
SLO-SYN® WARPDRIVE™

SS2000PCi

PROGRAMMABLE

STEP MOTOR

CONTROLLER

INSTALLATION

AND

OPERATION

INSTRUCTIONS

Price: $25.00

ENGINEERING CHANGES

We reserve the right to make engineering refinements on all its products. Such
refinements may affect information given in instructions, Therefore, USE ONLY THE
INSTRUCTIONS THAT ARE PACKED WITH THE PRODUCT.

RECORD OF REVISION
Revision Date Description

A 7/19/99 Initial Release
B 2/3/00 Revise corporarate ID and logos.

Table of Contents i

Table of Contents

SECTIONS & TITLE PAGE

1.0 - Introduction 1
1.1 - How to Use This Manual 2
1.2 - Features and Functions 2
1.3 - What You Need to Know First 3
1.4 - Conventions Used in This Manual 3
1.5 - How to Contact Us 3

2.0 – Important Safety Information 5

3.0 - Quick Start Installation Guide 9
3.1 – Step-by-Step Start-Up Procedure 10

3.1.1 – Switch Settings 11
3.1.2 - Baud Rate and Unit ID Switch 11

3.2 - Mechanically Mounting the Unit 13
3.3 - General Wiring Guidelines 13
3.4 - Hardware Connection Descriptions 15

Serial Port 2 18
Serial Port 1 18
Encoder 18
Inputs 1-8 (Isolated) 18
Outputs 1-4 (Isolated) 18
Analog Input 18
OPTO 19
12 VDC Power Supply 19
IN COMMON 19
GND 19
Device ID Number Switch 19
Baud Rate Switch 19
BCD Port 19
Serial Port 1 (RS232/RS485) switch 19
LED's 20
Drive Connections 20

 AC Power 20
Chassis Ground 20

3.5 - Wiring Diagrams 21
3.5.1 - Motor and Encoder Connections 21
3.5.2 - Input / Output Connections 22
3.5.3 - RS232/RS485 Host Serial Communication Connections 26
3.5.4 - RS485 Auxiliary Serial Communication Connections 28
3.5.5 - AC Power Connections 28
3.5.6 - Drive Connections 29

ii Table of Contents

Table of Contents iii

SECTIONS & TITLE PAGE

4.0 - Hardware Specifications 31
4.1 - Mechanical and Environmental Specifications 32
4.2 - Electrical Specifications 32

4.2.1 - Isolated Digital I/O 32
4.2.2 - Non-isolated I/O (or BCD Interface) 33
4.2.3 - Serial Communication 33
4.2.4 - Drive Connections 34
4.2.5 - Encoder Connections 34
4.2.6 - Analog Input 34

4.3 - Hardware Equivalent Circuits 34
I/O Equivalent Circuits 35

5.0 – Motion Controller Programming Interface37 5.1 - Programming
38

5.1.1 - General Description of Programming 38
5.1.1.1 - What is Programming? 38
5.1.1.2 - What's in a Program? 38
5.1.1.3 - How is the Controller Programmed? 38

5.1.2 - What are Host Commands? 38
5.1.3 - Memory Types and Usage 38
5.1.4 - How to organize your Project 38

5.1.4.1 - Initialization section of the program 38
5.1.4.2 - Main Program section 39
5.1.4.3 - Interrupt Routines39
5.1.4.4 - Subroutines 39
5.1.4.5 - Error Handler 39

5.2 - Motion Controller Programming Interface (MCPI) 41
5.2.1 - Software Installation 41
5.2.2 - Starting the programming environment 41

5.2.2.1 - Motion Controller Programming Interface opening screen 41
5.2.3 – Setting Communication Parameters 41
5.2.4 - Creating a new project 42
5.2.5 - The Task Editor 43
5.2.6 - Terminal Emulation 45

iv Table of Contents

SECTIONS & TITLE PAGE

5.2.7 - Configuration & Setup Folders 46
5.2.7.1 - System Folder 46
5.2.7.2 - Profile Folder 46
5.2.7.3 - Encoder Folder 47
5.2.7.4 - Open Loop Stepper Folder 47
5.2.7.5 - Closed Loop Stepper Folder 47
5.2.7.6 - Mechanical Home & Mark Registration Folder 48
5.2.7.7 - I/O Folder 48

5.2.8 - Preparing User Project for Execution 49
5.2.8.1 - Project Source code 49
5.2.8.2 - Setting Project Debugging 49
5.2.8.3 - Compiling a Project 49
5.2.8.4 - Selecting the Controller Unit ID 49
5.2.8.5 - Downloading a Project 50
5.2.8.6 - Uploading Source Code 50

5.2.9 - Downloading an Operating System 50
5.2.10 - Other Menus 50

5.2.10.1 - Project Menu 50
5.2.10.2 - Utility Menu 51
5.2.10.3 - Window Menu 51
5.2.10.4 - Help Menu 51

5.2.11 - Project Command Buttons 52
5.2.12 - DEBUG Environment 52

5.2.12.1 - Debug program execution 53
5.2.12.2 - Breakpoint Setting/Clearing 53
5.2.12.3 - Watch variables 53
5.2.12.4 - Terminal Window 53
5.2.12.5 - Exit Debug Environment 53

6.0 - Software Reference Guide 55
6.1.1 - Programming Commands Grouped by Functions 56
6.1.2 - Programming Commands Summary (alphabetical list) 59
6.1.3 - SEBASIC Conventions 62

6.1.3.1 - Arithmetic Operators 62
6.1.3.2 - Logical Operators 62
6.1.3.3 - Relationship Operators 62
6.1.3.4 - Basic Data Types 62
6.1.3.5 - Case Sensitivity in Statements & Commands 63
6.1.3.6 - Calculations Using Trajectory Parameters and Variables 63
6.1.3.7 - Program Comments 63

6.1.4 - Programming Commands - Alphabetical Listing 64

A
ABSPOS 64
ACCEL 65
ANALOG 65

Table of Contents v

AND 66
ASC 66

SECTIONS & TITLE PAGE

6.1.4 - Programming Commands - Alphabetical Listing (continued)
B
BCD 67
BOOST 67
BUSY 68

C
CHR$ 68

D
DECEL 69
DEFINE 70
DIST 71
DO...EXIT DO...LOOP...UNTIL...WHILE 72

E
ENCPOS 73
ENCSPD 73
END 74
ERR 75
EVENT1 77
EVENT2 78

F
FOLERR 79
FOR...TO...EXIT FOR...NEXT 80

G
GETCHAR 81
GOSUB...RETURN 82
GOTO 83

H
HARDLIMOFF 84
HARDLIMON 85
HEX$ 86
HVAL 86

I
IF...THEN...ELSE...END IF 87
IN 88
INCHAR 89
INCLUDE 90
INPUT 91
INSTR 92
INTROFFn 93
INTRONn 93

J

vi Table of Contents

JOG 94

Table of Contents vii

SECTIONS & TITLE PAGE

6.1.4 - Programming Commands - Alphabetical Listing (continued)
L
LCASE$ 94
LEFT$ 95
LEN 95
LOWSPD 96

M
MID$ 96
MOVEA 97
MOVEHOME 98
MOVEI 99
MOVEREG 100

N
NOT 101

O
ON...INTRn 102
OR 104
OUT 105

P
PRINT 106
PRINT USING 107

R
REDUCE 110
REGLIMIT 111
RIGHT$ 111

S
SOFTLIMNEG 112
SOFTLIMOFF 113
SOFTLIMON 114
SOFTLIMPOS 115
SPEED 116
STOP 116
STOPERR 117
STR$ 117
STRING$ 118

T
TIMER 118

U
UCASE$ 119
UNITID 119

V
VAL 120

viii Table of Contents

SECTIONS & TITLE PAGE

6.1.4 - Programming Commands - Alphabetical Listing (continued)
W
WAIT 120
WAITDONE 121
WNDGS 122

6.2 - Host Command Reference Guide 123
6.2.0 - Host Commands 124
6.2.1 - Host Commands Grouped by Function 124
6.2.2 - Host Commands Summary (alphabetical list) 126
6.2.3 - Host Commands - Alphabetical Listing 128

<nn 128

A
ABSPOS (P) 129
ACCEL (AC) 129
ANALOG (AN) 130

B
BACKSPACE 130
BCD 131
BUSY (BS) 131

C
CTRL-A 132
CTRL-C 132
CURRENT 133

D
DECEL (DC) 133
DIR 134
DIST 135

E
ENCPOS (EP) 135
ENCSPD (ES) 136
ERR 136
ERRM 136
ESCAPE 137
EVENT1 (E1) 137
EVENT2 (E2) 138

F
FEEDHOLD (FH) 138
FOLERR (FE) 139
FREEMEM 139

H
HARDLIMOFF (HL0) 140
HARDLIMON (HL1) 140

Table of Contents ix

SECTIONS & TITLE PAGE

6.2.3 - Host Commands - Alphabetical Listing (continued)
I
IN (I) 141

J
JOG (J) 141

L
LOWSPD 142

M
MOVEA (MA) 143
MOVEHOME (MH) 143
MOVEI (MI) 143
MOVEREG (MR) 144

O
OUT (O) 144

R
REGLIMIT (RL) 145
RESET 145
REVISION (REV) 146
RUN 146
S
SOFTLIMNEG (SLN) 147
SOFTLIMOFF (SL0) 147
SOFTLIMON (SL1) 148
SOFTLIMPOS (SLP) 148
SPEED (SPD) 149
STOP (S) 149
STOPERR 150

W
WNDGS (WN) 150

7.0 - Programming Examples 151
7.1 - Cut to Length Application 152
7.2 - Rotary Table Application, Test Stations 153
7.3 - Slitting Machine Application 154

8.0 - Troubleshooting Guide 157

9.0 - Glossary 159
ASCII Table 164

x Table of Contents

(This Page left intentionally Blank)

Table of Contents xi

Introduction 1

Section 1

Introduction

2 Introduction

1.1 - HOW TO USE THIS MANUAL

Congratulations on the purchase of your new Superior
Electric SLO-SYN® WARPDRIVE™ motion control
product! The SS2000PCi programmable motion controller
is a full-featured and flexible product, yet it is fairly sim-
ple to apply it to your machine control application. This
manual is designed to guide and assist you through the
installation, programming, and operation of the control-
ler/drive. If you’re reading this, you understand the im-
portance of familiarizing yourself with how this product
should be installed and operated. We strongly recommend
that you read through this manual until you are comfort-
able with electrical connections and operating concepts of
the unit. Also, for your safety, we strongly recommend
that you read “Section 2 - Important Safety Information”
first, then read the “Quick Start Installation Guide” sec-
tion. This will provide you with the basics on how to
properly wire and connect the unit into your system.
From there you can move on to the “Motion Controller
Programming Interface” and “Software Reference Guide”
sections to learn how to program your controller/drive to
suit your application. “The “Glossary” section describes
the terms most commonly used in this manual. Detailed
technical information is provided in the “Hardware Speci-
fications” section.

1.2 – FEATURES AND FUNCTIONS

The SS2000PCi single axis step motor controller is a fully
programmable digital indexer (controller). The indexer is
a powerful controller which allows motion programming
using the Motion Controller Programming Interface
(MCPI). The MCPI is a Windows® based Graphical User
Interface (GUI) which runs on a PC and facilitates system
programming in an easy to use BASIC like language.

1) Microcontroller Based Digital Controller Card.

The controller/indexer circuit card is based on a sophisti-
cated digital microcontroller chip. The microcontroller
performs all necessary tasks for executing complex user
programs including control of digital inputs and outputs
(I/O), stepper motor current profiles, two serial communi-
cations ports, drive section interface, digital encoder in-
puts for closed loop stepper, etc.

Some of the key features of the controller are:

• High-performance motion controller uses 16-bit, 16-
MHz microprocessor

• Surface-mount construction utilizing custom inte-
grated circuits

• Easy setup and programming with Windows interface
and BASIC-like language

• Simpler program construction – user specifies own
motion units, e.g. inches, the programming environ-
ment automatically converts to motor “steps”

• Feature-rich command set, with over 85 functions in
the following groups: Motion, Trajectory Parameters,
Drive Parameters, I/O Control, Timer, Program Flow
Control, Interrupts, Boolean/Relational Operators,
String Handling, Variables, and Arithmetic

• Two independent serial ports: Host port RS232 or
RS485; Auxiliary port is RS485; selectable commu-
nication rates up to 38.4 kbaud

• Programmable Inputs: 8 optically isolated 5-24 VDC;
8 more logic inputs (or used for BCD switches)

• Programmable Outputs: 4 optically isolated 5-24 VDC,
250 mA; 4 more “sinking” open collector (or used for
BCD switches)

• Built-in 12 VDC power supply for opto-coupled I/O
• Analog input: 0-10 Volts, 10-bit resolution with mu l-

tiple programmable functions
• I/O on shielded 25-pin “D” connector; optional ter-

minal-strip adapter available
• Encoder input of up to 2 million counts per second on

9-pin “D” connector
• Closed-loop modes for stall detection, position verifi-

cation, and correction
• 3 LED indicators for Power, Fault, and Motion Busy

2) SS2000PCi Power Supply

• Wide range AC input 95 – 265 VAC, 50/60 Hz
• Fused AC Input
• Built-in Line Filter
• Current Foldback on DC Power Ouputs

Introduction 3

1.3 - WHAT YOU NEED TO KNOW FIRST

This instruction manual is written in a simple and
easy-to-follow format that should be suitable for both new
and experienced motion control users. In order to get the
most out of your WARPDRIVE Programmable Motion
Controller, we assume the user will be knowledgeable in
the following areas:

1. Basic electrical and electronic skills, including pre-
paring and following an equipment wiring diagram or
schematic.

2. The basics of motion control system applications, such
as torque, speed, move distances, how to structure a
motion task into move segments and input/output
control.

3. Some familiarity with elementary computer progra m-
ming, including defining the problem to be solved and
coding it in a computer language.

1.4 - CONVENTIONS USED IN THIS
 MANUAL

1. Motor rotation direction (CW and CCW) is properly
oriented when viewing the motor from the end oppo-
site the mounting flange end of motor.

2. Please refer to Section 9 “Glossary” for detailed de-
scriptions of terms such as "sink and source I/O", vari-
ous motion terms, etc.

1.5 - HOW TO CONTACT US

Although this manual represents a detailed compilation of
information regarding your SLO-SYN WARPDRIVE
control product, sometimes questions may arise which
will require that you contact us. You now have a few op-
tions available to you when you need information re-
garding your product or its application:

1. On the Internet www.danahermotion.com. Our mu l-
timedia enabled web site offers you information such as:

- Free Software
- Software Updates
- TechFax fax on demand documents (1-800-234-3369)
- HTML Product Selector
- HTML Brand Selector
- Product News
- Links
- Sales and Distribution Information
- Product information and specifications
- Literature Requests
- Technical Support E-mail
- Many more features

2. By Phone. You may reach us by phoning our Motion
Control Applications Engineering Department at
telephone (800) 787-3532. We may be reached be-
tween the hours of 8:00 am and 5:00 PM (Eastern
Time), Monday through Friday. Technical personnel
are available to assist you in getting your application
up and running as efficiently as possible.

4 Introduction

(This page intentionally left blank)

Safety Information 5

Section 2

Important
Safety Information

6 Safety Information

!

Before installing and operating your Slo-Syn motion control product, it is extremely important both to you and us here at
Superior Electric that you read this section very thoroughly and carefully. Your Slo-Syn product will deliver years of reliable,
trouble-free, and most importantly, safe operation if you heed the cautions and warnings outlined in this section, and follow
the subsequent instructions in the remainder of this manual.

Throughout this manual two very important symbols will be used to identify hazardous and potentially dangerous situations.
The symbols are the electrical shock indicator and the exclamation point. Both are always surrounded by a triangle as shown.

The electrical shock symbol shown to the left is used to indicate situations where ELECTRI-
CAL SHOCK hazards may exist. These warnings must be followed to ensure that YOU avoid
electrocution which could result in serious injury or death.

The exclamation point symbol shown to the left is used to indicate situations other than electri-
cal hazards which may be potentially dangerous to either YOU or to the product. Follow these
warnings carefully to avoid injury to you and damage to the product.

The following indicates a partial list of precautions which must be followed to ensure safe operation of your SLO-SYN unit.
Other more specific precautions are indicated in the appropriate sections of this manual. As you read through the manual,
pay particularly close attention to these cautions and warnings as they could save your life!

Dangerous voltages, currents, temperatures, and energy levels exist within this unit, on certain
accessible terminals, and at the motor. NEVER operate the unit with its protective cover re-
moved! Caution should be exercised when installing and applying this product. Only qualified
personnel should attempt to install and/or operate this product. It is essential that proper elec-
trical practices, applicable electrical codes and the contents of this manual be strictly followed .

Dangerous high voltages exist in this product. Be certain the power has been removed for a
minimum of 5 minutes before any service work or circuit board configuration changes are per-
formed.

In order to provide the correct levels of protection in the unit, replacement fuses must be the
same exact style and ratings as those originally installed in the unit.

Warning

!
Caution

Safety Information 7

Temperature of the heatsink or the unit could be hot to the touch. Caution should be used when
determining the temperature.

Secure mounting and proper grounding of the Slo-Syn controller/drive is essential for proper
operation of the system.

It is your responsibility to follow the appropriate federal, state, and local electrical and occupa-
tional safety codes in the application of this product.

NEVER wire the unit with the power on ! Serious injury as well as damage to the unit may
result.

NONE of the inputs to the unit are to be used as an EMERGENCY STOP in ANY application.
Although activation of certain inputs will discontinue motion or disable motor current, these are
NOT designed as fail-safe E-STOP inputs. Relying exclusively on inputs to the unit to cease mo-
tion, which could cause dangerous conditions, is a violation of Machine Safety Codes (ref. IEC
204-1). Other measures such as mechanical stops and fail-safe brakes must be used in these
situations.

Step motors can develop high torque and speed. Use extreme caution during development of
applications and integration into your system. Sudden motor motion may occur during execu-
tion of software programs. All software should be verified for proper operation before integra-
tion into your system. The motor may continue to rotate upon removal of power to the unit. It is
your responsibility to ensure that no dangerous motion occurs due to gravity loading or free-
running motors upon unit shutdown. Fail-safe brakes may be interfaced to the unit to prevent
such dangerous conditions.

Step motors can reach surface temperatures up to or exceeding 100 C. Use caution when han-
dling the motors.

!

!

!

!

!

!

!

8 Safety Information

(This page intentionally left blank)

Quick Start Installation Guide 9

Section 3

Quick Start
Installation Guide

10 Quick Start Installation Guide

3.1 - Step-by-Step Start-Up Procedure

The SS2000PCi step motor controller is a sophisticated
and versatile product. Setting up the system, however, can
be simple and straight-forward if the proper steps are fol-
lowed. Please use the step-by-step set up guide below.

1) Bench Set Up.

Before connecting your SS2000PCi and drive to your
motor and mechanical system or machine, we recommend
that you “bench test” the system. This will allow you to
become familiar with the wiring, programming and op-
eration of the system before installing it into your ma-
chine. This may also prevent inadvertent damage to your
mechanical system if you make programming errors
which cause unexpected motion. The bench set up can be
used to perform simple motions with an unloaded motor.
To perform a bench test, do the following:

a) Wire it up. Read Section 3.5 Wiring Diagrams, and
connect the AC power, I/O and other required signals
per the wiring diagrams and instructions. BE SAFE!!
Do not apply AC power to the unit until you are sure
of all connections. Initially, there is no need to con-
nect all of the wiring of your system together. Wire
the AC line input, motor drive and HOST communi-
cation ports. This will be all you need to establish
communications to the unit and perform simple mo-
tion.

b) Load Software. You will need to use a PC to pro-
gram the unit according to your requirements. First
you must load the MCPI software onto the PC from
the floppy disks provided with your unit. Simply insert
disk #1 and run the file SETUP.EXE. Once the soft-
ware is loaded, run it by double clicking on the MCPI
icon. See Section 5 for more details on the MCPI in-
stallation process.

c) Create your Project. You can now create your new
Project. Your Project will contain Configuration in-
formation for your particular system, and also your
program Task which holds the user program written in
BASIC-like language. Read section 5 of this manual,
and then step through the Configuration folders and
enter the appropriate data for your system, saving the
configuration when you are done. Note that for this
exercise, the original default settings should work fine.
Don’t forget to set up the serial port for your PC to the
correct port number and baud rate.

HINT: Motion is commanded in User Units. The
System folder in the Configuration allows you to enter
User Units per motor revolution. Initially, it is easiest
to set this to 1. This will mean that move distances are
in motor revolutions (e.g. movei=1 moves one revolu-
tion), speeds will be in revs/sec, and accelerations will
be in revs/sec/sec. Later this can be changed (e.g. to
allow programming in inches on a lead screw) to allow
ease of programming once the motor is installed into

the mechanical system. See the System Folder section
of this manual for other examples. All move distances,
speeds, and accelerations (or decelerations), and en-
coder information are provided in User Units, so be
sure you understand this before continuing.

d) Compile and Download the project into the unit us-
ing the command buttons of the MCPI. Note that ini-
tially, you can leave the Task blank and command
motion using the Host Commands. Host commands
are entered in Terminal Mode from the MCPI. Enter
the terminal mode using the appropriate command
button on you screen.

e) Make it move! Now that you have compiled and
downloaded your project into the unit, you are ready to
make the motor move. First you must enter the speed
at which you wish the motor to turn, such as 1 rev/sec.
Do this by typing speed=1 <CR> (the <CR> means
the Return or Enter key). Now enter the acceleration,
for example 50 revs/sec/sec by typing accel=50<CR>.
Set the deceleration to match by typing de-
cel=50<CR>. After each entry, the controller should
respond with a “>” prompt indicating that it has ac-
cepted your command. With the motor secured to the
bench, you can now command a move. To command
an incremental move of 10 revolutions type
movei=10<CR>. The motor should now move 10
revolutions. If it does not, check your wiring and ver-
ify your configuration settings. In addition, check the
motor direction to insure it meets your requirements.
The motor direction can be reversed in the System
folder if necessary.

f) Write a BASIC Program. Now that you have made a
simple move, you are ready to write your Task in the
MCPI BASIC-like language. Refer to section 6 for a
complete description of all of the Program Com-
mands. You can start by opening your Task and en-
tering the commands. First, let’s enter the exact same
commands that you used in the Terminal HOST mode.
Enter the speed, accel, decel, and movei commands as
you did in step e) above. You must enter two more
commands to tell the unit that the program is done af-
ter it performs the move. Type waitdone<CR> and
End<CR> as the last lines of the program. Since your
program has changed, you must compile and down-
load it into the unit again for the changes to take ef-
fect. If you receive compilation errors, check your
spelling and syntax with the information in section 6.

g) Execute the Program. . From the Terminal screen,
click on the RUN button to make the motor move 10
revolutions. If desired you can now add lines to the
program to perform more sophisticated motion. For
example, try typing REAL x <CR> as the first line of
your program. This will declare x as a REAL vari -
able. See sections 5 and 6 for discussions regarding
variables. On the next line, type x=10 <CR>. This as-
signs the REAL variable x a value of 10. Change the
movei=10 line to movei=x. Now the motor will move
whatever distance has been assigned to x. Recompile

Quick Start Installation Guide 11

and download your program, then run it. It should op-
erate the same as before, but now the program is now
using x as the move distance in place of 10 as before.
Change the value of x to different distance values to
verify that it works correctly.

h) Expand the Program and Debug it. Now that you
have written a simple program, you can add more
complexity by adding more commands. You can do
complex looping, access I/O, and motion functions as
required. It will be helpful now to use the DEBUG
feature of the MCPI. Again, refer to section 5 for a
detailed description of the debug mode. If you compile
your program in Debug Mode, you can enter the debug
screen as your program runs and step through your
code to verify proper operation. Once the code is
functioning correctly, you should re-compile in Re-
lease Mode as this will speed up program execution.

2) Installation into Mechanical System

Once you have tested everything out in a controlled envi-
ronment, you may complete the installation into your
system. This will require making all the necessary wiring
connections for limit switches, additional I/O, analog in-
puts, encoder, etc. Start simple!! Just as you started
with a simple move on the bench, you should start simple
here as well, slowly adding complexity as you debug your
code and gain more confidence in programming. You
may use the Debug Mode to help in this process. Once
you have the program running the way you want, you can
disconnect the HOST computer and use the RUN switch
input or Program Autostart feature in the Configuration to
run your program without a computer attached.

3.1.1 - Switch Settings

Before mounting and wiring your Slo-Syn
Controller, the switches that govern vari-
ous operating features should be checked
or set to their proper positions for your
application.

NEVER change the switch settings with
the unit powered ON. Risk of physical
injury or damage to the unit may result.

3.1.2 - Baud Rate and Unit ID Switch

The Baud Rate switch is accessible through the top of the
unit and has two positions, 9600 or User Baud. According
to the switch position, upon unit power up or RESET, the
baud rate is set to either 9600 or the User Baud rate. If
the switch is in the User position, the unit baud rate is set
to the baud rate parameter defined in the downloaded
project. If the switch is in the 9600 position, the baud rate

will be forced to 9600 regardless of the project con-
figuration.

It is possible to communicate to multiple units over the
same RS-485 transmission lines. To accomplish this, the
SS2000PCi supports daisy chain wiring of from 2 to 32
units. All units MUST have their HOST communica-
tions port set to RS-485 mode for daisy chaining to
function properly. Insure that the power is off when
changing the switch position . To change the Host port
communications mode, slide the RS-232/RS-485 selector
switch to the appropriate location. The switch is accessi-
ble through the top of the unit near the BCD I/O port. All
units must also be set to the same baud rate.

Further wiring details are included in Section 3.5 Wiring
Diagrams. Note that RS-232 daisy chaining is NOT
supported, and RS-232 signals should NOT be connected
to the Host port when it is in RS-485 mode.

The Host command <nn allows different modes for daisy
chain communications. Refer to the Host Command sec-
tion for a detailed description of the daisy chain com-
mands including their syntax and usage.

Each unit on the daisy chain must have a unique identifi-
cation number (ID) to eliminate transmitter conflicts on
the RS485 port. Five dip switches are provided for se-
lecting the unit ID (1 – 32). They are accessible through
the top rear of the unit. One and only one unit MUST
have ID 1. The switch positions are only decoded at
power-up. Do not change the switches with the power on.

 The unit ID ‘s are decoded as follows:
ID Num. SW-1 SW-2 SW-3 SW-4 SW-5

1 ON ON ON ON ON
2 ON ON ON ON OFF
3 ON ON ON OFF ON
4 ON ON ON OFF OFF
5 ON ON OFF ON ON
6 ON ON OFF ON OFF
7 ON ON OFF OFF ON
8 ON ON OFF OFF OFF
9 ON OFF ON ON ON

10 ON OFF ON ON OFF
11 ON OFF ON OFF ON
12 ON OFF ON OFF OFF
13 ON OFF OFF ON ON
14 ON OFF OFF ON OFF
15 ON OFF OFF OFF ON
16 ON OFF OFF OFF OFF
17 OFF ON ON ON ON
18 OFF ON ON ON OFF
19 OFF ON ON OFF ON
20 OFF ON ON OFF OFF
21 OFF ON OFF ON ON
22 OFF ON OFF ON OFF
23 OFF ON OFF OFF ON
24 OFF ON OFF OFF OFF
25 OFF OFF ON ON ON
26 OFF OFF ON ON OFF
27 OFF OFF ON OFF ON
28 OFF OFF ON OFF OFF
29 OFF OFF OFF ON ON
30 OFF OFF OFF ON OFF
31 OFF OFF OFF OFF ON
32 OFF OFF OFF OFF OFF

Caution

Warning

12 Quick Start Installation Guide

Figure 3.1
Mechanical Outline Drawing

Quick Start Installation Guide 13

3.2 - Mechanical Mounting of the Unit

Figure 3.1, Mechanical Outline Drawing, provides overall
and mounting dimensions for the SS2000PCi. The unit
should be solidly mounted within a control enclosure ap-
proved for the particular application. It is important to
select a mounting location which will meet the environ-
mental specifications listed in Section 4.1 Mechanical and
Environmental Specifications. Avoid locations that ex-
pose the unit to extremes of temperature, humidity,
dirt/dust, or vibration.

