S700

Servoamplificatore digitale S748x2...S724x2 (STO doppio canale)

Manuale di istruzioni

Edizione: luglio 2019,

Traduzione del manuale originale

Valido per la revisione del prodotto 02.30

Per un utilizzo sicuro e conforme, occorre attenersi alle seguenti istruzioni.

Conservare le istruzioni per poterle consultare in futuro.

Edizioni fino ad ora pubblicate

Edizione	Nota
07/2019	Prima edizione

Hardware Revision (HR)

Hardware Rev.	Firmware Rev.	Classificazione esportazione	Nota
01.01	5.00 - 5.17	AL-3A225	Prima serie
02.10	5.18 - 5.99	AL-3A225	STO e Safety Cards
02.20	5.18_ND0 - 5.99_ND0	-	Nuova struttura dei dati
02.30	≥ 6.00_ND0	-	SFD3/DSL

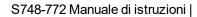
Marchi

- WINDOWS è un marchio registrato di Microsoft Corporation
- HIPERFACE è un marchio registrato di Max Stegmann GmbH.
- EnDat è un marchio registrato di Dr.Johannes Heidenhain GmbH.
- sercos® è un marchio registrato di sercos® International e.V.
- EtherCAT è registrato depositato e la tecnologia brevettata, conceduti una licenza a da Beckhoff Automation GmbH

Il produttore si riserva la facoltà di apportare modifiche tecniche volte al miglioramento degli apparecchi

Questo documento è la proprietà intellettuale di Kollmorgen. Tutti i diritti riservati. Nessuna parte del documento può essere riprodotta in qualsiasi forma (fotocopia, microfilm o altro processo) senza l'approvazione scritta della ditta Kollmorgen o rielaborata, riprodotta o diffusa mediante l'uso di sistemi elettronici.

1 Sommario


1	Sommario	3
	Indicazioni generali	
_	2.1 Questo manuale	
	2.2 Uso del formato PDF	
	2.3 Simboli usati	
	2.4 Norme utilizzati	
	2.5 Abbreviazioni utilizzate	
2	Sicurezza	
3	3.1 Attenersi a queste indicazioni!	
	3.2 Avvertenze sul prodotto	
	3.3 Uso conforme	
	3.4 Uso vietato	
4	Gestione del ciclo di vita del prodotto	
	4.1 Trasporto	
	4.2 Imballaggio	
	4.3 Conservazione	
	4.4 Messa fuori servizio	
	4.5 Manutenzione e pulizia	
	4.6 Smontaggio	
	4.7 Riparazione	
	4.8 Smaltimento	
5	Omologazioni	
	5.1 Conformità UL	
	5.2 Conformità CE	
	5.2.1 Direttive e norme europee per produttore della macchina	
	5.2.2 Safety Conformità Safety (STO) alla Direttiva Macchine	
	5.3 Conformità con la direttiva RoHS	
	5.4 Conformità con règlement REACH	23
	5.5 Conformità EAC	
6	Identificazione del prodotto	
	6.1 Imballaggio fornito	25
	6.2 Targhetta di omologazione	25
	6.3 Schema di numero del prodotto	26
7	Descrizione tecnica	27
	7.1 Servoamplificatori digitali della famiglia S700	27
	7.2 Dati tecnici	30
	7.2.1 Dati nominale	30
	7.2.2 Ingressi/uscite, Tensione ausiliaria	31
	7.2.3 Connettore	31
	7.2.4 Coppie di serraggio consigliate	31
	7.2.5 Fusibili	32
	7.2.6 Condizioni ambientali, aerazione, posizione di montaggio	32
	7.2.7 Sezioni dei cavi	33
	7.3 Freno di arresto motore	34
	7.4 Displaya LED	35
	7.5 Sistema di messa	35
	7.6 Frenaggio dinamico	
	7.7 Procedura di inserzione e disinserzione	
	7.7.1 Comportamento durante il funzionamento normale	
	7.7.2 Comportamento in caso di errore (con le impostazioni standard)	
	·	

	7.8 Funzione di arresto, arresto/spegnimento d'emergenza a EN 60204	39
	7.8.1 Arresto	
	7.8.2 Arresto d'emergenza	
	7.8.3 Spegnimento d'emergenza	40
	7.9 Funzione di sicurezza STO	
	7.9.1 Caratteristice relative alla funzione di sicurezza	
	7.9.2 Indicazioni di sicurezza	
	7.9.3 Uso conforme STO	
	7.9.4 Uso conforme vietato STO	
	7.9.5 Luogo di installazione	
	7.9.6 Cablaggio	
	7.9.7 Dati tecnici	
	7.9.8 Configurazione dei collegamenti	
	7.9.9 Descrizione dell funzionamento	
	7.9.9.1 Ciclo sicuro	
	7.9.9.2 Circuito elettrico di comando singola scanalatura SIL2/PLd (esempio)	
	7.9.9.3 Circuito elettrico di comando doppia scanalatura SIL2/PLd (esempio)	
	7.9.9.4 Circuito elettrico di comando doppia scanalatura SIL3/PLe (esempio)	
	7.9.9.5 Schema generale circuito principale (esempio)	
	7.9.10 Collaudo funzionale	
	7.9.10.1 Singola / doppia scanalatura, SIL CL2 / PLd	
	7.9.10.1 Singola ruoppia scanalatura, SiL CL2/1 Eu	
	7.9.10.2 Doppia scanalatura SIE GES / PEE 7.10 Protezione dal contatto accidentale	
	7.10.1 Corrente di dispersione	
	7.10.1 Contente di dispersione 7.10.2 Interruttori di sicurezza per le correnti di guasto (FI)	
	7.10.2 Internation di sicurezza per le correnti di guasto (11) 7.10.3 Trasformatori d'isolamento di protezione	
	Installazione meccanica	
0		
	8.1 Indicazioni importanti	
	8.2 Guida all'installazione meccanica	
	8.3 Dimensioni	
	8.3.1 Dispositivi con dissipatore di calore	
	8.3.2 Dispositivi con Coldplate	
	8.4 Montaggio	
	8.4.1 Montaggio della piastra di schermatura	
	8.4.2 Montaggio sul backplane - dispositivi con dissipatore di calore	
	8.4.3 Montaggio sul backplane - dispositivi con Coldplate	
9		
	9.1 Indicazioni importanti	
	9.2 Istruzioni per l'installazione elettrica	
	9.3 Cablaggio	
	9.3.1 Collegamento dello schermo di protezione alla piastra frontale	
	9.3.2 Dati tecnici dei cavi di collegamento	
	9.4 Componenti di un servosistema	64
	9.5 Diagramma a blocchi	65
	9.6 Assegnazione dei connettori	
	9.7 Schema collegamenti (descrizione)	
	9.8 Tensione di alimentazione	
	9.8.1 Collegamento a varie reti di alimentazione elettrica	
	9.8.2 Collegamento alla rete (X0)	69
	9.8.3 Tensione ausiliaria da24 V (X4)	69
	9.9 DC-link (X8)	70
	9.9.1 Topologia del circuito intermedio	71
	9.9.2 Resistenza di frenatura esterna (X8)	
	9.9.3 KCM Moduli Condensatore (X8)	72

9.10 Collegamento del motore	
9.10.1 Connessione di alimentazione del motore (X8)	73
9.10.2 Freno di stazionamento motore (X8, X9B)	74
9.11 Retroazione	74
9.12 Tipi di retroazione primario et secundario	75
9.12.1 SFD3 (X1), connessione a cavo singolo	76
9.12.2 HIPERFACE DSL (X1), connessione a cavo singolo	77
9.12.3 Resolver (X2)	78
9.12.4 Encoder seno con BiSS analogo (X1)	79
9.12.5 Encoder con BiSS digitale (X1)	80
9.12.6 Encoder seno con EnDat 2.1 (X1)	81
9.12.7 Encoder con EnDat 2.2 (X1)	82
9.12.8 Encoder seno con HIPERFACE (X1)	83
9.12.9 Encoder seno con SSI (X1)	84
9.12.10 Encoder seno senza traccia dati (X1)	85
9.12.11 Encoder seno con Hall (X1)	86
9.12.12 ROD (AquadB) 5V, 1,5MHz (X1)	87
9.12.13 ROD (AquadB) 5V, 350kHz (X1)	88
9.12.14 ROD (AquadB) 5V, 350kHz con Hall (X1)	89
9.12.15 ROD (AquadB) 24V (X3)	90
9.12.16 ROD (AquadB) 24V con Hall (X3, X1)	91
9.12.17 Encoder SSI assoluto (X1)	92
9.12.18 Encoder Hall (X1)	93
9.13 Trasmissione elettronico e master-slave	
9.13.1 Fonti del segnale	94
9.13.2 Collegamento al comandi motore passo-passo (direzione impulsi)	
9.13.2.1 Direzione / impulsi di 5V (X1)	95
9.13.2.2 Direzione / impulsi di 24V (X3)	95
9.13.3 Master-Slave	
9.13.3.1 Collegamento al master di S700, livello di 5V (X1)	
9.13.3.2 Collegamento al master di S700, livello di 5V (X5)	96
9.14 Emulazione del codificatore, uscita di posizione	
9.14.1 Interfaccia ROD (AquadB) (X1)	
9.14.2 Interfaccia SSI (X1)	
9.15 Ingressi/Uscite digitali e analogici	
9.15.1 Ingressi analogici (X3B)	99
9.15.2 Ingressi digitali (X3A, X3B, X4)	100
9.15.2.1 Connettori X3A, X3B	100
9.15.2.2 Connettore X4	
9.15.3 Uscite digitali (X3A, X3B, X4)	
9.15.3.1 Connettori X3A, X3B	
9.15.3.2 Connettore X4	
9.16 Interfaccia RS232, collegamento per PC (X6)	
9.17 Interfaccia CAN-Bus (X6)	
9.18 Interfaccia EtherNET (X7)	
9.19 Scheda di memoria	
10 Messa in funzione	
10.1 Indicazioni importanti	
10.2 Software di messa in funzione	
10.2.1 Uso conforme	
10.2.2 Descrizione del software	
10.2.3 Requisiti hardware, sistemi operativi	
10.2.4 Installation unter WINDOWS	
10.3 Avvio immediato, test rapido	

10.3.1 Preparazione	111
10.3.2 Collegamenti	
10.3.3 Elementi principali della videata	114
10.3.4 Setup Wizard	115
10.3.4.1 Impostazioni di base	115
10.3.4.2 Unità/conversione	116
10.3.4.3 Motore (rotativo) / Feedback	117
10.3.4.4 Motore (lineare) / Feedback	117
10.3.4.5 Memorizzazione parametri e riavvio	118
10.3.5 Funzioni di assistenza (Jog)	118
10.3.6 Altre impostazioni possibili	119
10.4 Sistemi multiasse	120
10.5 Comando a tasti / Display a LED	120
10.5.1 Comando a tasti	121
10.5.2 Visualizzazione delle condizioni di stato	121
10.5.3 Struttura del menu standard	
10.5.4 Struttura del menu dettagliato	122
10.6 Messaggid'errore	123
10.7 Messaggi di avvertenza	124
10.8 Eliminazione dei guasti	125
11 Espansione	126
11.1 Schede di espansione per lo slot 1	126
11.1.1 Indicazioni per l'installazione delle schede di espansione nello slot 1	
11.1.2 Scheda di espansione -I/O-14/08-	127
11.1.2.1 Dati tecnici	
11.1.2.2 Diodi luminosi	127
11.1.2.3 Selezionare il codice di task di movimento (esempio)	
11.1.2.4 Assegnazione dei connettori	128
11.1.2.5 Schema collegamenti (Default)	
11.1.3 Scheda di espansione -PROFIBUS-	
11.1.3.1 Sistema di allacciamento	
11.1.3.2 Schema collegamenti	
11.1.4 Scheda di espansione -SERCOS-	
11.1.4.1 Diodi luminosi	
11.1.4.2 Sistema di allacciamento	
11.1.4.3 Schema collegamenti	132
11.1.4.4 Setup	
11.1.5 Scheda di espansione - DEVICENET -	
11.1.5.1 Sistema di allacciamento, schema collegamenti	
11.1.5.2 LED modulo/stato rete combinato	
11.1.5.3 Setup	
11.1.5.4 Cavo bus	
11.1.6 Scheda di espansione -SYNQNET-	
11.1.6.1 Selettore NODE ID	
11.1.6.2 Tabella dei LED NODE	
11.1.6.3 Collegamenti SynqNet, connettore X21B e X21C (RJ-45)	
11.1.6.4 Ingressi/uscite digitali, connettore X21A (SubD a 15 poli, presa)	
11.1.6.5 Schema di collegamento ingressi / uscite digitali, connettore X21A	
11.1.7 Scheda di espansione - FB-2to1 -	
11.1.7.1 Assegnazione dei connettori	
11.1.7.2 Esempio di collegamento BiSS digitale (primario) e SinCos (secondario)	
11.1.8 Modulo di espansione -2CAN-	
11.1.8.1 Montaggio del modulo di espansione	
11.1.8.2 Sistema di allacciamento	

11.1.8.3 Assegnazione dei connettori	141
11.1.8.4 Impostazione dell'indirizzo stazione e del Baud Rate	141
11.2 Schede di espansione per lo slot 2	142
11.2.1 Indicazioni per l'installazione delle schede di espansione nello slot 2	142
11.2.2 Opzione "F2"	
11.2.3 Scheda di espansione "Posl/O" e "Posl/O-Monitor"	143
11.2.3.1 Feedback	144
11.2.3.1.1 ROD (AquadB) 5V (X5, X1)	144
11.2.3.1.2 ROD (AquadB) 5V mit Hall (X5, X1)	145
11.2.3.1.3 SSI Absolutgeber (X5, X1)	146
11.2.3.1.4 Encoder seno con SSI (X5, X1)	147
11.2.3.2 Trasmissione elettronico e master-slave, (X5)	148
11.2.3.2.1 Collegamento al master di S700, livello di 5V (X5)	148
11.2.3.2.2 Collegamento al comandi motore passo-passo di 5V (X5)	148
11.2.3.3 Emulazioni encoder (X5)	149
11.2.3.3.1 Interfaccia trasduttore incrementale ROD (AquadB) (X5)	149
11.2.3.3.2 Interfaccia SSI (X5)	
11.2.3.4 Ingressi/Uscite analogici	
11.2.3.4.1 Uscite analogici ANALOG-OUT 1 e 2	
11.2.3.4.2 Ingressi analogici ANALOG-IN 3 e 4	
11.3 Schede di espansione per lo slot 3	
11.3.1 Indicazioni per l'installazione delle schede di espansione nello slot 3	
11.3.2 Opzione "F2"	
11.3.3 Scheda di espansione "Posl/O" e "Posl/O-Monitor"	
11.3.4 Scheda di espansione "Safety 2-2" (S4)	
11.3.4.1 Funzioni di azionamento di sicurezza S2-2	
11.3.4.2 Indicazioni di sicurezza S2-2	
11.3.4.3 Collegamenti di alimentazione S2-2	
11.3.4.4 Ingressi/uscite di sicurezza S2-2	154
11.3.5 Scheda di espansione "Safety 1-2" (S3)	155
11.3.5.1 Funzioni di azionamento di sicurezza S1-2	
11.3.5.2 Indicazioni di sicurezza S1-2	155
11.3.5.3 Encoder esterno S1-2	156
11.3.5.4 Collegamenti di alimentazione S1-2	
11.3.5.5 Ingressi/uscite di sicurezza S1-2	156
12 Allegato	157
12.1 Glossario	157
12.2 Numeri d'ordine	159
12.2.1 Servoamplificatori	159
12.2.2 Memory Card	
12.2.3 Scheda di Espansione et Opzione	
12.2.3.1 Coperture per le Slots	
12.2.3.2 Slot 1	
12.2.3.3 Slot 2	
12.2.3.4 Slot 3	
12.2.4 Accoppiatori	
13 Index	
14 Edizioni fino ad ora pubblicate	

2 Indicazioni generali

2.1 Questo manuale

Questo manuale descrive i servoamplificatori digitali della serie S748x-S772x (versione standard: corrente nominale da 48A....72A). Gli servoamplificatori delle serie S701x e S724x sono descritti in differenti manuali.

Una descrizione più dettagliata delle schede di espansione attualmente disponibili e del collegamento digitale ai sistemi di automazione è contenuta, insieme alle nostre note applicative, in formato Acrobat-Reader sul CD-ROM di accompagnamento (requisiti del sistema: WINDOWS, browser per Internet, Acrobat Reader) in diverse lingue.

Per i dati tecnici e i disegni quotati di accessori quali cavi, resistenze di carico, alimentatori e così via consultare il manuale degli accessori.

È possibile stampare questo documento (PDF) su qualsiasi stampante commerciale standard. Una documentazione stampata si può acquistare anche presso l'azienda.

Più informazioni di base possono essere trovate nel nostro "Kollmorgen Developer Network" kdn.kollmorgen.com.

2.2 Uso del formato PDF

Questo documento comprende svariate caratteristiche per facilitare la navigazione

Riferimenti incrociati	L'indice e l'indice analitico contengono riferimenti incrociati attivi.
Indice e indice analitico	Le linee rappresentano riferimenti incrociati attivi. Fare clic sulle linee per accedere alla pagina richiesta.
Numeri di pagina/capitolo nel testo	I numeri di pagina/capitolo con riferimenti incrociati sono link attivi.

2.3 Simboli usati

Simboli di avvertenza

Simbolo	Indicazione
▲ PERICOLO	Indica una situazione pericolosa che, se non evitata, provoca morte o lesioni gravi.
AVVERTENZA	Indica una situazione pericolosa che, se non evitata, provoca morte o lesioni gravi.
⚠ ATTENZIONE	Indica una situazione pericolosa che, se non evitata, provoca lesioni non gravi o moderate.
AVVISO	Questo non è un simbolo di sicurezza. Questo simbolo indica una situazione pericolosa che, se non evitata, provoca danni materiali.
INFORMAZIONI	Questo non è un simbolo di sicurezza. Questo simbolo indica note importanti.
<u>^</u>	Avviso di pericolo (generale). Il tipo di pericolo è specificato nel testo a fianco.
4	Avviso di pericolo dovuto all'elettricità e ai suoi effetti.
	Avviso di pericolo per la presenza di superfici calde.
	Avviso di un carico sospeso.
	Avviso di riavvio automatico.

Simboli relativi ai disegni

Simbolo	Descrizione	Simbolo	Descrizione
	Terra del segnale	4	Diodo
/////	Terra del telaio	中	Relè
	Terra protettiva		Spegnimento dei relè ritardato
ф	Resistenza		Contatto normalmente aperto
ф	Fusibile	7	Contatto normalmente chiuso

2.4 Norme utilizzati

Norme	Significato
EN 4762	Hexagon socket head cap screws
EN 12100	Safety of machinery: Basic concepts, general principles for design
EN 13849	Safety of machinery: Safety-related parts of control systems (former EN 954)
EN 60085	Electrical insulation - Thermal evaluation and designation Maintenance
EN 60204	Safety of Machinery: Electrical equipment of machinery
EN 60364	Low-voltage electrical installations
EN 60439	Low-Voltage Switchgear and Controlgear Assemblies
EN 60529	Protection categories by housing (IP Code)
EN 60664	Insulation coordination for equipment within low-voltage systems
EN 60721	Classification of environmental conditions
EN 61000	Electromagnetic compatibility (EMC)
EN 61131	Programmable controllers
EN 61491	Electrical equipment of industrial machines – Serial data link for real-time communications between controls and drives.
EN 61508	Functional safety of electrical/electronic/programmable electronic safety-related systems
EN 61800	Adjustable speed electrical power drive systems
EN 62061	Functional safety of electrical/electronic/programmable electronic safety-related systems
EN 82079	Preparation of instructions for use - Structuring, content and presentation
UL 840	UL Standard for Safety for Insulation Coordination
UL 508C	UL Standard for Safety Power Conversion Equipment

EN: European Standard, UL: Underwriters Laboratories

2.5 Abbreviazioni utilizzate

Abbreviazione	Significato
(→ #xx)	Vedere a pagina xx. Esempio (→ #53): vedere a pagina 53.
AGND	Massa analogica
BTB/RTO	Operativo
CAN	Bus di campo CANopen
CLK	Clock (segnale temporizzato)
COM	Interfaccia seriale di un PC
DGND	Massa digitale
Disk	Supporto magnetico di memorizzazione (dischetto, disco fisso)
EEPROM	Memoria di sola lettura cancellabile e programmabile elettricamente
EMV	Compatibilità elettromagnetica
EMI	Disturbo elettromagnetico
ESD	Scarica di elettricità statica
F-SMA	Connettore (cavo di fibra ottica), IEC 60874-2
INC	Interfaccia incrementale
LED	Diodo luminoso
MB	Megabyte
NI	Impulso di riferimento
PELV	Low safe voltage
PGND	Massa dell'interfaccia utilizzata
PL	Performance Level
RAM	Memoria volatile
RB	Resistenza di carico
RBext	Resistenza di carico esterna
RBint	Resistenza di carico interna
RES	Resolver
ROD	Encoder A quad B
SDI	Direzione di movimento sicura
SIL	Safety Integrity Level
SIL CL	Safety Integrity Level Claim Limit
SLI	Incremento sicuro
SLP	Posizione assoluta sicura
SLS	Velocità limitata in modo sicuro
SOS	Arresto operativo sicuro
SPS	Unità di controllo a logica programmabile
SRAM	RAM statica
SS1	Arresto sicuro
SS2	Arresto activa sicuro
SSI	Interfaccia seriale sincrona
SSR	Range di velocità sicuro
SSI	Interfaccia sincrono-seriale
STO	Safe Torque Off
V AC	Tensione alternata
V DC	Tensione continua
VDE	Associazione elettrotecnica tedesca

3 Sicurezza

Questo capitolo vi aiuta a riconoscere e a evitare pericoli per persone e cose.

3.1 Attenersi a queste indicazioni!

Interventi riservati al personale qualificato

Le operazioni di trasporto, installazione, messa in servizio e manutenzione possono essere effettuate unicamente da personale qualificato, che abbia familiarità con il trasporto, l'installazione, la messa in funzione e il funzionamento dei servoazionamenti.

- Trasporto, immagazzinamento, disimballaggio: unicamente a cura di personale con nozioni di movimentazione dei componenti sensibili alle cariche elettrostatiche.
- Installazione meccanica: unicamente a cura di personale esperto in meccanica.
- Installazione elettrica: unicamente a cura di personale esperto in elettrotecnica.
- Messa in servizio: solo da parte di personale qualificato con ampie conoscenze nei settori dell'elettrotecnica e dei sistemi di azionamento

Il personale qualificato deve conoscere e rispettare le norme ISO 12100, IEC 60364 e IEC 60664 e le disposizioni antinfortunistiche nazionali.

Leggere la documentazione

Prima di procedere al montaggio e alla messa in funzione leggere attentamente la presente documentazione. L'errata manipolazione del dispositivo può comportare danni a persone o a cose. L'operatore è quindi tenuto ad assicurarsi che tutto il personale addetto a lavori sugli sistema di guida abbia letto e compreso il manuale e che le indicazioni di sicurezza riportate nel manuale siano rispettate.

