
SERVOSTAR 300

Digitaler Servoverstärker S300

Betriebsanleitung

Ausgabe: Mai 2020 Originalbetriebsanleitung Gültig für Hardware Revision 04.20

Bisher erschienene Ausgaben:

Ausgabe	gabe Bemerkung			
	Den Lebenslauf dieses Dokuments finden Sie unter (→ # 143)			
04/2018	X1 Stecker korrigiert (Stift->Buchse), HR Tabelle aktualisiert, Wiki geändert zu KDN, Belüftung			
11/2018	Layout Warnhinweise und Lesehinweis Titelseite verändert, Anforderung Fachleute aktualisiert			
05/2020	Layout aktualisiert, Kapitel "Verwendete Standards" entfernt, Motor Temperatursensor generalisiert, Kapitel Normalbetrieb hinzugefügt, RoHS, REACH, EAC, PROFINET Erweiterungskarte neu			

Hardware Revision (HR)

Hardware Rev.	Firmware Rev.	Export Klassi- sifizierung	Bemerkung
02.01	2.18 - 3.74	AL-3A225	Start HR
02.10 (03.01)	3.75 - 4.99	AL-3A225	AS->STO, neue Abnahme
04.00	5.18 - 5.99	AL-3A225	Neue CPU, Frontfolie S300
04.10	5.18_ND0 - 5.99_ND0	-	Neue Datenstruktur
04.20	≥ 6.00_ND0	-	SFD3/DSL Unterstützung

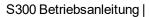
Warenzeichen

- WINDOWS ist ein eingetragenes Warenzeichen der Microsoft Corporation
- HIPERFACE ist ein eingetragenes Warenzeichen der Max Stegmann GmbH
- SERCOS ist ein eingetragenes Warenzeichen des sercos® international e.V
- PROFIBUS und PROFINET sind eingetragene Warenzeichen der PROFIBUS und PROFINET International (PI).
- EnDat ist ein eingetragenes Warenzeichen der Dr. Johannes Heidenhain GmbH
- EtherCAT ist ein geschütztes Warenzeichen und patentierte Technologie, lizensiert von Beckhoff Automation GmbH.

Technische Änderungen zur Verbesserung der Leistung der Geräte ohne vorherige Ankündigung vorbehalten.

Dieses Dokument ist geistiges Eigentum von Kollmorgen. Alle Rechte vorbehalten. Kein Teil dieses Werkes darf in irgendeiner Form (Fotokopie, Mikrofilm oder in einem anderen Verfahren) ohne schriftliche Genehmigung von Kollmorgen reproduziert oder elektronisch verarbeitet, vervielfältigt oder verbreitet werden.

1 Inhaltsverzeichnis


1	Inhaltsverzeichnis	3
2	Allgemeines	9
	2.1 Über dieses Handbuch	9
	2.2 Hinweise für die Online-Ausgabe (PDF-Format)	9
	2.3 Verwendete Symbole	10
	2.4 Verwendete Abkürzungen	11
3	Sicherheit	12
	3.1 Das sollten Sie beachten	12
	3.2 Warnhinweise auf dem Produkt	14
	3.3 Bestimmungsgemäße Verwendung	15
	3.4 Nicht bestimmungsgemäße Verwendung	15
4	Produkt Lebenszyklus, Handhabung	16
	4.1 Transport	
	4.2 Verpackung	16
	4.3 Lagerung	
	4.4 Installation, Setup und Normalbetrieb	
	4.5 Außer Betrieb nehmen	17
	4.6 Wartung und Reinigung	17
	4.7 Demontage	
	4.8 System Reparatur	
	4.9 Entsorgung	18
5	Zulassungen	
	5.1 UL und cUL Konformität	19
	5.2 CE Konformität	20
	5.2.1 Europäische Richtlinien und Normen für den Anlagenbauer	20
	5.2.2 Safety Konformität (STO) nach Maschinenrichtlinie	
	5.2.3 Konformität mit RoHS	
	5.2.4 Konformität mit REACH	21
	5.3 Konformität mit EAC	21
6	Produktidentifizierung	22
	6.1 Lieferumfang	22
	6.2 Typenschild	22
	6.3 Typenschlüssel	
7	Technische Beschreibung	24
	7.1 Die digitalen Servoverstärker der Familie SERVOSTAR 300	
	7.2 Technische Daten	
	7.2.1 Technische Daten 110 / 230 V (Typen S36_)	
	7.2.2 Technische Daten 400 / 480 V (Typen S30_)	
	7.2.3 Ein-/Ausgänge, Hilfsspannung	28
	7.2.4 Anschlussstecker	
	7.2.5 Empfohlene Anzugsmomente	28
	7.2.6 Sicherungen	28
	7.2.7 Umgebungsbedingungen, Belüftung und Einbaulage	
	7.2.8 Leiterquerschnitte	
	7.3 Motorhaltebremse	
	7.4 LED-Display	31
	7.5 Masse-System	
	7.6 Dynamisches Bremsen	
	7.7 Ein- und Ausschaltverhalten	
	7.7.1 Verhalten im Normalbetrieb	

	7.7.2 Verhalten im Fehlerfall (bei Standardeinstellung)	
	7.8 Stopp-, Not-Halt- und Not-Aus Funktionen nach EN 60204	
	7.8.1 Stopp	
	7.8.2 Not-Halt	
	7.8.3 NOT-AUS	
	7.9 Safe Torque Off (STO)	
	7.9.1 Sicherheitstechnische Kennzahlen	
	7.9.2 Sicherheitshinweise	
	7.9.3 Bestimmungsgemäße Verwendung	
	7.9.4 Nicht bestimmungsgemäße Verwendung	
	7.9.5 Technische Daten und Pinbelegung	
	7.9.6 Einbauraum	
	7.9.7 Verdrahtung	
	7.9.8 Funktionsbeschreibung	
	7.9.8.1 Sicherer Ablauf	
	7.9.8.2 Stromlaufplan Steuerstromkreis	
	7.9.8.3 Funktionsprüfung	
	7.9.8.4 Übersichtsplan Hauptstromkreis	
	7.10 Berührungsschutz	
	7.10.1 Ableitstrom	
	7.10.2 Fehlerstromschutzschalter (FI)	
	7.10.3 Schutztrenntransformatoren	
8	Mechanische Installation	
	8.1 Wichtige Hinweise	
	8.2 Leitfaden für die mechanische Installation	
	8.3 Montage	
	8.4 Abmessungen	
9	Elektrische Installation	
	9.1 Wichtige Hinweise	
	9.2 Leitfaden zur elektrischen Installation	
	9.3 Verdrahtung	
	9.3.1 Schirmanschluss an der Frontplatte	
	9.3.2 Technische Daten Anschlussleitungen	
	9.4 Komponenten eines Servosystems	
	9.5 Blockschaltbild	
	9.6 Steckerbelegung	
	9.7 Anschlussplan (Übersicht)	
	9.8 Spannungsversorgung	
	9.8.1 Anschluss an unterschiedliche Versorgungsnetze	
	9.8.2 24V-Hilfsspannung (X4)	
	9.8.3 Netzanschluss (X0), dreiphasig	
	9.8.4 Netzanschluss (X0), zweiphasig ohne Neutralleiter	
	9.8.5 Netzanschluss (X0), einphasig mit Neutralleiter	
	9.9 Zwischenkreis (X8)	
	9.9.1 Externer Bremswiderstand (X8)	
	9.9.2 Kondensatormodule KCM (X8)	
	9.10 Motorleistung und Motorhaltebremse (X9)	
	9.11 Rückführsysteme	
	9.12 Primäre und sekundäre Feedbacktypen	
	9.12.1 SFD3 (X1), Ein-Kabel Anschluss	
	9.12.2 HIPERFACE DSL (X1), Ein-Kabel Anschluss	
	9.12.3 Resolver (X2)	
	9.12.4 Sinus Encoder mit BiSS analog (X1)	
	9.12.5 Encoder mit BiSS digital (X1)	71

9.12.6 Sinus Encoder mit EnDat 2.1 (X1)	72
9.12.7 Encoder mit EnDat 2.2 (X1)	73
9.12.8 Sinus Encoder mit HIPERFACE (X1)	74
9.12.9 Sinus Encoder mit SSI (X5, X1)	75
9.12.10 Sinus Encoder ohne Datenspur (X1)	
9.12.11 Sinus Encoder mit Hall (X1)	77
9.12.12 Inkrementalgeber ROD (AquadB) 5V, 1,5MHz (X1)	78
9.12.13 Inkrementalgeber ROD (AquadB) 5V, 350kHz (X1)	79
9.12.14 Inkrementalgeber ROD (AquadB) 5V, 350kHz mit Hall (X1)	80
9.12.15 Inkrementalgeber ROD (AquadB) 5V (X5, X1)	81
9.12.16 Inkrementalgeber ROD (AquadB) 5V mit Hall (X5, X1)	82
9.12.17 Inkrementalgeber ROD (AquadB) 24V (X3)	83
9.12.18 Inkrementalgeber ROD (AquadB) 24V mit Hall (X3, X1)	84
9.12.19 SSI Absolutgeber (X5, X1)	85
9.12.20 Hall-Geber (X1)	
9.13 Elektronisches Getriebe, Master-Slave-Betrieb	87
9.13.1 Signalquellen	87
9.13.2 Anschluss an Schrittmotor-Steuerungen (Puls-Richtung)	88
9.13.2.1 Puls/Richtungs-Geber mit 5V-Signalpegel (X1)	88
9.13.2.2 Puls/Richtungs-Geber mit 24V-Signalpegel (X3)	88
9.13.2.3 Puls/Richtungs-Geber mit 5V-Signalpegel (X5)	89
9.13.3 Anschluss für Master-Slave Betrieb	89
9.13.3.1 Master-Slave 5V (X1)	89
9.13.3.2 Master-Slave 5V (X5)	89
9.14 Encoder Emulation, Positionsausgabe	90
9.14.1 Inkrementalgeberausgabe ROD (AquadB) (X5)	90
9.14.2 SSI-Ausgabe (X5)	
9.15 Digitale und analoge Ein- und Ausgänge	92
9.15.1 Analoge Eingänge (X3)	92
9.15.2 Digitale Eingänge (X3/X4)	
9.15.3 Digitale Ausgänge (X3)	94
9.16 RS232 Schnittstelle, PC-Anschluss (X6)	95
9.17 CAN-Bus Schnittstelle (X6)	96
10 Inbetriebnahme	97
10.1 Wichtige Hinweise	97
10.2 Inbetriebnahmesoftware	98
10.2.1 Bestimmungsgemäße Verwendung	98
10.2.2 Software-Beschreibung	98
10.2.3 Hardware-Voraussetzungen, Betriebssysteme	99
10.2.4 Installation unter WINDOWS	99
10.3 Quickstart, Schnelltest des Antriebs	100
10.3.1 Vorbereitung	100
10.3.2 Verbinden	102
10.3.3 Wichtige Bildschirmelemente	103
10.3.4 Setup Wizard	104
10.3.4.1 Basiseinstellungen	104
10.3.4.2 Einheiten	105
10.3.4.3 Motor (rotatorisch) und Feedback	106
10.3.4.4 Motor (linear) und Feedback	106
10.3.4.5 Parameter speichern und Neustart	107
10.3.5 Service Funktionen (Tippbetrieb)	107
10.3.6 Weitere Einstellmöglichkeiten	
10.4 Mehrachssysteme	109
10.5 Tastenbedienung und LED Display	109

10.5.1 Bedienung	110
10.5.2 Statusanzeige	110
10.5.3 Struktur des Standardmenüs	110
10.5.4 Struktur des detaillierten Menüs	111
10.6 Fehlermeldungen	112
10.7 Warnmeldungen	
10.8 Beseitigung von Störungen	114
11 Erweiterungen	115
11.1 Leitfaden zur Installation der Erweiterungskarten	115
11.2 Erweiterungskarte -I/O-14/08-	116
11.2.1 Technische Daten	
11.2.2 Leuchtdioden	
11.2.3 Eingeben einer Fahrsatznummer (Beispiel)	116
11.2.4 Steckerbelegung (Default)	
11.2.5 Anschlussbild (Default)	118
11.3 Erweiterungskarte -PROFIBUS-	119
11.3.1 Anschlusstechnik	
11.3.2 Anschlussbild	119
11.4 Erweiterungskarte -SERCOS-	120
11.4.1 Leuchtdioden	120
11.4.2 Anschlusstechnik	120
11.4.3 Anschlussbild	121
11.4.4 Setup	121
11.5 Erweiterungskarte - DEVICENET -	
11.5.1 Anschlusstechnik	
11.5.2 Anschlussbild	122
11.5.3 Kombinierte Modul- und Netzwerkstatus-LED	123
11.5.4 Setup	123
11.5.5 Buskabel	124
11.6 Erweiterungskarte -SYNQNET-	
11.6.1 NODE ID-Schalter	125
11.6.2 NODE LED-Tabelle	125
11.6.3 SynqNet-Anschlüsse, Stecker X21B und X21C (RJ-45)	125
11.6.4 Digitale Ein- und Ausgänge, Stecker X21A (SubD, 15-polig, Buchse)	
11.6.5 Anschlussbild digitale Ein- und Ausgänge, Stecker X21A	126
11.7 Erweiterungskarte - FB-2to1 -	127
11.7.1 Pinbelegung	127
11.7.2 Anschlussbeispiel BiSS digital (primär) und SinCos (sekundär)	128
11.8 Erweiterungskarte -PROFINET-	129
11.8.1 Gerätestammdatei	129
11.8.2 Leuchtdioden	129
11.8.3 Anschlusstechnik	129
11.8.4 Anschlussbeispiele	130
11.9 Erweiterungsmodul-2CAN-	131
11.9.1 Anbau	131
11.9.2 Anschlusstechnik	131
11.9.3 Anschlussbelegung	132
11.9.4 Einstellen der Stationsadresse und Übertragungsrate	132
11.10 Option "EtherCAT"	133
11.10.1 NODE LED-Tabelle	133
11.10.2 Anschlussbild	133
11.11 Option "FAN", geregelter Lüfter	134
12 Anhang	135
12.1 Glossor	125

	12.2 Bestellnummern	.137
13	Index	139
14	Bisher erschienene Ausgaben	143

2 Allgemeines

2.1 Über dieses Handbuch

Dieses Handbuch beschreibt die digitalen Servoverstärker SERVOSTAR 300 (S300, Standard Version, 1,5 bis 10 A Nennstrom).

Weitergehende Beschreibung der Funktionalität und der digitalen Anbindung an Automatisierungssysteme und unsere Applikationsschriften finden Sie auf der beiliegenden CD-ROM im Acrobat Reader-Format (Systemvoraussetzung: WINDOWS, Internet Browser, Acrobat Reader) in mehreren Sprachversionen.

Technische Daten und Maßzeichnungen von Zubehör wie Kabel, Bremswiderstände, Netzteile usw. finden Sie im Zubehörhandbuch.

Sie können die Dokumentationen (PDF) auf jedem handelsüblichen Drucker ausdrucken.

Technische Hintergundinformationen finden Sie im "Kollmorgen Developer Network", erreichbar unter kdn.kollmorgen.com.

2.2 Hinweise für die Online-Ausgabe (PDF-Format)

Das Dokument bietet verschiedene Funktionen, um die Navigation zu vereinfachen.

Lesezeichen	Das Inhaltsverzeichnis und der Index enthalten aktive Lesezeichen.		
Inhaltsverzeichnis und Index im Text	Die Zeilen im Inhaltsverzeichnis und Index sind aktive Querverweise. Klicken Sie auf eine Zeile, um zur entsprechenden Seite zu gelangen.		
Seitennummern im Text	Seitennummern im Text mit Querverweisen sind aktive Verknüpfungen.		

2.3 Verwendete Symbole

Warnsymbole

Symbol	Bedeutung
▲GEFAHR	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zum Tode oder zu schweren, irreversiblen Verletzungen führen wird.
<u> </u>	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zum Tode oder zu schweren, irreversiblen Verletzungen führen kann.
≜VORSICHT	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zu leichten Verletzungen führen kann.
ACHTUNG	Dieses Symbol weist auf eine Situation hin, die, wenn sie nicht vermieden wird, zu Beschädigung von Sachen führen kann.
INFO	Dieses Symbol weist auf wichtige Informationen hin.
<u>^</u>	Warnung vor einer Gefahr (allgemein). Die Art der Gefahr wird durch den nebenstehenden Warntext spezifiziert.
4	Warnung vor gefährlicher elektrischer Spannung und deren Wirkung.
	Warnung vor Gefahr durch heiße Oberfläche.
	Warnung vor Gefahr durch hängende Last.
	Warnung vor Gefahr durch automatischem Anlauf.

Zeichnungssymbole

Symbol	Beschreibung	Symbol	Beschreibung
	Signalmasse	\	Diode
/////	Gehäusemasse	中	Relais
	Schutzerde		Abschaltverzögertes Relais
ф	Widerstand		Arbeitskontakt
ф	Sicherung	4	Ruhekontakt

2.4 Verwendete Abkürzungen

Kürzel	Bedeutung
(→ # xx)	Siehe Seite xx. Beispiel (→ #53): siehe Seite 53.
AGND	Analoge Masse
BTB/RTO	Betriebsbereit
CAN	Feldbus (CANopen)
CLK	Clock (Taktsignal)
COM	Serielle Schnittstelle für einen PC
DGND	Digitale Masse
Disk	Speichermedium (Festplatte, CDRom, DVD)
EEPROM	Elektrisch löschbarer programmierbarer Speicher
EMI	Elektromagnetische Störung
EMV	Elektromagnetische Verträglichkeit
ESD	Elektrostatische Entladung
F-SMA	Stecker für Lichtwellenleiter gemäß EN 60874-2
INC	Inkrementale Schnittstelle
LED	Leuchtdiode
MB	Megabyte
NI	Nullimpuls
PC	Personal Computer
PELV	Schutzkleinspannung
PL	Performance Level
PWM	Pulsweitenmodulation
RAM	Flüchtiger Speicher
RB	Bremswiderstand
RBext	Externer Bremswiderstand
RBint	Interner Bremswiderstand
RES	Resolver
ROD	A quad B Encoder, Inkrementalgeber
SIL	Safety Integrity Level
SILCL	Safety Integrity Level Claim Limit
SPS	Speicherprogrammierbare Steuerung
SRAM	Statisches RAM
SSI	Synchron Serielles Interface
STO	Safe Torque Off, Wiederanlaufsperre
V AC	Wechselspannung
V DC	Gleichspannung

3 Sicherheit

Dieses Kapitel hilft, Gefährdungen für Personen und Sachen zu erkennen und zu vermeiden.

3.1 Das sollten Sie beachten

Fachpersonal erforderlich

Für Arbeiten wie Transport, Installation, Inbetriebnahme und Instandhaltung darf nur qualifiziertes Personal eingesetzt werden. Qualifiziertes Personal sind Personen, die mit Transport, Installation, Inbetriebnahme und Betrieb von elektrischen Antrieben vertraut sind.

- Transport, Lagerung, Auspacken: nur durch Personal mit Kenntnissen in der Behandlung elektrostatisch gefährdeter Bauelemente.
- Mechanische Installation: nur durch Personal mit Kenntnissen in mechanischen Arbeiten.
- Elektrische Installation: nur durch Personal mit Kenntnissen in elektrotechnischen Arbeiten
- Inbetriebnahme: nur durch Fachleute mit weitreichenden Kenntnissen in den Bereichen Elektrotechnik und Antriebstechnik.

Das Fachpersonal muss ebenfalls ISO 12100 / IEC 60364 / IEC 60664 und nationale Unfallverhütungsvorschriften kennen und beachten.

Dokumentation lesen

Lesen Sie vor der Montage und Inbetriebnahme die vorliegende Dokumentation. Falsches Handhaben der Geräte kann zu Personen- oder Sachschäden führen. Der Betreiber muss daher sicherstellen, dass alle mit Arbeiten am Antriebssystem betrauten Personen das Handbuch gelesen und verstanden haben und dass die Sicherheitshinweise in diesem Handbuch beachtet werden.

Hardware Revision prüfen

Prüfen Sie die Hardware-Revisionsnummer des Produkts (siehe Typenschild). Die Nummer ist die Verknüpfung zwischen dem Produkt und dem Handbuch.

Diese Revisionsnummer muss mit der Hardware-Revisionsnummer auf dem Deckblatt der Betriebsanleitung übereinstimmen.

Technische Daten beachten

Halten Sie die technischen Daten und die Angaben zu den Anschlussbedingungen ein. Wenn zulässige Spannungswerte oder Stromwerte überschritten werden, können die Geräte geschädigt werden. Ein ungeeigneter Motor oder fehlerhafte Verdrahtung beschädigen die Systemkomponenten. Prüfen Sie die Kombination aus Verstärker und Motor. Gleichen Sie die Nennspannung und den Nennstrom der Komponenten ab.

Risikobeurteilung erstellen

Der Hersteller der Maschine muss eine Risikobeurteilung für die Maschine erstellen und geeignete Maßnahmen treffen, dass unvorhergesehene Bewegungen nicht zu Verletzungen oder Sachschäden führen können. Aus der Risikobeurteilung leiten sich eventuell auch zusätzliche Anforderungen an das Fachpersonal ab.

Elektrostatisch empfindliche Bauteile

Die Geräte enthalten elektrostatisch gefährdete Komponenten, die durch unsachgemäßen Gebrauch beschädigt werden können. Entladen Sie Ihren Körper elektrostatisch, bevor Sie das Gerät berühren. Vermeiden Sie es, hoch isolierende Stoffe zu berühren (Kunstfasern, Plastikfolie usw.). Legen Sie das Gerät auf eine leitfähige Oberfläche.

Automatischer Wiederanlauf

Der Antrieb kann abhängig von der Parametereinstellung nach dem Einschalten der Netzspannung, bei Spannungseinbrüchen oder Unterbrechungen automatisch anlaufen. Es besteht die Gefahr von tödlichen oder schweren Verletzungen für Personen, die in der Maschine arbeiten.

Wenn der Parameter AENA auf 1 gesetzt ist, warnen Sie an der Maschine mit einem Warnschild (Warnung: Automatischer Wiederanlauf nach Einschalten!) und stellen Sie sicher, dass ein Einschalten der Netzspannung nicht möglich ist, während sich Personen im gefährdeten Bereich der Maschine aufhalten. Wenn Sie einen Unterspannungsschutz benutzen, beachten Sie EN 60204-1.

Heiße Oberfläche

Die Oberflächen von Verstärkern können im Betrieb sehr heiß werden. Das Gehäuse kann Temperaturen über 80 °C erreichen. Gefahr leichter Verbrennungen. Messen Sie die Temperatur. Warten Sie, bis das Gehäuse auf unter 40 °C abgekühlt ist, bevor Sie es berühren.

Erdung

Stellen Sie die ordnungsgemäße Erdung des Gerätes mit der PE-Schiene im Schaltschrank als Bezugspotential sicher. Gefahr durch elektrischen Schlag.

Ohne niederohmige Erdung ist keine personelle Sicherheit gewährleistet

Ableitstrom

Da der Ableitstrom zu PE mehr als 3,5 mA beträgt, muss in Übereinstimmung mit der Norm EN61800-5-1 der PE-Anschluss entweder doppelt ausgeführt oder ein Anschlusskabel mit einem Querschnitt von >10 mm² verwendet werden. Abweichende Maßnahmen sind in Übereinstimmung mit regionalen Vorschriften möglich.

Hohe Spannungen

Die Geräte erzeugen hohe elektrische Spannungen bis zu 900 V. Öffnen oder berühren Sie die Geräte während des Betriebs nicht. Halten Sie während des Betriebs alle Abdeckungen und Schaltschranktüren geschlossen.

Während des Betriebes können Servoverstärker ihrer Schutzart entsprechend spannungsführende, blanke Teile besitzen.

An spannungsführenden Teilen besteht unmittelbare Lebensgefahr. Verbaute Schutzmaßnahmen wie Isolationen oder Abschirmungen dürfen nicht entfernt werden. Arbeiten an der elektrischen Anlage sind nur durch geschultes und eingewiesenes Personal, unter Beachtung der Vorschriften für Arbeitssicherheit und nur bei ausgeschalteter und gegen Wiedereinschalten gesicherter elektrischer Versorgung zulässig.

Trennen Sie nie die elektrischen Verbindungen zum Verstärker, während dieser Spannung führt. Es besteht die Gefahr von Lichtbogenbildung mit Verletzungsgefahr (Verbennungen oder Erblindung) und Schäden an Kontakten. Warten Sie nach dem Trennen des Verstärkers von der Versorgungsspannung mindestens 5 Minuten, bevor Sie Geräteteile, die potenziell Spannung führen (z. B. Kontakte), berühren oder Anschlüsse trennen.

Messen Sie stets die Spannung am DC-Bus-Zwischenkreis und warten Sie, bis die Spannung unter 50 V gesunken ist, bevor Sie Komponenten berühren.

Funktionale Sicherheit

Die Sicherheitsfunktion STO im S300 ist zertifiziert. Die Bewertung der Sicherheitsfunktion nach EN13849 oder EN 62061 ist abschließend durch den Anwender zu erstellen.

Verstärkte Isolierung

Im Motor eingebaute Temperaturfühler, Motorhaltebremsen und Rückführsysteme müssen mit einer verstärkten Isolierung (gem. EN 61800-5-1) gegenüber Systemkomponenten mit Leistungsspannung versehen sein, entsprechend der geforderten Prüfspannung der Applikation. Alle Kollmorgen Komponenten entsprechen diesen Anforderungen.

Geräte nicht verändern

Veränderung an der Servoverstärker Hardware ohne Erlaubnis des Herstellers sind nicht zulässig. Öffnen der Geräte bedeutet Verlust der Gewährleistung.

3.2 Warnhinweise auf dem Produkt

Gefährliche Restspannung. 5 Minuten warten nach Abschalten der Leistung!

ACHTUNG

Beschädigte Warnsymbole müssen sofort ersetzt werden.

3.3 Bestimmungsgemäße Verwendung

- Servoverstärker sind Komponenten, die in elektrische Anlagen oder Maschinen eingebaut werden und nur als integrierte Bestandteile dieser Anlagen oder Maschinen betrieben werden können.
- Bei Einsatz der Servoverstärker im Wohnbereich, in Geschäfts- und Gewerbebereichen sowie Kleinbetrieben müssen zusätzliche Filtermaßnahmen getroffen werden.

Einbau und Verdrahtung

- Sie dürfen die Servoverstärker nur im geschlossenen Schaltschrank unter Berücksichtigung der definierten Umgebungsbedingungen (→ #29) und Einbaumaße (→ #47).
 Um die Schaltschranktemperatur unter 40°C zu halten, können Belüftung oder Kühlung erforderlich sein.
- Verwenden Sie nur Kupferleitungen zur Verdrahtung. Die Leiterquerschnitte ergeben sich aus der Norm EN 60204 (bzw. Tabelle 310-16 der NEC 60°C oder 75°C Spalte für AWG).

Spannungsversorgung

- Die S300 Servoverstärker (Überspannungskategorie III gem. EN 61800-5-1) können direkt an dreiphasigen, geerdeten Industrienetzen (TN-Netz, TT-Netz mit geerdetem Sternpunkt, max. 42kA symmetrischer Nennstrom bei 110V_{-10%}...230V^{+10%} bzw. 208V_{-10%}...480V^{+10%} je nach Typ) verwendet werden. Beim Anschluss an andere Netze beachten Sie (→ # 58).
- Periodische Überspannungen zwischen Außenleitern (L1, L2, L3) und Gehäuse des Servoverstärkers dürfen 1000V (Amplitude) nicht überschreiten. Spannungsspitzen (<50µs) zwischen den Außenleitern dürfen 1000V nicht überschreiten. Spannungsspitzen (<50µs) zwischen Außenleitern und Gehäuse dürfen 2000V nicht überschreiten.

Motoren

 Die S300 Servoverstärker sind ausschließlich zum Antrieb von geeigneten Synchron-Servomotoren mit geschlossenem Drehmoment-, Drehzahl- und/oder Positionsregelkreis vorgesehen. Die Nennspannung der Motoren muss höher oder mindestens gleich der vom Servoverstärker gelieferten Zwischenkreisspannung sein.

Funktionale Sicherheit

 Bei Verwendung der Sicherheitsfunktion STO beachten Sie die speziellen Vorgaben für die bestimmungsgemäße Verwendung (→ #38).

3.4 Nicht bestimmungsgemäße Verwendung

Eine andere Verwendung als in Kapitel "Bestimmungsgemäße Verwendung" beschrieben ist nicht bestimmungsgemäß und kann zu Schäden bei Personen, Gerät oder Sachen führen. Der Servoverstärker darf nicht mit Maschinen verwendet werden, die nicht den geltenden nationalen Richtlinien oder Normen entsprechen. Die Verwendung des Servoverstärkers in den folgenden Umgebungen ist ebenfalls untersagt:

- explosionsgefährdete Bereiche,
- Umgebungen korrosiven und/oder elektrisch leitenden Säuren, alkalischen Lösungen, Ölen, Dämpfen und Staub,
- direkt an ungeerdeten oder unsymmetrisch geerdeten Netzen mit U_N >230V
- Schiffe oder Offshore-Anwendungen.

Die Ansteuerung von Haltebremsen durch den S300 alleine darf nicht in Anwendungen verwendet werden, wo mit der Bremse die funktionale Sicherheit gewährleistet werden soll.

4 Produkt Lebenszyklus, Handhabung

4.1 Transport

Transportieren Sie den S300 gemäß EN 61800-2 wie folgt:

- Nur durch qualifiziertes Personal in der wiederverwertbaren Originalverpackung des Herstellers
- Vermeiden Sie harte Stöße
- Temperatur: -25 bis +70°C, max. 20K/Stunde schwankend, Klasse 2K3 gem. EN61800-2, EN 60721-3-1
- Feuchtigkeit: max. 95 % relative Luftfeuchtigkeit, nicht kondensierend, Klasse 2K3 gem. EN61800-2, EN 60721-3-1
- Wenn die Verpackung beschädigt ist, prüfen Sie das Gerät auf sichtbare Schäden. Informieren Sie den Transporteur und gegebenenfalls den Hersteller.

ACHTUNG

Die Servoverstärker enthalten elektrostatisch gefährdete Komponenten, die durch unsachgemäßen Gebrauch beschädigt werden können. Entladen Sie Ihren Körper, bevor Sie den Servoverstärker berühren. Vermeiden Sie es, hoch isolierende Stoffe zu berühren (Kunstfasern, Plastikfolie usw.). Legen Sie den Servoverstärker auf eine leitfähige Oberfläche.

4.2 Verpackung

Die S300 Verpackung besteht aus einem recyclebaren Karton mit Einlagen.

- Maße: (HxBxT) 115x365x275mm
- Kennzeichnung: Geräte-Typenschild außen am Karton

4.3 Lagerung

Lagern Sie den S300 gemäß EN 61800-2 wie folgt:

- Nur in der wiederverwertbaren Originalverpackung des Herstellers
- max. Stapelhöhe: 8 Kartons
- Lagertemperatur: -25 bis +55°C, max. Schwankung 20°C / Stunde, Klasse 1K4 gem. EN61800-2, EN 60721-3-1
- Lagerfeuchtigkeit: 5 ... 95% relative Luftfeuchtigkeit, nicht kondensierend, Klasse 1K3 gem. EN61800-2, EN 60721-3-1
- Lagerdauer: Weniger als 1 Jahr ohne Beschränkung.
 Mehr als 1 Jahr: Kondensatoren müssen formiert werden, bevor der Servoverstärker in Betrieb genommen wird. Um die Kondensatoren zu formieren, trennen Sie alle elektrischen Anschlüsse und legen Sie etwa 30 Minuten 230 V AC an L1/L2 an.

4.4 Installation, Setup und Normalbetrieb

Im Normalbetrieb muss die Schranktür geschlossen sein und das Gerät darf nicht berührt werden. Information zu Installation und Setup finden Sie in

- Kapitel Mechanische Installation (→ #45)
- Kapitel Elektrische Installation (→ #48)
- Kapitel Setup (→ #97)

Normalbetrieb getestet für Umgebungsklasse 3K3 gemäß EN 61800-2 (→ #29). Der Hersteller der Maschine definiert die erforderlichen Fachkenntnisse des Endnutzers gemäß der Risikobeurteilung für die Maschine und beschreibt abhängig von der Applikation die Erfordernisse für den normalen Betrieb.

4.5 Außer Betrieb nehmen

ACHTUNG

Nur Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik darf Systemkomponenten außer Betrieb nehmen.

GEFAHR: Tödliche Spannung! Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung.

- Schalten Sie den Hauptschalter des Schaltschranks aus.
- Sichern Sie das System gegen Wiedereinschalten.
- Blockieren Sie den Hauptschalter .
- Warten Sie mindestens 5 Minuten nach Abschalten der Spannung.

4.6 Wartung und Reinigung

Das Gerät ist wartungsfrei. Wenn das Gerät geöffnet wird, erlischt die Garantie. Das Innere des Geräts kann nur vom Hersteller gereinigt werden.

ACHTUNG

Das Gerät nicht in Flüssigkeiten tauchen oder besprühen. Vermeiden Sie, dass Flüssigkeit in das Gerät eindringt

So reinigen Sie das Gerät von außen:

- 1. Nehmen Sie das Gerät außer Betrieb (siehe Kapitel 4.5 "Außer Betrieb nehmen").
- 2. Gehäuse: Mit Isopropanol oder einer ähnlichen Reinigungslösung reinigen.

VORSICHT: Leicht Entflammbar! Gefahr von Verletzung durch Verpuffung und Feuer.

- Beachten Sie die Sicherheitshinweise auf der Verpackung des Reinigungsmittels.
- Warten Sie nach der Reinigung mindestens 30 Minuten, bevor Sie das Gerät wieder in Betrieb nehmen.
- 3. Schutzgitter am Lüfter: Mit einer trockenen Bürste reinigen.

4.7 Demontage

ACHTUNG

Nur Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik darf Systemkomponenten demontieren.

- 1. Nehmen Sie das Gerät außer Betrieb (siehe Kapitel 4.5 "Außer Betrieb nehmen").
- 2. Prüfen Sie die Temperatur.

VORSICHT: Hohe Temperatur! Gefahr leichter Verbrennungen. Im Betrieb kann der Kühlkörper Temperaturen über 80 °C erreichen. Bevor Sie das Gerät berühren, messen Sie die Temperatur und warten Sie, bis der Verstärker auf unter 40 °C abgekühlt ist.

- 3. Entfernen Sie die Stecker. Trennen Sie den PE Anschluss zuletzt.
- 4. Ausbauen: Lösen Sie die Befestigungsschrauben und entfernen Sie das Gerät.

4.8 System Reparatur

ACHTUNG

Nur Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik darf Systemkomponenten austauschen.

VORSICHT: Unerwarteter Anlauf! Bei der Durchführung von Austauscharbeiten kann es zur Kombination von Gefährdungen und multiplen Folgen kommen.

 Arbeiten sind nur unter Beachtung der Vorschriften für Arbeitssicherheit, durch geschultes Personal und mit Benutzung der jeweils vorgeschriebenen persönlichen Schutzausrüstung zulässig.

Austausch des Gerätes

Nur der Hersteller kann das Gerät reparieren. Öffnen des Gerätes bedeutet Verlust der Gewährleistung.

- 1. Nehmen Sie das Gerät außer Betrieb (siehe Kapitel 4.5 "Außer Betrieb nehmen").
- 2. Demontieren Sie das Gerät (siehe Kapitel 4.7 "Demontage").
- 3. Senden Sie das Gerät an den Hersteller.
- 4. Installieren Sie ein neues Gerät wie in diesem Handbuch beschrieben.
- 5. Nehmen Sie das System in Betrieb, wie in diesem Handbuch beschrieben.

Austausch sonstiger Teile des Antriebssystems

Wenn Teile des Antriebssystems ausgetauscht werden müssen (zum Beispiel Kabel), gehen Sie wie folgt vor:

- 1. Nehmen Sie das Gerät außer Betrieb (siehe Kapitel 4.5 "Außer Betrieb nehmen").
- 2. Tauschen Sie die Teile aus.
- 3. Prüfen Sie alle Steckverbindungen auf korrekten Sitz.
- 4. Nehmen Sie das System in Betrieb, wie in diesem Handbuch beschrieben.

4.9 Entsorgung

ACHTUNG

Für die fachgerechte Entsorgung des Gerätes wenden Sie sich an einen zertifizierten Elektronikschrottverwerter.

Gemäß der Richtlinie WEEE-2012/19/EG u.ä. nimmt der Hersteller Altgeräte und Zubehör zur fachgerechten Entsorgung zurück. Die Transportkosten muss der Versender tragen. Setzen Sie sich mit Kollmorgen in Verbindung und klären Sie die logistische Abwicklung.

5 Zulassungen

Zertifikate (CE, funktionale Sicherheit) finden Sie auf der Kollmorgen Website.

5.1 UL und cUL Konformität

Dieser Servoverstärker ist unter der UL File Nummer E217428 gelistet.

UL(cUL)-zertifizierte Servoverstärker (Underwriters Laboratories Inc.) stimmen mit den entsprechenden amerikanischen und kanadischen Brandvorschriften (in diesem Fall UL 840 und UL 508C) überein. Die UL(cUL)-Zertifizierung bezieht sich allein auf die konstruktive mechanische und elektrische Charakteristik des Gerätes.

Die UL(cUL)-Vorschriften legen u.a. die technischen Mindestanforderungen an elektrische Geräte fest, um gegen mögliche Brandgefahren vorzubeugen, die von elektrisch betriebenen Geräten ausgehen können. Die technische Übereinstimmung mit den amerikanischen Brandvorschriften wird von einem unabhängigen UL-Inspektor durch die Typenprüfung und regelmäßigen Kontrollprüfungen auf Konformität überprüft.

Der Kunde hat bis auf die in der Dokumentation zu beachtenden Installations- und Sicherheitshinweise keinerlei andere Punkte zu beachten, die im direktem Zusammenhang mit der UL(cUL)-Gerätezertifizierung stehen.

UL 508C: Die UL 508C beschreibt die konstruktive Einhaltung von Mindestanforderungen an elektrisch betriebene Leistungsumwandlungsgeräte wie Frequenzumrichter und Servoverstärker, die das Risiko einer Brandentwicklung verhindern sollen.

UL 840: Die UL 840 beschreibt die konstruktive Einhaltung der Luft- und Kriechstrecken von elektrischen Geräten und Leiterplatinen.

Markings

- Use 60°C or 75°C copper wire only.
- Use Class 1 wire only.
- Tightening torque for field wiring terminals. X0, X8, X9: 0.5 0.6Nm (4.43 to 5.31 lbf in).
- Use in a pollution degree 2 environment.
- These devices provide solid state motor overload protection at 130% of full load current.
- Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.
- These devices are not provided with motor over-temperature sensing.
- Suitable for use on a circuit capable of delivering not more than 42kA rms symmetrical amperes for a max. voltage of 480 Vac.
- The drives may be connected together via the "common bus" (DC bus link) based on the instructions on (→ #61) ff. The devices may also be grouped from the AC input side based on the max. input fuse (e.g. 3xS346 with one common 6A fuse in line).

Marquages

- Utilisez un fil en cuivre 60°C ou 75 °C min..
- Utilisez seulement un fil de classe 1.
- Couples de serrage recommandée. X0, X8, X9: 0.5 - 0.6Nm (4.43 to 5.31 lbf in).
- Utilisation dans un environnement de pollution de niveau 2.
- Ces variateurs offrent une protection contre les surcharges de moteur à semi-conducteur à 130 % du courant FLA nominal.
- Une protection de court-circuit à semi-conducteur intégrale ne fournit pas de protection de la dérivation. Il convient de garantir une protection de la dérivation conforme au NEC (National Electrical Code) et aux réglementations locales en vigueur, ou aux directives équivalentes applicables.
- Ces variateurs n'offrent pas de capteurs de température excessive.
- Ce produit est conçu pour une utilisation sur un circuit capable de fournir 42 000 ampères symétriques (rms) maximum pour 480V.
- Les variateurs peuvent être reliés entre eux via le "bus commun CC" sur la base des instructions (→ #61) ff. Les variateurs peuvent être groupés d'entrée AC basé sur le max. fusible d'entrée (par exemple 3xS346 avec un fusible de 6A commune).

5.2 CE Konformität

Die Servoverstärker wurden in einem definierten Aufbau mit den in dieser Dokumentation beschriebenen Systemkomponenten in einem autorisierten Prüflabor geprüft. Abweichungen von in der Dokumentation beschriebenen Aufbau und Installation bedeuten, dass Sie selbst neue Messungen veranlassen müssen, um der Gesetzeslage zu entsprechen.

Kollmorgen erklärt die Konformität der Produktserie SERVOSTAR 300 (S300) mit folgenden einschlägigen Bestimmungen::

- EG-Richtlinie 2006/42/EG, Richtlinie für Maschinen
- EG-Richtlinie 2014/30/EG, Elektromagnetische Verträglichkeit
- EG-Richtlinie 2014/35/EG, Niederspannungsrichtlinie

In Bezug auf die Störfestigkeit erfüllt der Servoverstärker die Anforderung an die Kategorie "zweite Umgebung" (Industrieumgebung).

Für den Bereich der Störaussendung erfüllt der Servoverstärker die Anforderung an ein Produkt der Kategorie C2 (Länge Motorleitung ≤ 10m). Ab einer Motorleitungslänge von 10m erfüllt der Servoverstärker die Anforderung an die Kategorie C3.

ACHTUNG

In einer Wohnumgebung kann dieses Produkt hochfrequente Störungen verursachen, die Entstörmaßnahmen wie externe EMV Filter erforderlich machen können.