At least 2 inches of space must be left on the sides, top,
and bottom of the unit to allow proper air flow for cooling
of the unit.

Care must also be taken to allow proper and safe access to
all wiring. It is best to avoid areas with high electrical
noise. As discussed in Section 3.3 General Wiring Guide-
lines, this will help prevent incorrect operation due to
electromagnetic interference.

3.3 - General Wiring Guidelines

Dangerous voltages, currents, tempera-
tures, and energy levels exist within this
unit, on certain accessible terminals, and
at the motor. NEVER operate the unit
with its protective cover removed!
Caution should be exercised when in-
stalling and applying this product. Only
qualified personnel should attempt to

install and/or operate this product. It is essential that
proper electrical practices, applicable electrical codes and
the contents of this manual be followed strictly.

Superior Electric SLO-SYN controls and drives use mod-
ern solid-state digital electronics to provide the features
needed for advanced motion control applications. Al-
though care has been taken to ensure proper operation
under a wide range of conditions, some user equipment
may produce considerable electromagnetic interference
(EMI) which can cause inappropriate operation of the
digital logic used in the control, drive, or other computer-
type equipment in the user’s system.

In general, any equipment that causes arcs or sparks or
that switches voltage or current at high frequencies can
cause interference. In addition, ac utility lines are often
“polluted” with electrical noise from sources outside a
user’s control (such as equipment in the factory next
door). Some of the more common causes of electrical
interference are:

• power from the utility ac line
• relays, contactors and solenoids
• light dimmers
• arc welders
• motors and motor starters
• induction heaters
• radio controls or transmitters
• switch-mode power supplies
• computer-based equipment
• high frequency lighting equipment
• dc servo and stepper motors and drivesWarning

14 Quick Start Installation Guide

The following wiring practices should be used to reduce
noise interference.

Solid grounding of the system is essential. Be sure that
there is a solid connection to the ac system protective
earth ground (PE). Insure that there is a good electrical
connection through the controller case to the control sys-
tem enclosure . A separate grounding strap may be re-
quired to properly ground the unit to the control system
enclosure. This strap should ideally be constructed using
copper braid at least 0.5" in width. Use a single-point
grounding system for all related components of the sys-
tem (a “hub and spokes” arrangement). Keep the ground
connection short and direct. Grounding through both a
mechanical connection to the control enclosure and
through a grounding strap is optimal.

Keep power and signal wiring separated. Power wiring
includes ac wiring, motor wires, etc. Signal wiring in-
cludes inputs and outputs (I/O), encoder wiring, serial
communications (RS232 lines), etc. If possible, use sepa-
rate conduit or ducts for each. If the wires must cross,
they should do so at right angles to minimize coupling.

Use separately bundled, shielded, twisted-pair cables for
the drive to motor, encoder, serial communications, ana-
log input, and digital I/O wiring. For other connections it

is recommended that the shields be terminated at the Slo-
Syn unit as well. Shield connections are provided on the
unit terminal connectors for this purpose. All cable
shielding should be terminated at ONE END ONLY.
Grounding the serial communications connections at the
opposite end from the controller may be necessary in
some systems. If the cable shield must be connected at the
opposite end from the Slo-Syn unit, the shield should
NOT also be connected at the unit as this may cause a
“ground loop” and introduce electrical noise problems.

Suppress all relays as close to the coil as possible to pre-
vent noise generation. Typical suppressors are diodes,
capacitors or MOV’s. (See manufacturer’s literature for
complete information). Whenever possible, use solid-state
relays instead of mechanical contact types to minimize
noise generation.

In some extreme cases of interference, it may be neces-
sary to add external filtering to the ac line(s) feeding af-
fected equipment, or to use isolation transformers to sup-
ply their ac power.

NOTE: Superior Electric makes a wide range of ac power
line conditioners that can help solve electrical interference
problems. Contact 1-860-787-3532 for further assistance.

Quick Start Installation Guide 15

3.4 - Hardware Connection Descriptions

The following figures indicate the side, top, and front
views of the SS2000PCi controller. The numbers in the
boxes show the position of the various hardware connec-
tions to the unit. Use the index number in the boxes to
find the description of each connection following the dia-

grams. The descriptions given here should provide a rea-
sonable understanding of the nature of each signal and the
way it should be wired into your system. More detailed
technical information is available in Section 4.0 Hardware
Specifications.

FRONT VIEW

16 Quick Start Installation Guide

TOP VIEW

13

14

USERBAUD9600 5UNIT 4I.D. 3SEE 2MANUAL 1 11

12

OFF ON
 SW2

RECESSEDSW1HOST PORT
SELECT

18 Quick Start Installation Guide

The following are brief descriptions of each connection to
the D6i unit. More detailed wiring diagrams are provided
in Section 3.5

Serial Port 2

Auxiliary Serial Communications: Port 2

TX2+: Transmit+ for Serial Port 2 (RS485)
TX2-: Transmit- for Serial Port 2 (RS485)
RX2-: Receive- for Serial Port 2 (RS485)
RX2+: Receive+ for Serial Port 2 (RS485)

Serial Port 1

Host Serial Communications: Port 1

TX1-: Transmit- for Serial Port 1 (RS485)
TX1+: Transmit+ for Serial Port 1 (RS485 / RS232)
RX1+: Receive+ for Serial Port 1 (RS485 / RS232)
RX1-: Receive- for Serial Port 1 (RS485)
Serial GND: Signal ground for Serial Port 1
+5V: DO NOT USE AT THIS TIME.

Encoder

Encoder inputs for a closed loop stepper can be
single-ended or differential phase quadrature.

B1+: Encoder Channel B+ input
B1-: Encoder Channel B- input.
A1+: Encoder Channel A+ input.
A1-: Encoder Channel A- input.
Z1+: Encoder INDEX Channel Z+ input.
Z1-: Encoder INDEX Channel Z- input.
+5V: +5V supply for encoder.
GND: Ground for encoder.

Inputs 1-8 (Isolated)

EVENT 1/ IN1; EVENT 2 / IN 2

These inputs can be used as mark registration and/or
home inputs . If the inputs are not used for mark registra-
tion or home then the inputs can be used as programmable
inputs. These inputs can be configured in the Project
Configuration & Setup.

+LIMIT / IN3; -LIMIT / IN4

The +LIMIT or the -LIMIT may be used as inputs for
limit switches or sensors. If limit switches are not

needed, the inputs can be configured in the Project Con-
figuration and Setup as programmable inputs.

RUN / IN5

The run input will start execution of the program. If auto-
start is selected the program will start upon power up or
RESET. RUN will also re-start a program if a CLEAR
has been activated, or resume a program if a FEED-
HOLD has been activated. If the RUN input is not
needed the input can be used for a programmable input.
This is done in the Project Configuration & Setup.

CLEAR / IN6

If the CLEAR input is open, the program or motion will
stop. This input must be closed to run the program or
start motion. If the CLEAR input is not needed the input
can be used for a programmable input. This input can be
configured in the Project Configuration & Setup.

FEEDHOLD / IN7

Activation of this input will cause motion to come to a
controlled stop. After release of the FEEDHOLD input,
activation of the RUN input will continue the program
from the point the FEEDHOLD was activated. If the
FEEDHOLD input is not needed it can be used as a pro-
grammable input. This input can be configured in the
Project Configuration & Setup.

IN 8

This input can be used as a programmable input.

Outputs 1-4 (Isolated)

OUT 1, OUT 2, OUT3, OUT 4

These outputs can be used as programmable outputs.

Analog Input

The analog input connection allows a voltage from
0 VDC to +10VDC to be read into the unit.

ANALOG IN: analog input.
GND: Ground for analog input.

1

2

3

4

5

6

Quick Start Installation Guide 19

OPTO

+VOPTO; -VOPTO

A power supply for the optical isolators is REQUIRED
for proper I/O operation. This supply must be connected
to the +VOPTO and -VOPTO pins. The +12VDC and
+12V COM power supply is available. This supply
MUST be connected to +Vopto and -Vopto unless the
user is to supply power for the I/O from a different
source.

12 VDC Power Supply

12 VDC is available to power I/O . It is recommended
that this power be connected to the +Vopto and -Vopto
inputs on the controller as the discrete I/O supply.

+12V: +12VDC output.
12V COM: Common for the 12VDC supply.

The +12VDC supply current is limited to 100 mA. See
Section 3.5.2 for connection of sink or source I/O.

 IN COMMON

This input determines the current source of Inputs 1-8. If
it is connected to +Vopto the inputs are set to the sinking
mode. If it is connected to -Vopto the inputs are set to the
sourcing mode.

 GND

Signal Common for the Analog In signals. This GND is
not connected to 12VCOM or IN COMMON.

 Device ID Number Switch

The DIP switches will allow up to 32 devices to be daisy
chained together. Each unit must have a unique ID num-
ber per the table of ID settings in Section 3.2, Baud rate
and Unit ID Switches.

Baud Rate Switch

This switch is read only at power-up or after a reset com-
mand. In the off position the baud rate is forced to 9600.
In the on position the baud rate for the loaded project is
used. The User Baud rate is selected in the project Con-
figuration and Setup. If no user program is loaded the

default, 9600, baud rate is used. If the baud rate in the
configuration and setup is not known, use 9600 at power-
up.

BCD Port

BCD Port / I/O

This port can be used as either a BCD port, consisting of
7 numbers and a sign (Superior Electric Part # 221157-
002, includes BCD switch and 18" ribbon cable), or
used for additional outputs and inputs *.

BCD0/IN9 : BCD switch data 0 or program input 9.

BCD1/IN10: BCD switch data 1 or program input 10.

BCD2/IN11: BCD switch data 2 or program input 11.

BCD3/IN12: BCD switch data 3 or program input 12.

BCD4/IN13: BCD switch data 4 or program input 13.

BCD5/IN14: BCD switch data 5 or program input 14.

BCD6/IN15: BCD switch data 6 or program input 15.

BCD7/IN16: BCD switch data 7 or program input 16.

BCD STR0/OUT5 : BCD switch Strobe 0 or output 5

BCD STR1/OUT6 : BCD switch Strobe 1 or output 6

BCD STR2/OUT7 : BCD switch Strobe 2 or output 7

BCD STR3/OUT8 : BCD switch Strobe 3 or output 8

GND: Signal Common for Inputs and outputs

*Note: When the BCD port is used for additional I/O,
all inputs are non-isolated, and all outputs are open-
collector (7406) active low.

Serial Port 1 (RS232 / RS485)
Switch

This switch allows Serial Port 1 to be configured for
RS232 or RS485 4-wire communications.

Use care when accessing this recessed
switch; do not damage adjacent comp o-
nents when changing its position.

7

8

9

14

13

10

11

12
Caution

20 Quick Start Installation Guide

 LED’s

These LED’s show conditions that may be occurring in
the controller.

POWER: The power LED indicates that there
is AC power applied to the drive
and that the logic supply is active.

BUSY: Signifies that motion is occurring
on the motor.

FAULT: Indicates that an error has occurred
in the controller.

Drive Connections

• OPTO — +5VDC output power for connection to
drive opto coupler supply.

• PULSE — Open collector output that supplies pulses
to the drive. Drive should count ON-OFF transitions
(low to high)

• DIR — Open collector output that signals drive
which direction to turn the motor.

• AWO — Open collector output that turns off drive
when on (low).

• REDUCE — Open collector output that signals drive
to reduce motor current when active (low).

• BOOST — Open collector output that signals drive
to boost motor current when active (low).

• READY — Logic input signal indicating that the
drive is ready to go. This signal is active when at
+5V DC (OPTO power).

 AC Power

AC CONNECTIONS

These inputs are for connection of single phase AC
power. The input power range is from 95VAC to
265VAC. 50/60 HZ.

 Chassis Ground

Grounding locations for the motor and AC connections. It
is critical that a solid connection from Protective Earth
Ground be connected to the chassis ground. The Ground
wire must be at least as large as the AC supply power
wiring.

15

17

18
16

Quick Start Installation Guide 21

3.5 - Wiring Diagrams

This section provides wiring diagrams for each connection. Remember to follow the General
Wiring Guide outlined previously.

NEVER wire the unit with the power on! Serious injury as well as damage to the unit may re-
sult.

3.5.1 - Encoder Connections

The encoder connections are only required for a closed loop stepper drive and the connection scheme is depicted below.
Note: It is IMPORTANT that the encoder and motor cables be shielded and that the shields be connected to their appropri-
ate connector terminals. Single ended TTL or open collector encoder signals must be connected to the “+” terminal of each
channel.

Caution Warning

Encoder
B+

B-
NC

Z+
A+
Z-
A-

+5V
Gnd

9

1

2

3

4

5

6

7

8Ground Motor
Case To Machine

To Motor Drive

22 Quick Start Installation Guide

3.5.2 - Input / Output Connections

The I/O connections consist of; 8 general purpose inputs,
4 general purpose outputs, and 1 analog input. The 8 gen-
eral purpose input signals can be sinking or sourcing
opto-isolated inputs. The input mode (sink or source) ap-
plies to all 8 inputs. They may not be individually se-
lected as sink or source. The 4 general purpose output

signals are sinking only opto-isolated outputs. The analog
input has a voltage range from 0 to +10 volts.

I/O Connection examples using the +12 Vdc internal
power supply are depicted below. The general purpose
input connections are shown for both sinking and
sourcing inputs.

 Internal Power Supply Internal Power Supply
 Inputs Sinking – Outputs Sinking Inputs Sourcing – Outputs Sinking

Depicted below are the I/O connections when using an External Power supply. Use these connections if you are not using the
+12 Vdc internal power supply. The general purpose input connections are shown for both sinking and sourcing inputs.

 External Power Supply External Power Supply
 Inputs Sinking – Outputs Sinking Inputs Sourcing – Outputs Sinking

OUT 3

OUT 1

OUT 4

1

17

14

13
25

2

3

4

5

6

7

8

9

10

11

15

12

16

18

19

20

21

22

23

24

IN 7

IN 5

IN 3

IN 1

IN 8

IN 6

IN 4

IN 2

+10 V

Analog In

GND

1K

OUT 2

12 V COM

-VOPTO

12 V COM

+12 V

+VOPTO
-VOPTO

+VOPTO
IN COMMON

USER
LOADS

USER
LOADS

OUT 3

OUT 1

OUT 4

1

17

14

13
25

2

3

4

5

6

7

8

9

10

11

15

12

16

18

19

20

21

22

23

24

IN 7

IN 5

IN 3

IN 1

IN 8

IN 6

IN 4

IN 2

+10 V

Analog In

GND

1K

OUT 2

12V COM

-VOPTO
+12V

+VOPTO

+VOPTO
-VOPTO

IN COMMON

USER

LOADS USER

LOADS

OUT 3

OUT 1

OUT 4

1

17

14

13
25

2

3

4

5

6

7

8

9

10

11

15

12

16

18

19

20

21

22

23

24

IN 7

IN 5

IN 3

IN 1

IN 8

IN 6

IN 4

IN 2

+10 V

Analog In

GND

1K

OUT 2

+V EXT

-V EXT
-VOPTO

-VOPTO
+VOPTO

+VOPTO
IN COMMON

USER
LOADS

USER

LOADS

OUT 3

OUT 1

OUT 4

1

17

14

13
25

2

3

4

5

6

7

8

9

10

11

15

12

16

18

19

20

21

22

23

24

IN 7

IN 5

IN 3

IN 1

IN 8

IN 6

IN 4

IN 2

+10 V

Analog In

GND

1K

OUT 2

+V EXT
-V EXT -VOPTO

-VOPTO
+VOPTO

+VOPTO
IN COMMON

IN COMMON

OUT 4

OUT 2

USER

LOADS
USER

LOADS

24 Quick Start Installation Guide

The connections for the BCD I/O connector when used as
general purpose signals are depicted below.

Note: These inputs and outputs are not isolated.

13

11

9

7

5

3

1

14

12

10

8

6

4

2

IN 10

IN 9

IN 11

IN 12

IN 13

IN 15

IN 14

IN 16

OUT 5

OUT 6 OUT 7

OUT 8

User +V

SIGNAL GND SIGNAL GND

User Common

Rout
User
Load

Rout
User
Load

Recommended Output Loads
User + V Rout
5 VDC 500 ohm
12 – 15 VDC 1.5 Kohm
24 VDC 2.5 Kohm

The connections for the BCD / TTL I/O connector when used as a BCD port are depicted below.
Note: The Superior Electric BCD switch interface P/N 221157-002 is shown.

Quick Start Installation Guide 25

1 53 11 137 9

10 12 1482 4 6

NEWARK ELECTRONICS
STOCK NO. : 52F8182
TYPE NO. : NE1614-18G
AMP CABLE ASSY

PHOENIX CONTACT INC.
ORDER NO. : 2962557
TYPE NO. : UM 45-FLK 14
VARIOFACE MODULE

BCD Data 1 (IN 10)

BCD Data 0 (IN 9)

BCD Data 2 (IN 11)

BCD Data 3 (IN 12)

BCD Data 5 (IN 14) BCD Data 4 (IN 13)

BCD Data 7 (IN 16) BCD Data 6 (IN 15)

GND GND

BCD Strobe 0 (OUT 5) BCD Strobe 3 (OUT 8)

BCD Strobe 2 (OUT 7)BCD Strobe 1 (OUT 6) 12

34

6 5

8 7

10 9

12 11

14 13

Polarity
Stripe

RECOMMENDED CONNECTION FOR USING
BCD PORT AS NON-ISOLATED I/O

BCD PORT

26 Quick Start Installation Guide

The connections for the BCD / TTL I/O connector when
used as a BCD port are depicted below.

Note: An External BCD Configuration is shown below.

3.5.3 RS232 / RS485 Host Serial Communications Connections
This serial port is used for communications and pro-
gramming of the controller from a personal computer
(PC). The port can be configured for RS232 or RS485
operation. A slide switch has been provided for making
this selection. The factory default is RS232. The connec-
tion diagram for both modes has been provided, See Sec-
tion 3.4 Top View. Note: When wired for RS485 opera-
tion, a cable with individual twisted pair wires must be
used. The termination resistors indicated with an * must

have a value of 120 ohms. The pull up/down resistors
have a value of 4.7kΩ. If multiple units reside on the
RS485 bus only ONE set of three resistors should be used
at the end of the transmission line bus. The resistor con-
nected to the TX+ and TX- signals may be required if the
terminal device does not provide the termination resistor
internally. If the terminal device does provide the resistors
internally, the resistors connected to the TX+ and TX- are
not required.

 Host (RS232 Selected) Host (RS485 Selected)

13

11

9

7

5

3

1

14

12

10

8

6

4

2

BCD Connector

Top View

BCD Data 1 (IN 10)

BCD Data 0 (IN 9)

BCD Data 2 (IN 11)

BCD Data 3 (IN 12)

BCD Data 5 (IN 14)

BCD Data 7 (IN 16)

BCD Data 4 (IN 13)

BCD Data 6 (IN 15)

GND GND

BCD Strobe 0 (OUT 5)

BCD Strobe 1 (OUT 6)

BCD Strobe 3 (OUT 8)

BCD Strobe 2 (OUT 7)

Front of Unit

*

*

TX-

TX+

RX-

HOST RX-

HOST RX+

HOST TX+

HOST TX-

1

7

6

5

4

3

2

9

8
RX+

GND

GND

NC

+5V

+5V

HOST GND

4.7K

4.7K

DNC

TX+

DNC

HOST RX+

HOST TX+

1

7

6

5

4

3

2

9

8
RX+

GND

GND

NC

+5V

+5V

HOST GND

Notes: DNC = Do Not Connect
 NC = No Connection

Quick Start Installation Guide 27

3.5.3.1 - RS485 Host Daisy Chaining Connections

Connection in a daisy chain configuration requires that
the Host port of all units be wired as RS-485. Each unit
must also be switched to RS485 Host communications
mode by moving the recessed slide switch into the RS485
position. The switch is accessible through the removable
portion of the label on top of the unit near the BCD I/O
port. Be sure that the unit is off when changing the switch
position.

Important!! Connection to a PC that has an RS-232
port only can be accomplished by using an RS-232 to
RS-485 four wire adapter such as Superior Electric
part number PAS1024-00 as shown. If your PC has an
RS-485 port, the adapter is not required.

1
Tx-

2
Tx+

4
Rx-

3
Rx+

5
GND

PCi
RS485
ID=32

1
Tx-

2
Tx+

4
Rx-

3
Rx+

5
GND

PCi
RS485
ID=nn

1
Tx-

2
Tx+

4
Rx-

3
Rx+

PCi
RS485
ID=2

5
GND

1
Tx-

2
Tx+

4
Rx-

3
Rx+

5
GND

PCi
RS485
ID=1

Rx-

Rx+

Tx-

Tx+

Superior
Electric #

PAS1024-00

PC
RS232

Port

Rx

Tx

GND

Adapter
GND

4.7K

4.7K

120

120

+5VDC

28 Quick Start Installation Guide

3.5.4 RS485 Auxiliary Communication Connections

The auxiliary serial port is used for serial communications
to and from other devices, such as PLC’s or operator in-
terface panels. This serial port is RS485 only and uses a
telephone jack for the connections. The wiring connection
diagram is shown below. Note: A cable with individual
twisted pair wires should be used. The termination re-
sistors indicated with an * must have a value of 120 ohms.

If multiple units reside on the RS485 bus, ONE resistor
should be used at the end of the transmission line bus.
The resistor across the TX+ and TX- signals may be re-
quired if the terminal device does not provide a termina-
tion resistor internally. If the terminal device does provide
the resistor internally, the resistor across TX+ and TX- is
not required.

*
RX2-

RX2+

AUX TX2-

AUX TX2+

*
AUX RX2-

TX2+

TX2-

AUX RX2+ 5

4

3

2

Auxiliary Port

AUX GND

3.5.5 - AC Power Connections to the Unit

Connect the two (2) AC IN terminals to the input AC line. The line voltage can be from 95 VAC to 265 VAC 50/60 Hz.

Do not exceed the voltage rating of the drive and motor. Damage may occur if the ratings are not observed.

L1

L2/N

Ground

Line or Neutral

Line or Hot 95-265
Volts

AC Input

Ground
Terminal

Quick Start Installation Guide 29

3.5.6 Drive Connections

A typical optically isolated connection to a stepper drive is shown below:

* Note that on some drives the connection from the top side of the opto couplers is made internally. Other drivers
may have two terminals per I/O point (uncommitted opto couplers). These drives would require external connec-
tion from the high side of the opto coupler to +5VDC opto out. A current limiting resistor may also be required.
Consult your drive manual and verify proper connections prior to energizing your system.

30 Quick Start Installation Guide

(This page intentionally left blank)

Specifications 31

Section 4

Hardware
 Specifications

32 Specifications

4.1 Mechanical and Environmental Specifications

Size: (Inches) 2.74W x 7.06H x 3.79D
(mm) 69.57W x 179.32H x 96.2D

 Weight 7.75 lbs (3.52 kg)
Operating temperature: +32º F to +122º F (0º C to +50º C)
Storage temperature: -40º F to +167º F (-40º C to +75º C)
Humidity: 95% maximum, non-condensing
Altitude: 10,000 feet (3048 meters) maximum

4.2 Electrical Specifications

AC Input Range 95 to 265 VAC, 50/60 Hz
AC Current .5 amperes
Fuse Rating** 250 volts, 2 amperes
Fuse Type** Type 3AG

** If this fuse blows, the power supply will be prevented from energizing any of its outputs, hence, the unit will not
operate. Usually, this fuse will only blow if an internal failure occurs. In order to ensure safety the specified rating
and type of fuse MUST BE USED.

4.2.1 Isolated Digital I/O

12 VDC I/O Power: 11.5 to 14 VDC @ 100 mA

Inputs (IN1 – IN8):

Sink mode : (IN COMMON tied to +Vopto)
On state voltage range (+Vopto =12V with -Vopto = 0V): 0V to 6VDC

 Input Current; (VIN = 0V), +Vopto=12V, -Vopto=0V: -6mA

Source mode: (IN COMMON tied to –Vopto = 12V common)

On state voltage range with -Vopto = 0V: 4.5V to 24VDC
 Input Current; (VIN=12V) with -Vopto=0V : 6mA

Response time (sink or source):

Opto turn on delay: 10µS typical
Opto turn off delay: 75µS typical

User OPTO coupler power supply range
(if not using the internal +12 V supply): 5-24 VDC

Programmable Outputs (OUT1 – OUT4):

Sink mode only:
Continuous Current rating: 250 mA max
Maximum collector voltage with -Vopto = 0V: 25V
On state voltage @ 250mA: 1.5V max

Specifications 33

4.2.2 Non-isolated I/O (or BCD Interface):

IN 9 - IN16:

These inputs may be used with open collector outputs without an external supply by connecting the output device
common (ground) to signal ground on the unit, and the open collector to the input pin. An internal pullup resistor to
+5VDC is provided

Logic high input level: Open circuit or sourcing voltage 25V > Vsource > 4.5V, Or Open Circuit
Logic low input level: 1.2V max
Logic low current with input @ GND: -1mA max

OUT 5 – OUT8:

These are open-collector, sink only outputs which are NOT isolated from the unit’s +5 V logic supply. Proper care must
be exercised to insure noise is not injected onto these signals. The user’s I/O supply must be referenced to GND on the
controller (e.g. at BCD port pins 9 &10).

Active output voltage: .6V max @ 20mA
Permissible output current: 20mA
Permissible output voltage: 24VDC

4.2.3 Serial Communications

Port 1:

Configurable for RS-232C or RS-485 four wire specifications via a switch. For RS-232 mode RX1+ is used to receive
data into the unit, and TX1+ is used as the transmit data out. Port 1 is designated as the HOST communications port.

In RS-485 four wire mode, with longer distances, the transmission line should be terminated at the end opposite from
the source with a 120 ohm termination resistor. Termination resistors are NOT internal to the unit. The 485 transmitter
on the unit is tri-stated when transmission is not occurring.

For RS-232: High level output voltage, VOH: 5Vmin
Low level output voltage, VOL: -5Vmax
Input impedance: Approx. 3Kohms

For RS-485: High level output voltage, VOH: 3V min
Low level output voltage, VOL: .5V max
Idle transmission state: High impedance

Port 2:

Serial channel 2 is RS-485 and is used for differential four wire USER communications. For longer distances, the
transmission line should be terminated at the end opposite from the source with a 120 ohm termination resistor. Internal
termination resistors are NOT included in the unit. The 485 transmitter on the unit is tri-stated when transmission is not
occurring.

High level output voltage, VOH: 3V min
Low level output voltage, VOL: .5V max
Idle transmission state: High impedance

34 Specifications

4.2.4 Drive Connections

PULSE, DIR, AWO, BOOST, REDUCE: Open collector. Maximum collector voltage +24VDC
Maximum on current: 20 mA
Note: Pulses valid at low to high transition on PULSE output.

READY: Maximum input voltage = DRIVE OPTO OUT (+5VDC)

4.2.5 Encoder Connections

Encoder Connections provide power and inputs for a digital encoder interface to indicate motor position to the controller.
Differential connections to the encoder port are highly recommended for noise immunity. If single ended TTL encoders are
used, connect them to the “+” terminals of each channel.

