

A Flux Vector Drive with integrated:

- Auto-tunning
- Shaft orientation
- Line regen

For use with induction or synchronous motors

VHF1400A - USER MANUAL

Danaher Motion S.A. La Pierreire CH-1029 Villars-Ste-Croix Telephone +41-21-631 33 33, Telefax +41-21-636 05 09 E-mail: <u>info@danaher-motion.ch</u> <u>www.danaher-motion.ch</u>

This page is intentionally not used

TABLE OF CONTENT

Safety instructions	5
Information on the Operating Manual	5
The Basic Safety Rules	5
Working instruction	5
Overspeed protection	6
Proper installation	6
Responsibility	6
A comprehensive range of product	7
Product basics	7
Main technical data	7
Current and Power ratings	7
Type Part Numbering	8
Connecting the VHF drive using a transformer	8
Motor protection chokes.	9
Output power and heat dissipation	9
The dimensions and weight of the VHF1400A	.9
Cabinet enclosure	9
VHF1415A - VHF1430A - Drive overview	10
VHF1440A to VHF1490A Drive overview	11
VHF1400A - Terminals description	12
The power terminal block X1	12
The + 25VDC - Auxiliary Power Supply	12
CN2 The D- Sub connector of the speed / position feedback input	13
The integrated interface for sin/cos sensors	14
Selecting the voltage of the feedback sensor power supply	14
Connecting the feedback	15
The control Terminal Block X2	16
Terminals description	16
X2 - Terminals location	17
Compulsory Connections.	18
The START / STOP functions	18
The Speed Reference Input using an external potentiometer	18
The Speed Reference Input using an external analog signal.	19
Compensation of a analogue reference offset	19
The Speed Reference Input using the PC580 KeyPad	20
Connecting the PTC - motor temperature protection	20
5	
The digital and analog programmable outputs and Inputs	21
The potential free relay contacts	21
Pre-set speed selection	21
The access key	21
The RESET	21
Activating the shaft orientation	22
The priority Stop	22
Selecting the STOP position	22
Selecting the motor partition	22
External Interlocks	22
Reversing from the terminal block	22
The Analog Outputs AO1 and AO2	23
The Analog Inputs AI1 and AI2	23
The Encoder Signal Outputs	23
The Sin/Cos signal outputs on CN3	23

Programming the VHF1400A	25
The Menus	25
The User Interface PC580	
Before to START the drive	
1. Compulsory connections	
2. Sin-Cos sensor and encoder connections	
3. The characteristic Voltage / Frequency or Power / Frequency	
4. The input of the parameters	
The programmable parameters	27
Menu A : Inverter Related Parameters	
Menu B – Part 1: Operation related parameters	
Menu B – Part 2: Motor related parameters	30
Menu C : Allocation of the digital and analog output	36
Menu D: The parameters accessible in START mode	38
Menu E : reversing from KEYPAD	39
Menu F : Setting a new speed using the KEYPAD	39
Menu G : Selection of the display block	39
Menu H : Display of the last 8 failures	39
Menu I : RESET	39
Menu J : Save the last speed reference as default	39
Menu L: Setting up the feedback	40
Fine tuning the orientation	41
Menu M : Auto-tuning of the motor	
Fine tuning of the speed loop parameters	
VHF1400A – List of Error messages	44
Assistance and Trouble shooting	45
VHF1400A – The programmed parameters of the Menu A, B, C and M	
DECLARATION OF CONFORMITY	47

Limit of validity:

This user manual match with the software versions:

- 37011d30.std standard units
- 36204d30.std keypad any version

or latest issues

TECHNICAL MODIFICATIONS RESERVED

Villars-Ste-Croix, February 2002

Safety instructions

Information on the Operating Manual

This operating manual applies to the VHF1400A frequency inverter family. It describes the connections and basic functions of the standard models.

CAUTION! Danger of death by electrocution

CAUTION! Absolutely essential

FORBIDDEN! Incorrect operation may lead to damage.

The Basic Safety Rules

First read the user manual

Before installing and commissioning, it is important for such personal to read carefully the operating instructions and safety warnings.

Electric drives are potentially dangerous

- Electrical voltages > 230 V/460 V High voltages may still be present up to10 minutes after the power has been cut off. Therefore you must always check for presence of power and voltages!
- In STOP mode, the drive remains active and the motor terminals are at a potential of 300 VDC against the ground.
- Rotating parts
- Hot surfaces

Your qualification

- In order to prevent personal injury and damage to property, only personnel with electrical engineering qualifications may work on the device.
- According to IEC364, DIN VDE0100, the qualified personnel must be familiar with the User Manual
- Have knowledge of national standards and accident prevention regulations

Working instruction

During installation observe the following instructions:

- Always comply with the connection conditions and technical specifications.
- Comply with the standards for electrical installations, such as regarding wire gauges, grounding lead and ground connections

The converter control board uses a large number of CMOS (Composite Metal Oxide Semiconductor) which are highly sensitive to electrostatic discharges.

To avoid any damages to the control board

- wear a grounding strap and always handle the board by the frame
- make sure you are working on an earthen anti-static floor
- use anti-static packing material only

Overspeed protection

If an overspeed protection is required, it must be provided by the motor manufacturer as this function is not integrated in the drive.

Proper installation

Inverter drives are components that are intended for installation within electrical systems or machines. The inverter may not be commissioned or put into operation until it has been established that the machine as a unit complies with the provisions of the EC Machinery Directive (89/392/EEC) as well with the standard EN 60204 (Safety of machines).

If the frequency inverter is used for special applications the specific standards and regulations for this environment must always be observed.

Repairs may only be carried out by authorized repair workshops. Unauthorized opening and incorrect intervention could lead to physical injury or material damage. The warranty provided by DANAHER MOTION would thereby be void.

Responsibility

Electronic devices are fundamentally not fail-safe. The company setting up and/or operating the machine or plant is itself responsible for ensuring that the drive is rendered safe if the device fails.

The standard EN 60204-1/DIN VDE 0113 "Safety of machines", in the section on "Electrical equipment of machines", stipulates safety requirements for electrical controls. The requirements to comply with are intended to protect the integrity of personnel and machines and to maintain the function capability of the machine or plant. The function of an emergency off system does not necessarily have to cut the power supply to the drive.

To protect against risk of injury, it may be more beneficial to maintain individual drives in operation or to initiate specific safety sequences. The emergency stop process may be assessed by means of a risk analysis of the machine or plant, including the electrical equipment to EN 1050. Part of this analysis is determined by the selection of the circuit category in accordance with prEN 954 "Safety of machines – Safety related parts of controls".

A comprehensive range of product

Product basics

- The VHF1400A is a Flux Vector Drive designed for application up to 1400 Hz. The VHF1400A family consists of 6 models with a peak output rating of 15 to 90 kVA.
- The KEYPAD PC580 control unit can be integrated on the front panel or supplied as a separate remote control unit.
- The drive is equipped with a RS485 serial link.
- All units are standard with line regeneration.
- Easy adaptation to the motor's parameters using the Auto-Tuning process.
- The VHF1415A and VHF1430A are UL certified
- UL certification of the VHF1440A, 1455A, 1472A, 1490A is in process

Main technical data

- Input voltage, all units, 3 x 200 V to 3 x 480 V auto-ranging, no line transformer
- Output voltage V_{RMS} : 0 ... U_{IN}
- Output frequency range 0 ... 1400 Hz
- Ambient temperature 40°C
- Continuous current overload 120% without time limitation
- Max current overload 150% for 1 min / 10 min
- Short-circuit protection: suitable for use on a circuit capable of delivery not more than 5000 A_{RMS} symmetrical Amperes, 480 V maximum.

Current and Power ratings

Model	0	utput Current	A _{RMS}	Typical motor power		
	Nominal	Continuous	Peak	kW @ 3 x 400 V		
VHF1415A	15	18 22.5		7.5		
VHF1430A	30	36	45	15		
Input curren	it: A	All units are rated for a maximal input current of 32 ARMS				
Input termin	als: 1	10 mm ²				
Input cables:		Minimum section 6 mm ² resp. AWG 10				
	U	Use copper conductors 75°C only				
Overload protection: An external overload protection is required			is required			

Model	Output Current A _{RMS}			Typical motor power	
	Nominal	Continuous	Peak	kW @ 3 x 400 V	
VHF1440A	40 48		60	22	
VHF1455A	55	66	83	30	
Input curren	t: A	All units are rated for a maximal input current of 63 ARMS			
Input termin	als: 10	16 mm ² (oversized terminal, will accept up to 25 mm ² wire)			
Input cables	: M	Minimum section 16 mm ² resp. AWG 6			
		Use copper conductors 75°C only			
Overload protection: An external overload protection is requ			is required		

Model	Output Current A _{RMS}			Typical motor power	
	Nominal	Continuous	Peak	kW @ 3 x 400 V	
VHF1472A	73	90	110	40	
VHF1490A	90	110	135	50	
Input curren	t: A	All units are rated for a maximal input current of 90 ARMS			
Input terminals: 35 mm ²					
Input cables	: N	Minimum section 25 mm ² resp. AWG 3			
	U	Use copper conductors 75°C only			
Overload protection: An external overload protection is required			is required		

Type Part Numbering

VHF14xxA1-xxx	With PC580 on front cover		
VHF14xxA0-xxx	With PC580 on remote position, customer mounted		
VHFy1400A2-xxx	Drive integrated in IP54 cabinet, PC580 on front door		
-	y: U = fan cooling, V = Heat exchanger air / air		
	W = heat exchange air / water, Q = air conditioning		
NOTE: The versions without KeyPAD PC are not available			
xxx available to define customer specific version			

Connecting the VHF drive using a transformer

The VHF Flux Vector Drive with line regeneration has been design for **direct connection** to any 3 phases voltage between 200 and 480 V.

CAUTION: If you need to match the nominal voltage of the motor with the line voltage, respectively the output voltage of the drive, the transformer must be inserted BETWEEN the drive and the motor and NOT in the front of the drive. A mismatching of the line voltage and the motor voltage can leads to motor damages.

This is mandatory to:

- Safely regen into the line during the deceleration without tripping the drive with the message "Mains out of tolerances"
- Protect the input rectifier from voltage peaks

When regenerating direct into the mains, the impedance of the power supply network is very low and no increase of the input voltage can be seen.

Using a line transformer in front of the drive will completely change the behavior of the system. During the regenerative process, the input voltage of the drive respectively the secondary voltage of the transformer will increase due to the impedance represented by the transformer inductance. Voltage increases over 20 % has been measured and the input over-voltage protection of the drive was activated.

The software input protection accept as being within the tolerances, any input voltages between 200 V - 15% and 480 V +10% i.e. any voltage between 170 VAC and 530 VAC. Only if the input voltage is outside of this range, the drive will trip and the message "mains out of tolerances" displayed.

Nevertheless, if the input voltage is higher than 480 V or the installation requires a galvanic insulation in front of the drive, following rules must be respected:

- Don't use an auto-tranformer but only a transformer with separated windings.
- The output voltage of the transformer should not be higher than **400 V** to secure a proper operation of the line regen.

Motor protection chokes

For enhanced performances of the VHF1400A and the driven **induction motor**, it is strongly recommended to use line chokes between the drive and the motor to protect the motor from high current peaks.

Suggested choke values: 60 μ H for the VHF1415A, 1430A, 1440A, and 1455A 30 μ H for the VHF1472A and 1490A

For **synchromous motor** a higher value is required. Please consult the motor manufacturer for optimal selection.