5.2.1 Europäische Richtlinien und Normen für den Anlagenbauer

Servoverstärker sind Sicherheitsbauteile, die zum Einbau in elektrische Anlagen oder Maschinen im Industriebereich bestimmt sind. Bei Einbau in Maschinen oder Anlagen ist die Aufnahme des bestimmungsgemäßen Betriebes des Servoverstärkers solange untersagt, bis festgestellt wurde, dass die Maschine oder Anlage den Bestimmungen der

- EG-Maschinenrichtlinie (2006/42/EG) und
- EG-EMV-Richtlinie (2014/30/EG) und
- EG-Niederspannungsrichtlinie (2014/35/EG) entspricht.

Normen zur Einhaltung der EG-Maschinenrichtlinie (2006/42/EG)

EN 60204-1 (Sicherheit und elektrische Ausrüstung von Maschinen) EN 12100 (Sicherheit von Maschinen)

ACHTUNG

Der Maschinenhersteller muss eine Risikobeurteilung für die Maschine erstellen und geeignete Maßnahmen treffen, dass unvorhergesehene Bewegungen nicht zu Schäden an Personen oder Sachen führen können.

Der Maschinen- / Anlagenhersteller muss prüfen, ob bei seiner Maschine/ Anlage noch weitere als die hier genannten Normen oder Richtlinien anzuwenden sind.

Normen zur Einhaltung der EG-Niederspannungsrichtlinie (2014/35/EG)

EN 60204-1 (Sicherheit und elektrische Ausrüstung von Maschinen)

EN 60439-1 (Niederspannungs-Schaltgerätekombinationen)

Normen zur Einhaltung der EG-EMV-Richtlinie (2014/30/EG)

EN 61000-6-1 / 2 (Störfestigkeit im Wohn- oder Industriebereich)

EN 61000-6-3 / 4 (Störaussendung im Wohn- oder Industriebereich)

Die Einhaltung der durch die EMV-Gesetzgebung geforderten Grenzwerte der Anlage oder Maschine liegt in der Verantwortung des Herstellers der Anlage oder Maschine. Hinweise für die EMV-gerechte Installation (wie Schirmung, Erdung, Handhabung von Steckern und Verlegung der Leitungen) finden Sie in dieser Dokumentation.

Die Konformität des Servosystems zu den hier genannten Normen können wir nur garantieren, wenn von uns gelieferte Komponenten (Motor, Leitungen, Drosseln usw.) verwendet werden.

5.2.2 Safety Konformität (STO) nach Maschinenrichtlinie

Safe Torque Off

Der Servoverstärker S300 bietet eine einkanalige, funktional sichere STO Funktion (Safe Torque Off). Die Funktion sperrt die Zündimpulse der Endstufentransistoren (Impulssperre).

Das Schaltungskonzept wurde von der Berufsgenossenschaft geprüft und abschließend beurteilt. Das Schaltungskonzept zur Realisierung der Sicherheitsfunktion "Safe Torque OFF" in den Servoverstärkern der Baureihe ist demnach geeignet, die Anforderungen an SIL CL 2 gem. EN 62061 und des PLd gem. EN 13849-1 zu erfüllen.

Die Teilsysteme (Servoverstärker) sind durch die Kenngrössen SIL CL, PFHD und TM sicherheitstechnisch vollständig beschrieben.

Einheit	Betriebsart	EN 13849-1	EN 62061	PFHD [1/h]	TM [Jahr]
STO-Enable	einkanalig	PLd, Kat 3	SILCL2	1,50E-07	20

5.2.3 Konformität mit RoHS

Das Gerät wurde in Übereinstimmung mit RoHS Richtlinie 2011/65/EG mit deligierter Richtlinie 2015/863/EU zum Einbau in eine Maschine gefertigt.

5.2.4 Konformität mit REACH

Die Verordnung (EG) Nr. 1907/2006 regelt die Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe 1 (kurz: "REACH").

Die Geräte enthalten keine Stoffe (CMR Stoffe, PBT-Stoffe, vPvB-Stoffe sowie ähnlich gefährliche Stoffe, die im Einzelfall aufgrund wissenschaftlicher Kriterien festgelegt werden) oberhalb 0,1 Masse-%, die in der "Kandidatenliste" aufgeführt sind.

5.3 Konformität mit EAC

EAC ist die Abkürzung für Eurasian Conformity = EurAsische Konformität. Das Zeichen wird in den Staaten der eurasischen Zollunion (Russland/Belarus/Kasachstan) verwendet.

Kollmorgen bestätigt, dass das Gerät allen notwendigen Konformitätsverfahren in einem der Mitgliedsstaaten der Eurasischen Zollunion unterzogen wurde, und dass das Gerät allen in den Staaten der Eurasischen Zollunion vorgeschriebenen technischen Anforderungen entspricht:

- Niederspannungsanlagen (TP TC 020/2011)
- Elektromagnetische Verträglichkeit (TP TC 004/2011)

Kontakt vor Ort: SERVOSTAR LLC., Bld.1, Semyonovskaya nab. 2/1, RU-105094 Moskau

6 Produktidentifizierung

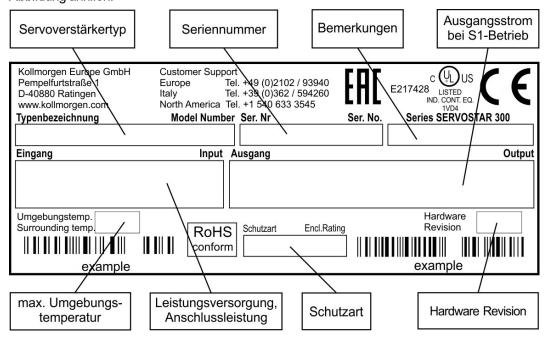
6.1 Lieferumfang

Wenn Sie Verstärker aus der Serie SERVOSTAR 300 bei uns bestellen (Bestellnummern (→ #137)), erhalten Sie:

- S3xx
- Gegenstecker X0, X3, X4, X8
- Gegenstecker X9 (nur bei SERVOSTAR 303-310) (S3xx6)
- S300 Safety Notes gedruckt
- Betriebsanleitung und Online-Dokumentation auf CD-ROM
- Inbetriebnahmesoftware DRIVEGUI.EXE auf CD-ROM

INFO

Die SubD-Gegenstecker gehören nicht zum Lieferumfang!


Zubehör (muss bei Bedarf separat bestellt werden, lesen Sie im Zubehörhandbuch nach):

- Hybrid Motorleitung (konfektioniert) für Ein-Kabel Anschluss
- Motorleitung (konfektioniert) inklusive Schirmanschlussklemme oder beide Leistungsstecker einzeln mit Motorleitung als Meterware
- Rückführleitung (konfektioniert) oder beide Rückführstecker einzeln mit Rückführleitung als Meterware
- Motordrossel 3YL/3YLN bei Motorleitungslänge über 25m
- externer Bremswiderstand BAR(U), Kapazitätsmodul KCM
- Kommunikationsleitung zum PC (→ #95) für das Parametrieren am PC
- Netzleitung, Steuerleitungen, Feldbusleitungen (jeweils Meterware)

6.2 Typenschild

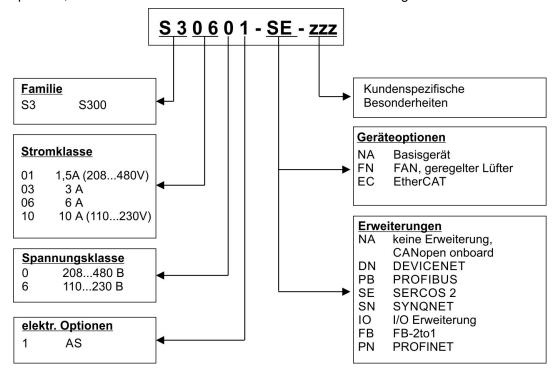

Das Typenschild ist seitlich auf dem Servoverstärker angebracht. In die einzelnen Felder sind die unten beschriebenen Informationen eingedruckt.

Abbildung ähnlich.

6.3 Typenschlüssel

Benutzen Sie den Typenschlüssel zur Produktidentifizierung, jedoch nicht für den Bestellprozess, da nicht immer alle Merkmal-Kombinationen technisch möglich sind.

INFO

Erweiterungen und Geräteoptionen sind nicht kombinierbar.

Gegenüberstellung Gerätename -> Typenbezeichnung

Gerätename	Type
SERVOSTAR 303	S30361-NA
SERVOSTAR 306	S30661-NA
SERVOSTAR 310	S31061-NA
SERVOSTAR 341	S30101-NA
SERVOSTAR 343	S30301-NA
SERVOSTAR 346	S30601-NA

7 Technische Beschreibung

7.1 Die digitalen Servoverstärker der Familie SERVOSTAR 300

Standardausführung

- Zwei Spannungsklassen mit großem Nennspannungsbereich: 1 x 110 V_{-10%} ... 3 x 230 V^{+10%} (SERVOSTAR 303-310, S3xx6) 3 x 208 V_{-10%} ... 3 x 480 V^{+10%} (SERVOSTAR 341-346, S3xx0)
- Überspannungskategorie III gem. EN 61800-5-1.
- Schirmanschluss direkt am Servoverstärker
- 2 Analoge Sollwerteingänge
- CANopen integriert (default: 500 kBaud), für Integration in CAN-Bus Systeme und für die Parametrierung mehrerer Verstärker über die PC-Schnittstelle eines Verstärkers.
- RS232 integriert, potentialgetrennt, Puls-Richtungs-Interface integriert.
- STO eingebaut (→ #38)
- Intelligenter Lageregler
- Auswertung aller gängigen Gebertypen
- Betrieb von Synchron-Servomotoren, Linearmotoren, Asynchronmotoren, HF-Spindeln, Gleichstrommotoren

Leistungsversorgung

- Direkt am geerdeten 3~ Netz, 110V_{-10%} oder 230V_{-10%} bis 480V^{+10%}
 TN-Netz und TT-Netz mit geerdetem Sternpunkt, max. 42kA symmetrischer Nennstrom.
 Anschluss an andere Netze nur mit Trenntransformator, (→ #58)
- B6-Gleichrichterbrücke direkt am dreiphasigen, geerdeten Netz, Netzfilter und Anlaufschaltung integriert
- Einphasige Einspeisung (z.B. für Inbetriebnahme oder Einrichtbetrieb) möglich
- Absicherung: (z.B. Schmelzsicherung) durch den Anwender
- Schirmung: alle Schirmanschlüsse direkt am Verstärker
- Endstufe: IGBT-Modul mit potentialfreier Strommessung
- Bremsschaltung: mit Verteilung der Bremsleistung auf mehrere Verstärker am gleichen Zwischenkreis. Interner Bremswiderstand Standard, externer Bremswiderstand bei Bedarf
- Zwischenkreisspannung 135...450 V DC bzw. 260...900 V DC, parallelschaltfähig
- Entstörfilter für die Netzeinspeisung und für die 24V-Hilfsspannungsversorgung integriert (bei Motorleitung 10m für C2 nach EN 61800-3, bei Motorleitung > 10m Grenzwerte für C3 nach EN 61800-3)

Integrierte Sicherheit

- Elektrisch sichere Trennung nach EN 61800-5-1 zwischen Netz- bzw. Motoranschluss und der Signalelektronik durch entsprechende Kriechwege und Potentialtrennung
- Sanfteinschaltung, Überspannungs-Erkennung, Kurzschlussschutz, Phasenausfallüberwachung
- Temperaturüberwachung von Servoverstärker und Motor (bei Verwendung unserer Motoren mit unseren fertig konfektionierten Kabeln)

Hilfsspannungsversorgung 24V DC

 Potentialgetrennt, intern abgesichert, aus einem externen 24V DC-Netzteil, z.B. mit Trenntransformator oder USV

Bedienung und Parametrierung

- Mit unserer komfortablen Inbetriebnahmesoftware DRIVEGUI.EXE über die serielle Schnittstelle eines Personal Computers (PC)
- Notbedienung über zwei Tasten direkt am Servoverstärker und dreistellige LED-Anzeige zur Statusanzeige, falls kein PC zur Verfügung steht.
- Voll programmierbar über RS232-Interface

Vollständig digitale Regelung

- digitaler Stromregler (Raumzeiger Pulsweitenmodulation, 62,5 µs)
- einstellbarer digitaler Drehzahlregler (62,5 μs)
- integrierter Lageregler mit Anpassungsmöglichkeiten an jede Aufgabe (250 μs)
- Puls-Richtungs-Interface integriert zum Anschluss eines Servomotors an eine Schrittmotorsteuerung
- Auswertung der Resolversignale und der sinus-cosinus-Signale eines hochauflösenden Encoders
- Encoder-Emulation (inkrementell ROD 426 kompatibel oder SSI)

Komfortfunktionen

- 2 programmierbare analoge Eingänge
- 4 programmierbare digitale Eingänge
- 2 programmierbare digitale Ausgänge
- Frei programmierbare Verknüpfungen aller digitalen Meldungen

Geräteoptionen

- Option EtherCAT, kann nicht nachträglich eingebaut werden, (→ # 133)
- Option FAN, geregelter Lüfter, kann nicht nachträglich eingebaut werden, (→ #134)

Erweiterungen

- I/O-14/08 Erweiterungskarte, (→ # 116)
- PROFIBUS DP Erweiterungskarte, (→ # 119)
- sercos® II Erweiterungskarte, (→ # 120)
- DeviceNet Erweiterungskarte, (→ # 122)
- SynqNet Erweiterungskarte, (→ # 125)
- FB-2to1 Erweiterungskarte, (→ # 127)
- PROFINET Erweiterungskarte, (→ # 129)
- -2CAN- Erweiterungsmodul, getrennte Stecker f
 ür CAN Bus und RS232, (→ #131)
- Diverse Erweiterungskarten von Drittanbietern (ModBus, LightBus, FIP-IO etc. bitte wenden Sie sich für weitere Informationen an die Hersteller)

7.2 Technische Daten

7.2.1 Technische Daten 110 / 230 V (Typen S3__6_)

Bestellbezeichnung
(geerdetes Netz, Phase-Phase) VS 3 x 110V _{-10%} 230V ^{+10%} , 50/60 Hz Nenn-Anschlussleistung (Dauerbetrieb) kVA 1,1 2,4 4 Zulässige Einschalthäufigkeit 1/h 30 Max. Zwischenkreisgleichspannung V= 450 Nenn-Ausgangsstrom (Effektivwert, ± 3%) bei 1x115V ((→ # 60) beachten!) Arms 3,5* 8* 10* bei 1x230V ((→ # 60) beachten!) Arms 3,5 8 10 bei 3x230V Arms 3 6 10 Spitzen-Ausgangsstrom (Strom für ca. 5s, ± 3%) bei 1x115V, 1x230V ((→ # 60) beachten!) Arms 9* 15* 20* bei 3x115V, 3x230V Arms 9 15 20 Taktfrequenz der Endstufe kHz 8 (16 mit 50% reduziertem Strom) Spannungsanstiegs-Geschwindigkeit dU/dt (Hinweise auf Seite (→ # 64) beachten!) bei 1x230V kV/µs 3,3 bei 3x230V kV/µs 3,3 bei 3x230V kV/µs 3,3 Techn. Daten Bremsschaltung - (→ # 3
(geerdetes Netz, Phase-Phase) VS 3 x 110V _{-10%} 230V ^{+10%} , 50/60 Hz Nenn-Anschlussleistung (Dauerbetrieb) kVA 1,1 2,4 4 Zulässige Einschalthäufigkeit 1/h 30 Max. Zwischenkreisgleichspannung V= 450 Nenn-Ausgangsstrom (Effektivwert, ± 3%) bei 1x115V ((→ # 60) beachten!) Arms 3,5* 8* 10* bei 1x230V ((→ # 60) beachten!) Arms 3,5 8 10 bei 3x230V Arms 3 6 10 Spitzen-Ausgangsstrom (Strom für ca. 5s, ± 3%) bei 1x115V, 1x230V ((→ # 60) beachten!) Arms 9* 15* 20* bei 3x115V, 3x230V Arms 9 15 20 Taktfrequenz der Endstufe kHz 8 (16 mit 50% reduziertem Strom) Spannungsanstiegs-Geschwindigkeit dU/dt (Hinweise auf Seite (→ # 64) beachten!) bei 1x230V kV/µs 3,3 bei 3x230V kV/µs 3,3 bei 3x230V kV/µs 3,3 Techn. Daten Bremsschaltung - (→ # 3
Zulässige Einschalthäufigkeit 1/h 30 Max. Zwischenkreisgleichspannung V= 450 Nenn-Ausgangsstrom (Effektivwert, ± 3%) Nei 1x115V ((→ #60) beachten!) Arms 3,5* 8* 10* bei 1x230V ((→ #60) beachten!) Arms 3* 6* 10* bei 3x115V Arms 3,5 8 10 bei 3x230V Arms 3 6 10 Spitzen-Ausgangsstrom (Strom für ca. 5s, ± 3%) Nei 1x115V, 1x230V ((→ #60) beachten!) Arms 9* 15* 20* bei 3x115V, 3x230V Arms 9 15 20 Taktfrequenz der Endstufe kHz 8 (16 mit 50% reduziertem Strom) Spannungsanstiegs-Geschwindigkeit dU/dt (Hinweise auf Seite (→ #64) beachten!) bei 1x115V kV/μs 3,3 bei 3x230V kV/μs 3,3 bei 3x230V kV/μs 3,3 bei 3x230V kV/μs 3,3 Techn. Daten Bremsschaltung - (→ #31)
Max. Zwischenkreisgleichspannung V= 450 Nenn-Ausgangsstrom (Effektivwert, ± 3%) bei 1x115V ((→ #60) beachten!) Arms 3,5* 8* 10* bei 1x230V ((→ #60) beachten!) Arms 3* 6* 10* bei 3x115V Arms 3,5 8 10 bei 3x230V Arms 3 6 10 Spitzen-Ausgangsstrom (Strom für ca. 5s, ± 3%) bei 1x115V, 1x230V ((→ #60) beachten!) Arms 9* 15* 20* bei 3x115V, 3x230V Arms 9 15 20 Taktfrequenz der Endstufe kHz 8 (16 mit 50% reduziertem Strom) Spannungsanstiegs-Geschwindigkeit dU/dt (Hinweise auf Seite (→ #64) beachten!) bei 1x115V kV/μs 3,0 bei 1x230V kV/μs 3,0 kV/μs 3,0 bei 3x230V kV/μs 3,3 Techn. Daten Bremsschaltung - (→ #31)
Nenn-Ausgangsstrom (Effektivwert, ± 3%) bei 1x115V ((→ # 60) beachten!) Arms 3,5* 8* 10* bei 1x230V ((→ # 60) beachten!) Arms 3* 6* 10* bei 3x115V Arms 3,5 8 10 bei 3x230V Arms 3 6 10 Spitzen-Ausgangsstrom (Strom für ca. 5s, ± 3%) Bei 1x115V, 1x230V ((→ # 60) beachten!) Arms 9* 15* 20* bei 3x115V, 3x230V Arms 9 15 20 Taktfrequenz der Endstufe kHz 8 (16 mit 50% reduziertem Strom) Spannungsanstiegs-Geschwindigkeit dU/dt (Hinweise auf Seite (→ # 64) beachten!) bei 1x115V kV/μs 3,0 bei 3x230V kV/μs 3,3 bei 3x230V kV/μs 3,3 Techn. Daten Bremsschaltung - (→ # 31)
bei 1x115V ((→ #60) beachten!)
bei 1x230V ((→ #60) beachten!) bei 3x115V bei 3x230V Arms Ar
bei 3x115V Arms 3,5 8 10 bei 3x230V Arms 3 6 10 Spitzen-Ausgangsstrom (Strom für ca. 5s, ± 3%) bei 1x115V, 1x230V ((→ #60) beachten!) Arms 9* 15* 20* bei 3x115V, 3x230V Arms 9 15 20 Taktfrequenz der Endstufe kHz 8 (16 mit 50% reduziertem Strom) Spannungsanstiegs-Geschwindigkeit dU/dt (Hinweise auf Seite (→ #64) beachten!) bei 1x115V kV/μs 3,0 bei 3x230V kV/μs 3,0 bei 3x230V kV/μs 3,3 Techn. Daten Bremsschaltung - (→ #31)
bei 3x230V Arms 3 6 10 Spitzen-Ausgangsstrom (Strom für ca. 5s, ± 3%) bei 1x115V, 1x230V ((→ # 60) beachten!) Arms 9* 15* 20* bei 3x115V, 3x230V Arms 9 15 20 Taktfrequenz der Endstufe kHz 8 (16 mit 50% reduziertem Strom) Spannungsanstiegs-Geschwindigkeit dU/dt (Hinweise auf Seite (→ # 64) beachten!) bei 1x115V kV/μs 3,0 bei 3x230V kV/μs 3,0 bei 3x230V kV/μs 3,3 Techn. Daten Bremsschaltung - (→ # 31)
Spitzen-Ausgangsstrom (Strom für ca. 5s, ± 3%) bei 1x115V, 1x230V ((→ # 60) beachten!) Arms 9* 15* 20* bei 3x115V, 3x230V Arms 9 15 20 Taktfrequenz der Endstufe kHz 8 (16 mit 50% reduziertem Strom) Spannungsanstiegs-Geschwindigkeit dU/dt (Hinweise auf Seite (→ # 64) beachten!) bei 1x115V kV/μs 3,0 bei 1x230V kV/μs 3,3 bei 3x115V kV/μs 3,3 bei 3x230V kV/μs 3,3 Techn. Daten Bremsschaltung - (→ #31)
bei 1x115V, 1x230V ((→ # 60) beachten!) Arms 9* 15* 20* bei 3x115V, 3x230V Taktfrequenz der Endstufe kHz 8 (16 mit 50% reduziertem Strom) Spannungsanstiegs-Geschwindigkeit dU/dt (Hinweise auf Seite (→ # 64) beachten!) bei 1x115V kV/μs 3,0 bei 3x115V kV/μs 3,0 bei 3x230V kV/μs 3,3 Techn. Daten Bremsschaltung - (→ # 31)
bei 3x115V, 3x230V Arms 9 15 20 Taktfrequenz der Endstufe kHz 8 (16 mit 50% reduziertem Strom) Spannungsanstiegs-Geschwindigkeit dU/dt (Hinweise auf Seite (→ # 64) beachten!) bei 1x115V kV/μs 3,0 bei 1x230V kV/μs 3,3 bei 3x115V kV/μs 3,0 bei 3x230V kV/μs 3,3 Techn. Daten Bremsschaltung - (→ #31)
Taktfrequenz der Endstufe kHz 8 (16 mit 50% reduziertem Strom) Spannungsanstiegs-Geschwindigkeit dU/dt (Hinweise auf Seite (→ # 64) beachten!) bei 1x115V kV/μs 3,0 bei 1x230V kV/μs 3,3 bei 3x115V kV/μs 3,0 bei 3x230V kV/μs 3,3 Techn. Daten Bremsschaltung - (→ # 31)
Spannungsanstiegs-Geschwindigkeit dU/dt (Hinweise auf Seite (→ # 64) beachten!) bei 1x115V kV/μs 3,0 bei 1x230V kV/μs 3,3 bei 3x115V kV/μs 3,0 bei 3x230V kV/μs 3,3 Techn. Daten Bremsschaltung - (→ #31)
bei 1x115V
bei 1x230V kV/μs 3,3 bei 3x115V kV/μs 3,0 bei 3x230V kV/μs 3,3 Techn. Daten Bremsschaltung - (→ #31)
bei 3x115V kV/μs 3,0 bei 3x230V kV/μs 3,3 Techn. Daten Bremsschaltung - (→ #31)
bei 3x230V
Techn. Daten Bremsschaltung - (→ #31)
Abschaltschwelle bei Überspannung 115 V / 230 V VDC 235 / 455
Absorbation of the partition of the virial v
Motorinduktivität min.
bei 1x115V mH 3,7 3,7 3,7
bei 1x230V mH 4,3 4,3 4,3
bei 3x115V mH 2,1 1,3 1,0
bei 3x230V mH 4,3 2,6 1,9
Motorinduktivität max. mH Auskunft gibt unser Kundendienst
Formfaktor des Ausgangsstromes (bei Nenndaten und Mindestlastinduktivität) - 1,01
Bandbreite des unterlagerten Stromreglers kHz > 1,2
Restspannungsabfall bei Nennstrom V 4
Ruheverlustleistung, Endstufe disabled W 12
Verlustleistung hei Nennstrom (inkl. Netzteil-
Verlustleistung ohne Brems-Verlustleistung) W 35 60 90
Geräuschemissionen max. dB(A) 25 45
Mechanische Daten
Gewicht kg 2,7
Höhe ohne Stecker mm 270 279
Breite mm 70
Tiefe ohne/mit Stecker mm 171 / <200

^{*}Ströme im einphasigen Betrieb werden eventuell bis unterhalb der Nenndaten begrenzt. Dies hängt ab von Motor-Konstante Kt und Motor-Drehzahl (→ # 60).

7.2.2 Technische Daten 400 / 480 V (Typen S3__0_)

Elektrische Daten	DIM	S341	S343	S346	
Bestellbezeichnung	DIIVI	S30101	S30301	S30601	
Nenn-Anschlussspannung (L1,L2,L3)	-				
(geerdetes Netz, Phase-Phase)	V~	3 x 208V _{-10%} 480V ^{+10%} , 50/60 Hz			
Nenn-Anschlussleistung (Dauerbetrieb)	kVA	1,2 2,5			
Zulässige Einschalthäufigkeit	1/h		30		
Max. Zwischenkreisgleichspannung	V=		900		
Nenn-Ausgangsstrom (Effektivwert, ± 3%)					
bei 3x208V	Arms	2	5	6	
bei 3x230V	Arms	2	5	6	
bei 3x400V	Arms	1,5	4	6	
bei 3x480V	Arms	1,5	3	6	
Spitzen-Ausgangsstrom (Strom für ca. 5s, ± 3%)	Arms	4,5	7,5	12	
Taktfrequenz der Endstufe	kHz	8 (16 mit	50% reduzierte	m Strom)	
Spannungsanstiegs-Geschwindigkeit dU/dt (Hinweise	auf Seite	(→ # 64) beacht	ten!)		
bei 3x208V	kV/µs		3,0		
bei 3x230V	kV/µs		3,3		
bei 3x400V	kV/µs	5,7			
bei 3x480V	kV/µs	6,9			
Techn. Daten Bremsschaltung	-	(→ #31)			
Abschaltschwelle bei Überspannung					
bei 3x230V	VDC		455		
bei 3x400V	VDC	800			
bei 3x480V	VDC	900			
Motorinduktivität min.					
bei 3x208V	mH	7,7	4,6	2,9	
bei 3x230V	mH	8,5	5,1	3,2	
bei 3x400V	mH	14,8	8,9	5,6	
bei 3x480V	mH	17,8 10,7 6,7			
Motorinduktivität max.	mH	Auskunft gibt unser Kundendienst			
Formfaktor des Ausgangsstromes (bei Nenndaten und Mindestlastinduktivität)	-		1,01		
Bandbreite des unterlagerten Stromreglers	kHz	> 1,2			
Restspannungsabfall bei Nennstrom	V	5			
Ruheverlustleistung, Endstufe disabled	W	12			
Verlustleistung bei Nennstrom (inkl. Netzteil-					
Verlustleistung ohne Brems-Verlustleistung)	W	40	60	90	
Geräuschemissionen max.	dB(A)	25	4	5	
Mechanische Daten					
Gewicht	kg		2,7		
Höhe ohne Stecker	mm	270	2	79	
Breite	mm		70		
Tiefe ohne/mit Stecker	mm	171 / <230			

7.2.3 Ein-/Ausgänge, Hilfsspannung

Schnittstelle	Elektr. Daten	
Analoge Eingänge 1/2 (Auflösung 14/12 Bit)	±10V	
Gleichtaktspannung max.	±10V	
Digitale Steuereingänge	gem. EN 61131-2 Typ1, max. 30VDC	
Digitale Steuerausgänge, active high	open Emitter, max. 30VDC, 10mA	
BTB/RTO-Ausgang, Relaiskontakte	max. 30VDC, max 42VAC	
BTB/RTO-Ausgang, Relaiskontakte	500mA	
Hilfsspannungsversorgung, potentialgetrennt	20V - 30V	
ohne Bremse/Lüfter	1A	
Hilfsspannungsversorgung, potentialgetrennt	24V (-0% +15%)	
mit Bremse/Lüfter	2,5A (Spannungsverluste beachten!)	
Ausgangsstrom Bremse min./max.	0,15A / 1,5A	

7.2.4 Anschlussstecker

Stecker	Тур	max. Quer- schnitt ^{*1}	zul. Strom ^{*2}	zul. Span- nung ^{*3}
Steuersignale X3, X4	Mini-Combicon-Stecker	1,5 mm²	4 A	160 V
S303-310: Power X0,X8,X9	Classic-Combicon-Stecker	2,5 mm ²	12 A	630V
S341-346: Power X0, X8, X9	Power-Combicon-Stecker	4 mm ²	16 A	1000 V
Resolver Eingang X2	SubD 9polig (Buchse)	0,5 mm ²	1 A	<100 V
Encoder Eingang X1	SubD15polig (Buchse)	0,5 mm ²	1 A	<100 V
PC Schnittstelle, CAN X6	SubD 9polig (Stecker)	0,5 mm ²	1 A	<100 V
Encoder Emulation X5	SubD 9polig (Stecker)	0,5 mm ²	1 A	<100 V

^{*1} Bei Einleiteranschluss

7.2.5 Empfohlene Anzugsmomente

Stecker	Empfohlenes Drehmoment
X0, X8, X9	0,5 bis 0,6 Nm (4.43 - 5.31 in lbf)
Erdungsbolzen	3,5 Nm (31 in lbf)

7.2.6 Sicherungen

Interne Absicherung

Kreis	Interne Sicherung
24 V-Hilfsspannungsversorgung	3,15 AT
Bremswiderstand	elektronisch

Externe Absicherung

Schmelzsicherung o.ä.	S303 / S341 / S343 S306 / S310 / S34			
Netzspannung F _{N1/2/3}	6 AT	10 AT		
24V Versorgung F _{H1/2/3}	max. 8 AT			
Bremswiderstand F _{B1/2}	6 A*	6 A*		

Europäische Typen: gRL oder gL 400V/500V, T bedeutet träge

US Typen: Sicherungsklassen RK5/CC/J/T, 600VAC 200kA, time-delay

^{*2} Bei Einleiteranschluss mit dem empfohlenem Leiterquerschnitt (→ # 29)

^{*3} Bemessungsspannung bei Verschmutzungsgrad 2

^{*} z.B. Bussmann FWP-xx

7.2.7 Umgebungsbedingungen, Belüftung und Einbaulage

Lagerung, Hinweise	(→ # 16)
Transport, Hinweise	(→ # 16)
Leistungsversorgung	S303-S310:
	1x110V-10%1x230V+10%, 50/60 Hz
	3x110V-10%3x230V+10%, 50/60 Hz
	S341-S346:
	3x208V-10%3x 480V+10%, 50/60 Hz
Hilfsspannungsversorgung	
ohne Bremse und Lüfter	20 V DC 30 V DC
mit Bremse oder Lüfter	24 V DC (-0% +15%), Spannungsverlust beachten!
Umgebungstemperatur im	0 bis +40°C bei Nenndaten
Betrieb	+40 bis +55°C mit Leistungsrücknahme 2,5% / K
Feuchtigkeit im Betrieb	Rel. Luftfeuchte 85%, nicht betauend, Klasse 3K3
Einsatzhöhe	bis 1000m über NN ohne Einschränkung
	10002500m über NN mit Leistungsrücknahme 1,5%/100m
Verschmutzungsgrad	Verschmutzungsgrad 2 gemäß EN 60664-1
Schwingungen	Klasse 3M2 gemäß EN 60721-3-3
Gehäuseschutzart	IP 20 gemäß EN 60529
Einbaulage	generell vertikal (→ #46)
Belüftung	
S303 und S341	freie Konvektion
alle anderen Typen	angebauter Lüfter (optional geregelt, Option FN (→ # 134))
ACHTUNG	Sorgen Sie im geschlossenen Schaltschrank für aus-
	reichende erzwungene Umluft.

7.2.8 Leiterquerschnitte

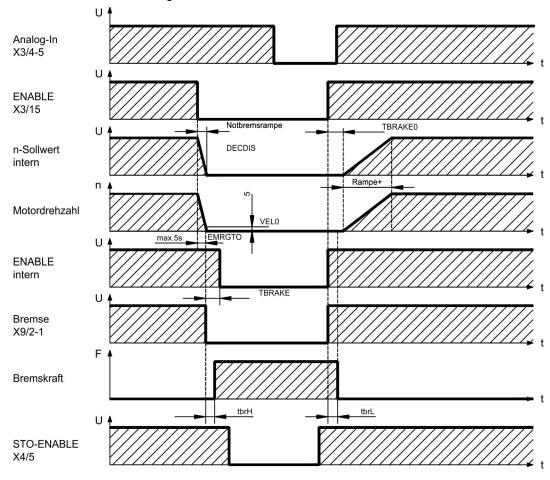
Empfehlungen für Leitungen gemäß EN 60204 für Einachssysteme , siehe auch (→ #52):

Schnittstelle	Querschnitt	Techn. Anforderungen			
AC-Anschluss	1,5 mm ²	600V,80°C			
DC-Zwischenkreis	2.5 mm²	1000V, 80°C,			
Bremswiderstand	2,5 mm ²	bei Längen >0,20m geschirmt			
Motorleitungen ohne	11,5 mm², max. 25 m	600V,80°C,			
Motordrossel	1 1,0 mm , max. 20 m	geschirmt, C<150pF/m			
Motorleitungen mit	1 mm², 25 - 50m*	600V,80°C,			
Motordrossel 3YL/3YLN	7111111 ; 20 00111	geschirmt, C<150pF/m			
Resolver, Thermoschutz	4x2x0,25 mm², max.100m*	paarw. verseilt, geschirmt,			
Treserver, Triermeseriatz	TAZAG,ZO TIITT , TIIGA: TOOTT	C<120pF/m			
Encoder, Thermoschutz	7x2x0,25 mm², max. 50m*	paarw. verseilt, geschirmt			
ComCoder, Thermoschutz	8x2x0,25 mm², max. 25m	paarw. verseilt, geschirmt			
Sollwerte, AGND	0,25 mm², max. 30m	paarweise verseilt, geschirmt			
Steuersignale, BTB, DGND	0,5 mm², max. 30m				
Haltebremse (Motor)	min. 0,75 mm²	600V, 80°C, geschirmt,			
Traitebreffise (Wotor)	111111. 0,73111111	Spannungsverlust beachten			
+24 V / DGND	max. 2,5 mm²	Spannungsverlust beachten			
ACHTUNG	,	achten Sie die speziellen Bedin-			
	gungen Ihrer Anlage. Funktionssicherheit bei max. Lei-				
	1 0	ungslänge ist nur bei strikter Einhaltung der			
	Materialanforderungen gegeben (→ #52)				

* Kollmorgen Nord Amerika: Kabel bis zu 39m Länge, Europa: bis zur max. Länge

7.3 Motorhaltebremse

Eine 24V / max. 1,5A-Haltebremse im Motor kann direkt angesteuert werden.


NORSICHT Keine funktionale Sicherheit!

Gefahr durch herabfallende Lasten bei hängenden Lasten (Vertikalachsen). Für funktionale Sicherheit muss eine zusätzliche mechanische Bremse verwendet werden, die sicher angesteuert wird.

ACHTUNG

Die Bremse arbeitet nur bei ausreichender Spannungsversorgung (→ #28). Beachten Sie den Spannungsverlust, messen Sie die Spannung am Bremseneingang und prüfen Sie die Bremsenfunktion (Lösen und Bremsen).

Die Bremsfunktion müssen Sie über den Parameter BREMSE (Bildschirmseite Motor) freigeben. Im unten dargestellten Diagramm sehen Sie den zeitlichen und funktionellen Zusammenhang zwischen ENABLE-Signal, Drehzahlsollwert, Drehzahl und Bremskraft. Alle Zeiten können über Parameter eingestellt werden, Zahlenwerte sind Defaultwerte.

Während der internen ENABLE-Verzögerungszeit von 100ms (DECDIS) wird der Drehzahlsollwert des Servoverstärkers intern mit einer einstellbaren Rampe gegen 0 gefahren. Bei Erreichen von 5 U/min (VEL0) Drehzahl oder spätestens nach 5s (EMRGTO) schaltet der Bremsenausgang. Die Anstiegszeiten (fbrH) und Abfallzeiten (fbrL) der im Motor eingebauten Haltebremse sind für die einzelnen Motortypen unterschiedlich (siehe Motorhandbuch), die passenden Daten werden bei der Motorauswahl aus der Motordatenbank geladen. Eine Beschreibung der Schnittstelle finden Sie auf Seite (→ #64).

7.4 LED-Display

Ein dreistelliges <u>LED-Display</u> meldet nach dem Einschalten der 24V-Versorgung den Verstärkerstatus (→ #110). Bei Bedienung des Verstärkers über die Frontplatten-Tastatur werden die Parameternummern sowie Kennnummern auftretender Fehler- und Warnmeldungen angezeigt (→ #112).

7.5 Masse-System

AGND - analoge Eingänge, interne Analog-Masse, Encoder-Emulation, RS232, CAN DGND - digitale Ein-/Ausgänge und 24V-Versorgung, optisch entkoppelt

7.6 Dynamisches Bremsen

Beim Bremsen mit Hilfe des Motors wird Energie zum Servoverstärker zurückgespeist. Diese Energie wird im Bremswiderstand in Wärme umgewandelt. Der Bremswiderstand wird von der Bremsschaltung zugeschaltet.

Mit Hilfe der Inbetriebnahmesoftware wird die Bremsschaltung (Schaltschwellen) an die Netzspannung angepasst.

Bei der Berechnung der erforderlichen Bremsleistung für Ihre Anlage hilft Ihnen unsere Applikationsabteilung. Eine <u>Näherungsmethode</u> finden Sie im "KDN". Eine Beschreibung der Schnittstelle finden Sie auf (→ #61).

Funktionsbeschreibung

1. Einzelverstärker, nicht gekoppelt über den Zwischenkreis (DC+, DC-)

Ist die vom Motor zurück gespeiste Leistung im zeitlichen Mittel oder als Spitzenwert höher als die eingestellte Bremsleistung, meldet der Servoverstärker die Warnung "n02 Bremsleistung überschritten", die Bremsschaltung schaltet sich ab.

Bei der nächsten internen Prüfung der Zwischenkreisspannung (nach wenigen ms) wird eine Überspannung erkannt und die Endstufe wird mit der Fehlermeldung "Überspannung F02" abgeschaltet (→ # 112).

Der BTB-Kontakt (Klemmen X3/2, 3) wird gleichzeitig geöffnet (→ #94).

2. Mehrere Servoverstärker gekoppelt über den Zwischenkreis (DC+, DC-)

Durch die eingebaute Bremsschaltung können ohne Zusatzmaßnahmen mehrere Verstärker gleicher Baureihe mit Spannungsversorgung aus dem gleichen Netz an einem gemeinsamen Zwischenkreis betrieben werden.

Sowohl für die Spitzen- als auch für die Dauerleistung steht stets 90% der Summenleistung aller Verstärker zur Verfügung. Die Abschaltung bei Überspannung erfolgt wie unter 1. beschrieben beim Verstärker mit der toleranzbedingt niedrigsten Abschaltschwelle.

Die technischen Daten der Bremsschaltung hängen vom verwendeten Servoverstärker-Typ und der Netzspannung ab. Siehe Tabelle auf der folgenden Seite.

Technische Daten

	Bremsschaltung			Netzsp	annung	J
Тур	Nenndaten	DIM	115 V	230 V	400 V	480 V
	Einschaltschwelle Bremsschaltung	V	200	400		
S303	Überspannung F02	V	235	455		
(S30361)	Bremswiderstand (intern, RBint)	Ohm	66	66		
	Dauerleistung Bremswiderstand (RBint)	W	20	20		
	Max. Bremsleistung über 1s gemittelt	kW	0,4	0,35		_
	Impuls Bremsleistung	kW	0,84	3		
	Bremswiderstand (extern, RBext), optional	Ohm	66	66		
	Dauerleistung Bremsschaltung (RBext)	kW	0,3	0,3		
	Einschaltschwelle Bremsschaltung	V	200	400		
S306	Überspannung F02	V	235	455		
(S30661) S310	Bremswiderstand (intern, RBint)	Ohm	66	66		
(S31061)	Dauerleistung Bremswiderstand (RBint)	W	50	50		
(331331)	Max. Bremsleistung über 1s gemittelt	kW	0,84	0,88	_	_
	Impuls Bremsleistung	kW	0,84	3		
	Bremswiderstand (extern, RBext), optional	Ohm	66	66		
	Dauerleistung Bremsschaltung (RBext)	kW	1	1		
	Einschaltschwelle Bremsschaltung	V		400	720	840
S341	Überspannung F02	V		455	800	900
(S30101)	Bremswiderstand (intern, RBint)	Ohm		91	91	91
	Dauerleistung Bremswiderstand (RBint)	W	ĺ	20	20	20
	Max. Bremsleistung über 1s gemittelt	kW	_	0,35	0,33	0,34
	Impuls Bremsleistung	kW	ĺ	2,1	7	9
	Bremswiderstand (extern, RBext), optional	Ohm	ĺ	91	91	91
	Dauerleistung Bremsschaltung (RBext)	kW		0,3	0,3	0,3
	Einschaltschwelle Bremsschaltung	V		400	720	840
S343	Überspannung F02	V		455	800	900
(S30301) S346	Bremswiderstand (intern, RBint)	Ohm		91	91	91
(S30601)	Dauerleistung Bremswiderstand (RBint)	W	ĺ	50	50	50
(000001)	Max. Bremsleistung über 1s gemittelt	kW	_	0,91	0,86	0,85
	Impuls Bremsleistung	kW		2,1	7	9
	Bremswiderstand (extern, RBext), optional	Ohm		91	91	91
	Dauerleistung Bremsschaltung (RBext)	kW		1,0	1,0	1,0

INFO

Passende externe Bremswiderstände finden Sie in unserem Zubehörhandbuch.