Encoder +5VDC power supply output: +5VDC (+/- 5%) @ 100mA current.
Encoder signal inputs: TTL level single ended or differential

channels A and B in phase quadrature.
Input current A+,A-,B+,B-,Z+,Z-: +/- 5mA min
Max Input Frequency 500 KHz per channel, 2 megacounts in quadrature

4.2.6 Analog Input

Voltage Range: +10V(max) to 0V (min) referenced to GND
Resolution: 10 bits or 9.77mV
Absolute Accuracy: +/- .3V max
Sample Rate: 500 Hz min
Bandwidth: 100 Hz max

4.3 - Hardware Equivalent Circuits

The following pages contain equivalent circuit diagrams which represent the physical interface hardware internal to the unit.
These circuits may be used as a reference if questions arise during detailed system design and integration. These diagrams
are intended to represent the interface circuitry as accurately as possible, however Superior Electric reserves the right to make
minor improvements which may change the exact nature of the circuitry while not degrading functionality.

Drive Connections

Specifications 35

I/O Equivalent Circuits
Inputs 1-8 (sink/source)

1K

1K

Inputs 1-8

In Common

Inputs 9-16 (BCD inputs)

Inputs 9-16

+5V

4.99K
33.2K

150K.001

-5V

D

74HC
Latch

Outputs 1-4 (Sink)

+VOPTO

OUT 1-4

-VOPTO

.001

Port 1 TX/RX (RS485 position)

OUT 5-8

7406

Outputs 5-8 (BCD Outputs)

+5V

24.9K 24.9K

Analog Input

10K.1

10K

.001

Analog In

+5V

Encoder

+5V

1K 1K 1K 1K

1K 1K 1K

1K 1K

A
A +

A -

B
B +

B -

Z
Z +

Z -

Port 1 TX/RX (RS232 position)

RX1 +

TX1 +

RX1

TX1

RX1 +

RX1 -
RX1

RX2 +

RX2 -
RX2

Port 2 TX/RX (RS485)

TX1 Enable

TX1
TX1 +

TX1 -

TX2 Enable

TX2
TX2 +

TX2 -

36 Specifications

(This page left intentionally blank)

PC Programming Environment 37

Section 5

Motion Controller
Programming Interface

38 PC Programming Environment

5.1 - PROGRAMMING

5.1.1 - General Description Of
 Programming

Programming of any sort requires planning and fore-
thought. Programming your Controller is no exception.
This section provides aids to facilitate your planning pro-
cess.

5.1.1.1 - What is Programming?

A program is a list of discrete lines or command strings
that, taken together in sequence, provide the information
needed to get a machine to perform your predetermined
sequence of instructions. These instructions can, in the
case of Programmable Motion Controllers, cause the mo-
tor to move at certain speeds for given distances, read
various inputs or set outputs, all used to accomplish dif-
ferent machine-related tasks.

5.1.1.2 - What's in a Program?

A program consists of many individual lines organized in
a prescribed sequence. The SS2000PCi system uses an
English language, BASIC-type computer programming
language (SEBASIC). This makes it easy and intuitive to
write and read machine control programs. SEBASIC sup-
ports many higher level language features, such as state-
ment labels, subroutines, for-next and do-while loops for
program flow control making it easy to write concise,
well organized, easily debugged programs. Also, there are
built in mathematics, Boolean functions and two dimen-
sional array capability. Finally, the motion, I/O, and tim-
ing commands are easy to understand, remember and ap-
ply.

In addition to lines of program code , the controller uses
and saves a series of set-up parameters. These parameters
are set by the user in the Configuration & Setup section of
the project.

5.1.1.3 - How is the Controller
 Programmed?

The programming environment called Motion Controller
Programming Interface is supplied on a diskette. This
software provides an easy to use environment for devel-
oping a user project. Detailed instructions on how to in-
stall this software on your PC are provided in this manual.

5.1.2 -What are Host Commands?

Host commands go straight from your input device (PC or
terminal) to the controller. They allow parameters to be
set or interrogated, motion to be started or stopped, and
program execution to be started or stopped, etc..

5.1.3 - Memory Types and Usage

The controller uses two kinds of memory, volatile and
non-volatile. RAM (Random Access Memory) is called
Volatile Memory because when power is removed from
the controller, all of the information in that memory is
lost. The Controller stores the program variables in
RAM.

The second kind of memory is Non-Volatile Memory, or
FLASH memory. The information stored in this type of
memory is not lost when power is removed. FLASH
memory is used by the controller for storing the Operating
System as well as the User Program.

A Controller program can have hundreds of lines of code.
Code is simply an organized listing of program com-
mands. Because of the wide variety of program com-
mands it is impossible to state how many lines can be
stored in the controller. The amount of free memory re-
maining can be obtained with the FREEMEM host com-
mand.

5.1.4 - How to organize your Project

A project consists of a Configuration & Setup section and
the user program. The Configuration & Setup section al-
lows access to project related parameters and conditions
via folders. The user program performs your predeter-
mined sequence of instructions.

A good program will consist of initialization, main pro-
gram, Interrupt routines, Subroutines and Error Handler
sections. The Interrupt routines, Subroutines and Error
Handler sections are optional. A typical Program Devel-
opment Block Diagram is provided in Figure 5.1.

5.1.4.1 - Initialization Section

Variable names and data types (Integer, Integer Array,
Real and Real Array) are defined in this section. Also the
condition's which will trigger the individual Interrupts
(INTR1-INTR4) may be defined.

PC Programming Environment 39

The values for ACCEL, DECEL, SPEED, FOLERR and
WNDGS should also be set in this section. Comments
may be added to make the program easier to follow and
understand. An apostrophe ('), must be used at the begin-
ning of the comment so that it will not be confused with
the program statements.

Example Initialization Section:
STRING Char$
INTEGER a,b(100),c(10,3)
REAL d,e(50),f(5,4)
‘ a Integer variable
‘ b Integer array - single dimension
‘ c Integer array - two dimension
‘ d Real variable
‘ e Real array - single dimension
‘ f Real array - two dimension
ON in(1)=1 INTR1
‘ End of Initialization example

Note: all arrays are zero based. That is, the first element
of the array has an index of zero, b(0) for example. The
chart below shows two arrays: Array b is a single dimen-
sional array of 101 elements. Array c is a two dimensional
array of 44 elements in an 11 x 4 arrangement.

 range element size
 b(0) - b(100) 101
 c(0,0) - c(10,3) 44

The ON in(1)..... line tells the controller to Goto label
INTR1 when in(1) is active. This condition is only
checked after an INTRON1 command activates the inter-
rupt checking.

This is only a simple example of an Initialization Section.
The Programming Reference should be studied and un-
derstood before you write your own application.

5.1.4.2 - Main Program Section

The main program section should be placed just below the
initialization section of the program. This section can use
labels and any programming commands which may not be
listed in the initialization section. Labels, however, can-
not have the same name as programming commands. This
section must be terminated with an END command .

5.1.4.3 - Interrupt Routines

The Interrupt routine section is optional. Interrupt com-
mands are powerful tools which instruct the program to
check specified conditions after executing every program
line. If the conditions are true, the program automatically
jumps to a special interrupt routine which performs a de-
sired program function. This section is only required
when the ON INTRn command and INTRONn com-
mands are used. These routines start with a specific inter-
rupt label (INTR1, INTR2, INTR3 or INTR4) and ends
with a RETURN command.

Interrupt conditions are only checked when the given in-
terrupt is enabled. Each of the four possible interrupts are
enabled using the associated INTRONn command. If the
interrupt condition is true while the interrupt is enabled,
then the routine INTRn will be executed. The INTROFFn
command will disable checking of the interrupt condition.

Note: n is a value 1-4.

5.1.4.4 - Subroutines

The Subroutine section is optional. This section is only
required if subroutine calls (GOSUB commands) are used
by the project. Subroutines start with a label which is the
subroutine name and ends with a RETURN command.
The program statements in between can contain any valid
programming command.

5.1.4.5 Error Handler

Error conditions encountered during program execution
are handled in one of two ways:

1) The program jumps to a special routine labeled ER-
ROR_ HANDLER which must be written by the user spe-
cifically for the application. The ERROR_HANDLER
label must be located at the start of the routine and the
routine must terminate with an END or a GOTO state-
ment. Any valid programming command with the excep-
tion of the ON..INTRn commands may be placed within
the ERROR_HANDLER routine.

2) If no user ERROR_HANDLER routine exists, the
program will terminate when an error condition occurs.

40 PC Programming Environment

Figure 5.1
Typical Program Development Block Diagram

 Main Initialization

optional
optional

 INTEGER varname, ... ,varname
 REAL varname, ... ,varname
 STRING Char$
 ON [condition] INTR1
 ON [condition] INTR2
 ACCEL=
 DECEL=
 SPEED=
 FOLERR=
 WNDGS=1

Configuration & Setup

 Main Program
Optional LABEL_NAME:

 GOSUB SUBNAME1
 GOSUB SUBNAME2
 Other Program statements
 END

 optional Interrupt Routines
 INTR1:
 Program statements
 RETURN
 INTR2:
 Program statements
 RETURN

 optional Subroutines
 SUBNAME1:
 Program statements
 RETURN
 SUBNAME2:
 Program statements
 RETURN

 optional Error Handler

Optional

ERROR_HANDLER:
 Program statements
 GOTO LABEL_NAME
 END

PC Programming Environment 41

5.2 – MOTION CONTROLLER PROGRAMMING INTERFACE (MCPI)

5.2.1 - Software Installation

The Motion Controller Programming Interface (MCPI)
provides the means by which an application can be fully
developed and the controller can be operated using a per-
sonal computer (PC). The application can be written,
compiled and downloaded to the controller, using the
MCPI. In addition, a Terminal Mode is provided for op-
erating the controller from your computer.

Minimum Computer Requirements:

1) Microsoft Windows® version 3.1 or later
2) Personal Computer with 80386, 80486, Pentium or

higher microprocessor
3) 8 Megabytes of Random Access Memory (RAM)
4) 8 Megabytes of free hard disk space
5) VGA monitor and graphics card
6) Mouse or other suitable pointing device

Installation Instructions (Windows 3.1x):

1) If Windows is not already running type WIN at the
Dos prompt, and press ENTER.

2) Insert the MCPI Program Disk into drive A: (or B:).
3) Click on the File menu in the Program Manager.
4) Select RUN... to display the Run Dialog box.
5) Type A:setup (or B:setup) and click OK.
6) The installation program will display the File Man-

ager Setup screen. Follow the prompts on the screen
to complete the installation.

7) After the program files have been installed, the in-
stallation will create a new Window group.

8) Remove the installation disk. This concludes the
software installation.

Installation Instructions (Windows 95):

1) If Windows is not already running type WIN at the
Dos prompt, and press ENTER.

2) Insert the MCPI Program Disk into drive A: (or B:).
3) Click on the Start button.
4) Select RUN... to display the Run Dialog box.
5) Type A:setup (or B:setup) and click OK.
6) Follow steps 6 – 8 of Windows 3.1x installation.

5.2.2 - Starting the programming
 environment

1) If Windows is not already running, type WIN at the
DOS prompt, and press ENTER.

2) Double click on the MCPI Icon.
3) The opening screen will appear.

5.2.2.1 - The MCPI program
opening screen

Open existing project opens up an existing
project.

Create new project creates a new project.

Continue enters the MCPI with no selection.

5.2.3 - Setting communication
 parameters

The MCPI PC program uses the computer's serial port to
communicate with the controller. The PC program sup-
ports the use of four serial ports, (Com1-4). Three com-
munication wires are required between the PC and the
controller. These wires should be connected to the trans-
mit (TX), receive (RX) and common (GND) as follows:

 Computer Controller
 TX ...RX+
 RX...TX+

 GND..GND

Notes: Consult your computer manual for the correct pin
out assignment of its serial port. The factory default baud
rate is 9600 baud. The controller supports 9600, 19200,
and 38400 baud rates.

Motion Controller
Programming Interface

VERSION 4.3

O pen existing project

Create n ew project

C ontinue

42 PC Programming Environment

To use 19200 or 38400 baud rate with the controller do
the following:

1) Set the 9600/User Baud rate switch on the controller to
the User Baud position.

2) Load the user project, with the desired new baud rate
programmed in the configuration & setup, into the
controller .

3) Set your terminal to the new baud rate using the Sys-
tem menu and selecting Terminal settings and then
Com Port.

4) Cycle power on the unit to establish communications
at the new baud rate. The baud rate switch is only read
at power up or reset.

The serial communications to the controller can be tested
by clicking on the Terminal command button and then on
the Software Revision command button. The controller
will send back the revision information if the setup is cor-
rect.

5.2.4 - Creating a new project

To create a new project either click on the CREATE new
project command button on the Opening screen or the
New item on the Project pull down menu.

Enter the name of the project with a .prj extension. The
directory for the project can also be selected at this time.
To accept the name and directory click on the OK com-
mand button.

The controller type can now be selected by clicking on the
desired selection and then clicking on the OK command
button.

The controller type folder screen is now accessed. This
screen allows access to the project folders by clicking on
the desired folder tab.

Save each folder that is changed by clicking on the
Save changes command button. After completing all
the changes to the configuration click on the Exit
configuration command button.

Select New Project Name - use .PRJ extension

OK

Cancel

X

Network ...

?

*.prj

Project (*.PRJ) c:ms-dos_6

Save file as type: Drives:

c:\mcpi

Folders:

c:\

mcpi

PCI 1 axis step controller

Save configurationExit configuration

 C:\MCPI\PCI.TSK

ProfileController type System Analog inputs Encoder
Open loop

stepper

Closed loop

stepper
Servo drive Travel limits

Mechanical home

Mark registration
I/O

 Axis Configuration X

X

Select Controller Type X

TDC 1 axis servo control
D3I 1 axis stepper control
D6I 1 axis stepper control
PCI 1 axis stepper control

PCI 1 axis stepper control

O k

PC Programming Environment 43

5.2.5 - The Task Editor

The Project program is created and edited using the Task
Editor. To select the project to be edited click on the
Task menu then either the New or Open item. The New
selection allows a new task to be developed. The Open
selection allows a previously developed task to be edited.

Task Menu Screen

Task Editor Screen

The Edit functions can be accessed by clicking on the
Edit menu and then clicking on the desired item. The
Items and Actions for the Edit menu are described below.

Edit Menu

Undo (Ctrl+Z) undoes the latest action.

Cut (Ctrl+X) cuts (removes) the selected text and places
it on the clip board.

Copy (Ctrl+C) copies the selected text and places it on
the clip board.

Paste (Ctrl+V) pastes the contents of the clip board into
the file where indicated.

Delete (Del) deletes the selected text.

Find (Ctrl+F) finds the occurrence of the selected text in
the file.

Find next (F3) finds the next occurrence of the selected
text in the file.

Replace (shift+F3) replaces one set of text with another
set of text .

Insert Inserts a selected file at the current position.

View line go to selected line number.

Select all (Ctrl+A) selects all text.

Task

New

Open

Close

Save Ctrl+S

Save as

Print Ctrl+P

Edit

Undo Ctrl+Z

Cut Ctrl+X

Copy Ctrl+C

Paste Ctrl+V

Delete Del

Find Ctrl+F

Find next F3

Replace Shift+F3

Insert

View line

Select All Ctrl+A

_ X

44 PC Programming Environment

Keyword checking enables or disables Keyword check-
ing. If Enabled it Capitalizes keywords such as program
commands and uses the selected colors for keywords and
comments.

The Document setup functions are accessed by clicking
on the System menu and then on the Document item. The
Items and Actions for the System menu are listed below.

Fonts and colors selects the Font name, Font Style, Font
size, background color, foreground color, Keyword color
and Comment color. Some of these functions are dupli-
cated on the Editor Tool Box.

Document format selects the document width, height,
margins and tab spacing. Some of these settings are dupli-
cated on the Editor Tool Box.

Paragraph format selects the document margins, align-
ment, line spacing, tabulator type and tab spacing. These
settings are duplicated on the Editor Tool Box.

Tab Bar displays the Tab bar when checked.

Ruler displays the ruler when checked.

System Menu

Inch selects the inch ruler when checked.

Metric selects the metric ruler when checked.

Repaginate repaginates the current task.

The Editor Tool Box, depicted below, can be used to modify the text on the Editor Screen. Fonts, type specifications, line
spacing and text color can be modified using the Editor Tool Box.

 Font Size Select Strike through Superscript
 Font Size Underline Subscript
 Font Name Select Italic
 Font Name Bold

 Left 1 Line Spacing
 Center 1.5 Line Spacing
 Right 2 Line Spacing
 Justified Color Palette

System

Save source code

Key word checking

Terminal settings

Document settings

Document format

Fonts and colors

Paragraph format

Tab bar

Ruler

Inch

Metric

Repaginate

PC Programming Environment 45

5.2.6 - Terminal Emulation

Terminal Emulation allows your PC to operate similar to
a simple ASCII terminal. The user can enter/type Host
commands (see Section 6.2), to perform operations or
query the controller. These commands/queries will be
immediately serviced by the controller, if possible.

Before entering the Terminal Emulation environment, set
up the communication port parameters by clicking on the
System menu and then the Terminal settings item.
Choose the appropriate Com port, baud rate, terminal
emulation, and echo mode for the Com Port Screen by
clicking ON one of the items (circles) in each section.

To program the buttons on the Terminal Emulation
screen, Click on the System Menu and then on the Ter-
minal settings item.

Click on the Buttons item which opens the Button con-
figuration screen. Click on drop list arrow next to Button
and select the button number to be programmed. Click on
the Caption text box and enter the button caption text.
Click on Text box and enter the command line text to be
executed. If motion and program execution is to be
stopped after the button’s command is executed, click on
the Ctrl C or Ctrl A check box. See the Host Command
section of this manual for a more detailed description of
Ctrl A and Ctrl C . If commands are to be allowed during
program execution click on the Add ESC check box.
Click on the Add CR check box if the Ctrl C or Ctrl A
command are not selected.

To select the Font and Colors for the Terminal Emulation
screen Click on the System Menu and then on the Ter-
minal settings item. Click on the Fonts and colors item.
Select the desired Font, Style, Font size, Background
color and Foreground color for the Terminal Emulation
environment. When finished, click on the O.K. button.

To enter the Terminal Emulation environment click on the
Terminal command button.

Com Port Settings & Terminal Emulation Mode X

Com Port Baud Rate Emulation Echo

Com Port 1

Com Port 2

Com Port 3

Com Port 4

4800 Baud

9600 Baud

19200 Baud

38400 Baud

TTY

ANSI

VT52

VT100

Echo

No Echo

CAUTION: Some PC's will support baud rates over 9600. Unless yours does,
then use 9600. Otherwise, some characters may be lost during transmission.

OK Cancel

System

Save source code

Keyword checking

 Terminal settings

Document settings

Com port

Buttons

Fonts and colors

Run Program Directory Software Revision Error Message Stop Program

Reset

 TTY Terminal com1: 9600,n,8,1 _ X

46 PC Programming Environment

5.2.7 - Configuration & Setup Folders

The folders for the configuration & setup screens are ac-
cessed by clicking on the Configuration command but-
ton. These folders allow project setup conditions to be
programmed. A folder can be accessed by clicking on the
folder tab.

Note: clicking on the Save changes command button
saves the current folder data.

Clicking on the Exit Configuration command button
can be used on any folder to exit the Configuration
setup. If any of the items in the folder have been
changed, a query will occur which will give the user
the option of saving the folder data.

Clicking on another folder tab, will allow changes to
the newly selected folder. The changes which have
already been made will not be affected. This allows
you to click between folders, set up the necessary pa-
rameters, and save only once before exiting the con-
figuration screen. A description of each folder follows.

5.2.7.1 - System Folder

This folder defines the Drive Type, motor direction for a
+ motion and defines the units per motor revolution.

Drive type defines the type of drive operation. The
choices are: open loop stepper or closed loop stepper.
Open loop steppers do not have encoders, while closed
loop steppers use encoders for position verification and/or
correction.

The Motor Direction sets the motor direction for a +
move. The choices are : + =cw motor direction or += ccw
motor direction . The motor direction is as viewed from
the rear of the motor.

The desired Units per motor revolution value
should be entered. A unit is the method of measurement
to be used, i.e. inches, mm, degrees, etc. This sets the
number of user units for one motor revolution. Move dis-
tances and position values are in units, Speeds are in
units/second and Accel/Decel values are in units/second2.

Examples:

1) Lead Screw

If a motor is directly coupled to a lead screw which has a
0.8” pitch, the units per motor revolution should be set to
0.8. The user may now write his program with distances
in inches.

2) Rotary Table

The motor is connected through a 20:1 gearbox to a rotary
table. If the user wishes to program motion in degrees of
rotation on the rotary table, then the user units should be
set to 360(motor degrees per motor rev) / 20(motor de-
grees per table degree) = 18(table degrees per motor rev).
Now a move of 90 would result in 90 degrees of rotation
of the table.

3) Conveyor

The motor is connected through a 10:1 timing belt pulley
reduction to a drive roller that drives a conveyor. Every
turn of the drive roller advances the conveyor by 0.5 feet.
If the user wishes to program motion in feet of movement
of the conveyor, he must set the user units to
0.5(conveyor feet per drive roller rev) / 10(motor revs per
roller rev) = 0.05 (conveyor feet per motor rev).

5.2.7.2 - Profile Folder

This folder selects the motion profile, maximum accel-
eration rate, maximum speed and Delay after motion.

Motion Profile determines how the motor's speed
changes. Speed changes require a period of accel/decel to
increase/decrease the motor's speed. The "Motion Pro-
file" determines how the accel is applied. There are 32
choices, and a profile setting of 1 results in a "Trapezo i-
dal" profile. This profile yields the minimum move time.
Settings 2 - 32 yield "S-curve" profiles with varying de-
grees of smoothing. The higher the profile setting, the
more "S" like the profile. Move times with profile set-
tings 2 - 32 are from 2 to 62 ms longer respectively than
those with a setting of 1. The "S-curve" profiles usually
results in smoother motion at the expense of longer move
times.

System

open loop stepper + = cw motor direction 1.0Axis 1

Drive Type Motor Direction Units per
motor
revolution

trapezoidal 0.05200.0Axis 1

Motion profile Max.
acceleration
(units/sec2)

50.0

Max. speed
(units/sec)

Delay after
motion (sec.)

Profile

PC Programming Environment 47

Move times can be shortened, however, by raising the
accel, decel, and/or speed of the move.

Max. acceleration sets the maximum allowed accelera-
tion or deceleration rate in units/second2. This value is
also used to decelerate motion to a stop when a fault such
as a travel limit occurs.

Max. Speed sets the maximum allowed target speed in
units/second. Speed, Accel and Decel values can be reset
within a program as long as the value used is less than or
equal to the max speed and max accel respectively.

Delay after motion sets the minimum time, in seconds,
between two moves.

5.2.7.3 - Encoder Folder

Used to set the Encoder direction and Encoder resolution.

Encoder direction determines how the encoder rotation
direction is interpreted. The choices are: normal direc-
tion or reverse direction.

Encoder line count defines the encoder resolution in
lines. An Encoder with 1000 lines will provide 4000
counts/revolution, or quadrature counts. Set this value to
the encoder line count of the motor.

5.2.7.4 – Open Loop Stepper Folder

Sets the Steps per motor revolution, Motor standstill cur-
rent, Motor boost current and motor current delay for an
open loop stepper drive.

Steps per motor revolution defines the resolution on the
stepper drive connected to the controller.

Motor standstill current sets a percentage of motor cur-
rent when the motor is at standstill. The choices are nor-
mal (100%), reduced (50%) and off (0%).

Motor boost current sets a percentage of motor current
when the motor is running. The choices are
normal (100%) and boost (150%).

Motor current delay specifies the time delay between
current modes in seconds. This allows for the drive to
respond to the change in current level as a result of the
BOOST or REDUCE commands (see Program Command
section).

5.2.7.5 – Closed Loop Stepper Folder

Sets the Steps per motor revolution, Motor standstill cur-
rent, Motor boost current, motor current delay,
for a closed loop stepper drive.

Steps per motor revolution see Open Loop Stepper
Folder for description.

Motor standstill current see Open Loop Stepper Folder
for description.

Motor boost current see Open Loop Stepper Folder for
description.

Motor current delay see Open Loop Stepper Folder for
description.

Error action selects what action, if any, is taken by the
controller when the commanded motor position does not
match the encoder position within the range set by the
FOLERR command (see programming commands). This
is also referred to as a stall condition. Once the FOLERR
range is exceeded one of four things can happen accord-
ing to the Error Action selected.

If Error action is disabled, the controller takes no action.

If Error action is stop on error, the motor will stop and
a controller error will result (see ERR command). The
fault light will illuminate.

If Error action is correct on error , separate correction
attempts (moves) will be commanded to try to re-align the
motor. The user may specify how many correction at-
tempts will occur, and the time between attempts. If after
the specified maximum number of correction attempts the
motor still is not aligned, motion stops and a controller
error will result.

0 50 100 150 200 250 300
0

2

4

6

8

10

12

14

16

18
Velocity Response, "s" = 16

Samples (mS)

Velocity
(rev/
sec)

Encoder direction

Axis 1 normal direction

Encoder line
count
(lines / rev)

500

Encoder

Axis 1

Steps per
motor

revolution

2000.0

motor
standstill
current

normal (100%) normal (100%)

motor boost
current

motor current
delay (sec)

0.05

Open Loop

Stepper

48 PC Programming Environment

If Error action is restart on error , the entire move is
restarted. The motor returns to the starting position of the
move in progress, and attempts to repeat the move. If
during this repeat cycle the motor stalls, the motor will
return to the start position and retry the move. Each stall
and restart counts as a correction attempt. This continues
until the motor reaches the desired position, or the maxi-
mum number of correction attempts is reached. In the
case of the latter a controller error results and the fault
light illuminates .

Correction attempts specifies the maximum number of
consecutive attempts allowed when error action is set to
correct on error or restart on error mode and the motor
stalls.

Time between attempts specifies the time between cor-
rection attempts when error action is set to correct on
error or restart on error mode and the motor stalls.

5.2.7.6 - Mechanical Home & Mark
Registration Folder

This folder specifies the trigger for the mechanical home
(MOVEHOME) and the mark registration cycle
(MOVEREG).

Mechanical Home trigger & Mark Registration trig-
ger specifies the trigger for the cycle. There are two in-
puts EVENT 1 and EVENT 2 which can be used as a
trigger. The trigger combination for Mechanical home and
Mark registration are: event 1 active , event 1 inactive ,
event 1 active & encoder marker, event 1 inactive &
encoder marker, encoder marker active , encoder
marker inactive , event 2 active and event 2 inactive .

5.2.7.7 - I/O Folder

This folder is used to assign inputs 3-7 as general purpose
inputs or as dedicated functions. In addition, the auto pro-
gram start can be enabled or disabled and the host baud
rate for the User position can be programmed.

Input 3 (+limit) and Input 4 (-limit) can be configured
as hard limit inputs or as general purpose inputs. As lim-

its, the active signal level can also be configured as either
active on switch closing or active on switch opening.

Inputs 5, 6 & 7 can be collectively configured as general
purpose inputs or as Run, Clear and Feedhold functions
respectively.

Run - Program execution is started using the Run in-
put or the host “RUN” command. At power up an
active Run input will start program execution unless
the Clear input is inactive. Following the initial
power up, an inactive to active transition on the Run
input does the following: If the Feedhold state is set,
and the Feedhold input is inactive then Run clears
the feedhold state, otherwise Run simply starts the
user program if the Clear input is active.

Clear- An inactive clear input will stop program
execution. The Clear input has the opposite polarity
from other inputs, and the Clear function is enabled
if the pin is left floating. If motion is occurring, the
motor is decelerated to a stop using the maximum ac-
cel/decel value, and the Feedhold state is cleared.
Run and Feedhold commands are ignored as long as
the clear input is inactive.