Controllare la revisione dell'hardware

Controllare il numero di revisione dell'hardware del prodotto (si veda la targhetta di omologazione). Questo numero rappresenta il collegamento tra il prodotto e il manuale e deve corrispondere al numero di revisione hardware riportato sulla copertina del manuale.

Rispettare i dati tecnici

Osservare i dati tecnici e le indicazioni sulle condizioni di collegamento (targhetta di omologazione e documentazione). Se si superano i valori di tensione e di corrente ammessi, i servoamplificatori possono essere danneggiati. Un motore inadeguato o un cablaggio non adatto possono danneggiare i componenti del sistema. Controllare la combinazione di servoamplificatore e motore. Confrontare la tensione e la corrente nominali delle unità.

Eseguire un'analisi dei rischi

Il produttore della macchina è tenuto a realizzare un'analisi dei rischi per il macchinario e ad adottare le misure necessarie affinché eventuali movimenti imprevisti non causino lesioni o danni a persone o cose. L'analisi dei rischi potrebbe comportare la necessità di ulteriori requisiti per il personale tecnico.

Componenti sensibili alle scariche elettrostatiche

Gli dispositivo contengono elementi sensibili alle scariche elettrostatiche, che possono danneggiarsi in caso di uso improprio. Scaricare l'elettricità statica dal corpo prima di toccare del dispositivo. Evitare il contatto con materiali altamente isolanti (fibre sintetiche, pellicole in materie plastiche e così via). Collocare il dispositivo su una superficie conduttiva.

Riavvio automatico!

L'azionamento potrebbe riavviarsi automaticamente dopo l'accensione, cali di tensione o interruzione della tensione di alimentazione, a seconda della parametrizzazione. Sussiste il pericolo di lesioni gravi o di morte per il personale addetto ai lavori sulla macchina. Se il parametro AENA è impostato su 1, occorre apporre un cartello di avvertenza sulla macchina (Avvertenza: riavvio automatico dopo l'inserzione!) e assicurarsi che l'inserzione della tensione di rete non sia possibile in presenza di persone nella zona pericolosa della macchina. En cas d' utilizzo d'un dispositif de protection contre les sous- tensioni , respectez EN 60204-1 : 2006 Chapitre 7.5..

In corso di funzionamento le superfici degli amplificatori possono surriscaldarsi. Il dissipatore di calore può raggiungere temperature superiori agli 80°C. Pericolo di ustioni lievi. Misurare la temperatura e attendere che il dissipatore abbia raggiunto i 40°C prima di toccarlo.

Messa a terra

Assicurare la regolare messa a terra del dispositivo con la bandella PE all'interno dell'armadio di distribuzione come potenziale di riferimento. Sussiste il pericolo di scosse elettriche. Senza una messa a terra a bassa impedenza non viene garantita la sicurezza personale e sussiste pericolo di morte per scosse elettriche.

Corrente di dispersione

Dato che la corrente di dispersione al PE è superiore a 3,5 mA, secondo IEC61800-5-1 il collegamento PE deve essere raddoppiato oppure si deve usare un cavo di collegamento con una sezione trasversale > 10 mm². Sono possibili misure divergenti a seconda degli standard regionali.

Alta tensione

Gli apparecchi generano tensioni elettriche elevate fino a 900 V. Non aprire o toccare i dispositivi durante il funzionamento. Si raccomanda inoltre di tenere chiuse tutte le coperture e le porte dei quadri elettrici ad armadio. Durante il funzionamento, a seconda del loro grado di protezione, i servoamplificatori possono presentare parti scoperte sotto tensione.

Pericolo di morte in prossimità di parti del dispositivo sotto tensione. Le misure di protezione integrate come l'isolamento o la schermatura non possono essere rimosse. I lavori sull'impianto elettrico possono essere eseguiti unicamente da personale qualificato e debitamente addestrato, nel rispetto della normativa vigente in materia di sicurezza sul lavoro, e solo con l'interruttore principale spento e protetto da un riavvio indesiderato.

Non staccare mai i collegamenti all'amplificatore quando questo è sotto tensione. Sussiste il pericolo di formazione di archi con conseguente rischio di lesioni (ustioni e accecamento) nonché danni ai contatti. Dopo aver staccato gli amplificatori dalle tensioni di alimentazione, attendere almeno 10 minuti prima di toccare i componenti potenzialmente sotto tensione (ad esempio i contatti) o di allentare collegamenti.

Misurare sempre la tensione sul circuito intermedio bus DC e attendere fino a quando è scesa al di sotto di 50 V prima di toccare i componenti.

Sicurezza di funzionamento

L'implementazione della funzione di sicurezza STO sul modello S700 è certificata. La verifica delle funzioni di sicurezza secondo le norme EN13849 o EN 62061 deve essere eseguita alla fine dall'utente.

Isolamento rinforzato

I sensori di temperatura, i freni di arresto del motore e i sistemi di retroazione integrati nel motore devono essere dotati di un isolamento rinforzato (secondo EN 61800-5-1) nei confronti dei componenti del sistema con tensione di alimentazione, in base alla tensione di prova richiesta dall'applicazione. Tutti i componenti Kollmorgen rispondono a questi requisiti.

Non modificare gli apparecchi

Non è consentito modificare l'hardware del servoamplificatore senza l'autorizzazione del produttore. L'apertura dell'alloggiamento causa la perdita della garanzia.

3.2 Avvertenze sul prodotto

AVVISO

Se questi simboli sono danneggiati vanno sostituiti immediatamente.

3.3 Uso conforme

I servoamplificatori vengono montati come componenti su impianti o macchine elettrici e possono essere messi in funzione solo come componenti integrati dell'impianto. In caso d'uso dei servoamplificatori in ambito domestico, commerciale e industriale, come pure in piccole aziende l'utente deve adottare misure di filtrazione supplementari.

Armadio e Cablaggio

- I S700 possono funzionare solo in un quadro elettrico ad armadio chiuso, alle condizioni ambientali definite (→ # 32) e le dimensioni di installazione (→ # 54). Per mantenere una temperatura inferiore a 40°C nel quadro elettrico ad armadio possono essere necessari sistemi di aerazione o raffreddamento.
- Per il cablaggio, utilizzare solo cavi in rame. Le sezioni dei cavi sono indicate nella norma EN 60204 (o tabella 310-16 di NEC 60°C o 75°C, colonna per sezioni AWG).

Alimentazione elettrica

- I servoamplificatori S700 (categoria di sovratensione III secondo EN 61800-5-1) possono essere utilizzati direttamente su reti industriali trifasiche con messa a terra (rete TN, rete TT con centro neutro a terra e corrente nominale simmetrica non superiore a 42kA).
- S7480/S7720: Nel caso dell'asimmetria di tensione delle rete > 3% una bobina delle rete deve essere utilizzata.
- I sovraccarichi periodici tra conduttori esterni (L1, L2, L3) ed alloggiamento del servoamplificatore non possono superare i 1000 V (ampiezza). Secondo EN61800 i picchi di
 tensione (<50µs) tra i conduttori esterni non possono superare i 1000 V. I picchi di
 tensione (< 50µs) tra conduttori esterni ed alloggiamento non possono superare i 2000 V.

Nei casi di alimentazione in ingresso CC per installazioni singole e di gruppo

INFORMAZIONI

S700 non è stato valutato da Kollmorgen, UL o TÜV per la sostituzione della tensione di rete CA con l'ingresso CC, né per installazioni singole né per installazioni di gruppo.

Le installazioni CC devono essere riviste e valutate da parte dell'utente a livello di protezione dei circuiti derivati*, dimensioni dei cavi, tensione nominale dei cavi, protezione con fusibili, requisiti dielettrici del sistema, sovratensione e corrente nominale di ingresso**.

Nel caso degli azionamenti con alimentazione CC il filtro CEM integrato non funzionerà. L'utente è responsabile di mantenere le emissioni condotte e l'immunità dell'azionamento entro i livelli di rumorosità richiesti.

- * Prestare particolare attenzione nella progettazione dei circuiti derivati con azionamenti con valori nominali misti, per evitare che gli azionamenti più piccoli diventino il "fusibile" effettivo invece del fusibile di protezione del circuito.
- ** La progettazione del sistema di alimentazione deve garantire la protezione dai picchi di corrente limitando la corrente in ingresso durante l'accensione. La polarità dell'alimentazione CC deve essere correttamente cablata. Una polarità non corretta dell'alimentazione CC danneggerà l'azionamento e renderà nulla la garanzia.

Sicurezza funzionale

- Durante l'uso di opzione STO attenersi alle avvertenze riportate (→ #43).
- Per ottenere la classificazione PL o SIL CL 3 è necessario verificare periodicamente la sicurezza operativa del blocco impulsi mediante analisi del feedback trasmesso.
- Consideri le documentazioni di utente per le carte di sicurezza S1-2 (S3) e S2-2 (S4) quando usate le funzioni di sicurezza offerte da queste carte di espansione.

Motori

 I servoamplificatori della famiglia S700 sono destinati esclusivamente all'azionamento di servomotori sincroni brushless adatti con regolazione di coppia, velocità e/o posizione. La tensione nominale dei motori deve essere superiore o almeno uguale alla tensione di circuito intermedio fornita dal servoamplificatore.

3.4 Uso vietato

Impieghi diversi da quelli descritti al paragrafo "Uso conforme" non sono conformi alla destinazione d'uso e possono comportare infortuni, danni all'apparecchio o danni materiali in genere. È vietato l'uso del servoamplificatore nei seguenti ambienti:

- aree a rischio di esplosione
- ambienti caratterizzati dalla presenza di acidi, soluzioni alcaline, oli, vapori, polveri corrosivi e/o conduttivi
- direttamente su reti elettriche non collegate a terra o su alimentazioni messe a terra asimmetricamente con una tensione > 230V.
- è installata su navi o impianti off-shore

L'uso conforme del servoamplificatore è vietato quando la macchina cui è destinato

- non è conforme alle disposizioni della Direttiva macchine CE
- non soddisfa le disposizioni della Direttiva sulla compatibilità elettromagnetica
- non soddisfa le disposizioni della Direttiva Bassa Tensione

Il controllo dei freni della tenuta dallo S700 da solo non può essere utilizzato nelle applicazioni, dove la sicurezza funzionale deve essere accertata con il freno.

4 Gestione del ciclo di vita del prodotto

4.1 Trasporto

- affidare il trasporto esclusivamente a personale qualificato, mantenere il dispositivo nell'imballaggio riciclabile originale del produttore.
- Evitare urti durante il trasporto.
- intervalli di temperatura specifici: da -25 a +70°C, tasso di variazione max. 20 K/ora, categoria 2K3 secondo EN61800-2, EN60721-3-1
- umidità specifici: max. 95% di umidità relativa, senza la formazione di condensa, categoria 2K3 secondo EN61800-2, EN60721-3-1
- Se l'imballaggio è danneggiato, controllare che l'unità non presenti danni visibili. Informare il trasportatore e il costruttore di qualsiasi danno eventuale all'imballaggio o al prodotto.

AVVISO

I servoamplificatori contengono componenti sensibili alle cariche elettrostatiche che possono danneggiarsi in caso di uso improprio. Eliminare le cariche elettrostatiche dal proprio corpo prima di toccare il servoamplificatore. Evitare il contatto con materiali altamente isolanti come tessuti artificiali o pellicole di plastica. Collocare il servoamplificatore su una superficie conduttiva.

4.2 Imballaggio

L'imballaggio de S700 è composto da cartone riciclabile con inserti.

- Imballaggio S748/S772: (AxLxP) 390x600x400 mm
- Identificazione: un'etichetta all'esterno della scatola

4.3 Conservazione

- solo nell'imballaggio riciclabile originale del produttore:
 S748...S772: conservare a un'altezza di impilaggio pari o inferiore 3 cartoni
- intervalli di temperatura specifici: da -25 a +55°C, tasso di variazione max. 20 K/ora, categoria 1K4 secondo EN61800-2, EN60721-3-1
- intervalli di umidità specifici: dal 5 al 95% di umidità relativa, senza la formazione di condensa, categoria 1K3 secondo EN61800-2, EN60721-3-1
- conservare secondo i seguenti requisiti di durata:
 - meno di 1 anno: senza restrizioni.
 - oltre 1 anno: i condensatori devono essere rigenerati prima di configurare e mettere in funzione il servoamplificatore. A questo scopo rimuovere tutti i collegamenti elettrici ed applicare tensione monofase da 240Vca per circa 30 minuti ai

4.4 Messa fuori servizio

AVVISO

La messa fuori servizio di parti del sistema di azionamento può avvenire unicamente ad opera di personale qualificato specializzato in elettrotecnica.

PERICOLO: Tensione letale!

Vi è il rischio di lesioni gravi o morte da shock elettrico o di arco.

- Disinserire l'interruttore generale dell'armadio elettrico...
- Mettere in sicurezza il sistema per evitarne il riavvio accidentale.
- Bloccare l'interruttore principale.
- Attendere dopo aver scollegato il istema almeno 10 minuti.

4.5 Manutenzione e pulizia

Lo strumento non necessitano di alcuna manutenzione. L'apertura degli strumenti comporta l'estinzione della validità della garanzia. La parte interna dell'unità può essere pulita soltanto dal costruttore.

AVVISO

Non immergere il strumento né spruzzare sulla sua superficie. Evitare l'ingresso di liquidi nel dispositivo.

Per pulire la parte esterna del servoamplificatore:

- 1. Messa fuori servizio del dispositivo (vedere il capitolo 4.4 "Messa fuori servizio").
- Alloggiamento: pulire con isopropanolo o una soluzione detergente simile
 ATTENZIONE: Facilmente infiammabile! Pericolo di lesioni da esplosione e
 incendio.
 - Attenersi alle indicazioni di sicurezza riportate sulla confezione del detergente.
 - Dopo la pulizia attendere almeno 30 minuti prima di rimettere in funzione il dispositivo.
- 3. Griglia protettiva o ventola: pulire con una spazzola asciutta

4.6 Smontaggio

AVVISO

La sostituzione di componenti del sistema può essere svolta unicamente da personale specializzato con conoscenze nel campo dell'elettrotecnica.

- 1. Messa fuori servizio del dispositivo (vedere il capitolo 4.4 "Messa fuori servizio").
- 2. Controllare la temperatura.

ATTENZIONE: Alta temperatura! Pericolo di ustioni lievi. Durante il funzionamento, il dissipatore di calore del dispositivo può raggiungere temperature superiori a 80°C. Prima di toccare il dispositivo, controllarne la temperatura e attendere finché non è scesa sotto i 40°C.

- 3. Rimuovere i connettori. Scollegare il collegamento della terra potenziale per ultimo.
- 4. Smontaggio: Allentare le viti di fissaggio e rimuovere il dispositivo.

4.7 Riparazione

AVVISO

La sostituzione di componenti del sistema può essere svolta unicamente da personale specializzato con conoscenze nel campo dell'elettrotecnica.

ATTENZIONE: Avvio automatico! Durante le operazioni di sostituzione può verificarsi una combinazione di pericoli ed eventi diversi.

 I lavori sull'impianto elettrico possono essere eseguiti unicamente da personale qualificato e debitamente addestrato, nel rispetto della normativa vigente in materia di sicurezza sul lavoro e utilizzando le attrezzature di protezione personale prescritte.

Sostituzione del dispositivo

La riparazione del dispositivo può essere effettuata solo dal costruttore. L'apertura del dispositivo comporta l'annullamento della garanzia.

- 1. Messa fuori servizio del dispositivo (vedere il capitolo 4.4 "Messa fuori servizio").
- 2. Smontare il dispositivo (vedi capitolo 4.6 "Smontaggio").
- 3. Inviare il dispositivo al costruttore.
- 4. Installare un nuovo dispositivo come descritto nel presente manuale.
- 5. Mettere in funzione il sistema come descritto nel presente manuale.

Sostituzione di altri componenti del sistema di azionamento

Se occorre sostituire componenti del sistema di azionamento (ad esempio cavi) procedere come segue:

- 1. Messa fuori servizio del dispositivo (vedere il capitolo 4.4 "Messa fuori servizio").
- 2. Sostituire i componenti.
- 3. Verificare che tutti i collegamenti ad innesto siano correttamente in posizione.
- 4. Mettere in funzione il sistema come descritto nel presente manuale.

4.8 Smaltimento

AVVISO

Per il corretto smaltimento del dispositivo rivolgersi ad un ente certificato per il recupero dei rifiuti di apparecchiature elettroniche.

In conformità alle linee guida della direttiva 2012/19/CE (RAEE) e simili, il costruttore accetta la restituzione di vecchi dispositivi ed accessori per uno smaltimento professionale. I costi di trasporto sono a carico del mittente.

Contattare Kollmorgen e chiarire la logistica.

5 Omologazioni

I certificati possono essere trovati nel Kollmorgen Website.

5.1 Conformità UL

I servoamplificatori è archiviato con numero di pratica UL E217428.

I servoamplificatori certificati UL (Underwriters Laboratories Inc.) sono conformi alle normative antincendio americane (in questo caso UL 840 e UL 508C). La certificazione UL si riferisce esclusivamente alle caratteristiche costruttive meccaniche ed elettriche dell'apparecchio. Le disposizioni UL stabiliscono, tra gli altri, i requisiti minimi tecnici richiesti agli apparecchi elettrici per prevenire eventuali pericoli d'incendio. La conformità tecnica alle disposizioni antincendio americane viene verificata da un ispettore UL indipendente mediante omologazione e prove di controllo regolari. A parte le indicazioni per l'installazione e la sicurezza, l'utente non deve attenersi a nessun altro punto connesso direttamente con la certificazione UL.

UL 508C: La normativa UL 508C descrive la conformità costruttiva ai requisiti minimi prescritti per i convertitori di potenza ad azionamento elettrico, come invertitori di frequenza e servoamplificatori, atti ad impedire il rischio che tali apparecchi possano generare incendi.

UL 840: La disposizione UL 840 descrive la conformità costruttiva alla distanza in aria e alla linea di dispersione di apparecchi elettrici e piastrine dei conduttori.

UL Markings

- Use 60°C or 75°C copper wire only.
- Tightening torque for field wiring terminals: X0 8-2 AWG, TQ Lb In. 40.
 X8 8-2 AWG, TQ Lb In. 40.
- Use in a pollution degree 2 environment.
- These devices provide solid state motor overload protection at 130% of full load current.
- Integral solid state short circuit protection does not provide branch circuit protection.
 Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.
- These devices are not provided with motor over-temperature sensing.
- Suitable for use on a circuit capable of delivering not more than 42kA rms symmetrical amperes for a max. voltage of 480 Vac.
- Supply circuit protection:

Model	Fuse class	Rating Voltage/SCCR	Max. Fuse Rating
S7480	RK5, CC, J, T	600VAC 200kA	60A
S7720	RK5, CC, J, T	600VAC 200kA	80A

• For use on a solidly grounded wye source only.

5.2 Conformità CE

I servoamplificatori sono stati testati da un laboratorio di collaudo autorizzato in una configurazione definita, utilizzando i componenti del sistema descritti nella presente documentazione.

Qualsiasi differenza dalla configurazione e dall'installazione descritta nella presente documentazione presuppone l'onere di nuove misurazioni per garantire la conformità ai requisiti normativi.

Kollmorgen dichiara la conformità della S748 e S772 con le seguenti direttivi:

- Direttiva Macchine (2006/42/CE)
- Direttiva EMC (2014/30/CE)
- Direttiva sulla Bassa Tensione (2014/35/CE)

In merito all'immunità ai disturbi, il servoamplificatore soddisfa i requisiti della seconda categoria ambientale (ambienti industriali). Per l'emissione di rumore, il servoamplificatore soddisfa il requisito di un prodotto a disponibilità ridotta della categoria C2 (cavo motore ≤ 10 m). Con un cavo del motore di lunghezza superiore ai 10 m, il servoamplificatore soddisfa i requisiti della categoria C3 ambientale.

AVVISO

In ambiente domestico questo prodotto può provocare disturbi ad alta frequenza che richiedono l'adozione di misure preventive.

5.2.1 Direttive e norme europee per produttore della macchina

I servoamplificatori sono componenti di sicurezza destinati all'integrazione in impianti e macchine elettrici per uso industriale. Quando i servoamplificatori sono integrati in macchine o impianti, l'uso previsto dell'amplificatore è vietato fino a quando viene stabilito che la macchina o l'attrezzatura soddisfa i requisiti della

- Direttiva Macchine (2006/42/CE)
- Direttiva EMC (2014/30/CE)
- Direttiva sulla Bassa Tensione (2014/35/CE)

Le seguenti norme devono essere applicate in conformità alla Direttiva 2006/42/CE:

EN 60204-1 (sicurezza e apparecchiature elettriche nelle macchine) EN 12100 (sicurezza delle macchine)

AVVISO

Il produttore della macchina deve produrre un'analisi dei rischi per la macchina ed implementare misure adeguate per assicurare che movimenti imprevisti non possano causare lesioni o danni a persone o cose. Il produttore della macchina/dell'impianto deve verificare la necessità di applicazione di altre norme o direttive CE a questa macchina/a questo impianto.

Le seguenti norme devono essere applicate in conformità alla Direttiva 2014/35/CE:

- EN 60204-1 (sicurezza e apparecchiature elettriche nelle macchine)
- EN 60439-1 (combinazioni di quadri di comando a bassa tensione)

Le seguenti norme devono essere applicate in conformità alla Direttiva 2014/30/CE:

- EN 61000-6-1 / 2 (immunità alle interferenze nelle aree residenziali e industriali)
- EN 61000-6-3 / 4 (generazione di interferenze nelle aree residenziali e industriali)

Il produttore della macchina/dell'impianto deve garantire che tale macchina/impianto rientri nei limiti richiesti dai regolamenti sulla EMC. Consigli sull'installazione corretta per la EMC (come schermature, messe a terra, trattamenti di connettori e disposizioni dei cavi) si trovano anche in questa documentazione.

Garantiamo la conformità del servosistema alle norme qui menzionate solo se vengono utilizzati componenti originali (motore, cavi, induttori e così via).

5.2.2 Safety Conformità Safety (STO) alla Direttiva Macchine

Safe Torque Off

Il servo amplificatore S700 offre una funzione a due vie di STO (Safe Torque Off). La funzione blocca gli impulsi di accensione dei transistor dello stadio finale (blocco impulsi).

Il concetto di sicurezza STO è certificato dal TÜV. Il livello di sicurezza certificato della funzione "Safe Torque OFF" è SIL CL3 con riferimento alla norma EN62061 e PLe con riferimento alla norma EN13849-1.

I parametri caratteristici che descrivono la funzione di sicurezza sono SIL CL, PFHD e TM.