7.7 Ein- und Ausschaltverhalten

Dieses Kapitel beschreibt das Verhalten des S300 beim Ein- und Ausschalten und die erforderlichen Maßnahmen zum Erreichen normgemäßen Verhaltens beim betriebsmäßigen Stopp oder bei Not-Halt.

INFO

Die 24V-Versorgung des Servoverstärkers muss erhalten bleiben.

Mit den ASCII Befehlen <u>ACTFAULT</u> (Reaktion auf Fehler, hängt auch ab vom jeweiligen Fehler, siehe auch <u>ERRCODE</u>) und <u>STOPMODE</u> (Reaktion auf Enable-Signal) wird festgelegt, wie der Antrieb sich verhält.

		Verhalten (siehe auch ASCII Objektreferenz in der <u>Online Hilfe</u> der Inbetriebnahmesoftware)
ı	0	Motor trudelt ungeregelt aus
ı	1 (default)	Motor wird geführt gebremst

Verhalten bei Netzausfall

Die Servoverstärker erkennen den Ausfall von einer oder mehreren Netzphasen (Leistungseinspeisung) über eine integrierte Schaltung.

Das Verhalten des Servoverstärkers wird mit Hilfe der Inbetriebnahmesoftware eingestellt: auf der Bildschirmseite **Basiseinstellungen** wählen Sie unter "**Aktionen bei Verlust einer Netzphase**" (PMODE):

- Warnung, wenn die übergeordnete Steuerung den Antrieb stillsetzen soll:
 Das Fehlen einer Netzphase wird als Warnung gemeldet (n05) und der Motorstrom wird begrenzt. Der Servoverstärker wird nicht disabled. Die übergeordnete Steuerung kann nun den aktuellen Zyklus gezielt beenden oder die Stillsetzung des Antriebs einleiten.
 Dazu wird z.B. die Fehlermeldung "NETZ-BTB, F16" auf einen digitalen Ausgang des Servoverstärkers gelegt und von der Steuerung ausgewertet.
- Fehlermeldung, wenn der Servoverstärker den Antrieb stillsetzen soll:
 Das Fehlen einer Netzphase wird als Fehler gemeldet (F19). Der Servoverstärker wird disabled, der BTB-Kontakt öffnet. Der Motor wird bei unveränderter werksseitiger Einstellung (ACTFAULT=1) mit der eingestellten "NOTRAMPE" abgebremst.

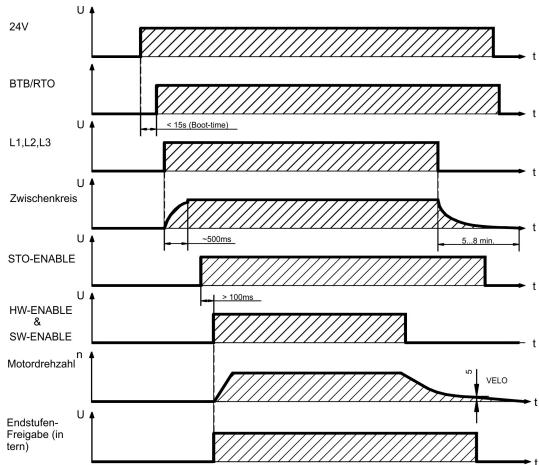
Verhalten bei Erreichen der Unterspannungsschwelle

Bei Unterschreitung der Unterspannungsschwelle (Wert ist abhängig vom Typ des Servoverstärkers) im Zwischenkreis wird der Fehler "UNTERSPANNUNG, F05" angezeigt. Die Reaktion des Antriebs hängt von der Einstellung <u>ACTFAULT</u> und <u>STOPMODE</u> ab.

Verhalten mit freigegebener Funktion "Haltebremse"

Servoverstärker mit freigegebener Haltebremsfunktion verfügen über einen gesonderten Ablauf zum Abschalten der Endstufe (→ # 30). Die Wegnahme des Enable Signals löst eine elektrische Bremsung aus.

Generell gilt für die interne Baugruppe "Haltebremse", wie für alle elektronischen Schaltungen, dass die Möglichkeit der Fehlfunktion berücksichtigt werden muss. Für funktionale Sicherheit muss, insbesondere bei hängenden Lasten (Vertikalachsen) eine zusätzliche mechanische Bremse verwendet werden, die sicher angesteuert wird.


Verhalten der Sicherheitsfunktion STO

Mit der funktional sicheren Funktion STO kann nach dem Stillsetzen des Antriebs über eine interne Elektronik der Antrieb bei angelegter Leistungsversorgung so abgeschaltet werden, dass die Antriebswelle funktional sicher gegen ungewollten Anlauf geschützt ist. Die Verwendung der Funktion STO ist im Kapitel "Sicherheitsfunktion STO" (→ #38) beschrieben.

7.7.1 Verhalten im Normalbetrieb

Das Verhalten der Servoverstärker hängt immer ab von der aktuellen Einstellung diverser Parameter (z.B. ACTFAULT, VBUSMIN, VELO, STOPMODE usw., siehe Online Hilfe).

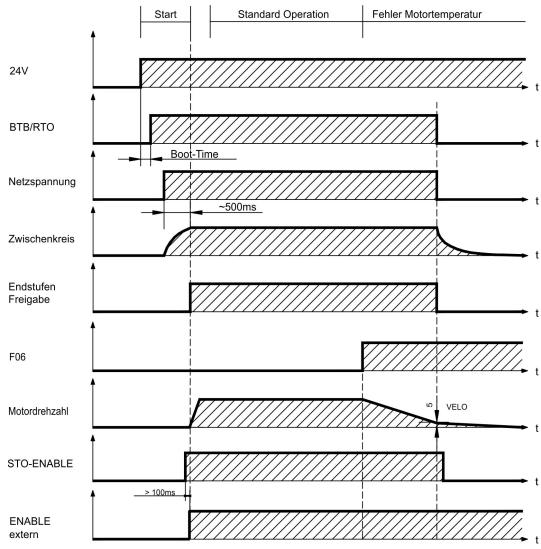
Im unten dargestellten Diagramm ist die funktional richtige Reihenfolge beim Einschalten und Ausschalten des Servoverstärkers dargestellt.

Geräte mit angewählter Funktion (Halte-)"Bremse" verfügen über einen gesonderten Ablauf zum Abschalten der Endstufe (→ #30).

Mit der Sicherheitsfunktion STO (Wiederanlaufsperre) kann der Antrieb so abgeschaltet werden, dass an der Antriebswelle funktionale Sicherheit vorliegt (→ #38).

7.7.2 Verhalten im Fehlerfall (bei Standardeinstellung)

Das Verhalten der Servoverstärker hängt immer ab von der aktuellen Einstellung diverser Parameter (z.B. ACTFAULT, VBUSMIN, VELO, STOPMODE usw., siehe OnlineHilfe).



▲VORSICHT Antrieb trudelt aus!

Einige Fehler (siehe <u>ERRCODE</u>) erzwingen die sofortige Deaktivierung der Endstufe, unabhängig von der <u>ACTFAULT</u> Einstellung.

Verletzungsgefahr durch ungesteuertes Austrudeln des Antriebs. Für funktionale Sicherheit muss eine zusätzliche, sicher angesteuerte mechanische Bremse verwendet werden.

Das Diagramm zeigt den Startablauf und den Ablauf der internen Steuerung des Servoverstärkers bei Überschreiten der Motortemperatur mit Standardeinstellungen der Parameter. Fehler F06 führt nicht zum sofortigen Abschalten der Endstufe, bei ACTFAULT=1 wird also eine gesteuerte Notbremsung eingeleitet.

(F06 = Fehlermeldungen Motortemperatur)

Auch wenn eine externe Steuerung nicht eingreift (Enable Signal bleibt im Beispiel aktiv), wird der Motor bei Erkennung des Fehlers und unveränderter werksseitiger Einstellung (ACTFAULT=1) sofort mit der Notbremsrampe abgebremst.

7.8 Stopp-, Not-Halt- und Not-Aus Funktionen nach EN 60204

Mit der funktional sicheren Funktion STO (→ #38) kann nach dem Stillsetzen des Antriebs über eine interne Elektronik der Antrieb bei angelegter Leistungsversorgung so geschaltet werden (drehmomentfrei), dass die Antriebswelle funktional sicher gegen ungewollten Anlauf geschützt ist (bis zu SIL CL3 gemäß EN 62061, PLe gemäß EN 13849-1).

Zur Verwirklichung der Stopp- und Nothalt-Kategorien müssen die Parameter "STOP-MODE" und "ACTFAULT" auf 1 eingestellt sein. Ändern Sie die Parameter gegebenenfalls über das Terminalfenster der Inbetriebnahmesoftware und speichern Sie die Daten im EEPROM.

Beispiele zur Realisierung finden Sie im KDN auf der Seite "Stopp und Not Halt Funktion".

7.8.1 Stopp

Die Stopp-Funktion dient dem Stillsetzen der Maschine im Normalbetrieb. Die Stopp-Funktionen werden durch die EN 60204 definiert.

Kategorie 0:

Stillsetzen durch sofortiges Ausschalten der Energiezufuhr zu den Maschinenantrieben (d.h. ein ungesteuertes Stillsetzen). Für diesen Zweck kann die STO Funktion verwendet werden (→ # 38).

Kategorie 1:

Ein gesteuertes Stillsetzen, wobei die Energiezufuhr zu den Maschinenantrieben beibehalten wird, um das Stillsetzen zu erzielen und die Energiezufuhr erst dann unterbrochen wird, wenn der Stillstand erreicht ist.

Kategorie 2:

Ein gesteuertes Stillsetzen, bei dem die Energiezufuhr zu den Maschinenantrieben erhalten bleibt.

Die Stopp-Kategorie muss anhand der Risikobewertung der Maschine festgelegt werden. Zusätzlich sind geeignete Maßnahmen vorzusehen, um ein zuverlässiges Stillsetzen sicherzustellen.

Kategorie-0- und Kategorie-1-Stopps müssen unabhängig von der Betriebsart funktionsfähig sein und ein Kategorie-0-Stopp muss Vorrang haben. Stopp-Funktionen müssen durch Trennen des entsprechenden Kreises realisiert werden und haben Vorrang vor zugeordneten Start-Funktionen.

Falls erforderlich, müssen Möglichkeiten vorgesehen werden, um Schutzeinrichtungen und Verriegelungen anzuschließen. Bei Bedarf muss die Stopp-Funktion der Steuerungslogik ihren Zustand anzeigen. Das Rücksetzen der Stopp-Funktion darf keinen gefährlichen Zustand auslösen.

Beispiele zur Realisierung finden Sie im KDN auf der Seite "Stopp und Not Halt Funktion".

7.8.2 Not-Halt

Die Not-Halt-Funktion wird zum schnellstmöglichen Anhalten der Maschine in einer Gefahrensituation verwendet. Die Not-Halt-Funktion ist durch die Norm EN 60204 definiert. Prinzipien der Not-Halt Ausrüstung und funktionale Gesichtspunkte sind in ISO 13850 festgelegt.

Der Steuerbefehl für den Not-Halt wird durch eine einzelne menschliche Handlung manuell ausgelöst, z.B. über einen zwangsöffnenden Druckschalter (roter Taster auf gelbem Hintergrund).

Die Not-Halt-Funktion muss stets voll funktionsfähig und verfügbar sein. Der Bediener muss sofort verstehen, wie dieser Mechanismus bedient wird (ohne eine Anleitung zu konsultieren).

INFO

Die Stopp-Kategorie für den Not-Halt muss durch eine Risikobewertung der Maschine bestimmt werden.

Zusätzlich zu den Anforderungen für Stopp gelten für Not-Halt folgende Anforderungen:

- Der Not-Halt muss Priorität gegenüber allen anderen Funktionen und Betätigungen in allen Betriebsarten besitzen.
- Die Energiezufuhr zu jeglichen Antriebselementen, die zu Gefahrensituationen führen könnten, muss entweder so schnell wie möglich unterbrochen werden, ohne dass es zu anderen Gefahren kommt (Stopp Kategorie 0, z.B. mit STO) oder so gesteuert werden, dass die gefahrbringende Bewegung so schnell wie möglich angehalten wird (Stopp-Kategorie 1).
- Das Zurücksetzen darf kein Wiederanlaufen bewirken.

Beispiele zur Realisierung finden Sie im KDN auf der Seite "Stopp und Not Halt Funktion".

7.8.3 NOT-AUS

Die Not-Aus Funktion wird zum Abschalten der elektrischen Energieversorgung der Maschine verwendet, um Gefährdungen durch elektrische Energie (z.B. eines elektrischen Schlages) auszuschließen. Funktionale Gesichtspunkte für Not-Aus sind in IEC 60364-5-53 festgelegt.

Der Not-Aus wird durch eine einzelne menschliche Handlung manuell ausgelöst, z.B. über einen zwangsöffnenden Druckschalter (roter Taster auf gelbem Hintergrund).

INFO

Die Ergebnisse einer Risikobewertung der Maschine bestimmen, ob ein Not-Aus erforderlich ist.

Not-Aus wird erreicht durch Abschalten der Energieeinspeisung mit elektromechanischen Schaltgeräten. Das führt zu einem Stopp der Kategorie 0. Wenn diese Stopp Kategorie für die Maschine nicht zulässig ist, muss der Not-Aus durch andere Maßnahmen (z.B. Schutz gegen direktes Berühren) ersetzt werden.

7.9 Safe Torque Off (STO)

Eine wichtige Aufgabe ist der funktional sichere Schutz von Antrieben gegen Wiederanlauf. Der Servoverstärker S300 bietet bereits in der Grundversion eine einkanalige STO Funktion (Safe Torque Off) die als funktional sichere Wiederanlaufsperre verwendet werden kann.

Vorteile der Anlaufsperre STO:

- Zwischenkreis bleibt aufgeladen, da der Hauptstromkreis aktiv bleibt,
- Es wird nur Kleinspannung geschaltet, daher kein Kontaktverschleiß,
- Der Verdrahtungsaufwand ist sehr gering.

Die Sicherheitsfunktion STO des Servoverstärkers kann durch eine externe sichere Steuerung (Halbleiterausgang oder zwangsgeführter Relaiskontakt) ausgelöst werden.

Das Schaltungskonzept wurde von der Berufsgenossenschaft geprüft und abschließend beurteilt. Das Schaltungskonzept zur Realisierung der Sicherheitsfunktion "Safe Torque OFF" in den Servoverstärkern der Baureihe S300 ist demnach geeignet, die Anforderungen an SIL CL 2 gem. EN 62061 und des PLd gem. EN 13849-1 zu erfüllen.

7.9.1 Sicherheitstechnische Kennzahlen

Die Teilsysteme (Servoverstärker) sind durch die Kenngrößen SIL CL, PFHD und TM sicherheitstechnisch vollständig beschrieben.

Einheit	Betriebsart	EN 13849-1	EN 62061	PFH	T _M [Jahre]	
				[1/h]		[%]
STO-Enable	einkanalig	PL d, Kat. 3	SIL CL 2	1,50E-07	20	100

7.9.2 Sicherheitshinweise

WARNUNG Hohe elektrische Spannung!

Es besteht Stromschlag- und Verletzungsgefahr. Die Funktion STO gewährleistet keine elektrische Trennung am Leistungsausgang. Wenn ein Zugang zu den Motoranschlüssen erforderlich ist,

- trennen Sie den Verstärker von der Netzspannung,
- beachten Sie die Entladezeit des Zwischenkreises.

MARNUNG Keine Bremsleistung!

Schwere Verletzungen können die Folge sein, wenn eine hängende Last nicht sicher blockiert wird. Der Verstärker kann eine hängende Last nicht halten, wenn die STO-Funktion aktiviert ist.

 Benutzen Sie eine zusätzliche sichere mechanische Sperre (zum Beispiel durch eine Motor-Haltebremse).

▲VORSICHT Unkontrollierte Bewegung!

Verletzungsgefahr. Wird im Betrieb die Funktion STO betätigt, also der Eingang STO-Enable von +24VDC getrennt, so trudelt der Antrieb aus und der Servoverstärker meldet den Fehler F27. Der Antrieb kann dann nicht mehr kontrolliert gebremst werden.

Antrieb geregelt abbremsen und die STO Eingänge zeitverzögert von +24VDC trennen.

ACHTUNG

Wenn die Funktion STO von einer Steuerung automatisch angesteuert wird, muss sichergestellt sein, dass der Ausgang der Steuerung gegen Fehlfunktion überwacht wird. Dies verhindert, dass durch einen fehlerhaften Ausgang die Funktion STO ungewollt angesteuert wird. Ein irrtümliches Einschalten wird bei einkanaliger Ansteuerung nicht erkannt.

ACHTUNG

Kontrolliertes Bremsen:

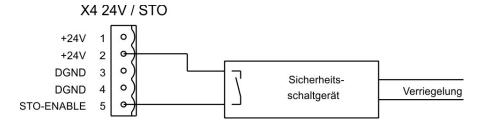
Die folgende Funktionsreihenfolge muss unbedingt eingehalten werden, wenn der Antrieb kontrolliert gebremst werden soll:

- 1. Antrieb geregelt abbremsen (Drehzahl Sollwert = 0V)
- 2. Bei Drehzahl = 0 min-1 Servoverstärker sperren (Enable = 0V)
- 3. Bei hängender Last den Antrieb zusätzlich mechanisch blockieren.
- 4. STO ansteuern

7.9.3 Bestimmungsgemäße Verwendung

Die Funktion STO ist ausschließlich dazu bestimmt, einen Antrieb funktional sicher anzuhalten und gegen Wiederanlauf zu sichern. Um die funktionale Sicherheit zu erreichen, muss die Schaltung des Sicherheitskreises die Sicherheitsanforderungen der EN 60204, EN 12100, EN 62061 SIL CL2 bzw. EN 13849-1 PLd erfüllen.

Wenn STO von einer Steuerung automatisch angesteuert wird, muss sichergestellt sein, dass der Ausgang der Steuerung gegen Fehlfunktion überwacht wird.


7.9.4 Nicht bestimmungsgemäße Verwendung

Die STO Funktion darf nicht verwendet werden, wenn der Verstärker aus den folgenden Gründen stillgesetzt werden muss:

- Bei Reinigungs-, Wartungs- und Reparaturarbeiten und längerer Außerbetriebnahme muss die gesamte Anlage freigeschaltet und gesichert werden (Hauptschalter).
- Bei Not-Aus-Situationen muss das Netzschütz abgeschaltet werden (Not-Aus Taster).

7.9.5 Technische Daten und Pinbelegung

Eingangsspannung	20V30V
Eingangsstrom	33mA – 40mA (leff)
Spitzenstrom	100mA (Is)
Reaktionszeit	1 ms
(fallende Flanke am STO-Eingang bis zur	
Unterbrechung der Energiezufuhr zum Motor)	

7.9.6 Einbauraum

Da der Regler der Schutzart IP20 entspricht, müssen Sie den Einbauraum so wählen, dass der Umgebung entsprechend ein sicherer Betrieb des Servoverstärkers gewährleistet ist. Der Einbauraum muss mindestens der Schutzart IP54 entsprechen.

7.9.7 Verdrahtung

Führt die Verdrahtung des STO-Enable Signals außerhalb eines Schaltschrankes, so ist diese dauerhaft (fest) verlegt auszuführen und gegen äußere Beschädigung (z.B. durch Kabelkanal, Panzerrohr) zu schützen. Weitere Hinweise zur Verdrahtung finden sich in der Norm EN 60204-1.

7.9.8 Funktionsbeschreibung

Bei Nutzung der Funktion STO muss der Eingang STO-Enable mit dem Ausgang einer Sicherheitssteuerung oder eines Sicherheitsrelais verbunden werden, die mindestens den Anforderungen des PLd nach EN 13849-1 bzw. SIL CL2 nach EN 62061 entsprechen (beachten Sie den Anschlussplan (→ #40)).

Folgende Zustände des Servoverstärkers sind in Verbindung mit der Funktion STO möglich:

STO-ENABLE	ENABLE	Displaymeldung	Drehmoment	SIL2/PLd
0V	0V	-S-	nein	ja
0V	+24V	F27	nein	ja
+24V	0V	Gerätekennung z.B. 06	nein	nein
+24V	+24V	Gerätekennung z.B. E06	ja	nein

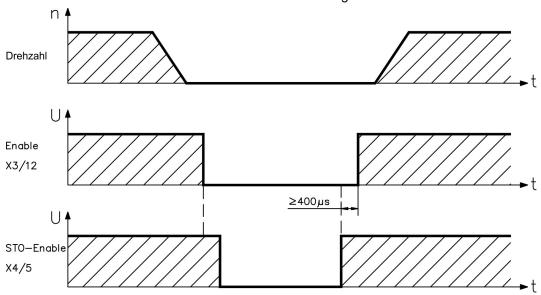
ACHTUNG

Ein irrtümliches Einschalten nicht erkannt. Daher muss sichergestellt sein, dass der Ausgang der Steuerung gegen Fehlfunktion überwacht wird.

ACHTUNG

Bei der Verdrahtung des STO Eingangs innerhalb eines Einbauraumes muss darauf geachtet werden, dass sowohl die verwendeten Leitungen als auch der Einbauraum selbst den Anforderungen der EN 60204-1 entsprechen. Erfolgt die Verdrahtung außerhalb eines Einbauraums, so muss diese dauerhaft verlegt und gegen äußere Beschädigung geschützt werden (siehe Abschnitt "Verdrahtung").

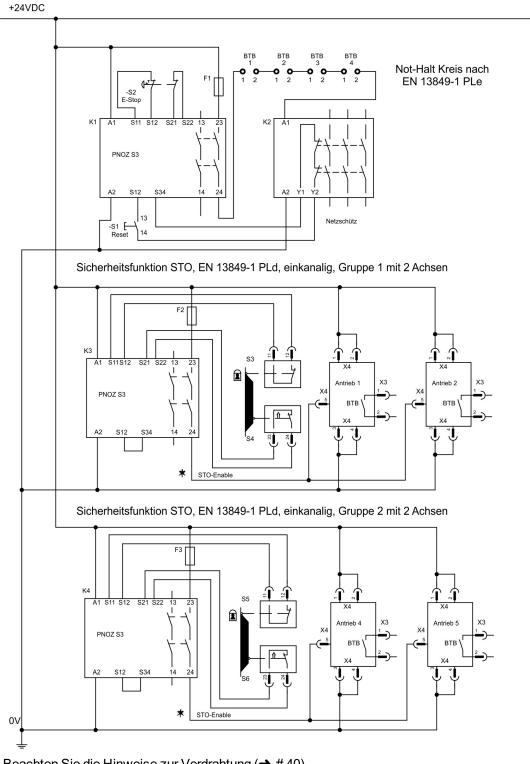
INFO


Wird die Funktion STO in einer Anwendung nicht benötigt, so muss der Eingang STO-ENABLE direkt mit +24VDC verbunden werden. Die Funktion STO ist hiermit überbrückt und kann nicht genutzt werden. Der Servoverstärker ist nun nicht mehr als Sicherheitsbauteil im Sinne der Maschinenrichtlinie zu betrachten.

7.9.8.1 Sicherer Ablauf

Ist in einer Anwendung eine kontrollierte Bremsung vor der Benutzung von STO erforderlich, so muss der Antrieb zunächst gebremst und der STO Eingang zeitverzögert von +24VDC getrennt werden:

- 1. Antrieb geregelt abbremsen (Drehzahl Sollwert = 0V)
- 2. Bei Drehzahl = 0 min-1 Servoverstärker sperren (Enable = 0V)
- 3. Bei hängender Last den Antrieb zusätzlich mechanisch blockieren
- 4. STO ansteuern (STO-Enable = 0V)


Das Diagramm zeigt, wie die Funktion STO genutzt werden muss, damit ein sicherer Halt des Antriebs und fehlerfreier Betrieb des Servoverstärkers gewährleistet ist.

7.9.8.2 Stromlaufplan Steuerstromkreis

Das Beispiel zeigt einen Stromlaufplan mit zwei getrennten Arbeitsbereichen die mit einem Not-Halt Kreis verbunden sind. Für jeden Arbeitsbereich ist der "Sichere Halt" der Antriebe einzeln über eine Schutztür geschaltet.

Die in der Beispielapplikation verwendeten Sicherheitsschaltgeräte sind von der Fa. Pilz und erfüllen mindestens PL d nach EN 13849-1. Weitere Informationen zu den Sicherheitsschaltgeräten sind bei Fa. Pilz erhältlich. Der Einsatz von Sicherheitsschaltgeräten anderer Hersteller ist möglich, wenn diese ebenfalls PLd nach EN 13849-1 bzw. SIL CL2 EN 62061 entsprechen.

INFO

Beachten Sie die Hinweise zur Verdrahtung (→ #40).

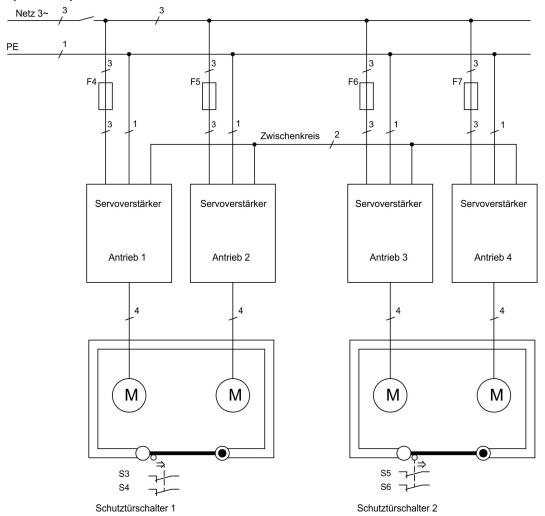
7.9.8.3 Funktionsprüfung

ACHTUNG

Bei Erstinbetriebnahme und nach jedem Eingriff in die Verdrahtung der Anlage oder nach Austausch einer oder mehrerer Komponenten der Anlage muss die STO Funktion überprüft werden.

1. Methode:

- 1. Den Antrieb mit Sollwert 0 stillsetzen, der Servoverstärker bleibt freigeben (Enable=24V). **GEFAHR: Schutzbereich nicht betreten!**
- 2. Funktion STO ansteuern, z.B. durch Öffnen der Schutztür (Spannung 0V an X4 Pin 5).


Korrektes Verhalten: der BTB Kontakt öffnet, das Netzschütz fällt ab, der Fehler F27 wird ausgegeben.

2. Methode:

- 1. Den Antrieb mit Sollwert 0 stillsetzen, den Servoverstärker sperren (Enable=0V).
- 2. Eingänge STO ansteuern, z.B. durch Öffnen der Schutztür (Spannung 0V an X4 Pin 5).

Korrektes Verhalten: im Display -S- wird angezeigt.

7.9.8.4 Übersichtsplan Hauptstromkreis

7.10 Berührungsschutz

7.10.1 Ableitstrom

Der Ableitstrom über den Schutzleiter PE entsteht aus der Summe der Geräte- und Kabelableitströme. Der Frequenzverlauf des Ableitstromes setzt sich aus einer Vielzahl von Frequenzen zusammen, wobei die Fehlerstromschutzschalter maßgeblich den 50Hz Strom bewerten. Mit kapazitätsarmen Leitungen kann als Faustformel bei 400V Netzspannung abhängig von der Taktfrequenz der Endstufe der Ableitstrom angenommen werden zu:

labl = n x 20mA + L x 1mA/m bei 8kHz Taktfrequenz der Endstufe labl = n x 20mA + L x 2mA/m bei 16kHz Taktfrequenz der Endstufe

(mit labl=Ableitstrom, n=Anzahl der Verstärker, L=Länge der Motorleitung)

Bei anderen Netzspannungen verändert sich der Ableitstrom proportional zur Spannung.

Beispiel: 2 x Servoverstärker + 25m Motorleitung bei 8kHz Taktfrequenz:

 $2 \times 20mA + 25m \times 1mA/m = 65mA$ Ableitstrom.

INFO

Da der Ableitstrom gegen PE mehr als 3,5 mA beträgt, muss gemäß EN 61800-5-1 der PE-Anschluss entweder doppelt ausgeführt werden oder eine Anschlussleitung mit >10mm² Querschnitt verwendet werden. Benutzen Sie die PE Klemme und den PE Bolzen, um diese Forderung zu erfüllen.

Durch folgende Maßnahmen können Ableitströme minimiert werden.

- Verringerung der Motorleitungslänge
- Leitungen mit niedriger Kapazität verwenden (→ #52)
- Externe EMV Filter entfernen (Funkentstörmaßnahmen sind integriert)

7.10.2 Fehlerstromschutzschalter (FI)

Nach EN 60364-4-41 - Errichtungsbestimmung und EN 60204 - Elektrische Ausrüstung von Maschinen ist der Einsatz von Fehlerstromschutzschaltern (im folgenden als FI bezeichnet) möglich, wenn die notwendigen Bestimmungen eingehalten werden.

Beim S300 handelt es sich um ein 3 Phasen System mit B6 Brücke. Daher müssen allstromsensitive FI verwendet werden, um einen möglichen Gleichfehlerstrom ebenfalls erkennen zu können.

Bemessungsfehlerströme beim FI

1	10 -30 mA	Schutz bei "indirektem Berühren" für ortsfeste und ortsveränderliche elek-						
1		trische Betriebsmittel und zusätzlich bei "direktem Berühren".						
ı	50 -300 mA	Schutz bei "indirektem Berühren" für ortsfeste elektrische Betriebsmittel						

INFO

Empfehlung: Für einen Schutz vor direkter Berührung empfehlen wir (Motorleitungslänge unter 5 m), jeden Servoverstärker einzeln durch einen allstromsensitiven 30 mA Fehlerstromschutzschalter abzusichern.

Die Verwendung eines selektiven FI -Schutzschalters verhindert durch die intelligentere Auswertung Fehlauslöser der Schutzeinrichtung.

7.10.3 Schutztrenntransformatoren

Wenn ein Schutz gegen indirektes Berühren trotz höherem Ableitstrom zwingend erforderlich ist oder ein alternativer Berührungsschutz gesucht wird, kann der S300 auch über einen Schutztrenntransformator betrieben werden (Anschlussschema (→ # 58)). Zur Kurzschlussüberwachung kann ein Isolationswächter eingesetzt werden.

INFO

Wir empfehlen eine möglichst kurze Verdrahtung zwischen Transformator und S300.

8 Mechanische Installation

8.1 Wichtige Hinweise

NORSICHT Hoher Ableitstrom!

Gefahr durch elektrischen Schlag, wenn der Verstärker (oder der Motor) nicht EMV-gerecht geerdet ist.

- Verwenden Sie elektrisch leitende Montageplatten, z. B. aus Aluminium oder galvanisiertem Stahl.
- Verwenden Sie in ungünstigen Fällen ein Kupfergewebeband zwischen Erdungsbolzen und Erdpotential zum Ableiten der Ströme.

ACHTUNG

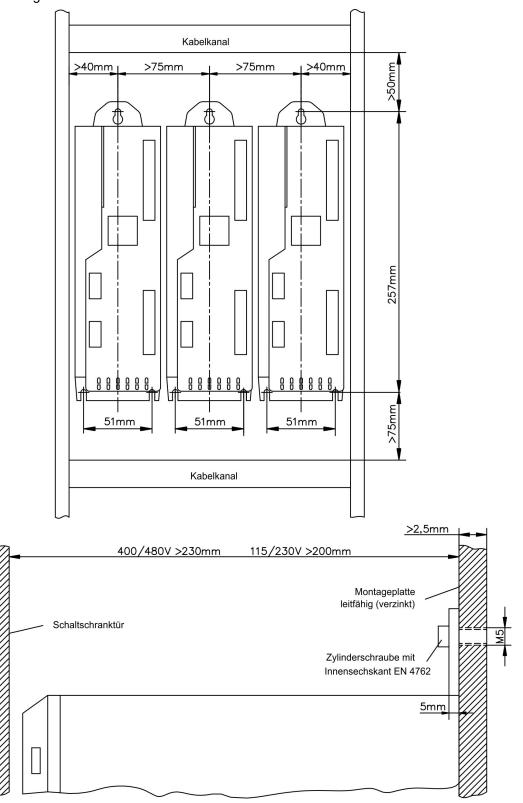
Schützen Sie das Gerät vor unzulässigen Belastungen. Achten Sie insbesondere darauf, dass durch den Transport oder die Handhabung keine Komponenten verbogen oder Isolationsabstände verändert werden. Berühren Sie keine elektronischen Komponenten und Kontakte.

ACHTUNG

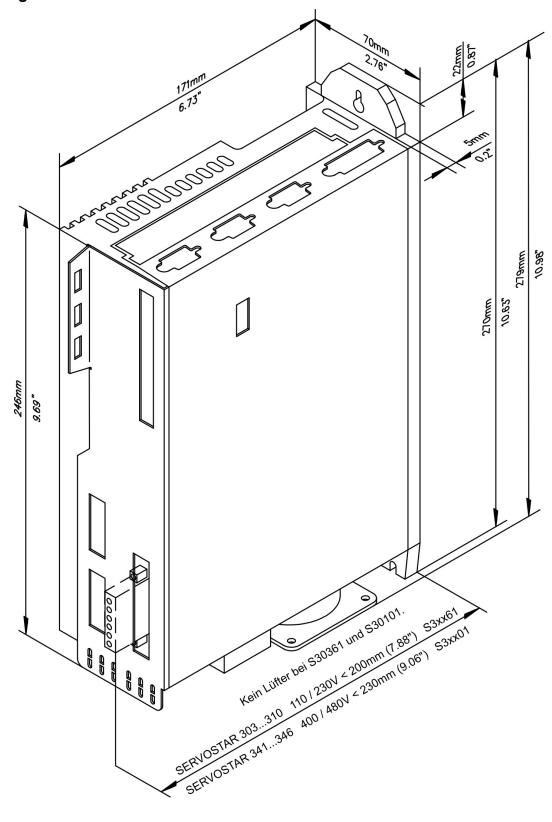
Der Servoverstärker schaltet sich bei Überhitzung selbsttätig aus. Sorgen Sie für ausreichende, gefilterte Kaltluftzufuhr von unten im Schaltschrank oder verwenden Sie einen Wärmetauscher. Beachten Sie hierzu (→ #29)

ACHTUNG

Montieren Sie keine Geräte, die Magnetfelder erzeugen, direkt neben den Servoverstärker. Starke Magnetfelder können interne Bauteile direkt beeinflussen. Montieren Sie Geräte, die Magnetfelder erzeugen, in großem Abstand zu den Servoverstärkern und/oder schirmen Sie die Magnetfelder ab.


8.2 Leitfaden für die mechanische Installation

Die folgenden Hinweise sollen Ihnen helfen, bei der mechanischen Installation in einer sinnvollen Reihenfolge vorzugehen ohne etwas Wichtiges zu vergessen.


Einbauort	 Im geschlossenen Schaltschrank. Der Einbauort muss frei von leitenden und korrosiven Materialien sein. Einbausituation im Schaltschrank (→ #46).
Belüftung	 Stellen Sie die ungehinderte Belüftung der Servoverstärker sicher und beachten Sie die zulässige Umgebungstemperatur (→ # 29). Beachten Sie die erforderlichen Freiräume ober- und unterhalb der Servoverstärker (→ # 46).
Montage	 Montieren Sie Servoverstärker und Netzteil nahe beieinander auf der lei- tenden, geerdeten Montageplatte im Schaltschrank.
Erdung, Abschirmung	 EMV-gerechte Abschirmung und Erdung siehe (→ # 56). Erden Sie Montageplatte, Motorgehäuse und CNC-GND der Steuerung. Hinweise zur Anschlusstechnik finden Sie auf (→ # 51)

8.3 Montage

Montagematerial: 3 Zylinderschrauben mit Innensechskant EN 4762, M5 Erforderliches Werkzeug: Sechskantschlüssel 4 mm

8.4 Abmessungen

9 Elektrische Installation

9.1 Wichtige Hinweise

ACHTUNG

Der Verstärker darf nur von Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik installiert werden. Grüne Drähte mit gelben Streifen dürfen nur für die Verdrahtung der Schutzerde (PE) verwendet werden.

↑ GEFAHR Hohe Spannung bis 900 V!

Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung. Kondensatoren können bis zu 5 Minuten nach Abschalten der Stromversorgung gefährliche Spannung führen. Steuer- und Leistungsanschlüsse können auch bei nicht aktivem Motor unter Spannung stehen.

- Installieren und verdrahten Sie nur abgeschaltete Geräte.
- Achten Sie darauf, dass die Anlage sicher freigeschaltet ist (Absperrung, Warnzeichen usw.).
- Trennen Sie nie die elektrischen Verbindungen zum Servoverstärker, während dieser Spannung führt.
- Warten Sie nach dem Freischalten des Servoverstärkers mindestens 5 Minuten, bevor Sie Geräteteile berühren oder Anschlüsse trennen.
- Messen Sie zur Sicherheit die Spannung am DC-Bus-Zwischenkreis, und warten Sie, bis die Spannung unter 50 V gesunken ist.

ACHTUNG

Falsche Netzspannung, ein ungeeigneter Motor oder fehlerhafte Verdrahtung beschädigen den Servoverstärker. Prüfen Sie die Zuordnung von Servoverstärker und Motor. Vergleichen Sie Nennspannung und Nennstrom der Geräte. Führen Sie die Verdrahtung nach dem Anschlussbild (→ # 56) aus. Stellen Sie sicher, dass die maximal zulässige Nennspannung an den Klemmen L1, L2, L3 oder +DC, −DC auch unter den ungünstigsten Umständen um nicht mehr als 10 % überschritten wird (siehe EN 60204-1).

ACHTUNG

Überdimensionierte externe Sicherungen gefährden Kabel und Geräte. Die Sicherungen der Spannungsversorgung sind vom Nutzer zu installieren, empfohlene Werte (→ # 28). Hinweise zu Fehlerstromschutzschaltern (RCD) siehe (→ # 44).

ACHTUNG

Der Status des Verstärkers muss durch die Steuerung überwacht werden, um kritische Situationen zu erkennen. Verdrahten Sie den BTB/RTO-Kontakt in Reihe zur Not-Aus-Schaltung der Anlage. Die Not-Aus Schaltung muss das Netzschütz betätigen.

9.2 Leitfaden zur elektrischen Installation

ACHTUNG

Korrekte Verdrahtung ist die Basis für die zuverlässige Funktion des Servosystems. Verlegen Sie Leistungs- und Steuerkabel getrennt. Wir empfehlen einen Abstand größer als 20 cm (verbessert die Störfestigkeit). Bei Verwendung eines Motorleistungskabels mit integrierten Bremssteueradern müssen die Bremssteueradern separat abgeschirmt sein. Legen Sie den Schirm beidseitig und großflächig (niederohmig) auf, möglichst über metallisierte Steckergehäuse oder Schirmklemmen. Hinweise zur Anschlusstechnik siehe (→ #51). Rückführleitungen dürfen nicht verlängert werden, da dadurch die Abschirmung unterbrochen und die Signalauswertung gestört würde. Leitungen zwischen Verstärker und externem Bremswiderstand müssen abgeschirmt sein. Verlegen Sie sämtliche Kabel in aus-

ACHTUNG

reichendem Querschnitt nach EN 60204 und verwenden Sie Kabelmaterial mit der auf Seite (→ #52) geforderten Qualität, um die max. Kabellänge zu erreichen.

Die folgenden Hinweise sollen Ihnen helfen, bei der elektrischen Installation in einer sinnvollen Reihenfolge vorzugehen ohne etwas Wichtiges zu vergessen.

Leitungswahl	● Wählen Sie Leitungen gemäß EN 60204 aus (→ #29)
Erdung, Abschirmung	 EMV-gerechte Abschirmung und Erdung siehe (→ # 56) Erden Sie Montageplatte, Motorgehäuse und CNC-GND der Steuerung. Hinweise zur Anschlusstechnik finden Sie auf Seite (→ # 51).
Verdrahtung	Verlegen Sie Leistungs- und Steuerkabel getrennt. Schleifen Sie den BTB- Kontakt in den Not-Aus-Kreis der Anlage ein.
	 Digitale Ein- und Ausgänge des Servoverstärkers anschließen AGND anschließen (auch wenn Feldbus benutzt wird). Sofern benötigt, analogen Sollwert anschließen Rückführeinheit (Feedback) anschließen Encoder Emulationanschließen, wenn benötigt. Erweiterungskarte anschließen (siehe entsprechende Hinweise ab Seite (→ # 115)) Motorleitungen anschließen Abschirmungen beidseitig auf EMV-Stecker und Schirmanschluss legen; bei Leitungslänge über 25m mit Motordrossel (3YL/3YLN) Motor-Haltebremse anschließen, Abschirmung beidseitig auf EMV-Stecker bzw. Schirmanschluss legen Bei Bedarf externen Bremswiderstand anschließen (mit Absicherung) Hilfsspannung anschließen (maximal zulässige Spannungswerte (→ # 28)) Leistungsspannung anschließen (maximal zulässige Spannungswerte (→ # 28), Hinweise zu FI-Schutzschalter siehe (→ # 44) PC anschließen (→ # 95)
Überprüfung	End-Überprüfen der ausgeführten Verdrahtung anhand der verwendeten Anschlusspläne

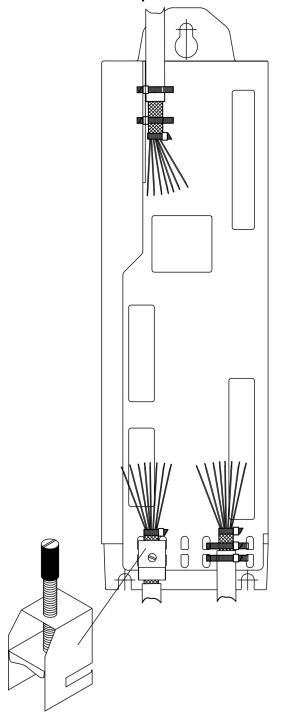
9.3 Verdrahtung

Das Vorgehen bei einer Installation wird exemplarisch beschrieben. Je nach Einsatz der Geräte kann ein anderes Vorgehen sinnvoll oder erforderlich sein. Weiterführendes Wissen vermitteln wir Ihnen in Schulungskursen (auf Anfrage).