Output power and heat dissipation

Model	Output current A _{RMS}			Heat dissipation
	Nominal	Continuous	Peak	Watts
VHF1415A	15	18	30	360
VHF1430A	30	36	45	720
VHF1040A	40	48	60	1000
VHF1055A	60	72	83	1300
VHF1072A	73	90	110	1800
VHF1090A	90	108	135 (150)	2200

The dimensions and weight of the VHF1400A

Туре	Overall dimensions		Mounting screws location			Weight	
	Width	Height	Depth	Slot	Width	Height	kg
	A mm	C mm	B mm	F mm	E mm	D mm	-
VHF1415A, VHF1430A	223	557	265	7 (4 x M6)	199	537	29
VHF1440A to VHF1490A	308	645	318	9 (4 x M8)	279	625	41

Cabinet enclosure

- 1. The cabinet size and / or cabinet fan cooling, heat exchanger, air conditioning must be sized according the power dissipation shown on the table **Output power and heat dissipation** above.
- 2. The minimum distances between cabinet walls and the drive (left, right, top and bottom) as well between drives mounted side by side are 100 mm.

VHF1415A - VHF1430A - Drive overview

VHF1440A to VHF1490A Drive overview

VHF1400A - Terminals description

The power terminal block X1

Motor output terminals U-V-W

In STOP mode, the drive remains active and the motor terminals are at a potential of 300 VDC against the ground. Before any intervention on the drive, make sure that the power supply has been removed.

DC-bus voltage

Large capacitors are installed on the intermediate DC-bus voltage. Please **wait at least 3 min.** before to remove the cover of the terminal bloc and to access to the internal part of the drive.

The + 25VDC - Auxiliary Power Supply

On the control terminal block X2, they are a number of terminals where the +25 V internal power supply is available. This power supply is only available for the inputs and outputs of the VHF1400A; no other device must be connected. The +25VDC outputs are short-circuit protected by an internal PTC. If this protection has been activated, you have to wait until the PTC has cooled down to get the auxiliary power supply back

The total load must not exceed 400 mA.

CN2 The D- Sub connector of the speed / position feedback input

are applied to pin 1, confirming the presence of the closed loop signals.

In the cable connector you must put a bridge between terminals 15 and 1

12

13

14

15

Channel INDEX -

Channel B -

Channel A -

100 mA

5 V resp. 25 V /

ENCODER

ENCODER

ENCODER

comment

See

The integrated interface for sin/cos sensors

Usually the sensors used deliver two sinusoidal waves, 1 V peak to peak, electrically shiffed by 90°, it's why it is called a sin/cos sensor. Additionally an index signal must be available is the application need to orient the shaft of the motor. Those sensors have normally an output frequency limitation around 200 kHz. Take car of it when selecting the number of teeth of the gear. For example a gear with 256 teeth can be used without problem up to 45'000 rpm. (Exact value: 256 teeth * 45000 rpm / 60 s = 192 kHz).

Those sensors deliver for each channel 2 signals: the direct one and its inverted value. The interface takes care of the offsets compensation of the signals, as well as their possible amplitude distortions. The setup process is automatic and is describe in the menu L : Setup of the Feedback.

When the motor speed is higher than 10% of the maximum speed, we check if the feedback signals are available. If not the drive will be tripped and the error message: **Sensor Problems** will be displayed.

For speed and positioning control, we use the feedback signal with an interpolation of 4, this values is fix and cannot be modified. As we use the positive and negative crossing of the 0 V line by both signals (sin and cos), we have a factor 4 (number of polarity changes for both channels) over the number of pulses per revolution and channel. For example a gear with 256 teeth will give 4096 increments per revolution (256 teeth * 4 polarity changes * 4 interpolation, or to make it simplle just take "the number of teeth*16).

Selecting the voltage of the feedback sensor power supply

A bridge on the control board allows to select the supply voltage of the speed / position feedback sensor. This voltage is present on PIN No 15 / CN2

On **JP1**, a jumper between the 2 upper points corresponds to 25 VDC, between the 2 lower points to 5 VDC.

Caution: Factory setting is 5 V. A wrong setting can cause destructive damages to the sensor

Grounding of the shielding of the encoder / sin-cos sensor connections is very important, a bad ground could lead to system failure or non performances

Connecting the feedback

VHF1400 - ENCODER

The shielding of the connection must start at the sensor have no interruption, and be grounded at both ends.

The control TERMINAL BLOCK X2

Terminals description

Our digital inputs are **not** galvanic insulated. You must take care that no external potential (24 VDC) is applied to those inputs before our own internal auxiliary power supply 25 VDC has been built up. Non respect of this process could lead to **major damages** to the motor and / or the drive.

Term	Short	Description	How to activate
No	Name		
1	2 ⁰	Pre-set speeds – value 1	Apply +25VDC
2	2 ¹	Pre-set speeds – value 2	Apply +25VDC
3	2 ²	Pre-set speeds – value 4	Apply +25VDC
4	+25VDC	25VDC auxiliary power supply	Available for input activation
5	KEY	Locking key	Apply +25VDC
6	+25VDC	25VDC auxiliary power supply	Available for input activation
7	START	Start input	Apply +25VDC
8	+25VDC	25VDC common to Start and Stop	
9	STOP	Stop input – stop the drive if open	
10	RST	Reset input	Apply +25VDC
11	+25VDC	25VDC auxiliary power supply	Available for input activation
12	POS	Position activation input	Apply +25VDC
13	+25VDC	25VDC auxiliary power supply	Available for input activation
14	Pot. +	+10 VDC	To connect an external pot.
15	Pot	- 10 VDC	For speed reference input
16	PTC +	Terminal for motor PTC+	Activated when motor
17	AGND	Electronic Ground	temperature too high
18	RE1-NC	Output relay 1 – contact NC	Contact will open
19	RE1-COM	Output relay 1 – common	When relay is energized
20	RE1-NO	Output relay 1 – contact NO	Contact will close
21	RE3-NC	Output relay 3 – contact NC	Contact will open
22	RE3-COM	Output relay 3 – common	When relay is energized
23	RE3-NO	Output relay 3 – contact NO	Contact will close
24	RE5-NC	Output relay 5 – contact NC	Contact will open
25	RE5-COM	Output relay 5 – common	When relay is energized
26	RE5-NO	Output relay 5 – contact NO	Contact will close
27	AO1	Analogue output 1	Internal programmable
28	AO2	Analogue output 2	parameters – 0 … 10 V
29	PSTOP	Priority Stop	Apply +25VDC
30	+25VDC	25VDC auxiliary power supply	Available for input activation
31	2 ⁰	Pre-set stop position – value 1	Apply +25VDC
32	2 ¹	Pre-set stop position – value 2	Apply +25VDC
33	2 ²	Pre-set stop position – value 4	Apply +25VDC
34	+25VDC	25VDC auxiliary power supply	Available for input activation
35	2 ⁰	Motor partition selection – value 1	Apply +25VDC
36	2 ¹	Motor partition selection – value 2	Apply +25VDC
37	2 ²	Motor partition selection – value 4	Apply +25VDC
38	+25VDC	25VDC auxiliary power supply	Available for input activation
39	EXT	External interlock – Apply 25VDC	Drive stop when open
40	+25VDC	25VDC auxiliary power supply	Available for input activation
41	ISR	Reverse the rotation direction	Apply +25VDC
42	+25VDC	25VDC auxiliary power supply	Available for input activation
43	CMD1 +	HIGH level of differential speed	
		reference input	Used to connect +10 V or
44	CMD1 -	LOW level of differential speed	\pm 10 V from the CNC
		reference input	
45	CMD2	Speed reference input 0 20 mA	Use to connect a current
46	AGND	Electronic Ground	speed reference input

Term No	Short Name	Description	How to activate
47	+25VDC	25VDC auxiliary power supply	Available for input activation
48	RE2-NC	Output relay 2 - contact NC	Contact will open
49	RE2-COM	Output relay 2 - common	When relay is energized
50	RE2-NO	Output relay 2 - contact NO	Contact will close
51	RE4-NC	Output relay 4 - contact NC	Contact will open
52	RE4-COM	Output relay 4 - common	When relay is energized
53	RE4-NO	Output relay 4 - contact NO	Contact will close
54	A+	Encoder channel A	
55	A-	Encoder channel A inverse	
56	B+	Encoder channel B	Encoder outputs
57	В-	Encoder channel B inverse	For external use
58	+	Index channel	Signals: TTL level
59	l-	Index channel inverse	
60	NC	Not connected	
61	Al1	Analogue input 1	0 10 VDC signal
62	AGND	Analogue ground	
63	AI2	Analogue input 2	0 10 VDC signal
64	NC	Not connected	

X2 - Terminals location

Compulsory Connections

Some of the connections are optional, depending on what functions are required and whether these functions are to be accessed in digital mode from KEYPAD or from the TERMINAL BLOCK X2. For further information, refer to the block diagram. Even to control the drive through the user interface PC580, the following connections are compulsory:

- Mains input: terminals L1, L2, L3 and PE
- Converter outputs: U, V, W and PE
- STOP terminals X2/8 X2/9 must be strapped together if the STRAT/STOP is made using the PC580 keypad
- Priority STOP: terminals X2/29 X2/30 must be strapped together. Opening this contact will stop the motor with a braking current of 150% of the nominal current of the motor, as long this current doesn't exceed the peak current of the converter.
- External interlocks: terminals X2/39 X2/40 (must be strapped together if the external interlocks are not used).
- Motor temperature probe PTC: terminals X2/16 X2/17 (must be strapped together if the motor has no temperature probe). UL requires an External Motor Overload Protection.
- Encoder or sin/cos sensor connections

The START / STOP functions

START command with impulse **or** permanent contact to be defined in the menu B.

The **START** remains active until the **STOP** circuit between terminals 8 and 9 is interrupted.

START / STOP command using a single permanent contact.

Caution: If the permanent start contact is closed when the inverter is powered up, the motor will start automatically.

Note: With the **START / STOP** allocated to the **keypad**, don't forget to strap together the terminals X2/8 – X2/9.

The Speed Reference Input using an external potentiometer

Input 0 ... +10 V

Reversing through terminal block or user interface PC580 KEYPAD depending on the assignment made in the menu B

Differential input \pm 10 V

Reversing of direction when crossing 0 V Reversing contact on TERMINAL BLOCK X2 must be open

User Manual VHF1400AA

The Speed Reference Input using an external analog signal

Compensation of a analogue reference offset

Depending on the length of the analogue speed reference cable, its routing through the machine, the possible induced voltage, the quality of the grounding of the shielding as well other environmental influences, the analogue speed reference signal delivered by the CNC will be affected by noise and / or by an voltage offset which will affect the precision of the set speed. Using $a \pm 10$ V signal with reversing of the rotation direction when crossing 0 V, the offset could even be different for each direction.

When an accurate speed is needed and if speed difference when reversing the direction with a bipolar signal, can be the source of problem, this offsets need to be compensated.

HOW TO PROCEED:

- 1. In START mode give an analogue speed reference of \cong 2% of F_{MAX} from the CNC
- Using either the true speed value displayed on the KEYPAD PC580 or the CNC display, compare your reference speed with the true speed. If you have a speed difference:
 - either it is variable and your reference signal is affected by noise; in this case you better carefully check your wiring and shielding grounding
 - or the speed difference is constant and your reference is affected by an **offset;** in this case proceed to the offset compensation as follow:
- 3. Enter to menu D using 2ndF D (see programming section)
- 4. Using arrow down go to menu step: Offset compensation
- 5. Using either the Arrow UP and Arrow DOWN or the numerical key of the PC580 input the number of RPM you want to compensate. To key in a negative number, use the key (decimal point) to key in the minus. Confirm compensation with ENTER. The maximum offset compensation is limited to 2% of F_{MAX}. This compensation will be then used over the all speed range for the set rotation direction.
- 6. Repeat steps 4 and 5 if necessary.
- 7. If you are using a \pm 10 V signal with reversing when crossing 0 V, reverse you speed reference signal from the CNC.
- 8. Repeat steps 4 to 6 for the reversed direction.