Dispositivo	Modo	EN 13849-1	EN 62061	PFHD [1/h]	TM [anno]
STO1/2-Enable	singola scanalatura	PLd, Kat 3	SIL CL 2	7,05E-08	20
STO1-Enable+ STO2-Enable	doppia scanalatura	PLd, Kat 3	SIL CL 2	7,05E-08	20
STO1-Enable+ STO2-Enable+ STO-Status	doppia scanalatura + test periodici	PLe, Kat 4	SIL CL 3	1,38E-09	20

Le soluzioni SIL2 / PLd sono possibili con semplici dispositivi di commutazione di sicurezza. Per una soluzione SIL3 / PLe, è richiesto un controllore di sicurezza

Scheda di espansione "Safety 2-2" (S4)

Offre diverse funzioni (versione di base) per la sicurezza di funzionamento degli assi di azionamento. I motori snchronous rotatori sono permessi quando usando questa carta di sicurezza. Tutte le funzioni soddisfanno le condizioni SIL CL2 di sicurezza secondo IEC 62061 rispettivamente del livello di rendimento PLd secondo ISO13849-1.

Scheda di espansione "Safety 1-2" (S3)

Questa carta di espansione comprende tutte le funzioni di sicurezza disponibili. I motori snchronous rotatori sono permessi quando usando questa carta di sicurezza. Tutte le funzioni soddisfanno le condizioni SIL CL3 di sicurezza secondo IEC 62061 rispettivamente del livello di rendimento PLe secondo ISO13849-1.

5.3 Conformità con la direttiva RoHS

Il dispositivo è stato fabbricato in conformità con la direttiva RoHS 2011/65/CE con la direttiva delimitata 2015/863/UE per l'installazione in una macchina.

5.4 Conformità con règlement REACH

Il regolamento (CE) n. 1907/2006 disciplina la registrazione, la valutazione, l'autorizzazione e la restrizione delle sostanze chimiche (in breve, "REACH").

I dispositivi non contengono sostanze (sostanze CMR, PBT e vPvB e sostanze ugualmente pericolose, che vengono determinate singolarmente sulla base di criteri scientifici) in quantità superiori allo 0,1 % in massa, che sono incluse nell'elenco delle "sostanze candidate".

5.5 Conformità EAC

EAC è un acronimo che sta per conformità euroasiatica. Questo marchio viene utilizzato negli Stati dell'Unione doganale euroasiatica (Russia/Bielorussia/Kazakistan).

Kollmorgen conferma che il dispositivo è stato sottoposto a tutte le procedure necessarie per la verifica della conformità in uno degli Stati appartenenti all'Unione doganale euroasiatica e che dispositivo risponde a tutti i requisiti previsti in tali paesi:

- Impianti a bassa tensione TP TC 020/2011
- Compatibilità elettromagnetica TP TC 004/2011.

Contatto in loco: Intelisys LLC., Bakuninskaya Str. d 14, Building 10, RU-105005 Moskau

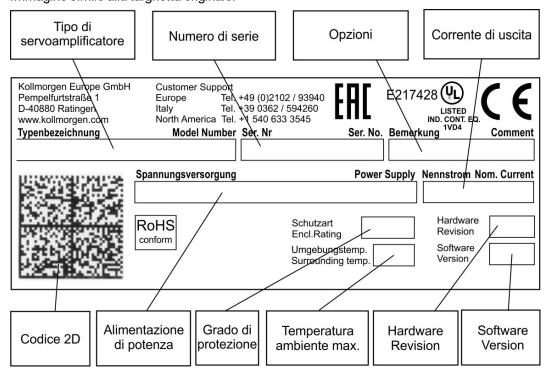
6 Identificazione del prodotto

6.1 Imballaggio fornito

Un amplificatore della serie S700 (codici di ordin. (→ # 159)), comprende:

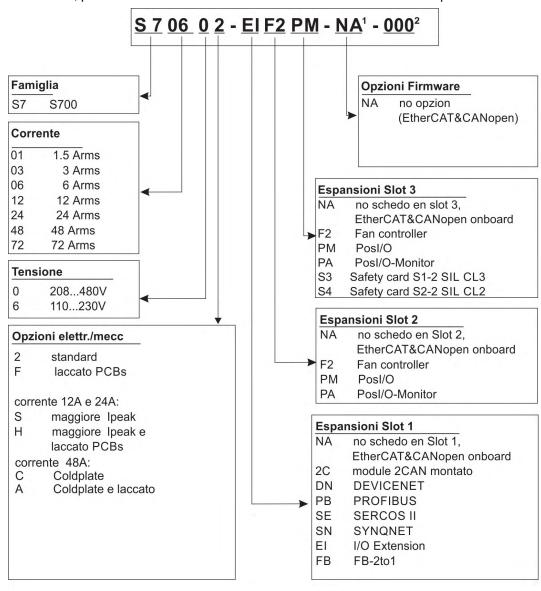
- Amplificatore S700 con piastra di schermatura e morsetti di schermatura
- Product Safety Guide S700 (stampato)
- Documentazione online e software di configurazione su CD-ROM
- Connettori corrispondenti X3A, X3B, X4, X9A, X9B

INFORMAZIONI


I connettori SubD corrispondenti non vengono forniti in dotazione!

Accessori: (eventualmente da ordinarsi separatamente; per la descrizione vedere il manuale degli accessori)

- Cavo motore ibrido (prefabbricato) per collegamento a cavo singolo
- Cavo del motore da tagliare a misura
- Cavo di retroazione (preconfezionato) o entrambi i connettori di retroazione separati, con il cavo di retroazione da tagliare a misura
- Resistenza di frenatura esterna BAS(U)
- Cavo di comunicazione con il PC (→ # 104) per impostare i parametri da un PC
- Cavo di alimentazione, cavi di comando, cavi del bus di campo (da tagliare a metri)
- Induttanza di rete se la tensione di rete è superiore al 3% asimmetrica


6.2 Targhetta di omologazione

La targhetta di omologazione si trova su un lato del servoamplificatore. Le informazioni descritte di seguito sono stampate nei singoli campi. Immagine simile alla targhetta originale.

6.3 Schema di numero del prodotto

Utilizzare il codice tipo per l'identificazione del prodotto, ma non per il processo di ordinazione, poiché non tutte le combinazioni di funzioni sono tecnicamente possibili.

¹ non presente nei modelli standard

Esempio 1: S77202-EIF2PM-NA-000

- **S7** S700
- 72 72A corrente nominale
- 0 Tensione di rifornimento 208...480V
- 2 Nessun'opzione elettrica/meccanica
- El Espansion I/O en Slot 1
- F2 Controllo del ventilatore en Slot 2
- PM Posl/O en Slot 3
- NA Standard (EtherCAT&CANopen onboard)
- 000 Nessun specials di specific del cliente

Esempio 2: S7480C-EIF2S4-NA-000

- **S7** S700
- 48 48A corrente nominale
- 0 Tensione di rifornimento 208...480V
- **C** Coldplate
- El Espansion I/O en Slot 1
- F2 Controllo del ventilatore en Slot 2
- \$4 Safety Card S2-2 en Slot 3
- NA Standard (EtherCAT&CANopen onboard)
- 000 Nessun specials di specific del cliente

² non presente nei modelli standard, un codice aggiuntivo definisce caratteristiche particolari scelte dal cliente.

7 Descrizione tecnica

7.1 Servoamplificatori digitali della famiglia S700

Versione standard

- Campo di tensione nominale maggiore: 3 x 208V-10% ... 3 x 480V+10% (con tensione di rete inferiore a 300 V impostare i parametri NONBTB=3 e VBUSBAL=1)
- Categoria di sovratensione III secondo EN 61800-5-1
- CANopen integrata
- EtherCAT integrata
- RS232 integrata, interfaccia 24V di direzione degli impulsi integrata
- Analisi resolver, encoder, trasduttore incrementale, ComCoder integrata
- Controller intelligente di posizione integrato
- Arresto sicuro STO integrato (fino a SIL CL3, PLe)
- Tre slot per schede di espansione sulla piastra frontale
- Unità di lettura/scrittura per schede di memoria integrata
- I servomotori sincroni, i motori lineari, i motori asincroni ed i motori DC possono essere utilizzati

Alimentazione elettrica

- Direttamente sull'alimentaz. messa a terra, 3 x 208V-10% ... 3 x 480V+10%, 50/60 Hz (con tensione di rete inferiore a 300 V impostare i parametri NONBTB=3 e VBUSBAL=1)
- rete TN o rete TT con punto neutro collegato a terra, corrente nominale simmetrica di 42kA max., collegamento ad altri tipi di alimentazione solo mediante trasformatore d'isolamento (→ #68)
- Raddrizzatore a ponte B6, filtro di alimentazione integrato e circuito di avvio dolce
- Possibilità di alimentazione monofase (ad esempio per l'installazione)
- Protezione (ad es. mediante fusibili in aria) a cura dell'utente
- Tutti i collegamenti di schermatura vengono eseguiti direttamente sull'amplificatore
- Stadio di uscita: modulo IGBT con misurazione della corrente flottante
- Circuito di frenatura: con distribuzione dinamica della potenza rigenerata tra diversi amplificatori sullo stesso circuito DC-link. Resistenze di frenatura esterne su richiesta.
- Tensione DC-link 260...900 V DC, con possibilità di connessione in parallelo
- I filtri di soppressione delle interferenze sono integrati per l'alimentazione elettrica e la tensione di alimentazione ausiliaria da 24V (con cavo del motore ≤ 10 m per C2 secondo la norma EN 61800-3, con cavo del motore > 10 m per C3 secondo la norma EN 61800-3).

Sicurezza integrata

- Le distanze di isolamento/dispersione adeguate e l'isolamento elettrico garantiscono una separazione elettrica sicura, in conformità alla norma EN 61800-5-1, tra i collegamenti d'ingresso dell'alimentazione/del motore e l'elettronica dei segnali
- Avvio dolce, rilevamento di sovratensioni, protezione contro i cortocircuiti, monitoraggio delle mancanze di fasi
- Monitoraggio della temperatura del servoamplificatore e del motore (se vengono utilizzati motori e cavi prefabbricati di nostra produzione)
- Arresto sicuro STO (fino a SIL CL3 a norma EN62061, PLe a EN13849-1), (→ #41)
- Alloggiamento per scheda con funzioni di sicurezza (opzionali) per il funzionamento degli assi di trasmissione, (→ # 153)

Tensione di alimentazione ausiliaria 24V DC

- Fusibile interno isolato elettricamente da un alimentatore esterno da 24 V CC.
- Ingresso di alimentazione 24 V separato per alimentazione elettronica interna
- Ingresso di alimentazione separato da 24 V per l'alimentazione del freno di stazionamento del motore
- Ingresso alimentazione 24 V separato per uscite digitali

Funzionamento e impostazione dei parametri

- Con il nostro intuitivo software per la configurazione attraverso l'interfaccia seriale di un PC
- Se non è disponibile un PC: funzionamento diretto con due tasti sul servoamplificatore e un display a LED da 3 caratteri
- Completamente programmabili attraverso l'interfaccia RS232
- Possibilità di scrivere/leggere i set di parametri e il firmware tramite smart card MMC

Controllo completamente digitale

- Controller di corrente digitale (vettore di spazio, modulazione dell'ampiezza degli impulsi, 62,5 µs)
- Controller di velocità digitale a libera programmazione (62,5 µs)
- Controller di posizione integrato, con possibilità di adattamento per tutte le applicazioni (250 μs, possibilità di commutazione a125 μs)
- Interfaccia 24V di direzione degli impulsi integrata per collegare un servomotore ad un controller passo-passo

Ingressi/Uscite

- 2 ingressi analogiche programmabili (→ #99)
- 4 ingressi digitali programmabili(→ # 100)
- 2 ingressi/uscite digitali programmabili (direzione del segnale commutabile) (→ # 100)
- Combinazioni logiche programmabili di segnali digitali
- 1 ingresso Enable (→ # 100)
- 2 ingressi STO Enable (→ # 101)
- 2 uscite STO-Status (→ # 102)

Espansioni

Slot 1

Le carte di espansione in slot1 possono essere unite con opzione F2 in slot 2. Più combinazioni di carte di espansione della slot 1 e della slot 2 non sono possibili.

- Scheda di espansione I/O-14/08, (→ # 127)
- Scheda di espansione PROFIBUS, (→ #130)
- Scheda di espansione sercos® II, (→ # 131)
- Scheda di espansione DeviceNet, (→ # 133)
- Scheda di espansione SyngNet, (→ # 136)
- Scheda di espansione FB-2to1, (→ # 138)
- Modulo di espansione -2CAN-, connettore separato per CAN Bus e RS232,(→ # 140)

Slot 2

- Opzione F2, controllo del ventilatore, non può essere inserito più successivamente,
 (→ # 152), può essere unito con le carte di espansione in slot 1
- Scheda di espansione Posl/O,(→ # 143)
- Scheda di espansione Posl/O-Monitor, (→ # 143)

Slot 3

- Opzione F2, controllo del ventilatore, non può essere inserito più successivamente,
 (→ # 152)
- Scheda di espansione Posl/O, (→ #152)
- Scheda di espansione PosI/O-Monitor, (→ #152)
- Scheda di espansione Safety (S4) S2-2 (SIL CL2), (→ # 155)
- Scheda di espansione Safety (S3) S1-2 (SIL CL3), (→ # 153)

Per schede di espansione di altre marche (ModBus, LightBus, FIP-IO, ecc.) contattare il produttore per ulteriori informazioni.

Programmazione Macro

Più informazioni in "KDN" Macro-Programming.

- 62,5 µs / 250 µs / 1 ms / 4 ms / 16 ms / IDLE / IRQ
- 128 kByte di memoria
- Testo strutturato secondo EN 61131
- 400 istruzioni base ogni 62.5 μs
- Comunicazione CAN per controllo multiasse

7.2 Dati tecnici

7.2.1 Dati nominale

Dati elettrice	DIM	S74802	S77202
Dati elettrica Tensione di alimentazione nominale	V~		10% 3 x
(aliment. messa a terra) (L1,L2,L3)	\ \v^2		o, 50/60 Hz
Potenza nominale installata	kVA	35 50	
Frequenza di inserzione ammessa	1/h		0
Alimentazione ausiliaria			/ 31)
Tensione DC-link max.	V=	·	00
Corrente in uscita nominale (valore rms, ± 3%)			
a 3x208V	Arms	48	72
a 3x230V	Arms	48	72
a 3x400V	Arms	48	72
a 3x480V	Arms	48	72
Corrente di picco in uscita (max. 5s, ± 3%)	Arms	96	140
Frequenza di clock (stadio di uscita)	kHz		3
a corrente ridotta (50%)	kHz	1	6
Velocità di incremento della tensione dU/dt (misurata	senza moto	re, (→ #73))	
a 3x208V	kV/µs	2	,1
a 3x230V	kV/μs	2	,3
a 3x400V	kV/µs	4,0	
a 3x480V	kV/µs	4,8	
Dati tecnici per il circuito di frenatura		(→ #35)	
Soglia di disinserzione (sovraccarico)	VDC	(→ #35)	
Induttanza del motore min. a 3x208V	mH	0,38 0,26	
Induttanza del motore min. a 3x230V	mH	0,42 0,29	
Induttanza del motore min. a 3x400V	mH	0,74 0,51	
Induttanza del motore min. a 3x480V	mH	0,88	0,61
Induttanza del motore max.	mH	Consulta	re nostro
		servizio	
Fattore di forma della corrente d'uscita (cond. nom., indutt. di carico min.)	_	1,	01
Larghezza di banda del contr. corrente subordinato	kHz	> 1,2 (f	ino a 5)
Caduta di tensione residua alla corrente nominale	V	(3
Dissipazione inattiva, stadio d'uscita disattivato	W	2	4
Dissipazione alla corrente nom. (senza dissipazione d	i carico)		
a 3x230V	W	555	855
a 3x400V	W	635	1005
a 3x480V	W	685	1135
Emissione di rumore max.	dB(A)	62	68
Dati Meccanica			
Peso	kg	1	3
Weight Coldplate Version (S7480C, S7480A)	kg	10,4	-
Altezza, senza/con connettori e piastra schermatura	mm	•	 /505
Larghezza	mm		90
Profondità,senza/con connettori	mm		
1 Toronalta, 301124/0011 0011116tt011	ri mm 244/285		200

^{*} In caso di tensione di rete inferiore a 300 V, impostare i parametri NONBTB=3 e VBUSBAL=1.

7.2.2 Ingressi/uscite, Tensione ausiliaria

Interfaccia	dati elettrica
Ingressi analogici 1/2	±10 V
Intervallo tensione sincrona max.	±10 V
Ingressi di comando digitali	sec. EN 61131-2 Typ1, max. 30 VDC, 15 mA
Uscite di comando digitale	sec. EN 61131-2 Typ1, max. 30 VDC, 100 mA
Uscita BTB/RTO, contatti a relè	max. 30 VDC, max 42 VAC, 500 mA
24V-IO, uscite digitale	20 V 30 V
Tensione ausiliaria, PELV	
- Elettronica	24 V (-0% +15%), 2A
(con ventola, senza scheda opzionale)	
- Freno, corrente d'uscita min./max.	24 V (-0% +15%), 0,15 A / 3 A

7.2.3 Connettore

Connettore	Tipi	max. sezioni *1	Corrente consentito *2	Tensione consentito *3
X0 Rete	Terminali	35 mm²	125 A	1000 V
X1 Ingresso Encoder	SubD15poli (femmina)	0,5 mm ²	1 A	<100 V
X2 Ingresso Resolver	SubD 9poli (femmina)	0,5 mm ²	1 A	<100 V
X3A, X3B Segnali di comando	Mini-Combicon (maschio)	1,5 mm ²	4 A	160 V
X4 Tensione ausiliaria, STO	Mini-Combicon (maschio)	1,5 mm ²	4 A	160 V
X5 (opzionali) Emulazione encoder, ROD/SSI	SubD 9poli (maschio)	0,5 mm ²	1 A	<100 V
X6 Interfaccia PC, CAN	SubD 9poli (maschio)	0,5 mm ²	1 A	<100 V
X7A,B EtherNET	RJ45	FTP CAT.5, 26AWGx4P as per EN50173		
X8 DC-link, motore, resistenza frenatura esterna	Terminali	35 mm²	125 A	1000 V
X9A,B Freno motore	Mini-Combicon (maschio)	1,5 mm ²	4 A	160 V

^{*1} collegamento a linea singola

7.2.4 Coppie di serraggio consigliate

Connettore	Coppie di serraggio
X0 con filo fino a 25mm²	2,5 Nm
X0 con filo 35mm²	4,5 Nm
X3A,B	Morsetti a gabbia
X4	Morsetti a gabbia
X8 con filo fino a 25mm²	2,5 Nm
X8 con filo 35mm²	4,5 Nm
X9A	Morsetti a gabbia, Flangia di montaggio: 0,5 Nm
Perno di terra	3,5 Nm

^{*2} collegamento a linea singola con la sezione del conduttore consigliamo (→ # 33)

^{*3} tensione nominale con il livello d'inquinamento 2

7.2.5 Fusibili

Protezione interna, elettronica o con fusibile per correnti deboli

Circuito	Protezione interna
Alim. da 24V elettronica	4 A
Alim. da 24V freno	4 A
Resistenza di frenatura	elettronica

Protezione esterna fornita dall'utente

Fusibili a fili o similari	S748	S7772
Alim. di corr. AC F _{N1/2/3}	60 A*	80 A*
Alim. da 24V elettronica F _{H1/2}	8 A**	8 A**
Alim. da 24V freno F _{H3/4}	8 A**	8 A**
Resistenza di frenatura F _{B1/2}	100 A***	100 A***

^{*} Fusibili Europei: gRL o gL 400V/500V

Fusibili USA tra parentesi: fusibili classe RK5/CC/J/T, 600VAC 200kA, temporizzati

Fusibili USA: Bussmann FWP-xxA22F, Size 22x58mm, UL approvato per 500Vdc

Le informazioni per la fusione possono essere trovate nel "KDN".

7.2.6 Condizioni ambientali, aerazione, posizione di montaggio

Stoccaggio	(→ #18)
Trasporto	(→ #18)
Temperatura ambiente di	0+40°C alle condizioni nominali
esercizio	+40+55°C con correzione di potenza di 2,5% / K
Umidità atmosferica di esercizio	Umidità atmosferica relativa max. 85%, senza condensa.
Altitudine d'installazione	fino a 1000 metri s.l.m. senza limitazioni da 1000 a
	2500 metri s.l.m. con correzione di potenza di 1,5% / 100 m
Grado di imbrattamento	Livello d'inquinamento 2 secondo EN 60664-1,
Vibrazioni	Class 3M1 secondo EN 60721-3-3
Grado di protezione	P 20 secondo EN 60529
Posizione di montaggio	verticale (→ # 56)
Ventilazione	ventilatore
AVVISO	Una temperatura eccessiva nel quadro elettrico ad armadio porta al disinserimento del servoamplificatore (messaggio di errore F01/F13 (→ # 123)), la coppia del motore scende a zero. Assicurarsi che nel quadro elettrico ad armadio chiuso sia presente un sufficiente ricircolo d'aria forzata.

Requisiti di Kollmorgen per servoamplificatori con coldplate:

Planarità della piastra di montaggio (raffreddamento): ≤ 25 µm / 100 mm

Tensione di rete	Max. resistenza termica	Max. temperatura consentita al centro della piastra refrattaria
230 V	0,063 K/W	75 °C
400 V	0,055 K/W	75 °C
480 V	0,051 K/W	75 °C

AVVISO

La temperatura della piastra di raffreddamento non deve essere superiore a 10 K sotto la temperatura ambiente. Con una differenza di oltre 10 K esiste il rischio di condensa. La condensa può distruggere l'elettronica del servoamplificatore.

^{**} per esempio fusibili filo o micro fusibile o interruttori automatici

^{***} Fusibili Europei: Bussmann HLS, 690V/100A

7.2.7 Sezioni dei cavi

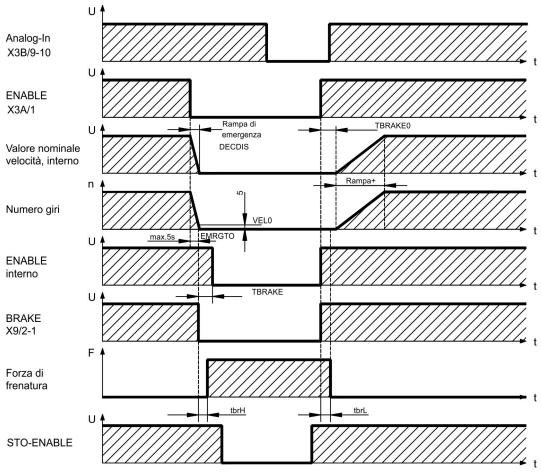
Raccomandazioni per i cavi (materiali e struttura (→ #63). Nell'ambito di EN 60204 (B2) per i sistemi monoasse consigliamo:

Interfaccia	Sezioni		Requisiti tecnici	
Collegamento AC	S748:	16 mm ²	600V, 80°C	
	S772:	25 mm ²		
DC-link	S748: 25 mm ² 1		1000V, 80°C, schermato per	
	S772:	25 mm ²	lunghezze >0,20m	
Resistenza di frenatura	S748:	35 mm²	1000V, 80°C, schermato per	
	S772:	35 mm ²	lunghezze >0,20m	
Cavi del motore	S748:	16 mm²	600V, 80°C,	
	S772:	25 mm ²	schermato , C<150pF/m	
Resolver,sensore di	4x2x0,25	mm²	cavi bipolari, schermato, C<120pF/m	
temperatura, max.100m*				
Encoder, sensore di	7x2x0,25	mm²	cavi bipolari, schermato, C<120pF/m	
temperatur, max. 50m*				
ComCoder, sensore di	8x2x0,25 mm ²		cavi bipolari, schermato, C<120pF/m	
temperatur, max. 25m				
Setpoint, AGND, max 30m	0,25 mm ²		cavi bipolari, schermato	
Segnali di comando, BTB,	0,5 mm ²			
DGND, max. 30m				
Freno (motore)	min. 0,75	mm²	600V, 80°C, schermato,	
			Cons. la caduta di tensione!	
24V elettronica, max. 30m	max. 1,5	mm²	Cons. la caduta di tensione!	
24V freno, max. 30m	max. 1,5 mm²		Cons. la caduta di tensione!	
AVVISO	Per i sistemi multiasse osservare le condizioni speciali			
	dell'impianto in uso. La sicurezza di funzionamento con cavi			
	di massima lunghezza è garantita solo rispettando			
	scrupolosamente i requisiti richiesti per i materiali (→ #63)			

^{*} Kollmorgen Nord America: cavo fino a 39 m, Europa: fino alla lunghezza massima.