↑ GEFAHR Hohe Spannung bis 900 V!

Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung.

- Installieren und verdrahten Sie die Geräte nur im abgeschalteten Zustand, d. h. es darf weder die Netzspannung noch die 24 V Hilfsspannung oder die Netzspannung anderer angeschlossener Geräte eingeschaltet sein.
- Achten Sie darauf, dass die Anlage sicher freigeschaltet ist (Absperrung, Warnzeichen usw.).


INFO

Das Masse-Zeichen ,,, das Sie in allen Anschlussplänen finden, deutet an, dass Sie für eine möglichst großflächige, elektrisch leitende Verbindung zwischen dem gekennzeichneten Gerät und der Montageplatte in Ihrem Schaltschrank sorgen müssen. Diese Verbindung soll die Ableitung von HF-Störungen ermöglichen und ist nicht zu verwechseln mit dem PE-Zeichen (Schutzmaßnahme nach EN 60204).

Verwenden Sie folgende Anschlusspläne:

	-	
	Safe Torque Off (STO)	(→ #38)
	Übersichtsplan	(→ #56)
	Spannungsversorgung	(→ #58)
	Zwischenkreis	(→ #61)
	Motor	(→ #64)
	Feedback	(→ #65)
	Digitale und analoge Ein- und Ausgänge	(→ #92)
	RS232 / PC	(→ #95)
	CAN-Schnittstelle	(→ #96)
Elektroni	sche Getriebe:	,
	Puls-Richtung	(→ #88)
	Master-Slave	(→ #89)
Encoder	Emulation	
	ROD (A quad B)	(→ #90)
	SSI	(→ #91)
Erweiteru	ingskarten:	
	I/O-14/08	(→ #116)
	PROFIBUS	(→ #119)
	sercos® II	(→ # 120)
	DeviceNet	(→ # 122)
	SynqNet	(→ # 125)
	FB-2to1	(→ # 127)
	-2CAN	(→ #131)
Optionen	:	
	EtherCAT	(→ # 133)
	FAN	(→ # 134)

9.3.1 Schirmanschluss an der Frontplatte

Entfernen Sie die äußere Ummantelung des Kabels und das Schirmgeflecht auf die gewünschte Aderlänge. Sichern Sie die Adern mit einem Kabelbinder.

Entfernen Sie die äußere Ummantelung der Leitung auf einer Länge von etwa 30mm ohne das Schirmgeflecht zu beschädigen.

Ziehen Sie einen Kabelbinder durch den Schlitz in einem Schirmblech an der Frontplatte des Servoverstärkers.

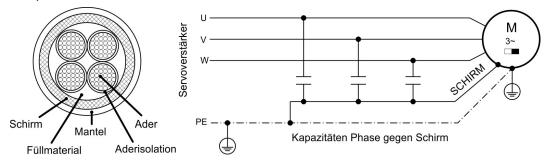
Pressen Sie das Schirmgeflecht des Kabels mit dem Kabelbinder fest gegen das Schirmblech.

Für den Schirmanschluss der Motorleitung verwenden Sie die bei unseren konfektionierten Leitungen mitgelieferte Schirmanschlussklemme. Sie wird im unteren Schirmblech eingehakt und garantiert optimalen Kontakt zwischen Schirm und Schirmblech.

9.3.2 Technische Daten Anschlussleitungen

Weitere Informationen über chemische, mechanische und elektrische Eigenschaften der Leitungen finden Sie im Zubehörhandbuch und erhalten Sie von unserer Applikationsabteilung.

INFO


Beachten Sie die Vorschriften im Kapitel "Leiterquerschnitte" (→ #29). Um den Verstärker mit der max. erlaubten Kabellänge sicher zu betreiben, müssen Sie Kabelmaterial verwenden, das den u.a. Anforderungen an die Kapazität genügt.

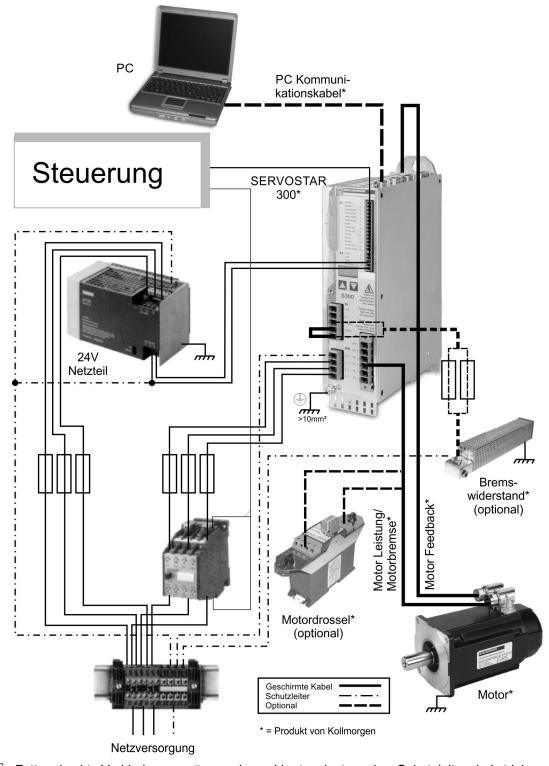
Kapazität (Phase gegen Schirm)

Motorleitung: kleiner als 150 pF/m

RES- und Encoder-Leitung: kleiner als 120 pF/m

Beispiel Motorkabel:

Techn. Daten

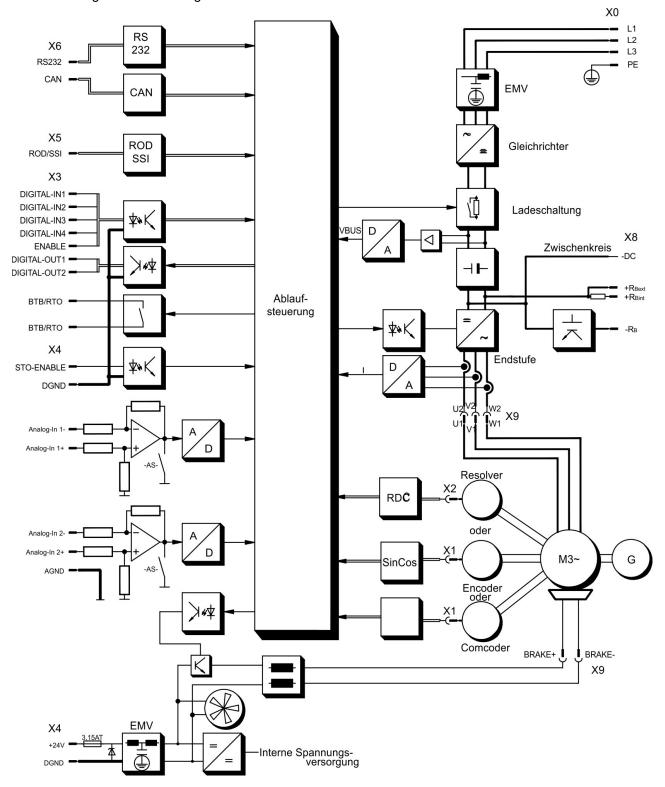

Detaillierte Beschreibung der Kabeltypen und Konfektionierung finden Sie im Zubehörhandbuch.

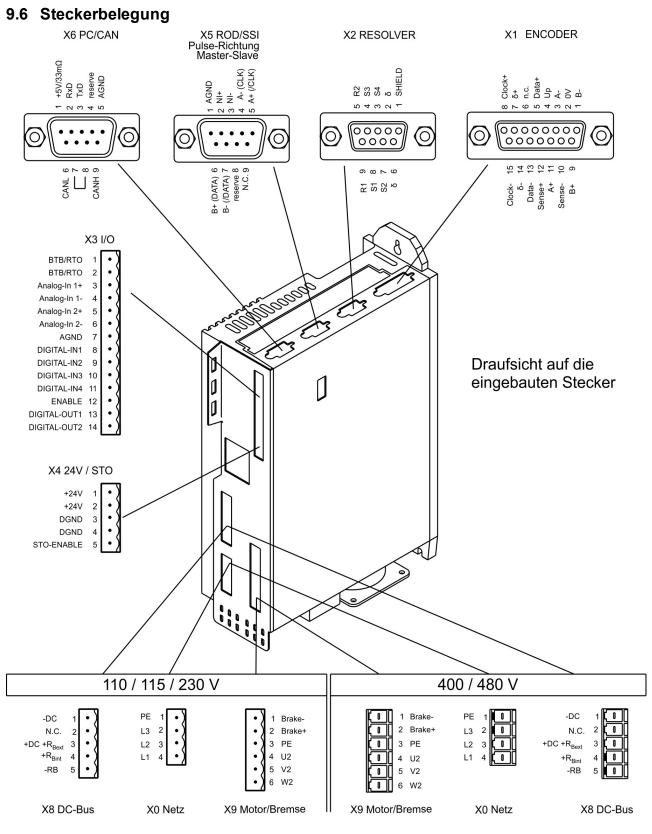
Drosseln

INFO

Bei Motorleitungen länger als 25 m immer eine Motordrossel 3YL oder 3YLN verwenden.

9.4 Komponenten eines Servosystems

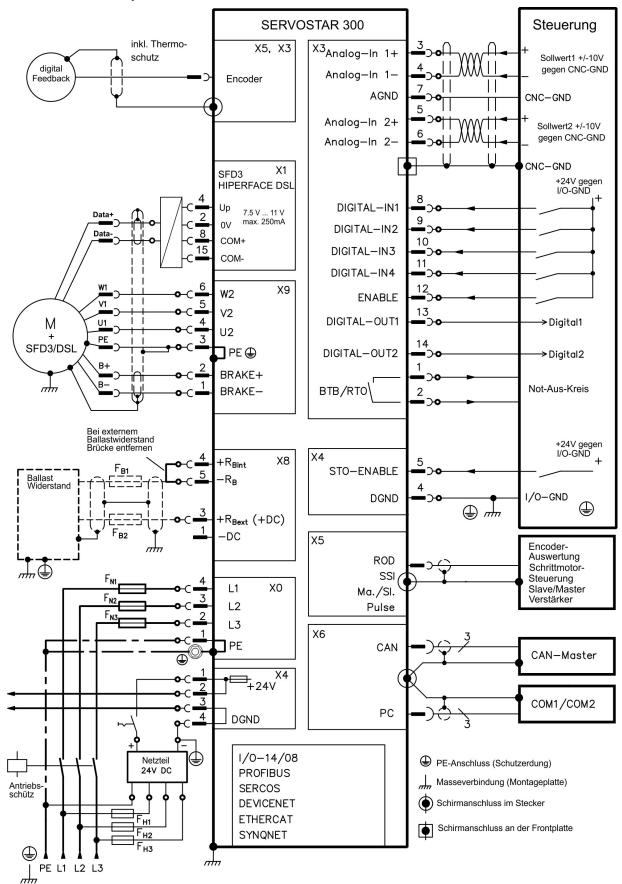



INFO

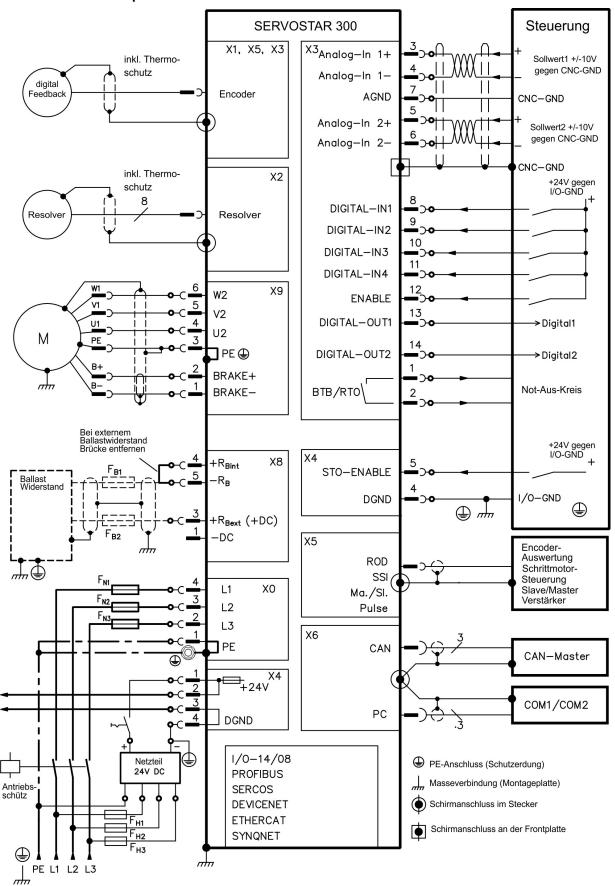
Fett gedruckte Verbindungen müssen abgeschirmt verlegt werden. Schutzleiter sind strichpunktiert dargestellt. Optionale Geräte sind gestrichelt mit dem Servoverstärker verbunden. Das erforderliche Zubehör ist in unserem Zubehörhandbuch beschrieben.

9.5 Blockschaltbild

Das unten dargestellte Blockdiagramm dient nur zur Übersicht.



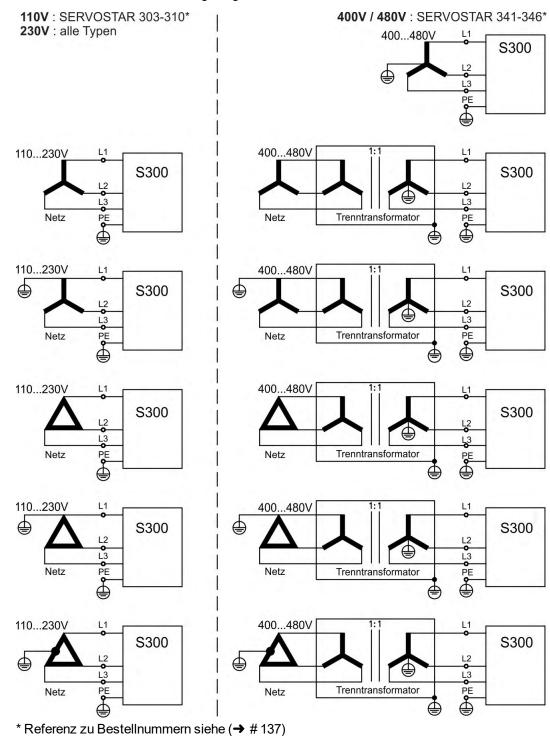
■ Steckerkodierung


9.7 Anschlussplan (Übersicht)

Beachten Sie Sicherheitshinweise (→ #12) und bestimmungsgemäße Verwendung (→ #15)!

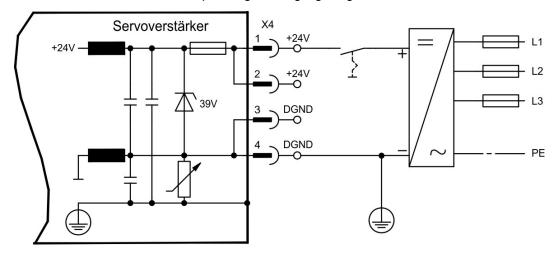
Einkabel Anschlussplan

Zweikabel Anschlussplan

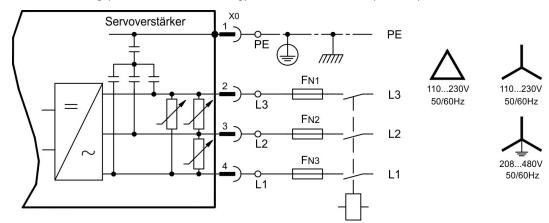


9.8 Spannungsversorgung

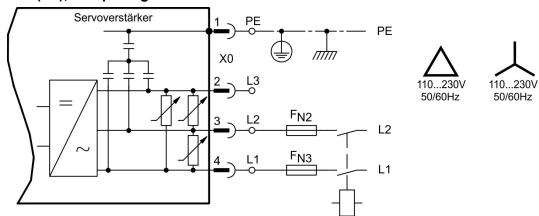
9.8.1 Anschluss an unterschiedliche Versorgungsnetze


ACHTUNG

Für asymmetrisch geerdete oder ungeerdete 400V ... 480V Netze ist der Einsatz eines Trenntransformators, wie unten gezeigt, erforderlich.

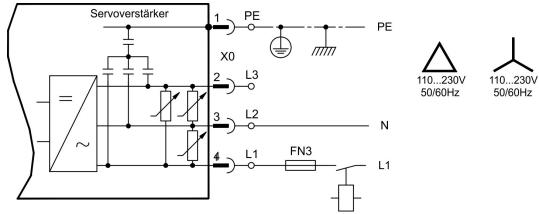

9.8.2 24V-Hilfsspannung (X4)

- Potentialgetrennt aus einem externen 24V DC-Netzteil, z.B. mit Trenntransformator
- Erforderliche Stromstärke (→ #28)
- Entstörfilter für die 24V-Hilfsspannungsversorgung integriert



9.8.3 Netzanschluss (X0), dreiphasig

- Direkt am 3~ Netz, Filter integriert
- Absicherung (z.B. Schmelzsicherung) durch den Anwender (→ #28)



9.8.4 Netzanschluss (X0), zweiphasig ohne Neutralleiter

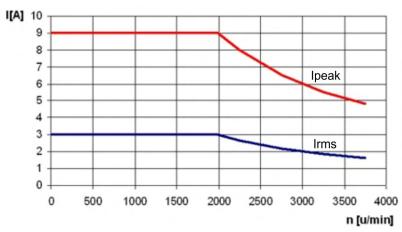
9.8.5 Netzanschluss (X0), einphasig mit Neutralleiter

Der S300 in der 230V Version (SERVOSTAR 303-310) kann am einphasigen Netz betrieben werden. Im einphasigen Betrieb wird die elektrische Leistung des Verstärkers begrenzt.

Die folgende Tabelle zeigt die maximal zulässige Nennleistung (Pn) und Spitzenleistung (Pp) bei einphasigem Betrieb:

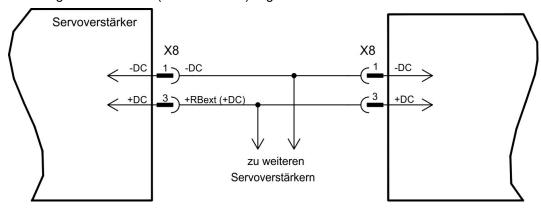
max. elektrische Leistung	_	303 n/W	S306 Pn/W		S310 Pn/W	
VBUSBAL0 (110V)	423	704	423	704	423	704
VBUSBAL1 (230V)	845	2535	1127	2535	1127	2535

Der maximale mögliche Strom ist abhängig von der Drehmomentkonstanten kT und der maximalen Drehzahl des angeschlossenen Motors:


Dauerstrom:
$$I_{rms} = \frac{P_n * 60}{2 * \pi * k_T * n}$$

Spitzenstrom:
$$I_{peak} = \frac{P_p * 60}{2 * \pi * k_T * n}$$

INFO


Mit dem ASCII Pamater VLIM kann die Drehzahl begrenzt werden, um den Strom für das benötigte Drehmoment zu erreichen.

Für verschiedene Drehzahlen ergibt sich für einen bestimmten Motor (kT bauartbedingt konstant) eine Strombelastbarkeit ähnlich dem u.a. Diagramm.

9.9 Zwischenkreis (X8)

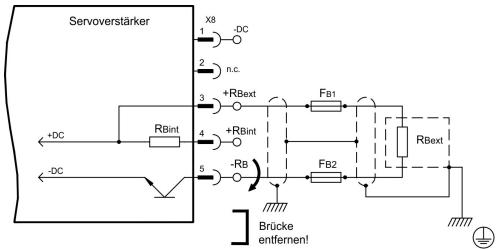
Klemmen X8/1 (-DC) und X8/3 (+RBe). Aufteilung der Bremsleistung durch Parallelschalten aller am gleichen DC-Bus (Zwischenkreis) angeschlossenen Verstärker.

ACHTUNG

- Hohe Spannungsdifferenzen an verbundenen Zwischenkreisen können die Servoverstärker zerstören. Daher dürfen nur Geräte mit Leistungs-Spannungsversorgung aus demselben Netz am Zwischenkreis verbunden werden (die Einstellung VBUSBAL muss bei allen beteiligten Geräte identisch sein).
- Verwenden Sie ungeschirmte 2,5 mm² Einzeladern bis max. 200 mm Länge oder abgeschirmte Leitungen bei größeren Längen. Eine Sicherung als Leitungsschutz ist dann nicht erforderlich.
- Verstärker, die häufig generatorisch arbeiten, sollten neben Geräte platziert werden, die häufig Energie aufnehmen. Dies verringert den Stromfluss über größere Entfernungen.

	S300	S701-724 mit HWR* < 2.00	S701-724 mit HWR* ≥ 2.10	S748/S772
S300	ja	nein	ja	nein

^{*}HWR = Hardware Revision (siehe Gerätetypenschild)


SERVOSTAR 303-310: Die Summe der Nennströme aller zu einem SERVOSTAR 303-310 parallelgeschalteten Servoverstärker darf 24A nicht überschreiten.

SERVOSTAR 341-346: Die Summe der Nennströme aller zu einem SERVOSTAR 341-346 parallelgeschalteten Servoverstärker darf 40A nicht überschreiten.

Informationen zur Absicherung finden Sie im KDN "Parallelschaltung Zwischenkreis".

9.9.1 Externer Bremswiderstand (X8)

Entfernen Sie die Steckbrücke zwischen den Klemmen X8/5 (-RB) und X8/4 (+RBi). Sicherungstypen (→ #28).

9.9.2 Kondensatormodule KCM (X8)

Die KCM Module (KOLLMORGEN Capacitor Module) nehmen Energie auf, die der Motor im generatorischen Betrieb erzeugt. Normalerweise wird diese Energie über Bremswiderstände in Verlustleistung umgesetzt. Die KCM Module speisen die gespeicherte Energie in den Zwischenkreis zurück, wenn sie benötigt wird. Maße (HxBxT): 300x100x201 mm

KCM-S	Spart Energie: Die beim generatorischen Bremsen im Kondensatormodul gespeicherte Energie steht für den nächsten Beschleunigungsfall zur Verfügung. Die Einsatzspannung des Moduls wird automatisch während der ersten Lastzyklen ermittelt.
KCM-P	Power trotz Netzausfall: Bei Ausfall der Leistungsversorgung stellt das Modul dem Servoverstärker die gespeicherte Energie für ein gesteuertes Stillsetzen des Antriebs zur Verfügung (nur Leistungsspannung, 24V separat puffern).
KCM-E	Erweiterungsmodul für beide Einsatzzwecke. Erweiterungsmodule sind in zwei Kapazitätsklassen verfügbar.

INFO

Die KCM Module können an S3xx0 Geräte (Netzspannung 400/480V) angeschlossen werden. Montagehinweise, Installations- und Inbetriebnahmehinweise finden Sie in der technischen Beschreibung der KCM Module und im KDN.

Technische Daten KCM Module

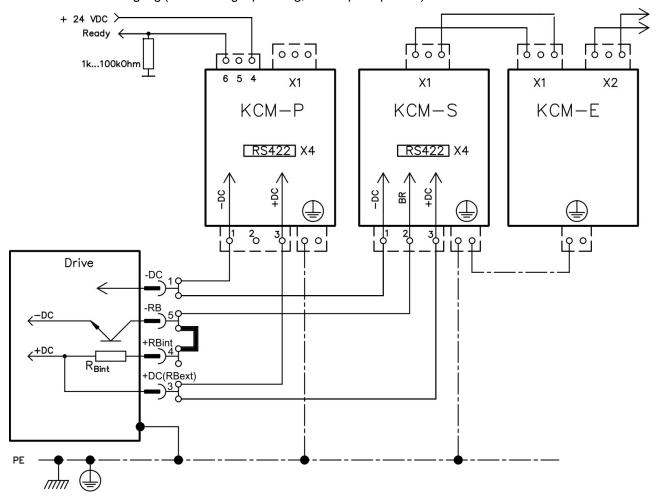
Тур	Speicher Kapazität [Ws]	Nenn- Anschluss- spannung [V=]	Spitzen- Anschluss- spannung [V=]		Schutz- Klasse	Einsatz- spannung [V=]	Gewicht [kg]
KCM-S200	1600	max. 850 VDC		18	IP20	ermittelt	6,9
KCM-P200	2000		max. 950VDC			470 VDC	6,9
KCM-E200	2000		(30s in 6min)			-	4,1
KCM-E400	4000					-	6,2

Maßzeichnung und Bestellinformationen siehe Zubehörhandbuch.

⚠ GEFAHR Hohe Spannung bis 900 V!

Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung. Die Selbstentladezeit der Module kann über eine Stunde betragen.

- Schalten Sie die Netzspannung ab (freischalten). Sie dürfen nur bei freigeschalteter Anlage an den Anschlüssen arbeiten.
- Prüfen Sie den Ladezustand mit einem für Gleichspannung bis 1000V geeigneten Messgerät.
- Wenn Sie zwischen den Klemmen DC+/DC- oder gegen Erde eine Spannung größer als 50 V messen, entladen Sie die Module wie in der Betriebsanleitung der KCM Module beschrieben.


Anschlussbeispiel KCM Module

ACHTUNG

Maximale Leitungslänge zwischen Servoverstärker und KCM: 500mm. Verdrillen Sie die Leitungen +DC/-DC. Größere Kabellängen erfordern eine Abschirmung. Achten Sie auf korrekte Polung, bei Vertauschen von DC+/DC- werden die KCM Module zerstört.

KCM-S: Schließen Sie den BR Anschluss an den S300 mit den häufigsten generatori- schen Bremsvorgängen im System an. Zur Inbetriebnahme geben Sie den S300frei und starten ein Fahrprofil, das zum Ansprechen des Bremschoppers führt. KCM-S ermittelt die Chopperschwelle und beginnt zu laden, die LED blinkt. Die aufgenommene Energie wird beim nächsten Beschleunigungsvorgang genutzt.

KCM-P: wenn die Zwischenkreisspannung 470 VDC übersteigt, wird das KCM-P gela- den. Nach Ausfall der Netzspannung steht die gespeicherte Energie dem Zwischenkreis zur Verfügung (nur Leistungsspannung, 24V separat puffern).

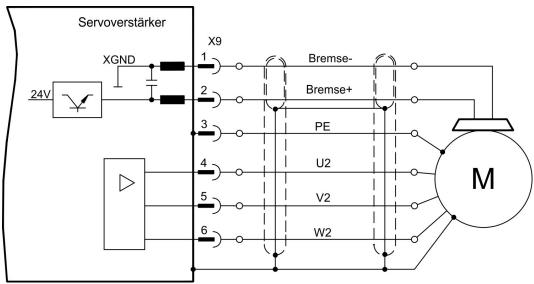
9.10 Motorleistung und Motorhaltebremse (X9)

Die Leistungsendstufe des Servoverstärkers bildet mit Motorleitung und Motorwicklung einen Schwingkreis. Kenngrößen wie Leitungskapazität, Leitungslänge, Motorinduktivität, Frequenz und Spannungsanstiegs-Geschwindigkeit (siehe Technische Daten (→ # 26)) bestimmen die im System entstehende maximale Spannung.

ACHTUNG

Die dynamische Spannungsüberhöhung kann zur Verringerung der Motorlebensdauer und bei ungeeigneten Motoren zu Spannungsüberschlägen in der Motorwicklung führen.

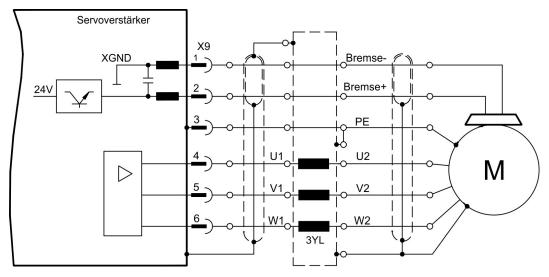
- Setzen Sie nur Motoren mit Isolierstoffklasse F (gem. EN 60085) oder höher ein
- Setzen Sie nur Leitungen ein, die die Anforderungen auf (→ #29) und (→ #52) erfüllen.



NORSICHT Keine funktionale Sicherheit!

Wenn die Last nicht sicher blockiert ist, kann dies zu schweren Verletzungen führen.

• Die funktionale Sicherheit, z.B. bei hängenden Lasten (vertikale Lasten), erfordert eine zusätzliche mechanische Bremse, die sicher betätigt werden muss.


Leitungslänge ≤ 25 m

Leitungslänge >25 m

ACHTUNG

Ableitströme bei langen Leitungen gefährden die Endstufe der Servoverstärker. Bei Leitungslängen über 25 m bis max. 50 m muss daher die Motordrossel 3YL oder 3YLN (siehe Zubehörhandbuch) nahe am Verstärker in die Motorleitung geschaltet werden.

9.11 Rückführsysteme

In jedem geschlossenen Servosystem ist im Normalfall mindestens ein Feedback erforderlich, das Istwerte vom Motor an den Servoantrieb sendet. Abhängig vom Typ des Feedback wird die Rückmeldung zum Servoverstärker digital oder analog übertragen.

INFO

Die digitalen Feedbacks SFD3 und HIPERFACE DSL ermöglichen eine Ein-Kabel Verbindung (Motor Leistung & Feedback in einem Kabel) zum S300 an den Stecker X9/X1.

INFODie Erweiterungskarte FB2to1 (→ # 127) ermöglicht den gleichzeitigen Anschluss eines digitalen primären und eines analogen sekundären Feedbacks an den Stecker X1.

Sie können bis zu drei Feedbacks parallel verwenden. S300 unterstützt alle gängigen Feedback-Geräte, deren Funktionen mit den Parametern

FBTYPE einstellbar auf DRIVEGUI.EXE Bildschirmseite FEEDBACK,

primäres Feedback (→ #66)

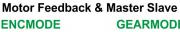
EXTPOS einstellbar auf DRIVEGUI.EXE Bildschirmseite LAGEREGLER,

sekundäres Feedback zur Positionsrückführung (→ #66)

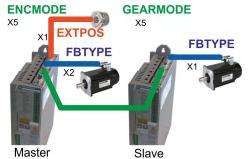
GEARMODE einstellbar auf DRIVEGUI.EXE Bildschirmseite ELEKTR. GETRIEBE,

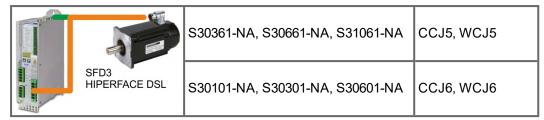
Encoderführung für elektrisches Getriebe (→ #87)

in der Inbetriebnahme-Software zugewiesen werden müssen. Skalierung und weitere Einstellungen müssen ebenfalls dort vorgenommen werden.


Eine detaillierte Parameterbeschreibung finden Sie in der DRIVEGUI.EXE Online-Hilfe.

Einige mögliche Konfigurationen


Motor Feedback & External Position Feedback


Motor Feedback & Master Slave & External Position Feedback

9.12 Primäre und sekundäre Feedbacktypen

Dieses Kapitel zeigt eine Übersicht der unterstützten Feedback-Typen, zugehörige Parameter und einen Verweis auf den jeweiligen Anschlussplan.

Ein-Kabel Verbindung (Leistung und Feedback in einem Kabel)

			primär	sekundär
Feedback-Typ	Stecker	Anschluss	FBTYPE	EXTPOS
SFD3	X1	(→ #67)	36	-
HIPERFACE DSL	X1	(→ #68)	35	-

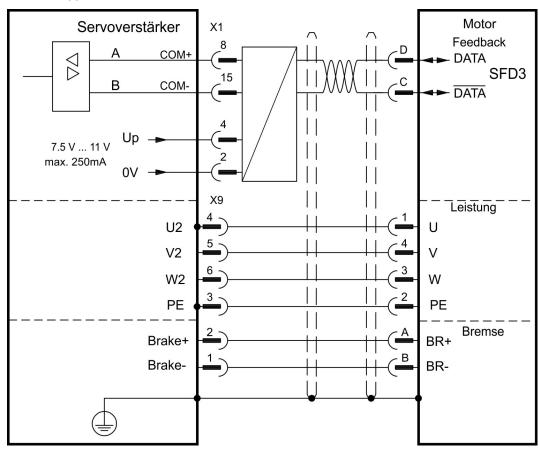
Zwei-Kabel Verbindung (Leistung und Feedback getrennt)

Motorkabel und Feedbackkabel siehe Zubehörhandbuch

Feedback-Typ	Stecker	Anschluss	primär FBTYPE	sekundär EXTPOS
Resolver	X2	(→ #69)	0	- -
SinCos Encoder BiSS (B) analog	X1	(→ #70)	23, 24	-
Encoder BiSS (B, C2)) digital	X1	(→ #71)	20, 22,33	11, 12
SinCos Encoder ENDAT 2.1	X1	(→ #72)	4, 21	8
Encoder ENDAT 2.2	X1	(→ #73)	32, 34	13
SinCos Encoder HIPERFACE	X1	(→ #74)	2	9
SinCos Encoder SSI (linear)	X5/X1	(→ #75)	28 ₁₎	-
SinCos Encoder ohne Datenspur	X1	(→ #76)	1, 3, 7, 8	6, 7
SinCos Encoder + Hallgeber	X1	(→ #77)	5, 6	-
ROD* 5V ohne Nullimpuls, 1.5MHz	X1	(→ #78)	30, 31	30
ROD* 5V mit Nullimpuls, 350kHz	X1	(→ #79)	17, 27	10
ROD* 5V mit Nullimpuls + Hallgeber	X1	(→ #80)	15	-
ROD* 5V mit Nullimpuls	X5/X1	(→ #81)	13 ₁₎ , 19 ₁₎	3
ROD* 5V mit Nullimpuls + Hallgeber	X5/X1	(→ #82)	18	-
ROD* 24V ohne Nullimpuls	X3	(→ #83)	12, 16	2
ROD* 24V ohne Nullimpuls + Hallgeber	X3/X1	(→ #84)	14	-
SSI	X5/X1	(→ #85)	9 ₁₎	5 ₁₎
Hallgeber	X1	(→ #86)	11	-
Puls/Richtung 5V	X1	(→ #88)	-	27
Puls/Richtung 5V	X5	(→ #89)	-	4
Puls/Richtung 24V	X3	(→ #88)	-	1
Sensorlos (ohne Feedback)	-	-	10	-

^{*} ROD ist ein Kürzel für Inkrementalgeber

¹⁾ Versorgungsspannung des Gebers auf X1 einschalten: ENCVON auf 1 setzen

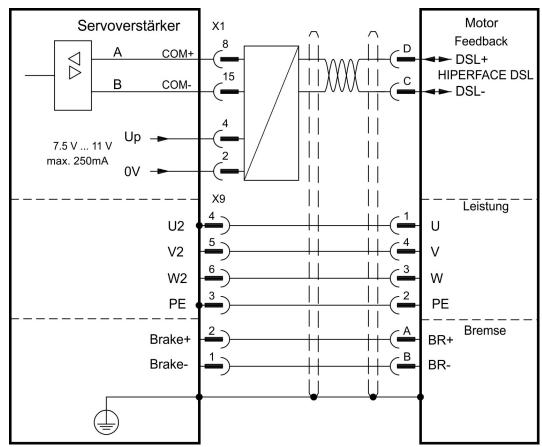

²⁾ BiSS C unterstützt Renishaw Encoder, Hengstler Encoder werden nicht unterstützt.

9.12.1 SFD3 (X1), Ein-Kabel Anschluss

Anschluss des Kollmorgen Rückführsystems SFD3 (primär, (→ #65)). SFD3 kann mit einem speziellen Kollmorgen Hybrid-Anschlusskabel benutzt werden (CCJ9 bzw. WCJ9 Type, siehe Zubehör-Handbuch) (auf Anfrage).

Maximale Kabellänge 25 m.

FBTYPE: 36

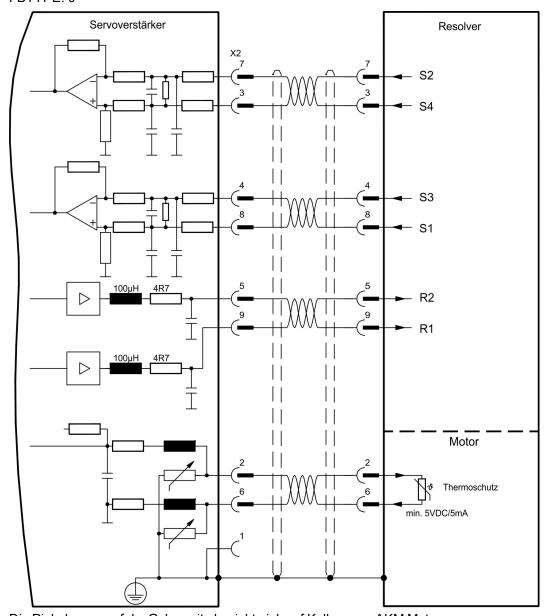

Die Pinbelegung auf der Geberseite bezieht sich auf AKM Motoren (Steckercode D).

9.12.2 HIPERFACE DSL (X1), Ein-Kabel Anschluss

Anschluss des HIPERFACE DSL Rückführsystems (primär, (→ #65)). HIPERFACE DSL kann mit einem speziellen Kollmorgen Hybrid-Anschlusskabel benutzt werden (CCJ9 bzw. WCJ9 Type, siehe Zubehör-Handbuch) (auf Anfrage).

Maximale Kabellänge 25 m.

FBTYPE: 35



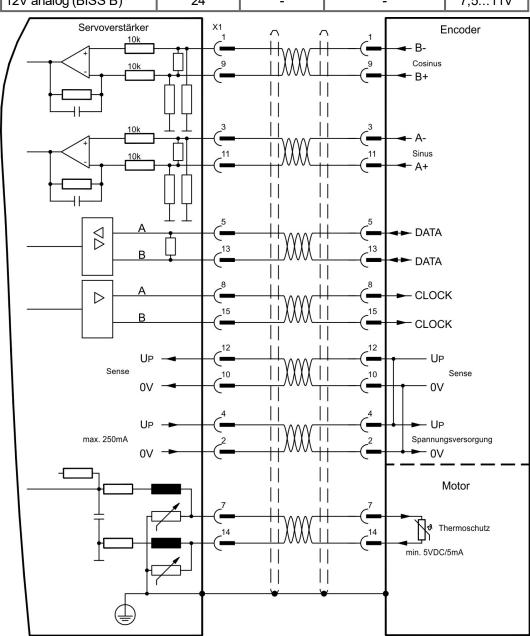
Die Pinbelegung auf der Geberseite bezieht sich auf AKM Motoren (Steckercode D).

9.12.3 Resolver (X2)

Anschluss eines Resolvers (2 bis 36-polig) als Rückführsystem (primär, (→ # 65)). Die Temperaturüberwachung im Motor wird über die Resolverleitung an X2 angeschlossen und dort ausgewertet.

Bei geplanter Leitungslänge über 100 m sprechen Sie mit unserer Applikationsabteilung. FBTYPE: 0

Die Pinbelegung auf der Geberseite bezieht sich auf Kollmorgen AKM Motoren.


9.12.4 Sinus Encoder mit BiSS analog (X1)

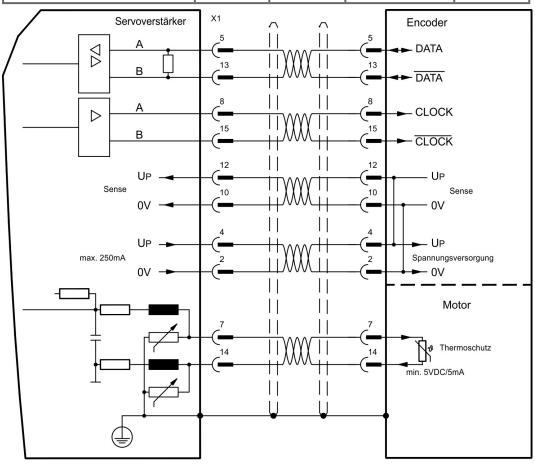
Anschluss von single- oder multiturn sinus-cosinus Encodern mit BiSS Interface als Rückführsystem (primär oder sekundär, (→ #65)).

Die Temperaturüberwachung im Motor wird an X1 angeschlossen und dort ausgewertet. Mit unserem konfektionierten Encoder-Anschlusskabel sind alle Signale verbunden. Bei geplanter Leitungslänge über 50 m sprechen Sie mit unserer Applikationsabteilung.

Grenzfrequenz (sin, cos): 350 kHz

Gebertyp	FBTYPE	EXTPOS	GEARMODE	Up
5V analog (BiSS B)	23	-	-	5V +/-5%
12V analog (BiSS B)	24	-	-	7,511V

Die Pinbelegung auf der Geberseite bezieht sich auf Kollmorgen AKM Motoren.

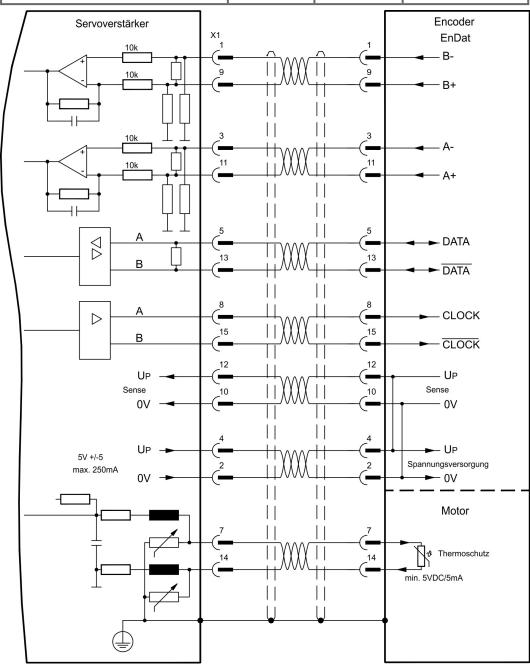

9.12.5 Encoder mit BiSS digital (X1)

Anschluss von single- oder multiturn digitalen Encodern mit BiSS Interface als Rückführsystem (primär oder sekundär, (→ #65)).