The Speed Reference Input using the PC580 KEYPAD

Connecting the PTC - motor temperature protection

The PTC - motor temperature protection sensor will be connected between terminal X2/16 and X2/17. This input is not protected against overvoltage

The digital and analog programmable outputs and Inputs

They are two ways to activate a digital input. **The first** is using our internal 25VDC, which will be applied to the corresponding input using a simple contact.

The second is using an external 25VDC source coming either from a CNC or a PLC. In this case the **electronic ground** of both systems must be linked together.

In our drive, the internal circuitry is providing a divider to get 5 V out of the 25VDC supplied.

The potential free relay contacts

Digital outputs No 1, 2, 3, 4 and 5 Contact rating 25VDC - 100 mA

RE1-NC Output relay 1- contact normally closed RE1-COM Output relay 1 - middle point RE1-NO Output relay 1 - contact normally open Terminals 18, 19, 20: relay No 1 Terminals 48, 49, 50: relay No 2 Terminals 21, 22, 23: relay No 3 Terminals 51, 52, 53: relay No 4 Terminals 24, 25, 26: relay No 5

Pre-set speed selection

	X2	
_ • ` •	1	2 ⁰
-• •	2	2 ¹
-• •	3	2 ²
	4	+25V

The selection of the pre-set speed is made using BCD coding. The sequence of the selection using the TERMINAL BLOCK X2 is the following:

- Pre-set speed No 1 = Apply +25VDC to terminal 1
- Pre-set speed No 2 = Apply +25VDC to terminal 2
- Pre-set speed No 3 = Apply +25VDC to terminal 1 and 2
- Pre-set speed No 4 = Apply +25VDC to terminal 3
 - ... and so on until Pre-set speed No 7

The access key

The access to the programming menus B (motor parameters) and C (inputs and outputs set-up) can be locked using the terminal X2/5. The access is locked when +25VDC is applied

The RESET

In case of failure, applying +25VDC to the terminal X2/10 can reset the drive

Activating the shaft orientation

Applying +25VDC to the terminal X2/12 activates the shaft orientation function. The positioning will be activated **only after 2 complete revolution of the motor shaft. The system will test correct index and number of pulses of the sensing system**

The priority Stop

Opening this input will STOP the motor using the fastest possible braking ramp but maximum with 150% of the nominal current. In this case the deceleration time will be ignored and the motor will be braked down using the programmed overload current, respectively torque

Selecting the STOP position

	X2	
	31	2 ⁰
-• •	32	2 ¹
-• ⁄•-	33	2 ²
	34	+25V

The selection of the pre-set STOP position is made using BCD coding. The sequence of the selection using the TERMINAL BLOCK X2 is the following:

- Pre-set position No 1 = Apply +25VDC to terminal 31
- Pre-set position No 2 = Apply +25VDC to terminal 32
- Pre-set position No 3 = Apply +25VDC to terminal 31 and 32
 - Pre-set position No 4 = Apply +25VDC to terminal 33

... and so on until Pre-set position No 7

Selecting the motor partition

	X2	
~~ ~	35	2 ⁰
-• •	36	2 ¹
-• •	37	2 ²
	38	+25

The selection of the motor partitions is made using BCD coding. They are 8 pre-programmed motor partition available. The sequence of the selection using the TERMINAL BLOCK X2 is the following:

- Motor partition No 0 = default value in **TERMINAL BLOCK** mode
- Motor partition No 1 = Apply +25VDC to terminal 35
- Motor partition No 2 = Apply +25VDC to terminal 36
- Motor partition No 3 = Apply +25VDC to terminal 35 and 36
- Motor partition No 4 = Apply +25VDC to terminal 37

... and so on until Pre-set position No 7

External Interlocks

When this circuit is open, a converter error condition is generated. This interlock is used for monitoring external functions such as spindle lubrication, safety door etc...

Reversing from the terminal block

The Analog Outputs AO1 and AO2

Each analog output is 0 ... 10 V Maximal load 10 mA **not protected**

Terminal X2/27 = analog output 1 Terminal X2/28 = analog output 2

Use one of the 0 V (electronic ground) on the terminal block X2 for the return.

The Analog Inputs Al1 and Al2

Each analog input is 0 ... 10 V Input AI1: terminal X2/61 Input AI2: terminal X2/63

The analog input Al2 is allocated to the Torque Mode Control in Torque Mode Modus This modus is not described in this manual

The input Al1 is not yet allocated to a specific functions.

The Encoder Signal Outputs

The VHF drive provides on the terminal block a parallel output of the encoder signals.

- In case of sin / cos feedback, the two sine wave signals are first converted into encoder signals, 5V TTL level, based on an interpolation of 4 over the number of teeth of the gear.
- The encoder outputs are for external use only.
- Index channel correspond to A*B

The Sin/Cos signal outputs on CN3

The signals are identical to the ones coming from the sensor itself i.e. they are affected with the same offsets and amplitudes variations as the original signals.

The signals were not electonically treated.

This page is intentionally not used

Programming the VHF1400A

The Menus

- Menu A Inverter parameters
- Menu B Part 1 Operation related parameter
 - Part 2 Motor related parameter
 - Menu C Allocation of the digital and analog outputs
- Menu D The parameters accessible in START mode
- Menu E Reversing from PC580
 - Menu F Speed or torque reference input
- Menu G Display block selection
- Menu H Display of the last 8 failures (FIFO)
- Menu I
 RESET
- Menu J Memorized the last speed reference as default speed
- Menu K N/A
- Menu L
 Setting up the feedback
- Menu M Auto-tuning and positioning functions

To access to the desired Menu, press **2ndF** followed by the corresponding letter: Example: **2ndF B** for menu B

The User Interface PC580

Note: To operate the VHF1400A, the User Interface PC580 must be connected, even after the unit has been fully programmed and the Auto-Tuning processed.

Before to START the drive

1. Compulsory connections

Check that all compulsory connections according page 18, have been done.

2. Sin-Cos sensor and encoder connections

The VHF1400A is able to check if the wiring of the feedback is correct as well to proceed to an auto-tuning of the signals in case of use of a Sin-Cos sin-waves sensor.

- Power up the drive
- Turn the motor shaft by hand in both directions. In one direction the led LD3 located to the right of the terminal 64 on terminal block X2 must turn green, in the other direction the led must remain off.
- If not check the connection of the various channels.
- For the auto-tuning of the Sin-Cos sensor see description in the menu L.

3. The characteristic Voltage / Frequency or Power / Frequency

For optimal performances of the motor **and** its flux vector control, it is important that this characteristic has been correctly inputted.

Left a typical linear characteristic. In this case, the maximum operating frequency (speed) of the motor F_{MAX} is identical to F_N . In the corresponding step of the menu B, we input the power corresponding to this point.

Right a typical characteristic with a break point. In this case, the base speed F_N is lower than the maximum operating frequency (speed) of the motor F_{MAX} . We have to input here the maximum operating frequency F_{MAX} as well as the base speed F_N and the power at this frequency.

Caution: the value of F_{MAX} is set in Hz and the speed F_N in RPM.

Depending if the drive is used with an induction or a synchronous motor, the parameters to input are slightly different. In the case of a synchronous motor with having a power / speed characteristic with a break point, the drive will operate in field weakening in the upper area. The ratio maximum speed to base speed is limited to 2:1 and the demagnetizing current at full speed will have to be input in the corresponding step of the menu B.

4. The input of the parameters

This is done using the keys of the KEYPAD PC580.

The drive is delivered which pre-programmed default values selecting operation with the user interface PC580, acceleration and deceleration of 10 s etc.. **Only a few number of parameters have to be entered in the menu B** before to be able to start your motor using the KEYPAD. The **actions** to be done are in **bold**. Use the Ψ and \uparrow to progress inside of the menu and press the ENTER key to confirm an input.

The programmable parameters

Menu A : Inverter Related Parameters

Access in STOP mode only by entering 2ndF A

Display	Description	Values
Max. current	Display the maximum output current of the inverter. This parameter is related to the drive rating and is used to protect the drive in overload conditions as well short circuit between phases and phase to ground.	VHF1415A: 23 A VHF1430A: 45 A VHF1440A: 63 A VHF1455A: 83 A VHF1472A:110 A VHF1490A:136 A
Software version	Release number of the installed software. In case of programming problems, please indicate this number when calling our customer support. The software version No is printed on the Program-EEPROM – see control board	xxxxxdxx.std
Delivery date	Shipping date of the unit. This is the date the unit left our manufacturing plant in Switzerland.	?
Serial number	Specific to each unit. The first 4 digits "V14xx" are related to the power rating of the units. The **** are related to our internal codification.	V14xx-***

The Menu A is a read only. The customer can't modify those information.

Menu B – Part 1: Operation related parameters

Access in STOP mode only

Display	Description	
0=F 1=GB 2=D 3=I 4=E	Selection of the user language. Enter:	
	0 for French	
	1 for English	
	2 for German	
	3 for Italian	
	4 for Spanish	
Mains voltage	Enter here the nominal value in V, of the voltage of your power	
	supply.	
Set Point Mode	The VHF1400A can be controlled in Speed or in Torque Mode	
	The parameters settings describe in this section are valid for the	
	Speed Mode Control only and you must key in here :	
	O for Speed Mode Control	
START / STOP	Definition of the START and STOP mode.	
	If you enter:	
	• 0 for KEYPAD control, you will be operating the drive using the	
	2 push buttons on the keypad.	
	If you enter:	
	• 1 for TERMINAL BLOCK control, you will be operating the drive	
	using the terminals 7, 8 and 9 of the terminal block X2. The	
	type of contacts used (impulse of permanent) will be set at	
	Noto: The STOP function is not linked to this choice. Both	
	the KeyPap "Stop" and the TERMINAL BLOCK "STOP" are in	
	CONTRACT AD STOP AND THE TERMINAL DLOCK STOP ATE IN	
	serial and always active.	

Display	Description	
START / STOP Term.	Set-up of the type of contacts used for START and STOP. This	
Block control	step is shown only if you have entered 1 at the previous step.	
	Connections to terminals 7, 8 and 9 of the terminal block X2 are	
	shown in the paragraph "START/STOP functions"	
	page 13.	
	Just key in and enter:	
	O for impulse contacts	
	1 for permanent contact	
Speed display units	Here you pre-set the displayed units for the speed.	
	• Enter 0 for Hz	
	• 1 for RPM , the number of poles of the motor will be taken into	
	consideration automatically.	
Motor reversing	If you want to lock any reversing of the rotating direction of the	
enable 0=NO,	motor you can do it here. Enter:	
1=YES	0 Reversing forbidden	
	1 Reversing according assignment either from KEYPAD or	
	TERMINAL BLOC X2	
Motor reversing	Motor reversing means changing the direction of the rotation.	
	This function can be allocated to the KEYPAD or to the TERMINAL	
	BLOCK. Enter:	
	O for KeyPad	
	• 1 for TERMINAL BLOCK. The reversing function will be	
	performed by:	
	 closing a cpntact over terminals 41 and 42, or 	
	• crossing the 0 V with an \pm 10 V analogue speed reference	
	For safety reason the factory setting is 1 to avoid KEYPAD	
	reversing by mistake, pushing key E instead of F after 2ndF.	
Stop by default ?	For all non-destructive failure where the STOP can be	
0=Coast , 1=Stop.	monitored, like Converter temperature, External Interlocks,	
	We can choice between 2 ways of stopping the motor:	
	0 Coast to rest	
	1 Braking down using the deceleration's ramp	
Delay time	For all non-destructive failure where the turn off can be delayed,	
(s)=	like Converter temperature, External Interlocks, Motor	
	temperature, a delay time of 0 to 5 s can be input here.	
	I his function is to allow the CNC to monitor the machine motion	
	before the converter trips.	

Menu B – Part 1: Operation related parameters (continued...)