Feedhold- An active Feedhold input sets the Feed-
hold state. When the Feedhold state is set, motion is
decelerated to a stop using the programmed DECEL.
When the Feedhold state is cleared by a Run com-
mand the motion is resumed. The Feedhold state re-
mains cleared if the Clear input is inactive.

The Program auto start feature may be enabled for a
power-on condition or reset command. The user may
enable this feature to allow the program to start executing
automatically upon a power up or reset condition.

event1 activeAxis 1

Mechanical home trigger Mark registration trigger

event2 active

Mechanical home

Mark registration

Axis 1

Steps per
motor

revolution

2000.0

motor
standstill
current

normal (100%) normal (100%)

motor boost
current

motor current
delay (sec)

0.05

Closed Loop
Stepper

Error action

disabled

Correction
attempts

10

Time between
attempts (sec)

0.1

PC Programming Environment 49

The Host baud Rate may be set to 9600, 19200 or 38400.
Once the corresponding Project is downloaded into the
controller, this rate will be used for serial communications
to the Host (usually a PC) if and only if the Baud Rate
switch on the controller is set to the User Baud position.
After downloading, the new baud rate will take effect
upon power up or reset. If the baud rate switch is in the
9600 position, all communications will occur at 9600
Baud.

5.2.8 - Preparing User Project
 for Execution

In order to execute a project program it must first be
compiled and then Downloaded to the controller. The
project source code can be recovered from the controller
as well.

5.2.8.1 - Project Source code

The Project Source Code is the English version of the
user=s program. If the user=s program needs to be up-
loaded from the controller at any time, ΑSave Source
Code≅ must be enabled. The Source code of a project can
be saved in the controller. However, the source code uses
up program memory in the controller. The selection for
source code saving is accessed by clicking on the System
menu. The Save source code setting can be toggled by
clicking on the Save source code item.

Note: Saving source code in the controller requires a lot
of program memory. If the user=s program is extremely
long it may not be possible to save the source code. See
the FREEMEM command for more information.

5.2.8.2 - Setting Project Debugging

The users program may be compiled in Debug mode. De-
bug mode allows the user to step through their program
and monitor its operation and the status of I/O, variables,
motion, etc. Once the program has been compiled the
Debug environment can be entered (See Section 5.2.12
Debug Environment).

To set the debugged mode click on the Compile menu
and then on the Debug mode item. The project must now
be compiled and downloaded before task debugging can
begin. To cancel the debugging mode selection click on
the Compile menu and then the Release mode item. To
complete this cancellation the project must now be com-
piled and downloaded.

5.2.8.3 - Compiling a Project

Whether the project is new, or changes have been made to
the task or configuration, it MUST be compiled BEFORE
DOWNLOADING for it to be stored and implemented in
the controller. Compiling converts the users task and con-
figuration to machine code that the controller can under-
stand. A project can be compiled by clicking on the
Compile Command button or on the Compile menu and
then the Compile project item.

5.2.8.4 – Selecting the Controller Unit ID

The controller unit ID can be selected by clicking on the
Download menu and then the Unit id number item. The
unit ID can now be selected using the spin controller and
then clicking on the Ok command button.System

Save source code

Keyword checking

Terminal settings

Document settings

Compile

Compile project

Release mode

Debug mode

disabledAxis 1

Input 3 assignment program auto start

user program testable

Input 4 assignment Input 5,6 & 7
assignment

user program testable user program testable

Host baud rate

9600

I / O

Download

Download Project

Upload Source ...

Download Operating System ...

Unit id number
Select controller I.D. number

Unit ID X

1

Ok

50 PC Programming Environment

5.2.8.5 - Downloading a Project

A project can be downloaded to an active unit with or
without its source code by clicking on the Download
command button or clicking on the Download menu and
then the Download project item. The project is sent to
the active unit only. See Section 5.2.8.4.

5.2.8.6 - Uploading Source Code

A projects source code can be uploaded from the
controller to the PC by selecting the Upload Source item
in the Download menu . A project can be uploaded from
the controller ONLY if it had previously been saved in the
controller. See section 5.2.8.1. The Upload is from the
active controller when there is more than one unit on a
daisychain. See Section 5.2.8.4 to select the controller ID.

5.2.9 - Downloading an Operating
 System

Although the unit comes with an operating system
installed, new operating system software can be
downloaded by clicking on the Download menu and then
the Download Operating System item.

The operating system file, with an extension .bin, can
now be selected by clicking on the desired file name. To
start the operating system download procedure click on
the OK command button.

Note: The file names for the different controllers start
with the following letters: Pci for SS2000Pci, tdc for the
TDC controller and DxI for the SS2000DD3i/6i control-
ler. If on a daisychain, the appropriate unit ID number
must first be selected.

5.2.10 - Other Menus

The MCPI menus are pull down menus. Clicking on a
menu shows an itemized list of operations allowed for
that menu. The menus are: Project, Task, Edit, Compile,
Download, Utility, System, Window and Help. To select
a menu operation, click on it or press the Alt key and the
underlined character in the title simultaneously.

5.2.10.1 - Project Menu

This menu allows you to create a new project, open an
existing project, save a current project, add or remove a
task from a project, open the configuration & setup
environment, print a current project, or exit the MCPI
programming environment.

New is used to create a new project.

Open is used to open up an existing Project.

Save is used to save the current project.

Save as is used to save the current project under a new
name.

Remove task is used to remove a task file from an open
project.

Add task is used to add a file to a current project.

Configuration & setup is used to edit the Configuration
& setup folders.

Print project is used to print a current project’s
information.

Export project is used to export a current project to
another drive or directory.

Import project is used to import a selected project from
another drive or directory into the MCPI Environment.

Download

Download Project

Upload Source ...

Download Operating System ...

Unit id number

Operating system download - use .BIN extension

*.bin

Dxi1_00.bin

File name:

 c:\
 mcpi

Folders:

c:\mcpi

 c:
Drives:List files of type:

Operating system (.*BIN)

? X

Network ...

OK

Cancel

Download

Download Project

Upload Source ...

Download Operating System ...

Unit id number

PC Programming Environment 51

Exit is used to exit the MCPI programming Environment.

5.2.10.2 - Utility Menu

This menu allows reselection of terminal mode emulation,
data logging, servo tuning, or program debugging.

Terminal starts terminal emulation mode. This allows
direct communication with the controller.

Debug starts program task debugging.

5.2.10.3 - Window Menu

This menu selects the windows format for the open
windows.

Cascade cascades the open windows.

Tile Horizontal tiles the open windows Horizontally.

Tile Vertical tiles the open windows Vertically.

5.2.10.4 - Help Menu

This menu provides help on program commands,
technical assistance and displays the MCPI software
version.

Contents list the help topics.

Search for help on lists the help items and descriptions.

Obtaining technical support provides application
assistance telephone numbers.

Help on using help provides help on how to use Help.

About MCPI provides the MCPI version number.

Project

New

Open

Save

Save as ...

Remove task

Add task Ctrl+D

Configuration & setup

Print project

Export project

Import project

Exit

Window

Cascade

Tile Horizontal

Tile Vertical

Utility

Terminal ...

Servo Tuning ...

Logging ...

Debug ...

Help

Contents

Search for help on ...

Obtain technical support ...

Help on using help ...

About MCPI

52 PC Programming Environment

5.2.11 - Project Command Buttons

The MCPI command buttons allow the selection of the
Configuration & Setup folders, compilation of a current
project, downloading of a current user project, selecting
the Terminal Emulation environment, selecting the servo
tuning environment, or selecting the program debugger
environment.

Configuration enters the configuration & setup
environment.

Compile project compiles a current project.

Download project downloads a current project.

Terminal enters the Terminal emulation environment.

Debug enters the Program Debugger Environment.

5.2.12 - DEBUG Environment

A project that is loaded into the controller can be
debugged if the project has been compiled in Debug mode
and downloaded. (See previous section for Setting
Project Debugging) The project to be debugged must be
open. To enter the debugger environment click on the

Debug command button. This environment consist of a
Program status indicator, Command buttons for Exit,
Run, Halt, Toggle breakpoints, Watch, Update Watch,
Step, Break, List Breakpoints, and Instant Watch , a
Terminal window, a Watch window and a Program
window.

Configuration Compile project Download project Terminal Servo tuning Debug

Watch Window

 P rog ram s ta tus

 S T O P P E D

Instant watch

Update watch

List Breakpoints

WatchToggle breakpoints

BreakHaltStepExit

Run

Status Indicator

Terminal Window

Command Buttons

Program Window

PC Programming Environment 53

5.2.12.1 - Debug program execution

A program can be executed in several different ways from
the Debug Environment. Single line execution of the
current line can be initiated by clicking on the Step
command button. The > symbol preceding the line
number indicates the line to be executed. The program
can be executed to the next breakpoint encountered or the
end of the program by clicking on the Run command
button. A Running program can be halted by clicking on
the Halt command button. A program that is running can
also be placed in the Single line execution mode by
clicking on the Step or Break command button.

Note: The program status indicator shows the status of
program execution. The only time this status will
indicate Stopped is when the program is halted or has
executed an end statement in the program. The
indicator is green for running and red for stopped.

5.2.12.2 - Breakpoint Setting/Clearing

Up to five breakpoints can be set in debug mode. To
change the breakpoint setting of a line, click on the
desired line and click on the Toggle breakpoints
command button. When a line is set as a breakpoint, a
(BRK) indicator will precede the line. The breakpoint
line numbers can be listed or cleared by clicking on the
List breakpoints command button and then the
appropriate command button.

5.2.12.3 – Variable Watch

Variable watch allows the programmer to view the values
of selected variables. To add or remove a watch variable
from the watch window click on the Watch command
button.

To add all the variables to the watch list click on the Add
all command button. To add a specific variable to the
watch list, select the variable in the Variable list and then
click on the Add watch command button. To remove all
variables from the watch list click on the Remove all
command button. To remove a specific variable from the
watch list, select the variable in the Watch list and then
click on the Remove watch command button. To return
to the Debug Environment screen click on the Ok
command button. The variable in the watch list will
appear in the Watch Window and its current value will be
displayed.

Another method of watching a variable is to highlight the
variable and then click on the Instant Watch command
button. The variable name and value will be displayed.
This variable can be added to the watch window by
clicking on the Add watch command button.

5.2.12.4 - Terminal Window

The terminal window allows host command execution
without leaving the Debug Environment. The Terminal
Window is selected by clicking inside the Terminal
window. A blinking cursor indicates that the Terminal
window is selected for host commands.

5.2.12.5 - Exit Debug Environment

The debugger environment can be exited by clicking on
the Exit command button.

Variable watch list X

Y

Watch listVariable list

X
Add watch

Add all

Remove watch

Remove all

OK

Instant watch menu

Add watch Cancel

 Variable

 X

 Value
 0

X

54 PC Programming Environment

(This page intentionally left blank)

Programming Commands 55

Section 6.0

Software Reference
Guide

56 Programming Commands

6.1.1 - Programming Commands Grouped By Function

Motion Page

BOOST Enables or disables the Boost Current feature of a stepper or
returns the boost status. 67

BUSY Returns the motion status of the axis. 68
EVENT1 Sets Enable/disable and trigger state of event1. 77
EVENT2 Sets Enable/disable and trigger state of event2. 78
JOG Run continuously in the specified direction. 94
MOVEA Initiates an absolute indexed move. 97
MOVEHOME Run until the home input is activated. 98
MOVEI Initiates an incremental indexed move. 99
MOVEREG Run until the registration input is activated, then move the 100

specified distance.
REDUCE Enables or disables the Reduce current feature of a stepper

or returns the Reduce status. 110
STOP Brings any motion to a controlled stop. 110
STOPERR Sets or returns the maximum position error allowed when

motion is stopped. . 117
WAITDONE Waits for motion to be done. 121
WNDGS Enable/Disable drive. 122

Trajectory Parameters

ABSPOS Sets or returns the absolute position. 64
ACCEL Sets or returns the acceleration rate in units/sec/sec. 65
DECEL Sets or returns the deceleration rate in units/sec/sec. 69
DIST Returns the distance moved from the start of the last 71

commanded motion or changes the move distance during
indexed (MOVEA, MOVEI) motion.

ENCPOS Returns the encoder absolute position. 73
ENCSPD Returns the current speed. 73
FOLERR Sets or returns the position error limit for a closed loop stepper. 79
LOWSPD Sets or return the starting speed value of a stepping motor 96
SPEED Sets or returns the commanded target speed. 116

I/O

ANALOG Returns the analog input voltage. 65
BCD Returns the BCD switch value. 67
IN Returns the discrete input state of the defined input. 88
OUT Sets or returns the discrete output state of the defined output. 105

Programming Commands 57

Over Travel Limit Page

HARDLIMOFF Disables hard limits. 84
HARDLIMON Enables hard limits. 85
REGLIMIT Sets or returns the movereg limit distance. 111
SOFTLIMNEG Sets or returns the absolute negative travel limit position. 112
SOFTLIMOFF Disables soft limits. 113
SOFTLIMON Enables soft limits. 114
SOFTLIMPOS Sets or returns the absolute positive travel limit position. 115

Time Functions

TIMER Sets or returns timer value. 118
WAIT Wait for the period of time to expire. 120

Program Flow Control

DO...EXIT DO...LOOP... Begin a repeatable a block of statements. 72
LOOP...UNTIL...WHILE
END End of program. 74
FOR...TO...EXIT Begin a repeatable block of statements.
FOR...NEXT 80
GOSUB...RETURN Branch to a subroutine and return. 82
GOTO Branch unconditionally to the specified label. 83
IF..THEN..ELSE..END IF Begin a conditional block of statements. 87

Interrupt

INTROFFn Disable interrupt n, where n is 1-4. 93
INTRONn Enable interrupt n, where n is 1-4. 93
ON...INTRn On condition go to interrupt n, where n is 1-4. 102

Miscellaneous

DEFINE Defines a symbolic name to be a particular string of characters. 70
ERR Return error code number. 75
INCLUDE Includes a file name with define statements in a user task. 90

Boolean Expression Operators

AND Logical conjunction operator. 66
NOT Logical complement operator. 101
OR Logical inclusive OR operator. 104

58 Programming Commands

String Manipulation Page

ASC Returns the ASCII code of character. 66
CHR$ Returns a one character string for the given ASCII code. 68
GETCHAR Waits for a character to be received via the serial port. 81
HEX$ Returns the hex string of an integer. 86
HVAL Returns the hex value of a string. 86
INCHAR Returns a character from the serial port. 89
INPUT Reads a line of data from the serial port. 91
INSTR Returns the first occurrence of a character in a string. 92
LCASE$ Converts a string to lower case letters. 94
LEFT$ Returns the leftmost characters of a string. 95
LEN Returns the number of characters in a string. 95
MID$ Returns the designated middle number of characters of a string. 96
PRINT Transmit data via the serial port. 106
PRINT USING Print string characters or formatted numbers. 107
RIGHT$ Returns the rightmost characters of a string. 111
STR$ Returns a string representation of a numeric expression. 117
STRING$ Returns a string of characters. 118
UCASE$ Converts a string to upper case letters. 119
VAL Returns the value of a string. 119

Relational Operators

= equal to 62
< less than 62
<= or =< less than or equal to 62
<> not equal to 66
> greater than 62
=> or >= greater than or equal to 62

Arithmetic Operators

+ addition 62
- subtraction or unary minus 62
* multiplication 62
/ division62

Variable Definitions

INTEGER var, ... , var 63
REAL var, ... , var 63
INTEGER var(x), ... , var(x,y) 63
REAL var(x), ... , var(x,y) 63
STRING $var,…, $var 63

Programming Commands 59

Note: Arrays up to two dimensions are supported. Values for x and y must be greater than zero.

60 Programming Commands

6.1.2 Programming Commands Summary (alphabetical list)
Page

= equal to 62
< less than 62
<= or =< less than or equal to 62
<> not equal to 62
> greater than 62
=> or >= greater than or equal to 62
+ addition 62
- subtraction or unary minus 62
* multiplication 62
/ division62
INTEGER var,...,var Defines integer variable 63
REAL var, ... , var Defines real variables. 63
STRING $var,…,$var Defines string variables 63
' Remark 63

A
ABSPOS Sets or returns the absolute position. 64
ACCEL Sets or returns the acceleration rate in units/sec/sec. 65
ANALOG Returns the analog input voltage. 65
AND Logical conjunction operator. 66
ASC Returns the ASCII code of character. 66

B
BCD Returns the BCD switch value. 67
BOOST Enables or disables the Boost Current feature of a stepper or

returns the boost status. 67
BUSY Returns the motion status of the axis. 68

C
CHR$ Returns a one character string for the given ASCII code. 68

D
DECEL Sets or returns the deceleration rate in units/sec/sec. 69
DEFINE Defines a symbolic name to be a particular string of characters. 70
DIST Returns the distance moved from the start of the last commanded 71

motion or changes the move distance during indexed motion.
DO...EXIT DO...
 LOOP...UNTIL...
 WHILE Begin a repeatable a block of statements. 72

E
ENCPOS Returns the encoder absolute position. 73
ENCSPD Returns the current speed. 74
END End of program. 74
ERR Return error code number. 75

Programming Commands 61

EVENT1 Sets enable/disable and trigger state of event1. 77
EVENT2 Sets enable/disable and trigger state of event2. 78
F Page
FOLERR Sets or returns the following error. 79
FOR...TO...EXIT
 FOR...NEXT Begin a repeatable block of statements. 80

G
GETCHAR Waits for a character to be received via the serial port. 81
GOSUB...RETURN Branch to a subroutine and returns. 82
GOTO Branch unconditionally to the specified label. 83

H
HARDLIMOFF Disables hard limits. 84
HARDLIMON Enables hard limits. 85
HEX$ Returns the hex string of an integer. 86
HVAL Returns the hex value of a string. 86

I
IF..THEN..
 ELSE..END IF Begin a conditional block of statements. 87
IN Returns the discrete input state of the defined input. 88
INCHAR Returns a character from the serial port. 89
INCLUDE Includes a file name with define statements in a user task. 90
INPUT Reads a line of data from the serial port. 91
INSTR Returns the first occurrence of a character in a string. 92
INTROFFn Disable interrupt n. 93
INTRONn Enable interrupt n. 93

J
JOG Run continuously in the specified direction. 94

L
LCASE$ Converts a string to lower case letters. 94
LEFT$ Returns the leftmost characters of a string. 95
LEN Returns the number of characters in a string. 95
LOWSPD Sets or return the starting speed value of a stepping motor 96

M
MID$ Returns the designated middle number of characters of a string. 96
MOVEA Initiates an absolute indexed move. 97
MOVEHOME Run until the home input is activated. 98
MOVEI Initiates an incremental indexed move. 99
MOVEREG Run until the registration input is activated,

then move the specified distance. 100

N

62 Programming Commands

NOT Logical complement operator. 101

Programming Commands 63

O Page
ON...INTRn On condition go to interrupt n. 102
OR Logical inclusive or operator. 104
OUT Sets or returns the discrete output state of the defined output. 105

P
PRINT Transmit data via the serial port. 106
PRINT USING Print string characters or formatted numbers. 107

R
REDUCE Enables or disables the Reduce current feature of a stepper

or returns the Reduce status. 110
REGLIMIT Sets or returns the movereg travel limit. 111
RIGHT$ Returns the rightmost characters of a string. 111

S
SOFTLIMNEG Sets or returns the absolute negative travel limit position. 112
SOFTLIMOFF Disables soft limits. 113
SOFTLIMON Enables soft limits. 114
SOFTLIMPOS Sets or returns the absolute positive travel limit position. 115
SPEED Sets or returns the commanded target speed. 116
STOP Control stop continuous run. 116
STOPERR Sets or returns the maximum position error allowed when

motion is stopped. . 117
STR$ Returns a string representation of a numeric expression. 117
STRING$ Returns a string of characters. 118

T
TIMER Sets or returns timer value. 118

U
UCASE$ Converts a string to upper case letters. 119
UNITID Returns the current Unit ID. 119

V
VAL Returns the value of a string. 120

W
WAIT Wait for the period of time to expire. 120
WAITDONE Waits for motion to be done. 121
WNDGS Enable/disable the stepper drive motor current. 122

64 Programming Commands

6.1.3 - SEBASIC Conventions

A BASIC-like language ("SEBASIC") which conforms to
most of the rules and conventions of modern implementa-
tions of the BASIC programming language, such as "Quick-
Basic", etc. The following is a summary of the considera-
tions to be used in writing your programs.

6.1.3.1 - Arithmetic Operators

The SEBASIC arithmetic operators, listed in order of prece-
dence, are:

Operator Function
 - Negation
 *, / Multiplication and division. See BASIC DATA

TYPES section for notes on division.
 +, - Addition and subtraction

Parentheses change the order in which arithmetic operations
are performed. Operations within
parentheses are performed first. Inside parentheses, the
usual order of operation is maintained.

NOTE: Squaring and exponentiation are not supported;
use multiplication to perform these operations.
Example: to calculate X3, use X*X*X.

6.1.3.2 - Logical Operators

These operators are used in boolean expressions. The
logical operators in SEBASIC, listed in order of precedence,
are as follows:

Operator Use
NOT NOT<term> a false term, results in the boolean

expression being true.
AND <term> AND <term> both terms must be true,

results in the boolean expression being true.
OR <term> OR <term> either term being true results

in the boolean expression being true.

Logical operators perform tests on multiple relations, bit
manipulations, or Boolean operations,
and return a true (one) or false (zero) value to be used in
making a decision.

6.1.3.3 - Relational Operators

Relational operators are used to compare two values. The
result of the comparison is either
"true" (one) or "false" (zero). This result can then be used to
make a decision regarding program flow.

Operator Relation Expression
= Equality * X=Y
<> Inequality X<>Y
< Less than X<Y
> Greater than X>Y
<= Less than or equal to X<=Y
>= Greater than or equal to X >=Y

 * The equal sign (=) is also used to assign a value to a
variable.

6.1.3.4 - BASIC Data Types

Three basic data types exist: REAL, INTEGER, and STRING
values.

The following are examples of some REAL values:

+1.524 -100.1 2.1e-4

Note that “e” or “E” may be used as the exponential opera-
tor, i.e. power of 10. For example 5004.1 may also be repre-
sented as 50.041E2. In this case 50.041 is the mantissa and
the exponent is 2. The mantissa of a real number is limited to
a 15 digit representation. If the + is omitted, the value de-
faults to a positive number.

The range for REAL numbers is +/-
1.7 E ±± 308 (15 digits).

The following are examples of some INTEGER values:

+1 -100 -3487

If the + is omitted, the value defaults to a positive number.

The range for INTEGER numbers is ±±
2,147,483,647.

String values can be any ASCII character. A list of ASCII
characters is provided in Section 9.0 Glossary.

Programming Commands 65

Rules For Integer Division:

When the division operator, “/”, is used to divide integers,
some rules must be followed to achieve the expected results
from the calculation. If fractional information is to be in-
cluded in the result of the division of two numbers, at least
one of them MUST be a REAL number. If both are
INTEGER, the operation will produce an INTEGER result.
Some programming examples are shown below.

INTEGER num1,denom1 ‘declare INTEGER variables
REAL answer1,answer2,

denom2 ‘declare REAL variables

begin: ‘ begin program
num1 = 10 ‘ set INTEGER num1 equal to 10
denom1 = 4 ‘ set INTEGER denom1 equal to
4
denom2 = 4 ‘ set REAL denom2 equal to 4
answer1 = num1/denom1 ‘ divide num1 by denom1
answer2= num1/denom2 ‘ divide num1 by denom2
end ‘end program

In this case the value of answer1 will be 2. This is because
num1 and denom1 were declared as INTEGER numbers. The
value of answer2 will be 2.5, as expected. This is because
denom2 was declared as a REAL variable. When assigning
a variable to a number which is represented in the code by a
fraction, the numerator or denominator MUST use a decimal
point if the result requires fractional information. For exa m-
ple:

REAL x ‘declare x as a REAL variable

x = 10/4 ‘x will be equal to 2 since 10 and 4 without a
‘decimal point are integers

x = 10.0/4 ‘x will be equal to 2.5 because of the decimal
‘point in 10.0

Note: All variable names and program labels must begin
with a letter A-Z.

6.1.3.5 - Case Sensitivity In Statements
 & Commands

Some programming statements and commands are case
sensitive; others are not. The following table defines case
sensitivity in SEBASIC:

BASIC LANGUAGE
ELEMENT

CASE
SENSITIVE?

MAX.
LENGTH

(characters)
Label No 80
Variable name
(symbolic constant)

No 80

BASIC keyword No N/A

The Host commands are not case sensitive; that is, upper
and lower case letters can be used interchangeably.

6.1.3.6 - Calculations Using Trajectory
 Parameters And Variables

Caution must be used when performing calculations based
on the Trajectory Parameters, ABSPOS, ACCEL, DECEL,
DIST, ENCPOS, ENCSPD, and SPEED. Comparisons of
values returned directly from reading these parameters or
values of variables calculated from these parameters may not
always yield the expected results. The reason for this is that
digital systems have inherent resolution limitations. In the
case of this system, the actual position of the motor shaft at
any time can only be represented within one microstep (1/64
full step). If the user is programming in units, the actual
position is calculated based on the number of microsteps per
user unit.

If the user program must compare a calculated value to any
of the trajectory parameters (such as ENCPOS), or to
variables which have been derived from them, then the use
of the equals operator is NOT RECOMMENDED. Using
greater than, > , less than, <, greater than or equal to, >=,
or less than or equal to, <= is therefore recommended for
proper operation of the program. In fact, ANY calculated
variables may have a very small fractional portion which
may cause problems when comparing them to be exactly
equal to either another variable or a number entered in the
code.

6.1.3.7 Program Comments

An apostrophe (') in a program line prevents a line from
executing and allows program comments/documentation. All
text to the right of the ' to the end of line is not considered
part of the command during execution.

EXAMPLES:
'MOVEI=10 >The program will not execute this line
MOVEI=100 >The program will execute this line

66 Programming Commands

6.1.4 Programming Commands - Alphabetical Listing

 Sets or returns the commanded absolute position of the motor.

 ABSPOS=expression
 ABSPOS - used in an expression

 ABSPOS=expression
 Sets the absolute position in units.

 ABSPOS - used in an expression
Evaluates and returns the current absolute position.

ABSPOS represents the commanded motor position, and can only be set while
no motion is occurring. Setting ABSPOS during motion, causes the program to
be trapped at the ABSPOS instruction until the motion completes. When
ABSPOS is set or read, the internal representation is limited to ± 2,147,483,647
encoder counts. Setting ABSPOS also sets ENCPOS (encoder position) to the
same value. ABSPOS and ENCPOS are initialized to 0 at power up. ABSPOS
is also set at the end of a MOVEHOME command to the distance traveled from
the home cycle trigger. Reading ABSPOS returns the actual commanded position
in user units.

ABSPOS=2
sets absolute position to 2 units.

a=ABSPOS
returns the ABSPOS position value to variable "a".

Trajectory ParametersABSPOS

ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 67

 Sets or returns the acceleration rate of the motor.

 ACCEL=expression
 ACCEL - used in an expression

 ACCEL=expression
 Sets the acceleration rate in units/sec2.

 ACCEL - used in an expression
 Evaluates and returns the present acceleration rate.

Specifies the rate at which the motor speed is increased. Specifying a 0 or
negative value will result in error code 6. Specifying a value greater than Max
Accel, set in the system Configuration and Setup, will result in ACCEL being
set to the Max Accel value. At power up and each time a program is run,
ACCEL is initialized to 50% of the Max Accel value. ACCEL can be set
during motion, but the new setting will not be used until the next motion. Read-
ing ACCEL returns the most recent setting. The lowest allowable acceleration
rate is 0.07276 rev/sec2. The highest allowable acceleration rate is 1192
rev/sec2.