Die Temperaturüberwachung im Motor wird an X1 angeschlossen und dort ausgewertet. Mit unserem konfektionierten Encoder-Anschlusskabel sind alle Signale verbunden. Bei geplanter Leitungslänge über 50 m sprechen Sie mit unserer Applikationsabteilung.

Grenzfrequenz: 1,5MHz

Gebertyp	FBTYPE	EXTPOS	GEARMODE	Up
5V digital (BiSS B)	20	11	11	5V +/-5%
12V digital (BiSS B)	22	11	11	7,511V
5V digital (BiSS C, Renishaw)	33	12	12	5V +/-5%


Die Pinbelegung auf der Geberseite bezieht sich auf Kollmorgen AKM Motoren.

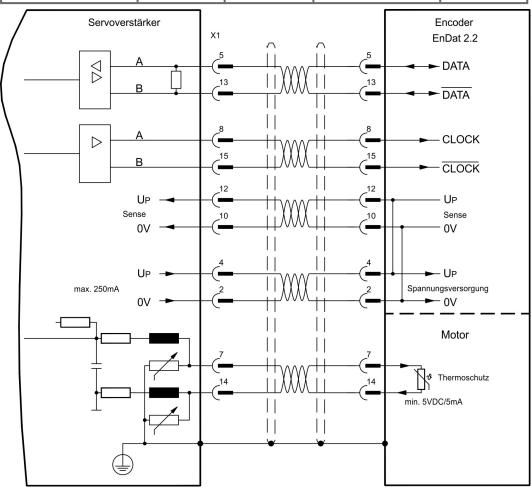
9.12.6 Sinus Encoder mit EnDat 2.1 (X1)

Anschluss von single- oder multiturn sinus-cosinus-Encodern mit EnDat 2.1 Protokoll als Rückführsystem (primär oder sekundär, (→ #65)). Vorzugstypen sind die optischen Geber ECN1313 oder EQN1325 und die induktiven Geber ECI 1118/1319 oder EQI 1130/1331. Die Temperaturüberwachung im Motor wird an X1 angeschlossen und dort ausgewertet. Mit unserem konfektionierten Encoder-Anschlusskabel sind alle Signale verbunden. Bei geplanter Leitungslänge über 50 m sprechen Sie mit unserer Applikationsabteilung.

Grenzfrequenz (sin, cos): 350 kHz

Gebertyp	FBTYPE	EXTPOS	GEARMODE
ENDAT 2.1	4	8	8
ENDAT 2.1 + Wake&Shake	21	8	8

Die Pinbelegung auf der Geberseite bezieht sich auf Kollmorgen AKM Motoren.

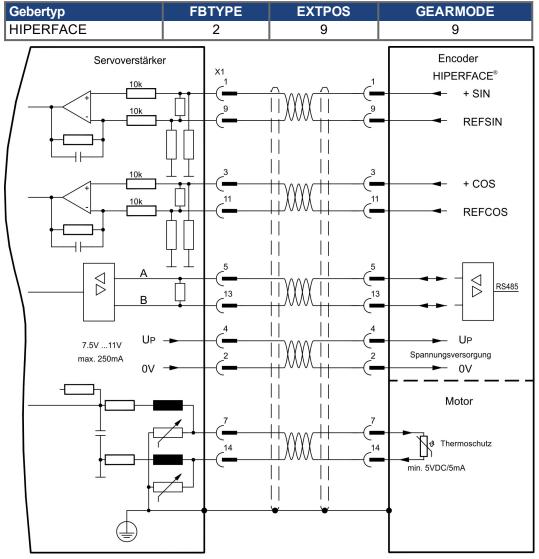

9.12.7 Encoder mit EnDat 2.2 (X1)

Anschluss von single- oder multiturn Encodern mit EnDat 2.2 Protokoll als Rückführsystem (primär, (→ #65)). Die Temperaturüberwachung im Motor wird an X1 angeschlossen und dort ausgewertet. Mit unserem konfektionierten Encoder-Anschlusskabel sind alle Signale verbunden.

Bei geplanter Leitungslänge über 50 m sprechen Sie mit unserer Applikationsabteilung.

Grenzfrequenz: 1,5MHz

Gebertyp	FBTYPE	EXTPOS	GEARMODE	Up
5V ENDAT 2.2	32	13	13	5V +/-5%
12V ENDAT 2.2	34	13	13	7,511V


Die Pinbelegung auf der Geberseite bezieht sich auf Kollmorgen AKM Motoren.

9.12.8 Sinus Encoder mit HIPERFACE (X1)

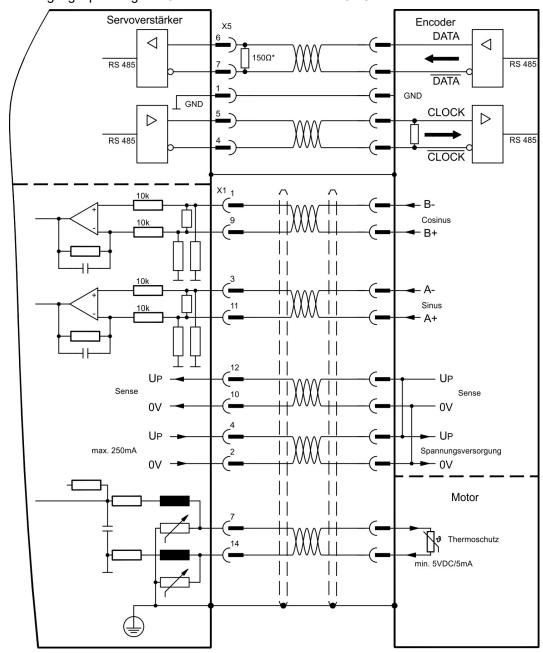
Anschluss von single- oder multitum sinus-cosinus-Encodern mit HIPERFACE Protokoll als Rückführsystem (primär oder sekundär, (→ #65)).

Die Temperaturüberwachung im Motor wird an X1 angeschlossen und dort ausgewertet. Mit unserem konfektionierten Encoder-Anschlusskabel sind alle Signale verbunden.

Bei geplanter Leitungslänge über 50 m sprechen Sie mit unserer Applikationsabteilung. Grenzfrequenz (sin, cos): 350 kHz

Die Pinbelegung auf der Geberseite bezieht sich auf Kollmorgen AKM Motoren.

9.12.9 Sinus Encoder mit SSI (X5, X1)


Anschluss von sinus-cosinus Encodern mit SSI Interface als lineares Rückführsystem (primär, (→ # 65)) an X5.

Spannungsversorgung für den Geber und Temperaturüberwachung im Motor wird an X1 angeschlossen und dort ausgewertet. Bei geplanter Leitungslänge über 50 m sprechen Sie mit unserer Applikationsabteilung.

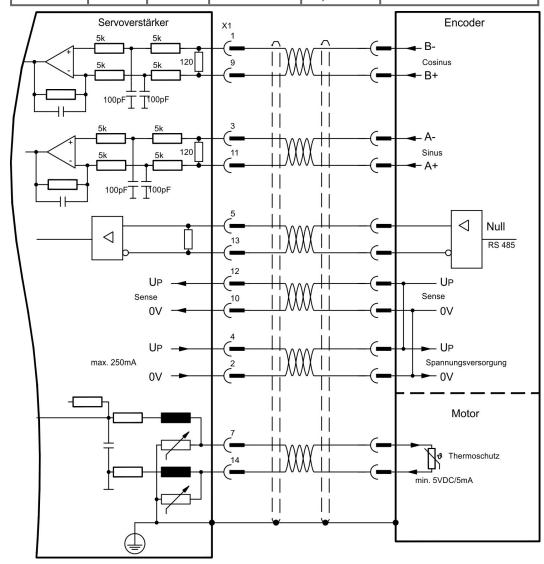
Grenzfrequenz (sin, cos): 350 kHz

Gebertyp	FBTYPE	EXTPOS	GEARMODE
SinCos SSI 5V linear	28	-	-

Versorgungsspannung des Gebers auf X1 einschalten: ENCVON auf 1 setzen.

9.12.10 Sinus Encoder ohne Datenspur (X1)

Anschluss eines Sinus-Cosinus Encoders ohne Datenspur als Rückführsystem (primär oder sekundär, (→ # 65)). Der Verstärker benötigt bei jedem Einschalten der 24V-Versorgung die Startinformationen für den Lageregler (Parameterwert MPHASE). Je nach Einstellung von FBTYPE wird ein Wake&Shake durchgeführt oder der Wert für MPHASE wird aus dem EEPROM des Servoverstärkers entnommen.

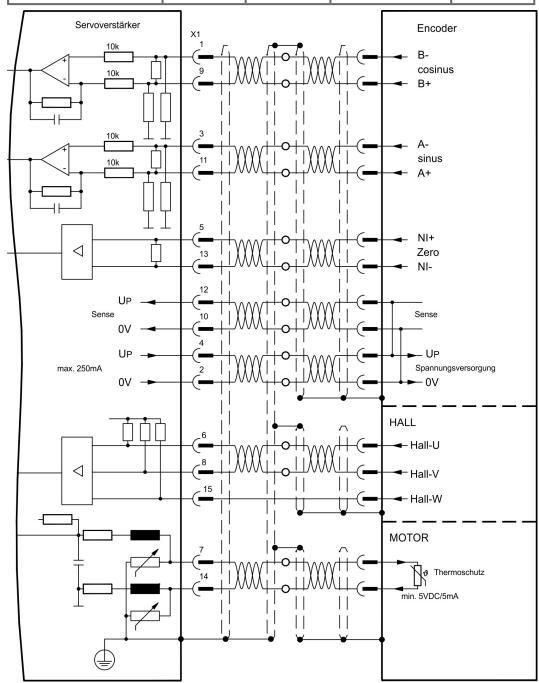

MARNUNG Vertikale Last kann fallen!

Bei vertikalen Achsen kann die Last ungebremst herunterfallen, da beim Wake&Shake die Bremse gelöst wird und kein ausreichendes Drehmoment zum Halten der Last erzeugt werden kann.

• Verwenden Sie Wake & Shake nicht bei vertikalen, hängenden Lasten.

Die Temperaturüberwachung im Motor wird über die Encoderleitung an X1 angeschlossen. Bei geplanter Leitungslänge über 50 m sprechen Sie mit unserer Applikationsabteilung. Grenzfrequenz (sin, cos): 350 kHz

Gebertyp	FBTYPE	EXTPOS	GEARMODE	Up	Bemerkung
SinCos 5V	1	6	6	5V +/-5%	MPHASE aus EEPROM
SinCos 12V	SinCos 12V 3 7		7	7,511V	MPHASE aus EEPROM
SinCos 5V	7	6	6	5V +/-5%	MPHASE wake & shake
SinCos 12V	8	7	7	7,511V	MPHASE wake & shake


9.12.11 Sinus Encoder mit Hall (X1)

Sinus-Encoder, die keine absolute Information zur Kommutierung bereitstellen, können mit einem zusätzlichen Hall-Geber als vollständiges Rückführungssystem (primär, (→ # 65)) ausgewertet werden.

Alle Signale werden an X1 angeschlossen und dort ausgewertet. Bei geplanter Leitungslänge über 25 m sprechen Sie mit unserer Applikationsabteilung.

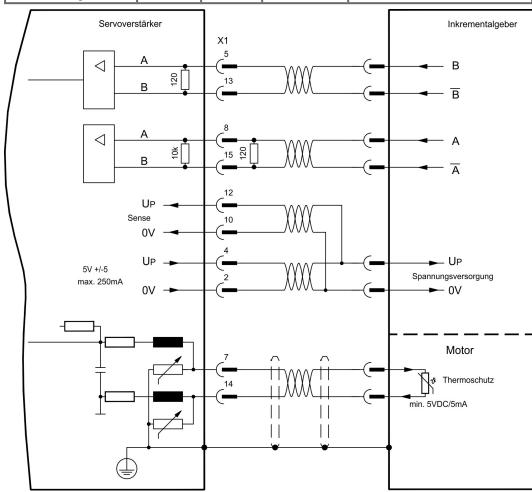
Grenzfrequenz (sin, cos): 350 kHz

Gebertyp	FBTYPE	EXTPOS	GEARMODE	Up
SinCos 5V mit Hall	5	-	-	5V +/-5%
SinCos 12V mit Hall	6	-	-	7,511V

9.12.12 Inkrementalgeber ROD (AquadB) 5V, 1,5MHz (X1)

Anschluss von Inkrementalgeber als Rückführsystem (primär oder sekundär, (→ #65)). Der Verstärker benötigt bei jedem Einschalten der 24V-Versorgung die Startinformationen für den Lageregler (Parameterwert MPHASE). Je nach Einstellung von FBTYPE wird ein Wake&Shake durchgeführt oder der Wert für MPHASE wird aus dem EEPROM des Servoverstärkers entnommen.

MARNUNG Vertikale Last kann fallen!


Bei vertikalen Achsen kann die Last ungebremst herunterfallen, da beim Wake&Shake die Bremse gelöst wird und kein ausreichendes Drehmoment zum Halten der Last erzeugt werden kann.

• Verwenden Sie Wake & Shake nicht bei vertikalen, hängenden Lasten.

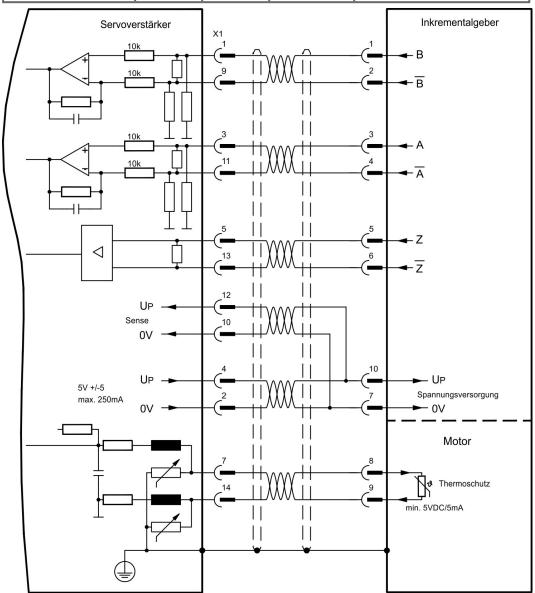
Die Temperaturüberwachung im Motor wird an X1 angeschlossen und dort ausgewertet. Mit unserem konfektionierten Encoder-Anschlusskabel sind alle Signale verbunden.

Bei geplanter Leitungslänge über 50 m sprechen Sie mit unserer Applikationsabteilung. Grenzfrequenz (A, B): 1,5MHz

Gebertyp	FBTYPE	EXTPOS	GEARMODE	Bemerkung
Inkrementalgeber 5V	31	30	30	MPHASE aus EEPROM
Inkrementalgeber 5V	30	30	30	MPHASE mit wake & shake

9.12.13 Inkrementalgeber ROD (AquadB) 5V, 350kHz (X1)

5V-Inkrementalgeber (ROD, AquadB) als Rückführsystem (primär / sekundär, (→ #65)). Der Servoverstärkers benötigt bei jedem Einschalten der 24V-Versorgung die Startinformationen für den Lageregler (MPHASE). Je nach FBTYPE-Einstellung wird ein Wake&Shake durchgeführt oder MPHASE wird aus dem EEPROM des Servoverstärkers entnommen.

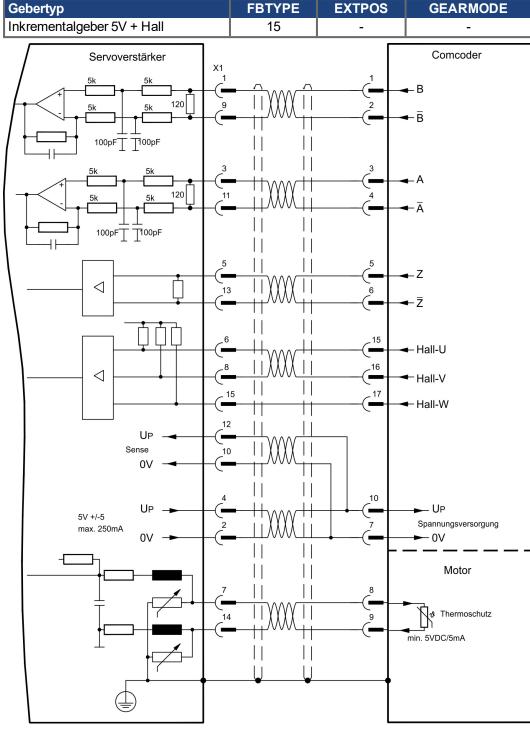

WARNUNG Vertikale Last kann fallen!

Bei vertikalen Achsen kann die Last ungebremst herunterfallen, da beim Wake&Shake die Bremse gelöst wird und kein ausreichendes Drehmoment zum Halten der Last erzeugt werden kann.

• Verwenden Sie Wake & Shake nicht bei vertikalen, hängenden Lasten.

Die Temperaturüberwachung des Motors wird über X1 am Verstärker angeschlossen. Bei geplanter Leitungslänge über 50 m sprechen Sie mit unserer Applikationsabteilung. Grenzfrequenz (A, B): 350 kHz

Gebertyp	FBTYPE	EXTPOS	GEARMODE	Bemerkung
Inkrementalgeber 5V	27	10	10	MPHASE aus EEPROM
Inkrementalgeber 5V	17	10	10	MPHASE mit wake & shake



Die Pinbelegung auf der Geberseite bezieht sich auf Kollmorgen AKM Motoren.

9.12.14 Inkrementalgeber ROD (AquadB) 5V, 350kHz mit Hall (X1)

Anschluss eines ComCoders als Rückführeinheit (primär, (→ #65)). Für die Kommutierung werden Hallsensoren und für die Auflösung ein eingebauter Inkrementalgeber (AquadB) verwendet. Die Temperaturüberwachung im Motor wird an X1 angeschlossen und dort ausgewertet. Mit unserem konfektionierten ComCoder-Anschlusskabel sind alle Signale verbunden. Bei geplanter Leitungslänge über 25 m sprechen Sie mit unserer Applikationsabteilung. Bei getrennten Gebersystemen (Inkrementalgeber und Hall-Geber getrennt) muss die Verdrahtung ähnlich wie auf (→ #77) ausgeführt werden. Die Anschlussbelegung am Verstärker entspricht jedoch dem u.a. Anschlussplan.

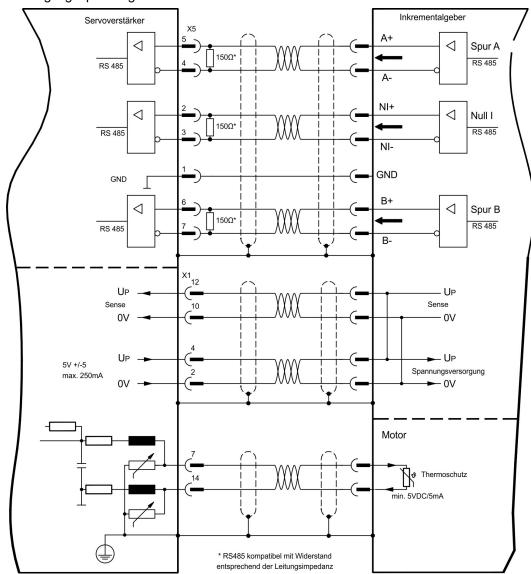
Grenzfrequenz (A,B): 350 kHz

Die Pinbelegung auf der Geberseite bezieht sich auf Kollmorgen AKM Motoren.

9.12.15 Inkrementalgeber ROD (AquadB) 5V (X5, X1)

5V-Inkrementalgeber (ROD, AquadB) als Rückführsystem (primär / sekundär, (→ # 66)). Der S300 benötigt bei jedem Einschalten der 24V-Versorgung die Startinformationen für den Lageregler (MPHASE). Je nach FBTYPE-Einstellung wird ein Wake&Shake durchgeführt oder MPHASE wird aus dem EEPROM des S300 entnommen.

WARNUNG Vertikale Last kann fallen!

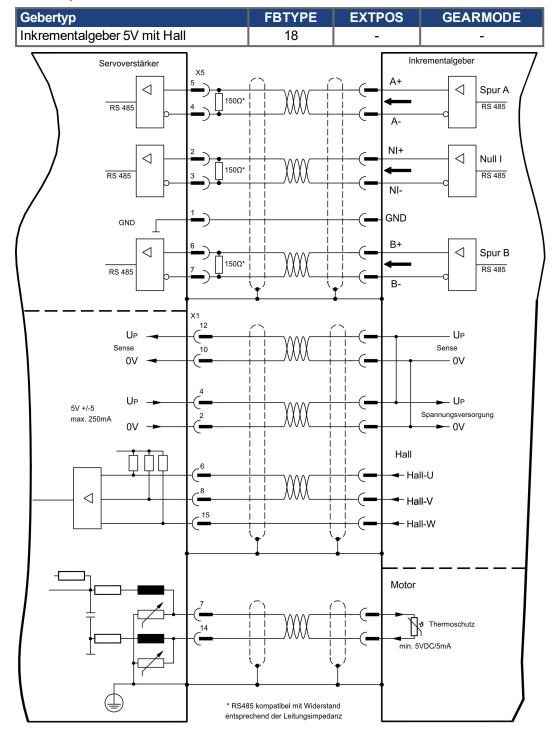

Bei vertikalen Achsen kann die Last ungebremst herunterfallen, da beim Wake&Shake die Bremse gelöst wird und kein ausreichendes Drehmoment zum Halten der Last erzeugt werden kann.

• Verwenden Sie Wake & Shake nicht bei vertikalen, hängenden Lasten.

Spannungsversorgung für den Geber und Temperaturüberwachung des Motors werden über X1 am Verstärker angeschlossen. Bei geplanter Leitungslänge über 50m sprechen Sie bitte mit unserer Applikationsabteilung. Grenzfrequenz (A, B, N): 1.5 MHz

Gebertyp	FBTYPE	EXTPOS/Gearmode	ENCMODE	Bemerkung
Inkremental 5V	13	3	0	MPHASE aus EEPROM
Inkremental 5V	19	3	0	MPHASE mit wake&shake

Versorgungsspannung des Gebers auf X1 einschalten: ENCVON auf 1 setzen.



9.12.16 Inkrementalgeber ROD (AquadB) 5V mit Hall (X5, X1)

Anschluss eines 5V-Inkrementalgebers (ROD, AquadB) und eines Hall-Gebers als Rückführeinheit (primär, (→ #66)). Für die Kommutierung wird der Hall-Geber und für die Auflösung der Inkrementalgeber verwendet.

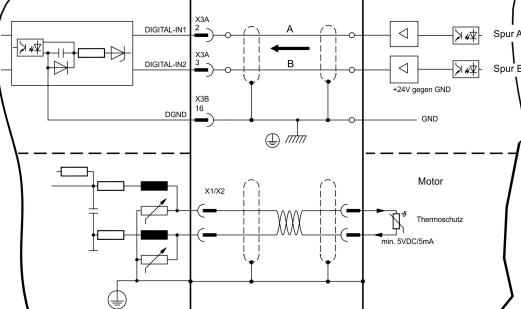
Spannungsversorgung für den Geber und Temperaturüberwachung des Motors werden über X1 am Verstärker angeschlossen.

Bei geplanter Leitungslänge über 25m sprechen Sie bitte mit unserer Applikationsabteilung. Grenzfrequenz an X5: 1,5 MHz, an X1: 350 kHz

9.12.17 Inkrementalgeber ROD (AquadB) 24V (X3)

Anschluss eines 24V-Inkrementalgebers (ROD AquadB) als Rückführeinheit (primär oder sekundär, (→ #65)). Verwendet werden die digitalen Eingänge DIGITAL-IN 1 und 2 an Stecker X3. Der Verstärker benötigt bei jedem Einschalten der 24V-Versorgung die Startinformationen für den Lageregler (Parameterwert MPHASE). Je nach Einstellung von FBTYPE wird ein Wake&Shake durchgeführt oder der Wert für MPHASE wird aus dem EEPROM des Servoverstärkers entnommen.

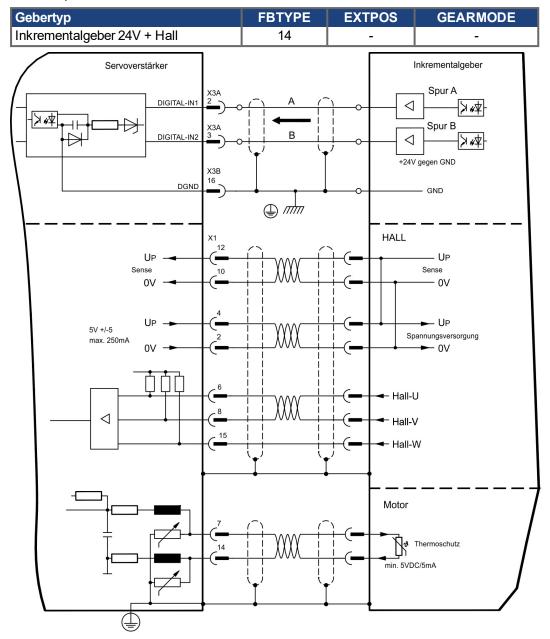
WARNUNG Vertikale Last kann fallen!


Bei vertikalen Achsen kann die Last ungebremst herunterfallen, da beim Wake&Shake die Bremse gelöst wird und kein ausreichendes Drehmoment zum Halten der Last erzeugt werden kann.

• Verwenden Sie Wake & Shake nicht bei vertikalen, hängenden Lasten.

Die Temperaturüberwachung des Motors wird über X1 oder X2 am Verstärker angeschlossen. Bei geplanter Leitungslänge über 25 m sprechen Sie mit unserer Applikationsabteilung.

Grenzfrequenz: 100 kHz, Flankensteilheit tv ≤ 0,1µs


<u>-</u>			<u> </u>	
Gebertyp	FBTYPE	EXTPOS	GEARMODE	Bemerkung
Inkrementalgeber 24V	12	2	2	MPHASE aus EEPROM
Inkrementalgeber 24V	16	2	2	MPHASE mit wake & shake
Servoversta	ärker			Inkrementalgeber
	DIGITAL-IN1	X3A 2 X3A	A ()	Spur A
	DIGITAL-IN2	$\frac{3}{2}$	B ; ;	Spur B

9.12.18 Inkrementalgeber ROD (AquadB) 24V mit Hall (X3, X1)

Anschluss eines 24V-Inkrementalgebers (ROD, AquadB) und eines Hall-Gebers als Rückführeinheit (primär, (→ #65)). Für die Kommutierung wird der Hall-Geber und für die Auflösung der Inkrementalgeber verwendet.

Die Temperaturüberwachung im Motor wird an X1 angeschlossen und dort ausgewertet. Bei geplanter Leitungslänge über 25 m sprechen Sie mit unserer Applikationsabteilung. Grenzfrequenz an X3: 100 kHz, an X1: 350 kHz

9.12.19 SSI Absolutgeber (X5, X1)

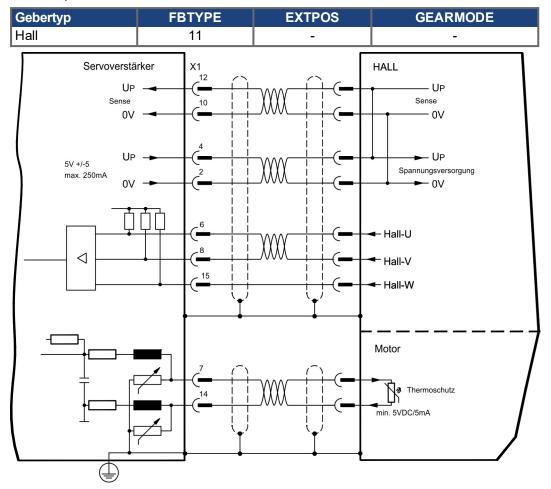
Anschluss eines synchron seriellen Multiturn-Absolutgebers als Rückführeinheit (primär oder sekundär, (→ #65)). Binär- und Gray-Datenformate können gelesen werden.

Die Temperaturüberwachung im Motor wird an X1 angeschlossen und dort ausgewertet. Bei geplanter Leitungslänge über 50 m sprechen Sie mit unserer Applikationsabteilung.

Grenzfrequenz: 1,5MHz

Gebertyp	FBTYPE	EXTPOS	GEARMODE
SSI	9	5	5

Versorgungsspannung des Gebers auf X1 einschalten: ENCVON auf 1 setzen.



9.12.20 Hall-Geber (X1)

Anschluss eines HALL Gebers als Rückführeinheit (primär, (→ #65)).

Die Temperaturüberwachung im Motor wird an X1 angeschlossen und dort ausgewertet. Bei geplanter Leitungslänge über 25 m sprechen Sie mit unserer Applikationsabteilung.

Grenzfrequenz: 350 kHz

9.13 Elektronisches Getriebe, Master-Slave-Betrieb

Mit der Funktionalität "Elektronisches Getriebe" (siehe Inbetriebnahme-Software und Parameterbeschreibung GEARMODE) wird der Servoverstärker von einem sekundären Feedback als "Folger" gesteuert.

Sie können Master-Slave Systeme aufbauen, einen externen Encoder als Sollwertgeber benutzen oder den Verstärker an eine Schrittmotor-Steuerung anschließen.

Der Verstärker wird mit Hilfe der Inbetriebnahmesoftware parametriert (elektronisches Getriebe, Parameter GEARMODE).

Die Auflösung (Impulszahlen/Umdrehung) ist einstellbar.

INFO

Wird der Eingang X1 verwendet, ohne die X1-Spannungsversorgung (Pins 2, 4, 10, 12) zu nutzen (z.B. Master-Slave-Betrieb mit anderen Servoverstärkern), muss zur Vermeidung der Fehlermeldung F04 die Überwachung dieser Spannungsversorgung abgeschaltet werden. Dafür müssen Sie Bit 20 des Parameters DRVCNFG2 ändern (siehe ASCII Objekt Referenz in der Online-Hilfe).

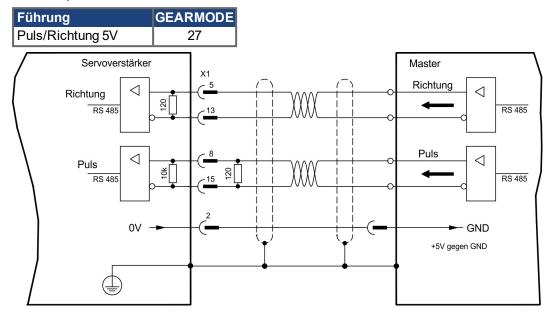
9.13.1 Signalquellen

Als Führungssignal für das elektronische Getriebe können Sie folgende Typen verwenden:

Führung durch	Grenz- frequenz	Anschluss an Stecker	Anschluss- bild	GEARMODE
Encoder BiSS digital	1,5 MHz	X1	(→ #71)	11, 12
SinCos Encoder ENDAT 2.1	350 kHz	X1	(→ #72)	8
Encoder ENDAT 2.2	1,5 MHz	X1	(→ #73)	13
SinCos Encoder HIPERFACE	350 kHz	X1	(→ #74)	9
SinCos Encoder ohne Datenspur	350 kHz	X1	(→ #76)	6, 7
Inkrementalgeber (AquadB) 5V	1,5 MHz	X1	(→ #78)	30
Inkrementalgeber (AquadB) 5V	350 kHz	X1	(→ #79)	10
Inkrementalgeber (AquadB) 5V	1,5 MHz	X5, X1	(→ #81)	3
Inkrementalgeber (AquadB) 24V	100 kHz	X3	(→ #83)	2
SSI 5V	1,5 MHz	X5, X1	(→ #85)	5
Puls/Richtung 5V	1,5 MHz	X1	(→ #88)	27
Puls/Richtung 5V	1,5 MHz	X5, X1	(→ #89)	4
Puls/Richtung 24V	100 kHz	Х3	(→ #88)	1

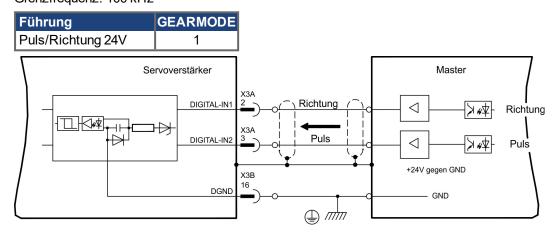
9.13.2 Anschluss an Schrittmotor-Steuerungen (Puls-Richtung)

Sie können den Servoverstärker an eine herstellerneutrale Schrittmotorsteuerung anschließen. Der Servoverstärker wird mit Hilfe der Inbetriebnahmesoftware parametriert (elektronisches Getriebe). Die Schrittzahl ist einstellbar, damit kann der Servoverstärker an die Puls-Richtungs-Signale jeder Schrittmotorsteuerung angepasst werden. Diverse Meldungen können ausgegeben werden.


INFO

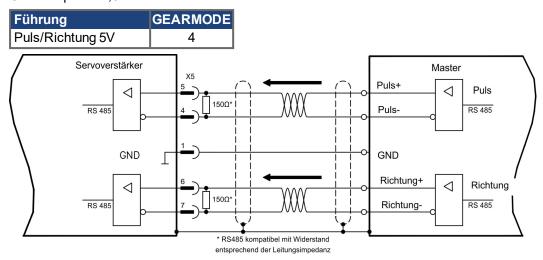
Der Anschluss an einen Inkrementalgeber bietet eine höhere EMV-Störfestigkeit.

9.13.2.1 Puls/Richtungs-Geber mit 5V-Signalpegel (X1)


Anschluss des Servoverstärkers an eine Schrittmotorsteuerung mit 5V Signalpegel. Verwendet wird hierfür der SubD-Stecker X1.

Grenzfrequenz: 1,5 MHz

9.13.2.2 Puls/Richtungs-Geber mit 24V-Signalpegel (X3)


Anschluss des Servoverstärkers an eine Schrittmotorsteuerung mit 24V Signalpegel. Verwendet werden hierfür die digitalen Eingänge DIGITAL-IN 1 und 2 an Stecker X3. Grenzfrequenz: 100 kHz

9.13.2.3 Puls/Richtungs-Geber mit 5V-Signalpegel (X5)

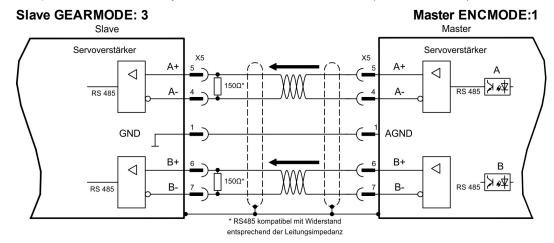
Anschluss des Servoverstärkers an eine Schrittmotorsteuerung mit 5V Signalpegel. Verwendet wird hierfür der SubD-Stecker X5.

Grenzfrequenz: 1,5 MHz

9.13.3 Anschluss für Master-Slave Betrieb

Sie können mehrere S300 Verstärker zusammenschalten, wobei ein Verstärker als Master die anderen Verstärker steuert. Bis zu 16 Slave-Verstärker werden dabei vom Master über den Encoder-Ausgang angesteuert.

9.13.3.1 Master-Slave 5V (X1)


Nicht verfügbar.

9.13.3.2 Master-Slave 5V (X5)

Mastereinstellung: Positionsausgabe an X5 auf Bildschirmseite "Encoder-Emulation" Slaveeinstellung: auf Bildschirmseite "Elektronisches Getriebe" (GEARMODE)

Grenzfrequenz X5: 1,5 MHz

Beispiel für Master-Slave Systeme mit zwei S300 Verstärkern (ROD Emulation):

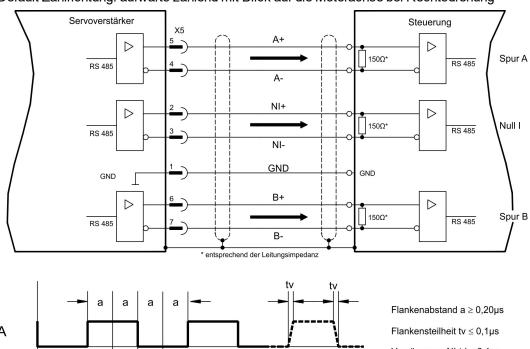
9.14 Encoder Emulation, Positionsausgabe

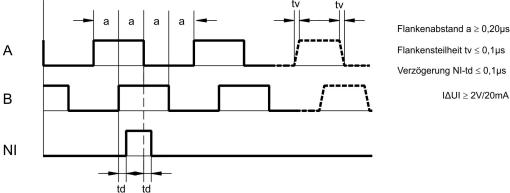
9.14.1 Inkrementalgeberausgabe ROD (AquadB) (X5)

Schnelle Inkrementalgeber-Schnittstelle. Wählen Sie die Encoder-Funktion ROD (AQuadB) Encoder (Bildschirmseite "Encoder Emulation"). Aus den zyklisch-absoluten Signalen des Resolvers bzw. Encoders wird im Servoverstärker die Position der Motorwelle berechnet. Aus dieser Information werden Inkrementalgeber-kompatible Impulse erzeugt, d.h. am SubD-Stecker X5 werden Impulse in zwei um 90° elektrisch versetzten Signalen A und B und ein Nullimpuls ausgegeben.

Die Auflösung (vor Vervielfachung) ist einstellbar:

Encoderfunktion (ENCMODE)	Feedbacksystem (FBTYPE)	Auflösung (ENCOUT)	Nullimpuls
	0, Resolver		
1, ROD	2, 4 Encoder	256524288 (2 ⁸ 2 ¹⁹)	einer pro Umdrehung (nur bei A=B=1)
3, ROD Interpolation	Encoder	2 ⁴ 2 ⁷ (Vervielfachung) TTL Striche mal Gebe- rauflösung	Weitergabe des Gebersignals von X1 an X5


Sie können die Lage des Nullimpulses innerhalb einer mechanischen Umdrehung einstellen und speichern (Parameter NI-OFFSET). Die Versorgung der Treiber erfolgt durch eine interne Spannung.


INFO

Die maximal zulässige Leitungslänge beträgt 100 m.

Anschluss- und Signalbeschreibung Inkrementalgeber-Schnittstelle :

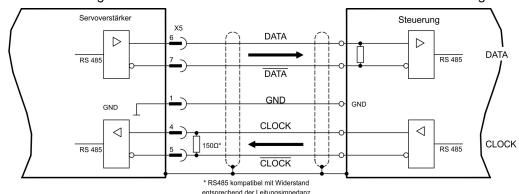
Default Zählrichtung: aufwärts zählend mit Blick auf die Motorachse bei Rechtsdrehung

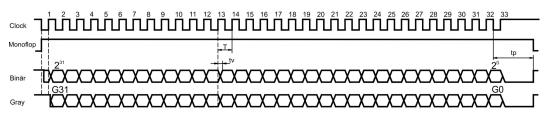
9.14.2 SSI-Ausgabe (X5)

SSI-Schnittstelle (synchron serielle Absolutgeberemulation). Wählen Sie die Encoder-Funktion SSI (Bildschirmseite "Encoder Emulation", ENCMODE 10). Aus den zyklisch-absoluten Signalen des Resolvers bzw. Encoders wird im Servoverstärker die Position der Motorwelle berechnet. Aus dieser Information wird ein SSI-Datum (nach Stegmann Patentschrift DE 3445617C2) erstellt. Maximal 32 Bit werden übertragen.

Die führenden Datenbit bilden die Anzahl der Umdrehungen ab und sind wählbar von 12 bis 16 Bit. Die darauf folgenden max. 16 Bit bilden die Auflösung ab und sind nicht veränderbar.

Die folgende Tabelle zeigt die Aufteilung des SSI-Datums je nach gewählter Anzahl Umdrehungen:


	Umdrehungen																	Au	flös	unç) (be	lie	ebi	ig))					
	SSI	RE\	/OL	-																											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	Г	T						П		П	П	П	П			П
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0	₄ ,	_	,,	40	١,,	,,	١,,	إرا				ا۔ا				
		13	12	11	10	9	8	7	6	5	4	3	2	1	0	1:	ا۲	14	13	12	11	10	9	ď		ď	ျ	4	3	^	ľ
			12	11	10	9	8	7	6	5	4	3	2	1	0											П					
				11	10	9	8	7	6	5	4	3	2	1	0	L															


Die Signalfolge kann im Binärformat (Standard) oder im Grayformat ausgegeben werden. Sie können den Servoverstärker an die Taktfrequenz Ihrer SSI-Auswertung mit der Setup-Software anpassen.

Die Versorgung der Treiber erfolgt durch eine interne Spannung.

Anschluss- und Signalbeschreibung SSI-Schnittstelle:

Default Zählrichtung: aufwärts zählend mit Blick auf die Motorachse bei Rechtsdrehung.

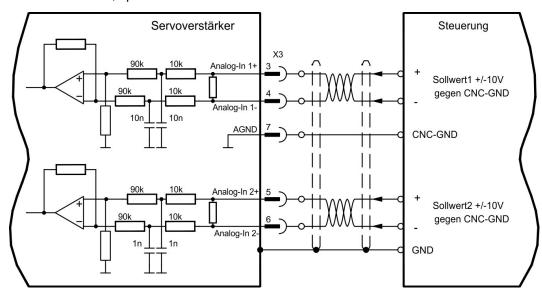
Umschaltzeit Daten ty ≤ 300ns

min. Periodendauer T = 600 ns

Time Out tp = $3\mu s/13\mu s$ (SSITOUT)

Ausgang IΔUI ≥ 2V/20mA

 $I\Delta UI \geq 0.3V$ Eingang


9.15 Digitale und analoge Ein- und Ausgänge

9.15.1 Analoge Eingänge (X3)

Der Servoverstärker besitzt zwei programmierbare Differenzeingänge für analoge Sollwerte. Als Potentialbezug muss AGND (X3/7) immer mit CNC-GND der Steuerung verbunden werden.