Display	Description
Freq. Ctrl source	 At this step you can set if you want to control the output frequency of the drive, respectively the motor speed using the KEYPAD or the TERMINAL BLOCK X2. Enter 0 for the KEYPAD control. You will here set the speed using the function 2ndF F followed by the value of the frequency in Hz or the speed in RPM depending on your setting of the displayed unit – see Speed display units above. Enter 1 for the TERMINAL BLOCK Control. The speed control input signal defined under Freq. Ctrl 1 to Freq. Ctrl 5 will be applied to TERMINAL BLOCK X2. The connections are described in paragraph "The Speed Reference Input" pages 18 / 19.
Freq. Ctrl 1	 If you want to control the drive output frequency, respectively the motor speed using an analog signal coming from a potentiometer or from an other source like a PLC or a CNC, you have the possibility here to define the type and level of this signal Frequency or speed reference input signal: Enter 1 if your signal is 0 10 V Enter 0 for other (you will jump to next step: Freq. Ctrl 2)
Freq. Ctrl 2	 Enter 2 for ±10 V Enter 0 for other (you will jump to next step: Freq. Ctrl 3)
Freq. Ctrl 3	 Enter 3 for 020 mA Enter 0 for other (you will jump to next step: Freq. Ctrl 4)
Freq. Ctrl 4	 Enter 4 for 420 mA Enter 0 for other (you will jump back to step: Freq. Ctrl 1) If you have entered 0 at this step, either you have not found a value corresponding to your speed control signal or you have just jumped over the correct setting before. If you did not found your control signal please contact your supplier.
Motor partition select.	 At this step you decide the way you want to select the active partition using either the KEYPAD or the TERMINAL BLOCK X2 Enter 0 for KEYPAD control. At the next step, you will have to enter the partition No you want to be active. The first partition is No "0". Enter 1 for TERMINAL BLOCK X2. The selection of the active partition will be made using the terminals 35, 36 and 37 of the TERMINAL BLOCK X2.
PASSWORD:	To be able to read and / or modify the content of the available 32 partition you have to enter here the correct access password, which is 616.

Menu B – Part 1: O	peration related	parameters	(continued)	1
	poration related	purumeters		,

Menu B – Part 2: Motor related parameters

This section of the menu B related to parameters that are linked to a specific partition. Eight partitions can be entered and recorded. They can be different motors or specific values for the same motor: for example if you want to limit the maximum torque or the maximum speed at a lower value for reverse operation you enter a new partition and specify the torque or the speed you want. For the reverse operation you select then this specific partition. So remember, the following parameter group of the menu B can be entered **eight** times.

Display	Description	
Motor partition No	During the programming process, you have to Enter now the	
	Partition No to which the following parameters are related.	
	During the operating process, you will select at this step the	
	active partition.	
	Having selected KEYPAD control for the partition selection by	
	entering "0" at the previous step, you can now input the	
	partition No by just entering its numerical value 0 to 7. The	
	first partition is No 0, the last one No 7.	
	• Having selected TERMINAL BLOCK control for the partition	
	selection by entering "1" at the previous step, the selection	
	will be done by applying +25 V to the terminals 35, 36, 37 of	
	the TERMINAL BLOCK X2. As source for the +25V you can use	
	any of the +25V terminals, the closest one is on terminal 38.	
	BLOCK X2 is the following:	
	• Partition No 0 = default value in TERMINAL BLOCK mode if no	
	selection is applied to terminals 35, 36, 37	
	Partition No 1 = terminal 35	
	Partition No 2 = terminal 36	
	 Partition No 3 = terminals 35+36 	
	Partition No 4 = terminal 37	
	 Partition No 5 = terminals 35+37 	
	 Partition No 6 = terminals 36+37 	
	 Partition No 7 = terminals 35+36+37 	
Asynchronous Motor	You preset here if you are working with an asynchromous or	
0=OK 1=Change	synchronous motor.	
	 Enter 0 for an ansynchronous motor 	
	Enter 1 if you want to change to a synchronous motor	
Synchromous Motor	You confirm here the choice of the previous step	
1=OK 0=Change	Enter 1 to confirm	
	Enter 0 if you want to go back to previous step	
Prec. feedback /No of	For the speed respectively the position feedback, our VHF1400A	
pulses	accept signals coming from a Sin-Cos sensor or an encoder.	
	The leedback connect to the drive using the D-Sub CN2	
	• Enter the number pulses per revolution; i.e if you use a gear, it is the number of teeth, if you have an encoder it is the	
	number of lines	
	Minimum value 64	
	You have the possibility to test if the number of teeth entered	
	here matches the installed gear. How to proceed: see Menu I	
Shape sensor's signal	You define here the type of feedback signal.	
0=sinus 1=square	• Enter 0 if you use a Sin-Cos, sine waves sensor	
	Enter 1 if you use a TTL encoder	
	To auto-tune the cos/sin feedback, see menu L	

Display	Description	
Acceleration time	The acceleration time is set in seconds, between 0.1 to 255.	
	This is the acceleration time needed to reach the full speed of	
	the motor. If the set speed is the half of the full speed, the time	
	to reach this speed will be the half of the acceleration set time.	
	The minimum acceleration time is limited by the maximum	
	available current i.e. the programmed overload factor,	
	respectively set by the spinale manufacturer to avoid spinale	
Deschargetiens times	The developed in the menu D, this time can only be increased.	
Deceleration time	The deceleration time is set in seconds, between 0.1 to 255.	
	the full append of the mater. If the set append is the helf of the full	
	speed the time to step will be the helf of the deceleration set	
	time. The minimum acceleration time is limited by the maximum	
	available current i e the programmed overload factor	
	respectively set by the spindle manufacturer to avoid spindle	
	damages. In the menu D, this time can only be increased.	
Nom, motor voltage	This is the rated motor voltage in Volts. This value is shown on	
C C	the motor plate and/or in the motor data sheet.	
Max. motor operating	This is the maximum motor operating frequency in Hz. If the	
frequency	characteristic U (P) / F is linear, this value is identical to F_N .	
	This frequency has to be inputted in Hz. Modification of this	
	parameter will require to proceed to a new auto tuning.	
"Auto-tuning" required		
Number of poles	This is the number of poles and not the number of pairs. It must	
	be an even number. This value is shown on the motor plate	
	and/or in the motor data sheet.	
Nominal current of motor	This is the motor nominal current in A at nominal power. This	
	value is shown on the motor plate and/or in the motor data	
	sheet. Modification of this parameter will require to proceed	
"Auto-tuning" required	to a new auto tuning.	
Admissible overload	Referred to the nominal current value entered at the previous	
	factor for your motor	
	Enter a number between 0.50 to 1.50 time the naminal	
	CULLEDAT	

	Display	Description
Α	Base speed < max. speed	If the motor has a straight P/F characteristic from = speed to full speed, enter here: 0
S y		If the motor has a base speed (lowest speed at nominal voltage) which is lower than the max. speed, the P/F characteristic has a break point. In this case enter here: 1
n C h	Base speed (speed at break point)	You have entered a 1 at previous step. Now you have to enter here your base speed i.e. the speed at full voltage receptively break point. Input in RPM. This value is shown on the motor plate and/or in the motor data sheet. Modification of this
	"Auto-tuning" required	parameter will require to proceed to a new auto tuning.
0 n 0	Motor power at break point	As you have a break point in your voltage / speed characteristic, input here the nominal power of the motor at the base speed, respectively break point, in Watts. <i>Modification of this</i>
ŭ	"Auto-tuning" required	parameter will require to proceed to a new auto tuning.
Š	Nominal power of motor "Auto-tuning" required	This is the motor rated power in Watts, at nominal motor speed and rated voltage. This value is shown on the motor plate and/or in the motor data sheet. <i>Modification of this parameter will</i>
	<u> </u>	require to proceed to a new auto tuning.
t	Nominal speed at nominal power	speed at nominal power, in fact the theoretical speed less the slip. This value is shown on the motor plate and/or in the motor
r	"Auto-tuning" required	data sheet. Modification of this parameter will require to proceed to a new auto tuning.

Display	Description
Nominal power of motor "Auto-tuning" required	This is the motor rated power in Watts, at nominal motor speed and rated voltage. This value is shown on the motor plate and/or in the motor data sheet. <i>Modification of this parameter will</i> <i>require to proceed to a new auto tuning.</i>
Field weakening 0 = no 1 = yes	 Confirm here if the motor is running without or with field weakening at higher speed Enter 1 to confirm Enter 0 if you don't use the field weakening Note: the maximal field weakening ratio is 2 : 1, this for safety reason in case of power failure.
Speed field weakening begin	Using the field weakening feature, you have to enter at which speed this process should start. With the above max ratio of 2:1, this speed must be \geq 50% of the max. speed of the motor.
Demagnetizing current = A	Enter the requested demagnitizing current at full speed i.e. max. speed of the motor.

Display	Description
Default frequency	In case of selection of the Freq. ctrl source selection from the KeyPab frequency control, the value entered or shown here will be taken as speed reference input when the inverter is being turned ON. In programming mode you can change the value just by entering a new one. Here again, the input must be in Hz, input in RPM is not allowed and will lead to a mis-setting. In operating mode you can record here the last input made by 2ndF F , using the quick recording process 2ndF J .
A =	and max. motor overload. Exceeding this limit can be allocated to a relay in Menu C
Prohibited frequency	 With the VHF1400A is possible to define up to three prohibited operating frequency fields. This feature can be used to avoid to have the system running at speeds where a vibration resonance area exist or may exist. Any speed reference inside of the prohibited area will run at the closest lowest or highest limit of the area. Enter 0 if you don't want to use this feature Enter 1 if you want to activate it. The three prohibited area (middle values and bandwidths) will be defined in the next 6 steps. Here again, the input must be in Hz, input in RPM is not allowed and will lead to a mis-setting.
Skip frequency 1	 Prohibited area 1 - based frequency Enter first prohibited frequency in Hz. This value is the middle of the bandwidth set in the next step.
Skip bandwidth 1	 Prohibited area 1 - frequency bandwidth Enter bandwidth in Hz.
Skip frequency 2	 Prohibited area 2 - based frequency Enter first prohibited frequency in Hz. This value is the middle of the bandwidth set in the next step.
Skip bandwidth 2	Prohibited area 2 - frequency bandwidthEnter bandwidth in Hz.
Skip frequency 3	 Prohibited area 3 - based frequency Enter first prohibited frequency in Hz. This value is the middle of the bandwidth set in the next step.
Skip bandwidth 3	Prohibited area 3 - frequency bandwidthEnter bandwidth in Hz.

