11: Enable
	5.2.2.14 Attribute 0x14: Smooth Stop
	5.2.2.15 Attribute 0x15: Hard Stop
	5.2.2.16 Attribute 0x16: Jog Velocity
	5.2.2.17 Attribute 0x17: Direction
	5.2.2.18 Attribute 0x18: Reference direction
	5.2.2.19 Attribute 0x19: Torque
	5.2.2.20 Attribute 0x28: Feedback resolution
	5.2.2.21 Attribute 0x29: Motor resolution
	5.2.2.22 Attribute 0x65: Save Parameters
	5.2.2.23 Attribute 0x66: Amplifier Status
	5.2.2.24 Attribute 0x67: Trajectory Status

	5.3 Parameter Object (class 0x0F)
	5.3.1 Error Codes
	5.3.2 Parameter Attributes
	5.3.2.1 Attribute 0x01: Parameter Value
	5.3.2.2 Attribute 0x04: Descriptor
	5.3.2.3 Attribute 0x06: Data Length
	5.3.2.4 Attribute 0x64: Parameter Number

	5.4 Block Sequencer Object (class 0x26)
	5.4.1 Attribute 0x01: Block
	5.4.2 Attribute 0x02: Block Execute
	5.4.3 Attribute 0x03: Current Block
	5.4.4 Attribute 0x04: Block Fault
	5.4.5 Attribute 0x05: Block Fault Code
	5.4.6 Attribute 0x06: Counter

	5.5 Command Block Object (class 0x27)
	5.5.1 Block Types
	5.5.2 Command 0x01 – Modify Attribute
	5.5.2.1 Attribut 0x01: Blocktyp
	5.5.2.2 Attribute 0x02: Block Link #
	5.5.2.3 Attribute 0x03: Target Class
	5.5.2.4 Attribute 0x04: Target Instance
	5.5.2.5 Attribute 0x05: Attribute #
	5.5.2.6 Attribute 0x06: Attribute Data

	5.5.3 Command 0x02 – Wait Until Equals
	5.5.3.1 Attribute 0x01: Block Type
	5.5.3.2 Attribut 0x02: Blockverknüpfungsnummer
	5.5.3.3 Attribute 0x03: Target Class
	5.5.3.4 Attribute 0x04: Target Instance
	5.5.3.5 Attribute 0x05: Attribute #
	5.5.3.6 Attribute 0x06: Timeout
	5.5.3.7 Attribute 0x07: Compare Data

	5.5.4 Command 0x03 – Greater Than Test
	5.5.4.1 Attribute 0x01: Block Type
	5.5.4.2 Attribute 0x02: Block Link #
	5.5.4.3 Attribute 0x03: Target Class
	5.5.4.4 Attribute 0x04: Target Instance
	5.5.4.5 Attribute 0x05: Attribute #
	5.5.4.6 Attribute 0x06: Compare Link #
	5.5.4.7 Attribute 0x07: Compare Data

	5.5.5 Command 0x04 – Less Than Test
	5.5.5.1 Attribute 0x01: Block Type
	5.5.5.2 Attribute 0x02: Block Link #
	5.5.5.3 Attribute 0x03: Target Class
	5.5.5.4 Attribute 0x04: Target Instance
	5.5.5.5 Attribute 0x05: Attribute #
	5.5.5.6 Attribute 0x06: Compare Link #
	5.5.5.7 Attribute 0x07: Compare Data

	5.5.6 Command 0x05 – Decrement Counter
	5.5.6.1 Attribute 0x01: Block Type
	5.5.6.2 Attribute 0x02: Block Link #

	5.5.7 Command 0x06 – Delay
	5.5.7.1 Attribute 0x01: Block Type
	5.5.7.2 Attribute 0x02: Block Link #
	5.5.7.3 Attribute 0x03: Delay