Technische Eigenschaften

- Differenz-Eingangsspannung max. ± 10 V
- Bezugsmasse: AGND, Klemme X3/7
- Differenzeingangswiderstand 2,4 kΩ
- Gleichtaktspannungsbereich für beide Eingänge zusätzlich ± 10 V
- Abtastrate: 62,5 μs

Eingang Analog-In1 (Klemmen X3/3-4)

Differenz-Eingangsspannungen von max. ± 10 V, Auflösung 14 Bit, skalierbar.

Standarde instellung: Drehzahlsollwert

Eingang Analog-In 2 (Klemmen X3/5-6)

Differenz-Eingangsspannungen von max. ± 10 V, Auflösung 12 Bit, skalierbar.

Standardeinstellung: Drehmomentsollwert

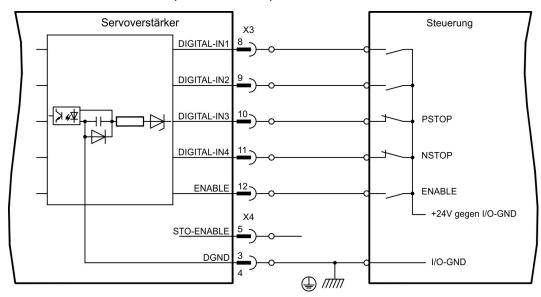
Anwendungsbeispiele für Sollwerteingang Analog-In 2:

- einstellbare externe Strombegrenzung
- abgeschwächter Eingang für Einricht- oder Tippbetrieb
- Vorsteuerung, Override

Drehrichtungszuordnung

Standardeinstellung: Rechtsdrehung der Motorwelle (Blick auf die Welle)

- Positive Spannung an Klemme X3/3 (+) gegen Klemme X3/4 () oder
- Positive Spannung an Klemme X3/5 (+) gegen Klemme X3/6 ()


Zur Umkehr des Drehsinns können Sie die Belegung der Klemmen X3/3-4 bzw. X3/5-6 tauschen oder auf der Bildschirmseite "Drehzahlregler" den Parameter DREHRICHTUNG ändern (0/1).

9.15.2 Digitale Eingänge (X3/X4)

Alle digitalen Eingänge sind über Optokoppler potentialfrei gekoppelt.

Technische Eigenschaften

- Bezugsmasse ist Digital-GND (DGND, Klemme X4/3 und X4/4)
- Eingänge an X3 sind SPS-kompatibel (EN 61131-2 Typ 1)
 High: 11...30 V / 2...11 mA , Low: -3...5 V / <1mA
- Abtastrate: Software: 250 μs / Hardware: 2μs

Eingang Freigabe ENABLE

Sie geben die Endstufe des Servoverstärkers mit dem Freigabe- (Enable-) Signal frei (Klemme X3/12, Eingang 24V, High-aktiv). Freigabe nur möglich, wenn Eingang STO-Enable 24V Signal anliegen hat (siehe (→ #38)ff).

Im gesperrten Zustand (Low signal) ist der angeschlossene Motor drehmomentfrei.

Eingang Freigabe STO-ENABLE

Ein zusätzlicher digitaler Eingang gibt die Leistungs-Endstufe des Verstärkers frei. Solange ein 24V-Signal am Eingang anliegt, ist die Endstufe betriebsbereit. Bei offenem Eingang STO-Enable wird keine Leistung mehr an den Motor übertragen, der Antrieb wird drehmomentfrei und trudelt aus. Ein ausfallsicheres Bremsen des Antriebs muss, falls erforderlich, über eine mechanische Bremse sichergestellt werden, da eine elektrische Bremsung durch den Antrieb nicht mehr möglich ist.

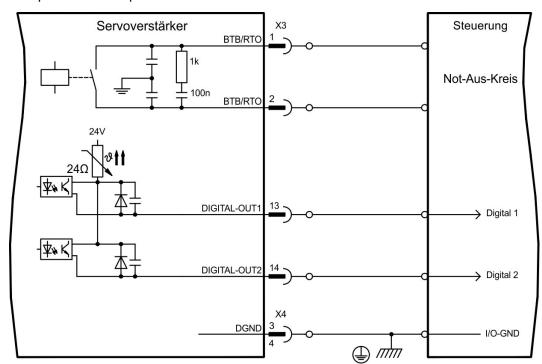
In Verbindung mit einer sicheren externen Verdrahtung erhalten Sie bei Verwendung des Eingangs STO-Enable eine funktional sichere Wiederanlaufsperre.

Weitergehende Informationen und Anschlussbeispiele siehe (→ #38)ff.

INFO

Der Eingang STO-Enable ist nicht kompatibel zu EN 61131-2.

Programmierbare digitale Eingänge:


Sie können die digitalen Eingänge DIGITAL-IN1 bis DIGITAL-IN4 dazu verwenden, im Servoverstärker abgespeicherte, vorprogrammierte Funktionen auszulösen. Eine Liste der vorprogrammierten Funktionen finden Sie auf der Bildschirmseite "I/O digital" der Inbetriebnahmesoftware DRIVEGUI.EXE.

Wenn einem Eingang eine vorprogrammierte Funktion neu zugewiesen wurde, muss der Datensatz im EEProm des Servoverstärkers gespeichert und ein Reset des Gerätes durchgeführt werden (z.B. mit der Inbetriebnahmesoftware).

9.15.3 Digitale Ausgänge (X3)

Technische Eigenschaften

- Bezugsmasse ist Digital-GND (DGND, Klemme X4/3 und X4/4)
- Alle digitalen Ausgänge sind potentialfrei
- DIGITAL-OUT1 und 2: Open Emitter, max. 30V DC, 10mA
 BTB/RTO: Relais-Ausgang, max. 30V DC oder 42V AC, 0.5A
- Update rate: 250 μs

Betriebsbereit-Kontakt BTB/RTO (X3/1-2)

Betriebsbereitschaft (Klemmen X3/1 und X3/2) wird über einen **potentialfreien** Relaiskontakt gemeldet. Der Kontakt ist **geschlossen** bei betriebsbereitem Servoverstärker, die Meldung wird vom Enable-Signal, von der I²t- Begrenzung und von der Bremsschwelle nicht beeinflusst.

INFO

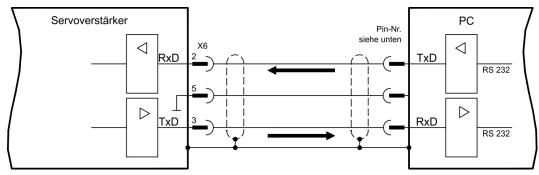
Alle Fehler führen zum Abfallen des BTB-Kontaktes und Abschalten der Endstufe (bei offenem BTB Kontakt ist die Endstufe gesperrt -> keine Leistung). Eine Liste der Fehlermeldungen finden Sie auf Seite (→ # 112).

Programmierbare digitale Ausgänge DIGITAL-OUT 1 und 2 (X3/13, 14):

Sie können die digitalen Ausgänge DIGITAL-OUT1 (Klemme X3/13) und DIGITAL-OUT2 (Klemme X3/14) dazu verwenden, Meldungen von im Servoverstärker abgespeicherten, vorprogrammierten Funktionen auszugeben.

Eine Liste der vorprogrammierten Funktionen finden Sie auf der Bildschirmseite "I/O digital" unserer Inbetriebnahmesoftware DRIVEGUI.EXE.

Wenn einem Ausgang die Meldung einer vorprogrammierten Funktion neu zugewiesen wird, muss der Datensatz im EEprom des Servoverstärkers gespeichert und ein Reset durchgeführt werden (z.B. mit der Inbetriebnahmesoftware).

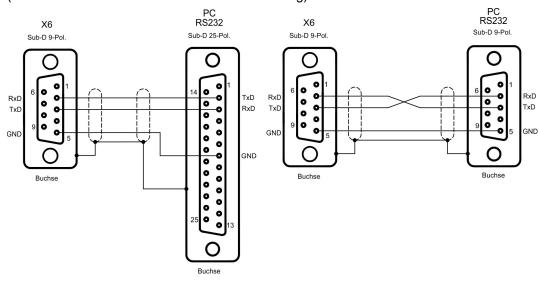

9.16 RS232 Schnittstelle, PC-Anschluss (X6)

Das Einstellen der Betriebs-, Lageregelungs- und Fahrsatzparameter können Sie mit der Inbetriebnahmesoftware auf einem handelsüblichen Personal Computer (→ # 99) erledigen.

Verbinden Sie die PC-Schnittstelle (X6) des Servoverstärkers bei abgeschalteten Versorgungsspannungen mit einer seriellen Schnittstelle des PC.

INFO

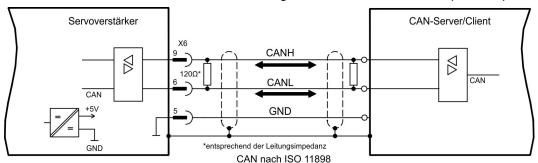
Verwenden Sie keine Nullmodem-PowerLink Leitung!


Die Schnittstelle liegt auf dem gleichen Potential wie die CANopen-Schnittstelle.

Die Schnittstelle wird in der Inbetriebnahmesoftware angewählt und eingestellt. Weitere Hinweise finden Sie auf Seite (→ #98).

Mit der optionalen Erweiterungskarte -2CAN- werden die beiden Schnittstellen RS232 und CAN, die denselben Stecker X6 belegen, auf zwei Stecker verteilt (→ #131).

Übertragungsleitung zwischen PC und Servoverstärker der Serie S300:


(Ansicht: Lötseite der SubD-Buchsen an der Leitung)

9.17 CAN-Bus Schnittstelle (X6)

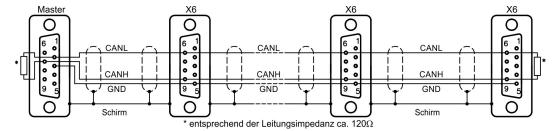
Schnittstelle zum Anschluss an den CAN Bus (default: 500 kBaud). Das integrierte Profil basiert auf dem Kommunikationsprofil CANopen DS301 und dem Antriebsprofil DS402. Im Zusammenhang mit dem Lageregler werden u.a. folgende Funktionen bereitgestellt: Tippen mit variabler Geschwindigkeit, Referenzfahren, Fahrauftrag starten, Direktfahrauftrag starten, digitale Sollwertvorgabe, Datentransferfunktionen und viele andere.

Detaillierte Informationen finden Sie im CANopen-Handbuch. Die Schnittstelle liegt auf dem gleichen Potential wie die RS232-Schnittstelle. Die analogen Sollwerteingänge sind weiterhin nutzbar. Mit der optionalen Erweiterungskarte -2CAN- werden die beiden Schnittstellen RS232 und CAN, die denselben Stecker X6 belegen, auf zwei Stecker verteilt (→ # 131).

CAN Buskabel

Nach ISO 11898 sollten Sie eine Busleitung mit einem Wellenwiderstand von 120 Ω verwenden. Die verwendbare Leitungslänge für eine sichere Kommunikation nimmt mit zunehmender Übertragungsrate ab. Als Anhaltspunkte können folgende bei uns gemessenen Werte dienen, sie sind allerdings nicht als Grenzwerte zu verstehen. Leitungsdaten:

- Wellenwiderstand 100-120 Ω
- Betriebskapazität max. 60 nF/km
- Leiterwiderstand (Schleife)159,8 Ω/km


Leitungslängen in Abhängigkeit von der Übertragungsrate (Beispiele)

Übertragungsrate / kBaud	max. Leitungslänge / m
1000	10
500	70
250	115

Mit geringerer Betriebskapazität (max. 30 nF/km) und geringerem Leiterwiderstand (Schleife, 115 Ω /km) können größere Übertragungsweiten erreicht werden. (Wellenwiderstand 150 \pm 5 Ω => Abschlusswiderstand 150 \pm 5 Ω).

An das SubD-Steckergehäuse stellen wir aus EMV-Gründen folgende Anforderung:

- metallisches oder metallisch beschichtetes Gehäuse
- Anschlussmöglichkeit für den Leitungsschirm im Gehäuse, großflächige Verbindung

10 Inbetriebnahme

Das Vorgehen bei einer Inbetriebnahme wird exemplarisch beschrieben. Je nach Einsatz der Geräte kann ein anderes Vorgehen sinnvoll oder erforderlich sein. Nehmen Sie bei Mehrachs-Systemen jeden Servoverstärker einzeln in Betrieb.

Vor der Inbetriebnahme muss der Maschinenhersteller eine Risikobeurteilung für die Maschine erstellen und geeignete Maßnahmen treffen, dass unvorhergesehene Bewegungen nicht zu Schäden an Personen oder Sachen führen können.

10.1 Wichtige Hinweise

ACHTUNG

Nur Fachpersonal mit umfassenden Kenntnissen in Elektrotechnik und Antriebstechnik darf das Antriebssystem testen und konfigurieren.

⚠ GEFAHR Tödliche Spannung!

Gefahr eines elektrischen Schlags. An spannungsführenden Teilen besteht unmittelbare Lebensgefahr.

- Verbaute Schutzmaßnahmen wie Isolationen oder Abschirmungen dürfen nicht entfernt werden.
- Arbeiten an der elektrischen Anlage sind nur durch geschultes und eingewiesenes Personal, unter Beachtung der Vorschriften für Arbeitssicherheit und nur bei ausgeschalteter und gegen Wiedereinschalten gesicherter elektrischer Versorgung zulässig.
- Im Normalbetrieb muss die Schranktür geschlossen sein und das Gerät darf nicht berührt werden.

WARNUNG Automatischer Wiederanlauf!

Es besteht die Gefahr von tödlichen oder schweren Verletzungen für Personen, die in der Maschine arbeiten. Der Antrieb kann abhängig von der Parametereinstellung nach dem Einschalten der Netzspannung, bei Spannungseinbrüchen oder Unterbrechungen automatisch anlaufen. Wenn Parameter AENA auf 1 gesetzt ist,

- warnen Sie an der Maschine mit einem Warnschild (Warnung: Automatischer Wiederanlauf nach Einschalten!) und
- stellen Sie sicher, dass ein Einschalten der Netzspannung nicht möglich ist, während sich Personen im Arbeitsbereich der Maschine aufhalten.

ACHTUNG

Wurde der Servoverstärker länger als 1 Jahr gelagert , müssen die Zwischenkreiskondensatoren neu formiert werden. Lösen Sie hierzu alle elektrischen Anschlüsse. Versorgen Sie den Servoverstärker etwa 30min einphasig mit der kleinsten zulässigen Versorgungsspannung an den Klemmen L1 / L2. Dadurch werden die Kondensatoren neu formiert.

INFO

Das Anpassen von Parametern und die Auswirkungen auf das Regelverhalten wird in der Online Hilfe der Inbetriebnahmesoftware beschrieben.

Die Inbetriebnahme der eventuell vorhandenen Feldbus-Erweiterungskarte wird im entsprechenden Handbuch auf der CD-Rom beschrieben.

Weiterführendes Wissen vermitteln wir Ihnen in Schulungskursen (auf Anfrage).

10.2 Inbetriebnahmesoftware

Dieses Kapitel erläutert die Installation der Inbetriebnahmesoftware DRIVEGUI.EXE für den digitalen Servoverstärker S300.

Wir bieten auf Anfrage Schulungs- und Einarbeitungskurse an.

10.2.1 Bestimmungsgemäße Verwendung

Die Inbetriebnahmesoftware ist dazu bestimmt, die Betriebsparameter der Servoverstärker der Serie S300 zu ändern und zu speichern. Der angeschlossene Servoverstärker kann mit Hilfe der Software in Betrieb genommen werden - dabei kann der Antrieb mit den Service-Funktionen direkt gesteuert werden.

Das Online Parametrieren eines laufenden Antriebs ist ausschließlich Fachpersonal mit den beschriebenen Fachkenntnissen (→ # 12) erlaubt.

Auf Datenträger gespeicherte Datensätze sind nicht gesichert gegen ungewollte Veränderung durch Dritte. Nach Laden eines Datensatzes müssen Sie daher grundsätzlich alle Parameter prüfen, bevor Sie den Servoverstärker freigeben.

10.2.2 Software-Beschreibung

Die Servoverstärker müssen an die Gegebenheiten Ihrer Maschine angepasst werden. Diese Parametrierung nehmen Sie meist nicht am Verstärker selbst vor, sondern an einem Personal-Computer (PC) mit Hilfe der Inbetriebnahmesoftware.

Der PC ist mit einer Nullmodem-Leitung (seriell, (→ #95)) mit dem Servoverstärker verbunden. Die Inbetriebnahmesoftware stellt die Kommunikation zwischen PC und S300 her.

Sie finden die Inbetriebnahmesoftware auf der beiliegenden CD-ROM und im Downloadbereich unserer Internetseite.

Sie können mit wenig Aufwand Parameter ändern und die Wirkung sofort am Antrieb erkennen, da eine ständige Verbindung (online Verbindung) zum Verstärker besteht. Gleichzeitig werden wichtige Istwerte aus dem Verstärker eingelesen und am PC-Monitor angezeigt (Oszilloskop-Funktionen).

Eventuell im Verstärker eingebaute Schnittstellen-Module (Erweiterungskarten) werden automatisch erkannt und die erforderlichen zusätzlichen Parameter zur Lageregelung oder Fahrsatzdefinition zur Verfügung gestellt.

Sie können Datensätze auf einem Datenträger oder der MMC Karte speichern (archivieren) und wieder laden. Die Datensätze können Sie ausdrucken.

Wir liefern Ihnen motorbezogene Default-Datensätze für die sinnvollsten Servoverstärker-Motor-Kombinationen. In den meisten Anwendungsfällen werden Sie mit diesen Defaultwerten Ihren Antrieb problemlos in Betrieb nehmen können.

Eine umfangreiche Online-Hilfe mit integrierter Beschreibung aller Variablen und Funktionen unterstützt Sie in jeder Situation.

10.2.3 Hardware-Voraussetzungen, Betriebssysteme

Die PC-Schnittstelle (X6, RS232) des Servoverstärkers wird über eine Nullmodem-Leitung (keine Nullmodem-Link Leitung!) mit einer seriellen Schnittstelle des PC verbunden (→ #95).

ACHTUNG

Ziehen und stecken Sie die Verbindungsleitung nur bei abgeschalteten Versorgungsspannungen (Verstärker und PC).

Die Schnittstelle im Servoverstärker liegt auf gleichem Potential wie die CANopen-Schnittstelle.

Minimale Hardware Anforderungen an den PC:

Prozessor: mindestens Pentium® II oder vergleichbar

Grafikkarte: Windows kompatibel, color

Laufwerke: Festplatte (mindestens 10 MB frei)

CD-ROM Laufwerk

Schnittstelle: eine freie serielle Schnittstelle (COM1 bis COM10) oder

USB mit USB->Seriell Wandler

Betriebssysteme WINDOWS 2000, XP, Vista, 7 / 8 / 10

DRIVEGUI.EXE ist lauffähig unter WINDOWS 2000, XP, VISTA, 7, 8 und 10.

Eine Notbedienung ist mit einer ASCII-Terminal-Emulation (ohne Oberfläche) möglich. Schnittstelle-Einstellung: 38400 Baud, Databit 8, kein Parity, Stopbit 1, keine Flusssteuerung

Betriebssysteme Unix, Linux

Die Funktion der Software wurde nicht für Windows unter Unix oder Linux getestet.

10.2.4 Installation unter WINDOWS

Auf der CD-ROM befindet sich das Installationsprogramm für die Setup Software.

Installieren

Autostart Funktion aktiviert:

Legen sie die CD-ROM in ein freies Laufwerk ein. Ein Fenster öffnet sich mit dem Startbildschirm der CD. Dort finden Sie eine Verknüpfung zur Inbetriebnahmesoftware DRIVEGUI.EXE. Klicken Sie darauf und folgen sie den Anweisungen.

Autostartfunktion deaktiviert:

Legen sie die CD-ROM in ein freies Laufwerk ein. Klicken Sie auf **START** (Task-Leiste), dann auf **Ausführen**. Geben Sie im Eingabefenster den Programmaufruf : **x:\index.htm** (x= korrekter CD-Laufwerksbuchstabe) ein.

Klicken Sie OK und gehen dann wie oben beschrieben vor.

Anschluss an serielle Schnittstelle des PC:

Schließen Sie die Übertragungs-Leitung an eine serielle Schnittstelle Ihres PC (COM1 bis COM10) und an die serielle Schnittstelle (X6) des S300 an (→ #95).

10.3 Quickstart, Schnelltest des Antriebs

10.3.1 Vorbereitung

Auspacken, Montieren und Verdrahten des Servoverstärkers

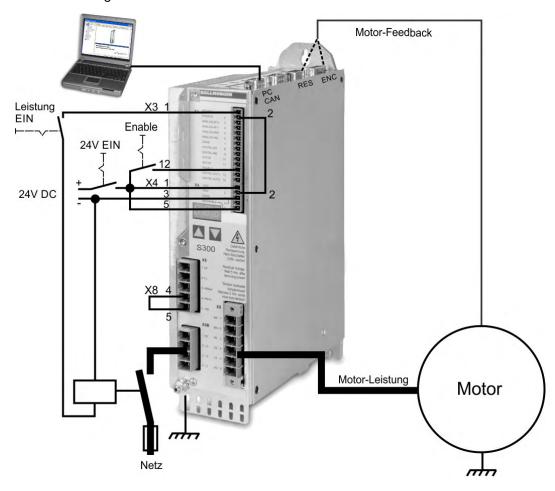
- 1. Servoverstärker und Zubehör aus der Verpackung nehmen.
- 2. Warnhinweise in den Handbüchern beachten.
- 3. Servoverstärker wie in "Mechanische Installation" (→ #45) beschrieben montieren.
- 4. Servoverstärker wie in "Elektrische Installation" (→ #48) beschrieben verdrahten oder verwenden Sie die Minimalverdrahtung für den Schnelltest auf der nächste Seite.
- 5. Installieren Sie die Software (→ #98).
- 6. Sie benötigen folgende Informationen über die Antriebskomponenten:
 - Netznennspannung
 - Motortyp (Motordaten, wenn der Motor nicht in der Motordatenbank zu finden ist, siehe Online-Hilfe
 - im Motor eingebaute Rückführeinheit (Typ, Polzahl/Strichzahl/Daten-Protokoll etc.)
 - Tragheitsmoment der Last

Dokumentationen

Sie benötigen folgende Dokumentationen (im PDF Format auf der Produkt-CDROM, Sie können die jeweils aktuellste Version eines Handbuchs von unserer Website herunterladen):

- Betriebsanleitung (vorliegendes Handbuch)
- Handbuch CANopen Feldbus Schnittstelle
- Zubehörhandbuch

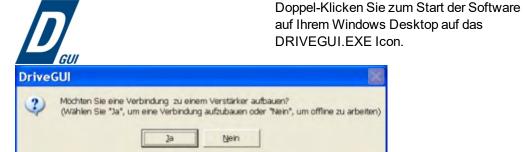
Abhängig von der eingebauten Erweiterungskarte benötigen Sie eine der folgenden Dokumentationen:


- Handbuch PROFIBUS DP Feldbus Schnittstelle
- Handbuch PROFINET Feldbus Schnittstelle
- Handbuch DeviceNet Feldbus Schnittstelle
- Handbuch sercos® II Feldbus Schnittstelle
- Handbuch EtherCAT Feldbus Schnittstelle

Sie benötigen den Acrobat Reader um die PDF Dateien zu lesen. Einen Installationslink finden Sie auf der Produkt-CDROM.

Minimal erforderliche Verdrahtung für den Schnelltest

INFO


Diese Verdrahtung erfüllt keinerlei Anforderungen an die Sicherheit oder Funktionstüchtigkeit Ihrer Anwendung. Sie zeigt lediglich die für den Schnelltest erforderliche Mindestverdrahtung.

10.3.2 Verbinden

- Schließen Sie die Übertragungs-Leitung an eine serielle Schnittstelle Ihres PC und an die serielle Schnittstelle (X6) des S300 an. Optional ist der Einsatz eines USB - Seriell Konverters möglich.
- Schalten Sie die 24 V-Spannungsversorgung des Servoverstärkers ein.

Wird ein Fehlercode (☐ ☐ ☐ ☐) oder eine Warnung (☐ ☐ ☐ ☐) oder ein Hinweis (./_/ E/S) angezeigt, finden Sie die entsprechende Beschreibung (→ # 112) bzw. (→ # 113). Bei Fehlercode: beseitigen Sie die Ursache.

DRIVEGUI.EXE bietet die Möglichkeit, offline oder online zu arbeiten. Wir arbeiten online.

Wird erstmalig eine Kommunikation aufgebaut, werden Sie aufgefordert, die Kommunikationsparameter einzustellen. Wählen Sie das Kommunikationssystem und die Schnittstelle, an die der Servoverstärker angeschlossen ist und klicken Sie auf OK.

Die Software versucht nun, eine Verbindung zum Servoverstärker aufzubauen und Parameter hochzuladen. Wenn keine Kommunikation zustande kommt, erhalten Sie diese Fehlermeldung.

Häufige Ursachen sind:

- Falsche Schnittstelle gewählt
- Falsche Stecker am Verstärker gewählt
- Schnittstelle von anderer Software belegt
- 24V Hilfsspannungsversorgung ausgeschaltet
- Übertragungsleitung defekt oder falsch konfektioniert

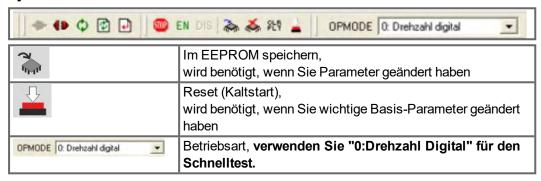
Nach Bestätigen der Fehlermeldung schaltet die Software in den Offline-Modus um. Dies erfordert die manuelle Auswahl des Servoverstärkers. Brechen Sie die Auswahl ab indem Sie das Auswahlfenster schließen. Suchen und beseitigen Sie den Fehler, der die Kommunikation verhindert. Starten Sie die Software erneut im Online-Modus.

Wenn eine Kommunikation zustande kommt, werden die Parameter aus dem Servoverstärker ausgelesen.

Danach sehen Sie den Startbildschirm.

ACHTUNG

Vergewissern Sie sich, dass der Verstärker gesperrt ist: (Eingang HW-Enable Klemme X3/12 = 0 V oder offen)!


10.3.3 Wichtige Bildschirmelemente

Hilfefunktion

In der Online Hilfe finden Sie detaillierte Informationen zu allen Parametern, die vom Servoverstärker verarbeitet werden können.

Taste F1 Startet die Online Hilfe zur aktiven Bildschirmseite.	
Menüleiste ?	Startet die Online Hilfe mit Inhaltsverzeichnis.
N?	Kontext-Hilfe. Klicken Sie zuerst auf des Hilfesymbol und anschließend auf die Funktion, zu der Sie Hilfe benötigen.

Symbolleiste

Statusleiste

Das grüne Online Symbol zeigt an, dass die Kommunikation arbeitet.

10.3.4 Setup Wizard

Der Setup-Wizard führt Sie durch die notwendigen Schritte bei der Basiskonfiguration Ihres Antriebes. Abhängig von der zu lösenden Aufgabe werden nur die Bildschirmseiten dargestellt, die benötigt werden.

Wählen Sie für einen Schnelltest der Funktionalität den Setup-Typ "Schnelleinstellung".

Starten Sie den Wizard.

10.3.4.1 Basiseinstellungen

Hier werden grundsätzliche Werte eingestellt.

Netzspannung: Vorhandene Netznennspannung einstellen

Aktion bei Verlust einer Netzphase: Einphasigen oder dreiphasigen Betrieb wählen. Bei dreiphasigem Betrieb können Sie entweder die Ausgabe der Warnung "n05" oder des Fehlers "F19" wählen. F19" führt zum Abschalten der Endstufe, "n05" wird als Meldung behandelt.

Name: Sie können dem Servoverstärker einen Namen (max. 8 Zeichen) zuweisen. Dies vereinfacht die Identifikation des Antriebs im System.

Beim Booten Software-Enable setzen: Diese Option für den Schnelltest nicht anwählen! Klicken Sie auf WEITER.

10.3.4.2 Einheiten

Die Benutzer-Einheiten für alle Eingaben innerhalb der Inbetriebnahmesoftware werden hier vorgewählt.

Lage, Geschwindigkeit, Beschleunigung

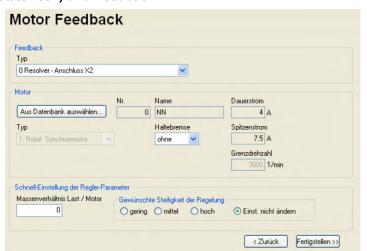
Wählen Sie hier sinnvolle Einheiten für Ihre Anwendung bezogen auf die bewegte Last.

Positionsänderung pro Umdrehung

Hier wird ein Bezug zwischen Umdrehung der Motorwelle und Verfahrweg der Last hergestellt. Getriebeübersetzungen können mit eingerechnet werden. Genaue Erklärung erhalten Sie über die Online-Hilfe. Nutzen Sie zur Ermittlung der Auflösung basierend auf ausgewählten Beispielanwendungen das Berechnungs-Werkzeug:

Berechnung PGEARI/PGEARO für..." Schaltfläche

Sollte Ihre Applikation keinem der aufgeführten Beispiele entsprechen, geben Sie die erforderlichen Parameter direkt in die Felder der Bildschirmseite "Einheiten" ein.


Wählen Sie zunächst die Ihrer Applikation entsprechende Anwendung. Danach stellen Sie die Lage-Einheit ein. Wählen Sie die Lage-Einheit, mit der Sie die benötigte Genauigkeit Ihrer Applikation darstellen können.

Geben Sie nun die mechanischen Daten für Ihre Applikation ein. Wenn ein Getriebe am Motor angeflanscht ist, können Sie bei den in Frage kommenden Anwendungen zusätzlich die Getriebedaten eingeben, entweder die Anzahl der Zähne oder das Verhältnis der Umdrehungen.

Klicken Sie anschließend auf die Schaltfläche "Umrechnungsfaktoren berechnen und schließen".

Klicken Sie auf WEITER.

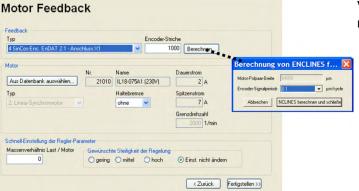
10.3.4.3 Motor (rotatorisch) und Feedback

Vereinfachte Einstellung der motorbezogenen Parameter.

Feedback: Wählen Sie das im Motor verwendete Feedbacksystem.

INFO

Die Resolverpolzahl ist im Setupmodus "Schnelleinstellung" auf 2 festgelegt! Falls nötig, ändern Sie die Polzahl im "Vollständigen Setup" auf Seite "Feedback".


Motortyp: Klicken Sie auf den Button "Aus Datenbank auswählen...". Öffnen Sie die gespeicherte Datenbankdatei (mdb___.csv) und wählen Sie den verwendeten Motortyp. Sondermotoren müssen über das "Vollständige Setup" definiert werden.

Bremse: Soll der Verstärker eine Bremse ansteuern, Feld Haltebremse auf MIT ändern.

Regler-Parameter: Wenn Sie das Massenverhältnis Last/Motor kennen (0 bedeutete keine Last), geben Sie diese Zahl ein und wählen Sie die gewünschte Steifigkeit der Regelung. Wenn das Verhältnis nicht bekannt ist, wählen Sie "Einst. nicht ändern".

Klicken Sie auf FERTIGSTELLEN

10.3.4.4 Motor (linear) und Feedback

Vereinfachte Einstellung der motorbezogenen Parameter.

Feedback: Wählen Sie das verwendete Feedbacksystem.

Motortyp: Klicken Sie auf den Button "Aus Datenbank auswählen...". Öffnen Sie die gespeicherte Datenbankdatei (mdb___.csv) und wählen Sie den verwendeten Motortyp. Sondermotoren müssen über das "Vollständige Setup" definiert werden.

Encoder-Striche (erscheint mit Feedback Typ Sinus-Encoder):

Klicken Sie auf "Berechnen" und tragen Sie die Encoder-Signalperiode ein.

Bremse: Soll der Verstärker eine Bremse ansteuern, Feld Haltebremse auf MIT ändern.

Regler-Parameter: Wenn Sie das Massenverhältnis Last/Motor kennen (0 bedeutete keine Last), geben Sie diese Zahl ein und wählen Sie die gewünschte Steifigkeit der Regelung. Wenn das Verhältnis nicht bekannt ist, wählen Sie "Einst. nicht ändern".

Klicken Sie auf FERTIGSTELLEN

10.3.4.5 Parameter speichern und Neustart

Sie sind dabei, den Setup Wizard zu beenden und Sie haben Parameter geändert und eingestellt. Abhängig davon, welche Parameter Sie geändert haben, gibt es nun zwei mögliche Reaktionen des Systems:

Wichtige Konfigurationsparameter wurden geändert

Eine Warnung erscheint, dass Sie den Verstärker neu starten müssen (Kaltstart).

Klicken Sie auf JA. Die Parameter werden nun automatisch im EEPROM des Servoverstärkers gespeichert und ein Reset Kommando startet den Verstärker neu (dauert einige Sekunden).

Weniger wichtige Parameter wurden geändert


In diesem Fall erscheint keine Warnung. Sichern Sie die Parameter im EEPROM des Servoverstärkers. Klicken Sie dazu auf das Symbol () in der Symbolleiste. Ein Neustart des Verstärkers ist nicht notwendig. Wählen Sie nun die Seite Service-Funktionen.

10.3.5 Service Funktionen (Tippbetrieb)

ACHTUNG

Sorgen Sie dafür, dass die aktuelle Position der Last die nachfolgenden Bewegungen zulässt. Die Achse fährt sonst auf die Hardware-Endschalter oder den mechanischen Anschlag. Stellen Sie sicher, dass ein Ruck oder eine schnelle Beschleunigung der Last keinen Schaden verursachen kann. Beachten Sie die Anforderungen an "sichere reduzierte Geschwindigkeit" für Ihre Anwendung!

- Schalten Sie die Leistungsversorgung des Antriebs ein.
- STO-Enable: +24 V an STO-Enable [X4/5]
- **Hardware-Enable**: +24 V an Eingang Enable [X3A/12]. Wenn STO-Enable fehlt beim Hardware Enable, erscheint in der Anzeige in der Frontplatte

Tippbetrieb (Drehzahl digital):

Sie können hier den Antrieb mit konstanter Geschwindigkeit verfahren. Geben Sie die gewünschte Geschwindigkeit ein.

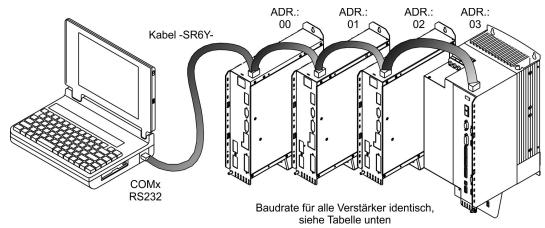
Beachten Sie die Anforderungen an "sichere reduzierte Geschwindigkeit" für Ihre Anwendung!
Bei gedrückter Schaltfläche (+ oder –) fährt der
Antrieb mit der eingestellten Geschwindigkeit, er
stoppt beim Loslassen der Schaltfläche.

Aktuelle Warnungen und Fehler werden auf der Bildschirmseite "**Status**" gelistet. Eine Beschreibung von Fehler- und Warnmeldungen finden Sie in der <u>Online-Hilfe</u> oder auf (→ # 112). Nun haben Sie die Grundfunktionen des Antriebs erfolgreich in Betrieb genommen und getestet.

10.3.6 Weitere Einstellmöglichkeiten

ACHTUNG

Beachten Sie die Sicherheitshinweise in den Handbüchern und in der Online Hilfe, bevor Sie weitere Parameter ändern.


Für alle weiteren Einstellmöglichkeiten finden Sie ausführliche Hinweise in der Online-Hilfe und der dort integrierten Befehlsreferenz.

Zur Freischaltung aller Eingabemöglichkeiten wählen Sie im Setup-Wizard die Stufe "Vollständiges Setup". Damit erhalten Sie zusätzlich Zugriff auf:

- CAN- und Feldus-Einstellungen: Geräteadresse und Übertragungsrate einstellen
- Feedback: Detaillierte Anpassung an die verwendete Rückführeinheit
- Motor: Detaillierte Anpassung an den verwendeten Motor
- Regelkreise: Strom- Drehzahl-, Lageregler können manuell optimiert werden
- Positionierdaten: Anpassen der Lageregelung an die Bedingungen der Maschine
- **Positionsregister:** max. 16 Positionswerte innerhalb des Verfahrweges können überwacht werden.
- **Elektron. Getriebe:** Wenn der Servoverstärker einer Sollwertvorgabe folgen soll, können Sie hier die Sollwertquelle wählen und eine Übersetzung einstellen.
- **Encoder-Emulation:** Wahl der Encoder-Emulation (Positionsausgabe)
- I/O-analog: Einstellen der analogen Eingänge
- I/O-digital: Einstellen der digitalen Ein- und Ausgänge
- Status (Fehler/Warnungen): Anzeige des Gerätestatus mit Historie, aktuelle Fehler/Warnungen
- Monitor: Anzeige der Betriebsdaten (Istwerte)
- Einrichtbetrieb: Einstellen und Start der Referenzfahrt
- Fahraufträge: Definition und Start von Fahraufträgen
- Oszilloskop: 4-kanaliges Oszilloskop mit vielfältigen Funktionen
- Bode Plot: Werkzeug zur Antriebsoptimierung
- Terminal: Bedienung des Servoverstärkers über ASCII Kommandos
- Erweiterungskarte: je nach eingebauter Karte erscheint ein zusätzlicher Menüpunkt
- Autotuning: Schnelle Optimierung des Drehzahlreglers.

10.4 Mehrachssysteme

Sie können bis zu 255 Servoverstärker über ein spezielles Kabel verbinden und an Ihren PC anschließen: Kabeltyp -SR6Y- (für 4 Verstärker) oder -SR6Y6- (für 6 Verstärker) siehe Zubehörhandbuch.

Angeschlossen an nur einem Servoverstärker können Sie mit der Inbetriebnahmesoftware nun jeden Verstärker über die eingestellten Stationsadressen anwählen und parametrieren.

Stationsadresse für CAN-Bus einstellen

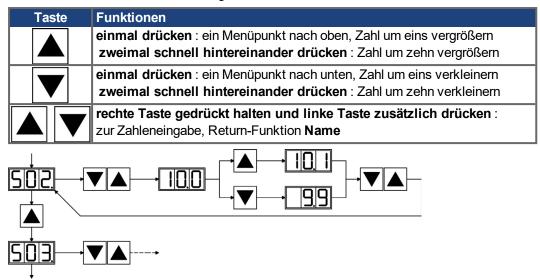
Sie können die Stationsadressen der einzelnen Verstärker und die Baudrate für die Kommunikation über die Frontplattentastatur einstellen (→ # 111). Bevorzugt wird aber meist die Einstellung aller Parameter mit der Inbetriebnahmesoftware.

Baudrate für CAN-Bus einstellen

INFO

Nach Verändern der Stationsadresse und Baudrate müssen Sie die 24V-Hilfsspannungsversorgung der Servoverstärker aus- und wieder einschalten.

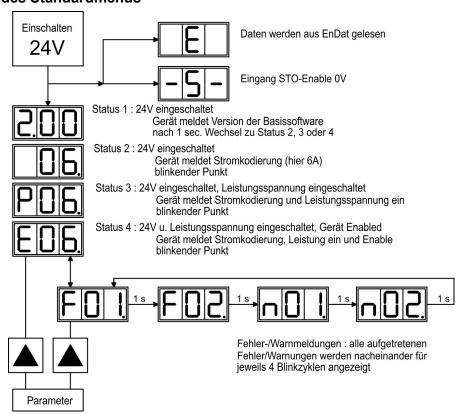
Kodierung der Baudrate im LED-Display:


Kodierung	Baudrate in kBit/s	Kodierung	Baudrate in kBit/s
1	10	25	250
2	20	33	333
5	50	50	500
10	100	66	666
12	125	80	800
		100	1000

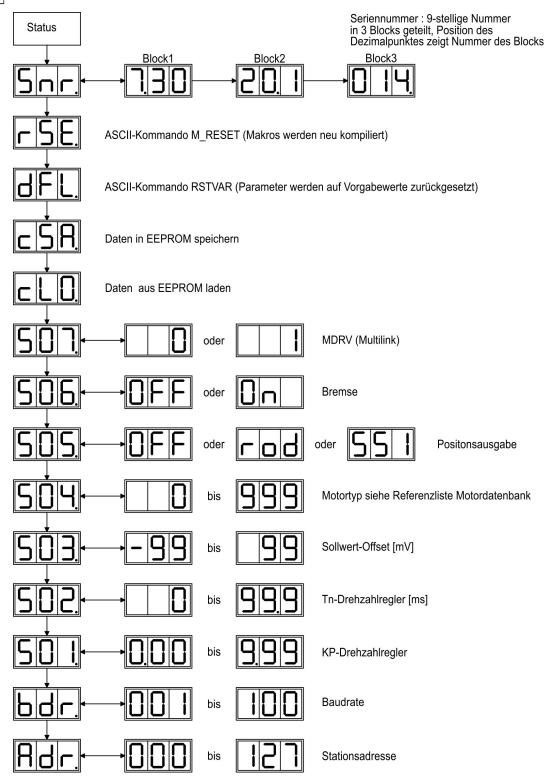
10.5 Tastenbedienung und LED Display

Im Folgenden sind die zwei möglichen Strukturen des Bedienmenüs und die Bedienung mit der Tastatur auf der Frontplatte dargestellt. Im Normalfall stellt Ihnen der S300 nur das Standardmenü zur Verfügung. Wenn Sie den Verstärker über das detaillierte Menü bedienen möchten, so müssen Sie beim Einschalten der 24V-Versorgungsspannung die rechte Taste gedrückt halten.