7.3 Freno di arresto motore

Un freno nel motore da 24 V nel motore può essere controllato direttamente. Viene utilizzata una speciale tensione di alimentazione a 24 V (X9B). I freni fino a 3 A possono essere controllati direttamente.


ATTENZIONE Nessun sicurezza funzionale

Pericolo di lesioni con carico sospeso (asce verticali)! Il carico d'attaccatura richiede un freno meccanico supplementare che deve essere azionato sicuro., per esempio via la carta di sicurezza S1-2 (→ # 155).

AVVISO

Il freno funziona solo se la tensione di alimentazione è sufficiente (→ #31). Controllare la caduta di tensione, misurare la tensione sull'ingresso freno e verificare la funzionalità dei freni (in rilascio e in frenatura).

La funzione del freno deve essere abilitata attraverso il parametro FRENO (schermata: Motore). Nello schema seguente sono illustrati i rapporti di tempo e funzionali tra il segnale di abilitazione, il setpoint della velocità, la velocità e la forza frenante. Tutti i valori possono essere registrati con i parametri, i valori nello schema sono vales di standard.

Durante il tempo di ritardo dell'abilitazione interna di 100 ms (DECDIS), il setpoint della velocità del servoamplificatore viene condotto internamente su una rampa regolabile a 0V. L'uscita per il freno viene attivata quando la velocità ha raggiunto 5 giri/min (VELO), al più tardi dopo 5s (EMRGTO). I tempi di aumento (fbrH) e diminuzione (fbrL) del freno di stazionamento incorporato nel motore sono diversi per i vari modelli di motore (vedere il manuale del motore), i dati appropriati viene caricati quando si sceglie un motore dalla base del motore. Una descrizione dell'interfaccia si trova a (→ #73).

7.4 Display a LED

Un <u>display a LED</u> da 3 caratteri indica lo stato dell'amplificatore dopo l'inserzione dell'alimentazione da 24V (→ # 121). Quando l'amplificatore viene azionato mediante i tasti sul pannello frontale, vengono visualizzati i numeri del parametro e della funzione, come pure i codice di eventuali errori comparsi (→ # 123).

7.5 Sistema di messa

AGND - ingressi analogici, messa analogica interna

DGND - 24V-IO, ingressi/uscite digitali, isolamento ottico

GND - messa digitale interna, emulazione encoder, RS232, CAN

XGND - l'alimentazione da 24V, STO-Enable, ventilatore

BRGND - l'alimentazione da 24Vdu frein

7.6 Frenaggio dinamico

Durante frenaggio dinamico con l'aiuto del motore, l'energia viene riconvogliata verso il servoamplifcatore. Questa energia rigenerativa viene dissipata sotto forma di calore nella resistenza di frenatura . La resistenza di frenatura viene inserita dal circuito di frenatura. Il software di configurazione può essere utilizzato per adattare il circuito di frenatura (soglie) in base alla tensione di alimentazione elettrica. Il nostro servizio di assistenza clienti può aiutarvi nel calcolo della potenza di frenatura necessaria per il vostro sistema. Un metodo semplice è descritto nel "KDN". Per una descrizione dell'interfaccia si rimanda a (→ #71).

Descrizione funzionale:

1.- Amplificatori singoli, non accoppiati attraverso il circuito DC-link (DC+, DC-)

Se l'energia riconvogliata dal motore ha una potenza media o di picco che supera il livello preimpostato per la potenza di frenatura nominale, il servoamplificatore genera l'allarme "n02 potenza di frenatura superata" e il circuito di frenatura viene disinserito. Durante il controllo interno successivo della tensione del DC-link (dopo pochi millisecondi), viene rilevata una sovratensione e il servoamplificatore viene spento con il messaggio d'errore "Sovratensione F02" (→ # 123). Contemporaneamente viene aperto il contatto BTB/RTO (→ # 102).

2.- Diversi servoamplificatori accoppiati attraverso il DC-link (DC+, DC-)

Grazie al circuito di frenatura incorporato, diversi amplificatori (anche con diverse correnti nominali) possono essere comandati da un DC-link comune, senza la necessità di ulteriori misure (Attenersi alle indicazioni di pagina (→ #70)). Sia per la potenza di picco che per la potenza continua è sempre disponibile il 90% delle potenze cumulative di tutti gli amplificatori. La disinserzione in caso di sovraccarico avviene come descritto al punto 1 in caso di amplificatore con soglia di disinserzione minima nei limiti delle tolleranze previste.

I dati tecnici del circuito di frenatura dipendono dal tipo di servoamplificatore utilizzato e dalla tensione di rete (VBUSBAL).

Dati tecnici		VBU	SBAL: T	ensione d	di rete
Dati nominali	DIM	1:230 V	2:400 V	3:480 V	4*:480 V
Soglia d'inserzione circuito di frenatura	V	400	720	840	790
Sovratensione F02	V	455	800	900	900
Potenza a impulsi di frenatura	kW	16	50	70	70
Resistenza di frenatura esterna (RBe), S748	Ohm	15			
Resistenza di frenatura esterna (RBe), S772	Ohm	10			
Potenza continua esterna (RBe)	kW	8			

^{*} Kollmorgen consiglia di impostare VBUSBAL = 4 in caso di alimentazione di rete a 480 V, con questa impostazione viene utilizzato il metodo di calcolo ottimizzato.

INFORMAZIONI

Le resistenze di frenatura esterne adatte allo scopo sono indicate nel manuale accessori.

7.7 Procedura di inserzione e disinserzione

Questo paragrafo descrive il comportamento del S all'inserzione e disinserzione, e le misure necessarie ad ottenere un funzionamento corretto in caso di arresto regolare o di emergenza.

INFORMAZIONI

L'alimentazione a 24V del servoamplificatore deve essere mantenuta.

I comandi ASCII <u>ACTFAULT</u> (reazione all'errore, che dipende anche dal relativo errore, vedere inoltre <u>ERRCODE</u>) e STOPMODE (reazione a un segnale enable) determinano il comportamento dell'azionamento.

	Comportamento (vedere anche il codice ASCII sulla <u>Online Help</u> del software di messa in funzione)
0	Il motore si arresta irregolarmente
1 (default)	Il motore viene frenato in modo guidato

Comportamento in caso di caduta dell'alimentazione

I servoamplificatori rilevano il guasto di una o più fasi di rete (alimentazione di potenza) attraverso un circuito integrato.

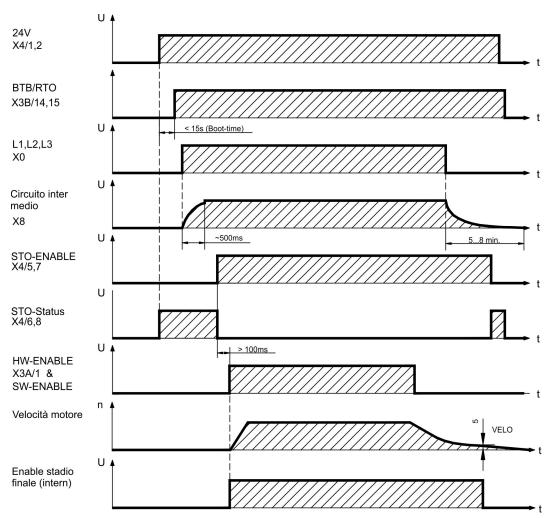
Il comportamento del servoamplificatore si imposta con l'ausilio del software di messa in funzione: sulla videata **Impostazioni di base**, alla voce **"Intervento in caso di perdita di una fase di rete"** (PMODE) selezionare:

- Allarme, se l'unità di controllo subordinante deve spegnere l'azionamento: la mancanza di una fase di rete viene segnalata come allarme (n05) e la corrente del motore viene limitata a 4A. Il servoamplificatore non viene disattivato. L'unità di controllo subordinante può portare a termine in modo mirato il ciclo in corso oppure avviare la procedura di spegnimento dell'azionamento. Inoltre ad esempio il messaggio d'errore "RETE-BTB, F16" viene settato su un'uscita digitale del servoamplificatore e analizzato dall'unità di controllo.
- Messaggio d'errore, se il servoamplificatore deve spegnere l'azionamento: l'assenza di una fase di rete viene segnalata come errore (F19). Il servoamplificatore viene disattivato e il contatto BTB si apre. Se le impostazioni non sono state modificate (<u>ACTFAULT</u>=1), il motore viene frenato con la "RAMPA DI EMERGENZA" impostata.

Comportamento al raggiungimento della soglia di sottotensione

Se il valore di tensione scende sotto la soglia inferiore (il valore dipende dal tipo di servoazionamento) nel circuito intermedio viene visualizzato l'errore "BASSA TENSIONE, F05". La reazione dell'azionamento dipende dall'impostazione di <u>ACTFAULT/STOPMODE</u>.

Comportamento con funzione "Freno di stazionamento" abilitata


Se è stata abilitata la funzione freno di stazionamento i servoamplificatori dispongono di un ciclo separato per la disinserzione dello stadio finale (→ #34). La disabilitazione del segnale enable determina l'intervento del freno elettrico. Come per tutti i circuiti elettronici, anche per il gruppo interno "Freno di stazionamento" occorre tenere conto di possibili malfunzionamenti. Il carico d'attaccatura (asce verticali) richiede un freno meccanico supplementare che deve essere azionato sicuro, per esempio via la carta di sicurezza S1-2.

Comportamento della funzione di sicurezza STO

Grazie di funzione di sicurezza STO, dopo l'arresto dell'azionamento un componente elettronico interno provvede a disinserire l'alimentazione di potenza, in modo che l'albero di trasmissione non possa riavviarsi accidentalmente e garantisca così la sicurezza funzionale. L'impiego della funzione di sicurezza STO viene illustrato al paragrafo "Funzione di sicurezza STO" a pagina (→ #41).

7.7.1 Comportamento durante il funzionamento normale

Il comportamento del servoamplificatore dipende sempre dalle impostazioni di vari parametri (ad esempio ACTFAULT, VBUSMIN, VEL0, STOPMODE e così via, vedere la <u>Online Help</u>). Il diagramma sottostante illustra la sequenza corretta da un punto di vista funzionale durante l'inserzione e la disinserzione del servoamplificatore.

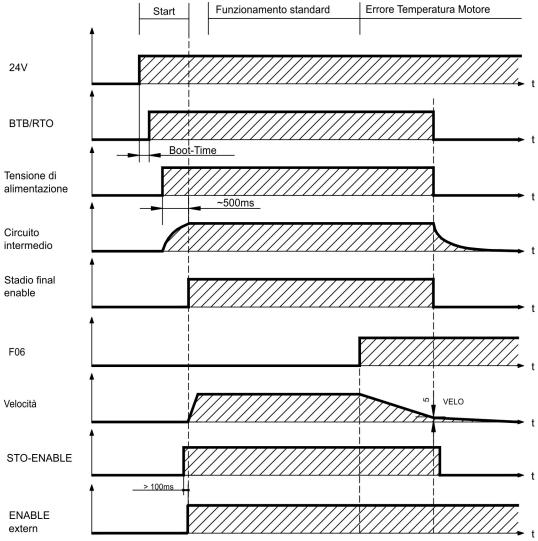
Se è stata selezionata la funzione "Freno" gli apparecchi dispongono di un ciclo separato per la disinserzione dello stadio finale (→ # 34).

Con la funzione di sicurezza STO l'azionamento può essere disinserito in modo che l'albero di trasmissione soddisfi i requisiti di sicurezza funzionale (→ #41).

INFORMAZIONI

Nel caso di una carta di sicurezza incorporata, l'aspettare il Ready Acknowledge (X30 Pin 16) della carta di sicurezza prima di permettere al servo amplificatore ancora.

7.7.2 Comportamento in caso di errore (con le impostazioni standard)


Il comportamento del servoamplificatore dipende sempre dalle impostazioni di vari parametri (ad esempio ACTFAULT, VBUSMIN, VEL0, STOPMODE e così via, vedere la Online Help).

ATTENZIONE Movimento incontrollato!

Alcuni errori (vedere <u>ERRCODE</u>) comportano l'immediata disattivazione dello stadio finale, indipendentemente dall'impostazione di <u>ACTFAULT</u>. Pericolo di lesioni in fase di arresto per inerzia non comandato dell'azionamento. Per la sicurezza funzionale è necessario utilizzare un freno meccanico aggiuntivo comandato in sicurezza.

Lo schema illustra il ciclo di avvio e il ciclo dell'unità di controllo interna del S700 in caso di superameto della temperatura motore elevato, quando i parametri sono impostati sui valori standard. L'errore F06 non determina l'immediata disinserzione dello stadio finale, con ACTFAULT=1 si innesca quindi una frenata di emergenza controllata.

(F06 = messaggi d'errore "Temperatura motore")

Anche senza l'intervento di un'unità di controllo esterna (nell'esempio il segnale enable rimane attivo), al rilevamento di un errore, se le impostazioni non sono state modificate (ACTFAULT=1) il motore viene immediatamente frenato con la rampa di emergenza.

INFORMAZIONI

Nel caso di una carta di sicurezza incorporata, l'aspettare il Ready Acknowledge (X30 Pin 16) della carta di sicurezza prima di permettere al servo amplificatore ancora.

7.8 Funzione di arresto, arresto/spegnimento d'emergenza a EN 60204

Grazie al funzione di sicurezza STO omologato (→ #41), dopo l'arresto dell'azionamento un componente elettronico interno provvede a disinserire l'alimentazione di potenza (assenza di coppia), in modo che l'albero di trasmissione non possa riavviarsi accidentalmente e garantisca così la sicurezza funzionale (fino a SIL CL3 a norma EN 62061, PLe a norma EN 13849-1).

L'installazione della scheda di espansione "Safety" garantisce funzioni di azionamento sicure ai sensi della norma EN 61508 (vedere pag. 152 e seguenti) (→ # 153).

Per eseguire gli arresti e arresti di emergenza nelle categorie indicate i parametri "STOPMODE" e "ACTFAULT" devono essere impostati su 1. Se necessario modificare i parametri dalla finestra Terminale del software di messa in funzione e salvare i dati nella EEPROM.

Gli esempi per l'esecuzione possono essere trovati nel KDN alla pagina Stop and Emergency Stop Function.

7.8.1 Arresto

La funzione di arresto serve a fermare la macchina in modo regolare. Le funzioni di arresto sono definite dalla norma EN 60204.

Categoria 0:

Sspegnimento mediante disinserzione immediata dell'alimentazione elettrica diretta agli azionamenti della macchina (vale a dire un arresto non comandato). Per questo scopo, la funzione STO può essere utilizzata STO (→ #41).

Categoria 1:

Arresto comandato, in cui l'alimentazione elettrica diretta agli azionamenti della macchina viene mantenuta per la funzione di arresto; l'alimentazione elettrica si interrompe solo a macchina ferma.

Categoria 2:

Spegnimento comandato in cui l'alimentazione elettrica diretta agli azionamenti della macchina viene mantenuta.

Per stabilire la categoria di arresto occorre effettuare una valutazione di rischio della macchina e prevedere opportune misure atte a garantire uno spegnimento sicuro.

Le funzioni di arresto delle categorie 0 e 1 devono essere attive a prescindere dal modo di funzionamento, e in ogni caso un arresto di categoria 0 deve avere la priorità. Le funzioni di arresto devono essere realizzate mediante interruzione del relativo circuito e sono prioritarie rispetto alle funzioni di avvio ad esse associate.

Se necessario, prevedere la possibilità di collegare dispositivi di protezione ed asservimenti. In caso di necessità la funzione di arresto deve segnalare il proprio stato all'unità logica di controllo. Il reset della funzione di arresto non deve provocare situazioni pericolose.

Gli esempi per l'esecuzione possono essere trovati nel KDN alla pagina Stop and Emergency Stop Function.

7.8.2 Arresto d'emergenza

La funzione di arresto di emergenza si usa per l'arresto più rapido possibile della macchina in una situazione di pericolo. La funzione di arresto di emergenza è definita da EN 60204.I principi dei sistemi di arresto di emergenza e gli aspetti funzionali sono stabiliti in ISO 13850.

La funzione di arresto di emergenza può essere attivata manuale da una sola persona, per es. con l'ausilio di un interruttore a pressione con apertura forzata (tasto rosso su sfondo giallo). Deve essere del tutto funzionante e disponibile in qualsiasi momento. L'operatore deve sapere immediatamente come azionare questo meccanismo (senza consultare istruzioni o riferimenti).

INFORMAZIONI

Stabilire la categoria di arresto por arresto di emergenza valutando i rischi della macchina.

Oltre ai requisiti per l'arresto, l'arresto di emergenza deve soddisfare i seguenti requisiti:

- l'arresto di emergenza deve avere la priorità rispetto a tutte le altre funzioni e comandi in qualsiasi situazione di funzionamento
- L'alimentazione di eventuali elementi di azionamento che potrebbero causare situazioni di pericolo deve essere interrotta il prima possibile senza provocare altri pericoli (categoria di arresto 0, per es. con STO) oppure essere gestita in modo che il movimento pericoloso venga fermato il prima possibile (categoria di arresto 1).
- il ripristino non deve provocare un riavvio.

Gli esempi per l'esecuzione possono essere trovati nel KDN alla pagina <u>Stop and Emergency</u> Stop Function.

7.8.3 Spegnimento d'emergenza

La funzione di spegnimento di emergenza viene utilizzata per disattivare l'alimentazione elettrica della macchina e impedire rischi derivanti dall'energia elettrica (per es. scosse elettriche). Gli aspetti funzionali dello spegnimento di emergenza sono stabiliti in IEC 60364-5-53.

Lo spegnimento di emergenza viene attivato manualmente da una sola persona, per es. con l'ausilio di un interruttore a pressione con apertura forzata (tasto rosso su sfondo giallo).

INFORMAZIONI

I risultati di una valutazione dei rischi della macchina stabiliscono la necessità o meno di uno spegnimento di emergenza.

Lo spegnimento di emergenza si ottiene disattivando l'alimentazione elettrica con apparecchi di commutazione elettromeccanici. Ciò comporta un arresto della categoria 0. Se questa categoria di arresto non è consentita per la macchina in questione, occorre garantire in altro modo lo spegnimento di emergenza (per es. protezione da contatto diretto).

7.9 Funzione di sicurezza STO

Una delle funzioni principali consta nella protezione contro il riavvio accidentale degli azionamenti, finalizzata alla sicurezza funzionale. Il servo amplificatore S700 offre, anche nella versione di base, una funzione a due vie di STO (**S**afe **T**orque **O**ff). La funzione blocca gli impulsi di accensione dei transistor dello stadio finale (blocco impulsi).

Vantaggi del sistema di protezione STO:

- il circuito intermedio rimane in carica in quanto il circuito principale resta attivo;
- viene inserita solo una bassa tensione, quindi i contatti non si usurano;
- il dispendio in termini di cablaggio è molto ridotto
- sono possibili implementazioni di architteture a singolo e doppio canale.
- Soluzioni SIL2 o SIL3 possibili

La funzione di sicurezza STO corrisponde alla categoria di arresto 0 (arresto non comandato) secondo EN 60204-1. La funzione di sicurezza STO può essere azionata a partire dai relè esterni di sicurezza, a partire da un controllo esterno di sicurezza (uscita a semiconduttore o contatto determinato) o a partire dalla carta di sicurezza incorporata S1-2 (→ # 155) o S2-2 (→ # 153)

Il concetto di sicurezza STO è certificato dal TÜV. Il livello di sicurezza certificato della funzione "Safe Torque OFF" è SIL CL3 con riferimento alla norma EN62061 e PLe con riferimento alla norma EN13849-1.

INFORMAZIONI

Le soluzioni SIL2/PLd possono prevedere sistemi di comando a uno o due canali con dispositivi di commutazione di sicurezza semplici.

Per una soluzione SIL3/PLe occorre un dispositivo di commutazione di sicurezza che, analizzando il segnale di feedback, controlli periodicamente la sicurezza operativa del blocco impulsi.

7.9.1 Caratteristice relative alla funzione di sicurezza

I parametri caratteristici che descrivono la funzione di sicurezza sono SIL CL, PFHD e TM.

Dispositivo	Modo	EN 13849-1	EN 62061	PFHD [1/h]	TM [anno]
STO1/2-Enable	singola scanalatura	PLd, Kat 3	SIL CL 2	7,05E-08	20
STO1-Enable+ STO2-Enable	doppia scanalatura	PLd, Kat 3	SIL CL 2	7,05E-08	20
STO1-Enable+ STO2-Enable+ STO-Status	doppia scanalatura + test periodici	PLe, Kat 4	SIL CL 3	1,38E-09	20

7.9.2 Indicazioni di sicurezza

AVVERTENZA Alta tensione elettrica!

Sussiste un pericolo di scossa elettrica e lesioni personali. Il blocco riavvio STO non implica una separazione elettrica dall'uscita di potenza. Se è necessario accedere ai terminali di potenza del motore,

- scollegare il servoamplificatore dall'alimentazione di rete tenendo
- conto del tempo che il circuito intermedio impiega a scaricarsi.

AVVERTENZA Nessun potere frenante!

Se il carico non è bloccato adeguatamente possono verificarsi lesioni gravi al personale. Il servoamplificatore non può trattenere il carico mentre il blocco STO è attivo.

• Utilizzare un blocco meccanico di sicurezza aggiuntivo (ad esempio, mediante un freno di stazionamento del motore).

ATTENZIONE Movimenti non controllati!

Rischio di lesioni. Quando la funzione STO è abilitata rimuovendo il 24VDC dal ingresso STO-Enable, il motore rallenterà senza controllo e il servoamplificatore mostrerà l'errore F27 sul displays. A quel punto non si ha alcuna possibilità di frenare l'azionamento in modo controllato.