	5.5.8 Command 0x08 – Motion task
	5.5.8.1 Attribute 0x01: Block Type
	5.5.8.2 Attribute 0x02: Block Link #
	5.5.8.3 Attribute 0x03: Target Position
	5.5.8.4 Attribute 0x04: Target Velocity
	5.5.8.5 Attribute 0x05: Incremental
	5.5.8.6 Attribute 0x64: O_C
	5.5.8.7 Attribute 0x65: O_ACC
	5.5.8.8 Attribute 0x66: O_DEC
	5.5.8.9 Attribute 0x67: O_TAB
	5.5.8.10 Attribute 0x68: O_FT

	5.5.9 Command 0x09 – Jog
	5.5.9.1 Attribute 0x01: Block Type
	5.5.9.2 Attribute 0x02: Block Link #
	5.5.9.3 Attribute 0x03: Target Velocity

	5.6 Digital Input Object (class 0x08)
	5.6.1 Attribute 0x03: Value

	5.7 Digital Output Object (class 0x09)
	5.7.1 Attribute 0x03: Value

	5.8 Analog Input Object (class 0x0A)
	5.8.1 Attribut 0x03: Wert

	5.9 Analog Output Object (class 0x0B)
	5.9.1 Attribute 0x03: Value

	5.10 Identity Object (class 0x01)
	5.11 Message Router Object (class 0x02)
	5.12 DeviceNet Object (class 0x03)
	5.13 Connection Object - Explicit (class 0x05)
	5.14 Connection Object - Polled I/O (class 0x05)

	6 Polled I/O messages
	6.1 I/O Command Assemblies
	6.1.1 Control Bits and Data Fields
	6.1.2 Running a Stored Sequence through DeviceNet
	6.1.3 Data Handshaking
	6.1.4 Command Assembly 0x01 – Target Position
	6.1.5 Command Assembly 0x02 – Target Velocity
	6.1.6 Command Assembly 0x03 – Acceleration
	6.1.7 Command Assembly 0x04 – Deceleration
	6.1.8 Command Assembly 0x05 – Torque

	6.2 I/O Response Assemblies
	6.2.1 Status Bits and Data Fields
	6.2.2 Response Assembly 0x01 – Actual Position
	6.2.3 Response Assembly 0x02 – Commanded Position
	6.2.4 Response Assembly 0x03 – Actual Velocity
	6.2.5 Response Assembly 0x05 – Torque
	6.2.6 Response Assembly 0x14 – Command/Response Error

	7 Appendix
	7.1 DeviceNet PLC Examples
	7.1.1 Overview
	7.1.2 Amplifier Setup for the Examples
	7.1.3 Polled I/O Assemblies
	7.1.3.1 Sending Command Assemblies – ControlLogix
	7.1.3.2 Reading Response Assemblies – ControlLogix
	7.1.3.3 Data Handshaking - ControlLogix
	7.1.3.4 Sending Command Assemblies – SLC500
	7.1.3.5 Reading Response Assemblies – SLC500
	7.1.3.6 Data Handshaking - SLC500

	7.1.4 Explicit Messages
	7.1.4.1 Explicit Messages and ControlLogix
	7.1.4.2 Explicit Messages and SLC500
	7.1.4.2.1 SLC500 Explicit Message Request Structure
	7.1.4.2.2 SLC500 Explicit Message Response Structure
	7.1.4.2.3 SLC500 Explicit Messaging Sequence
	7.1.4.2.4 SLC500 Explicit Messaging Example Code

	7.1.5 Example 1: Simple Move
	7.1.5.1 Serial Command Sequence
	7.1.5.2 DeviceNet Command Sequence
	7.1.5.3 ControlLogix Program
	7.1.5.4 SLC500 Program

	7.2 Baud Rate Switch Settings
	7.3 MAC ID Switch Configuration
	7.4 Network LED
	7.5 Listing of DeviceNet Commands
	7.5.1 Data Types
	7.5.2 Explicit Messages
	7.5.3 Polled I/O Messages

	7.6 Default Input/Output Configuration
	7.7 Error Messages
	7.8 Index

	Service