10.5.1 Bedienung


Sie können mit den beiden Tasten folgende Funktionen ausführen:

10.5.2 Statusanzeige



10.5.3 Struktur des Standardmenüs

10.5.4 Struktur des detaillierten Menüs

INFO Beim Einschalten der 24V-Versorgungsspannung die rechte Taste gedrückt halten.

10.6 Fehlermeldungen

Auftretende Fehler werden im <u>LED-Display</u> (Geräte-Frontseite) mit einer Fehlernummer angezeigt. <u>ERRCODE2</u> zeigt zusätzliche Informationen mit der Kennung "ixx" bei Fehlern, die in der Tabelle unten mit "*" markiert sind. Die Reaktion des Servoverstärkers hängt vom Fehler und von der Einstellung des Parameters <u>ACTFAULT</u> ab. Fehler können über Hardware Reset des Servoverstärkers oder je nach Fehler (siehe <u>ERRCODE</u>) auch über <u>CLRFAULT</u> zurückgesetzt werden.

E oder P Status Meldungen Statusmeldung, kein Fehler, siehe (→ #110) Status Meldung Verstärker aktualisiert die Startkonfiguration - Status Meldung Statusmeldung, kein Fehler, Programmiermodus - STO-Enable STO-Enable Eingang = 0V (wenn Antrieb disabled ist) F01 Kühlkörpertemp. Kühlkörpertemp. Kühlkörpertemperatur zu hoch (default: 80°C) F02 Überspannung Überspannung im Zwischenkreis. Grenzwert abhängig von der Netzspannung F03 Schleppfehler Meldung des Lagereglers F04* Rückführung Kabelbruch, Kurzschluss, Erdschluss F06* Motortemperatur Temperaturfühler defekt oder Motortemperatur zu hoch. F07* Spannung intern Internen Versorgungsspannungen fehlerhaft F08 Überdrehzahl Motor geht durch, Drehzahl unzulässig hoch F09 EEPROM Checksummenfehler F10 Kabelbruch X5 Kabelbruch Aurzschluss, Erdschluss F11 Motorbremse Kabelbruch Aurzschluss, Erdschluss F12 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorieitung oder nicht aufgelegtem Schirm. F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung derkekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerweiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25 Kommut. fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht)	Nummer	Bezeichnung	Erklärung (ASCII Referenz ERRCODE)
Status Meldung Verstärker aktualisiert die Startkonfiguration Status Meldung Statusmeldung, kein Fehler, Programmiermodus S TO-Enable STO-Enable Eingang = 0V (wenn Antrieb disabled ist) Kühlkörpertemp. Kühlkörpertemperatur zu hoch (default: 80°C) F02 Überspannung Überspannung im Zwischenkreis. Grenzwert abhängig von der Netzspannung F03 Schleppfehler Meldung des Lagereglers F04* Rückführung Kabelbruch, Kurzschluss, Erdschluss F05 Unterspannung Unterspannung im Zwischenkreis (default: 100V) F06 Motortemperatur Temperaturfühler defekt oder Motortemperatur zu hoch. F07* Spannung intern Internen Versorgungsspannungen fehlerhaft F08 Überdrehzahl Motor geht durch, Drehzahl unzulässig hoch F09 EEPROM Checksummenfehler F10 Kabelbruch X5 Kabelbruch am dig. Encoder Eingang X5 F11 Motorbremse Kabelbruch, Kurzschluss, Erdschluss F12 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I*t max. Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspelsung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23* CAN Bus aus Schwenviegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut, fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F26* Feldbus Fehler Siehe ASCII Befehlsreferenz F27* Feldbus Fehler Siehe ASCII Befehlsreferenz F28* Feldbus Fehler Siehe ASCII Befehlsreferenz F29* Feldbus Fehler Sieher Reserve		_	<u> </u>
- Status Meldung Statusmeldung, kein Fehler, Programmiermodus - S - STO-Enable STO-Enable Eingang = 0V (wenn Antrieb disabled ist) F01 Kühlkörpertemp. Kühlkörpertemperatur zu hoch (default: 80°C) F02 Überspannung Überspannung im Zwischenkreis. Grenzwert abhängig von der Netzspannung F03 Schleppfehler Meldung des Lageregiers F04* Rückführung Kabelbruch, Kurzschluss, Erdschluss F05 Unterspannung Unterspannung im Zwischenkreis (default: 100V) F06 Motortemperatur Temperaturfühler defekt oder Motortemperatur zu hoch. F07* Spannung intern Internen Versorgungsspannungen fehlerhaft F08 Überdrehzahl Motor geht durch, Drehzahl unzulässig hoch F09 EEPROM Checksummenfehler F10 Kabelbruch X5 Kabelbruch am dig. Encoder Eingang X5 F11 Motorbrense Kabelbruch am dig. Encoder Eingang X5 F11 Motorbrense Kabelbruch, Kurzschluss, Erdschluss F12 Motorphase Motorphase fehlt (Leitungsbruch o.a.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Wamung Wamungsanzeige wird als Fehler gewertet F25 Kommut. fehler Kommutiterungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler Siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop			
- S STO-Enable STO-Enable Eingang = 0V (wenn Antrieb disabled ist) F01 Kühlkörpertemp. Kühlkörpertemp. Kühlkörpertemperatur zu hoch (default: 80°C) F02 Überspannung Überspannung im Zwischenkreis. Grenzwert abhängig von der Netzspannung F03 Schleppfehler Meldung des Lagereglers F04* Rückführung Kabelbruch, Kurzschluss, Erdschluss F05 Unterspannung Unterspannung im Zwischenkreis (default: 100V) F06 Motortemperatur Temperaturfühler defekt oder Motortemperatur zu hoch. F07* Spannung intern Internen Versorgungsspannungen fehlerhaft F08 Überdrehzahl Motor geht durch, Drehzahl unzulässig hoch F09 EEPROM Checksummenfehler F10 Kabelbruch X5 Kabelbruch am dig. Encoder Eingang X5 F11 Motorphase Motorphase ehlt (Leitungsbruch o.ä.) F12 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schim. F18 IP max. IP-M	-		
F01 Kühlkörpertemp. Kühlkörpertemperatur zu hoch (default: 80°C) F02 Überspannung Überspannung im Zwischenkreis. Grenzwert abhängig von der Netzspannung F03 Schleppfehler Meldung des Lagereglers F04* Rückführung Kabelbruch, Kurzschluss, Erdschluss F05 Unterspannung Unterspannung im Zwischenkreis (default: 100V) F06 Motortemperatur Temperaturfühler defekt oder Motortemperatur zu hoch. F07* Spannung intern Internen Versorgungsspannungen fehlerhaft F08 Überdrehzahl Motor geht durch, Drehzahl unzulässig hoch F09 EEPROM Checksummenfehler F10 Kabelbruch X5 Kabelbruch am dig. Encoder Eingang X5 F11 Motorbremse Kabelbruch am dig. Encoder Eingang X5 F12 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler Handlingfehler auf der Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwenwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28* Feldbus Fehler Kommutikation gestört, siehe ASCII Befehlsreferenz F39* Feldbus Fehler Kommutikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop	-S-		
F02 Überspannung Überspannung im Zwischenkreis. Grenzwert abhängig von der Netzspannung F03 Schleppfehler Meldung des Lagereglers F04* Rückführung Kabelbruch, Kurzschluss, Erdschluss F05 Unterspannung Unterspannung im Zwischenkreis (default: 100V) F06 Motortemperatur Temperaturfühler defekt oder Motortemperatur zu hoch. F07* Spannung intern Intermen Versorgungsspannungen fehlerhaft F08 Überdrehzahl Motor geht durch, Drehzahl unzulässig hoch F09 EEPROM Checksummenfehler F10 Kabelbruch X5 Kabelbruch am dig. Encoder Eingang X5 F11 Motorbremse Kabelbruch am dig. Encoder Eingang X5 F11 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F17* <t< th=""><th></th><th></th><th>,</th></t<>			,
F03 Schleppfehler Meldung des Lagereglers F04* Rückführung Kabelbruch, Kurzschluss, Erdschluss F05 Unterspannung Unterspannung im Zwischenkreis (default: 100V) F06 Motortemperatur Temperaturfühler defekt oder Motortemperatur zu hoch. F07* Spannung intern Internen Versorgungsspannungen fehlerhaft F08 Überdrehzahl Motor geht durch, Drehzahl unzulässig hoch F09 EEPROM Checksummenfehler F10 Kabelbruch X5 Kabelbruch am dig. Encoder Eingang X5 F11 Motorbremse Kabelbruch, Kurzschluss, Erdschluss F12 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehler von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler von 2 oder 3 Phasen der Einspeisung F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt.Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28* Feldbus Fehler Siehe ASCII Befehlsreferenz F39* Feldbus Fehler Siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop			
F04* Rückführung Kabelbruch, Kurzschluss, Erdschluss F05 Unterspannung Unterspannung im Zwischenkreis (default: 100V) F06 Motortemperatur Temperaturfühler defekt oder Motortemperatur zu hoch. F07* Spannung intern Internen Versorgungsspannungen fehlerhaft F08 Überdrehzahl Motor geht durch, Drehzahl unzulässig hoch F09 EEPROM Checksummenfehler F10 Kabelbruch X5 Kabelbruch am dig. Encoder Eingang X5 F11 Motorbremse Kabelbruch, Kurzschluss, Erdschluss F12 Motorphase Motorphase Holt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bie der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F28* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Tirneout F31 Reserve			
F05 Unterspannung Unterspannung im Zwischenkreis (default: 100V) F06 Motortemperatur Temperaturfühler defekt oder Motortemperatur zu hoch. F07* Spannung intern Internen Versorgungsspannungen fehlerhaft F08 Überdrehzahl Motor geht durch, Drehzahl unzulässig hoch F09 EEPROM Checksummenfehler F10 Kabelbruch X5 Kabelbruch am dig. Encoder Eingang X5 F11 Motorbremse Kabelbruch, Kurzschluss, Erdschluss F12 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28* Feldbus Fehler Siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout F31 Reserve Reserve			
F06 Motortemperatur Temperaturfühler defekt oder Motortemperatur zu hoch. F07* Spannung intem Internen Versorgungsspannungen fehlerhaft F08 Überdrehzahl Motor geht durch, Drehzahl unzulässig hoch F09 EEPROM Checksummenfehler F10 Kabelbruch X5 Kabelbruch am dig. Encoder Eingang X5 F11 Motorbrense Kabelbruch, Kurzschluss, Erdschluss F12 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehler von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwenwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler Siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop			
F07* Spannung intern Internen Versorgungsspannungen fehlerhaft F08 Überdrehzahl Motor geht durch, Drehzahl unzulässig hoch F09 EEPROM Checksummenfehler F10 Kabelbruch X5 Kabelbruch am dig. Encoder Eingang X5 F11 Motorbremse Kabelbruch, Kurzschluss, Erdschluss F12 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler Siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop			
F08 Überdrehzahl Motor geht durch, Drehzahl unzulässig hoch F09 EEPROM Checksummenfehler F10 Kabelbruch X5 Kabelbruch am dig. Encoder Eingang X5 F11 Motorbremse Kabelbruch, Kurzschluss, Erdschluss F12 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler Siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop		·	
F09 EEPROM Checksummenfehler F10 Kabelbruch X5 Kabelbruch am dig. Encoder Eingang X5 F11 Motorbremse Kabelbruch, Kurzschluss, Erdschluss F12 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve Reserve			
F10 Kabelbruch X5 Kabelbruch am dig. Encoder Eingang X5 F11 Motorbremse Kabelbruch, Kurzschluss, Erdschluss F12 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve Reserve			
F11 Motorbremse Kabelbruch, Kurzschluss, Erdschluss F12 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve Reserve			
F12 Motorphase Motorphase fehlt (Leitungsbruch o.ä.) F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler Siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve Reserve			
F13 Umgebungstemp. Umgebungstemperatur zu hoch F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler Siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop Faster von Zumpung Reserve			
F14* Endstufe Fehler in der Leistungsendstufe, auch bei falscher Motorleitung oder nicht aufgelegtem Schirm. F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler Siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop Faster von 2 der Stop Reserve		·	
gelegtem Schirm. F15 1²t max. 1²t-Maximalwert überschritten F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve Reserve		<u> </u>	
F15 I²t max. I²t-Maximalwert überschritten F16 Netz-BTB Fehlen von 2 oder 3 Phasen der Einspeisung F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler Siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve Reserve		Lindotalo	ı
F17 A/D-Konverter Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke elektromagnetische Störungen F18* Bremsschaltung Bremsschaltung defekt oder Einstellung fehlerhaft F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler Siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve	F15	I²t max.	l²t-Maximalwert überschritten
elektromagnetische StörungenF18*BremsschaltungBremsschaltung defekt oder Einstellung fehlerhaftF19ZwischenkreisSpannungseinbruch im ZwischenkreisF20*SlotfehlerSlotfehler, hängt von verwendeter Erweiterungskarte abF21HandlingfehlerHandlingfehler auf der ErweiterungskarteF22reserviertreserviertF23CAN Bus ausSchwerwiegender CAN Bus KommunikationsfehlerF24WarnungWarnungsanzeige wird als Fehler gewertetF25*Kommut.fehlerKommutierungsfehlerF26EndschalterReferenzfahrt-Fehler (Hardware-Endschalter erreicht)F27STOFehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetztF28Feldbus Fehlersiehe ASCII BefehlsreferenzF29*Feldbus FehlerKommunikation gestört, siehe ASCII BefehlsreferenzF30Emergency TimeoutTimeout Not-StopF31ReserveReserve	F16	Netz-BTB	Fehlen von 2 oder 3 Phasen der Einspeisung
F18*BremsschaltungBremsschaltung defekt oder Einstellung fehlerhaftF19ZwischenkreisSpannungseinbruch im ZwischenkreisF20*SlotfehlerSlotfehler, hängt von verwendeter Erweiterungskarte abF21HandlingfehlerHandlingfehler auf der ErweiterungskarteF22reserviertreserviertF23CAN Bus ausSchwerwiegender CAN Bus KommunikationsfehlerF24WarnungWarnungsanzeige wird als Fehler gewertetF25*Kommut.fehlerKommutierungsfehlerF26EndschalterReferenzfahrt-Fehler (Hardware-Endschalter erreicht)F27STOFehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetztF28Feldbus Fehlersiehe ASCII BefehlsreferenzF29*Feldbus FehlerKommunikation gestört, siehe ASCII BefehlsreferenzF30Emergency TimeoutTimeout Not-StopF31ReserveReserve	F17	A/D-Konverter	Fehler in der analog-digital-Wandlung, oft hervorgerufen durch sehr starke
F19 Zwischenkreis Spannungseinbruch im Zwischenkreis F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve			elektromagnetische Störungen
F20* Slotfehler Slotfehler, hängt von verwendeter Erweiterungskarte ab F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve Reserve	F18*	Bremsschaltung	Bremsschaltung defekt oder Einstellung fehlerhaft
F21 Handlingfehler Handlingfehler auf der Erweiterungskarte F22 reserviert reserviert F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve Reserve	F19	Zwischenkreis	Spannungseinbruch im Zwischenkreis
F22reserviertreserviertF23CAN Bus ausSchwerwiegender CAN Bus KommunikationsfehlerF24WarnungWarnungsanzeige wird als Fehler gewertetF25*Kommut.fehlerKommutierungsfehlerF26EndschalterReferenzfahrt-Fehler (Hardware-Endschalter erreicht)F27STOFehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetztF28Feldbus Fehlersiehe ASCII BefehlsreferenzF29*Feldbus FehlerKommunikation gestört, siehe ASCII BefehlsreferenzF30Emergency TimeoutTimeout Not-StopF31ReserveReserve	F20*	Slotfehler	
F23 CAN Bus aus Schwerwiegender CAN Bus Kommunikationsfehler F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve Reserve	F21	Handlingfehler	Handlingfehler auf der Erweiterungskarte
F24 Warnung Warnungsanzeige wird als Fehler gewertet F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop Reserve Reserve	F22	reserviert	reserviert
F25* Kommut.fehler Kommutierungsfehler F26 Endschalter Referenzfahrt-Fehler (Hardware-Endschalter erreicht) F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve Reserve	F23	CAN Bus aus	Schwerwiegender CAN Bus Kommunikationsfehler
F26EndschalterReferenzfahrt-Fehler (Hardware-Endschalter erreicht)F27STOFehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetztF28Feldbus Fehlersiehe ASCII BefehlsreferenzF29*Feldbus FehlerKommunikation gestört, siehe ASCII BefehlsreferenzF30Emergency TimeoutTimeout Not-StopF31ReserveReserve	F24	Warnung	
F27 STO Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt F28 Feldbus Fehler siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve Reserve	F25*	Kommut.fehler	Kommutierungsfehler
gleichzeitig gesetzt F28 Feldbus Fehler siehe ASCII Befehlsreferenz F29* Feldbus Fehler Kommunikation gestört, siehe ASCII Befehlsreferenz F30 Emergency Timeout Timeout Not-Stop F31 Reserve Reserve	F26	Endschalter	Referenzfahrt-Fehler (Hardware-Endschalter erreicht)
F28Feldbus Fehlersiehe ASCII BefehlsreferenzF29*Feldbus FehlerKommunikation gestört, siehe ASCII BefehlsreferenzF30Emergency TimeoutTimeout Not-StopF31ReserveReserve	F27	STO	Fehler bei der STO Bedienung, Eingänge STO-ENABLE und ENABLE wurden gleichzeitig gesetzt
F30 Emergency Timeout Not-Stop F31 Reserve Reserve	F28	Feldbus Fehler	
F31 Reserve Reserve	F29*	Feldbus Fehler	Kommunikation gestört, siehe ASCII Befehlsreferenz
F31 Reserve Reserve	F30	Emergency Timeout	Timeout Not-Stop
F32* Systemfehler Systemsoftware reagiert nicht korrekt	F31		·
	F32*	Systemfehler	Systemsoftware reagiert nicht korrekt

10.7 Warnmeldungen

Auftretende Störungen, die nicht zum Abschalten der Verstärker-Endstufe führen (BTB-Kontakt bleibt geschlossen), werden im <u>LED-Display</u> an der Frontplatte mit einer Warnungsnummer angezeigt. Einige Warnmeldungen führen zu einem geführten Stillsetzen des Antriebs (Bremsung mit Notrampe).

Die Reaktion des Servoverstärkers hängt von der Warnung ab (siehe STATCODE).

Nummer	Bezeichnung	Erklärung (ASCII Referenz STATCODE)		
E oder P	Status Meldungen	Statusmeldung, keine Warnung, siehe (→ # 110)		
	Status Meldung	Verstärker aktualisiert die Startkonfiguration		
-	Status Meldung	Statusmeldung, keine Warnung, Programmiermodus		
- S -	STO-Enable	STO Eingänge = 0V (wenn Antrieb disabled ist)		
n01	l²t	I ² t-Meldeschwelle überschritten		
n02	Bremsleistung	eingestellte Bremsleistung erreicht		
n03	S_fehl	eingestelltes Schleppfehler-Fenster überschritten		
n04	Ansprechüberwachung	Ansprechüberwachung (Feldbus) aktiv		
n05	Netzphase	Netzphase fehlt		
n06	SW-Endschalter 1	Software-Endschalter 1 überschritten		
n07	SW-Endschalter 2	Software-Endschalter 2 überschritten		
n08	Fahrauftrag_Fehler	Ein fehlerhafter Fahrauftrag wurde gestartet		
n09	Kein Referenzpunkt	Beim Fahrauftrag-Start war kein Referenzpunkt ge- setzt		
n10	PSTOP	Endschalter PSTOP betätigt		
n11	NSTOP	Endschalter NSTOP betätigt		
10	Motordefaultwerte gela- den	nur ENDAT oder HIPERFACE®: Unterschiedliche Motornummern in		
n12		Encoder und Verstärker gespeichert, Motordefaultwerte wurden geladen		
n13	Erweiterungskarte	24V Versorgung für I/O-Erweiterungskarte nicht in Ordnung		
n14	SinCos-Feedback	SinCos Kommutierung (wake & shake) nicht vollzogen, wird bei frei- gegebenem Verstärker und ausgeführtem wake & shake gelöscht		
n15	Tabellenfehler	Geschwindigkeits-Strom Tabelle INXMODE 35 Fehler		
n16	Summenwarnung	Summenwarnung für n17 bis n31		
n17	Feldbus Sync	CAN Sync ist nicht eingeloggt		
n18	Multiturn Überlauf	Maximale Anzahl von Umdrehungen überschritten		
n19	Rampe beim Fahrsatz wurde begrenzt	Wertebereich Überschreitung bei Fahrsatzdaten		
n20	Ungültiger Fahrsatz	Ungültiger Fahrsatz		
n21	Warnung durch SPS Programm	Bedeutung geht aus SPS Programm hervor		
n22	Motortemperatur über- schritten	Die Warnung gibt dem Anwender Reaktionsmöglichkeiten, bevor der Fehler "Motorübertemperatur" zur Abschaltung führt.		
n23	Sinus Kosinus Geber	Warnschwelle erreicht		
n24	Digital-Eingänge	Unlogische Konfiguration		
n25-n31	Reserve	Reserve		
n32	Firmware Betaversion	Firmwareversion ist nicht freigegeben		

INFO

Weitere Informationen zu den Meldungen und zur Behebung der Störungen finden Sie in der <u>ASCII Objektreferenz</u> und in der <u>Onlinehilfe</u>.

10.8 Beseitigung von Störungen

Abhängig von den Bedingungen in Ihrer Anlage können vielfältige Ursachen für die auftretende Störung verantwortlich sein. Bei Mehrachssystemen können weitere versteckte Fehlerursachen vorliegen.

AC	ΗT	UN	G

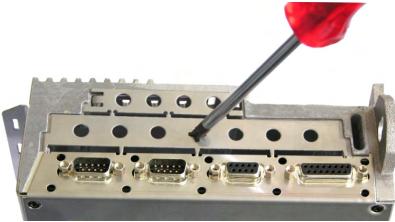
INFO

Beseitigen Sie auftretende Fehler und Störungen unter Beachtung der Arbeitssicherheit. Fehlerbeseitigung nur durch qualifiziertes und eingewiesenes Fachpersonal.

Detaillierte Beschreibung von Fehlerursachen und Tipps zur Behebung finden Sie im Abschnitt "Trouble-Shooting" in der <u>Online Hilfe</u>. Unser Kundenservice hilft Ihnen bei Problemen weiter.

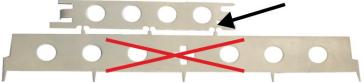
Mögliche Ursachen	Maßnahmen zur Beseitigung der		
	Fehlerursachen		
falsche Leitung verwendet	Nullmodem-Leitung verwenden		
Leitung auf falschen Steckplatz am Ser-	 Leitung auf richtige Steckplätze am Ser- 		
voverstärker oder PC gesteckt	voverstärker und am PC stecken		
falsche PC-Schnittstelle gewählt	richtige Schnittstellen wählen		
Servoverstärker nicht freigegeben	Freigabesignal anwenden		
Software nicht freigegeben	Softwareenable geben		
	Sollwertkabel prüfen		
Motorphasen vertauscht	Motorphasensequenz korrigieren		
Bremse nicht gelöst	Bremssteuerung prüfen		
	Mechanik prüfen		
, ,	Parameter Motorpolzahl korrigieren		
Feedback falsch eingestellt	Feedback korrekt konfigurieren		
Verstärkung zu hoch (Drehzahlregler)	Kp (Drehzahlregler) verkleinern		
Abschirmung Rückführleitung unter-	Rückführkabel ersetzen		
	AGND an CNC-GND anschließen		
AGND nicht verdrahtet			
I _{rms} oder I _{peak} zu klein eingestellt	I _{rms} oder I _{peak} vergrößern(Motordaten		
·	beachten !)		
Sollwertrampe zu groß	SW-Rampe +/- verkleinern		
I _{rms} /I _{peak} zu groß eingestellt	I _{rms} /I _{peak} verkleinern		
Kp (Drehzahlregler) zu klein	Kp (Drehzahlregler) vergrößern		
● Tn (Drehzahlregler) zu groß	Tn (Drehzahlregler), Motordefaultwert		
	benutzen		
ARLPF / ARHPF zu groß	ARLPF / ARHPF verkleinern		
ARLP2 zu groß	ARLP2 verkleinern		
Kp (Drehzahlregler) zu groß	Kp (Drehzahlregler) verkleinern		
● Tn (Drehzahlregler) zu klein	Tn (Drehzahlregler), Motordefaultwert		
	benutzen		
ARLPF / ARHPF zu klein	ARLPF / ARHPF vergrößern		
ARLP2 zu klein	ARLP2 vergrößern		
Offset bei analoger Sollwertvorgabe nicht	SW-Offset (Analog I/O) abgleichen		
korrekt abgeglichen			
AGND nicht mit CNC-GND der Steuerung	AGND und CNC-GND verbinden		
verbunden			
	 falsche Leitung verwendet Leitung auf falschen Steckplatz am Servoverstärker oder PC gesteckt falsche PC-Schnittstelle gewählt Servoverstärker nicht freigegeben Software nicht freigegeben Bruch in Sollwertkabel Motorphasen vertauscht Bremse nicht gelöst Antrieb ist mechanisch blockiert Motorpolzahl nicht korrekt eingestellt Feedback falsch eingestellt Verstärkung zu hoch (Drehzahlregler) Abschirmung Rückführleitung unterbrochen AGND nicht verdrahtet I_{rms} oder I_{peak} zu klein eingestellt Sollwertrampe zu groß I_{rms}/I_{peak} zu groß eingestellt Kp (Drehzahlregler) zu klein Tn (Drehzahlregler) zu groß ARLPF / ARHPF zu groß ARLP2 zu groß Tn (Drehzahlregler) zu klein ARLP7 / ARHPF zu klein ARLP2 zu klein Offset bei analoger Sollwertvorgabe nicht korrekt abgeglichen AGND nicht mit CNC-GND der Steuerung 		

11 Erweiterungen

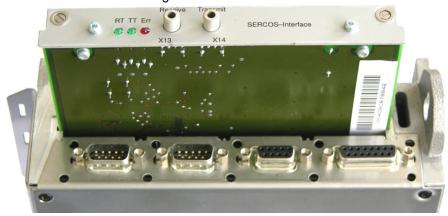

Informationen über Verfügbarkeit und Bestellnummern finden Sie auf Seite (→ # 137). Erweiterungskarten sind nur in Geräte ohne Option -FN oder -EC einbaubar!

11.1 Leitfaden zur Installation der Erweiterungskarten

ACHTUNG


Schalten Sie die Geräte vor Beginn der Arbeiten spannungsfrei Zustand, d.h. weder die Leistungsversorgung noch die 24 V Hilfsspannung noch die Betriebsspannung des Servoverstärkers oder eines anderen angeschlossenen Gerätes darf eingeschaltet sein.

Hebeln Sie die Abdeckung des Optionsschachtes mit einem geeigneten Schraubendreher heraus.


Achten Sie darauf, dass keine Kleinteile (Schrauben o.ä.) in den geöffneten Optionsschacht fallen

Brechen Sie das kleine Abdeckgitter ab und decken Sie damit den kleinen Optionsschacht wieder ab. Das große Abdeckgitter bitte entsorgen.

Schieben Sie die Erweiterungskarte vorsichtig und ohne sie zu verkanten in die vorgesehenen Führungsschienen.

Drücken Sie die Erweiterungskarte fest in den Schacht.

Drehen Sie die Schrauben der Frontabdeckung in die Gewinde in den Befestigungslaschen. So ist ein sicherer Kontakt der Steckverbindung gewährleistet.

11.2 Erweiterungskarte -I/O-14/08-

Dieses Kapitel beschreibt die zusätzlichen Eigenschaften, die die Erweiterungskarte dem S300 verleiht. Die Erweiterungskarte ist bei Anlieferung in den Slot des Servoverstärkers eingeschoben und verschraubt, wenn Sie den Servoverstärker mit der Erweiterungskarte bestellt haben.

Die -I/O-14/08- stellt Ihnen 14 zusätzliche digitale Eingänge und 8 digitale Ausgänge zur Verfügung. Die Funktion der Ein- und Ausgänge ist über die Inbetriebnahme-Software einstellbar.

INFO

Die 24VDC Versorgungsspannung muss von einer potentialgetrennten (z.B. mit Trenntransformator) Spannungsquelle zur Verfügung gestellt werden.

Die Ein- und Ausgänge werden verwendet, um im Servoverstärker gespeicherte Fahraufträge zu starten und Meldungen des integrierten Lagereglers in der übergeordneten Steuerung auszuwerten. Die Funktion der Eingänge und Meldeausgänge entspricht den Funktionen, die den digitalen I/O's an Stecker X3 des zugeordnet werden können. Alle Ein- und Ausgänge sind durch Optokoppler getrennt und potentialfrei gegenüber dem Servoverstärker.

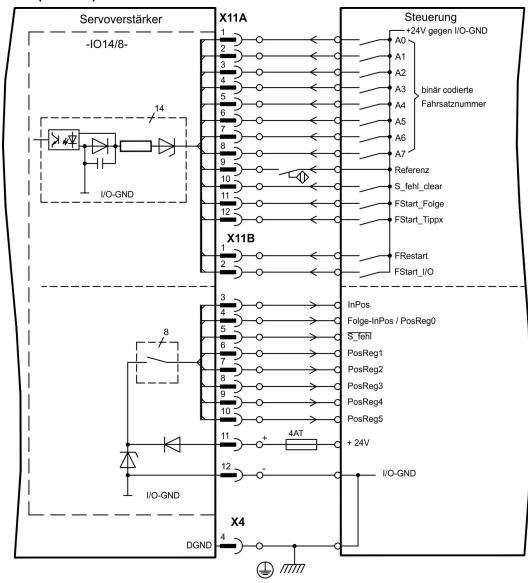
11.2.1 Technische Daten

Steuereingänge	24V / 7mA , SPS-kompatibel, EN 61131
Meldeausgänge	24V / max. 500mA , SPS-kompatibel, EN 61131
Versorgungseingänge nach EN 61131	24V (1836V) / 100mA plus Summenstrom der Ausgänge (abhängig von der Eingangsschaltung der Steuerung).
Absicherung (extern)	4 AT
Stecker	MiniCombicon, 12-polig, kodiert an PIN1 bzw. 12
Leitung	Daten - bis 50m Länge : 22 x 0,5mm², nicht geschirmt, Versorgung - 2 x 1mm², Spannungsverluste beachten
Wartezeit zwischen 2 Fahr- aufträgen	abhängig von der Reaktionszeit der Steuerung
Adressierzeit (min.)	4ms
Startverzögerung (max.)	2ms
Reaktionszeit dig. Ausgänge	max. 10ms

11.2.2 Leuchtdioden

Neben den Klemmen der Erweiterungskarte sind zwei Leuchtdioden angebracht. Die grüne Leuchtdiode meldet das Vorhandensein der erforderlichen 24V Hilfsspannung für die Erweiterungskarte. Die rote Leuchtdiode meldet Fehler in den Ausgängen der Erweiterungskarte (Überlastung der Schalterbausteine und Kurzschluss).

11.2.3 Eingeben einer Fahrsatznummer (Beispiel)


Fahrsatznummer	A7	A6	A5	A4	А3	A2	A1	A0
binär 1010 1110	1	0	1	0	1	1	1	0
dezimal 174	128	-	32	-	8	4	2	-

11.2.4 Steckerbelegung (Default)

Die Funktionen sind mit Hilfe der Setup-Software einstellbar.

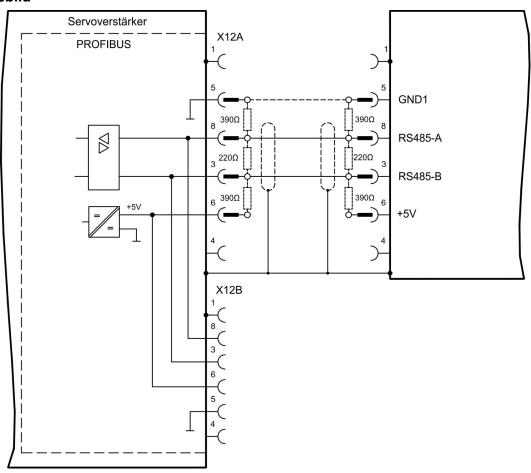
Pin	Pin Dir Default Beschreibung					
	ker X		2000monoung			
1	Ein	A0	Fahrsatznummer 2 ⁰ , LSB			
2	Ein	A1	Fahrsatznummer 2 ¹			
3	Ein	A2	Fahrsatznummer 2 ²			
4	Ein	A3	Fahrsatznummer 2 ³			
5	Ein	A4	Fahrsatznummer 2 ⁴			
			Fahrsatznummer 2 ⁵			
6	Ein	A5				
7	Ein	A6	Fahrsatznummer 2 ⁶			
8	Ein	A7	Fahrsatznummer 2 ⁷ , MSB			
9	Ein	Referenz	Abfrage des Referenzschalters. Wird ein digitaler Eingang am Grundgerät als Referenzeingang verwendet, wird der Eingang an der I/O-Erweiterungskarte nicht ausgewertet.			
10	Ein	S_fehl_clear	Warnung Schleppfehler (n03) und Ansprechüberwachung (n04) löschen			
11	Ein	FStart_Folge	Der im Fahrsatz definierte Folgeauftrag mit der Einstellung "Starten über I/O" wird gestartet. Die Zielposition des aktuellen Fahrsatzes muss erreicht sein, bevor der Folgefahrauftrag gestartet werden kann.			
12	Ein	FStart_Tipp x	Starten der Einricht-Betriebsarzt "Tippbetrieb". "x" ist die im Servoverstärker gespeicherte Geschwindigkeit für die Funktion Tippbetrieb. Eine steigende Flanke startet die Bewegung, eine fallende Flanke bricht die Bewegung ab.			
Stec	ker X	(11B				
1	Ein	FRestart	Setzt den zuletzt abgebrochenen Fahrauftrag fort.			
2	Ein	FStart_I/O	Startet den Fahrauftrag, der über die Eingänge A0-A7 (Stecker X11A/1 bis X11A/8) adressiert ist. Falls kein Fahrauftrag adressiert ist, wird die Referenzfahrt gestartet.			
3	Aus	InPosition	Das Erreichen der Zielposition (In-Positions-Fenster) eines Fahr- auftrages wird durch Ausgabe eines High-Signals gemeldet. Ein Kabelbruch wird nicht erkannt.			
4	Aus	Folge-InPos	Der Start jedes Fahrauftrages in einer automatisch nacheinander ausgeführten Folge von Fahraufträgen wird durch Invertieren des Ausgangssignals gemeldet. Beim Start des ersten Fahrauftrages gibt der Ausgang ein Low-Signal aus. Die Meldeform wird über ASCII-Kommandos variiert.			
		PosReg 0	Nur über ASCII-Kommandos einstellbar.			
5	Aus	S_fehl	Das Verlassen des eingestellten Schleppfehler-Fensters wird mit einem Low-Signal gemeldet.			
6	Aus	PosReg1	default: SW Endschalter 1, wird mit High-Signal gemeldet			
7	Aus	PosReg2	default: SW Endschalter 2, wird mit High-Signal gemeldet			
8	Aus	PosReg3	Nur über ASCII-Kommandos einstellbar.			
9	Aus	PosReg4	Nur über ASCII-Kommandos einstellbar.			
10	Aus	PosReg5	Nur über ASCII-Kommandos einstellbar			
11	-	24V DC	Spannungsversorgung für Ausgangssignale			
12	-	I/O-GND	digital-GND der Steuerung			

11.2.5 Anschlussbild (Default)

11.3 Erweiterungskarte - PROFIBUS-

Dieses Kapitel beschreibt die PROFIBUS Erweiterungskarte für den S300. Informationen über der Funktionsumfang und das Softwareprotokoll finden Sie in unserem Handbuch "PROFIBUS DP Feldbus Schnittstelle".

Die PROFIBUS-Erweiterungskarte verfügt über zwei parallel verdrahtete, 9-polige Sub-D-Buchsen.


Die Spannungsversorgung der Erweiterungskarte übernimmt der Servoverstärker.

11.3.1 Anschlusstechnik

Leitungsauswahl, Leitungsführung, Schirmung, Busanschlussstecker, Busabschluss und Laufzeiten werden in den "Aufbaurichtlinien PROFIBUS-DP/FMS" der PROFIBUS-Nutzerorganisation PNO beschrieben.

11.3.2 Anschlussbild

11.4 Erweiterungskarte -SERCOS-

Dieses Kapitel beschreibt die sercos® II Erweiterungskarte für den S300.

Informationen über den Funktionsumfang und das Softwareprotokoll finden Sie im Handbuch "IDN Reference Guide sercos® II.

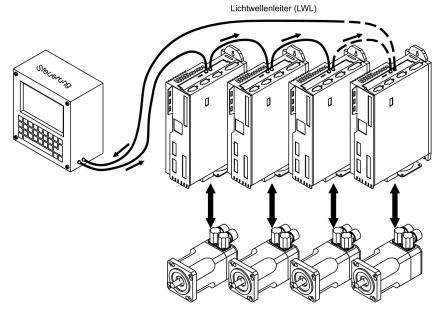
11.4.1 Leuchtdioden

Zeigt an, ob sercos [®] Telegramme korrekt empfangen werden. In der finalen Kommunikationsphase 4 sollte diese LED glimmen, da zyklisch Telegramme empfangen werden.
 Zeigt an, ob sercos[®] Telegramme gesendet werden. In der finalen Kommunikationsphase 4 sollte diese LED glimmen, da zyklisch Telegramme gesendet werden. Überprüfen Sie die Stationsadressen in der Steuerung und im Servoverstärker, wenn: die LED in sercos[®] Phase 1 nie leuchtet die Achse nicht in Betrieb genommen werden kann, obwohl RT zyklisch leuchtet.
Zeigt eine fehlerhafte bzw. gestörte sercos [®] Kommunikation an.
Leuchtet diese LED stark, ist die Kommunikation stark gestört oder gar nicht vorhanden. Bitte überprüfen Sie die sercos [®] Übertragungsgeschwindigkeit auf der Steuerung und im Servoverstärker (BAUDRATE) und den Anschluss der LWL.
Glimmt diese LED, zeigt dies eine leicht gestörte sercos [®] Kommunikation an, die optische Sendeleistung ist nicht korrekt der Leitungslänge angepasst. Bitte überprüfen Sie die Sendeleistung der physikalisch vorherigen sercos [®] Station. Die Sendeleistung der Servoverstärker können Sie auf der Bildschirmseite sercos [®] der Inbetriebnahmesoftware DRIVEGUI.EXE über die Anpassung an die Leitungslänge mit dem Parameter LWL-Länge einstellen.

11.4.2 Anschlusstechnik

Verwenden Sie für den Lichtwellenleiter (LWL) - Anschluss ausschließlich sercos[®] Komponenten gemäß sercos[®] Standard EN 61491.

Empfangsdaten


Der LWL mit den Empfangsdaten für den Antriebs in der Ringstruktur wird mit einem F-SMA Stecker an X13 angeschlossen

Sendedaten

Schließen Sie den LWL für den Datenausgang mit einem F-SMA Stecker an X14 an.

11.4.3 Anschlussbild

Aufbau des ringförmigen sercos® Bussystems mit Lichtwellenleiter (Prinzipdarstellung).

11.4.4 Setup

Stationsadresse

Die Adresse des Antriebs kann zwischen 0 und 63 gesetzt werden. Mit Adresse=0 wird der Antrieb als Verstärker im sercos®-Ring zugewiesen.

Tasten auf der Frontseite des Servoverstärkers

Sie können die Adresse durch Tasteneingaben am Verstärker ändern (→ # 109).

Inbetriebnahmesoftware

Sie können die Adresse auch mit der Inbetriebnahmesoftware, Bildschirmseite "CAN/Feldbus", ändern (siehe "Inbetriebnahmesoftware" bzw. in der <u>Online-Hilfe</u>). Im Bildschirmfenster "Terminal" können Sie alternativ den Befehl ADDR # eingeben, wobei # für die neue Adresse des Antriebs steht.

Baudrate und optische Leistung

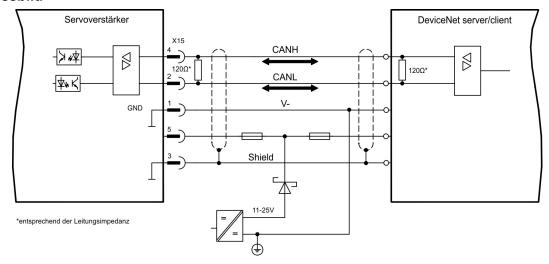
Bei nicht korrekt eingestellter Baudrate kommt keine Kommunikation zustande. Mit dem Parameter SBAUD # können Sie die Baudrate einstellen, wobei # für die Baudrate steht. Wenn die optische Leistung nicht richtig eingestellt ist, treten Fehler in der Telegrammübertragung auf und die rote LED am Antrieb leuchtet. Während der normalen Kommunikation blinken die grünen LEDs für Senden und Empfangen schnell, wodurch der Eindruck entsteht, dass die jeweilige LED leuchtet.

Mit dem Parameters SLEN # können Sie den optischen Bereich für ein standardisiertes 1 mm² Glasfaserkabel festlegen, wobei # die Länge des Kabels in Metern angibt.