 Frenare controllata l'azionamento e rimuovere il +24V dall'ingresso STO-ENABLE con un leggero ritardo

AVVISO

Controllo a singolo canale:

Se l'STO è attivato automaticamente da un sistema di controllo, porre attenzione chel'uscita sia monitorata per prevenire possibili malfunzionamenti. Poichè l'STO è utilizzato con una archittetura a singolo canale, abilitazioni errate non saranno riconosciute.

AVVISO

Frenare controllato:

Rispettare le sequenze qui descritte quando si utilizza l'STO:

- 1. frenare l'azionamento in modo regolato (valore nominale velocità = 0V);
- 2. in caso di velocità = 0 min-1, disabilitare il servoamplificatore (enable = 0V);
- 3. in caso di carico sospeso, bloccare l'azionamento anche meccanicamente;
- 4. attivare la funzione STO (STO1-Enable e STO2-Enable = 0V).

7.9.3 Uso conforme STO

La funzione di sicurezza STO contro il riavvio accidentale del macchinario ha esclusivamente la funzione di impedire il riavvio di un azionamento per garantire la sicurezza funzionale.

- A questo scopo il circuito di sicurezza deve soddisfare i requisiti di sicurezza delle norme EN 60204, EN 12100, EN 62061 e EN 13849-1.
- Per ottenere la classificazione PL o SIL CL 3 è necessario verificare periodicamente la sicurezza operativa del blocco impulsi mediante analisi del segnale di feedback trasmesso dall'unità di controllo di sicurezza
- Per ottenere la classificazione PL o SIL CL 3 è necessario verificare periodicamente la sicurezza operativa del blocco impulsi mediante analisi del segnale di feedback trasmesso dall'unità di controllo di sicurezza (→ #51).

7.9.4 Uso conforme vietato STO

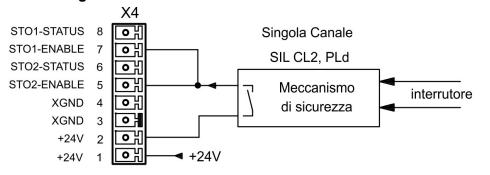
La funzione di sicurezza STO contro il riavvio accidentale del macchinario non può essere utilizzato se l'azionamento deve essere arrestato per i seguenti motivi:

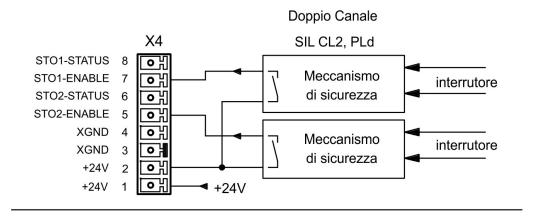
- 1. Interventi di pulizia, manutenzione e riparazione, lunghe pause di esercizio: l'intero impianto deve essere spento e bloccato dal personale (interruttore generale).
- 2. Situazioni di spegnimento d'emergenza: il contattore di rete viene disinserito (tasto di spegnimento d'emergenza).

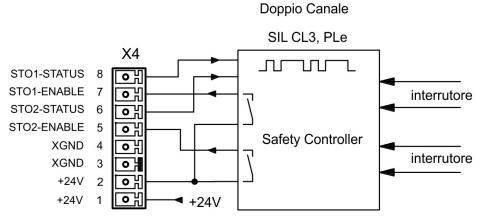
7.9.5 Luogo di installazione

Poiché il regolatore rientra nel grado di protezione IP20, il luogo di installazione va scelto in modo che anche l'ambiente circostante garantisca un funzionamento sicuro del servoamplificatore. Il luogo di installazione deve essere conforme almeno al grado di protezione IP54.

7.9.6 Cablaggio


Se il cablaggio di STO si trova all'esterno del luogo di installazione (IP54), i cavi devono essere posati in modo duraturo (fisso), protetti da danni esterni (per es. con una canalina), inseriti in guaine diverse o protetti uno a uno da collegamento a terra.


Se il cablaggio è all'interno del luogo di installazione stabilito, deve essere effettuato nel rispetto di quanto indicato nella norma EN 60204-1.


7.9.7 Dati tecnici

STO1-Enable e STO2-Enable	Dati	
Tensione di ingresso	20V30V	
Corrente in ingresso	33mA – 40mA (leff)	
Corrente di picco	100mA (Is)	
Tempo di reazione		
(fronte in discesa sull'ingresso STO fino all'interru-	STO1: 1ms	
zione dell'alimentazione diretta al motore)	STO2: 2ms	

7.9.8 Configurazione dei collegamenti

INFORMAZIONI

Per ottenere PLe / SIL CL3, la commutazione sicura dell'inibitore di impulsi deve essere testata periodicamente analizzando il segnale di stato da un controllo di sicurezza.

7.9.9 Descrizione dell funzionamento

In caso di utilizzo della funzione di sicurezza STO, l'ingressi STO1-Enable e STO2-Enable deve essere collegato con l'uscita di un'unità di controllo o di un relè di sicurezza che soddisfino almeno i requisiti della SIL CL2 a norma EN 62061 e PLd a norma EN 13849-1. (Fare riferimento allo schema collegamenti (→ #47)).

Qui di seguito sono riportati gli stati che il servoamplificatore può assumere se collegato al sistema di protezione contro il riavvio accidentale STO:

STO1-ENABLE STO2-ENABLE	ENABLE	Messaggio display	Coppia motore	Sicurezza SIL CL2 o 3
0V	0V	-S-	no	sì
0V	+24V	F27	no	sì
+24V	0V	Ident.apparecchio p.es. 06	no	no
+24V	+24V	Ident.apparecchio p.es. E06	sì	no

Comando a un canale SIL CL2/PLd

Quando la funzione di sicurezza STO (SIL2/PLd) viene controllata con comando a un canale, entrambe le linee di disinserzione STO1-Enable e STO2-Enable vengono commutate da un'uscita di un dispositivo di commutazione di sicurezza (ad esempio un relè di sicurezza), vedere l'esempio a pagina (**) #47).

Se si utilizza il singolo canale, l'STO, porre attenzione che l'uscita del sistema di controllo sia monitorata per prevenire possibili malfunzionamenti.

Comando a due canali SIL CL2/PLd

Quando la funzione di sicurezza STO (SIL2/PLd) viene controllata con comando a due canali, le linee di disinserzione STO1-Enable e STO2-Enable vengono commutat separatamente da due uscite di un dispositivo di commutazione di sicurezza (ad esempio un relè di sicurezza), vedere l'esempio a pagina (→ #48).

Comando a due canali SIL CL3/PLe

Quando la funzione di sicurezza STO viene controllata con comando a due canali, le linee di disinserzione STO1-Enable e STO2-Enable vengono commutate separatamente da due uscite di un'unità di controllo di sicurezza, vedere l'esempio a pagina (→ #49).

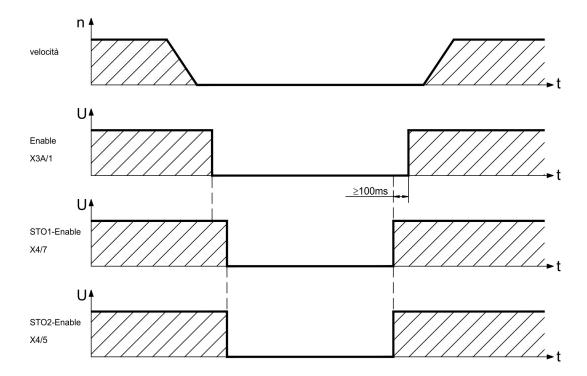
Per ottenere la classificazione PL o SIL CL 3 è necessario verificare periodicamente la sicurezza operativa del blocco impulsi mediante analisi del segnale di feedback (Status) trasmesso dall'unità di controllo di sicurezza (→ #51).

AVVISO

Nel cablare l'ingressi STO all'interno del luogo di installazione occorre considerare che sia i cavi utilizzati che il luogo stesso devono soddisfare i requisiti della EN 60204-1.

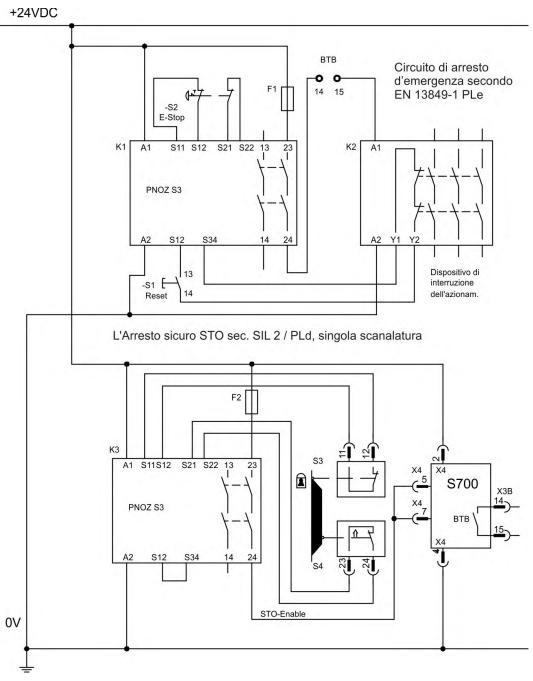
Se il cablaggio è realizzato all'esterno del luogo di installazione, deve essere posato in modo duraturo e protetto da danneggiamenti esterni (→ #43).

INFORMAZIONI


Se un'applicazione non richiede la funzione di sicurezza STO, ingressi STO1-ENABLE e STO2-ENABLE deve essere collegato direttamente a +24 V DC. In tal modo si esclude il sistema di protezione contro il riavvio accidentale che quindi non può essere utilizzato. Il servoamplificatore non può essere utilizzato come componente di sicurezza riferirsi allaEC Direttiva Macchine.

7.9.9.1 Ciclo sicuro

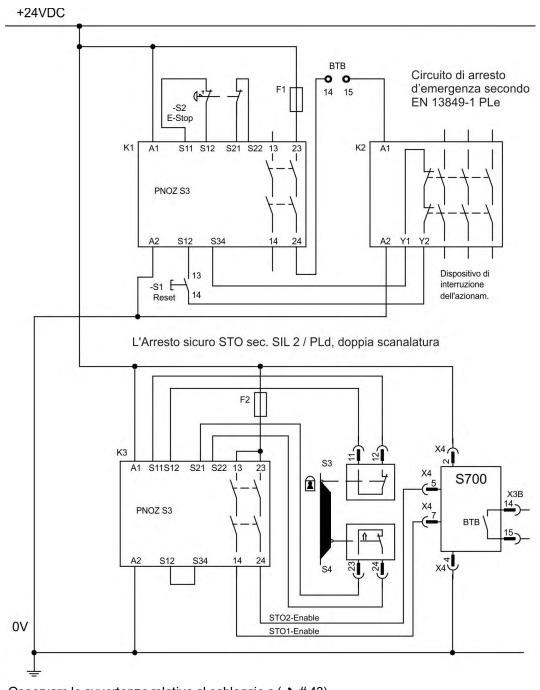
Se un'applicazione richiede una frenata controllata prima dell'utilizzo del sistema di protezione contro il riavvio accidentale, occorre frenare l'azionamento e separare l'ingressi STO da +24VCC con un leggero ritardo.


- 1. Portare il motore in posizione di riposo in modo controllato, valore teorico del numero di giri = 0
- 2. Se numero di giri=0, tensione per Enable = 0 V
- 3. In caso di carico sospeso, bloccare l'azionamento anche meccanicamente
- 4. Attivare sistema di protezione contro il riavvio accidentale, tensione per STO1-Enable e STO2-Enable = 0 V

Il diagramma indica come si deve utilizzare STO contro il riavvio accidentale, al fine di consentire un arresto sicuro dell'azionamento e un corretto funzionamento del servoamplificatore.

7.9.9.2 Circuito elettrico di comando singola scanalatura SIL2/PLd (esempio)

L'esempio mostra lo schema elettrico di un asse con un circuito di arresto di emergenza. La funzione STO dell'azionamento viene attivata da una porta di protezione. La disinserzione è monocanale. I dispositivi di commutazione di sicurezza utilizzati nell'applicazione esemplificata sono della ditta Pilz e risultano conformi almeno alla classificazione PLd secondo EN 13849-1. Per ulteriori informazioni su tali dispositivi rivolgersi alla ditta Pilz. Si possono impiegare dispositivi di commutazione di sicurezza di altre marche, purché anch'essi siano conformi alla classificazione PLd secondo EN 13849-1 oppure SIL CL2 secondo EN 62061.

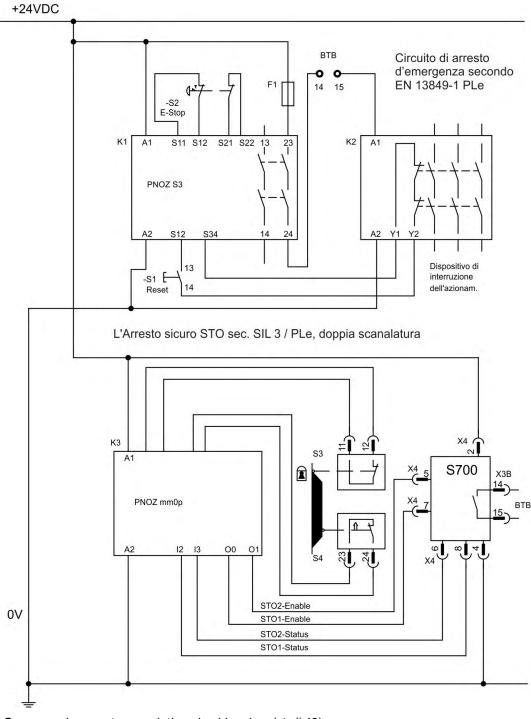


INFORMAZIONI

Osservare le avvertenze relative al cablaggio a (→ #43)

7.9.9.3 Circuito elettrico di comando doppia scanalatura SIL2/PLd (esempio)

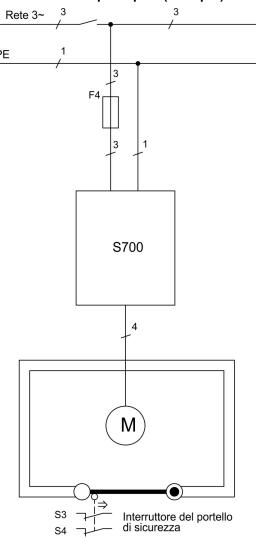
L'esempio mostra lo schema elettrico di un asse con un circuito di arresto di emergenza. La funzione STO dell'azionamento viene attivata da una porta di protezione. La disinserzione è bicanale. I dispositivi di commutazione di sicurezza utilizzati nell'applicazione esemplificata sono della ditta Pilz e risultano conformi almeno alla classificazione PLd secondo EN 13849-1. Per ulteriori informazioni su tali dispositivi rivolgersi alla ditta Pilz. Si possono impiegare dispositivi di commutazione di sicurezza di altre marche, purché anch'essi siano conformi alla classificazione PLd secondo EN 13849-1 oppure SIL CL2 secondo EN 62061.



INFORMAZIONI

Osservare le avvertenze relative al cablaggio a (→ #43)

7.9.9.4 Circuito elettrico di comando doppia scanalatura SIL3/PLe (esempio)


L'esempio mostra lo schema elettrico di un asse con un circuito di arresto di emergenza. La funzione STO dell'azionamento viene attivata da una porta di protezione. La disinserzione è bicanale. La sicurezza operativa del blocco impulsi deve essere controllata periodicamente tramite valutazione del feedback dell'unità di controllo di sicurezza. I dispositivi di commutazione di sicurezza utilizzati nell'applicazione esemplificata sono della ditta Pilz e risultano conformi almeno alla classificazione PLd secondo EN 13849-1. Per ulteriori informazioni su tali dispositivi rivolgersi alla ditta Pilz. Si possono impiegare dispositivi di commutazione di sicurezza di altre marche, purché anch'essi siano conformi alla classificazione PLd secondo EN 13849-1 oppure SIL CL2 secondo EN 62061.

INFORMAZIONI

Osservare le avvertenze relative al cablaggio a (→ #43)

7.9.9.5 Schema generale circuito principale (esempio)

7.9.10 Collaudo funzionale

7.9.10.1 Singola / doppia scanalatura, SIL CL2 / PLd

AVVISO

Alla prima messa in funzione, dopo ogni intervento sul cablaggio dell'impianto o dopo la sostituzione di uno o più componenti, occorre verificare il funzionamento del STO.

1. Metodo:

- 1. Spegnere l'azionamento con valore teorico 0, lasciare "enabled" (abilitati) i servoamplificatori (Enable=24V). **PERICOLO: Non entrare nell'area protetta!**
- 2. Attivare il sistema di protezione STO1-Enable e STO2-Enable contro il riavvio accidentale, ad es. aprendo la porta di protezione. (X4/7=0V e X4/5=0V)

Comportamento corretto: Il contatto BTB si deve aprire, il contattore di rete si deve diseccitare e il regolatore deve segnalare l'errore F27.

2. Metodo:

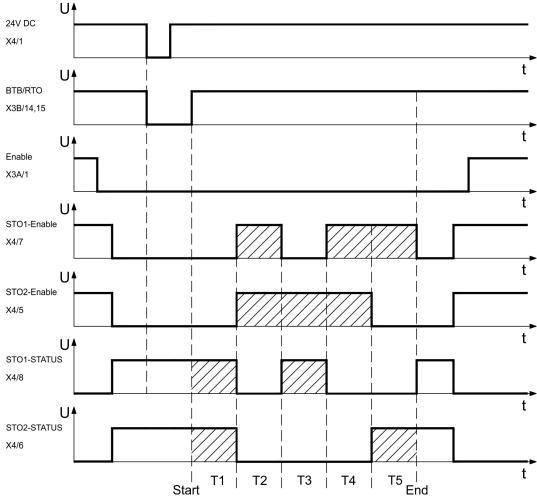
- 1. Spegnere l'azionamento con valore teorico 0, bloccare i servoamplificatori (Enable=0V).
- 2. Attivare il sistema di protezione STO1-Enable e STO2-Enable contro il riavvio accidentale, ad es. aprendo la porta di protezione. (X4/7=0V e X4/5=0V).

Comportamento corretto: Sul display deve comparire -S-.

7.9.10.2 Doppia scanalatura SIL CL3 / PLe

AVVISO

Per ottenere la classificazione PLe/SIL CL 3 è necessario verificare periodicamente la sicurezza operativa del blocco impulsi mediante analisi del segnale di feedback trasmesso dall'unità di controllo di sicurezza:


- all'avviamento dell'impianto;
- al riavvio dopo intervento di un dispositivo di sicurezza;
- almeno ogni 8 ore ad opera del conduttore,

che dovrà commutare gli ingressi STO1-ENABLE e STO2-ENABLE alternativamente in base a una sequenza di prova definita. Lo stato del blocco impulsi è segnalato de uscite Status dell'S700 e viene valutato da un'unità di controllo di sicurezza.

La sequenza della verifica funzionale del blocco impulsi deve svolgersi secondo lo schema illustrato di seguito.

Condizione preliminare per iniziare la sequenza di prova:

- macchina pronta BTB/RTO = 1;
- segnale di consenso ENABLE = 0;
- STO1-ENABLE e STO2-ENABLE = 0

Legenda:

STO1-ENABLE: ingresso digitale, 1 a linea di disinserzione

STO1-STATUS: uscita digitale, stato di commutazione dell'inibitore di impulsi 1° percorso di disinserzione Start: avvio della sequenza di prova

STO2-ENABLE: ingresso digitale, 2 a linea di disinserzione

STO2-STATUS: uscita digitale, stato di commutazione dell'inibitore di impulsi 2 $^\circ$ percorso di disinserzione

T1 ... T5: sequenza di prova End: fine della sequenza di prova

7.10 Protezione dal contatto accidentale

7.10.1 Corrente di dispersione

La corrente di dispersione (Idisp) sul conduttore della terra di protezione (PE) deriva dalla somma delle correnti di dispersione delle apparecchiature e del cavo. L'andamento della frequenza della corrente di dispersione corrisponde all'insieme di diverse frequenze, mentre gli interruttori di sicurezza per le correnti di guasto valutano prevalentemente la corrente a 50 Hz. I nostri cavi a bassa capacità permettono di calcolare lo stadio finale della Idisp con una tensione di rete di 400 V, in funzione della frequenza, con la formula empirica:

Idisp= n x 20mA + L x 1mA/m con stadio finale a frequenza di clock di 8 kHz Idisp = n x 20mA + L x 2mA/m con stadio finale a frequenza di clock di 16 kHz

(dove Idisp = corrente di dispersione, n = numero degli amplificatori, L = lunghezza del cavo motore)

Con tensioni di rete diverse la Idisp varia proporzionalmente alla tensione.

Esempio: 2 servoamplificatori + cavo motore da 25 m con frequenza di clock di 8 kHZ: 2 x 20mA + 25m x 1mA/m = 65mA = Idisp

INFORMAZIONI

Dal momento che la corrente di dispersione verso la terra di protezione supera i 3,5 mA, conformemente a EN 61800-5-1 occorre raddoppiare il collegamento di terra oppure utilizzare un cavo di allacciamento con sezione >10mm². Per rispondere a questo requisito usare i morsetti PE oppure il dispersore di terra.

Queste contromisure consentono di contenere Idisp entro livelli minimi.

- Ridurre la lunghezza dei cavi motore
- Usare cavi a bassa capacità (→ #63)
- Eliminare i filtri EMC esterni (il S700 integra filtri)

7.10.2 Interruttori di sicurezza per le correnti di guasto (FI)

Secondo quanto espresso dalle normative EN 60364-4-41 sulle installazioni elettriche negli edifici ed EN 60204 in materia di equipaggiamento elettrico dei macchinari è possibile impiegare un interruttore di sicurezza per le correnti di guasto (in seguito definito FI) se si garantisce il rispetto delle disposizioni applicabili.

S700 è un sistema trifase con ponticelli B6 che richiede l'impiego di FI a sensibilità universale, in grado di rilevare anche eventuali correnti di guasto continue.

Correnti di guasto misurate con FI:

10	0 -30 mA Protezione dal "contatto accidentale indiretto" per materiali elettrici fissi e				
		mobili, e dal "contatto accidentale diretto".			
50	0 -300 mA	Protezione dal "contatto accidentale indiretto" per materiali elettrici fissi			

INFORMAZIONI

Per la protezione dal contatto accidentale diretto consigliamo (cavi motore di lunghezza inferiore ai 5 m) di installare su ciascun servoamplificatore un interruttore di sicurezza contro le correnti di quasto a sensibilità universale da 30mA.

Il sistema di analisi intelligente di un interruttore di sicurezza FI selettivo evita che il dispositivo di protezione possa intervenire in modo intempestivo.

7.10.3 Trasformatori d'isolamento di protezione

Quando la protezione dal contatto accidentale indiretto è assolutamente indispensabile anche in presenza di una corrente di dispersione più elevata, oppure occorre una protezione alternativa è possibile impiegare un trasformatore d'isolamento (schema di collegamento vedere (→ # 68)).

Per il controllo del corto circuito è possibile impiegare un controllo di dispersione a terra.