ACCEL=2
Sets acceleration rate to 2 units/sec2.

a=ACCEL
returns the acceleration value to variable "a".

Returns the analog input value in volts.

ANALOG - used in an expression

ANALOG
Evaluates and returns the present analog input voltage in volts. This value may vary
for successive reads, but will stay within the accuracy listed in the Hardware speci-
fication section of this manual.

x=ANALOG 'Sets variable x to the analog input voltage.

ACCEL
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Trajectory Parameters

EXAMPLES:

ANALOG
ACTION:

PROGRAM SYNTAX:

REMARKS:

I/O Functions

EXAMPLES:

68 Programming Commands

The logical AND operator is used in boolean expressions.

expression1 AND expression2

The AND operator uses this "truth table":

expression1 expression2 Condition result

True True True

True False False

False True False

False False False

The result is true if both expressions are true.

if (x >2 AND y < 3) then goto INDEX
‘The controller checks to see if x > 2 and y < 3. If both conditions are true the
program goes to a label called INDEX.

Returns the ASCII code for the first character in a string.

ASC(n$)

The ASCII code returned is for the first character in the string variable n$. If the
string is a null string then a 0 will be returned.

INTEGER x
STRING a$
a$="part#"
x=ASC(a$) ' sets x=112 'p'

AND
ACTION:

PROGRAM SYNTAX:

REMARKS:

Boolean Operator

EXAMPLES:

ASC
ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

Programming Commands 69

Returns the value on the BCD switches.

BCD - used in an expression

BCD
Evaluates and returns the BCD switches as a signed Integer value. The BCD
switches are restricted to seven digits with a sign.

Note: The use of the BCD command takes precedent over the OUT command
and will toggle OUT3-OUT6 when called to strobe the BCD switch bank. Subse-
quent to a BCD call, an OUT(3)-OUT(6) command will also set the output to
the appropriate state. If OUT3-OUT6 are used as general purpose outputs, care
must be taken not to invoke a BCD command or the state of the outputs will be
disturbed.

a=BCD 'returns the BCD switches value to variable "a".

Enables or disables the Boost Current feature of a stepper or returns the com-
manded boost status.

BOOST=expression
BOOST - used in an expression

BOOST=expression
If the expression is true (non-zero) then the BOOST feature is enabled, the current
will be boosted to the project configuration boost percentage setting during motion.
If the expression is false (zero) then the BOOST feature is disabled, the current will
be the normal current during motion.

BOOST - used in an expression
Returns the current setting of the BOOST feature.

BOOST=1 ‘ enables the BOOST feature during motion

BOOST=0 ‘ disables the BOOST feature during motion

BCD
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

BOOST
ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion Parameter

EXAMPLES:

 I/O Operator

70 Programming Commands

X=BOOST ‘ returns the current setting for the BOOST feature

Programming Commands 71

Returns the motion status.

BUSY - used in an expression

If the commanded motion is incomplete, BUSY returns a true (1) otherwise
BUSY returns a false (0).

DO WHILE BUSY ‘prints system absolute position
PRINT#1,ABSPOS ‘while motion is still occurring

LOOP

Returns a one character string whose ASCII code is the argument.

CHR$(code)

CHR$ is commonly used to send a special character to the serial port.

PRINT#1,"Input Accel",CHR$(27) ' transmits "Input Accel" <ESC> to the
host serial port.

MotionBUSY
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

CHR$
ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

72 Programming Commands

Sets or returns the deceleration rate of the axis.

DECEL=expression
DECEL - used in an expression

DECEL=expression
Sets the deceleration rate value in units/sec2.

DECEL - used in an expression
Evaluates and returns the present deceleration value.

The rate at which the motor speed is decreased. Specifying a 0 or negative value
will result in error code 7. Specifying a value greater than Max Accel, set in the
Configuration and Setup, will result in DECEL being set to the Max Accel value.
At power up and each time a program is run DECEL is initialized to 50% of Max
Accel value. DECEL can be set during motion, but the new setting will not be used
until the next move. Reading DECEL returns the most recent setting. The lowest
allowable deceleration rate is 0.07276 rev/sec2. The highest highest allowable de-
celeration rate is 1192 rev/sec2.

DECEL=3.1
sets the deceleration value to 3.1 units/sec2.

X = DECEL
Sets variable X equal to the value of deceleration.

Trajectory ParametersDECEL
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 73

Defines a symbolic name to be a particular string of characters.

#DEFINE name@1, ... , @10 replacement text
#DEFINE name replacement text

The name has the same form as a variable name: a sequence of letters and digits
that begins with a letter. The name is case sensitive. Typically upper case is used
for the name.

The @1, ... , @10 are the program command substitution arguments for the re-
placement text.

The replacement text can be any sequence of letters of characters.

Any occurrence of the name in the program, not in quotes and not part of another
name, will be replaced by the corresponding replacement text when the program
is compiled.

#DEFINE TRUE 1
Substitutes a 1 when the name TRUE is encountered.

#DEFINE FALSE 0
Substitutes a 0 when the name FALSE is encountered.

#DEFINE SENDPOS @1 PRINT#@1,ABSPOS
Sends the absolute position via port @1.

SENDPOS 1
Sends the absolute position via port #1. The 1 is substituted for the @1 .

#DEFINE CLR PRINT#2,CHR$(12);
#DEFINE LOCATE @1,@2 PRINT#@,CHR$(27);”[@1,@2H”;

CLR ‘ clear display
LOCATE 1,2 ‘ locate cursor at row 1 column 2

Miscellaneous Command
Parameters

DEFINE
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

74 Programming Commands

Returns the distance moved from the start of the last commanded motion or
changes the move distance during indexed motion.

DIST = expression
DIST - used in an expression

DIST = expression
Extends or shortens the index (MOVEI or MOVEA) motion underway. A positive
value extends the move, a negative value shortens it. If the present move is past
the point to which the move has been shortened, by a DIST = negative value, then
the move is stopped. The DIST command has no effect if the present move is
currently stopping.

DIST - used in an expression
Returns the distance traveled from the start of the last motion command. DIST
returns a positive number, regardless of the move direction.

x=DIST
sets x to the distance moved from the start of motion.

MOVEI = -25
DIST = -10 ‘shortens the move by 10 units

DIST
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Trajectory Parameters

Programming Commands 75

Repeats a block of statements while a condition is true or until a condition be-
comes true.

DO {UNTIL | WHILE} [condition]
[statement block]
[EXIT DO]
[statement block]
LOOP

DO
[statement block]
[EXIT DO]
[statement block]
LOOP {UNTIL | WHILE} [condition]

Syntax 1 allows the condition to be tested at the top of the loop. Syntax 2 allows
the condition to be tested at the bottom of the loop therefore the loop will always

execute at least once.

EXIT DO is an alternative exit from a DO...LOOP.

EXIT DO transfers control to the statement following the LOOP statement. When
used within nested DO...LOOP statements, EXIT DO transfers out of the immedi-
ately enclosing loop. EXIT DO can be used only in a DO...LOOP statement.

DO WHILE EVENT1(1) <> 1
‘Continue the loop while event1 does not equal 1.

 statements
LOOP ‘End of loop.

DO...LOOP
ACTION:

PROGRAM SYNTAX 1:

PROGRAM SYNTAX 2:

REMARKS:

EXAMPLES:

Program Flow
Control

76 Programming Commands

Returns the encoder position.

ENCPOS - used in an expression
ENCPOS
Evaluates and returns the present encoder position.

The actual motor position as read from an incremental encoder. The range of
ENCPOS is ±2,147,483,647 encoder counts. Reading ENCPOS returns the ac-
tual motor position in user units. ENCPOS is initialized to 0 at power up. Setting
ABSPOS sets ENCPOS to the same value. Drive type in the configuration system
folder must be set to closed loop stepper to read ENCPOS. ENCPOS will read
zero for open loop stepper systems.

y = ENCPOS ' returns the encoder position to variable y.

Returns the current encoder speed in units/sec.

ENCSPD - used in an expression

ENCSPD
Evaluates and returns the current encoder speed.

Drive type in the configuration system folder must be set to closed loop stepper to read ENCSPD. ENCSPD will
read zero for open loop stepper systems.
Reading ENCSPD returns the actual motor speed with a resolution of:

(122.07 * "Units/rev")/"Line count" units/sec.

These values are set in the Configuration and Setup.

Example: "Units/rev" = 1 , "Line count" = 500
example resolution = .24414 units/sec

The returned motor speed value is a signed number.

x=ENCSPD ‘returns the current encoder speed to variable x.

ENCPOS
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Trajectory ParametersENCSPD
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLE:

Trajectory Parameters

Programming Commands 77

Signifies the end of a program.

END

This command signifies the end of a program and must be included in each program
or an error condition may occur.

statement
....
END

Program Flow ControlEND
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

78 Programming Commands

Returns the error status of the controller.

ERR - used in an expression

If an error occurs while the program is running, it jumps to label ERROR_
HANDLER, if present, otherwise it ends. The fault LED is on while the error code
is non-zero. Host command "ERR" or executing a "GOTO" command in the error
handler code clears the error code. The first error locks out subsequent errors.

Error Code Description
 0 No error.
 1 Could not burn flash successfully.
 2 Could not download file.
 3 Not enough memory to execute user program.
 4 Attempt to access a non-existent array element.
 5 Real data too large to convert to Integer data.
 6 Attempt to set accel data <= 0.
 7 Attempt to set decel data <= 0.
 8 Attempt to access non-existent output.
 9 Attempt to access non-existent input.
 10 Attempt to divide by 0.
 11 Received serial data will not fit in buffer.
 12 Motion occurring when program ended.
 13 Attempt to execute user program that is not present.
 14 Incorrect user program checksum.
 15 reserved for future use.
 16 reserved for future use.
 17 reserved for future use.
 18 reserved for future use.
 19 Attempt to set FOLERR <0.
 20 reserved for future use.
 21 Move distance too large.
 22 Function not implemented.
 23 INPUT command error occurred
 128 +limit switch activated.
 129 -limit switch activated.
 130 + Software travel limit exceeded.
 131 - Software travel limit exceeded.
 132 reserved for future use.
 133 Excessive position error.

Return Error CodeERR
ACTION:

PROGRAM SYNTAX:

REMARKS:

Programming Commands 79

 134 Registration distance too small.
 135 Attempt to move with drive not enabled.
136 Attempt to move with drive not ready.
137 Closed loop correction failure.

If there an error handler routine is not present in the program, then an error will
simply terminate program execution, otherwise an error causes the program to
jump to the error handler routine (label ERROR_HANDLER). The error handler
routine can not be interrupted. The error handler routine is terminated with either
an END statement or a GOTO <label> statement. The END statement will termi-
nate program execution. The GOTO <label> statement will cause program execu-
tion to continue with the line labeled <label>. At this point the program can be in-
terrupted.

x=ERR
'Sets x equal to the present controller error number for this task and clear the error
number.

EXAMPLES:

80 Programming Commands

Sets the trigger polarity and trigger enable, which are used in a MOVEHOME and
MOVEREG cycle.

EVENT1=expression

The EVENT1 command is used to select the effect of the hardware signal at
the EVENT1 / IN1 input. This input is typically wired to a switch or sensor. It
may be used as a home position trigger during a MOVEHOME
cycle. It also may be used as a position mark registration trigger during a
MOVEREG cycle. When used for mark registration, a trigger on EVENT1 will
 initiate the index portion of the MOVEREG cycle.

The EVENT1 triggering for a MOVEHOME or MOVEREG cycle may be com-
bined with an encoder index pulse input, and is assigned in the user program Con-
figuration and Setup.

For a MOVEHOME cycle, the EVENT1 command may be used to set the po-
larity of the move home trigger. If the expression to the right of the EVENT1 com-
mand is positive, for example EVENT1 = 1, the home cycle trigger occurs when
the EVENT1 input becomes active. If the expression to the right of the EVENT1
command is negative, for example EVENT1 = -1, the home cycle trigger occurs
when the EVENT1 input becomes inactive. An EVENT1 home trigger cannot be
disabled using this command.

For a MOVEREG cycle, the EVENT1 command may be used to set the polarity
of the registration trigger. If the expression to the right of the EVENT1 command
is positive, for example EVENT1 = 1, the registration cycle trigger occurs when
the EVENT1 input becomes active. If the expression to the right of the EVENT1
command is negative, for example EVENT1 = -1, the registration cycle trigger
occurs when the EVENT1 input becomes inactive.

The EVENT1 trigger for a registration cycle may be disabled by setting
EVENT1=0. A registration trigger may be enabled to either polarity during a
move. It may not, however, be disabled once the cycle has begun.

The EVENT 1 input state can be read with command IN(1).

EVENT1=0 disables EVENT1 trigger if assigned as a MOVEREG trigger.

EVENT1=1 Sets EVENT1 trigger to positive polarity triggering and
 enables the trigger.

EVENT1=-1 Sets EVENT1 trigger to negative edge triggering and enables the

EVENT1
ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

EXAMPLES:

Programming Commands 81

trigger.

82 Programming Commands

Sets the trigger polarity and trigger enable, which are used in a MOVEHOME and
MOVEREG cycle.

EVENT2=expression

The EVENT2 command is used to select the effect of the hardware signal at the
EVENT2 / IN2 input. This input is typically wired to a switch or sensor. It may be
used as a home position trigger during a MOVEHOME cycle. It also may be used
as a position mark registration trigger during a MOVEREG cycle . When used for
mark registration, a trigger on EVENT2 will initiate the index portion of the

MOVEREG cycle.

The EVENT2 triggering for a MOVEHOME or MOVEREG cycle is assigned in
the user program Configuration and Setup.

For a MOVEHOME cycle, the EVENT2 command may be used to set the po-
larity of the move home trigger. If the expression to the right of the EVENT2 com-
mand is positive, for example EVENT2 = 1, the home cycle trigger occurs when
the EVENT2 input becomes active. If the expression to the right of the EVENT2
command is negative, for example EVENT2 = -1, the home cycle trigger occurs
when the EVENT2 input becomes inactive. An EVENT2 home trigger cannot be
disabled using this command.

For a MOVEREG cycle, the EVENT2 command may be used to set the polarity
of the registration trigger. If the expression to the right of the EVENT2 command
is positive, for example EVENT2 = 1, the registration cycle trigger occurs when
the EVENT2 input becomes active. If the expression to the right of the EVENT2
command is negative, for example EVENT2 = -1, the registration cycle trigger
occurs when the EVENT2 input becomes inactive.

The EVENT2 trigger for a registration cycle may be disabled by setting
EVENT2=0. A registration trigger may be enabled to either polarity a move. It
may not, however, be disabled once the cycle has begun.

The EVENT 2 input state can be read with command IN(2).

EVENT2=0 disables EVENT2 trigger if assigned as a MOVEREG trigger.

EVENT2=1 Sets EVENT2 trigger to positive edge triggering and enables
 the trigger.

EVENT2=-1 Sets EVENT2 trigger to negative edge triggering and enables the
trigger.

MotionEVENT2
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 83

Sets or returns the position error limit.

FOLERR=expression
FOLERR - used in an expression

FOLERR= expression
Sets the position error limit in units. Setting the position error limit to zero sets the
position error limit to 32767 encoder counts.

FOLERR - used in expression
Returns the value of the position error limit.

FOLERR sets or reads the "Following Error" Limit. "Following Error" is the ab-
solute value of the difference between the commanded and actual motor position,
i.e. |ABSPOS - ENCPOS|. The test for excessive "Following Error" is only per-
formed by a closed loop stepper whenever the error action in the Configuration
and Setup is not set to disabled. If the "Following Error" exceeds the FOLERR
setting, the action taken is dependent upon the error action selected. If the error
action in the Configuration and Setup is set to stop on error the error code is
set to 133 and any motion taking place is terminated. With error action in the Con-
figuration and Setup is set to correct on error, the motor will attempt to correct
the error by making a new move to the required position. This move will be at-
tempted for as many times as necessary up to the number of correction attempts
specified in the configuration. When set to restart on error, the entire move is re-
started after the time between attempts has elapsed. FOLERR is limited to the
number of user units corresponding to 32767 encoder counts. FOLERR is initial-
ized to the number of units corresponding to .05 revolutions at power up and each
time a project is run. A negative setting for FOLERR results in error code 19. If
an attempt is made to set FOLERR greater than 32767 encoder counts, the
FOLERR is set to its maximum value of 32767. Reading FOLERR returns the
present setting in user units.

FOLERR=.5 ' position error limit is set to .5 units
x=FOLERR ' returns the current position error limit.

Trajectory ParameterFOLERR
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

84 Programming Commands

Repeats a block of statements a specified number of times.

FOR counter = start# TO end#
[statement block]
[EXIT FOR]
[statement block]
NEXT counter

Counter is a variable used as the loop counter.
Start# is the initial value of the counter.
End# is the ending value of the counter.

The step size is always 1.

If start is greater than end then the loop will not execute, control is transferred to
the statement following the NEXT statement. If start equals end then the loop will
execute once.

EXIT FOR is an alternative exit from a FOR...NEXT loop.

EXIT FOR transfers control to the statement following the NEXT statement.
When used within nested FOR...NEXT statements, EXIT FOR transfers out of the
immediately enclosing loop. EXIT FOR can be used only in a FOR...NEXT state-
ment.

for x=1 to 8 ' For..next loop initialization
statements ' Program statements.

next x ' End of loop.

Program Flow ControlFOR...NEXT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 85

Waits for a character on the selected serial port and returns the ASCII code of the
character.

GETCHAR(n) - used in an expression

The n specifies the serial port number (1 or 2). Port 1 is the Host port and Port 2
is the User port.

Program execution is suspended while GETCHAR waits for a character to be re-
ceived by the designated serial port. If a character is already in the receiver buffer
the ASCII code of the character is returned immediately.

INTEGER a,b
STRING a$,b$
a=GETCHAR(1) ' sets a to the ASCII code of host character
b=GETCHAR(2) ' sets b to the ASCII code of user character
a$=a$ + CHR$(A) ' add host character to a$
b$=b$ + CHR$(A) ' add host character to b$

String ManipulationGETCHAR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

86 Programming Commands

Branches to, and returns from, a subroutine.

GOSUB [linelabel]

You can call a subroutine any number of times in a program. You can call a sub-
routine from within another subroutine (nesting).

Subroutines can only be nested ten deep.

The execution of the RETURN statement causes the subroutine to goto the line
following the call or jump to the subroutine..

Subroutines can appear anywhere in the program, but it is good programming
practice to make them readily distinguishable from the main program.

GOSUB GET_CHAR 'goto subroutine at label "GET_CHAR"
MOVEI=10 ‘Line that executes after the return.
:

:
GET_CHAR: 'label for subroutine
:

statement block 'statements to perform action of the subroutine
:
RETURN 'return to program line following GOSUB

GET_CHAR

GOSUB...
RETURN

 ACTION:

PROGRAM SYNTAX:

REMARKS:

Program Flow Control

EXAMPLES:

Programming Commands 87

Branches unconditionally to the specified label.

GOTO [label]

The GOTO statement provides a means for branching unconditionally to another
label.

It is good programming practice to use subroutines or structured control statements
(DO... UNTIL, FOR...NEXT, IF..THEN...ELSE) instead of GOTO statements,
because a program with many GOTO statements can be difficult to read and de-
bug. Try to avoid using ”GOTO”!

if x=1 then GOTO coolant_off
:
:
coolant_off:
(statements)

GOTO
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Program Flow Control

EXAMPLES:

88 Programming Commands

Disables the hardware limit inputs.

HARDLIMOFF

Hard limit inputs are used to stop the motor before it runs into a physical end of
travel, thus avoiding damage to the mechanical system. A separate hard limit
input is provided for + and - motor rotation. Activating the + input stops the
motor if it is rotating in the + direction. Activating the - input stops the motor if it
is rotating in the - direction.

Inputs 3 and 4 become general purpose inputs with this command.

HARDLIMOFF ' hard limit inputs are general purpose.

HARDLIM
OFF

 ACTION:

PROGRAM SYNTAX:

REMARKS:

Over Travel Limit

EXAMPLES:

Programming Commands 89

Enables the hardware limit inputs.

HARDLIMON

Hard limit inputs are used to stop the motor before it runs into a physical end of
travel, thus avoiding damage to the mechanical system. A separate hard limit input
is provided for + and - motor rotation. Activating the + input stops the motor if it
is rotating in the + direction. Activating the - input stops the motor if it is rotating in
the - direction.

Inputs 3 and 4 become the +Limit and -Limit inputs. As hard limits, the active sig-
nal level can also be configured as active on switch closing or active on switch
opening. This is done in the project's Configuration and Setup.

The +Limit is only checked when motion in the + direction is commanded, likewise
the -Limit is only checked when motion in the - direction is commanded. When
a Limit input is activated, the motor is decelerated to a stop using the maximum ac-
cel value (set in the project's Configuration and Setup) and an error code is set.
 Code 128 is set when the +Limit is activated and code 129 when the - Limit is
activated.

The state of the +Limit can be read with the IN(3) command and the state of the
-Limit can be read with the IN(4) command.

HARDLIMON ' Limit inputs are active.

HARDLIM
ON

 ACTION:

PROGRAM SYNTAX:

REMARKS:

Over Travel Limit

EXAMPLES:

90 Programming Commands

Returns the hex string of an Integer value.

A$=HEX$(expression)

The expression must be an integer value.

A$=HEX$(255) ' returns the string "FF"

Returns the decimal value of a hexadecimal string.

x=HVAL(A$)

A$ is the designated string variable or string literal.

The converted value is an Integer. Thus "x" must be defined as an Integer.

x=HVAL("0XFF") ' x is set to 255
A$="1F"
x=HVAL(A$)" ' x is set to 31

HEX$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

HVAL
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

Programming Commands 91

Allows conditional execution based on the evaluation of a Boolean condition.

IF condition THEN thenpart [ELSE elsepart]

IF condition1 THEN
[statement block-1]
[ELSE] ELSE and statement block-2 is optional
[statement block-2]]
END IF

The argument condition is an expression that SEBASIC evaluates as true (nonzero)
or false (zero).

The argument statement block includes any number of statements on one or more
lines.

The argument thenpart includes the statements or branches performed when condi-
tion is true.

The argument elsepart includes the statements or branches performed when condi-
tion is false. The syntax is the same as thenpart. If the ELSE clause is not present,
control passes to the next statement in the program following the END IF.

if x=0 then
statement block

else
statement block

end if

IF...THEN...

ELSE...

ENDIF
ACTION:

PROGRAM SYNTAX 1:

PROGRAM SYNTAX 2:

REMARKS:

Program Flow Control

EXAMPLES:

92 Programming Commands

Returns the state of a digital input.

IN(nn) - used in an expression

nn is the specified digital input 1-17.

The value returned is 1 for active or 0 for inactive.

The inputs are assigned as follows:

Input Signal Designation
1 Event1 / In1
2 Event2 / In2
3 “+Limit” / In3
4 “-Limit” / In4
5 “Run” / In5
6 “Clear” / In6
7 “Feedhold” / In7
8 In 8
9 BCD0 / In 9
10 BCD1 / In 10
11 BCD2 / In 11
12 BCD3 / In 12
13 BCD4 / In 13
14 BCD5 / In 14
15 BCD6 / In 15
16 BCD7 / In 16
17 Drv Ready

Inputs 3 through 7 are individually selectable in the Configuration and Setup as
either dedicated or general purpose inputs. If selected as dedicated inputs and acti-
vated, these inputs cause specific action to occur as outlined in the HARDWARE
INPUTS section of this manual.

Inputs selected as general purpose may be used within the user program as
needed. A general purpose input will not cause the dedicated action to occur when
the input is active. Note: The IN(X) command will return the value at the input pin
regardless of the Configuration and Setup. For example, if Input 7 is selected
in the system configuration as dedicated to “Feedhold”, and the input at the pin
is active, then IN(7) will return a 1.

IN
 ACTION:

PROGRAM SYNTAX:

REMARKS:

I/O Operator

Programming Commands 93

IF IN(6)=1 then goto continue

Returns the ASCII code of a character from the designated serial port. If no
character is in the receiver buffer a 0 is returned.

INCHAR(n)

The n specifies the serial port (1 or 2). Port 1 is the Host port and Port 2 is the User port.

If no character has been received by the designated serial port, a 0 is returned.
 Otherwise, the ASCII code value equivalent is returned.

INTEGER x
STRING a$
DO

x=INCHAR(1) ' x= character received or a 0
LOOP UNTIL x > 0 ' wait for character
a$=a$+CHR$(x) 'adds input character to a$

EXAMPLES:

INCHAR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

94 Programming Commands

Includes a file name with define statements in a user task.

#INCLUDE drive:\subdir\...\subdir\filename.inc

Drive is the root directory of the drive.

Subdir is the path required to find the file.

Filename is the include filename with extension .inc.

The include file must be a series of #DEFINE statements only and can be used
in any project task file.

The iws.inc file is included in the MX2000 software for Windows. This file can
be used to control a Superior Electric IWS-120-SE or IWS-30-SE interface
panel.

#INCLUDE c:\mx2000\iws.inc ‘ include file iws.inc

INCLUDE
ACTION:

PROGRAM SYNTAX:

REMARKS:

Miscellaneous Command

EXAMPLES:

Programming Commands 95

Reads a Line of data from the designated serial port into a string variable.

INPUT#1,n$
INPUT#1,n$,var1$[,var2$] ... [var_n$]
INPUT#1,x

INPUT#2,n$
INPUT#2,n$,var1$[,var2$] ... [var_n$]

 INPUT#2,x

This command accepts input characters until a carriage return or linefeed is re-
ceived by the designated port.

Multiple arguments can be entered on one input line and are separated by a ",".
 The input arguments can be strings, Integer values and Real values.

INPUT#1 designated the Host port and INPUT#2 designates the User port as the
serial receiver port.

The following data was entered via user port: "A555555,100,10.5,20 " cr
Program:
string a$
integer x,acc
real y
INPUT#2,a$,x,y,acc ' sets a$="A555555"

‘ sets x=100
' sets y=10.5
' sets acc=20 units/sec2

String ManipulationINPUT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

96 Programming Commands

Returns the character position of the first occupance of a specified string in another
string.

INSTR(string1$,string2$) - used in an expression

The expression must be an integer variable.

The comparison is case sensitive and returns a 0 if no match is found.

a$= "WE part# 215629"
a=INSTR(A$,"Part#") 'returns the starting position of "part#" in a$;
 in this case, the value of 4 is returned.

INSTR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

Programming Commands 97

Disables an interrupt for an ON...INTRn command.

INTROFFn

An interrupt causes the program to stop what it is doing, go do something else and
then resume from where it was interrupted. There can be up to 4 software inter-
rupts in a program. The conditions that cause the interrupt can be programmed
and the interrupts can be enabled or disabled individually. At the start of program
execution the interrupts are disabled and must be enabled within the program.
They can also be disabled within the program.

The n (1-4) defines the interrupt number to be disabled.

INTROFF1 'disables interrupt 1 for an ON...INTRn command.

Enables an interrupt for an ON...INTRn command.

INTRONn

An interrupt causes the program to stop what it is doing, go do something else and
then resume from where it was interrupted. There can be up to 4 software inter-
rupts in a program. The conditions that cause the interrupt
can be programmed and the interrupts can be enabled or disabled individually. At
the start of program execution the interrupts are disabled and must be enabled
within the program. They can also be disabled within the program.

The n (1-4) defines which ON...INTRn command is enabled.

INTRON1 'enables interrupt 1 for an ON...INTRn command.