Display	Description	
Pre-set frequency	If you have selected the Freq. ctrl source from the TEPMINA	
control by terminal	BLOCK in the Menu B. Dart 1 you have the possibility to define	
block	up to seven pre-set speeds. The selection of one of those pre-	
DIOCK	set speeds will be done applying +24V to the terminals 1, 2 or	
	3 of the TEDMINIAL BLOCK X2. If this feature has been activated	
	and no selection made through terminals $1 - 2$ or 3 the analog	
	reference input will be active	
	 Enter 0 if you don't want to use this feature 	
	 Enter 1 if you want to activate it 	
	Enter 1 if you want to activate it.	
	allowed and will lead to a mis-setting.	
Pre-set frequency 1	Having selected to activate the pre-set speeds feature by	
	entering "1" at the previous step, in the programming process	
	you must here enter your first pre-set frequency	
	 Enter pre-set frequency 1 	
	 In operating mode, the selection is made applying +25V to 	
	terminal 1 of TERMINAL BLOCK X2	
Pre-set frequency 2	Enter pre-set frequency 2	
	 In operating mode, the selection is made applying +25V to 	
	terminal 2 of TERMINAL BLOCK X2	
Pre-set frequency 3	Enter pre-set frequency 3	
The set frequency o	 In operating mode, the selection is made applying ±25V to 	
	• In operating mode, the selection is made applying +25V to terminale 1 and 2 of TERMINAL PLACK V2	
Dro oot froguopou 4		
Pre-set frequency 4	• Enter pre-set frequency 4	
	 In operating mode, the selection is made applying +25V to tamping 10 of Terrange Discussion 	
	terminal 3 of TERMINAL BLOCK X2	
Pre-set frequency 5	Enter pre-set frequency 5	
	• In operating mode, the selection is made applying +25V to	
	terminals 1 and 3 of TERMINAL BLOCK X2	
Pre-set frequency 6	Enter pre-set frequency 6	
	 In operating mode, the selection is made applying +25V to 	
	terminals 2 and 3 of TERMINAL BLOCK X2	
Pre-set frequency 7	Enter pre-set frequency 7	
	 In operating mode, the selection is made applying +25V to 	
	terminals 1, 2 and 3 of TERMINAL BLOCK X2	
Position control	As we have the possibility to select up to eight stop positions,	
source	we have to define the control source of those positions:	
	• Enter 0 for KeyPad control. The active stop position is the	
	one entered at the programming step Position set point	
	KP or Teach-in operation described above. To use the	
	recorded "teach-in" position as stop position, you must	
	here select the KEYPAD position control source.	
	• Enter 1 for TERMINAL BLOCK X2 , the selection is done by	
	selecting the active stop position by applying +25V to the	
	terminals 31, 32, 33 of TERMINAL BLOCK X2.	
	Activation of the STOP position through terminal 12/X2	

Setting stop position 1 Having selected TERMINAL BLOCK control for the stop position selection by entering "1" at the previous step, in the programming process you must here enter your first stop position. If you want to use the recorded value in teach-in mode, this position has to be entered as a stop position. • Enter Stop position 1 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • In operating mode, the selection is made when no +25V is applied to one of the terminals 31, 32 or 33 Setting stop position 2 • Enter Stop position 2 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 31 Setting stop position 3 • Enter Stop position 3 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 32 Setting stop position 4 • Enter Stop position 4 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 32 Setting stop position 5 • Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting	Display	Description		
by entering "1" at the previous step, in the programming process you must here enter your first stop position. If you want to use the recorded value in teach-in mode, this position has to be entered as a stop position. • Enter Stop position 1 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. • In operating mode, the selection is made when no +25V is applied to one of the terminals 31, 32 or 33 Setting stop position 3 • Enter Stop position 2 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 31 Setting stop position 4 • Enter Stop position 4 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 32 Setting stop position 4 • Enter Stop position 5 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 31 and 32 Setting stop position 5 • Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 33 Setting stop position 7 • Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero posit	Setting stop position 1	Having selected TERMINAL BLOCK control for the stop position selection		
must here enter your first top position. If you want to use the recorded value in teach-in mode, this position has to be entered as a stop position. • Enter Stop position 1 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • In operating mode, the selection is made when no +25V is applied to one of the terminals 31, 32 or 33 Setting stop position 2 • Enter Stop position 2 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 31 Setting stop position 3 • Enter Stop position 3 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 32 Setting stop position 4 • Enter Stop position 4 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 32 Setting stop position 5 • Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 32 Setting stop position 7 • Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder.	5 ··· · · · · · · ·	by entering "1" at the previous step, in the programming process you		
value in teach-in mode, this position has to be entered as a stop position. • Enter Stop position 1 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • In operating mode, the selection is made when no +25V is applied to one of the terminals 31, 32 or 33 Setting stop position 2 • Enter Stop position 2 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 31 Setting stop position 3 • Enter Stop position 3 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 32 Setting stop position 4 • Enter Stop position 4 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 32 Setting stop position 5 • Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33		must here enter your first stop position. If you want to use the recorded		
position. • Enter Stop position 1 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • In operating mode, the selection is made when no +25V is applied to one of the terminals 31, 32 or 33 Setting stop position 2 • Enter Stop position 2 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 31 Setting stop position 3 • Enter Stop position 3 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 32 Setting stop position 4 • Enter Stop position 4 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 32 Setting stop position 5 • Enter Stop position 5 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 6 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 8 • Enter		value in teach-in mode, this position has to be entered as a stop		
 Enter Stop position 1 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. in operating mode, the selection is made when no +25V is applied to one of the terminals 31, 32 or 33 Setting stop position 2 Enter Stop position 2 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminal 31 Setting stop position 4 Enter Stop position 4 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminal 32 Setting stop position 4 Enter Stop position 4 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 32 Setting stop position 5 Enter Stop position 6 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 32 Setting stop position 6 Enter Stop position 6 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 Enter Stop position 7 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 Enter Stop position 6 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31, 32 and 33 Setting stop position 8 Enter Stop position at which your spindle has been placed: Enter 1 for teach in operation You have entered at the previous step "0" for KevPAp, now you have to renor f		position.		
position of the sin/cos sensor or encoder. In operating mode, the selection is made when no +25V is applied to one of the terminals 31, 32 or 33 Setting stop position 2 Enter Stop position 2 as xxx.4 degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 3 Enter Stop position 3 as xxx.4 degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 4 Enter Stop position 4 as xxx.4 degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 4 Enter Stop position 4 as xxx.4 degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 5 Enter Stop position 5 as xxx.4 degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 6 Enter Stop position 6 as xxx.4 degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 7 Enter Stop position 7 as xxx.4 degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 8 Enter Stop position 7 as xxx.4 degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 8 Enter Stop position 8 as xxx.4 degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 8 Enter Stop position 8 as xxx.4 degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position		 Enter Stop position 1 as xxx.x degree(s) referred to the zero 		
 In operating mode, the selection is made when no +25V is applied to one of the terminals 31, 32 or 33 Setting stop position 2 Enter Stop position 2 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminal 31 Setting stop position 4 Enter Stop position 3 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminal 32 Setting stop position 4 Enter Stop position 4 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 32 Setting stop position 5 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 33 Setting stop position 6 Enter Stop position 7 as xx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 33 Setting stop position 7 Enter Stop position 7 as xx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 8 Enter Stop position 7 as xx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 Enter Stop position 7 as xx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder. Selection made by applying +25V		position of the sin/cos sensor or encoder.		
Setting stop position 2 Enter Stop position 2 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 3 Enter Stop position 3 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 4 Enter Stop position 4 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 5 Enter Stop position 5 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 5 Enter Stop position 5 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 32 Setting stop position 6 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 8 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31, 32 and 33 Setting stop position 8 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero"		 In operating mode, the selection is made when no +25V is applied 		
Setting stop position 2 Enter Stop position 2 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminal 31 Setting stop position 3 Enter Stop position 3 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminal 32 Setting stop position 4 Enter Stop position 4 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 32 Setting stop position 5 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 33 Setting stop position 6 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 8 Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder.		to one of the terminals 31, 32 or 33		
position of the sin/cos sensor or encoder. Setting stop position 3 Enter Stop position 3 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 4 Enter Stop position 4 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 5 Setting stop position 6 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 5 Setting stop position 6 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 6 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminal 33 Setting stop position 7 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 8 Enter Stop position 7 Enter Stop position 7 Selection is made by applying +25V to terminals 31.32 and 33 Setting stop position 8 Enter 1 for teach in operation 1f you know the "zero" position of you sin/cos sensor or encoder. Selection	Setting stop position 2	 Enter Stop position 2 as xxx.x degree(s) referred to the zero 		
 Selection is made by applying +25V to terminal 31 Enter Stop position 3 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminal 32 Setting stop position 4 Enter Stop position 4 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 32 Setting stop position 5 Enter Stop position 5 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 33 Setting stop position 6 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 8 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 8 Enter Stop position 8 as xxx.4 degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31, 32 and 33 Setting stop position 8 Enter 1 for teach in operation if you want to record the position referring to this zero position: Enter 1 for teach in operation You have entered at the previous step "0" for KerPAD, now you have to enter the stop position xx.x in degree and confirm it with ENTER Teach-in operation <li< th=""><th></th><th>position of the sin/cos sensor or encoder.</th></li<>		position of the sin/cos sensor or encoder.		
Setting stop position 3 Enter Stop position 3 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setection is made by applying +25V to terminal 32 Setting stop position 5 Enter Stop position 5 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 32 Setting stop position 5 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 Setting stop position 6 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 8 Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 8 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos senso		Selection is made by applying +25V to terminal 31		
Setting stop position 4 • Selection is made by applying +25V to terminal 32 Setting stop position 4 • Enter Stop position 4 as xxx. x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 32 Setting stop position 5 • Enter Stop position 5 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 33 Setting stop position 6 • Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 8 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position at which your spindle has been placed: • Enter 1 for teach in operati	Setting stop position 3	• Enter Stop position 3 as xxx.x degree(s) referred to the zero		
 Selection is made by applying +25V to terminal 32 Setting stop position 4 Enter Stop position 5 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 32 Setting stop position 5 Enter Stop position 5 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminal 33 Setting stop position 6 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position referring to this zero position: Enter 1 for teach in operation You have entered at the previous step "0" for KevPab, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position to do it: Turn the mot		position of the sin/cos sensor or encoder.		
Setting stop position 4 • Enter Stop position 4 as xxx.x degree(s) referred to the zero position is made by applying +25V to terminals 31 and 32 Setting stop position 5 • Enter Stop position 5 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 33 Setting stop position 6 • Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 33 Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 • Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position referring to this zero position: • Enter 1 for teach in operation If you have entered at the previous step "0" for KerPAD, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation		Selection is made by applying +25V to terminal 32		
Position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 32 Setting stop position 5 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 6 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 7 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 7 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 8 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 8 Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 8 Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 8 Enter Stop position 9 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 8 Enter Stop position 9 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 8 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 8 Enter Stop position 6 at xx	Setting stop position 4	• Enter Stop position 4 as xxx.x degree(s) referred to the zero		
• Selection is made by applying +25V to terminals 31 and 32 Setting stop position 5 • Enter Stop position 5 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 33 Setting stop position 6 • Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 • Enter Stop position 8 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position at which your spindle has been placed: • Enter 1 for teach in operation If you have entered at the previous step "0" for KEYPAD, now you have to enter the stop position. To do it: • Turm the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the disp		position of the sin/cos sensor or encoder.		
Setting stop position 5 Enter Stop position 5 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 6 Enter Stop position 6 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 Enter Stop position 7 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 Enter Stop position 7 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 Enter Stop position 8 as xxx x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position referring to this zero position: Enter 0 for KEYPAD operation If you want to record the position at which your spindle has been placed: Enter 1 for teach in operation You have entered at the previous step "0" for KEYPAD, now you have to enter the stop position . To do it: Turm the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. Confirm recording of the displayed stop position with ENTER		Selection is made by applying +25V to terminals 31 and 32		
Position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminal 33 Setting stop position 6 • Enter Stop position 7 • Enter Stop position 7 • Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 • Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder. • Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position at which your spindle has been placed: • Enter 1 for teach in operation If you have entered at the previous step "0" for KerPAD, now you have to enter the stop position xx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: • Turn the motor shaft untill the desired stop position is reached. You must do at	Setting stop position 5	• Enter Stop position 5 as xxx.x degree(s) referred to the zero		
 Selection is made by applying +25V to terminal 33 Setting stop position 6 Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection made by applying +25V to terminals 32 and 33 Setting stop position 8 Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position referring to this zero position: Enter 0 for KeYPAD operation If you want to record the position at which your spindle has been placed: Enter 1 for teach in operation You have entered at the previous step "0" for KeYPAD, now you have to enter the stop position xxx.x in degree and confirm it with ENTER You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it:		position of the sin/cos sensor or encoder.		
Setting stop position 6 • Enter Stop position 6 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Setting stop position 8 • Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 • Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position referring to this zero position: • Enter 0 for KEYPAD operation If you want to record the position at which your spindle has been placed: • Enter 1 for teach in operation You have entered at the previous step "0" for KEYPAD, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position to do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position wit		Selection is made by applying +25V to terminal 33		
position of the sin/cos sensor or encoder. Setting stop position 7 Setting stop position 7 Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Setting stop position 8 Setting stop position 8 Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. Selection is made by applying +25V to terminals 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position at which your spindle has been placed: Enter 1 for teach in operation Position set point You have entered at the previous step "0" for KeYPAD, now you have to enter the stop position. To do it: Teach-in operation You have to record the stop position. To do it: Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm the input of the menu B, part 1 and part 2 are correct.	Setting stop position 6	• Enter Stop position 6 as xxx.x degree(s) referred to the zero		
• Selection is made by applying +25V to terminals 31 and 33 Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 • Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position referring to this zero position: • Enter 0 for KeYPAD operation If you want to record the position at which your spindle has been placed: • Enter 1 for teach in operation You have entered at the previous step "0" for KeYPAD, now you have to enter the stop position. To do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the emenu B, part 1 and part 2 are correct, you confirm the stop to the position to be recorded. The system will be testing for index location and number of teeth.		position of the sin/cos sensor or encoder.		
Setting stop position 7 • Enter Stop position 7 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 • Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position referring to this zero position: • Enter 0 for KEYPAD operation If you want to record the position at which your spindle has been placed: • Enter 1 for teach in operation You have entered at the previous step "0" for KEYPAD, now you have to enter the stop position. To do it: • Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the emenu B, part 1 and part 2 are correct, you confirm the input of the weaker is no 2 and 5.		Selection is made by applying +25V to terminals 31 and 33		
position of the sin/cos sensor of encoder. • Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 • Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position referring to this zero position: • Enter 0 for KeyPAD operation If you want to record the position at which your spindle has been placed: • Enter 1 for teach in operation You have entered at the previous step "0" for KeyPAD, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: • Turm the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm their wildity we catarian as 200°E.	Setting stop position 7	• Enter Stop position 7 as xxx.x degree(s) referred to the zero		
• Selection is made by applying +25V to terminals 32 and 33 Setting stop position 8 • Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position referring to this zero position: • Enter 0 for KerPAD operation If you want to record the position at which your spindle has been placed: • Enter 1 for teach in operation You have entered at the previous step "0" for KerPAD, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm to wind the use testing for index location and part 2 are correct, you		position of the sin/cos sensor or encoder.		
Setting stop position 8 • Enter Stop position 8 as xxx.x degree(s) referred to the zero position of the sin/cos sensor or encoder. • Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position referring to this zero position: • Enter 0 for KeyPAD operation If you want to record the position at which your spindle has been placed: • Enter 1 for teach in operation You have entered at the previous step "0" for KeyPAD, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you prevent would be accorded.		Selection is made by applying +25V to terminals 32 and 33		
Position reference • Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position referring to this zero position: • Enter 0 for KEYPAD operation If you want to record the position at which your spindle has been placed: • Enter 1 for teach in operation You have entered at the previous step "0" for KEYPAD, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm the invalidity by extering as 2% of the part 1 and part 2 are correct.	Setting stop position 8	• Enter Stop position 8 as xxx.x degree(s) referred to the zero		
• Selection made by applying +25V to terminals 31, 32 and 33 Position reference If you know the "zero" position of you sin/cos sensor or encoder input, you are able to enter the stop position referring to this zero position: • Enter 0 for KeyPAD operation If you want to record the position at which your spindle has been placed: • Enter 1 for teach in operation You have entered at the previous step "0" for KeyPAD, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm their validity by exterior and 20 at ENTER		position of the sin/cos sensor of encoder.		
Position reference If you know the 2ero position of you sin/cos sensor of encoder input, you are able to enter the stop position referring to this zero position: • Enter 0 for KeyPad operation If you want to record the position at which your spindle has been placed: • Enter 1 for teach in operation You have entered at the previous step "0" for KeyPad, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm the input of the input of the menu B. Part 1 and part 2 are correct.	Desition reference	Selection made by applying +25V to terminals 51, 52 and 55 If you know the "zero" position of you sin/see concern or encoder input		
• Enter 0 for KEYPAD operation If you want to record the position at which your spindle has been placed: • Enter 1 for teach in operation Position set point KEYPAD You have entered at the previous step "0" for KEYPAD, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm the input of the input of the menu B. part 1 and part 2 are correct.	Position reference	If you know the zero position of you sin/cos sensor of encoder input,		
Position set point If you want to record the position at which your spindle has been placed: Enter 1 for teach in operation Position set point You have entered at the previous step "0" for KEYPAD, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm the input of the menu B, part 1 and part 2 are correct, you		• Enter 0 for KeyPap operation		
Position set point • Enter 1 for teach in operation Position set point You have entered at the previous step "0" for KEYPAD, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm their velidity by entering as 2 adE ENTER		If you want to record the position at which your spindle has been		
• Enter 1 for teach in operation Position set point KEYPAD You have entered at the previous step "0" for KEYPAD, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm their verticity by containe as 2ndE ENTER		placed:		
Position set point KEYPAD You have entered at the previous step "0" for KEYPAD, now you have to enter the stop position xxx.x in degree and confirm it with ENTER Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm their validity by containing as 2ndE ENTER		• Enter 1 for teach in operation		
KEYPADenter the stop position xxx.x in degree and confirm it with ENTERTeach-in operationYou have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTERData Menu B OK?If the data input of the menu B, part 1 and part 2 are correct, you confirm their verticing as 2 ard 5. ENTER	Position set point	You have entered at the previous step "0" for KeyPAD, now you have to		
Teach-in operation You have entered at the previous step "1" for teach in operation, now you have to record the stop position. To do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm their weitering as 2 and 5.	KeyPad	enter the stop position xxx.x in degree and confirm it with ENTER		
you have to record the stop position. To do it: • Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK?	Teach-in operation	You have entered at the previous step "1" for teach in operation, now		
 Turn the motor shaft until the desired stop position is reached. You must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm their weltaring as 2ndE ENTER 		you have to record the stop position. To do it:		
must do at least 5 complete rotation in the same direction before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm their validity by containing as 2ndE ENTER		• Turn the motor shaft until the desired stop position is reached. You		
before to stop to the position to be recorded. The system will be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm their validity by entoring as 2ndE ENTER		must do at least 5 complete rotation in the same direction		
be testing for index location and number of teeth. • Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm their validity by entoring no 2ndE_ENTER		before to stop to the position to be recorded. The system will		
Confirm recording of the displayed stop position with ENTER Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you confirm their validity by entering no 2ndE_ENTEP		be testing for index location and number of teeth.		
Data Menu B OK? If the data input of the menu B, part 1 and part 2 are correct, you		Confirm recording of the displayed stop position with ENTER		
L contirm their volidity by entering no IndE ENTED	Data Menu B OK?	It the data input of the menu B, part 1 and part 2 are correct, you		
continuitient validity by entering no 2ndr , ENTER.		confirm their validity by entering no 2ndF, ENTER.		
Note: Any modification of one or more of the parameters with "Auto-		Note: Any modification of one or more of the parameters with "Auto-		
tuning" required, will automatically call now the menu M for Auto-		turning required, will automatically call now the menu M for Auto-		
turning and the only input accepted at the first step of the auto-turning		turning and the only input accepted at the first step of the auto-tuning		
proceeded to the auto tuning. For more information, see Monu Mu		normality will be in the auto tuning. For more information, see Monu Mu		
Auto-tuning		Auto-tuning		