INFORMAZIONI

Consigliamo di collegare trasformatore e amplificatore con un cavo il più possibile corto.

8 Installazione meccanica

8.1 Indicazioni importanti

ATTENZIONE Grande corrente di dispersione!

Vi è pericolo di scosse elettriche dovute al livello EMI elevato che potrebbe causare lesioni qualora il servoamplificatore (o il motore) non fosse messo adeguatamente a terra per la EMI.

- Non usare piastre di fissaggio verniciate (ossia conduttive).
- In caso di necessità, utilizzare una fascetta di rame fra le viti di messa a terra e il
 potenziale verso terra per deviare la corrente.

AVVISO

Proteggere il S700 da sollecitazioni non consentite. In particolare, non permettere che venga piegato alcun componente o che venga modificata alcuna distanza d'isolamento durante il trasporto e la movimentazione. Evitare il contatto con componenti elettrici e contatti.

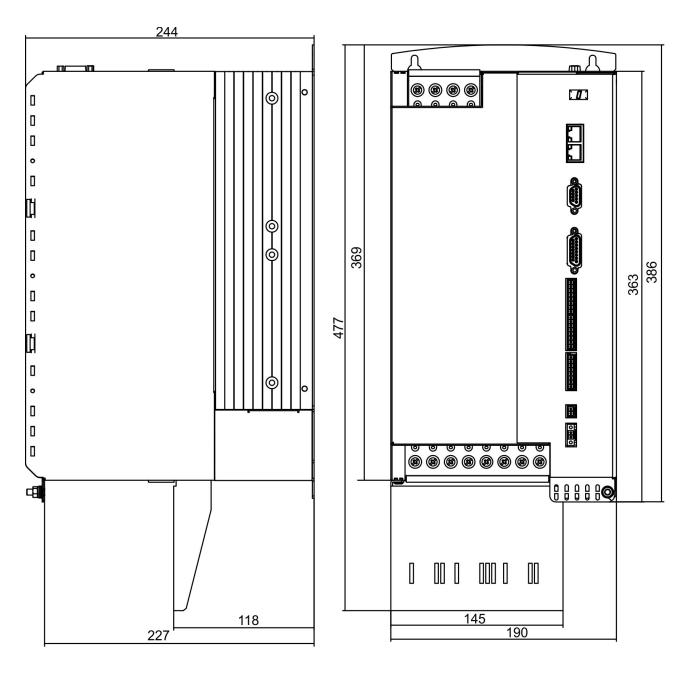
AVVISO

In caso di surriscaldamento il servoamplificatore si spegne da solo. Assicurarsi che vi sia un flusso di aria fresca filtrata adeguato sul fondo del quadro elettrico ad armadio o utilizzare uno scambiatore di calore (→ #32).

AVVISO

Non montare dispositivi che producono campi magnetici direttamente vicino al S700. Campi magnetici forti possono influenzare direttamente i componenti interni. Installare dispositivo che producono campi magnetici a distanza dal S700 e/o schermare i campi magnetici.

8.2 Guida all'installazione meccanica

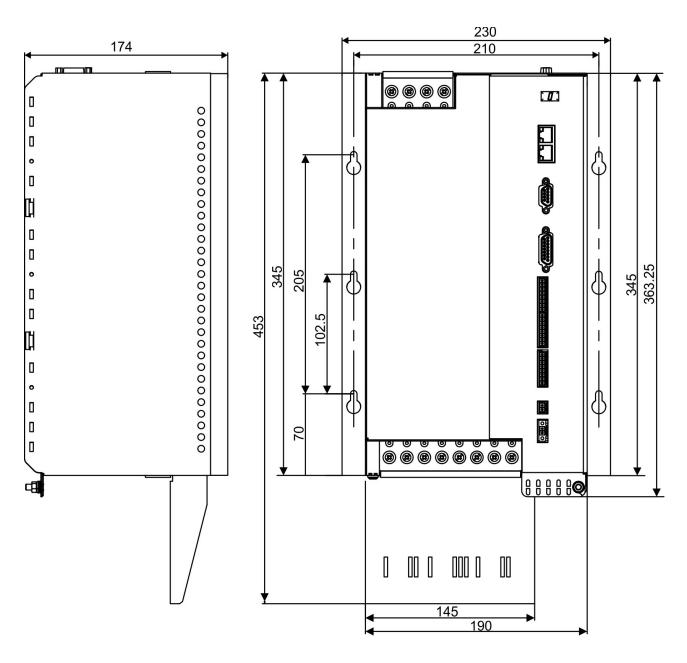

Le indicazioni seguenti si prefiggono di aiutare l'utente a procedere secondo una sequenza corretta durante l'installazione, senza dimenticare punti importanti.

Luogo di montaggio	 In armadio chiuso (→ # 32). Il luogo di installazione deve essere privo di materiali conduttivi e aggressivi. Disposizione in armadio (→ # 56)
Ventilazione	 Assicurare la libera ventilazione dei servoamplificatori e rispettare la temperatura ambiente ammessa (→ # 32). Lasciare lo spazio necessario sia sopra che sotto i servoamplificatori (→ # 56).
Montaggio	 Installare i servoamplificatori e l'alimentatore l'uno vicino all'altro sulla piastra, di montaggio conduttiva con messa a terra nel quadro elettrico ad armadio.
Messa a terra, Schermatura	 Schermatura conforme alla direttiva in materia di compatibilità (→ #67) elettromagnetica e messa a terra vedere (→ #67). Collegare a terra piastra di montaggio, carcassa del motore e CNC-GND dell'unità di controllo (→ #62).

8.3 Dimensioni

8.3.1 Dispositivi con dissipatore di calore

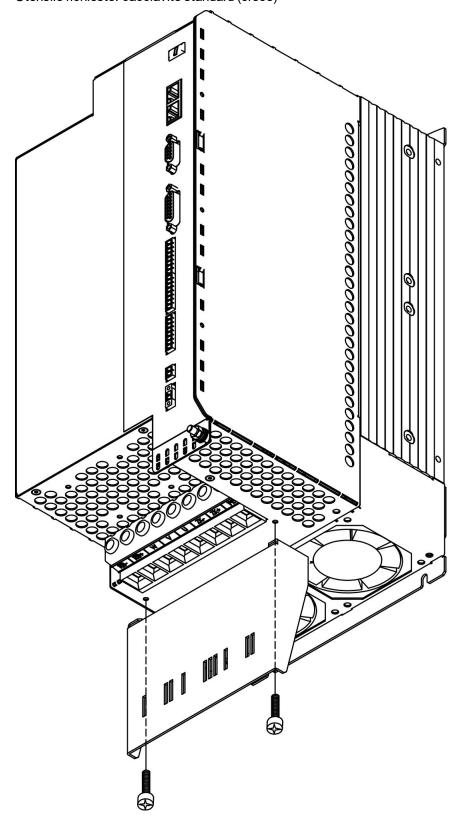
Materiale di montaggio: 4 viti a testa cilindrica con esagono cavo seconde EN 4762, M5



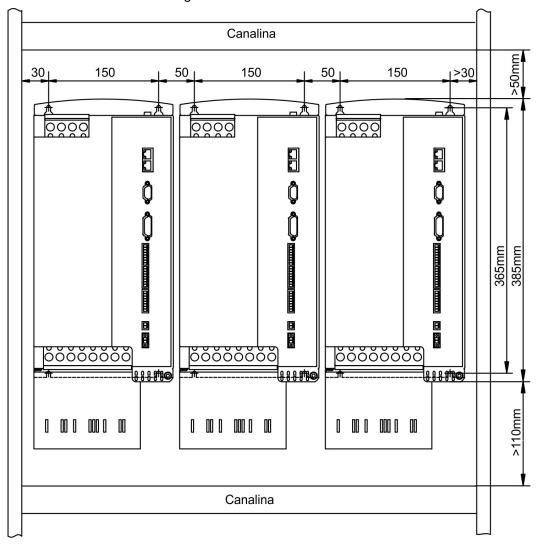
8.3.2 Dispositivi con Coldplate

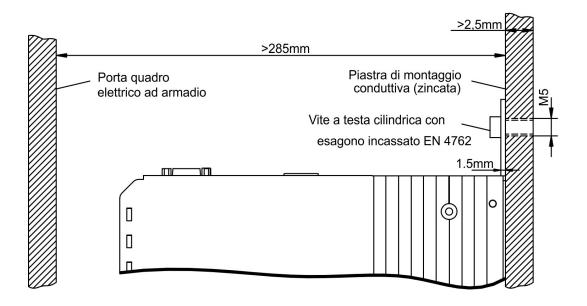
AVVISO

Questi dispositivi non sono elencati UL e non sono certificati EAC e sicurezza.


Materiale: sei viti a esagono incassato M5 secondo ISO 4762

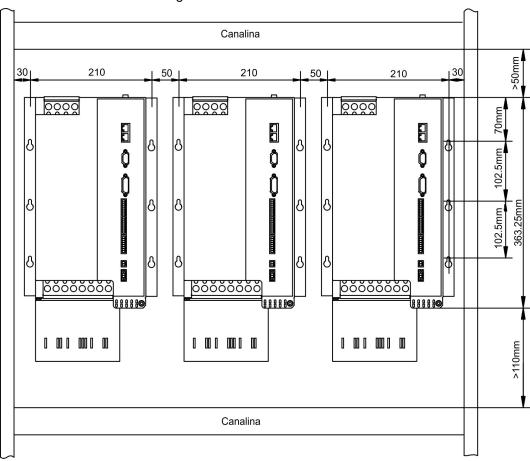
8.4 Montaggio

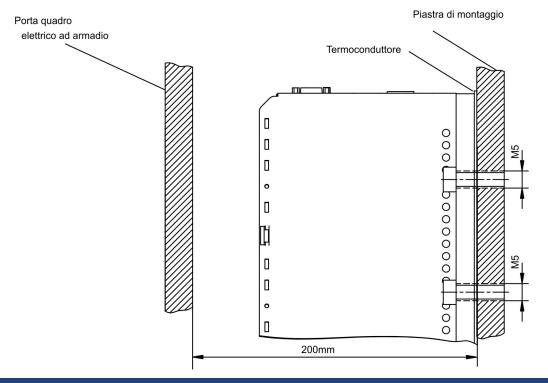

8.4.1 Montaggio della piastra di schermatura


Materiale: svitare le viti esistenti e riutilizzarle. Utensile richiesto: cacciavite standard (croce)

8.4.2 Montaggio sul backplane - dispositivi con dissipatore di calore

Materiale di montaggio: 4 viti a testa cilindrica con esagono cavo seconde EN 4762, M5 Attrezzo necessario: chiave esagonale da 4 mm


8.4.3 Montaggio sul backplane - dispositivi con Coldplate


AVVISO

Questi dispositivi non sono elencati UL e non sono certificati EAC e sicurezza.

Materiale: sei viti a esagono incassato M5 secondo ISO 4762

Requisiti ambientali vedere(→ # 32), planarità della piastra di montaggio: ≤ 25 µm / 100 mm Film conduttore di calore per aumentare la conduzione del calore, ad es. Kunze KU-CG20. Utensile richiesto: chiave a brugola da 4 mm

9 Installazione elettrica

9.1 Indicazioni importanti

⚠ PERICOLO Alta tensione fino a 900 V!

Vi è il rischio di lesioni gravi o morte da shock elettrico o di arco. I condensatori possono ancora presentare tensioni pericolose fino a 10 minuti dopo la disinserzione delle tensioni di alimentazione. I collegamenti di comando e di alimentazione possono ancora essere sotto tensione anche se il motore non gira.

- Installare e collegare l'attrezzatura solo quando non è sotto tensione.
- Assicurarsi che il quadro elettrico ad armadio sia scollegato in modo sicuro (con un lucchetto, cartelli di avvertenza, ecc.).
- Non staccare mai i collegamenti elettrici dal servoamplificatore quando quest'ultimo è sotto tensione.
- Attendere dopo aver scollegato il servoamplificatore almeno 10 minuti prima di toccare le parti dell'apparecchio e scollegare i connettori.
- Per essere sicuri, misurare la tensione del DC-link ed attendere fino a quando la tensione scende al di sotto di 50 V.

AVVISO

Tensioni di rete non corrette, motori non idonei o errori di cablaggio possono danneggiare il servoamplificatore. Verificare l'assegnazione dei servoamplificatori e del motore. Confrontare la tensione nominale e la corrente nominale degli apparecchi. Eseguire il cablaggio conformemente alle indicazioni (→ #61). Assicurarsi che la tensione nominale massima ammessa sui collegamenti L1, L2, o +DC, -DC anche nel caso più sfavorevole non venga superata di oltre il 10% (vedere EN 60204-1).

AVVISO

Fusibili sovradimensionati possono compromettere la sicurezza di cavi e apparecchi. La protezione dell'alimentazione del lato AC e dell'alimentazione da 24V è a carico dell'utente, per le dimensioni consigliate (→ # 32). Per indicazioni sugli interruttori di sicurezza per le correnti di guasto (FI) vedere (→ # 52).

AVVISO

Il PLC deve monitorare lo stato del servoamplificatore. Inserire il contatto BTB nel circuito di spegnimento d'emergenzia. Il circuito di spegnimento d'emergenzia deve azionare il contattore di rete.

9.2 Istruzioni per l'installazione elettrica

AVVISO

Un cablaggio corretto è fondamentale affinché il servosistema funzioni in modo affidabile. Posare separatamente cavi di potenza e di comando. Consigliamo una distanza superiore a 200mm. In questo modo, l'immunità alle interferenze richiesta dalla direttiva in materia di compatibilità elettromagnetica risulta migliorata. Se il cavo di potenza impiegato per il motore integra i fili di comando del freno questi ultimi devono essere schermati separatamente. Collegare le schermature in modo da coprire un'ampia superficie (a bassa impedenza), possibilmente mediante un corpo connettore metallizzato o morsetti schermati. Per indicazioni sulla tecnica di collegamento, si rimanda a (\rightarrow #62).

AVVISO

Non prolungare i cavi di retroazione; questo interromperebbe la schermatura e l'analisi del segnale risulterebbe disturbata. I cavi tra l'amplificatore e il resistenza di frenatura esterno devono essere schermati. Tutti i cavi devono avere sezione sufficiente ai sensi di EN 60204; per realizzare cavi di massima lunghezza utilizzare materiali della qualità indicata a (→ #63).

Le indicazioni seguenti si prefiggono di aiutare l'utente a procedere secondo una sequenza corretta durante l'installazione, senza dimenticare punti importanti.

Scelta dei cavi	Scegliere i cavi secondo la norma EN 60204, (→ # 33)
Messa a terra, Schermatura	 Schermatura conforme alla direttiva in materia di compatibilità elettromagnetica vedere (→ #67). Collegare a terra piastra di montaggio, carcassa del motore e CNC-GND dell'unità di controllo (→ #62).
Cablaggio	Posare separatamente i cavi di potenza e di comando. Inserire un contatto BTB nel circuito di arresto d'emergenzia.
	 Collegare gli ingressi/uscite digitali del servoamplificatore Collegare il raccordo AGND (anche se si utilizza un bus di campo) Se necessario, collegare il valore nominale analogico Collegare l'unità di retroazione (resolver o encoder) Se necessario, collegare l'emulazione encoder Collegare la scheda di espansione (→ # 126)) Collegare i cavi motore, collegare le schermature sui due lati. Collegare il freno di arresto e la schermatura sui due lati. Collegare la resistenza di frenatura esterna (con protezione). Collegare la tensione ausiliaria (valori massimi ammessi (→ # 31)) Collegare la tensione di potenza (valori massimi ammessi (→ # 31), Interruttori di sicurezza per le correnti di guasto (FI) (→ # 52). Collegare il PC (→ # 104).
Controllo	Verificare il cablaggio eseguito sulla base degli schemi di collegamento utilizzati

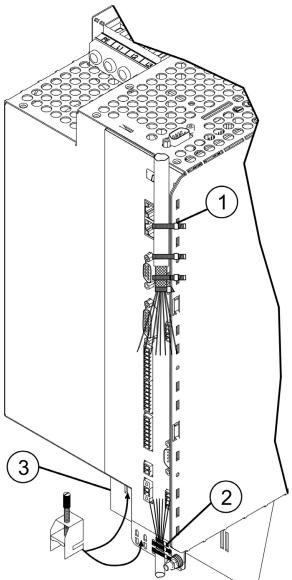
9.3 Cablaggio

A titolo di esempio, descriviamo la procedura da seguire durante l'installazione. A seconda del tipo di apparecchi impiegati, può risultare opportuna una procedura diversa. Ulteriori approfondimenti in merito vengono forniti durante i nostri corsi di addestramento (su richiesta).

APERICOLO Alta tensione fino a 900 V!

Vi è il rischio di lesioni gravi o morte da shock elettrico o di arco.

- Installare e collegare l'attrezzatura solo quando non è sotto tensione, vale a dire quando né l'alimentazione elettrica, né la tensione ausiliaria da 24 V o le tensioni di alimentazione di qualsiasi altro apparecchio collegato sono inserite.
- Assicurarsi che il quadro elettrico ad armadio sia scollegato in modo sicuro (con un lucchetto, cartelli di avvertenza, ecc.). Le singole tensioni vengono inserite per la prima volta durante la configurazione.


INFORMAZIONI

Il simbolo della massache , si trova in tutti gli schemi di collegamento indica che occorre provvedere ad un collegamento conduttivo il più ampio possibile tra l'apparecchio identificato e la piastra di montaggio nel quadro elettrico ad armadio. Tale collegamento deve consentire la dispersione di interferenze ad alta frequenza e non deve essere confuso con il simbolo di terra (PE () (misura di protezione secondo EN 60204).

Utilizzare i seguenti schemi dei collegamenti:

Descrizione generale:	(→ #67)
Safe Torque Off, STO:	(→ #44)
Collegamenti di potenza:	(→ #68)
Motore:	(→ #73)
Feedback:	(→ #74)
Trasmissione elettronico:	(→ #94)
Direzione/Impulsi:	(→ #95)
Master-Slave :	(→ #96)
Ingressi/Uscite digitali e analogici:	(→ #99)
RS232 / PC:	(→ # 104)
Interfaccia CANopen:	(→ # 105)
Interfaccia EtherNet:	(→ # 106)
Scheda di espansione Slot 1:	
I/O-14/08:	(→ # 127)
PROFIBUS:	(→ # 130)
sercos® II:	(→ # 131)
DeviceNet:	(→ # 133)
SynqNet:	(→ # 136)
FB-2to1:	(→ # 138)
-2CAN-:	(→ # 140)
Scheda di espansione Slot 2:	
PosI/O & PosI/O-Monitor:	(→ # 143)
Scheda di espansione Slot 3:	
PosI/O & PosI/O-Monitor:	(→ # 152)
Safety:	(→ # 153)

9.3.1 Collegamento dello schermo di protezione alla piastra frontale

ETogliere la guaina esterna del cavo e la treccia schermante fino ad ottenere fili della lunghezza voluta. Fissare i fili con una fascetta.

Togliere circa 30mm di guaina esterna dal cavo senza danneggiare la treccia schermante.

Isolare tutti i fili e montare i manicotti terminali.

Fissare il cavo mediante apposite fascette sulla piastra schermante laterale (1) o inferiore (2) del servoamplificatore. Premere la treccia schermante del cavo e la fascetta fermacavo contro la guida schermante.

Utilizzi il morsetto dello schermo che è trasportato con il cavo del motore per il collegamento dello schermo del cavo del motore. Il morsetto deve essere agganciato nella protezione più bassa e garantisce il contatto ottimale fra lo schermo e la guida schermante.

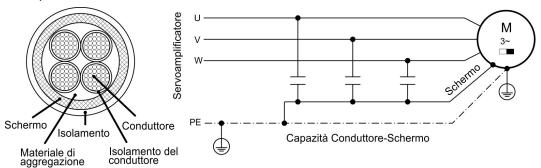
Cablare i morsetti ad innesto seguendo lo schema elettrico.

La schermatura del cavo motore è collegata tramite un collegamento di schermatura alla piastra di schermatura inferiore (3). Morsetto e piastra di protezione fanno parte della fornitura.

62

9.3.2 Dati tecnici dei cavi di collegamento

Per ulteriori informazioni sulle proprietà chimiche, meccaniche ed elettriche dei cavi consultare il manuale degli accessori o rivolgersi al nostro settore applicazioni.


INFORMAZIONI

Attenersi a quanto prescritto nel capitolo "Sezioni dei cavi" (→ #33). Per utilizzare il servoamplificatore in sicurezza con cavi della lunghezza massima consentita, il materiale dei cavi deve rispondere ai requisiti di capacità indicati di seguito.

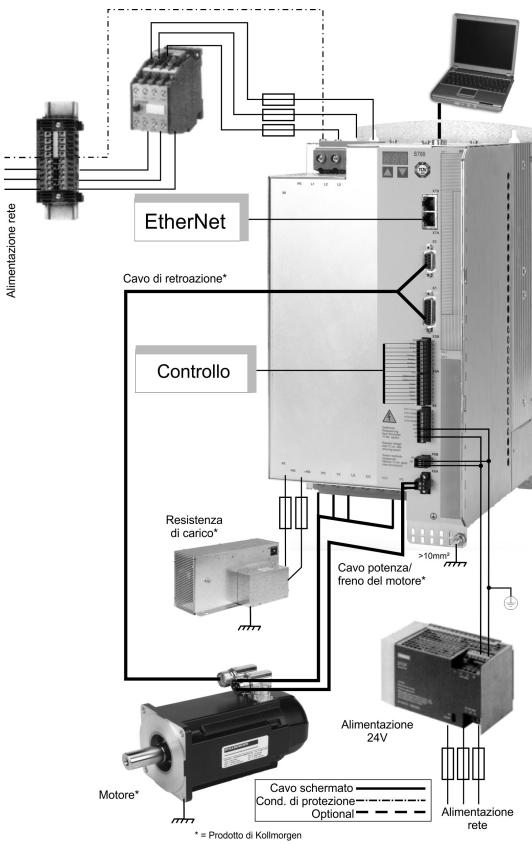
Capacità

Cavo motore: Inferiore a 150 pF/m Cavo RES/encoder: Inferiore a 120 pF/m

Esempio cavo del motore:

Dati tecnici

Per la descrizione dettagliata dei cavi e confezionamento consultare il manuale degli accessori.