InterruptINTROFFn
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

INTRONn
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Interrupt

EXAMPLES:

98 Programming Commands

Jog the motor in a specified direction.

JOG = expression

JOG=expression
The sign of the expression determines the direction of motion. If the expression is
positive or 0, jogging will take place in the positive direction.
If the expression is negative, jogging will take place in the negative direction. The
speed of the jog move is determined by the last SPEED command.

Use the STOP command for stopping the motor.

Converts and returns a string with lower case letters.

string1$=LCASE$(string2$)

string2$ is copied and all upper case letters are converted to lower case letters
and the resulting string is returned string1$.

This command is useful for making the INSTR command case insensitive.

a$="HELLO"
b$=LCASE$(a$) ' sets b$="hello"

JOG
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

String ManipulationLCASE$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 99

Returns the leftmost characters of a string.

string2$=LEFT$(string1$,n)

The n is the number of leftmost characters to return. If n is greater than the length
of string1$ then the entire string is returned to string2$.

b$="Hello World"
a$=LEFT$(b$,7) ' sets a$= "Hello W"

Return the number of characters in the designated string.

LEN(string$) - used in an expression

The expression should be an integer type. If the input string is a null string returns
a 0.

A=LEN("ABCD") ' sets A=4

String ManipulationLEFT$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

LEN
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

100 Programming Commands

Sets or returns the starting speed value of a stepping motor.

LOWSPD=expression
LOWSPD - used in an expression

LOWSPD=expression
Sets the starting speed in units/sec. LOWSPD should be set to a positive num-
ber or 0. The default is 0.

LOWSPD - used in an expression
Evaluates and returns the present starting speed value.

LOWSPD=2.5 ‘Sets the starting speed to 2.5 units/sec

X=LOWSPD ‘Sets X equal to the present starting speed

Returns the designated middle number of characters of a string.

string1$=MID$(string2$,start,number)

The start specifies the starting position of the input string (string2$).

The number specifies the number of characters to return. If the number is
greater than the (length of the string - start position) the input string is copied from
the starting position to the end of the string.

a$="P/N 123AC"
b$=MID$(a$,5,3) ' sets b$="123"
c$=MID$(a$,5,9) ' sets c$="123AC"

LOWSPD
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Trajectory Paramater

EXAMPLES:

String ManipulationMID$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 101

Initiates the motor to move to the specified absolute position.

MOVEA=expression

The expression represents the specified absolute position.

Move to the specified position. The specified position must not be further
than +/- 2,147,483,647 microsteps away or error code 21 will be set and no mo-
tion will occur.

MOVEA= -1.0 ' moves to an absolute position of -1.0 units.

MotionMOVEA
ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

102 Programming Commands

Runs the motor until the home input is activated, captures and records the position
of the switch activation as home (electrical zero), then decelerates the motor to a
stop.

MOVEHOME=expression

The sign of the expression determines the direction (positive or negative) of motion
for the home cycle. The non-zero value of the number is not significant.. The
commanded speed is determined by the last SPEED command that was executed.

The MOVEHOME trigger can be the EVENT 1 input, EVENT 2 input or an En-
coder marker state. This trigger is defined by the user program Configuration
and Setup, and also by the EVENT1 or EVENT2 command if they have been
executed prior to the MOVEHOME.

Prior to starting a MOVEHOME motion, the appropriate trigger input (EVENT
1 or EVENT 2) is checked to see if it has already been triggered. If the trigger is
already triggered the ABSPOS and ENCPOS are set to zero and no motion oc-
curs. Otherwise, the motor accelerates at the ACCEL rate to the commanded
SPEED and continues at this speed until the home trigger condition is met. When
the home trigger occurs, the motor decelerates to a stop at the DECEL rate. Once
at a stop, the distance traveled from the trigger becomes the new ABSPOS and
ENCPOS value. The exact position that the motor was at when the trigger oc-
curred becomes the zero position, or home.

MOVEHOME= -1.0 'Initiates a mechanical home cycle in the
 negative direction.

MOVEA=0 'Moves motor back to electrical home. (i.e. switch
edge)

MotionMOVE
HOME

 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 103

Initiate an incremental move.

MOVEI=expression

The expression represents the distance to move from its present location. The sign
of the expression determines the direction (positive or negative) of motion for the
move.

Move the specified incremental distance from the present position. The increment
must not be greater than +/- 2,147,483,647 microsteps or error code 21 will be
set and no motion will occur.

MOVEI= -1.0 ' moves -1.0 units.

MOVEI
ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

EXAMPLES:

104 Programming Commands

Runs the motor until the mark registration input is activated; then moves the motor
the desired registration distance.

MOVEREG=expression

The expression represents the incremental distance to move after a registration
trigger has occurred. The sign of the expression determines the direction (positive
or negative) of motion for the registration cycle. The
distance must not be greater than +/- 2,147,488,647 encoder counts or error code
21 will be set and no motion will occur.

The registration trigger can be the EVENT 1 input, EVENT 2 input or an Encoder
marker state. This trigger is defined in the user program Configuration and
Setup, and also by the EVENT1 or EVENT2 command if they have been exe-
cuted prior to the MOVEREG.

The Registration Travel Limit, which is set by command REGLIMIT, limits the
distance that the motor will rotate if no trigger occurs. A REGLIMIT setting of
0, sets no limit for motor rotation while awaiting a trigger. This is the condition after
power up or RESET. The motor speed during a MOVEREG move is set by the
SPEED command. When the registration trigger occurs, the registration distance
is checked to determine if the motion can be stopped in the given distance. If it
can’t, then the motion will be stopped using the project's Configuration and
Setup setting for max. accel, and an error code 134 is set. This error can be elimi-
nated by increasing the reg. distance, decreasing the speed or increasing the decel-
eration.

SPEED= MOVEREG * 2 * DECEL * .96

Prior to starting a MOVEREG motion the appropriate trigger input (EVENT 1 or
EVENT 2) is checked to see if it has already been triggered. If the trigger has al-
ready occurred, an incremental move of the distance specified by the expression
to the right of the MOVEREG will occur.

A MOVEREG can be started with its trigger disabled (except for the two en-
coder index marker selections). The registration trigger may then be enabled later
by an EVENT1 or EVENT2 command.

MOVEREG= 1.0 ‘ Initiates a positive registration cycle of 1 unit.

MotionMOVEREG
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 105

The logical NOT operator is used in boolean expressions.

NOT expression

The NOT operator uses the "truth table":
The result is TRUE if the expression is FALSE

 expression condition result

True False

False True

DO
:
:

LOOP UNTIL (NOT (BUSY)) ‘The controller will continue to execute until
the axis is done with motion.

Boolean OperatorNOT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

106 Programming Commands

Sets condition to execute subroutine INTRn.

ON [condition] INTRn

The "n" specifies the interrupt number 1-4.

When the specified condition for the ON...INTRn command becomes
TRUE during program execution and the designated interrupt "n" has been en-
abled, a subroutine call to label INTRn takes place. Upon completion of the sub-
routine the program continues from where it was interrupted and execute the next
program line. The INTRn can be disabled at any time during program execution
by the INTROFFn command. The INTRn can be enabled at any time during pro-
gram execution by the INTRONn command.

The <condition> for each enabled interrupt is checked at the end of execution of
each program line. The first <condition> that is TRUE will cause the interrupt to
occur. Because the operating system must check all <conditions> for enabled in-
terrupts after every program line, excessive use of software interrupts will slow
down the execution of the user’s program.

The following example shows the execution flow for two conditions
to be tested. The first condition which is true will result in execution of the

appropriate interrupt routine, in this case INTR1: or INTR2:

ON <condition1> INTR1
ON <condition2> INTR2

INTRON1 ‘turn on interrupt 1
program checks <condition 1> 'check condition 1, if it's TRUE jump to code at INTR1:

if not, continue with next program statement

PROGRAM STATEMENT ‘execute normal program line

program checks <condition 1> 'check condition 1, if it's TRUE jump to code at INTR1:
if not, continue with next program statement

INTRON2 ‘turn on interrupt2
program checks <condition 1> 'check condition 1, if it's TRUE jump to code at INTR1:

If not, continue
program checks <condition 2> 'check condition 2, if it's TRUE jump to INTR2: If not

execute next program statement.

InterruptON...INTRn
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Programming Commands 107

NEXT PROGRAM STATEMENT 'execute next line in program
program checks <condition 1> 'check condition 1, if it's TRUE jump to code at

INTR1: If not, continue and program checks <condi-
tion 2>, 'check condition 2, if it's TRUE jump to
INTR2: If not execute next program line.

INTROFF1
program checks <condition 2> 'check condition 2, if it's TRUE jump to INTR2: If not

execute next program line.

INTROFF2 'condition 2 is not checked since
Interrupt 2 has been disabled.

NEXT PROGRAM STATEMENT 'execute next line in program no conditions are checked
since both interrupt 1 and interrupt 2 were disabled
with the INTROFF command.

INTR1: ‘beginning of interrupt 1 routine
PROGRAM STATEMENTS 'execute program statement interrupt conditions are not

checked after program statements within the interrupt
routine.

RETURN 'end of interrupt 1 routine

INTR2: ‘beginning of interrupt 2 routine
 PROGRAM STATEMENTS 'execute interrupt 1 routine statement interrupt conditions

are not checked after program statements within the in-
terrupt routine.

RETURN 'end of interrupt 1 routine

Up to four interrupt subroutines can be embedded in the program code. A
RETURN command is required at the end of each subroutine. There are four in-
terrupt subroutines labeled (INTR1-INTR4).

ON IN (5)=1 INTR1 ' specifies input 5=1 as the condition to go sub
INTR1
program statements
INTRON1 ' enables INTR1
program statements

INTR1:
program statements
RETURN

EXAMPLES:

108 Programming Commands

The logical OR operator is used in boolean expressions.

expression1 OR expression2

The OR operator uses this "truth Table":
The result is TRUE, if either expression is TRUE.

Expression1 Expression2 Condition Result

True True True

True False True

False True True

False False False

DO

LOOP until (A > 5 OR X = 0)
‘The controller continues to do the loop Until variable A>5 or variable X=0.

Boolean OperatorOR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 109

Sets or returns the condition of a specified digital output.

OUT(n) = expression
OUT(n) - used in an expression

n is the specified output (1-8).

OUT(n)
Returns a 1 for a commanded active output and a 0 for a commanded inactive
output.

OUT(n) = expression
If the expression is a non-zero value the specified output will be activated.

The output are assigned as follows:

Output Output Designation
1 Out 1
2 Out 2
3 Out 3
4 Out 4
5 BCD Strobe 0 / Out 5
6 BCD Strobe 1 / Out 6
7 BCD Strobe 2 / Out 7
8 BCD Strobe 3 / Out 8

OUT(1)=1 ' sets OUT 1 to the active state.
OUT(2)=0 ' sets OUT 2 to the inactive state
x=OUT(1) �Gets the state of output 1 and stores it to x.

Note that use of the BCD command takes precedent over the OUT command
and will toggle OUT3-OUT6 when called to strobe the BCD switch bank. If
OUT3-OUT6 are used as general purpose outputs, care must be taken not to in-
voke a BCD command or the state of the outputs will be disturbed.

I/O OperatorOUT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

110 Programming Commands

Transmits designated data via the designated serial port.

PRINT#1,[expression][, or ;][expression][, or ;]
PRINT#2,[expression][, or ;][expression][, or ;]

Port 1 is the Host port and Port 2 is the User Port.

expression can be an integer variable, real variable, parameter, string
variable or Literal string. Literal strings must be enclosed in quotation marks.

If a comma "," is used between expressions five spaces will separate expressions.

If a semicolon ";" is used between expressions there will be no space between ex-
pressions.

Up to 20 expressions can be used with one PRINT command.

If a semicolon ";" is used at the end of the PRINT command, no carriage-
return/line-feed sequence will be generated.

ACCEL=10.5
DECEL=2.1
PRINT#1,"accel= ";ACCEL,"decel= ";DECEL

' Host output "accel= 10.5 decel= 2.1" crlf

ACCEL=10.5
DECEL=2.1
PRINT#2,"accel= ";ACCEL,"decel= ";DECEL

' User output "accel= 10.5 decel= 2.1" crlf

ACCEL=10.5
DECEL=2.1
PRINT#2,"accel= ";ACCEL,"decel= ";DECEL;

' User output "accel= 10.5 decel= 2.1"

String ManipulationPRINT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 111

Prints strings character or formatted numbers.

PRINT USING #1,"literal string",[exp][, or;][exp][;]
PRINT USING #1,Format$,[exp][, or;][exp][;]
PRINT USING #2,"literal string",[exp][, or;][exp][;]
PRINT USING #2,Format$,[exp][, or;][exp][;]

Port 1 is the Host Port and Port 2 is the User Port.

The numeric values are formatted only using the literal string or a
designated Format$ variable string. This string can contain non-format characters
that will be printed prior to the formatted number. The following characters in the
string will not be printed from the string:
"+" "#" "0" " ." "\" and ",". However, these character can be printable char-
acters by preceding the character with a "\".
 Example:

requirement to send the following ASCII string with the current state of
OUT(1) (Output #1 is <state> which is the coolant control)

a$="Output \#1 is # which is the coolant control"
PRINT USING #1,a$,OUT(1)

The resulting serial output:
Output #1 is n which is the coolant control
where: n is the state of output (1)

The "," which is the delimiter for expressions will not print spaces like the PRINT
command. If spaces are required between expressions they must be added to
the literal string or format$.
Example:

ACCEL=10000
DECEL=20000
a$="Acc= 000000 Dcc= 000000"
PRINT USING#1,a$,accel,decel

The resulting serial output:
Acc= 010000 Dcc= 020000

String ManipulationPRINT
USING

 ACTION:

PROGRAM SYNTAX:

REMARKS:

112 Programming Commands

If the numeric data is larger than the specified format than an "*" will be substituted
for the 0's and #'s in the output.
Example:

ABSPOS=1000.54
a$="Position= +0##.##"
PRINT USING #1,a$,abspos

The resulting serial output:
Position= +***.**

The following special characters are used to format the numeric field:

+ The sign of the number will always be printed. The default prints
the negative sign and substitutes a space for the positive sign.

Represents a digit position. If no data exists at the digit position
substitutes a space. The digit field will always be filled.

0 Represents a digit position. If no data exists at the digit position
substitutes a zero. The digit field will always be filled.

. A decimal point may be inserted at any position in the field.

The valid formats are:
 Left side format Comments

+0000 The sign with leading zero's will be printed.
+0000. The sign with leading zero's and decimal point will be

printed. The right side format is optional.
+#### The leading spaces with a sign and digits will be printed.
+####. The leading spaces with a sign, digits and decimal point

will be printed. The right side format is optional.
0000 The - sign or a space with leading zero's will be printed.
0000. The - sign or a space with leading zero's and decimal point

will be printed. The right side format is optional.
The leading spaces with a - sign or a space and digits will

be printed.
####. The leading spaces with a - sign or a space, digits and

decimal point will be printed. The right side format is op-
tional.

+. The sign and decimal point will be printed. This requires
the right side format also.

. The - sign or a space and decimal point will be printed.
This requires the right side format also.

Programming Commands 113

Right side format Comment
0000 Prints digits with trailing zero's.
Prints digits with trailing spaces.
00## Prints two digits minimum with trailing spaces.

If the expressions are literal strings or variable strings they will be printed as is.

If a semicolon is used at the end of the Print Using command, no carriage-return
/ line-feed sequence will be generated.

When numeric data is to be printed, the format string is searched from the begin-
ning for a format character (+0#.). The string data up to this position is sent via the
serial port. The format characters (+0#.) are now processed and the formatted
value is sent via the serial port. When the next numeric data is to be printed, this
process continues from the current position in the string. When the end of the for-
mat string is encountered and numeric data is to be printed, a default format
(PRINT # format) is used. If the format string end is not encountered and the
command is complete the remaining characters in the format string will be printed.

The following example illustrates how the format string is processed. The
command is:
PRINT USING#1,"Numbers are +###.## ### 0## **",100.54,"mv",
999,"cnts" ,54," is limit"
The "Numbers are " is extracted from the string and sent via serial port. The
"+###.##" is extracted from the string as the data format, which results in
"+100.54" being sent via serial port. The string "mv" is sent via serial port. The
" " is extracted from the string and sent via serial port. The "###" is extracted
from the string as the data format, which results in "999" being sent via serial port.
The string "cnts" is sent via serial port. The " " is extracted from the string and
sent via serial port. The "0##" is extracted from the string as the data format,
which results in "054" being sent via serial port. The string " is limit" is sent via
serial port. The " **" is extracted from the string and a crlf is appended and sent
via serial port. The resulting string is:

Numbers are +100.54mv 999cnts 054 is limit**<cr><lf>

PRINT USING #1,"The time is ##,:##am",12,30
The time is 12: 30am<cr><lf>

PRINT USING #1,"today�s date is 00\\00\\####",1,31,1980;
Today’s date is 01\ 31\ 1980

ABSPOS=10560.32
PRINT USING #1,"Absolute Position is +0######.0## units",abspos

Absolute Position is +0010560.32 units <cr><lf>

EXAMPLES:

114 Programming Commands

Enables\disables the REDUCE current feature of a stepper or returns the
REDUCE current status.

REDUCE=expression
REDUCE - used in an expression

REDUCE=expression
If the expression is true (non-zero) then the REDUCE feature of a stepping
motor is enabled. The motor current while motion is stopped will be reduced to
percentage selected by the project configuration (0% to 100%) . If the expres-
sion is false (zero) then the REDUCE feature of a stepper motor is disabled, the
standstill current will be the normal motor current.

REDUCE - used in an expression
Returns the current setting for the REDUCE feature.

REDUCE=1 ‘enables the REDUCE feature of a stepper drive.

REDUCE=0 ‘disables the REDUCE feature of a stepper drive.

X=REDUCE ‘returns the current REDUCE setting to variable X.

MotionREDUCE
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 115

Sets or returns the distance to be moved during a MOVEREG cycle, while
awaiting a trigger. If no trigger occurs, a MOVEREG cycle behaves like a
MOVEI cycle, with the distance specified by REGLIMIT.
REGLIMIT must be set prior to a MOVEREG cycle.

REGLIMIT - used in an expression
REGLIMIT=expression

REGLIMIT
Return the current MOVEREG travel distance. The value returned is � 0.

REGLIMIT=expression
Sets the MOVEREG travel distance. REGLIMIT should be set to a positive num-
ber or 0. Setting REGLIMIT = 0, or a negative number, allows a MOVEREG to
run indefinitely while awaiting a trigger. If REGLIMIT <0 then REGLIMIT will be
set to 0.

REGLIMIT= 0 ' disables the MOVEREG travel distance limit.

REGLIMIT= 10 ' set the MOVEREG travel distance limit to 10 units.

Returns the rightmost characters of a string.

string1$=RIGHT$(string2$,n)

The n is the number of rightmost characters to return. If n is greater than the length
of string2$ then the entire string is returned to string1$.

b$="Hello World"
a$=RIGHT$(b$,4) ' sets a$="orld"

Over Travel LimitREGLIMIT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

RIGHT$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

116 Programming Commands

Programmable "software limit switch" for motion in the negative direction. Sets or
returns the absolute negative travel limit position value for the motor.

SOFTLIMNEG=expression
SOFTLIMNEG - used in an expression

Software travel limits are used to stop the motor when the commanded position
(ABSPOS) exceeds the programmed software travel limit. There are two software

travel limits, one for + and one for - motor rotation. The
+ software travel limit is tested when the motor is rotating in the + direction. The
- software travel limit is tested when the motor is rotating in the - direction.

The software travel limits are checked if they are enabled and a motion other than
MOVEHOME is occurring.

The software travel limits power up disabled (SOFTLIMOFF). At power up, the
-software travel limit is set to -2,147,481,647 encoder counts away from 0. This
setting is changed with the SOFTLIMNEG command.

When a travel limit is exceeded, the motor is decelerated to a stop using the maxi-
mum accel value, and an error code is set. Code 130 is set when the + software
limit is exceeded and code 131 when the - software limit is exceeded.

SOFTLIMNEG=expression
Sets the absolute travel distance.

SOFTLIMNEG - used in an expression
Evaluates and returns the absolute software travel distance.

SOFTLIMNEG = -4 ' Sets the absolute software travel distance to -4 units.

SOFTLIM
NEG

 ACTION:

PROGRAM SYNTAX:

REMARKS:

Over Travel Limit

EXAMPLES:

Programming Commands 117

Disables the software over travel limits.

SOFTLIMOFF

Software travel limits are used to stop the motor when the commanded position
(ABSPOS) exceeds the programmed software travel limit. There are two software

travel limits, one for + and one for - motor rotation. The
+ software travel limit is tested when the motor is rotating in the + direction. The
- software travel limit is tested when the motor is rotating in the - direction.

This command disables the negative and positive software limits checking during
motion.

SOFTLIMOFF 'Disables the negative and positive software limits.

SOFTLIM
OFF

 ACTION:

PROGRAM SYNTAX:

REMARKS:

Over Travel Limit

EXAMPLES:

118 Programming Commands

Enables the software over travel limits.

SOFTLIMON

Software travel limits are used to stop the motor when the commanded position
(ABSPOS) exceeds the programmed software travel limit. There are two software

travel limits, one for + and one for - motor rotation. The
+ software travel limit is tested when the motor is rotating in the + direction. The
- software travel limit is tested when the motor is rotating in the - direction.

This command enables the negative and positive software limits checking during
motion.

The software travel limits are checked if they are enabled and motion other than
MOVEHOME (move to home) is occurring.

The software travel limits are disabled at power up and each time a program is run
disabled (SOFTLIMOFF) and are set to 2,147,481,647 encoder counts away
from 0. These settings can be subsequently changed with commands
SOFTLIMPOS and SOFTLIMNEG.

When a travel limit is exceeded, the motor is decelerated to a stop using the maxi-
mum accel value, and an error code is set. Code 130 is set when the + software
limit is exceeded and code 131 when the - software limit is exceeded.

SOFTLIMON 'Enables the negative and positive software limits.

Over Travel LimitSOFTLIM
ON

 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 119

Programmable "software limit switch" for motion in the positive direction. Sets or
returns the absolute positive travel limit position value for the motor.

SOFTLIMPOS=expression
SOFTLIMPOS - used in an expression

Software travel limits are used to stop the motor when the commanded position
(ABSPOS) exceeds the programmed software travel limit. There are two software
travel limits, one for + and one for - motor rotation. The
+ software travel limit is tested when the motor is rotating in the + direction. The
- software travel limit is tested when the motor is rotating in the - direction.

The software travel limits are checked if they are enabled and a motion other than
MOVEHOME is occurring.

The software travel limits power up disabled (SOFTLIMOFF). At power up, the
+software travel limit is set to +2,147,481,647 encoder counts away from 0.
This setting is changed with the SOFTLIMPOS command.

When a travel limit is exceeded, the motor is decelerated to a stop using the maxi-
mum accel value, and an error code is set. Code 130 is set when the + software
limit is exceeded and code 131 when the - software limit is exceeded.

SOFTLIMPOS=expression
Sets the absolute travel distance.

SOFTLIMPOS - used in an expression
Evaluates and returns the absolute travel distance.

SOFTLIMPOS = +4 ' Sets the absolute travel distance to +4 units.

Over Travel LimitSOFTLIM
POS

 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

120 Programming Commands

Sets and returns the target velocity of the motor.

SPEED = expression
SPEED - used in an expression

SPEED - used in an expression
Evaluates and returns the target velocity.

Sets the target speed for motion. Specifying a value < 0, results in a target speed
of 0. Specifying a value greater than "Max Speed", set in the Configuration and
Setup, will result in a target speed of "Max Speed". At power up the target speed
is initialized to 25% of "Max Speed". SPEED can be set during motion, the new
setting is effective immediately.

The lowest programmable speed is 0.00015 rev./second.

SPEED=3.0 ' Sets the velocity to 3.0 units/second.
x=SPEED ' sets x to 3.0.

Stops any motion with a controlled stop.

STOP

Stop the motor using the programmed decel and velocity profile.

Although any motion in progress will stop, the user program may continue to
execute. Therefore, any subsequent move commands will execute as the program
continues.

STOP ' generates a motion stop command.

Trajectory ParametersSPEED
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Motion
STOP

 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 121

Sets or returns the maximum position error allowed when motion is stopped, re-
ferred to herein as “position error band”.

STOPERR=expression
STOPERR - used in an expression

STOPERR=expression
Specifies the maximum position error allowed when motion is stopped. Setting the
position error band equal to zero will disable any correction attempt at standstill.
This value is expressed in Units and is used in position maintenance. The position
error band is limited to 32767 encoder counts. At power turn on or when a project
is run is set to .005 revolutions.

STOPERR - used in an expression
Returns the current STOPERR value in Units.

STOPERR=.1 ‘sets the position error band to .1 units.

X=STOPERR ‘returns the current STOPERR to variable X

Returns a string representation of a numeric expression.

string1$=STR$(numeric_expression)

The numeric expression can be a parameter value, real value or integer value.

The STR$ command is the complement of a VAL command.

STRING a$,b$,c$
INTEGER x
REAL y
ACCEL=10.5
x=100
y=2.1
a$=STR$(ACCEL) ' sets a$="10.5"
b$=STR$(x) ' sets b$="100"
c$=STR$(y) ' sets c$="2.1"

MotionSTOPERR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

String ManipulationSTR$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

122 Programming Commands

Returns a string of characters.

string1$=STRING$(num,code)

The num indicates the length of the returned string.

The code is the ASCII code of each character.

a$=STRING$(10,63) ' sets a$="??????????"

Sets or returns the timer value.

TIMER=expression
TIMER - used in an expression

TIMER = expression
Sets the timer value to the expression. The value is in seconds.

TIMER
Returns the current timer value to the variable.

The timer is free running and counts up in .001 second increments. After
reaching a value of +2,147,481.647 seconds, the timer wraps around
to -2,147,481.647 and continues to count towards zero (i.e. the next count

 is -2,147,481.646). Programs which use large timer values must take this
into account and adjust appropriately.

TIMER=0 'Sets the Timer value to 0.

DO
statements

LOOP WHILE TIMER < 1.0 'Do this loop until timer >= 1.0

String Manipulation
STRING$

 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Time FunctionsTIMER
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

Programming Commands 123

Converts and returns a string with upper case letters.

string1$=UCASE$(string2$)

string2$ is copied and all lower case letters are converted to upper case letters and
the resulting string is returned string1$.

This command is useful for making the INSTR command case insensitive.

a$="hello"
b$=UCASE$(a$) ' sets b$="HELLO"

Returns the current Unit ID.

UNITID - used in an expression

The unit id value returned is 1-32. The value read from the unit id switches on
power-on.

ID =UNITID ‘ sets variable ID to the unit id number
IF VAL(unitid$) = ID then ‘ if received unit id matches the unit id

 number execute the following statements.
 [statement block]
END IF

UCASE$
 ACTION:

PROGRAM SYNTAX:

REMARKS:

String Manipulation

EXAMPLES:

UNITID
ACTION:

PROGRAM SYNTAX:

REMARKS:

Daisy Chain

Motion

EXAMPLES:

124 Programming Commands

Return the numeric value of a string.

VAL(n$) - used in an expression

n$ is the designated string.

Only numeric values are returned. The first character that cannot be part of
the number terminates the string. If no digits have been processed a value of zero
is returned.

Integer x
Real y
STRING a$,b$
a$="134 Main St"
b$="10.55 dollars"
x=VAL(a$) ' sets x=134
y=VAL(b$) ' sets y=10.55

Waits for the specified period of time to expire before continuing.

WAIT=expression

Program execution is suspended until the desired time has elapsed. The value
entered is in seconds.