Menu C : Allocation of the digital and analog output

Access in STOP mode only	
The digital outputs are:	relay RE1, output No 1 = terminals 18, 19, 20
	relay RE2, output No 2 = terminals 48, 49, 50
	relay RE3, output No 3 = terminals 21, 22, 23
	relay RE4, output No 4 = terminals 51, 52, 53
	relay RE5, output No 5 = terminals 24, 25, 26

The digital outputs are located on the TERMINAL BLOCK X2. To allocate one or more of the available functions, just put the corresponding relay No (1 to 5) after the displayed **"Relay No. =**

Functions to allocate to	Allocation	Comments on the allocated function
Reached speed	Relay No. =	The allocated relay pull as soon the speed of the motor is higher than 95% of the set value.
Zero Speed	Relay No. =	The allocated relay contact will switch as soon the output frequency of the converter is lower $\leq 0.07\%$ of F_{MAX} . This function is only active in STOP mode.
START / STOP	Relay No. =	The allocated relay contact will switch as soon the converter is in START mode
Position reached	Relay No. =	The allocated relay contact will switch as soon the position of the motor shaft is inside of the " Position Window " - see Menu M.
Failure	Relay No. =	This function is an inverted one. In failure free status, the allocated relay is powered on. The relay will fall down for any failure.
External interlocks	Relay No. =	The allocated relay contact will switch as soon the external interlock circuitry is open. Terminals 39 / 40 of the TERMINAL BLOCK X2. If this function is not used, a strap must be placed between terminals 39 and 40.
Converter overload	Relay No. =	The allocated relay contact will switch if the output current exceeds the maximum current of the converter. This current value is shown in the Menu A .
Auxiliary power supplies out of tolerances	Relay No. =	The allocated relay will pull as soon as one of the auxiliary voltages (24V, \pm 15V and 5V) is out of tolerance.
Motor temperature - PTC	Relay No. =	The allocated relay contact will switch if the motor temperature is to high respectively is the resistance of the circuitry between terminals 16 and 17 of the TERMINAL BLOCK X2 exceed 3000 Ω . If this function is not used, a strap must be placed between terminal 16 and 17.

Functions to allocate to	Allocation	Comments on the allocated function
one of the digital outputs		
Alarm converter temperature - heatsink 70°C	Relay No. =	The heatsink of the converter is equipped with a temperature sensor. A first alarm will be given when the temperature of the heatsink reaches 70°C and the allocated
		relay will be switched. This is just an alarm, the converter will continue to operate without any limitation in time.
Alarm converter	Relay No. =	If the temperature of the heatsink
temperature too high		continues to rise, a second alarm level will
		80°C and the allocated relay will be
		switched. The converter will be turned
		down 5 s after this alarm has been given.
Converter temperature too	Relay No. =	The allocated relay switches if the
high - heatsink ≥ 80° C		heatsink temperature exceeds 80°C,
		respectively 5 s after the above
Mains anomaly	Relay No =	Tolerance between 200VAC –15% and
inanio anomaly	riolay rio.	480V +10% i.e. between 170 V and 530 V
Programmable analog	Relay No. =	Voltage applied to analog input 1 will be
input AN1		compared to a reference threshold level
Three bold level ANd		set in the next step.
Inresnoid level AN1	XXX V	for which the allocated relay will be
		activated. Value 0 10 V
Time delay for AN1	XX S	Enter a delay to activate the relay link to
		threshold 1. Value 0 60 s
Programmable analog	Relay No. =	This input is allocated to the torque mode.
Input AN2		compared to a reference threshold level
		set in the next step.
Threshold level AN2	xxx V	Enter here the value of the analog input 2
		for which the allocated relay will be
Time delay for AN2		activated. Value U 10 V
Time delay for ANZ	XX 5	threshold 1. Value 0 60 s
Motor overload Im > Itrip	Relay No. =	This relay will be activated if the motor
		current exceed a limit value entered in the
Motor ourrent reference		next programming step
Initial Initia Initi		programmed in the active partition in the
		menu.
		Caution: changing this value here, will
		modify the one recorded in the partition.
Time delay Im > Itrip	xx s	Enter a delay to activate the relay link to
		the motor overload. Value 0 60 s

Menu C : Allocation of the digital and analog output (continued...)

Failures with inverted function (relay pulls if no failure) can be allocated to the same output, but never be combined with other information.