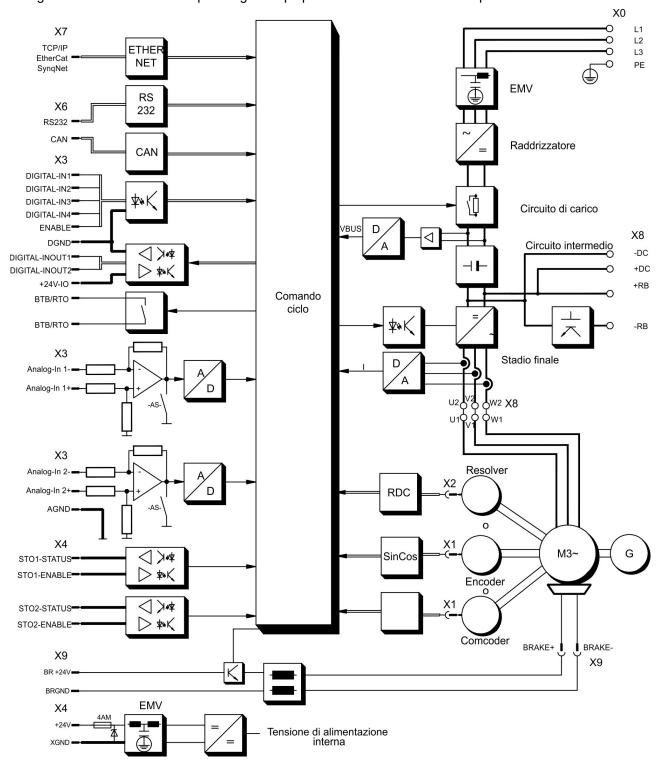

Induttanca

INFORMAZIONI

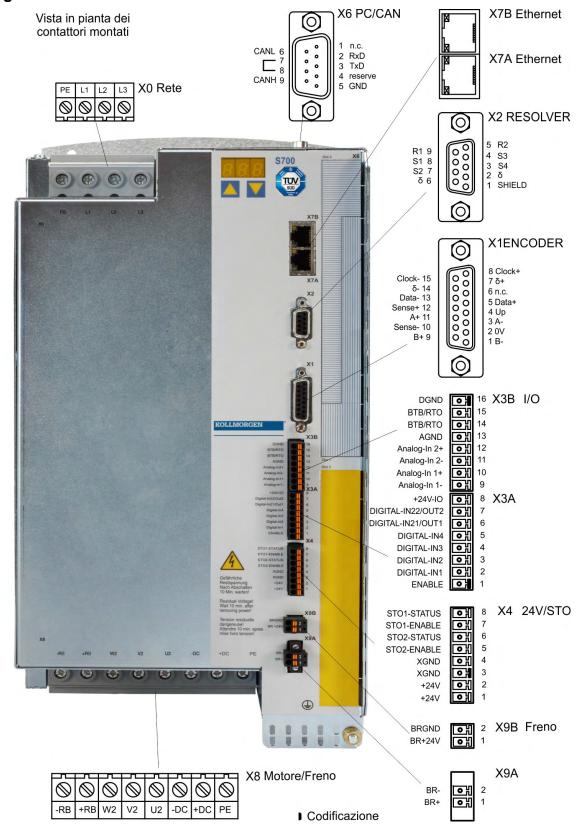
Per i cavi motore più lunghi di 25 m, alcune applicazioni potrebbero richiedere l'uso di un induttanza motore 3YLN. Parla con il nostro servizio clienti.

Con uno squilibrio della tensione di rete > 3%, deve essere utilizzato un choke di rete 3L con 2% uk. Vedi il manuale degli accessori.

9.4 Componenti di un servosistema

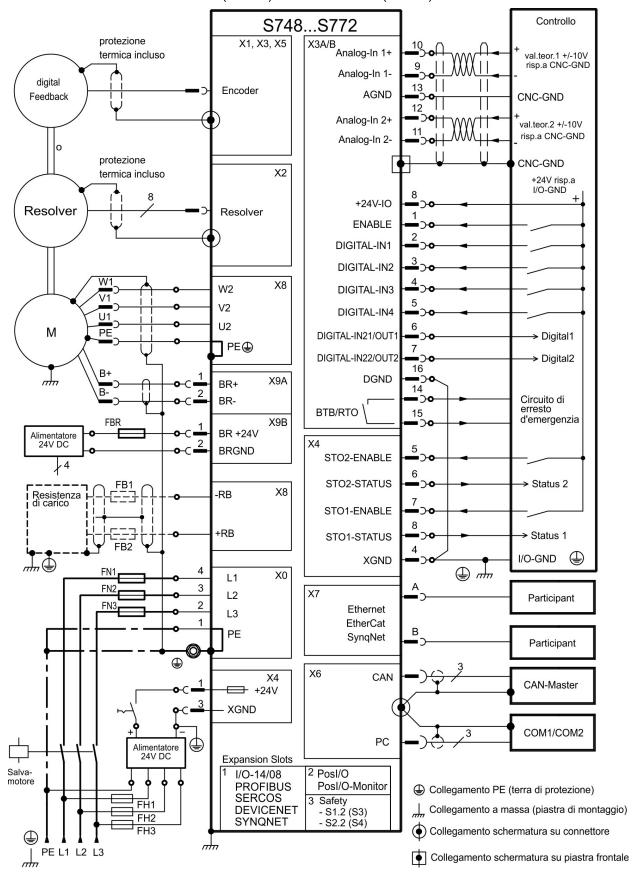


INFORMAZIONI


Grassetto disegnati cavi sono protetti. La messa a terra elettrica è disegnata con le linee precipitare-punteggiate. I dispositivi facoltativi sono collegati con le linee tratteggiate all'amplificatore servo. Gli accessori necessari sono descritti sul manuale degli accessori. La funzione di STO è disattivata nell'esempio.

9.5 Diagramma a blocchi

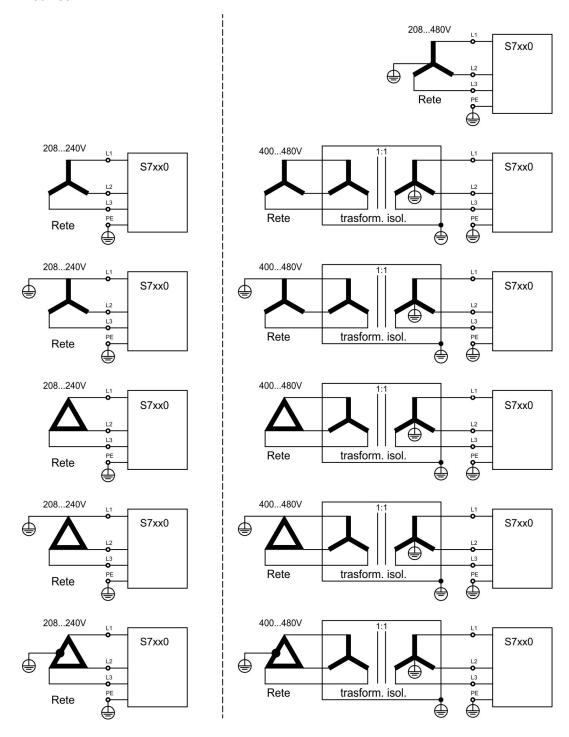
Il diagramma a blocchi illustrato qui di seguito si propone unicamente di fornire una panoramica.



9.6 Assegnazione dei connettori

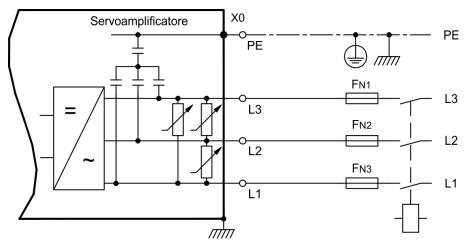
9.7 Schema collegamenti (descrizione)

Attenersi alle indicazioni di sicurezza (→ #13) e all'uso conforme (→ #16)!

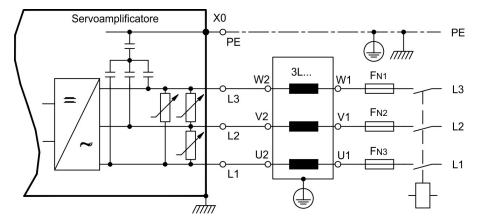


9.8 Tensione di alimentazione

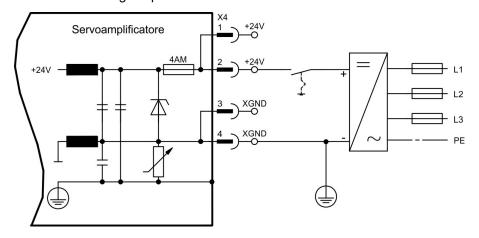
9.8.1 Collegamento a varie reti di alimentazione elettrica


AVVISO

Un trasformatore d'isolamento è necessario per reti messe a terra asimmetricamente o reti 400-480V non messe a terra.


9.8.2 Collegamento alla rete (X0)

- Collegamento diretto con la rete 3~, filtro integrato, tipi di rete (→ #68)
 (con tensione di rete inferiore a 300 V impostare i parametri NONBTB=3 e VBUSBAL=1)
- Protezione (ad esempio valvola fusibile) a carico dell'utente (→ #32)
- Cacciavite per viti più-meno (Combiprofile Slotted / Pozidriv) misura 2


AVVISO

Se la tensione di rete è più del 3% asimmetrica, deve essere utilizzata una induttanza di rete 3L con 2% uk. Vedi il manuale degli accessori. Per ragioni di compatibilità elettromagnetica, l'induttanza dovrebbe essere montata elettricamente isolata sull'armadio.

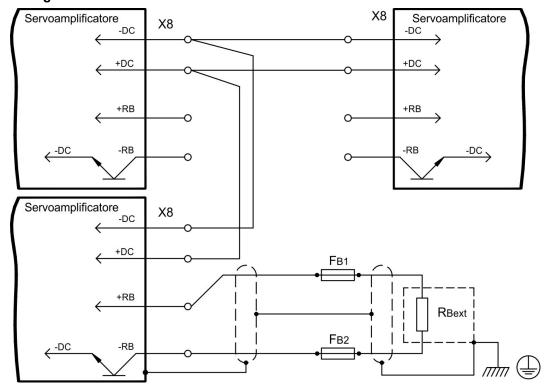
9.8.3 Tensione ausiliaria da24 V (X4)

- Alimentazione elettrica da 24V DC esterna, con isolamento elettrico, ad es. attraverso un trasformatore d'isolamento
- Corrente nominale richiesta (→ #31)
- Filtro EMC integrato per l'alimentazione ausiliaria da 24V

9.9 DC-link (X8)

Terminali X8 / -DC e X8 / + RBe. Può essere collegato in parallelo, per cui la potenza del freno è divisa tra tutti gli amplificatori collegati allo stesso circuito DC-link..

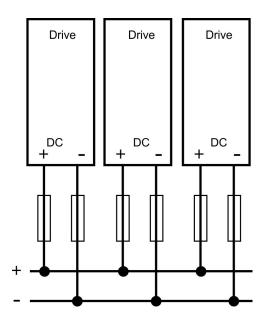
• Cacciavite per viti più-meno (Combiprofile Slotted / Pozidriv) misura 2


In caso di alimentazione di rete dalla stessa rete (identica tensione di rete), è possibile collegare tre servoamplificatori S748 / 772 tramite il collegamento bus DC.

AVVISO

- Elevate differenze di tensione sui circuiti intermedi collegati possono distruggere il servoamplificatore. Sul circuito intermedio si possono collegare solo servoamplificatori con alimentatore di tensione sulla stessa rete (stessa potenza e tensione di alimentazione).
- l'impostazione VBUSBAL deve essere identica in tutti i dispositivi interessati.
- La somma delle correnti nominali di tutti i servoamplificatori collegati in parallelo a un S748/772 non deve superare i 96 Arms (140 Apeak).
 Esempio: S748-S748-S748 o S772-S748 o S772-S772
- Usare conduttori singoli non schermati di lunghezza non superiore a 500mm (Sezioni dei cavi (→ #33)). Per lunghezze superiori usare conduttori schermati.
- Gli azionamenti che rigenerano più spesso energia dovrebbero essere installati a fianco di quelli che la richiedono. Questo riduce il flusso di corrente su lunghe distanze.

Le informazioni di fusione sono spiegate dettagliatamente nel KDN pagina "DC-Bus link in parallel".


Collegamento con Resistenza di frenatura esterna

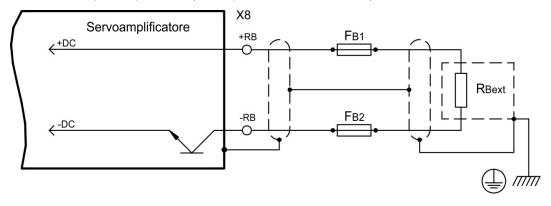
9.9.1 Topologia del circuito intermedio

Senza i fusibili del circuito intermedio, altri dispositivi possono essere danneggiati o distrutti se, ad esempio, un dispositivo si guasta a causa di un cortocircuito interno. Se un dispositivo si guasta a causa di un cortocircuito, interviene solo i suoi fusibili intermedi e il resto della rete continua senza interruzioni. I fusibili non possono evitare completamente il danno causato dai picchi di corrente. Le sbarre piene possono condurre grandi correnti.

Tipi di fusibili: (→ #32). Maggiori informazioni possono essere trovate nel "KDN".

9.9.2 Resistenza di frenatura esterna (X8)

È possibile collegare una resistenza di frenatura esterna a X8 (-RB, +RB).



Tipi di fusibili: (→ #32)

Circuito del freno e i dati tecnici (→ #34)

Se si desidera collegare il bus DC con i servoamplificatori S748 / 772 vicini, vedere l'esempio di collegamento nel capitolo "DC-link".

• Cacciavite per viti più-meno (Combiprofile Slotted / Pozidriv) misura 2

9.9.3 KCM Moduli Condensatore (X8)

I moduli KCM (KOLLMORGEN Capacitor Module) assorbono energia generata dal motore in modalità generatore. Di regola questa energia viene convertita in potenza dissipata attraverso resistenze di frenatura esterne. I moduli KCM alimentano l'energia accumulata al circuito DC-link, quando è necessario.

Dimensioni (AxLxP): 300x100x201 mm

KCM-S	Sistema di risparmio energetico: L'energia accumulata nel modulo condensatore durante la frenata rigenerativa è a disposizione per l'accelerazione successiva. La tensione d'esercizio del modulo viene rilevata automaticamente durante i primi cicli di caricamento.
КСМ-Р	Potenza anche in caso di caduta di alimentazione: In assenza di alimentazione di potenza il modulo fornisce al servoamplificatore l'energia accumulata per un arresto controllato dell'azionamento (solo tensione di alimentazione).
KCM-E	Espansione del modulo per entrambi gli utilizzi. I moduli di espansione sono disponibili in due livelli di capacità.

INFORMAZIONI

I moduli KCM devono essere collegati solo a S7010 ... S7480 (tensione 400/480V). Indicazioni relative all'installazione e messa in servizio si possono trovare nel Manuale di Istruzioni KCM e nel KDN.

Dati tecnici

Tipo	Capacità [Ws]	Tensione di aliment. nominale [V=]	Tensione di aliment. picco [V=]	Potenza [kW]	Grado di protezione	Tensione d'esercizio [V=]	Peso [kg]
KCM-S200	1600	max. 850 VDC	max. 950VDC	18	IP20	valorizzato	6,9
KCM-P200	2000					470 VDC	6,9
KCM-E200	2000	Illax. 650 VDC	(30s in 6min)	10	IF20	-	4,1
KCM-E400	4000					-	6,2

↑ PERICOLO Alta tensione continua fino a 900 V!

Vi è il rischio di lesioni gravi o morte da shock elettrico o di arco. I moduli possono richiedere più di un'ora per l'autoscarica.

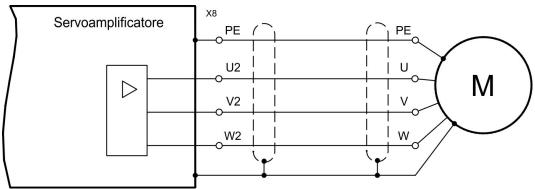
- Scollegare la tensione di rete (mettere fuori tensione). Lavorare sui collegamenti solo in assenza di tensione.
- Controllarne quindi lo stato con un dispositivo adatto alla misurazione della tensione continua fino a 1000 V.
- Se tra i morsetti DC+/DC- o verso terra viene rilevata una tensione superiore a 50 V, scaricare i moduli (cfr. Manuale di Istruzioni KCM).

9.10 Collegamento del motore

9.10.1 Connessione di alimentazione del motore (X8)

L'azionamento S748 / 772 è in grado di proteggere il motore collegato dal sovraccarico, se i parametri sono impostati correttamente e il sensore di protezione termica è collegato e supervisionato. Con i motori Kollmorgen i dati validi vengono automaticamente impostati dal database motore interno. Con i motori di altri produttori, i dati della targhetta identificativa devono essere inseriti nei campi di riferimento nella vista motore del software di configurazione DriveGUI.

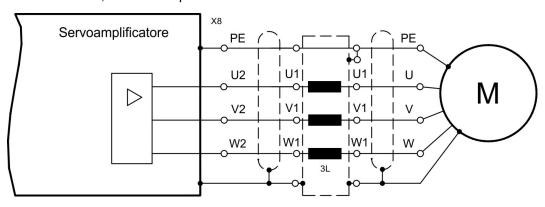
Lo stadio di potenza finale del servoamplificatore forma con il cavo e l'avvolgimento motore un circuito oscillante. Parametri come capacità dei cavi, lunghezza dei cavi, induttanza del motore, frequenza e velocità di incremento della tensione (vedere Dati tecnici (→ # 30)) determinano la tensione massima presente nel sistema.


AVVISO

Rialzi dinamici di tensione possono ridurre la durata del motore e, in caso di motori non adatti, determinare scariche di tensione nell'avvolgimento.

- Impiegare solo motori con materiale isolante di classe F (EN 60085) o superiore
- Impiegare solo cavi conformi ai requisiti indicati a (→ #33) e (→ #63)

Utilizzare un cacciavite per viti più-meno (Combiprofile Slotted / Pozidriv) misura 2.

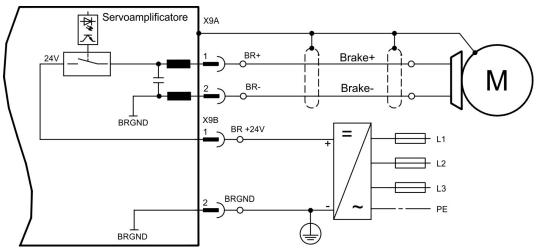

Applicazioni standard fino a 25 m di lunghezza del cavo

Applicazione con lunghezza del cavo> 25m e condizioni speciali

AVVISO

Con cavi motore lunghi la sovratensione può mettere in pericolo l'avvolgimento del motore. Per lunghezze del cavo superiori a 25 m, è possibile collegare un induttanza motore 3YLN al cavo del motore, vicino all'amplificatore. Contatta il nostro servizio clienti.

9.10.2 Freno di stazionamento motore (X8, X9B)


Il freno di stazionamento del motore può essere controllato dal servoamplificatore. Una tensione di alimentazione esterna a 24 V fornisce la potenza elettrica richiesta per il freno collegato.

▲ ATTENZIONE No sicurezza di funzionamento!

Se il carico non è bloccato in modo sicuro, sussiste il rischio di gravi lesioni. Questa funzione non garantisce la sicurezza di funzionamento.

• Il carico d'attaccatura (asce verticali) richiede un freno meccanico supplementare che deve essere azionato sicuro, per esempio via la carta di sicurezza S1-2 (→ # 155).

Rispettare i requisiti per la tensione di alimentazione (→ #31).

9.11 Retroazione

Di norma in ogni servosistema chiuso occorre almeno un dispositivo di retroazione che invii i valori reali del motore al servoazionamento. In base al dispositivo di retroazione scelto il feedback al servoamplificatore viene trasmesso in modo digitale o analogico. È possibile utilizzare fino a tre retroazioni parallelo. S700 supporta tutti i più comuni dispositivi di retroazione, i cui parametri:

FBTYPE Videata FEEDBACK, retroazione primaria, (→ #75)

EXTPOS Videata ANELLO DI POSIZIONE, retroazione secondaria, (→ #75)

GEARMODE Videata ANELLO DI POSIZIONE, retroazione secondaria, e (→ #94)

si devono assegnare nel software di messa in funzione. Anche il ridimensionamento e altre regolazioni si devono impostare nello stesso modo.

La descrizione dettagliata dei parametri ASCII è riportata nella <u>assistenza online</u>) del software di messa in funzione.

9.12 Tipi di retroazione primario et secundario

Questo capitolo fornisce i tipi di retroazione supportati, i relativi parametri e un riferimento allo schema di collegamento di pertinenza.

Connessione a cavo singolo (alimentazione e retroazione in un unico cavo)

Cavi ibridi S701-S724: CCJ9, WCJ9.

Per maggiori dettagli si rimanda al Manuale degli accessori.

			primario	secondario
Tipo Feedback	Connettore	Collegamento	FBTYPE	EXTPOS
SFD3	X1	(→ #76)	36	-
HIPERFACE DSL	X1	(→ #77)	35	-

Connessione a cavo doppio (alimentazione e retroazione separate)

Cavi su richiestai.

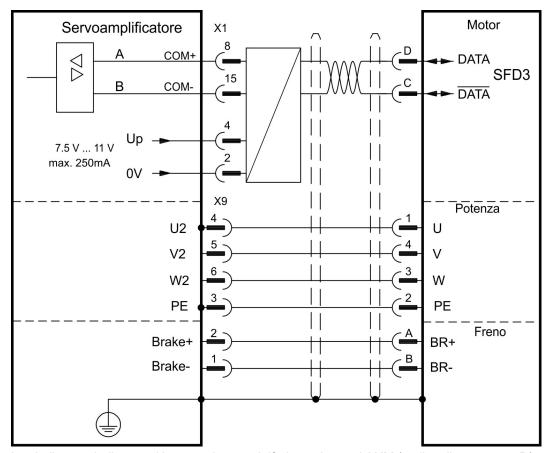
Tipo Feedback	Connettore	Collegamento	primario FBTYPE	secondario EXTPOS
Resolver	X2	(→ #78)	0	-
SinCos Encoder BiSS (B) analogo	X1	(→ #79)	23, 24	-
Encoder BiSS (B, C ²⁾) digitale	X1	(→ #80)	20, 22,33	11, 12
SinCos Encoder ENDAT 2.1	X1	(→ #81)	4, 21	8
Encoder ENDAT 2.2	X1	(→ #82)	32, 34	13
SinCos Encoder HIPERFACE	X1	(→ #83)	2	9
SinCos Encoder SSI (linear)	X1	(→ #84)	261)	-
SinCos Encoder senza traccia dati	X1	(→ #85)	1, 3, 7, 8	6, 7
SinCos Encoder + Hall	X1	(→ #86)	5, 6	-
ROD* 5V senza zero, 1.5MHz	X1	(→ #87)	30, 31	30
ROD* 5V con zero, 350kHz	X1	(→ #88)	17, 27	10
ROD* 5V con zero + Hall	X1	(→ #89)	15	-
ROD* 24V senza zero	X3	(→ #90)	12, 16	2
ROD* 24V senza zeros + Hall	X3/X1	(→ #91)	14	-
SSI	X1	(→ #92)	251)	251)
Hall	X1	(→ #93)	11	-
Direzione / impulsi 24V	X3	(→ #95)	-	1
Senza Feedback	-	-	10	-
avec scheda di espansionse "Pos	sl/O" o "Posl	/O-Monitor"		
ROD* 5V con zero	X5	(→ # 144)	13 ¹), 19 ¹)	3
ROD* 5V con zero + Hall	X5/X1	(→ # 145)	18	-
SSI	X5	(→ # 146)	91)	51)
SinCos Encoder SSI (linear)	X5/X1	(→ # 147)	28	-
Direzione / impulsi 5V	X5	(→ # 148)	-	4

^{*} ROD è la sigla che indica il encoder incrementale

INFORMAZIONI

La scheda di espansione FB-2to1 (→ # 138) consente il collegamento simultaneo di una retroazione digitale primaria e di una analogica secondaria al connettore X1.