WAIT=1.1 'Waits 1.1 seconds and then continues.

String ManipulationVAL
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

WAIT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Time Functions

EXAMPLES:

Programming Commands 125

Waits for a motion to be completed.

WAITDONE

WAITDONE
Waits for motion to be completed before program execution continues.

An alternate way to accomplish the WAITDONE function is as follows:
DO
:
LOOP WHILE BUSY ' Waits until motion is completed.

WAITDONE
‘Waits for motion to be complete before continuing program execution .

WAIT
DONE

 ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

EXAMPLES:

126 Programming Commands

Enables or disables the stepper drive motor current.

WNDGS=expression
WNDGS - used in an expression

The stepper drive power up with the motor current flowing (enabled) at standstill.
The WNDGS command controls the drive enable output at standstill. WNDGS=1
enables the stepping motor, winding current is on when no motion is taking
place.WNDGS=0, winding current is off when no motion is taking place.

If the stepper drive is disabled when motion is commanded. The stepper motor
windings are turned on and a small delay occurs before motion is started. When
the motion is completed a small delay occurs before the windings are turned off
again. This delay is programmed in the Configuration Step Drive Folder, Motor
current delay item.

If the stepper motor is configured as a closed loop stepper the position mainte-
nance feature is disabled when the WNDGS command is set to zero. The encoder
position is maintained while the drive is disabled. Thus a position error can occur
when the WNDGS command is reenabled.

WNDGS=expression
Sets the no motion drive current state. The expression value must be zero or a
positive number.

WNDGS - used in an expression
Returns the current setting of the no motion drive current state.

WNDGS=1 ‘ stepper drive current is set to the normal current setting
 with no motion taking place.

WNDGS=0 ‘ stepper drive current is off with no motion taking place.

X=WNDGS ‘ returns the current WNDGS state to variable X.

WNDGS
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Motion

EXAMPLES:

Host Commands 127

Section 6.2

Host Commands
Reference Guide

128 Host Commands

6.2.0 Host Commands

One method of operating the controller is to program
it via a PC using the commands detailed in the previ-
ous section, then set it up as a stand-alone system. In
that case, after it is programmed, the programmer
does not need to communicate with any outside
computer system. However, another method of
system operation involves connecting the controller to
some type of "host" computer, via the "HOST RS-
232" or "HOST RS-485" port. Then, that computer
may direct its operation and query its status from time

to time, if desired. To do this, you use the "Host
Commands" detailed below. The full command may
be spelled out, or the abbreviated commands in
parentheses may be used. Note: Except for the
immediate commands, all host commands MUST
be preceded by an ESCAPE character for them
to be recognized while a program is executing.
 Items placed in quotes (e.g., "?") are key
presses or ASCII characters and are not spelled
out in letters.

6.2.1 Host Commands Grouped by Function

MOTION PAGE

BUSY (BS) Returns the motion status of the axis. 131
EVENT1 (E1) Sets enable or disable and trigger state or returns event1 input state. 137
EVENT2 (E2) Sets enable or disable and trigger state or returns event2 input state. 138
FEEDHOLD (FH) Control stops any motion. 138
JOG (J) Runs continuously in the specified direction. 141
MOVEA (MA) Initiates an absolute indexed move . 142
MOVEHOME (MH) Run until the home input is activated. 143
MOVEI (MI) Initiates an incremental indexed move . 143
MOVEREG (MR) Runs until the registration input is activated, 144

then move the specified distance.
STOP (S) Control stop any motion. 149
STOPERR Sets or returns the maximum position error allowed when motion is

stopped. 150
WNDGS (WN) Enable/disable drive. 150

TRAJECTORY PARAMETERS

ABSPOS (P) Sets or returns the absolute position. 129
ACCEL (AC) Sets or returns the acceleration rate in units/sec/sec. 129
DECEL (DC) Sets or returns the deceleration rate in units/sec/sec. 134
DIST Returns the distance moved from the start of the last commanded 135

motion or changes the move distance during indexed motion.
ENCPOS (EP) Returns the encoder absolute position. 135
ENCSPD (ES) Returns the current speed. 136
FOLERR (FE) Sets or returns the position error limit for a closed loop stepper. 139
LOWSPD Sets or return the starting speed value of a stepping motor. 142
SPEED (SPD) Sets or returns the commanded target speed. 149

Host Commands 129

I/O PAGE

ANALOG (AN) Returns the analog input voltage. 130
BCD Returns the BCD switches value. 131
IN (I) Returns the discrete input state of the specified input. 141
OUT (O) Sets the discrete output state of the specified output 144

TRAVEL LIMITS

HARDLIMOFF (HL0) Disables hard limits. 140
HARDLIMON (HL1) Enables hard limits. 140
REGLIMIT (RL) Sets or returns the MOVEREG limit distance. 145
SOFTLIMNEG (SLN) Sets or returns the software absolute negative travel distance. 147
SOFTLIMOFF (SL0) Disable soft limits. 147
SOFTLIMON (SL1) Enables soft limits 148
SOFTLIMPOS (SLP) Sets or returns the software absolute positive travel distance. 148

MISCELLANEOUS

CURRENT Returns the project drive current setting. 133
DIR Returns the user project information. 133
ERR Return error number. 136
ERRM Return error number. 136
FREEMEM Return the user program free memory byte value. 139
RESET Reset operating system. 145
REVISION (REV) Returns operating system revision and date. 146
RUN Execute user program from the start. 146

IMMEDIATE

“BACKSPACE” Delete one character in the host buffer. 130
“CTRL-A” Stop motion immediately and terminate program execution. 132
“CTRL-C” Stop motion immediately and terminate program execution. 132
 “ESCAPE” Immediate Host command. 137

DAISY CHAINING

<nn Enables a specific unit (nn = 01 to 32) 128
<nn? Enables a specific unit (nn = 01 to 32) which then sends back its unit ID. 128
<00 Places all units on the chain in a command listen mode,

the units can not transmit. 128

130 Host Commands

6.2.2 Host Command Summary (alphabetical list)

Note: The full command may be spelled out, or the abbreviated
commands in parentheses may be used.

PAGE
<nn Enables a specific unit (nn = 01 to 32) 128
<nn? Enables a specific unit (nn = 01 to 32) which then sends back its unit ID. 128
<00 Places all units on the chain in a command listen mode,

the units can not transmit. 128
A
ABSPOS (P) Sets or returns the absolute position. 129
ACCEL (AC) Sets or returns the acceleration rate in units/sec/sec. 129
ANALOG (AN) Returns the analog input voltage. 130

B
BACKSPACE Delete one character in the host buffer. 130
BCD Returns the BCD switches value. 131
BUSY (BS) Returns the motion status of the axis. 131

C
CTRL-A Stop motion immediately and terminate program execution. 132
CTRL-C Stop motion immediately and terminate program execution. 132
CURRENT Returns the project drive current setting. 133

D
DECEL (DC) Sets or returns the deceleration rate in units/sec/sec. 133
DIR returns the user project information. 134
DIST Returns the distance moved from the start of the last commanded 135

motion or changes the move distance during indexed motion.

E
ENCPOS (EP) Returns the encoder absolute position. 135
ENCSPD (ES) Returns the current speed. 136
ERR Returns error number. 136
ERRM Returns error number. 136
ESCAPE Immediate host command. 137
EVENT1 (E1) Sets enable or disable and trigger state of event1. 137
EVENT2 (E2) Sets enable or disable and trigger state of event2. 138

F
FEEDHOLD (FH) Control stops any motion. 138
FOLERR (FE) Sets or returns the following error. 139
FREEMEM Return the user program free memory byte value. 139

H
HARDLIMOFF (HL0) Disables hard limits. 140
HARDLIMON (HL1) Enables hard limits. 140

Host Commands 131

132 Host Commands

I
IN (I) Returns the discrete input state of the specified input. 141

J
JOG (J) Runs continuously in the specified direction. 141

L
LOWSPD Sets or return the starting speed value of a stepping motor. 142

M
MOVEA (MA) Initiates an absolute indexed move . 142
MOVEHOME (MH) Run until the home input is activated. 143
MOVEI (MI) Initiates an incremental indexed move . 143
MOVEREG (MR) Runs until the registration input is activated, 144

then move the specified distance.

O
OUT (O) Sets the discrete output state of the specified output 144

R
REGLIMIT (RL) Sets or returns the MOVEREG limit distance. 145
RESET Reset operating system. 145
REVISION (REV) Returns operating system revision and date. 146
RUN Execute user program from the start. 146

S
SOFTLIMNEG (SLN) Sets or returns the software absolute negative travel distance. 147
SOFTLIMOFF (SL0) Disable soft limits. 147
SOFTLIMON (SL1) Enables soft limits 148
SOFTLIMPOS (SLP) Sets or returns the software absolute positive travel distance. 148
SPEED (SPD) Sets or returns the commanded target speed. 149
STOP (S) Control stop any motion. 149
STOPERR Sets or returns the maximum position error allowed when motion is

stopped. 150

W
WNDGS (WN) Enables or disables the stepper drive motor current. 150

Host Commands 133

6.2.3 Host Commands - Alphabetical Listing

Functional list of all HOST commands with syntax and examples.

Notes: "cr" means the carriage return key in the following descriptions. Each command may be spelled
out, or the abbreviated command, where applicable, may be used.

Enables a specific unit on the Host daisy chain to receive and transmit informa-
tion.

<nn cr

"nn" is a unit id number from 01 to 32. Leading zeros are required when specifying
unit id numbers < 10. 00 is a special case as described below.

This command is used to communicate to multiple units from a single host com-
puter. In this arrangement the Host communications ports of two or more units are
wired together in RS-485 mode as shown previously in the wiring section. Each
unit must also have its ID switches set to a unique ID number. One (and only one)
unit MUST have its switches set to ID number 1. This unit will transmit a RDY
upon reset, the others will not.

In order to accept commands from the Host device, a particular unit must be set
to the active mode. The Host accomplishes this by sending the device attention
character (<) followed by the two number device ID and a carriage return, line
feed. If nn matches the controller ID number as set on the ID switches, that unit
becomes the active controller on the chain.

If the Host requires an acknowledgement that a specified unit is in the active mode,
the Host may send a <nn? cr . If any unit is on the chain and in the active mode, it
will transmit its ID number as two characters.

All controllers on the chain may be placed in a command listen mode. In this mode,
all units will actively listen for and respond to commands, but will not transmit any
response. This is useful for synchronizing multiple units by simultaneously starting
their motion. To place the units in this mode, the Host must send <00 cr. In order
to exit the command listen mode an individual unit must be re-activated (e.g. <01).

<05 ‘ sets unit with ID number 5 to the active mode.
<06? ‘ queries whether unit 6 is on the chain and active

‘ unit 6 will respond with “06” if it is.
<00 ‘ sets all units to the command listen mode.

Daisy Chain<nn
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

134 Host Commands

Sets or returns the commanded absolute position of the motor.

ABSPOS=number cr
ABSPOS cr

Abbreviation P can be used in place of ABSPOS.

See Programming Command ABSPOS.

ABSPOS=2 'sets absolute position to 2 units.

ABSPOS 'returns the current absolute position

Sets or returns the acceleration value of an axis.

ACCEL=number cr
ACCEL cr

Abbreviation AC can be used in place of ACCEL.

Setting ACCEL less than or equal to zero does not set Error Code 6.

See Programming Command ACCEL.

ACCEL=2 'Sets the acceleration rate to 2 units/sec2.

ABSPOS
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Trajectory Parameters

EXAMPLES:

ACCEL
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Trajectory Parameters

EXAMPLES:

Host Commands 135

Returns the analog input value in volts.

ANALOG cr

Abbreviation AN can be used in place of ANALOG.

See Programming Command ANALOG.

ANALOG 'returns the analog input voltage value.

The Backspace key or ASCII code 08 can be used to delete one character from
the host receiver buffer.

Press the BACKSPACE (�) key or send ASCII 08.

Note: This command is placed in quotes. This is because it is a keypress or ASCII
code and is not spelled (typed) out in letters. The ASCII code may be sent to the
controller if a keyboard is not used.

ANALOG
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

I/O Operator

EXAMPLES:

“BACK
SPACE"

 ACTION:

PROGRAM SYNTAX:

Immediate

136 Host Commands

Returns the value on the BCD switches.

BCD cr

See Programming Command BCD.

BCD 'returns the BCD switches value.

Returns the motion status.

BUSY cr

Abbreviation BS can be used in place of BUSY.

See Programming Command BUSY

BUSY cr 'returns the motion status.

BCD
 ACTION:

PROGRAM SYNTAX:

REMARKS:

I/O Operator

EXAMPLES:

BUSY
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

EXAMPLES:

Host Commands 137

Stops motion by decelerating the motor using the maximum acceleration value in
the Configuration and Setup. The system remains energized, and program
execution terminates. This command has the same effect as the hardware CLEAR
input.

Simultaneously press the control key, CTRL, and A keys. ASCII code 01 may
also be used.

"CTRL-A" will stop program execution and motion.

Note: This command is placed in quotes. This is because it is a keypress
or ASCII code and is not spelled (typed) out in letters. The ASCII code may be
sent to the controller if a keyboard is not used.

Performs the same function as the CTRL-A.

Simultaneously press the control key, CTRL, and the C keys. ASCII code 03 may
also be used.

"CTRL C" will stop program execution and motion.

Note: This command is placed in quotes. This is because it is a keypress or ASCII
code and is not spelled (typed) out in letters. The ASCII code may be sent to the
controller if a keyboard is not used.

Immediate"CTRL-A"
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Immediate"CTRL-C"
 ACTION:

PROGRAM SYNTAX:

REMARKS:

138 Host Commands

Returns the project drive current setting.

CURRENT cr

This command only applies to the SS2000D6i controlller. It returns the Drive
Current setting in amperes of the user project.

CURRENT ‘Returns the Drive Current setting

Sets or returns the deceleration value.

DECEL=number cr
DECEL cr

Abbreviation DC can be used in place of DECEL.

Setting DECEL less than or equal to zero does not set Error Code 7.

See Programming Command DECEL.

DECEL=3.1 'sets the deceleration value to 3.1 units/sec2.

CURRENT
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Miscellaneous

EXAMPLES:

DECEL
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Trajectory Parameters

EXAMPLES:

Host Commands 139

Returns the user project information.

DIR cr

If there is no user project, DIR returns a crlf.

Returns the following ASCII format:
VER n.nn
pppppppp mm\dd\yyyy hh:mm
 where:

n.nn project compiler version.
pppppppp project name. Up to 8 characters can be used for a proj-

ect name. If less than 8 characters is used to identify a
project the trailing characters will be spaces.

mm month the project was compiled.
dd day the project was compiled.
yyyy year the project was compiled.
hh hour the project was compiled.
mm minutes the project was compiled.

DIR cr ' with no project loaded
 crlf

DIR cr ' with project test1 loaded
VER 1.00crlf
test1 06\26\1996 12:30

compiled with version 1.00 compiler. Project name is test1. com-
piled June 26 1996 at 12:30.

MiscellaneousDIR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

140 Host Commands

Returns the distance moved from the start of the last commanded motion or
changes the move distance during indexed motion.

DIST=number cr
DIST cr

See Programming Command DIST.

DIST ' returns the distance traveled from the start of motion.

MOVEI=-25
DIST=-10 ' shorten the move by 10 units

Returns the encoder position.

ENCPOS cr

Abbreviation EP can be used in place of ENCPOS.

See Programming Command ENCPOS.

ENCPOS ' returns the encoder position.

Trajectory ParametersDIST
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

ENCPOS
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Trajectory Parameters

EXAMPLES:

Host Commands 141

Returns the current encoder speed in units/second.

ENCSPD cr

Abbreviation ES can be used in place of ENCSPD.

See Programming Command ENCSPD.

ENCSPD ' returns the current encoder speed.

Returns the error status of the controller.

ERR cr

See Programming Command ERR.

ERR cr ' return the error status.

Returns the error status of the controller.

ERRM cr

See Programming Command ERR.

ERRM cr ' return the error status.

ENCSPD
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Trajectory Parameters

EXAMPLES:

MiscellaneousERR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

MiscellaneousERRM
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

142 Host Commands

The ESCAPE command is used during program execution to allow host commands
to be executed.

Press the ESCAPE key or send ASCII code 27.

The ESCAPE command must precede a host command during program execution
in order for it to be executed.

Note: This command is placed in quotes. This is because it is a keypress or ASCII
code and is not spelled (typed) out in letters. The ASCII code may be sent to the
controller if a keyboard is not used.

"ESCAPE" ABSPOS cr ' returns the absolute position

"ESCAPE" STOP cr ' stops motion

"ESCAPE" FEEDHOLD cr ' Feedhold motor

Sets the trigger polarity and trigger enable, which are used in a MOVEHOME and
MOVEREG cycle.

EVENT1=number cr

Abbreviation E1 can be used in place of EVENT1.

See Programming Command EVENT1

EVENT1=0 'disables EVENT1 trigger if assigned as a
MOVEREG or MOVEHOME trigger.

EVENT1=1 'Sets EVENT1 trigger to positive edge triggering and
enables the trigger.

EVENT1=-1 'Sets EVENT1 trigger to negative edge triggering and en-
ables the trigger.

Immediate"ESCAPE"
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

EVENT1
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

EXAMPLES:

Host Commands 143

Sets the trigger polarity and trigger enable, which are used in a MOVEHOME and
MOVEREG cycle.

EVENT2=number cr

Abbreviation E2 can be used in place of EVENT2.

See Programming Command EVENT2

EVENT2=0
Disables EVENT2 trigger if assigned as a MOVEREG trigger.

EVENT2=1
Sets EVENT2 trigger to positive edge triggering and enables the trigger.

EVENT2=-1
Sets EVENT2 trigger to negative edge triggering and enables the trigger.

This command stops all motion by decelerating at the programmed decel rate. The
user program continues to run. To continue motion issue a RUN host command
or toggle the RUN hardware input from inactive to active.

FEEDHOLD cr

Abbreviation FH can be used in place of FEEDHOLD.

FEEDHOLD
Control stops any motion. The control stopping rate is the programmed DECEL

rate.

To resume the stopped motion issue a RUN host command.

To cancel the motion issue a <Ctrl-A> host command.

EVENT2
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

EXAMPLES:

FEED
HOLD

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

144 Host Commands

FEEDHOLD crEXAMPLES:

Host Commands 145

Sets or returns the position error limit. When the position error limit is exceeded
action is taken according to the error action parmeter in the closed loop setup and
configuration folder.

FOLERR=number cr
FOLERR cr

Abbreviation FE can be used in place of FOLERR.

Entering a negative value does not set error code 19.

See Programming Command FOLERR.

FOLERR=.5 ' position error limit is set to .5 units

Returns the total program space available and the amount of free memory remaining
for program storage.

FREEMEM cr

The return format is:
tttt,nnnn

 where: tttt total number of 8 bit bytes available.
nnnn number of 8 bit byte remaining.

An option to save or not save the source code for the project is selected by ac-
cessing the System menu item Source Code in the MX2000-TDC Programming
Environment . The saving of the source code results in the compressed source
code being added to the compiled project during a project download. If more
memory is required to store the project simply select the do not save the source
code.

FREEMEM cr
8192,8000
8192 total bytes available with 8000 bytes remaining.

Trajectory ParametersFOLERR
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

MiscellaneousFREEMEM
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

146 Host Commands

Disables the hardware limit inputs.

HARDLIMOFF cr

Abbreviation HL0 can be used in place of HARDLIMOFF.

See Programming Command HARDLIMOFF.

HARDLIMOFF 'hard limit inputs are general purpose.

Enables the hardware limit inputs.

HARDLIMON cr

Abbreviation HL1 can be used in place of HARDLIMON.

See Programming Command HARDLIMON.

HARDLIMON 'hard limit inputs are active

Travel LimitsHARDLIM
OFF

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

HARDLIM
ON

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Travel Limits

EXAMPLES:

Host Commands 147

Returns the state of a digital input.

IN(nn) cr

Abbreviation I can be used in place of IN.

Setting nn greater than 17 does not set Error Code 9.

See Programming Command IN.

IN(6) ' current state of input 6 is returned.

Move in the specified direction.

JOG = number cr

Abbreviation J can be used in place of JOG.

See Programming Command JOG.

JOG=+1 ' start a jog in the positive direction.

IN
ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

I/O Operator

EXAMPLES:

JOG
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

EXAMPLES:

148 Host Commands

Sets or returns the starting speed value of a stepping motor.

LOWSPD=number cr
LOWSPD cr

See Programming Command LOWSPD.

LOWSPD=2.5 ‘Sets the starting speed to 2.5 units/sec

LOWSPD ‘Returns the current starting speed

Initiates the motor to move to the specified absolute position.

MOVEA = number cr

Abbreviation MA can be used in place of MOVEA.

Entering a move distance that exceeds 2,147,483,647 counts does not set Error
Code 21.

See Programming Command MOVEA.

MOVEA=2.5 ' moves to absolute position of 2.5 units.

LOWSPD
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

MotionMOVEA
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

Trajectory Parameter

Host Commands 149

Runs the motor until the home input is activated, captures and records the position
of the switch activation as home (electrical zero), then stops.

MOVEHOME = number cr

Abbreviation MH can be used in place of MOVEHOME.

See Programming Command MOVEHOME.

MOVEHOME=+1 'Returns to mechanical home in the Positive direction

Initiates an incremental move.

MOVEI = number cr

Abbreviation MI can be used in place of MOVEI.

See Programming Command MOVEI.

MOVEI=2.5 ' moves +2.5 units.

MotionMOVE
HOME

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

MOVEI
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

EXAMPLES:

150 Host Commands

Runs the motor until the mark registration input is activated, then moves the motor
the desired registration distance without stopping.

MOVEREG =number cr

Abbreviation MR can be used in place of MOVEREG.

See Programming Command MOVEREG.

MOVEREG=+2.5 'Initiates a registration cycle in the positive direction with
a move of 2.5 units after the mark registration input is activated.

Sets or returns the state of a specified digital output.

OUT(n) = number cr
OUT(n) cr

Abbreviation O can be used in place of OUT.

Setting n greater than 8 does not set Error Code 8.

See Programming Command OUT.

OUT(1)=1 ' sets OUT 1 to the active state.

OUT(2)=0 ' sets OUT 2 to the inactive state

MotionMOVEREG
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

OUT
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

I/O Operator

EXAMPLES:

Host Commands 151

Sets or returns the maximum mark registration distance before indicating an error
and stopping motion.

REGLIMIT cr
REGLIMIT=number cr

Abbreviation RL can be used in place of REGLIMIT.

See Programming Command REGLIMIT.

REGLIMIT=0 ' disables the MOVEREG travel distance limit.

REGLIMIT=10 ' set the MOVEREG travel distance limit to 10 units.

REGLIMIT ' returns the current REGLIMIT value

Resets the system.

RESET cr

This command causes the system to halt, and then restart as though power had been
cycled.

Travel LimitsREGLIMIT
ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

RESET
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Miscellaneous

152 Host Commands

Returns the current revision level of the controller's operating system software.

REVISION cr

Abbreviation REV can be used in place of REVISION.

The return format for this command is:
DCC REV n.nn mm/dd/yy

where:
n.nn software revision
mm month
dd day
yy year

REV

Starts the user program or resumes from a FEEDHOLD condition which has been
generated either by the hardware input Feedhold or by the FEEDHOLD host
command.

RUN cr

Starts execution of the user program if a Feedhold condition does not exist.

Resumes motion if a Feedhold condition exists.

RUN

MiscellaneousREVISION
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

EXAMPLES:

RUN
 ACTION:

PROGRAM SYNTAX:

REMARKS:

Miscellaneous

EXAMPLES:

Host Commands 153

Programmable "software limit switch" for motion in the negative direction. Sets or
returns the absolute negative limit travel position value.

SOFTLIMNEG=number cr
SOFTLIMNEG cr

Abbreviation SLN can be used in place of SOFTLIMNEG.

See Programming Command SOFTLIMNEG.

SOFTLIMNEG= -4 ' sets the absolute software travel limit to -4 units.

SOFTLIMNEG ' returns the software travel limit value

Disables the software over travel limits.

SOFTLIMOFF cr

Abbreviation SL0 can be used in place of SOFTLIMOFF.

See Programming Command SOFTLIMOFF.

SOFTLIMOFF 'Disables the negative and positive software limits

SOFTLIM
NEG

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Travel Limits

EXAMPLES:

SOFTLIM
OFF

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Travel Limits

EXAMPLES:

154 Host Commands

Enables the software over travel limits.

SOFTLIMON cr

Abbreviation SL1 can be used in place of SOFTLIMON.

See Programming Command SOFTLIMON.

 SOFTLIMON 'Enables the negative and positive software limits.

Programmable "software limit switch" for motion in the positive direction. Sets or
returns the absolute positive limit travel position value for the motor.

SOFTLIMPOS=number cr
SOFTLIMPOS cr

Abbreviation SLP can be used in place of SOFTLIMPOS.

See Programming Command SOFTLIMPOS.

SOFTLIMPOS=4 ' sets the absolute travel distance to +4 units.

SOFTLIMPOS ' returns the current SOFTLIMPOS value.

SOFTLIM
ON

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Travel Limits

EXAMPLES:

SOFTLIM
POS

 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Travel Limits

EXAMPLES:

Host Commands 155

Sets and returns the target velocity of the motor.

SPEED = number cr
SPEED cr

Abbreviation SPD can be used in place of SPEED.

See Programming Command SPEED.

SPEED=2.0 'sets target velocity to 2 units/sec.

SPEED ' returns 2.0

Stops any motion with a controlled stop.

STOP cr

Abbreviation S can be used in place of STOP.
See programming command STOP.

Stop the motor using the programmed decel and velocity profile.

STOP ' generates a motion stop command.
' the present value of DECEL is used
' as the deceleration rate

SPEED
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Trajectory Parameters

EXAMPLES:

STOP
ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

EXAMPLES:

Motion

156 Host Commands

Sets or returns the maximum position error allowed when motion is stopped, re-
ferred to herein as “position error band”.

STOPERR=number cr
STOPERR cr

See Programming Command STOPERR.

STOPERR=.1 ‘sets the position error band to .1 units.

STOPERR ‘returns the current STOPERR.

Enables or disables the drive.

WNDGS=number cr

Abbreviation WN can be used in place of WNDGS.

See Programming Command WNDGS.

WNDGS=0 'disables the drive.

WNDGS=1 'enables the drive.

MotionSTOPERR
 ACTION:

PROGRAM SYNTAX:

REMARKS:

EXAMPLES:

WNDGS
 ACTION:

PROGRAM SYNTAX:

ABBREVIATION:

REMARKS:

Motion

EXAMPLES:

Programming Examples 151

Section 7

Programming Examples

152 Programming Examples

This section contains three sample applications which are easily implemented using the SS2000D6i Controller/Drive. Each
sample application contains an explanation of the application including requirements and a diagram. A sample program,
including comments, is also provided for each application.

7.1 Cut to Length Application

This application requires a stepper motor to run a pair of nip rollers that draw material from a spool. The material could be
anything from paper to steel. The requirements for this application are:

• Wait for activation of input 1 (Start switch) from an external device. This device may be an operator input or PLC.
• Feed out a length of material. For this application, a length of 12 inches is required.
• Activate the cutting blade.
• Delay for 1 second. This allows the blade to cut the material.
• Deactivate the cutting blade.
• Delay for 0.25 seconds to allow the blade to return home.
• Repeat the process unless input 2 (Stop switch) is activated.