The analog outputs are:	output No 1 = terminal 27
	output No 2 = terminal 28

Functions to allocate to one of the analog outputs	Allocation	Comments on the allocated function
Speed: 10 V = maximum speed "N"	Output No =	The allocated analog output will reach 10 V when the motor speed is equal to the maximum speed defined in the corresponding partition
SAN1: 1=N, 2=Im 3=T, 4=Pw, 5=Fr	X	Allocation of one of the internal parameter to the analogue output SAN1: 1 = Speed 10 V = maximum speed of the motor 2 = Motor current (A) 10 V = max. converter output current 3 = Motor torque 10 V = nominal torque * overload factor 4 = Active power 10 V = nominal power * overload factor 5 = Slip
		10 V = nominal slip
SAN1: 1=N, 2=Im 3=T, 4=Pw, 5=Fr	X	Allocation of one of the internal parameter to the analogue output SAN2

Menu D: The parameters accessible in START mode

Access allowed in START mode

The following parameters have been described in the menu B. For complete information please refer to Menu B.

Display	Description
Acceleration time	Default value as set in menu B. Can only be increased
	Reset to default value when the drive in turned ON
Deceleration time	Default value as set in menu B. Can only be increased
	Reset to default value when the drive in turned ON
Frequency control	Keypad = 0, Terminal block = 1
source	
Position control source	Keypad = 0, Terminal block = 1
Offset compensation	Allow to compensate for an offset on the analogue speed
	reference input. This step appears only if an analog speed
	reference input is used.
0=F 1=GB 2=D 3=I 4=E	Selection of the user language.

Menu E : reversing from KEYPAD

2ndF E will reverse the rotation direction of the motor, but only if **0** has been programmed in the corresponding step of the **Menu B - part 1**. If reversing from the **TERMINAL BLOCK** X2 has been selected the following message will be displayed: "**Reversing assigned to T. Block!!!**"

Menu F : Setting a new speed using the KEYPAD

2ndF F will allow to change the speed of the motor, but only if **0** has been programmed in the corresponding step of the **Menu B - part 1**. Following messages can be displayed:

Display	Description
New frequency = Hz	If frequency has been selected as unit in Menu B - Part 1
	See "Speed display units"
New speed = RPM	If speed has been selected as unit in Menu B - Part 1
	See "Speed display units"
Freq. ctrl assigned on T.	If TERMINAL BLOCK has been selected in Menu B - Part 1
Block	See "Motor reversing"

To enter the new speed just type in the desired value of the frequency in Hz or the speed in RPM and confirm with **ENTER**

Menu G : Selection of the display block

Allow to select between 2 blocks of information to be displayed. Any time you enter **2ndF G** you will switch to the next display block.

Block 1 - Default block

Stop Mode:	lnom	G*	(I _{nom} = I nominal of motor - Partition No)
	F	STOP	(F = reference speed for next START)
Start Mode:	l _m	G*	(I _m = current of the motor)
	Fs	START	(F _s = actual speed)
Block 2	l _w	P	(Active current and power in W)
	M	S	(Torque in Nm and Slip in %)

Menu H : Display of the last 8 failures

Allow to display the last 8 failures recorded in a FIFO table.

Menu I : RESET

2ndF I will RESET the drive and allow to start again if the cause of the failure has been removed.

Menu J : Save the last speed reference as default

In the **KeyPaD** operation this instruction allows a fast save of the last inputted speed reference value, without to go through the all **Menu B**.

Menu L: Setting up the feedback

Caution: the motor will turn during this process and it will turn in the opposite direction than the correct rotation of the motor.

In case of a high-speed spindle, this process will set the motor speed at 2% of the maximum speed and then accelerate to 12% of the maximum speed. If a standard 50 or 60 Hz motor is connected, this process will be done between 2% and 52% of the maximum speed. This process will be repeated 3 times. The calculated offsets and amplitudes parameters will be recorded separately for each motor partition.

This auto tuning will not affect the calculated and recorded parameters of the motor auto and fine tuning as per menu M.

Display	Description		
PASSWORD:	To be able to enter this menu, key in here the correct access		
	password, which is 616.		
Test nb. teeth/revol	You can here test if the number of teeth for a gear or lines for an		
0 = no 1 = yes	encoder, you entered in menu B is correct. Enter here:		
	 0 if you don't want to proceed to the test 		
	 1 if you want to proceed 		
	Note: Make sure that the number of poles entered for the motor is		
	correct, if not the result will be wrong. This test will count the		
	number of teeth or lines with a maximum error of 2. If the result		
	matches your input by \pm 2, your input is correct.		
Number of teeth/revol.	At this step, the system return the number found.		
found =	If the result doesnot match your input by \pm 2 check the your input.		
	Note : Make sure that the number of poles entered for the motor is correct, if not the result will be wrong		

	f			
S	FOLLOWIN	FOLLOWING 3 STEPS ARE DISPLAYED ONLY FOR THE		
V I		SYNCHRONOUS MOTOR		
y	Found Orientation	Display a value representing the orientation of the magnetic		
N	(Auto-tune) =	field of one of the pair of pole versus the index of the sensor		
C	Used orientation	Here you set if you want to work with the orientation found		
h	0=Autom. 1=man.?	by the auto-tuning process or if you want to use a corrected		
r		value entered manually. Enter:		
o		0 To use the automatic calculated value		
ň		1 To use a corrected value		
ö		Note: Any time you power up the drive, at the first START,		
йI		a new orientation will be calculated and the new "Automatic		
ĕ		value" will be stored and used untill the next power down of		
9		the drive.		
m	Desired manual	Enter a value, which is slightly different of the above. The		
0	orientation =	optimal value can be determined by the fine-tuning process.		
Ť		Note: After the automatic orientation which is done at the		
2		first START after a new power up, the "automatic value" will		
¥.		be replaced by the manual one you have previously keyed		
		in.		

Following steps will appear only if the feedback has been set as Sin/Cos in Menu B If you want to auto-tune the Sin/Cos sine waves sensor, enter here: Auto-tuning sensor 0 = no 1 = yes **0** if you don't want to proceed to the test 1 if you want to proceed The program contains preset default values for the amplitudes and Ampl&Offset sensor Default 0=ok 1=no? offsets factors. Key in: **0** if you want to keep and operate with those values **1** if you want operate with the auto-tuning results Default values: each factor is set to the numerical value of 8192. This value represents an average and is not directly linked to a physical dimension, i.e. volts! Note: If you selected "0" to keep the "Default values" the next 4 sets will be "read only" and will just display those defaults. In the opposite if you have entered "1", the auto-tuning values will be displayed and, if you wish, you can modify them. Display the auto-tuning value of the offset of the sinus signal. Offset of sensor (sin) = A value higher than 8192 means that the measured offset is greater than the average, a value smaller than 8192 that the offset is smaller. Display the auto-tuning value of the offset of the cosines signal. Offset of sensor (cos) = Amplitude of sensor Display the auto-tuning value of the amplitude of the sinus signal. (sin) = Display the auto-tuning value of the amplitude of the cosines signal. Amplitude of sensor (cos) =

Menu L : Setting up the feedback (continued...)

Fine tuning the orientation

The orientation found during the auto-tuning process can slightly differ from the ideal one. This variation will impact the torque / current performance of the motor. They are two empiric methods to fine-tune this orientation value.

1. Fine tuning using the speed

This process is easy to be done if the motor is using the field weakening capability.

- Set the demagnetizing current to zero
- Set the speed at max. value
- Check the speed reached in the saturation in both directions
- Vary manually the orientation angle until the speeds in both directions are identical
- Set the magnetizing current back to the specified value

If the motor has no field weakening area, **check with the motor manufacturer**, which is the max. over speed mechanically accepted. Then set the max. speed equal to this value and process as above.

• At the end of the process don't forget to set the max. speed back to the one specified for this motor.

2. Fine tuning using the current

This process is done under load and compares the currents for various orientation angles under a constant load.

• The process consists to find out the lowest current for a given load.

3. When do I have to fine tune?

- The first time the motor is powered up.
- After rework of the motor.
- After disassembling of the feedback, senor and / or gear.

Note: As the orientation angle has been manually keyed in at the end of the fine-tuning process they will remain recorded even after the drive has been powered down.

S

n

С

n

n

0

U

S

m

0

I

0

Menu M : Auto-tuning of the motor

The inputs made in the **Menu B - Part 2**: motor related parameters, must be at the end confirmed by entering **2ndF Enter**. This inputs, as well any modification of the basic motor parameters, the *"Auto-tuning" required* parameters (nominal current, power, speed, voltage, slip) will automatically connect you to the Menu M to process to the auto-tuning of the system.

The auto-tuning process will calculate the inertia of the motor and its attached load (if present) and, based on the result, determine the regulation factors and gains for the speed and position loops. The induction motors being large inertia motors, it is not necessary to have the load attached for the auto tuning, except if the load is a large inertia one and can impacts the total result.

In case of a high-speed spindle, this process will set the motor speed at 2% of the maximum speed and then accelerate to 12% of the maximum speed. If a standard 50 or 60 Hz motor is connected, this process will be done between 2% and 52% of the maximum speed. This process will be repeated 3 times. The calculated loop regulation parameters will be recorded separately for each motor partition. Caution: the motor will turn during this process and it will turn in the opposite direction than the correct rotation of the motor

During the **Auto-Tuning** process, first the correct phase sequence of the motor connection is checked. If required you will be asked to reverse two phases (in case the motor would run in the wrong direction versus the encoder signals).

Display	Description		
PASSWORD:	To be able to enter this menu, key in here the correct access		
	password, which is 616.		
Auto-tuning	You have access to the Menu M by entering 2ndF M		
	• Enter 0 if you want to go to next step. If you have access to the		
	Menu M by closing the Menu B with 2ndF ENTER		
	Only 1 can be entered as the auto-tuning has not been done		
	earlier with the same motor parameters		
Position rigidity	You can here enter the factor of the position stiffness i.e. the		
	dynamical reaction of the position regulation loop.		
	Value between 0 and 70, higher is the factor, higher is the stiffness.		
	If this factor is to high, the system can become unstable. In this		
	case just reduce this factor until you reach a satisfactory rigidity.		
Position window	The positioning time is in relation with the position window. Smaller		
	is this window, longer will be the time required to get the output		
	signal " Position reached ". The corresponding digital output will be		
	activated only once the position inside of this window.		
	Enter the position window in degree.		
Priority STOP time	Set here the minimum deceleration time to be used when the input		
= (s)	X2/29 is activated. This time defined by the spindle manufacturer is		
	the shortest possible STOP time without damaging the spindle. The		
	braking current is limited to the max. programmed overload.		
Corrective Factor	For Engineering Fine Tuning – see page 43		
System Constant	For Engineering Fine Tuning use. Read only parameter		
Dynamic Factor	For Engineering Fine Tuning use. Default value 100%		
	Can be set between 10% and 300%. See instruction page 43.		
Filter factor of the	Enter here a filtering factor between 2 32		
analog speed reference	Higher is the factor, higher is the filtering of the analog input. this		
input	will avoid speed variations due to noise pulses on you analog input		
	line		

Fine tuning of the speed loop parameters

The fine tuning the VHF drive is required to get the best performances out of the motor. Basically what we do, is to repeat the auto-tuning process, varying the value of the **Dynamic Factor** parameter in the Menu M, looking for the lowest possible **System Constant** value.

How to proceed:

- 1. After having completed the parameters in the Menu B and proceeded to the **first Auto-Tuning**, the program jump direct to the **System Constant** of the menu M.
- 2. Note the value of the **System Constant**
- 3. Go to the next step, **Dynamic Factor**, using **Arrow Down**
- 4. The **Dynamic Factor**, which will be used to fine tune the regulation parameters is by default set to 100% and can be set between 10% to 300%.
- 5. Input a value of 90, confirmed by ENTER.
- 6. The program jump to the start of menu M: Auto-Tuning
- 7. Confirm with **ENTER**
- 8. A new Auto-Tuning is completed and the program jump to the System Constant
- 9. Note the value of the System Constant. Did it decrease?
- If YES, repeat steps 3 to 9 above, continuing to decrease the Dynamic Factor until you get the lowest possible System Constant, and keep as Dynamic Factor the one corresponding to this lowest System Constant value.
- If NO, repeat steps 3 to 9 above, increasing first the Dynamic Factor to 110, then continuing to increase it until you get the lowest possible System Constant, and keep as Dynamic Factor the one corresponding to this lowest System Constant value.