SBAU	SBAUD SLEN		
2	2 Mbaud	0 m	sehr kurze Verbindung
4	4 Mbaud	1< 15 m	Länge der Verbindung mit einem 1 mm² Kunststoffkabel
8	8 Mbaud	15< 30 m	Länge der Verbindung mit einem 1 mm² Kunststoffkabel
16	16 Mbaud	≥ 30 m	Länge der Verbindung mit einem 1 mm² Kunststoffkabel

Sie können die Parameter mit der Inbetriebnahmesoftware, Bildschirmseite "SERCOS", ändern. Weitere Informationen finden Sie in der Online-Hilfe. Im Bildschirmfenster "Terminal" können Sie alternativ die Befehle **SBAUD** # und **SLEN** # eingeben.

11.5 Erweiterungskarte - DEVICENET -


Dieses Kapitel beschreibt die DeviceNet Erweiterungskarte für den S300. Informationen zu Funktionsumfang und Softwareprotokoll finden Sie in unserem Handbuch "DeviceNet Feldbus Schnittstelle".

11.5.1 Anschlusstechnik

Leitungsauswahl, Leitungsführung, Schirmung, Busanschlussstecker, Busabschluss und Laufzeiten werden in der "DeviceNet Spezifikation, Band I, II, Ausgabe 2.0", herausgegeben von der ODVA, beschrieben.

11.5.2 Anschlussbild

11.5.3 Kombinierte Modul- und Netzwerkstatus-LED

LED	Bedeutung:			
	Das Gerät ist nicht online.			
aus	Das Gerät hat den Dup_MAC_ID-Test noch nicht abgeschlossen.			
	Das Gerät ist möglicherweise nicht angeschlossen.			
grün	Das Gerät läuft im normalen Zustand, ist online, und die Verbindungen sind im etablierten Zustand. Das Gerät ist einem Master zugewiesen.			
	Das Gerät läuft im normalen Zustand, ist online, und die Verbindungen sind nicht im etablierten Zustand.			
blinkt grün	 Das Gerät hat den Dup_MAC_ID-Test bestanden und ist online, aber die Verbindungen zu anderen Knoten sind nicht hergestellt. Dieses Gerät ist keinem Master zugewiesen. Fehlende, unvollständige oder falsche Konfiguration 			
blinkt rot	Behebbarer Fehler und / oder mindestens eine E/A-Verbindung befindet sich im Wartestatus.			
rot	 Am Gerät ist ein nicht behebbarer Fehler aufgetreten; es muss eventuell ausgetauscht werden. Ausgefallenes Kommunikationsgerät. Das Gerät hat einen Fehler festgestellt, der die Kommunikation mit dem Netzwerk verhindert (z. B. doppelte MAC ID oder BUSOFF). 			

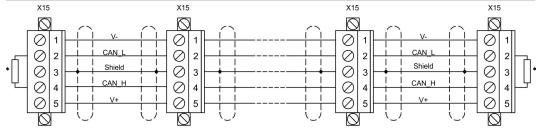
11.5.4 Setup

Einstellen der Stationsadresse (Geräteadresse)

Die Stationsadresse des Servoverstärker kann auf drei Arten eingestellt werden:

- Stellen Sie die Drehschalter an der Vorderseite der Erweiterungskarte auf einen Wert zwischen 0 und 63. Jeder Schalter stellt eine Dezimalziffer dar. Um Adresse 10 für den Antrieb einzustellen, setzen Sie MSD auf 1 und LSD auf 0.
- Stellen Sie die Drehschalter an der Vorderseite der Erweiterungskarte auf einen Wert größer als 63. Sie können die Stationsadresse jetzt anhand der ASCII-Befehle DNMACID x, SAVE, COLDSTART einstellen, wobei "x" für die Stationsadresse steht.
- Stellen Sie die Drehschalter an der Vorderseite der Optionskarte auf einen Wert größer als 63. Sie können die Stationsadresse jetzt über das DeviceNet-Objekt (Klasse 0x03, Attribut 1) einstellen. Dies geschieht mit Hilfe eines DeviceNet-Inbetriebnahmewerkzeugs. Sie müssen den Parameter im nichtflüchtigen Speicher (Klasse 0x25, At- tribut 0x65) sichern und den Antrieb nach der Änderung der Adresse erneut starten.

Einstellen der Übertragungsgeschwindigkeit


Drei unterschiedliche Einstellmöglichkeiten:

- Stellen Sie den Drehschalter für die Baudrate an der Vorderseite der Optionskarte auf einen Wert zwischen 0 und 2, 0 = 125 KBit/s, 1 = 250 KBit/s, 2 = 500 KBit/s.
- Stellen Sie die Drehschalter an der Vorderseite der Optionskarte auf einen Wert größer als 2. Sie können die Baudrate jetzt anhand der Terminal-Befehle DNBAUD x, SAVE, COLDSTART einstellen, wobei "x" für 125, 250 oder 500 steht.
- Stellen Sie die Drehschalter an der Vorderseite der Optionskarte auf einen Wert größer als 2. Sie können die Baudrate jetzt anhand des DeviceNet-Objekts (Klasse 0x03, Attribut 2) auf einen Wert zwischen 0 und 2 einstellen. Dies geschieht mit Hilfe eines DeviceNet-Inbetriebnahmewerkzeugs. Sie müssen den Parameter im nichtflüchtigen Speicher (Klasse 0x25, Attribut 0x65) sichern und den Antrieb nach der Änderung der Baudrate erneut starten.

11.5.5 Buskabel

Gemäß ISO 11898 sollten Sie ein Buskabel mit einer charakteristischen Impedanz von 120Ω verwenden. Die für eine zuverlässige Kommunikation nutzbare Kabellänge wird mit ansteigender Übertragungsgeschwindigkeit reduziert. Die folgenden, von uns gemessenen Werte können als Richtwerte verwendet werden. Sie sollten jedoch nicht als Grenzwerte ausgelegt werden.

Allgemeines	Spezifikation			
Bitraten	125 kBit, 250 kBit, 500 kBit			
A la a tama al mait ali a la an	500 m bei 125 kBaud			
Abstand mit dicker Sammelschiene	250 m bei 250 kBaud			
Carrifficisofficia	100 m bei 500 kBaud			
Anzahl Knoten	64			
Signalgebung	CAN			
Modulation	Grundbandbreite			
Medienkopplung	Gleichstromgekoppelter Differentialsende- und Empfangsbetrieb			
Isolierung	500 V (Option: Optokoppler auf Knotenseite des Transceivers)			
Typische Differenzialein-	Shunt C = 5pF			
gangsimpedanz (rezes- siver Status)	Shunt R = $25k\Omega$ (power on)			
Min. Differenzialein-	Shunt C = 24pF + 36 pF/m der dauerhaft befestigten Abzweiglei-			
gangsimp. (rezessiver	tung			
Status)	Shunt R = $20k\Omega$			
	-25 V bis +18 V (CAN_H, CAN_L). Die Spannungen an CAN_H			
Absoluter, maximaler	und CAN_L sind auf den IC-Massepin des Transcei- vers bezo-			
Spannungsbereich	gen. Diese Spannung ist um den Betrag höher als die V-Klemme, der dem Spannungsabfall an der Schottky-Di- ode entspricht			
	(max. 0,6V).			

 * entsprechend der Leitungsimpedanz ca. 120 Ω

Erdung:

Um Erdungsschleifen zu verhindern, darf das DeviceNet-Netzwerk nur an einer Stelle geerdet sein. Die Schaltkreise der physischen Schicht in allen Geräten sind auf das V-Bussignal bezogen. Der Anschluss zur Masse erfolgt über die Busstromversorgung. Der Stromfluss zwischen V- und Erde darf über kein anderes Gerät als über eine Stromversorgung erfolgen.

Bustopologie:

Das DeviceNet-Medium verfügt über eine lineare Bustopologie. Auf jeder Seite der Verbindungsleitung sind Abschlusswiderstände erforderlich. Abzweigleitungen bis zu je 6 m sind zulässig, so dass mindestens ein Knoten verbunden werden kann.

Abschlusswiderstände:

Für DeviceNet muss an jeder Seite der Verbindungsleitung ein Abschlusswiderstand installiert werden. Widerstandsdaten: 120Ω , 1% Metallfilm, 1/4 W

11.6 Erweiterungskarte -SYNQNET-

Dieses Kapitel beschreibt die SynqNet Erweiterungskarte. Informationen zu Funktionsumfang und Softwareprotokoll finden Sie in der SynqNet Dokumentation.

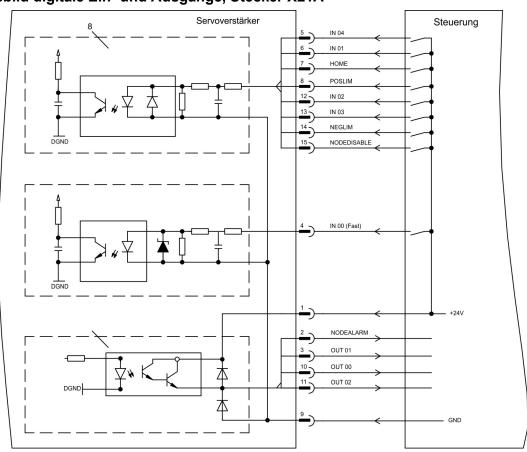
11.6.1 NODE ID-Schalter

Mit Hilfe der hexadezimalen Drehschalter können Sie das obere und untere Byte der Node ID getrennt einstellen. SynqNet verlangt für korrekte Funktion im Netzwerk nicht zwingend eine Adresse, in einigen Anwendungen kann dies jedoch sinnvoll sein, um von einer Applikations-Software erkannt zu werden.

11.6.2 NODE LED-Tabelle

LED#	Name	Funktion
LED1 LINK IN		An = Empfang gültig (IN port)
LEDI	LINK_IN	Aus = nicht gültig, power off oder Rest.
		An = Netzwerk zyklisch
LED2	CYCLIC	Blinkt = Netzwerk nicht zyklisch
		Aus = power off, oder Rest
LED3	LINK OUT	An = Empfang gültig (OUT port)
LED3	LINK_OUT	Aus = nicht gültig, power off oder Rest.
		An = Repeater Ein, Netzwerk zyklisch
LED4	REPEATER	Blinkt = Repeater Ein, Netzwerk nicht zyklisch
		Aus = Repeater Aus, power off oder Rest

11.6.3 SynqNet-Anschlüsse, Stecker X21B und X21C (RJ-45)


Anschluss an das SynqNet Netzwerk über RJ-45 Buchsen (IN- und OUT-Ports) mit integrierten LEDs.

11.6.4 Digitale Ein- und Ausgänge, Stecker X21A (SubD, 15-polig, Buchse)

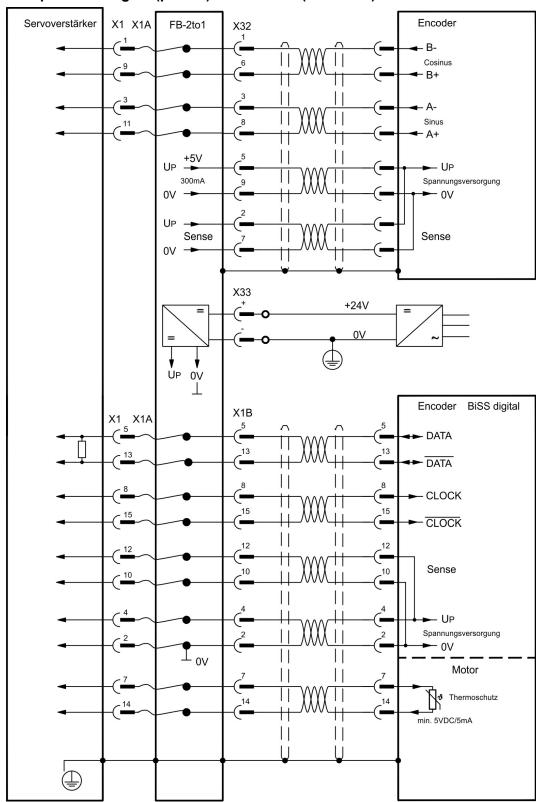
Eingänge (In): 24V (20...28V), optisch entkoppelt, ein high-speed Eingang (Pin 4) Ausgänge (Out): 24V, optisch entkoppelt, Darlington Treiber

Belegungstabelle Stecker X21A (SubD 15 polig)					
Pin	Тур	Beschreibung			
1	In	+24V	Spannungsversorgung		
2	Out	NODEALARM	Meldet Problem bei diesem Node		
3	Out	OUT_01	digitaler Ausgang		
4	In	IN_00 (fast)	Capture Eingang (schnell)		
5	In	IN_04	digitaler Eingang		
6	In	IN_01	digitaler Eingang		
7	In	HOME	Referenzschalter		
8	In	POSLIM	Endschalter pos. Drehrichtung		
9	In	GND	Spannungsversorgung		
10	Out	OUT_00	digitaler Ausgang		
11	Out	OUT_02	digitaler Ausgang		
12	In	IN_02	digitaler Eingang		
13	In	IN_03	digitaler Eingang		
14	In	NEGLIM	Endschalter neg. Drehrichtung		
15	In	NODEDISABLE	Deaktiviert Node		

11.6.5 Anschlussbild digitale Ein- und Ausgänge, Stecker X21A

11.7 Erweiterungskarte - FB-2to1 -

Dieses Kapitel beschreibt die Feedback Erweiterungskarte FB-2to1 für den S300. Die Karte ermöglicht den gleichzeitigen Anschluss eines digitalen primären und eines analogen sekundären Feedbacks an den Stecker X1. Die Einspeisung einer 24V DC Hilfsspannung an X33 wird auf der Erweiterungskarte in eine präzise 5V DC Geberversorgung für das sekundäre Feedback gewandelt.



11.7.1 Pinbelegung

X33	Belegung Combicon Stecker
+	+24V DC (2030V), ca. 500mA
-	GND

X32	Belegung SubD 9 polig (sekundäres Feedback) SinCos (1V p-p)	Х1В	Belegung SubD 15 polig (primäres Feedback) EnDat 2.2, BiSS digital, SSI absolut
1	B- (Kosinus)	1	n.c.
2	SENSE+	2	0V
3	A- (Sinus)	3	n.c.
4	n.c.	4	+5V DC
5	+5V DC (300mA)	5	DATA
6	B+ (Kosinus)	6	n.c.
7	SENSE-	7	Temperaturfühler Motor
8	A+ (Sinus)	8	CLOCK
9	0V	9	n.c.
- 1	-	10	Sense 0V
- 1	-	11	n.c.
- 1	-	12	Sense +5V
	<u>-</u>	13	DATA
-	-	14	Temperaturfühler Motor
	-	15	CLOCK

11.7.2 Anschlussbeispiel BiSS digital (primär) und SinCos (sekundär)

11.8 Erweiterungskarte - PROFINET-

Dieses Kapitel beschreibt die ProfiNet Erweiterungskarte für den S300. Informationen über der Funktionsumfang und das Softwareprotokoll finden Sie in unserem Handbuch "PROFINET Feldbus Schnittstelle". Die PROFINET Erweiterungskarte verfügt über eine Dual RJ45 PROFINET-Schnittstelle. Die Spannungsversorgung der Erweiterungskarte übernimmt der Servoverstärker.

Die PROFINET Erweiterungskarte unterstützt folgende Funktionen:

- RT
- Mischbetrieb (RT, IRT) möglich.
- LLDP
- I&M 0
- I&M 1-4

11.8.1 Gerätestammdatei

Die GSDML Gerätestammdatei finden Sie auf der mitgelieferten CDROM oder auf der Kollmorgen Website.

11.8.2 Leuchtdioden

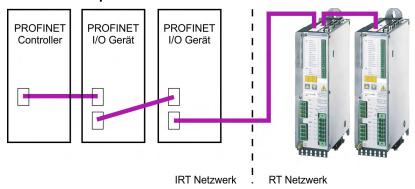
Name	Farbe	Funktion	
BF	Rot	Ein = Busfehler	
		Aus = Kein Fehler	
		Blinkt 2Hz = Kein Datenaustausch	
SF	Rot	Ein = Systemfehler	
		Aus = Kein Fehler	
		Blinkt 2Hz = Der DCP-Signaldienst wird über den Bus initiiert	
Power	Grün	Ein = Versorgungsspannung liegt an	
		Aus = Keine Versorgungsspannung	
RJ45:	Grün	Ein = Verbindung mit EtherNet	
Link / Aktivität		Aus = Keine Verbindung mit EtherNet	
RJ45:	Gelb	Ein = Sendet/empfängt EtherNet Frames	
Rx/Tx			

11.8.3 Anschlusstechnik

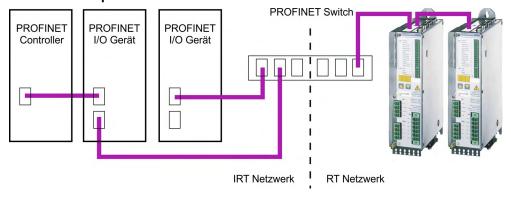
Leitungsauswahl, Leitungsführung, Schirmung, Busanschlussstecker, Busabschluss und Laufzeiten werden in der PROFINET-Nutzerorganisation PNO beschrieben.

Die folgenden Mindestanforderungen an die Verbindungskabel und Stecker müssen erfüllt werden:

- Verwenden Sie ausschließlich industrietaugliche Ethernet-Kabel und Stecker.
- Verwenden Sie ausschließlich doppelt abgeschirmtes Twisted Pair-Kabel und geschirmte RJ45-Stecker (Industrie-Stecker).
- 100BaseTX-Kabel nach Ethernet-Standard (min. Kategorie 5)


11.8.4 Anschlussbeispiele

Anschlussbeispiel im RT-Netzwerk



RT Netzwerk

Anschlussbeispiel im RT / IRT Netzwerk

Anschlussbeispiel im RT / IRT Netzwerk mit Switch

11.9 Erweiterungsmodul -2CAN-

Der Stecker X6 des S300 ist belegt mit den Signalen des RS232 Interface und des CAN Interface. Dadurch ist die Pinbelegung der Schnittstellen nicht standardgemäß und Sie benötigen ein Spezialkabel, wenn Sie beide Schnittstellen gleichzeitig verwenden wollen. Das Erweiterungsmodul -2CAN- bietet Ihnen die Schnittstellen auf getrennten SubD-Steckern. Die beiden CAN-Stecker (CAN-IN und CAN-OUT) sind parallel verdrahtet. Über den Schalter kann ein Terminierungswiderstand (120 Ω) für den CAN-Bus zugeschaltet werden, wenn der S300 den Busabschluss bildet.

11.9.1 Anbau

ACHTUNG

Schalten Sie die Geräte vor Beginn der Arbeiten spannungsfrei Zustand, d.h. weder die Leistungsversorgung noch die 24 V Hilfsspannung noch die Betriebsspannung des Servoverstärkers oder eines anderen angeschlossenen Gerätes darf eingeschaltet sein.

Das Modul wird auf den Optionsschacht geschraubt, nachdem Sie die Abdeckung entfernt haben (→ # 115):

INFO

- Schrauben Sie die Abstandsbolzen in die Befestigungslaschen des Optionsschach tes
- Setzen Sie das Erweiterungsmodul auf den Optionsschacht auf.
- Drehen Sie die Schrauben in die Gewinde der Abstandsbolzen
- Stecken Sie die SubD9-Buchse in Stecker X6 am S300

11.9.2 Anschlusstechnik

Für die RS232- und die CAN-Schnittstelle können Standardkabel mit Abschirmung ver wendet werden.

INFO

Wenn der Servoverstärker das letzte Gerät am CAN-Bus ist, muss der Schalter für die Busterminierung auf ON geschaltet werden.

Ansonsten muss der Schalter auf OFF geschaltet sein (Auslieferungszustand).

11.9.3 Anschlussbelegung

RS232		CAN1=CAN2	
X6A Pin	Signal	X6B=X6C Pin	Signal
1		1	
2	RxD	2	CAN-Low
3	TxD	3	CAN-GND
4		4	
5	GND	5	
6		6	
7		7	CAN-High
8		8	
9		9	

11.9.4 Einstellen der Stationsadresse und Übertragungsrate

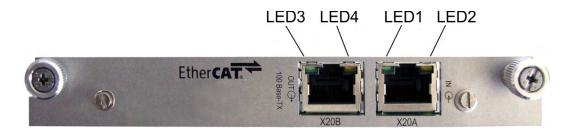
Bei der Inbetriebnahme ist es sinnvoll, die Stationsadressen der einzelnen Verstärker und die Baudrate für die Kommunikation vorab über die Frontplattentastatur einzustellen.

Nach Verändern der Stationsadresse und Baudrate müssen Sie die 24V-Hilfsspannungs-Versorgung der Servoverstärker aus- und wieder einschalten.

Einstellungsmöglichkeiten:

- Mit der Tastatur in der Frontplatte
- In der Inbetriebnahme-Software auf der Bildschirmseite "CAN / Feldbus"
- Über die serielle Schnittstelle mit der Abfolge der ASCII-Kommandos: ADDR nn → SAVE → COLDSTART (mit nn = Adresse)
 CBAUD bb → SAVE → COLDSTART (mit bb = Baudrate in kB)

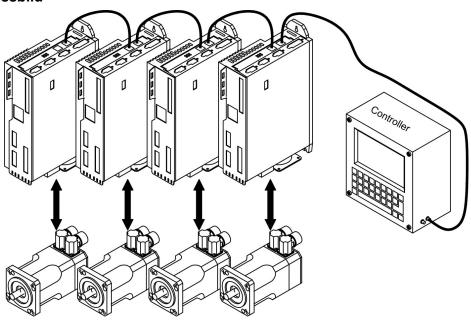
Codierung der Baudrate im LED-Display:


Codierung	Baudrate in kBit/s	Codierung	Baudrate in kBit/s
1	10	25	250
2	20	33	333
5	50	50	500
10	100	66	666
12	125	80	800
		100	1000

11.10 Option "EtherCAT"

Stellt das EtherCAT Interface für den zur Verfügung. Die Option belegt den Erweiterungssteckplatz. Informationen zu Funktionsumfang und Softwareprotokoll finden Sie in der EtherCAT Dokumentation. Diese Option ermöglicht den Anschluss des an das EtherCAT Netzwerk über RJ-45 Buchsen (IN- und OUT-Ports).

INFO


Die Option EtherCAT kann nicht nachgerüstet werden. Bestellen Sie den Verstärker mit eingebauter Option EtherCAT.

11.10.1 NODE LED-Tabelle

LED#	Name	Funktion
LED1 LINK IN		An = Empfang gültig (IN port)
LEDI	LINK_IN	Aus = nicht gültig, Power off oder Reset.
		An = Netzwerk zyklisch
LED2	CYCLIC	Blinkt = Netzwerk nicht zyklisch
		Aus = Power off, oder Reset
LED3	LINK OUT	An = Empfang gültig (OUT port)
LEDS	LINK_OUT	Aus = nicht gültig, Power off oder Reset.
		An = Repeater Ein, Netzwerk zyklisch
LED4	REPEATER	Blinkt = Repeater Ein, Netzwerk nicht zyklisch
		Aus = Repeater Aus, Power off oder Reset

11.10.2 Anschlussbild

11.11 Option "FAN", geregelter Lüfter

Zur Verringerung der Geräuschemission können die Servoverstärker mit eingebauter Option FAN bestellt werden, ein Nachrüsten ist nicht möglich. Die Option belegt (nach außen nicht sichtbar) den Erweiterungssteckplatz

INFO

Die Option FAN kann nicht nachgerüstet werden. Bestellen Sie den Verstärker mit eingebauter Option FAN.

Funktion

Der angebaute Lüfter wird abhängig von Temperaturmesswerten und Bremsleistung ein- oder ausgeschaltet. Dadurch verringert sich der durchschnittliche Geräuschpegel erheblich.

Schaltpunkte

Überwachung	Lüfter Aus	Lüfter An
Innentemperatur	< 55°C	> 58°C
Kühlkörpertemperatur	< 60°C	> 65°C
Bremswiderstand (intern)	< 20W	> 30W

12 Anhang

12.1 Glossar

	0.0000.		
В		Ballastschaltung	siehe Bremsschaltung
		Bremsschaltung	wandelt vom Motor beim Bremsen rückgespeiste Ener-
		-	gie über den Bremswiderstand in Wärme um.
С		Clock	Taktsignal
		counts	interne Zählimpulse, 1 Impuls=1 / 2 ²⁰ Umdr ⁻¹
D		Dauerleistung der Bremsschaltung	mittlere Leistung, die in der Bremsschaltung umge-
			setzt werden kann
		Disable	Wegnahme des ENABLE-Signals (siehe Enable)
		Drehzahlregler	regelt die Differenz zwischen Drehzahlsollwert SW
			und Drehzahlistwert zu 0 aus.
			Ausgang : Stromsollwert
E		Eingangsdrift	Temperatur- und alterungsbedingte Veränderungen
			eines analogen Eingangs
		Enable	Freigabesignal für den Servoverstärker, Hardware-Ena-
			ble über 24V Signal an X3, Software-Enable über die
			Inbetriebnahme-Software, Feldbus oder permanent
			gesetzt. Beide sind erforderlich zur Freigabe.
		Enddrehzahl	Maximalwert für die Drehzahlnormierung bei ±10V
		Endschalter	Begrenzungsschalter im Verfahrweg der Maschine;
			Ausführung als Öffner
		Erdschluss	Elektrisch leitende Verbindung zwischen einer Phase
			und PE
F		Fahrsatz	Datenpaket mit allen Lageregelungsparametern, die für
			einen Fahrauftrag erforderlich sind
		Feldbus Schnittstelle	CANopen, PROFIBUS, SERCOS, EtherCAT etc.
		Freie Konvektion	freie Luftbewegung zur Kühlung
G		Gleichtaktspannung	Störamplitude, die ein analoger Eingang (Differenz-
			eingang) ausregeln kann
		GRAY-Format	spezielle Form der binären Zahlendarstellung
Н		Haltebremse	Bremse im Motor, die nur bei Motorstillstand ein-
			gesetzt werden darf
I		I ² t-Schwelle	Überwachung des tatsächlich abgeforderten Effek-
			tivstroms Irms
		Impulsleistung der Bremsschaltung	maximale Leistung, die in der Bremsschaltung umge- setzt werden kann
		Inkrementalgeber-Schnittstelle	Positionsmeldung über zwei um 90° versetzte Signale,
		3	keine absolute Positionsausgabe
		Interface	Schnittstelle
		Ipeak, Spitzenstrom	Effektivwert des Impulsstroms
		Irms, Effektivstrom	Effektivwert des Dauerstroms
K		Kommutierung	Art der Motorbestromung
		Kp, P-Verstärkung	proportionale Verstärkung eines Regelkreises
		Kurzschluss	elektrisch leitende Verbindung zwischen zwei Phasen

L	Lageregler	regelt die Differenz zwischen Lagesollwert und Lageistwert zu 0 aus. Ausgang : Drehzahlsollwert
	Leistungsschalter	Anlagenschutz mit Phasenausfallüberwachung
М	Maschine	Gesamtheit miteinander verbundener Teile oder Vor- richtungen, von denen mindestens eine beweglich ist
	Mehrachssysteme	Maschine mit mehreren autarken Antriebsachsen
N	Netzfilter	Vorrichtung zur Ableitung von Störungen auf den Leitungen der Leistungsversorgung nach PE
	Nullimpuls	wird von Inkrementalgebern einmal pro Umdrehung ausgegeben, dient der Nullung der Maschine
0	Optokoppler	optische Verbindung zwischen zwei elektrisch unab- hängigen Systemen
Р	P-Regler	Regelkreis, der rein proportional arbeitet
	Phasenverschiebung	Kompensation der Nacheilung zwischen elek-
		tromagnetischem und magnetischem Feld im Motor
	PI-Regler	Regelkreis mit proportionalem und integralem Verhalten
	Potentialtrennung	elektrisch entkoppelt
R	Reset	Neustart des Mikroprozessors
	Resolver-Digital-Converter	Umwandlung der analogen Resolversignale in digitale Informationen
	Reversierbetrieb	Betrieb mit periodischem Drehrichtungswechsel
	Ringkern	Ferritringe zur Störunterdrückung
	ROD-Schnittstelle	inkrementelle Positionsausgabe
S	Servoverstärker	Stellglied zur Regelung von Drehmoment, Drehzahl und Lage eines Servomotors
	Sollwert-Rampen	Begrenzung der Änderungsgeschwindigkeit des Drehzahlsollwertes
	SSI-Schnittstelle	Zyklisch absolute, serielle Positionsausgabe
	Stromregler	regelt die Differenz zwischen Stromsollwert und
		Stromistwert zu 0 aus.
		Ausgang : Leistungsausgangs-Spannung
Т	Tachospannung	zum Drehzahl-Istwert proportionale Spannung
	Thermoschutzkontakt	in die Motorwicklung eingebauter, temperaturempfindlicher Schalter
	Tn, I-Nachstellzeit	Integral-Anteil des Regelkreises
Z	Zwischenkreis	gleichgerichtete und geglättete Leistungsspannung

12.2 Bestellnummern

Bestellnummern für Zubehör wie Kabel, Bremswiderstände, Netzteile usw. finden Sie im Zubehörhandbuch auf der Produkt-CDROM oder auf unserer Internetseite.

Servoverstärker

Artikel	Nennspannung	Bestellnummer*
SERVOSTAR 303	110-230 V AC	S30361-NA
SERVOSTAR 303-EC	110-230 V AC	S30361-EC
SERVOSTAR 306	110-230 V AC	S30661-NA
SERVOSTAR 306-EC	110-230 V AC	S30661-EC
SERVOSTAR 306-FAN	110-230 V AC	S30661-FN
SERVOSTAR 310	110-230 V AC	S31061-NA
SERVOSTAR 310-EC	110-230 V AC	S31061-EC
SERVOSTAR 310-FAN	110-230 V AC	S31061-FN
SERVOSTAR 341	208-480 V AC	S30101-NA
SERVOSTAR 341-EC	208-480 V AC	S30101-EC
SERVOSTAR 343	208-480 V AC	S30301-NA
SERVOSTAR 343-EC	208-480 V AC	S30301-EC
SERVOSTAR 343FAN	208-480 V AC	S30301-FN
SERVOSTAR 346	208-480 V AC	S30601-NA
SERVOSTAR 346-EC	208-480 V AC	S30601-EC
SERVOSTAR 346-FAN	208-480 V AC	S30601-FN

^{*} NA: ohne eingebaute Erweiterungskarte

FN: eingebaute Option FAN, blockiert Erweiterungssteckplatz

EC : eingebaute Option EtherCAT, blockiert Erweiterungssteckplatz

Erweiterungskarten

Artikel	EU Bestellnummer	US Bestellnummer
Erweiterungskarte DeviceNet	DE-103571	OPT-DN
Erweiterungskarte PROFIBUS DP	DE-106712	OPT-PB3
Erweiterungskarte PROFINET	DE-202223	OPT-PN
Erweiterungskarte SERCOS	DE-90879	OPT-SE
Erweiterungskarte I/0-14/08	DE-90057	OPT-EI
Erweiterungskarte EtherCAT (alt)	DE-108350	OPT-EC
Erweiterungskarte SynqNet	DE-200073	OPT-SN
Erweiterungskarte FB-2to1	DE-201664	nicht verfügbar
Erweiterungsmodul 2CAN	DE-101174	nicht verfügbar

Gegenstecker

Artikel	EU Bestellnummer	US Bestellnummer
Gegenstecker X3	DE-107554	CON-S3X3
Gegenstecker X4	DE-107555	CON-S3X4
Gegenstecker X0 (110230V)	DE-105856	CON-S3X0L
Gegenstecker X8 (110230V)	DE-107556	CON-S3X8L
Gegenstecker X9 (110230V)	DE-107631	CON-S3X9L
Gegenstecker X0 (208480V)	DE-107557	CON-S3X0H
Gegenstecker X8 (208480V)	DE-107558	CON-S3X8H
Gegenstecker X9 (208480V)	DE-107467	CON-S3X9LH

13 Index Devicenet Buskabel124 DSL, Schnittstelle 68 2 Dynamisches Bremsen31 E Α EAC ______21 Ein- und Ausschaltverhalten33 Abkürzungen11 Ableitstrom44 Eingänge Abmessungen47 Analog-In 1/292 Abschirmung49 **Elektronisches Getriebe** Anschlussplan (Übersicht)56 X187 Anschlussstecker28 **Encoder-Emulation** Anzugsmomente28 X590 Ausgänge EnDat 2.1 Encoder, X172 BTB/RTO94 EnDat 2.2 Encoder, X173 Digital-Out 1/294 Außer Betrieb nehmen17 **Erdung** Anschlussbild56 В Installation49 **Baudrate** Erweiterungskarte -2CAN-131 -DEVICENET-122 CAN96, 109 -FB-2to1-127 SERCOS 121 -I/O-14/08- 116 -PROFIBUS- 119 Belüftung29 -PROFINET-129 Berührungsschutz44 -SERCOS-120 Beseitigung von Störungen114 -SYNQNET-125 Bestellnummern137 Bestimmungsgemäße Verwendung F Allgemein15 Feedbacktypen66 STO40 Betriebssysteme99 BiSS Encoder analog, Schnittstelle70 Formierung97 BiSS Encoder digital, Schnittstelle71 Blockschaltbild54 G Bremse, Motorhaltebremse 30 **Bremswiderstand** Schnittstelle61 Technische Daten32 Н BTB/RTO94 Hall, X186 C Hardware-Voraussetzungen99 Hilfsspannung28 **CAN Bus** Hiperface Encoder, Schnittstelle74 Kabel96 Schnittstelle96 CE20 ComCoder, Schnittstelle80 Inkrementalgeber 24V an X383 cUL19 Inkrementalgeber 24V an X3/X1 mit Hall 84 Inkrementalgeber 5V an X1 mit Hall80

D

Inkrementalgeber 5V an X1, 1.5MHz78 Inkrementalgeber 5V an X1, 350kHz79	Q	
Inkrementalgeber 5V an X5/X1 mit Hall82	Quickstart, Schnelltest	100
Inkrementalgeber 5V an X5/X1, 1.5MHz81 Installation	R	
Elektrisch48		
Erweiterungskarten115	REACH	21
Mechanisch45	Reparatur	18
Software 99	Resolver, Schnittstelle	69
Installation, Setup und Normalbetrieb 16	ROD Emulation X5	90
motanation, obtap and Normalization	RoHS	
K	RS232/PC, Schnittstelle	
	Rückführsysteme	
Kondensatormodule	-	
Konformität	\$	
CE20	0 - f - T 0 f	00
EAC21	Safe Torque Off	
REACH21	Schirmanschluss	
RoHS21	Setup Wizard	
Safety21	SFD3, Schnittstelle	
UL und cUL19	Sicherheitstechnische Kennzahlen	
	Sicherungen	28
L	SinCos+SSI an X5/X1	75
	Sinus Encoder mit Hall	77
Lagerung16	Sinus Encoder ohne Datenspur	76
LED Display	Sollwerteingänge	
Leiterquerschnitte	SSI Absolutgeber X5/X1	
Lieferumfang	SSI Emulation X5	
	Stationsadresse	
M	2CAN	132
···	CAN-Bus	
Masse-System31	Devicenet	
Masse-Zeichen50	SERCOS	
Master-Slave X1	Steckerbelegung	
Montage	STO	
Motor, Schnittstelle		
Motorhaltebremse 30	Stopp	
MOTOTTIATED Se	Systemkomponenten, Übersicht	53
N	Т	
Netzanschluss, Schnittstelle59	Tastenbedienung	109
NOT-AUS	Technische Daten	
Not-Halt37	Transport	
	Trenntransformatoren	
0	Typenschild	
	Typenschlüssel	
Option "FAN" 134	Typensemusser	
Option EtherCAT	U	
Optische Leistung LWL121	0	
	Übertragungsrate	96
P	UL	
	Umgebungsbedingungen	
PC-Anschluss95		
Positionsausgabe X590	V	
Puls/Richtung 24V an X388		
Puls/Richtung 5V an X1 88	Verdrahtung	50
Puls/Richtung 5V an X589	Verpackung	

Versorgungsnetze Verwendete Symbole	
W	
Warnmeldungen	
Wartung	
Z	
Zulassungen	19
Zwischenkreis, Schnittstelle	

--- / ---

14 Bisher erschienene Ausgaben

Ausgabe	Bemerkung
06/2004	Erstausgabe
04/2005	Wiederanlaufsperre, UL-Zertifizierung, Änderung der Anschlussbelegung an X8, div. Korrekturen
11/2005	Kap. 1 aktualisiert, ComCoder Anschlussbild korrigiert, BiSS-Interface neu, max. CAN-Stations- adresse auf 127, Motor-Drossel geändert, SynqNet & EtherCAT Erweiterungskarten neu, Kapitel 6 neue Struktur, Bestellhinweise neu struk- turiert, Syntax: Ballastschaltung -> Bremsschaltung
12/2005	Kapitel Feedback neu, Abschlusswiderstände X1/X5, CE-Kapitel
02/2006	Fehlermeldungen, Warnungen aktualisiert, Analog-In Schaltung aktualisiert
05/2006	Analoger Eingang, Baudrate CAN (Codierung), Fehler-/Warnmeldungen, BiSS, HW Revision
09/2006	Neue Struktur, Umschlagseiten neu, Warnung n24, Quickstart integriert
03/2007	Typenschlüssel neu, Ableitströme neu, Abschlusswiderstände CAN Interface und X5 korrigiert, Branding, Systemdarstellung erweitert und verschoben, Ein-/Ausschaltverhalten und AS erweitert, Netztypen verschoben, Trouble-Shooting bereinigt, Feedback erweitert und umstrukturiert, Parallelschaltung Zwischenkreis erweitert, Encoder-Emulation, Zubehör entfernt
07/2007	Timing-Diagramm Motorhaltebremse, Normen (EMV+NSR) aktualisiert
10/2007	Zielgruppe, best.gem.Verwendung, Normen
05/2008	Sicherheitshinweise/Symbole nach ANSI Z535.6, Reparatur, Außerbetriebnahme, dU/dt Info, techn. Daten Anschlussstecker, Anforderungen Anschlussleitungen, Daten Bremsschaltung
06/2008	Option FAN neu, EG-Konformitätserklärung neu, Hiperface korrigiert
10/2008	SCCR -> 42kA
02/2009	Produkt Logo, einphasiger Betrieb, Reparatur/Entsorgung
05/2010	SSI Eingang Clock Signal invertiert, GOST-R, CE, Option FAN Schaltpunkte, AS->STO, Not-Halt Beispiele ins WIKI verlagert
07/2010	Wiki Links aktualisiert
11/2010	Neue CPU, EtherCAT Interface, Multi-Feedback
12/2010	Firmenname, Adresse, CE Zertifikat, Typenschild, Faxformular
05/2011	Option EF neu, BiSS C, BiSS analog/digital getrennt,Typenschild, Frontfolie
09/2011	Zulässige Einschalthäufigkeit definiert, nicht unterstützte Feedbacks 25/26 entfernt, Zertifikate
06/2012	Absicherung korrigiert, Not-Halt aktualisiert, Erweiterungskarte FB2to1 neu, Option EF entfernt
05/2014	Feedback - ENCVON Hinweis, CE Zertifikat, FBTYPE 34, KCM Module, BiSS C Renishaw, UL Markings, Hinweise automatischer Wiederanlauf, SSI Emulation Timing, berührungssichere Spannung 40V->60V, Fehlertabelle, Ausschaltverhalten bei Fehler, Warnsymbole.
07/2014	Thermosensor Anschluss invertiert (Feedback)
12/2014	Gost-R entfernt, CE Konformitätserklärung entfernt, HWR, Export Klassifizierung
02/2015	EAC Zertifizierung, Typenschild mit EAC Zeichen, UL Markings in EN+FR
12/2015	KCM Anschluss korrigiert, Zulassungen neu strukturiert, Lieferumfang, Faxformular entfernt, berührungssichere Spannung 60V->50V, NSR 2014-35-EG, EMVR 2014-30-EG
02/2017	Ein-Kabel / SFD3 / Hiperface DSL neu, Warnhinweise, Handhabung eigenes Kapitel, PFH Wert aktualisiert
04/2018	X1 Stecker korrigiert (Stift->Buchse), HR Tabelle aktualisiert, Wiki geändert zu KDN, Belüftung
11/2018	Layout Warnhinweise und Lesehinweis Titelseite verändert, Anforderung Fachleute aktualisiert
05/2020	Layout aktualisiert, Kapitel "Verwendete Standards" entfernt, Motor Temperatursensor generalisiert, Kapitel Normalbetrieb hinzugefügt, RoHS, REACH, EAC, PROFINET Erweiterungskarte neu

Service

Kollmorgen bietet seinen Kunden einen umfassenden Kundendienst.

.

Besuchen Sie das Kollmorgen Developer Network. Stellen Sie Fragen an die Community, durchsuchen Sie die "Knowledge Base", laden Sie Dateien herunter und schlagen Sie Verbesserungen vor.

Europa

KOLLMORGEN

Internet: www.kollmorgen.com/de-de
E-Mail: technik@kollmorgen.com/de-de

Tel.: +49 - 2102 - 9394 - 0 Fax: +49 - 2102 - 9394 - 3155

Nordamerika

KOLLMORGEN

Internet: www.kollmorgen.com/en-us
E-Mail: support@kollmorgen.com/en-us

Tel.: +1 - 540 - 633 - 3545 Fax: +1 - 540 - 639 - 4162

Südamerika

KOLLMORGEN

Internet: www.kollmorgen.com/pt-br
E-Mail: contato@kollmorgen.com

Tel.: +55 - 11 - 4615-6300

Asien

KOLLMORGEN

Internet: www.kollmorgen.cn

E-Mail: sales.china@kollmorgen.com

Tel: +86 - 400 668 2802 Fax: +86 - 21 6248 5367