Program Code:

begin: >Label for program return .
do: loop until (in(1)=1) >Wait for input 1 to become active.
movei=12 >Move 12 inches (incremental move).
waitdone 'wait for motion to be completed
out(1)=1 >Turn on output 1, cutting blade activation.
wait=1 >Wait for 1 second. Wait for cut to happen.
out(1)=0 >Turn off output 1, cutting blade deactivation.
wait=.25 >Wait for cutting blade to return, .25 sec.
if in(2)=0 then goto begin >Return to beginning of program.

end >End of program.

SS2000D6i
Controller/

Drive

Cutting
Head

Driven
Roller

Material
Spool

IN1

IN2

OUT1

INPUT
SWITCHES

START

STOP

Programming Examples 153

7.2 Rotary Table Application with Test Stations

In this application, a part is loaded onto a rotary table via a load belt. Once the part is on the table, it must be tested at three
test stations. The application requires:

• A sensor to tell the table to jog until a sensor indicates the presence of a part on the table.
• Turn on outputs to tell the load and exit belts to stop until testing is complete at all the test stations.
• Rotate the table 90E to position the part at the first test station.
• The test procedure requires the sample to be at each station until an input is activated on the control. Each test station is

45E apart.
• After the last test station, the part is rotated 90E to the exit station where it is then carried out via the exit belt. A sensor

will then tell the controller to start the load belt for the next part.

Program Code (Rotary Table):

integer count > Declare varaiables
begin: > Label to start program
 do:loop until(in(1)=1) > Wait until a part is detected by the sensor
 out(2)=1 > Turn off the exit belt motor
 out(1)=1 > Turn off the loading belt motor
 movei=+90 > Move table 90E
 waitdone ' Wait for motion to be completed
 do: loop until (in(2)=1) > Wait for test station to complete testing and turn on input 2.
 count =0 > Initialize a counter to zero
 do > Do loop begin

movei=+45 > Move rotary table +45E to the next station
waitdone > Wait until the motor stops.
do: loop until(in(3)=1 or in(4)=0) >Stay in this loop until the testing at stations 2 and 3 are complete.
count=count+1 > Increment counter by 1.

 loop until count=2 > Do loop end.
 movei=+90 > Move the part 90E to the exit belt
 waitdone ' Wait for motion to be completed
 if in(5)=0 then > Check input 5 if it is inactive if not continue if active end.

out(2)=0 > Turn on exit belt.
do: loop until in(6)=1 > Stay in loop until the sensor is activated.
out(1)=0 > Turn on loading belt.
goto begin > Return to the beginning of the program

 end if > End of the if statement.
end > End of the program.

Test
Station

1

Exit
Belt

Test
Station 2Test

Station
3

Load
Belt

154 Programming Examples

7.3 Slitting Machine Application

A manufacturer of adhesive tape uses a machine that takes a wide roll of tape and slits(cuts) it to the correct sizes. The
program must be written to make tape widths of 2 inches, 1inch, and 0.5 inches from a 10 foot long roll. The size of the tape
will be determined by the switch inputs from a switch selector panel. The machine will operate as follows:

• Return to mechanical home.
• If input 1 is active make 0.5" wide rolls of tape.
• If input 2 is active make 1.0" wide rolls of tape.
• If input 3 is active make 2.0" wide rolls of tape.
• Loop until a selection is made (switches 1 – 3) and input 4 (start switch) is active
• If input 5 (stop switch) is active end the program else return to electrical home
• Restart program.

SS2000D6i
Controller/

Drive

Roll of Tape

Knife
Act.Motor

Home
Switch

IN1

SWITCH
PANEL

OUT1

IN5

IN4

IN3

IN2
0.5" TAPE ROLLS

STOP SWITCH

START SWITCH

2.0" TAPE ROLLS

1.0" TAPE ROLLS

Programming Examples 155

Program Code (Slitting machine):

integer I >Declare variables
movehome=1 >Return to mechanical home switch.
start: >Start label.
 do: loop until in(4)=1 'Wait for input 4 to be active.
 if in(1)=1 then goto half_in_cut >If input one is a one goto half_in_cut routine.
 if in(2)=1 then goto one_in_cut >If input two is a one goto one_in_cut routine.
 if in(3)=1 then goto two_in_cut >If input three is a one goto two_in_cut routine.
goto start >Return to start.

half_in_cut: >Half inch cut routine.
for I=1 to 240 >Beginning of for..next loop.

movei=.5 >Move 0.5".
waitdone >Wait until move is completed.
out(1)=1 >Turn on the cutting blade on output 1.
wait=.5 >Wait for cutter to complete the cut.

next I >End of the for..next loop.
goto check >Goto check subroutine.

one_in_cut: >One inch cut routine.
for I=1 to 120 >Beginning of for..next loop.

movei=1 >Move 1"
waitdone >Wait until move is completed.
out(1)=1 >Turn on the cutting blade on output 1.
wait=.5 >Wait for cutter to complete the cut.

next I >End of the for..next loop.
goto check >Goto check subroutine.

two_in_cut: >Two inch cut routine.
for I= 1 to 60 >Beginning of for..next loop.

movei=2 >Move 2".
waitdone >Wait until move is completed.
out(1)=1 >Turn on the cutting blade on output 1.
wait=.5 >Wait for cutter to complete the cut.

next I >End of the for..next loop.

check: >Check input 5 subroutine.
if in(5) = 0 then >Check to see if input 5 is inactive.

movea=0 >If input 5 is inactive move to electrical home.
goto start >Goto beginning of input search
end if >End of if..then statement

end >End of program.

156 Programming Examples

(This Page left intentionally Blank)

Troubleshooting Guide 157

Section 8

Troubleshooting
Guide

158 Troubleshooting Guide

The following table lists some of the more commonly asked troubleshooting questions and possible solutions.

TROUBLESHOOTING QUESTION POSSIBLE SOLUTIONS
I can=t establish communication with my control.
What could be the problem?

1) Insure that the connections are correct. See Section 3.5.3 for serial port
communication connections.

2) Check to make sure that the communication parameters are set correctly
as defined in Sections 3.1, Switch Settings and 3.4, Serial port 1 switch
setting.

3) Check to see if there is power to the unit. Section 3.5.5 provides informa-
tion on AC power connections.

When I press a button connected to my run input
the motor does not turn, why?

1) The switch may not be connected properly. See Section 3.5.2, In-
put/Output Connections for diagrams on how to properly wire the run
input (IN 5).

2) The motor could be connected improperly. Refer to Section 3.5.1, Motor
and Encoder Connections, to ensure the motor connectrions are correct.

3) Check to see if there is power to the unit. Section 3.5.5 provides informa-
tion on AC power connections.

4) The program could also be waiting for an input from another device or
switch.

After checking my connections and verifying that
they are correct, my motor still does not turn when
I start the program.

1) The ENABLE input to the drive may not be properly connected or
activated. Insure that the ENABLE input is connected to an active cur-
rent sinking circuit or switch that is connected with common. See Sec-
tion 3.4 for information on the User Enable input and Section 3.5.2 for
proper connection.

2) Verify that your machine is not mechanically bound-up or obstructed.
When my system activates a sensor the controller
does not seem to recognize it, why?

1) Check to make sure that you are operating in the correct mode, i.e. if
your using an NPN sensor, make sure you are in sink mode, a PNP sen-
sor requires source mode. Check the connections and make sure you
have power to the sensor. Section 3.5.2, Input/Output Connections pro-
vides detailed diagrams of proper Sink mode and Source mode wiring
connections.

If more information is needed or additional assistance is required contact Superior Electric's, Motion Application Engineering
Department at 1-860-585-4510 between 8:00 a.m. and 5:00 p.m. EST

Glossary 159

Section 9

Glossary

160 Glossary

ABSOLUTE MODE - Motion mode in which all motor
movements are specified in reference to an electrical
home position.

ABSOLUTE POSITION - A data register in the
Controller which keeps track of the commanded motor
position. When the value in this register is zero, the
position is designated "Electrical Home".

ACCELERATION - The rate at which the motor speed
is increased from its present speed to a higher speed
(specified in units/second/second).

ACCURACY (of step motor) - The noncumulative
incremental error which represents step to step error in
one full motor revolution.

AMBIENT TEMPERATURE - The temperature of the air
surrounding the motor or drive.

AMPLIFIER - Converts or amplifies low level signals to
high voltages and current for use with the motor.

ASCII - (American Standard Code for Information
Interchange). A format to represent alphanumeric and
control characters as seven-or eight-bit codes for data
communications. A table of the ASCII codes appears
on the last page of this section.

ATTENTION CHARACTER - <nn, where "nn" is a
unique integer from 1-99 (set by use of the unit ID#
select switches) that is assigned to a Motion Controller
arrayed in a multi-Controller system. The Attention
Character directs the program command to the specified
Motion Controller.

BACK EMF - The voltage that a permanent magnet
motor generates when it is rotated. This has a linear
relationship with speed and is related to the voltage
constant or back EMF constant of the motor, KE which
is expressed in units of :

Volts
 1000 RPM

BANDWIDTH - A given range of frequencies that a
motion system can respond to commands.

BAUD RATE - The rate of serial data communications
expressed in binary bits per second.

BCD - (Binary Coded Decimal), a format to represent the
digits 0 through 9 as four digital signals. Systems using
thumb wheel switches may program commands using
BCD digits. A BCD digit uses a standard format to
represent the digits 0 through 9 as four digital signals.

The following table lists the BCD and complementary
BCD representation for those digits. The Motion

Controller uses the complementary BCD codes because
the signals are active low.

 BCD code table (0 = low state, 1=high state)

 Complementary
Digit BCD Code BCD Code
 0 0000 1111
 1 0001 1110
 2 0010 1101
 3 0011 1100
 4 0100 1011
 5 0101 1010
 6 0110 1001
 7 0111 1000
 8 1000 0111
 9 1001 0110

To represent numbers greater than 9, cascade the BCD
states for each digit. For example, the decimal number
79 is BCD 0111:1001.

BRAKING TORQUE - The torque that is required to
bring the motor from a running condition to a stop.
This also describes the torque that is developed during
a dynamic braking cycle.

CLEAR - Input or Command to immediately halt all
motor motion and program execution.

COLLECTORS (OPEN) - A transistor output that takes
the signal to a low voltage level with no pull-up device;
resistive pull-ups are added to provide the high voltage
level.

CYCLE START - Command to initiate program
execution.

CYCLE STOP - Command to stop program execution.

DAISY-CHAIN - A method to interface multiple Motion
Controllers via RS485 to a single host using only one
serial port.

DAMPING - A method of applying additional friction or
load to the motor in order to alleviate resonance and
ringout.

DECELERATION - The rate in which the motor speed
is decreased from its present speed to a lower speed
(specified in units/second/second).

Glossary 161

DEVICE ADDRESS - A unique number used to assign
which Motion Controller in a multi-drive stepper system
is to respond to commands sent by a host computer or
terminal. Device addresses from 1 - 99 are set by means
of the ID # select switch. "00" is reserved to address all
Motion Controllers in a system. Factory default is 01.

DUTY CYCLE - The amount of Αon≅ time versus the
Αoff≅ time. This is usually expressed in terms of a
percentage of the Αon≅ time versus the total time. This
is given by the
following equation:

 TON

DCycle = x 100
 TOFF + TON

DWELL - See "WAIT".

ELECTRICAL HOME - The location where the motor
position counter (abspos) is zero.

ENCODER - a mechanical device attached to the motor
that provides a pulse output. This output can be used
to determine position, speed or acceleration. The
encoder may also be an absolute encoder or
incremental.

FEEDBACK - A signal that is transferred from the
output, in this case the motor, back to the input where
it is compared to see if a particular goal has been
achieved.

FEEDHOLD - The act of stopping the motor while in
motion by causing it to decelerated to a stop without
loss of position.

FEEDRATE - The speed or velocity (in units per
second) at which a move will occur.

FRICTION - Force that is opposite to the direction of
motion as one body moves over another.

FULL-STEP - Position resolution in which 200 pulses
corresponds to one motor revolution in a 200 step per
revolution (1.8 degree) motor.

HALF-STEP - Position resolution in which 400 pulses
corresponds to one motor revolution for a 200 step per
revolution (1.8 degree) motor.

HANDSHAKE - A computer communications technique
in which one computer's program links up with
another's. The Motion Controller uses a software "Xon,
Xoff" handshake method. See "XON" below.

HOST - The computer or terminal that is connected to
the HOST serial port on the motion controller, and is
responsible for primary programming and operation of
the controller.

INCREMENTAL MODE - Motion mode in which all
motor movements are specified in reference to the
present motor position.

INDEXER - A Microprocessor-based programmable
motion controller that controls move distance and
speeds; possesses intelligent interfacing and
input/output capabilities.

INDEX FROM RUN - See MARK REGISTRATION

INERTIA - Measurement of a property of matter that a
body resists a change in speed (must be overcome
during acceleration).

INERTIAL LOAD - A "flywheel" type load affixed to
the shaft of a step motor. All rotary loads (such as
gears or pulleys) have inertia. Sometimes used as a
damper to eliminate resonance.

JOG MOVE - moves the motor continuously in a
specified direction.

LOAD - This term is used several ways in this and
other manuals.

LOAD (ELECTRICAL): The current in
Amperes passing through a motor's windings.

LOAD (MECHANICAL): The mass to which
motor torque is being applied (the load being

moved by the system).

LOAD (PROGRAMMING): Transmits a
program from one commuter to another.
"DOWNLOAD" refers to transmitting a
program from a host computer (where a
program has been written) to the Motion Con-
troller where it will be used. "UPLOAD" refers
to transmitting a program from a Motion
Controller back to the host computer.

MARK REGISTRATION - A motion process (usually
used in web handling applications) whereby a mark
placed on the material is sensed (e.g., through the use
of an optical sensor) and, following detection of this
mark, the material is moved (indexed) a fixed length.

MECHANICAL HOME - The position where a switch
input is used as a reference to establish electrical home.

MOVE TO MECHANICAL HOME - Function which
allows the Motion Controller to move the motor and
seek a switch to establish electrical home and set
Absolute Position = zero.

162 Glossary

NESTING - The ability of an active subroutine to call
another subroutine. The Motion Controller can nest up
to 16 levels.

NON-VOLATILE MEMORY - Data storage device that
retains its contents even if power is removed. Examples
are EEPROM, flash memory, and battery-backed RAM.

OPTO-ISOLATION - The electrical separation of the
logic section from the input/output section to achieve
signal separation and to limit electrical noise. The two
systems are coupled together via a transmission of light
energy from a sender (LED) to a receiver (photo
transistor).

PARITY -- An error checking scheme used in serial
communications (via the RS-232 or RS-485 port) to
ensure that the data is received by a Motion Controller
is the same as the data sent by a host computer or
terminal.

REGENERATION - A condition when the motor enters
a Αbraking≅ mode. The motor acts as a generator
because of the transfer of kinetic energy being
converted into electrical energy through the motor.

RESOLUTION - The minimum position command that
can be executed. Specified in steps per revolution or
some equivalent.

RINGOUT - The transient oscillatory response (prior to
settling down) of a step motor about its final position.
Note: a small wait or dwell time between moves can
alleviate ringout problems.

RMS CURRENT - Root Mean Square Current. In an
intermittent duty cycle application, the RMS current is
equal to the value of steady state current which would
produce the equivalent resistive heating over a long
period of time.

RMS TORQUE - Root Mean Square Torque. In an
intermittent duty cycle application, the RMS torque is
equal to the value of steady state torque which would
produce the equivalent resistive heating over a long
period of time.

RS232-C - EIA (Electronic Industries Association)
communication standard to interface devices employing
serial data interchanges. Single-wire connections for
transmit and receive, etc.

RS-485 - EIA (Electronic Industries Association)
communication standard to interface devices employing
serial data interchanges. Two-wire connections
(differential circuits) for transmit and receive, etc. Better
than RS-232 for long wire runs and multi-drop circuits
with many devices.

SINKING - An input that responds to, or output that
produces, a "low" level (signal common or low side of
the input/output power supply) when active.

SOURCING - An input that responds to, or output that
produces, a "high" level (the voltage used for the
input/output power supply) when active.

SUBROUTINE - A sequence of lines that may be
accessed from anywhere in a program to preclude
having to program those lines repetitively. This allows
shorter, more powerful, and more efficient programs.
See also NESTING.

TORQUE - Product of the magnitude of a force and its
force arm (radius) to produce rotational movement.
Units of measure are pound-inches, ounce-inches,
newton-meters, etc.

TORQUE CONSTANT - A number representing the
relationship between motor input current and motor
output torque. Typically expressed in units of:

torque
 amps

TRANSLATOR - A motion control device (also called
"translator drive") that converts input pulses to motor
phase currents to produce motion.

TTL - Also called T2L, Transistor - Transistor - Logic

VOLTAGE CONSTANT (or BACK EMF CONSTANT)
- A number representing the relationship between the
back EMF voltage and angular velocity. Typically
expressed in:

 Volts
 1000 RPM

WAIT - A programmed delay or dwell in program
execution (specified in seconds).

Glossary 163

XON / XOFF - A computer software "handshaking"
scheme used by a Motion Controller.
The Motion Controller sends an XOFF character (ASCII
Code 19) when it receives a command string with a
Carriage Return and has less than 82 characters
remaining in its host serial port buffer. The Controller
sends an Xon when available buffer space reaches 100
characters or in response to an ID attention with
adequate buffer space remaining. Since it is impossible
for the host device to immediately cease transmissions,
the next three characters (subject to the total serial

buffer capacity of forty characters) received subsequent
to the Motion Controller sending the XOFF character
will be stored in the Motion Controller's serial buffer (a
memory dedicated to store characters that are in the
process of transmission).

Similarly, the Motion Controller will not transmit data if
the host device has sent an XOFF character to the
Controller; Motion Controller transmissions will resume
when the Controller receives an XON character.

164 Glossary

ASCII Table

ASCII
Char

Dec
Code

ASCII
Char

Dec
Code

ASCII
Char

Dec
Code

ASCII
Char

Dec
Code

Null 0 Space 32 @ 64 ` 96

SOH 1 ! 33 A 65 a 97

STX 2 Α 34 B 66 b 98

ETX 3 # 35 C 67 c 99

EOT 4 $ 36 D 68 d 100

ENQ 5 % 37 E 69 e 101

ACK 6 & 38 F 70 f 102

BELL 7 > 39 G 71 g 103

BS 8 (40 H 72 h 104

HT 9) 41 I 73 I 105

LF 10 * 42 J 74 j 106

VT 11 + 43 K 75 k 107

FF 12 , 44 L 76 l 108

CR 13 - 45 M 77 m 109

SO 14 . 46 N 78 n 110

SI 15 / 47 O 79 o 111

DLE 16 0 48 P 80 p 112

DC1 17 1 49 Q 81 q 113

DC2 18 2 50 R 82 r 114

DC3 19 3 51 S 83 s 115

DC4 20 4 52 T 84 t 116

NAK 21 5 53 U 85 u 117

SYNC 22 6 54 V 86 v 118

ETB 23 7 55 W 87 w 119

CAN 24 8 56 X 88 x 120

EM 25 9 57 Y 89 y 121

SUB 26 : 58 Z 90 z 122

ESC 27 ; 59 [91 { 123

FS 28 < 60 \ 92 | 124

GS 29 = 61] 93 } 125

RS 30 > 62 ^ 94 ~ 126

DEL 31 ? 63 _ 95 DEL 127

Appendix A - CE Compliance 165

Appendix A
CE Compliance

Installation Requirements and Information

Certain practices must be followed when installing the WARPDRIVE™ SS2000PCi controller in order to meet
the CE Electromagnetic Compatibility (EMC) Directive (89/336/EEC) and the Low Voltage Directive
(73/23/EEC). The WARPDRIVE™ family of products are components intended for installation within other
electrical systems or machines. The system or machine builder must ensure their system or end product complies
with all applicable standards required for that equipment, including overall CE certification. Following these
practices will help ensure (but cannot guarantee) that the machine in which these components are utilized will
meet overall CE requirements.

Electromagnetic Compatibility Directive

In order to meet the various EMC Standards, all wiring must be done in accordance with the practices shown in
Figure 1.

With the addition of a suitable ac line filter, such as Corcom part number 10VV1 (connected externally), the
SS2000PCi controller meets all the applicable EMC emission and immunity standards on a “stand-alone” basis:

EN55011, Class A: for Radiated and Conducted Emissions
IEC1000-4-3: for RF Radiated Immunity (RFRI)
IEC1000-4-4: for Electrical Fast Transient Immunity (EFT)
IEC1000-4-6: for RF Conducted Immunity (RFCI)

In order to achieve full CE compliance, an additional requirement must be met:
IEC1000-4-2: for ESD Immunity

To meet this requirement, the SS2000PCi unit must be placed inside a metal enclosure, as shown in Figure 1.

Low Voltage Directive

1) These drives are to be operated in a pollution degree 2 environment as described in standard prEN50178.

2) All of the control inputs and outputs are isolated from the main input power with a “basic insulation rating”;
e.g., their impulse withstand voltage capability is 2.5kV (1.2 / 50 us) as referenced in prEN50178. Control inputs
and outputs may need another level of protection against direct contact if such protection is required by the
standards governing the overall system or machine and its intended operating environment. It is the machine-
builder’s responsibility to provide this protection, if needed.

3) For electrical safety, and to protect personnel against direct contact with live electrical parts, the terminal cover
(provided with the unit) MUST be installed over the AC input, motor output, and External REGEN terminals.

4) All cautions and warnings listed throughout the operators manual MUST be followed to insure safe system
operation.

166 Appendix A - CE Compliance

WARRANTY AND LIMITATION OF LIABILITY

Superior Electric (the "Company"), Bristol, Connecticut, warrants to the first end user purchaser (the "purchaser") of equipment manufactured by
the Company that such equipment, if new, unused and in original unopened cartons at the time of purchase, will be free from defects in material
and workmanship under normal use and service for a period of one year from date of shipment from the Company's factory or a warehouse of
the Company in the event that the equipment is purchased from the Company or for a period of one year from the date of shipment from the
business establishment of an authorized distributor of the Company in the event that the equipment is purchased from an authorized distributor.

THE COMPANY'S OBLIGATION UNDER THIS WARRANTY SHALL BE STRICTLY AND EXCLUSIVELY LIMITED TO REPAIRING OR RE-
PLACING, AT THE FACTORY OR A SERVICE CENTER OF THE COMPANY, ANY SUCH EQUIPMENT OR PARTS THEREOF WHICH AN
AUTHORIZED REPRESENTATIVE OF THE COMPANY FINDS TO BE DEFECTIVE IN MATERIAL OR WORKMANSHIP UNDER NORMAL
USE AND SERVICE WITHIN SUCH PERIOD OF ONE YEAR. THE COMPANY RESERVES THE RIGHT TO SATISFY SUCH OBLIGATION IN
FULL BE REFUNDING THE FULL PURCHASE PRICE OF ANY SUCH DEFECTIVE EQUIPMENT. This warranty does not apply to any
equipment which has been tampered with or altered in any way, which has been improperly installed or which has been subject to misuse,
neglect or accident.

THE FOREGOING WARRANTY IS IN LIEU OF ANY OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, WITHOUT LIMITATION,
ANY IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, and of any other obligations or liabilities
on the part of the Company; and no person is authorized to assume for the Company any other liability with respect to equipment manufactured
by the Company. The Company shall have no liability with respect to equipment not of its manufacture. THE COMPANY SHALL HAVE NO
LIABILITY WHATSOEVER IN ANY EVENT FOR PAYMENT OF ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING, WITH-
OUT LIMITATION, DAMAGES FOR INJURY TO ANY PERSON OR PROPERTY.

Written authorization to return any equipment or parts thereof must be obtained from the Company. The Company shall not be responsible for
any transportation charges.

IF FOR ANY REASON ANY OF THE FOREGOING PROVISIONS SHALL BE INEFFECTIVE, THE COMPANY'S LIABILITY FOR DAMAGES
ARISING OUT OF ITS MANUFACTURE OR SALE OF EQUIPMENT, OR USE THEREOF, WHETHER SUCH LIABILITY IS BASED ON
WARRANTY, CONTRACT, NEGLIGENCE, STRICT LIABILITY IN TORT OR OTHERWISE, SHALL NOT IN ANY EVENT EXCEED THE FULL
PURCHASE PRICE OF SUCH EQUIPMENT.

Any action against the Company based upon any liability or obligation arising hereunder or under any law applicable to the sale of equipment,
or the use thereof, must be commenced within one year after the cause of such action arises.

The right to make engineering refinements on all products is reserved. Dimensions and other details are subject to change.

Printed in U.S.A.400030-139 Rev. B

383 MIDDLE STREET � BRISTOL, CT 06010

(860) 585-4500 � FAX: (860) 589-2136

Distribution Coast-To-Coast and International

Superior Electric SLO-SYN products are available worldwide through an extensive
authorized distributor network. These distributors offer literature, technical
assistance and a wide range of models off the shelf for fastest possible delivery
and service.

In addition, Superior Electric sales and application engineers are conveniently located
to provide prompt attention to customers’ needs. Call Superior Electric customer service
for ordering and application information or for the address of the closest authorized
distributor for Superior Electric’s SLO-SYN products.

In U.S.A. and Canada
Superior Electric

• Customer Service: 1-800-787-3532
• Product Application: 1-800-787-3532
• Product Literature Request: 1-800-787-3532
• Fax: 1-800-766-6366
• Web Site: www.danahermotion.com
383 Middle Street
Bristol, CT 06010
Tel: 860-585-4500
Fax: 860-589-2136

ECN # 84626

User Questionaire
Application (Please fill in the box next to your response.)

1. How did you receive this manual?
o included with product o distributor o Superior sales o Other

2. How frequently do you refer to this manual?
 o quarterly o monthly o weekly o daily o seldom

3. How do you use this manual?
o sit down and read o lookup information o for installation only

 o to solve problems o other __
__

4. How easy is it to find information in this manual?
o Easy, information is easily retrieved o Somewhat easy, information is there but hard to find
o Difficult, (Please explain why)__

__

Usability
5. Please evaluate the following components of this manual, using a 1 to 4 scale. 1 is not descriptive and detailed and 4 is very descriptive and

detailed. Circle your selection.

The table of contents is (worse) 1 2 3 4 (better)

The headings in the manual are 1 2 3 4
The sub-headings in this manual are 1 2 3 4
The illustrations, graphics in this manual are 1 2 3 4

6. Please evaluate the overall readability of this manual. 1 is hard to read/understand, 4 is easy to read/understand.

The table of contents is 1 2 3 4
The headings in this manual are 1 2 3 4
The instructions are 1 2 3 4
The illustrations/graphics are 1 2 3 4

7. Evaluate the accuracy of this manual. 1 indicates not accurate, 4 indicates accurate.

The table of contents is 1 2 3 4
The headings in this manual are 1 2 3 4
The instructions are 1 2 3 4
The illustrations/graphics are 1 2 3 4

8. Which sections, if any, are inaccurate? ___

__

9. Which illustrations/graphics, if any, are inaccurate? __
__
__

Overall Impression (please mark all that apply.)

10.What do you like/dislike about this manual?
Like Dislike Like Dislike Like Dislike
o o Graphics o o Illustrations o o Length
o o Format o o Special Sections o o Size
o o Express Start Up o o A particular section o o Detail

11.Overall Comments:
What would you change? __

__
__

What sections need to be updated? __
__

What is your overall impression of this manual? ___
__
__

Please remove this page from the manual, fold, seal with tape and return, thank you.

SS2000PCi NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

BUSINESS REPLY MAIL
FIRST CLASS MAIL PERMIT NO. 200 BRISTOL, CT
POSTAGE WILL BE PAID BY ADDRESSEE

SUPERIOR ELECTRIC
383 MIDDLE STREET
BRISTOL, CT 06010-9933

Name (optional): __
Company (optional): ___
Phone (optional): __
Email Address (optional): __
May we contact you? o Yes o No

fold here

fold here