NOTES:

- The lowest System Constant area is rather flat and modification of the Dynamic Factor in this area will not have a major impact of the System Constant. The Dynamic Factor you will keep should correspond to the middle of this area.
- 2. During this iteration process you should notice a change of the behavior during the auto tuning. Lower is your "system Constant", more dynamic should the auto tuning be and the motor should run better (less vibration and less "nervous"). You should even be able to hear a difference.

Fine tuning step 2

Once you have completed the above fine-tuning and **only afterwards**, if your motor is still "nervous", you can proceed to the second step of the fine-tuning as follow

- 1. Go into menu M and read the **System Constant** value.
- 2. Go back one step to the **Corrective Factor** and key in "616 ENTER", this will allow you to change this factor.
- 3. Make it first **equal** to the **System Constant** and check the behavior of the motor, i.e. its dynamic regulation.
- 4. If the motor doesn't run to your satisfaction, reduce the Corrective factor step by step, checking each time if the researched running smoothness has been reached.
- 5. As soon you reach an acceptable running smoothness, stop to decrease the **Corrective Factor**.
- 6. Be aware that reducing the **Corrective Factor** will reduce the dynamic of the regulation. This will be obvious at any load change, the system will need longer to compensate the change and the speed drop / increase will be **larger**.
- 7. Don't do a new auto tuning with a modified Corrective Factor. If you need or want to redo your Auto-Tuning, set first the Corrective Factor at 500.

VHF1400A – List of Error messages

Messages	Explanation
No communication	Fatal error. No communication between the KEYPAD PC580 and
	the drive. Check connecting cable.
Not allowed in STOP !!!"	You tried to reverse direction in STOP
Please go through	One or more motor parameters requesting a new Auto-Tuning
menu B !!!	have been modified and the confirmation to the last step of
	Menu B not entered. See :
	Datas menu "B" ok yes-> "2ndF" "ENTER
Reversing assigned on	The direction reversing function has been assigned to TERMINAL
T.Block	BLOC X2 in menu B and you try to reverse direction from the
	KeyPad
Freq ctrl assigned on	The speed control function has been assigned to TERMINAL BLOC
T.Block	X2 in menu B and you try to change the speed from the KEYPAD
Motor reversing forbidden	Direction reversing has been locked in the menu B
Wrong direction	After Auto-Tuning if the rotation direction of the motor doesn't
change "U" and "V"	match the connection of the sensor.
Wrong direction	As above. Displayed after 2ndF H , followed by time
"Start" programmed	START function is allocated to TERMINAL BLOC X2 and you tried
through T.Block	to start using the KEYPAD
"Start" programmed	START function is allocated to KEYPAD and you tried to start
through keypad !!	using the TERMINAL BLOC X2
"Stop" circuit open !!!	When you try to START
Range coding through	Partition selection is allocated to TERMINAL BLOC X2 and you
T.Block	want to select it using the KEYPAD
Access forbidden	The drive is in START mode and you try to access to Menu B or
during WORK	C using the KeyPad
Access locked	The access to Menu B and C is locked by the KEY function on
	I ERMINAL BLOC X2/5 AND X2/6
Do a STOP first then	This message is displayed when you try to do a RESET after a
one RESEI	Tailure with the START contact still closed and the START /
	STOP function is made using a permanent contact.
Error Sull	Displayed after a RESET if the cause of the failure has not been
Current too low III	Diaplayed when entering the mater current in the Menu P and
	bisplayed when entering the motor current in the menu B and this motor current is $< 10\%$ of the maximum current of the drive
Motor overload Im>lref	The converter tripped because the motor current was higher
	than the programmed reference current. This function is
	programmed in menu C and a relay will be allocated to it. A time
	delay can be allocated too.
Motor overload	As above. Displayed after 2ndF H , followed by time
Converter temp.	The temperature of the heatsink exceed 75°C
to high !!!	•
Converter temp.	As above. Displayed after 2ndF H , followed by time
Motor temperature	Overheating of the motor, detected by the PTC
to high !!!	
Motor temp.	As above. Displayed after 2ndF H , followed by time
External	External interlock circuitry open
interlocks !!!	See TERMINAL BLOC X2/39 – X2/40
Ext. interlocks	As above. Displayed after 2ndF H , followed by time
Converter	Displayed in case of short-circuit at the output or high current
overloaded	peak exceeding the capacity of the drive or one input phase is
	missing.
Conv. overloaded	As above. Displayed after 2ndF H, followed by time

Messages	Explanation	
Defect auxiliary	In case of problem with the auxiliary	
supply !!!	power supply 24, \pm 15 or 5 VDC	
Def. aux. supply	As above. Displayed after 2ndF H , followed by time	
Mains out of	Displayed if your mains voltage is lower than 170 VAC	
tolerance !! !	respectively higher than 530 VAC. Any value in between is	
	considered being within the tolerances	
Mains out tol.	As above. Displayed after 2ndF H , followed by time	
Speed sensor is	Feedback input missing. Displayed if the bridge between pin 1	
missing !!!",	and 15 in the D-Sub connector CN2 is missing	
No Speed sensor	As above. Displayed after 2ndF H , followed by time	
Indexing function	Displayed when you try to do a positioning and the position	
not available !!!	index of the feedback is missing	
Indexing funct.	As above. Displayed after 2ndF H , followed by time	
No errors recorded !!!	Displayed after 2ndF H if the memory of failure is empty	

VHF1400A – List of error messages (cont....)

Assistance and Trouble shooting

All our products are manufactured in accordance with an accurate quality process. Before delivery they are checked for many hours under power. The quality system and production process guarantee that all products are shipped free of default.

The respect of the installation procedure describes in this manual and a correct definition of the application should avoid any commissioning problems.

Should you meet some problems during installation or commissioning of the frequency inverter our technical staff are available for assistance. Please contact your local supplier or the local DANAHER MOTION subsidiary.

Please includes following information:

- 1. Description of the application
- 2. Default or problem you met
- 3. Copy of the programmed parameters
- 4. Wiring diagram

In case of emergency: Danaher Motion S.A. La Pierreire CH 1029 Villars-Ste-Croix

> Tel. +41 21 631 33 33 Fax. +41 21 636 05 09 E-mail: info@danaher-motion

VHF1400A – The programmed parameters of the Menu A, B, C and M ASYNCHRONOUS MOTORS

Menu A : Converter data

Display	Please copy Menu A data		
Max. current			
Software version			
Delivery date			
Serial number			
Menu B : Operation	/ Motor	S	
Display		FS	CS
0=F 1=GB 2=D 3=I 4=	=E	1	
Mains voltage		400	
Set Point Mode		0	
START / STOP		0	
START / STOP TB		0	
Speed display units		1	
Motor reversing	0=NO	0	
Motor reversing	1=TB	1	
Stop by default 0=	Coast	0	
Delay time	S	0	
Freq. Ctrl source		0	
Freq. Ctrl 1		0	
Freq. Ctrl 2		0	
Freq. Ctrl 3		0	
Freq. Ctrl 4		0	
Motor partition select.		0	
PASSWORD:		XXX	XXX
Motor partition No		0	
Asynchronous motor		0	
Prec. encoder /No of	ouises	256	
Snape signal sensor ()=sin	0	
		10	
Nom motor voltage		10	
Max motor operating		10	
frequency		1.0	
Number of poles		2	
Nominal current of mo	otor	1.0	
Admissible overload		1.0	
Base speed < max. sr	beed	0	
Base speed		0	
Motor power at brea	ık point	0	
Nominal power of m	otor	0	
Nom. speed at nom	. power	1	
Default frequency		1.0	
Motor current ref. Itrip		1.0	
Prohibited frequency		0	
Skip frequency 1		0	
Skip bandwidth 1		0	
Skip frequency 2		0	
Skip bandwidth 2		0	
Skip frequency 3		0	
Skip bandwidth 3		0	
Pre-set frequency by	IR	0	
Pre-set frequency 1		1.0	
Pre-set frequency 2		1.0	
Pre-set frequency 3		1.0	
Pro set frequency 4		1.0	
Pre-set froquency 5		1.0	
Pre-set froquency 7		1.0	
Fie-set inequency /		1.0	

Display	FS	CS
Position control source	0	
Position reference	0	
Position set point KEYPAD	1.0	
Teach-in operation		
Setting stop position 1	1.0	
Setting stop position 2	1.0	
Setting stop position 3	1.0	
Setting stop position 4	1.0	
Setting stop position 5	1.0	
Setting stop position 6	1.0	
Setting stop position 7	1.0	
Setting stop position 8	1.0	
Data Menu B OK?		

Menu C : Inputs / Outputs

Reached speed	Rel. No =	
Zero Speed	Rel. No =	
START / STOP	Rel. No =	
Position reached	Rel. No =	
Failure	Rel. No =	
External interlocks	Rel. No =	
Converter overload	Rel. No =	
Aux. power supplies	Rel. No =	
Motor temp. PTC	Rel. No =	
Alarm converter temp.	Rel. No =	
Alarm converter trip <5s	Rel. No =	
Converter ≥ 80° C	Rel. No =	
Mains anomaly	Rel. No =	
Programmable analog input AN1	Rel. No =	
Threshold level 1		V
Time delay		S
Programmable analog input AN2	Rel. No =	
Threshold level 2		V
Time delay		S
Motor overload Im > Itrip	Rel. No =	
Motor current ref. Itrip		Α
Time delay Im > Itrip		S
SAN1: 1=N (Speed)		
2=Im (Motor current)		
3=1 (Motor torque)		
4=PW (Active power)		
SANZ: 1=N, 2=IM		
3=1, 4=Pw, 5=Fr	1	

Menu M – Auto-tunning

Display	FS	CS
Position rigidity	0	
Position window	0.1	
Priority STOP time = (s)	10	
Corrective Factor	500	
System Constant	500	
Dynamic Factor	0	
Filter factor	2	

FS : Factory setting

CS : Customer setting

DECLARATION OF CONFORMITY

We: Danaher Motion SA La Pierreire 2 CH - 1029 Villars-Ste-Croix

declare under our sole responsibility that the products of the family

VHF1400A

are exclusively designed for incorporation in an other machine. The operation of the product is submitted to the conformity of the complete equipment, following the provisions of the directive **89/392/EEC**

The conformity of the above specified products with the provisions of the Directive **73/23/EEC** is supported by the respect of the standards **CEI/IEC 1010-1**

If the mounting and connecting instructions of the installation's manual have been respected, this product will be conform to the standards **EN50081-1** and **EN50082-1** relating to the EMC directive **89/336/EEC**.

Mounting instructions related to the EMC - directive 89/336/EEC

- 1. The frequency converter must be mounted in a closed metal cabinet.
- 2. The power connection between converter and motor must be MADE using shield cable.
- 3. The control connection must utilize shielded cables.
- 4. The shield of the cables must be grounded at both ends.
- 5. Power connections and control connection must be placed in separated canals.
- 6. A line filter must be installed. The machine manufacturer has the option to use a single filter for all of his equipment. In this case the correct definition and sizing of the filter is his responsibility. If the option of a separate filter is selected, this filter will have to match the following specification:

Drive unit	Filtertype	INom (A)
VHF1415A	FMAC-0932-2510	25
VHF1430A	FMAC-0934-3610	36
VHF1440A	FMAC-0934-5010	50
VHF1455A	FMAC-0953-6410	64
VHF1472A	FMAC-0937-8010	80
VHF1490A	FMAC-0954-H110	110

Supplier: Timonta, Mendrisio (Switzerland)

Villars-Ste-Croix, July 2002

The Engineering Manager: A. Schwendener