¹⁾ Accendere la tensione di alimentazione dell'encoder X1: ENCVON = 1

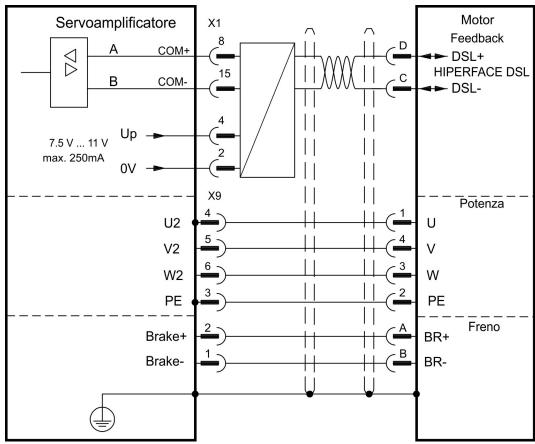

²⁾ BiSS C supporta gli encoder Renishaw ma non supporta gli encoder Hengstler

9.12.1 SFD3 (X1), connessione a cavo singolo

Connessione di SFSD3 per retroazione (primario feedback, (→ #74)). SFD3 può essere usato unicamente con il cavo ibrido speciale di Kollmorgen) (su richiesta).

Cavi di lunghezza superiore: 25 m.

FBTYPE: 36

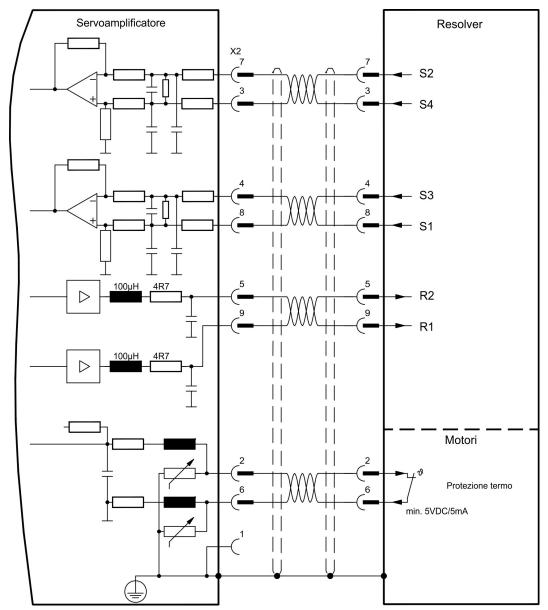

La piedinatura indicata sul lato trasduttore si riferisce ai motori AKM (codice di connettore D).

9.12.2 HIPERFACE DSL (X1), connessione a cavo singolo

Connessione di HIPERFACE DSL per retroazione (primario feedback, (→ #74)). HIPERFACE DSL può essere usato unicamente con il cavo ibrido speciale di Kollmorgen) (su richiesta).

Cavi di lunghezza superiore: 25 m.

FBTYPE: 35

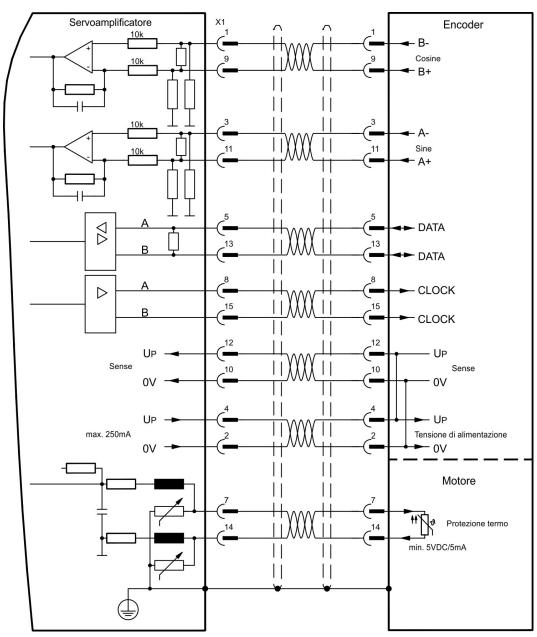


La piedinatura indicata sul lato trasduttore si riferisce ai motori AKM (codice di connettore D).

9.12.3 Resolver (X2)

Collegamento di un sistema di retroazione realizzato con resolver (da 2 a 36 poli) (primario feedback, (→ #74)). La protezione termica nel motore viene collegato mediante il cavo del resolver sul X2 e qui analizzato.

Se si prevedono cavi di lunghezza superiore a 100 m rivolgersi al nostro settore applicazioni. FBTYPE: 0

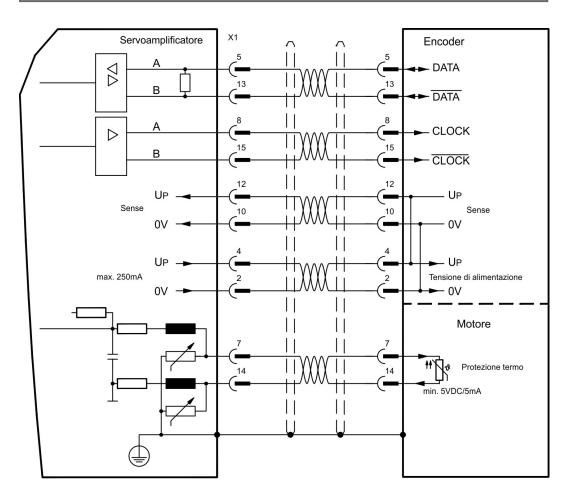

La piedinatura indicata sul lato trasduttore si riferisce ai motori AKM.

9.12.4 Encoder seno con BiSS analogo (X1)

Collegamento di un sistema di retroazione realizzato con encoder sin/cos monogiro o multigiro e interfaccia BiSS (primario o secondario feedback, (\rightarrow #74)). La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali.

Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni. Frequenza limite (sin, cos): 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE	Up
5V analogo (BiSS B)	23	-	-	5V +/-5%
12V analogo (BiSS B)	24	-	-	7,511V

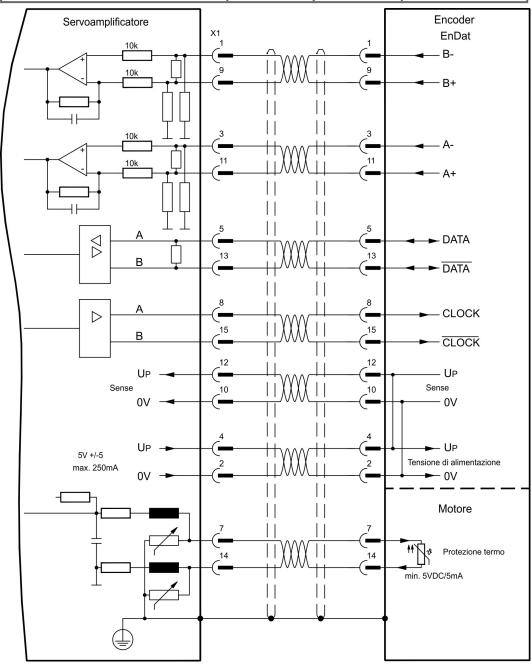

La piedinatura indicata sul lato trasduttore si riferisce ai motori AKM.

9.12.5 Encoder con BiSS digitale (X1)

Collegamento di un sistema di retroazione realizzato con encoder digitale monogiro o multigiro e interfaccia BiSS (primario o secondario feedback, (\rightarrow #74)). La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali.

Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni. Frequenza limite: 1,5 MHz

Tipo	FBTYPE	EXTPOS	GEARMODE	Up
5V digitale (BiSS B)	20	11	11	5V +/-5%
12V digitale (BiSS B)	22	11	11	7,511V
5V digitale (BiSS C, Renishaw)	33	12	12	5V +/-5%

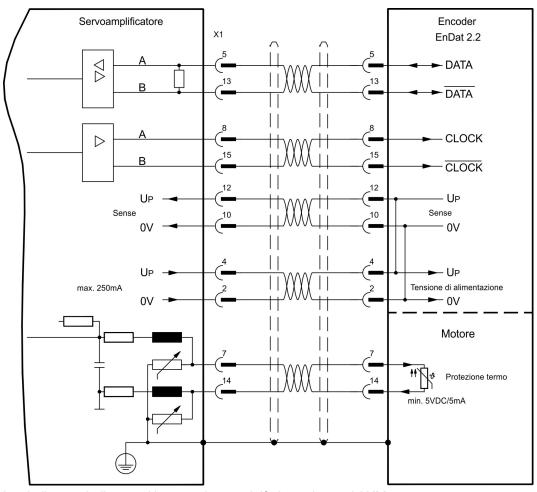

La piedinatura indicata sul lato trasduttore si riferisce ai motori AKM.

9.12.6 Encoder seno con EnDat 2.1 (X1)

Collegamento di un sistema di retroazione realizzato con encoder sin/cos con il protocollo EnDat 2.1 monogiro o multigiro (primario o secondario feedback, (→ #74)). I tipi preferiti sono i codificatori ottici ECN1313 / EQN1325 o codificatori induttivo ECI 1118/1319 o EQI 1130/1331. La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali.

Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni. Frequenza limite (sin, cos): 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE
ENDAT 2.1	4	8	8
ENDAT 2.1 + Wake&Shake	21	8	8

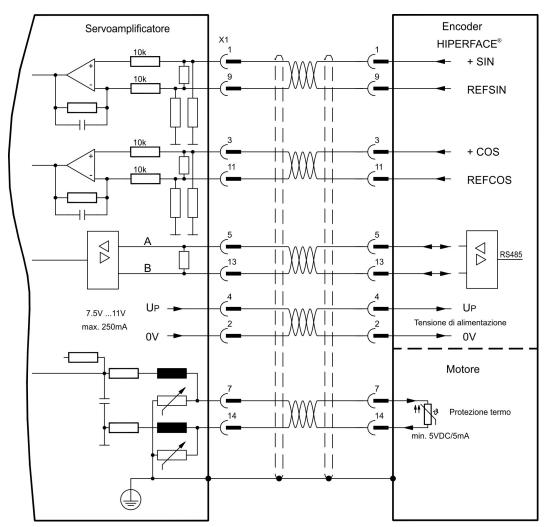

La piedinatura indicata sul lato trasduttore si riferisce ai motori AKM.

9.12.7 Encoder con EnDat 2.2 (X1)

Collegamento di un sistema di retroazione realizzato con encoder con il protocollo EnDat 2.2 monogiro o multigiro (primario feedback, (→ #74)). La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni.

Frequenza limite: 1,5 MHz

Tipo	FBTYPE	EXTPOS	GEARMODE	Up
5V ENDAT 2.2	32	13	13	5V +/-5%
12V ENDAT 2.2	34	13	13	7,511V


La piedinatura indicata sul lato trasduttore si riferisce ai motori AKM.

9.12.8 Encoder seno con HIPERFACE (X1)

Collegamento di un sistema di retroazione realizzato con encoder sin/cos monogiro o multigiro e protocollo HYPERFACE (primario o secondario feedback, (→ #74)). La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali.

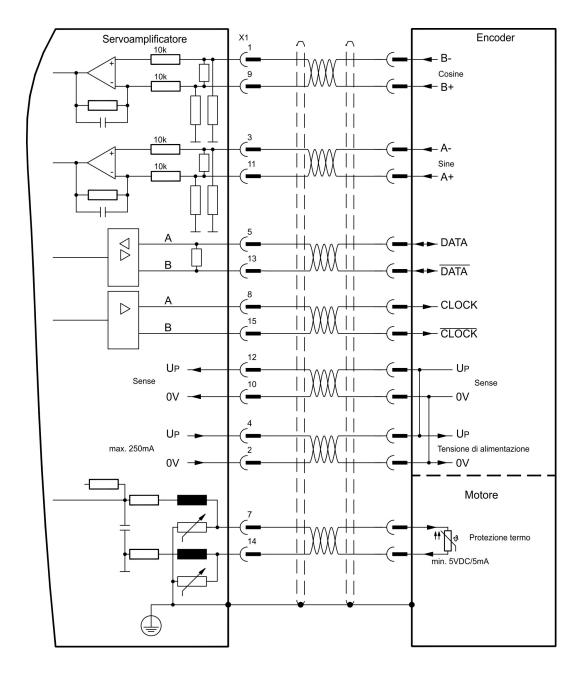
Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni. Frequenza limite (sin, cos): 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE
HIPERFACE	2	9	9

La piedinatura indicata sul lato trasduttore si riferisce ai motori AKM.

9.12.9 Encoder seno con SSI (X1)

Collegamento di un sistema di retroazione lineari realizzato con encoder sin/cos e protocollo SSI (primario feedback, (→ #74)).


La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali.

Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni.

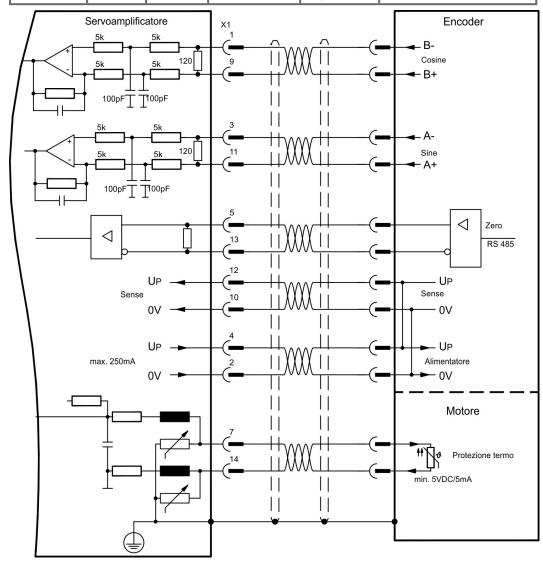
Frequenza limite (sin, cos): 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE
SinCos SSI 5V linear	26	-	-

Accendere la tensione di alimentazione dell'encoder X1: ENCVON = 1

9.12.10 Encoder seno senza traccia dati (X1)

Collegamento di un sistema di retroazione realizzato con un encoder sin/cos senza traccia dati (primario o secondario feedback, (→ #74)). Ad ogni inserzione dell'alimentazione a 24V l'amplificatore richiede le informazioni di partenza per il regolatore di posizione (parametro MPHASE). In base al tipo di retroazione si esegue un Wake&Shake o si rileva il valore di MPHASE dalla EEPROM del servoamplificatore.

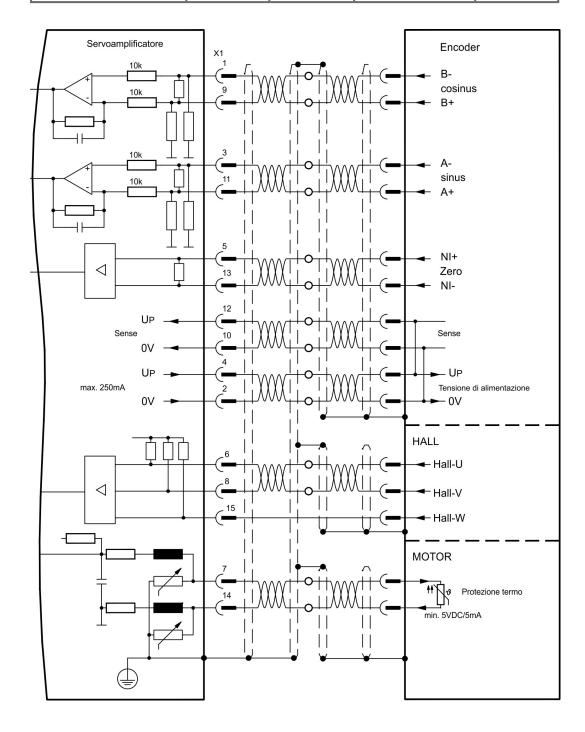

AVVERTENZA Il carico verticale potrebbe cadere!

In caso di asse verticale il carico può cadere liberamente, in quanto la funzione Wake&Shake rilascia il freno e non è possibile erogare una coppia sufficiente a trattenerlo.

• Non usare Wake&Shake con carichi sospesi verticali.

La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Se si prevedono cavi di lunghezza superiore a 50m rivolgersi al nostro settore applicazioni. Frequenza limite (sin, cos): 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE	Up	Nota
SinCos 5V	1	6	6	5V +/-5%	MPHASE dalla EEPROM
SinCos 12V	3	7	7	7,511V	MPHASE dalla EEPROM
SinCos 5V	7	6	6	5V +/-5%	MPHASE wake & shake
SinCos 12V	8	7	7	7,511V	MPHASE wake & shake


9.12.11 Encoder seno con Hall (X1)

I encoder seno che non forniscono dati di commutazione assoluti si possono analizzare come sistemi di retroazione completi (primario feedback, (→ #74)) con un sensore di Hall aggiuntivo.

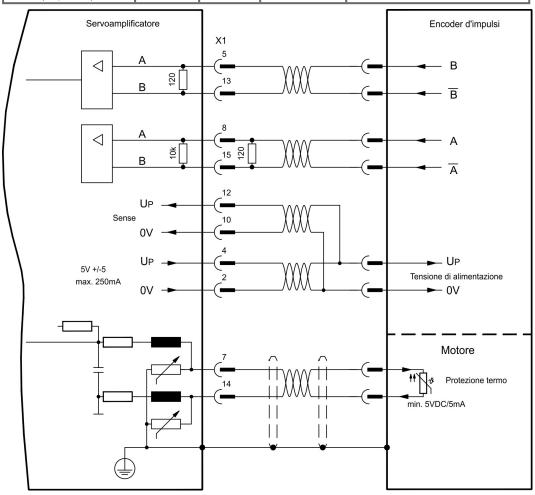
Tutti i segnali sono collegati al connettore X1. Se si prevedono cavi di lunghezza superiore a 25 m rivolgersi al nostro settore applicazioni.

Frequenza limite (sin, cos): 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE	Up
SinCos 5V con Hall	5	-	-	5V +/-5%
SinCos 12V con Hall	6	-	-	7,511V

9.12.12 ROD (AquadB) 5V, 1,5MHz (X1)

Come sistema di retroazione è possibile impiegare un trasduttore incrementale da 5V (ROD, AquadB) (primario o secondario feedback, (→ #74)). Ad ogni inserzione dell'alimentazione a 24V l'amplificatore richiede le informazioni di partenza per il regolatore di posizione (parametro MPHASE). In base al tipo di retroazione si esegue un Wake&Shake o si rileva il valore di MPHASE dalla EEPROM del servoamplificatore.


AVVERTENZA Il carico verticale potrebbe cadere!

In caso di asse verticale il carico può cadere liberamente, in quanto la funzione Wake&Shake rilascia il freno e non è possibile erogare una coppia sufficiente a trattenerlo.

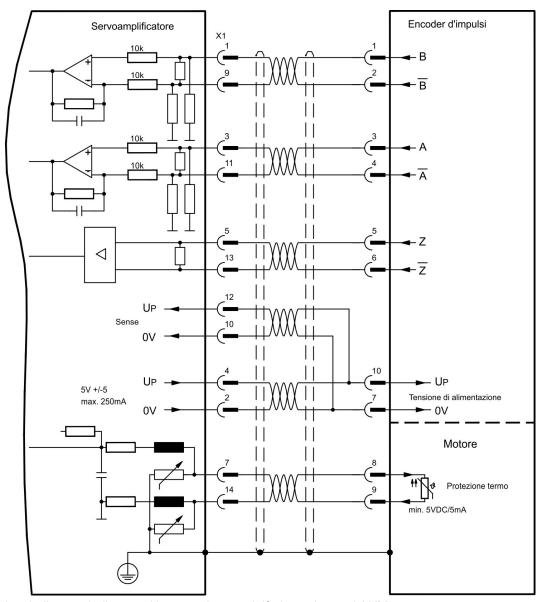
• Non usare Wake&Shake con carichi sospesi verticali.

La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni. Freguenza limite (A, B): 1,5MHz

Tipo	FBTYPE	EXTPOS	GEARMODE	Nota
ROD (AquadB) 5V	31	30	30	MPHASE dalla EEPROM
ROD (AquadB) 5V	30	30	30	MPHASE con wake & shake

9.12.13 ROD (AquadB) 5V, 350kHz (X1)

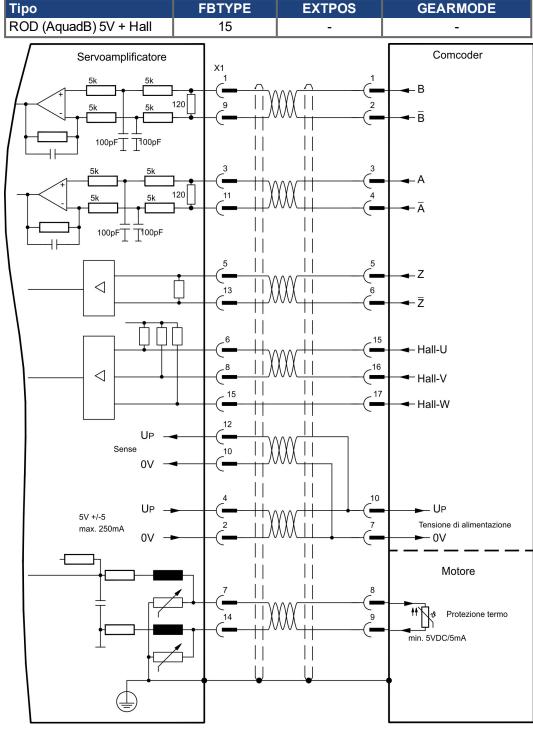
Come sistema di retroazione è possibile impiegare un trasduttore incrementale da 5V (ROD, AquadB) (primario o secondario feedback, (→ #74)). Ad ogni inserzione 24V l'amplificatore richiede le informazioni di partenza per il regolatore di posizione (parametro MPHASE). Con questo tipo di retroazione pertanto si esegue un Wake&Shake.


AVVERTENZA II carico verticale potrebbe cadere!

In caso di asse verticale il carico può cadere liberamente, in quanto la funzione Wake&Shake rilascia il freno e non è possibile erogare una coppia sufficiente a trattenerlo.

• Non usare Wake&Shake con carichi sospesi verticali.

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1. Se si prevedono cavi di lunghezza superiore a 50m rivolgersi al nostro settore applicazioni. Frequenza limite (A, B): 350 kHz


Tipo	FBTYPE	EXTPOS	GEARMODE	Nota
ROD (AquadB) 5V	27	10	10	MPHASE dalla EEPROM
ROD (AquadB) 5V	17	10	10	MPHASE con wake & shake

La piedinatura indicata sul lato trasduttore si riferisce ai motori AKM.

9.12.14 ROD (AquadB) 5V, 350kHz con Hall (X1)

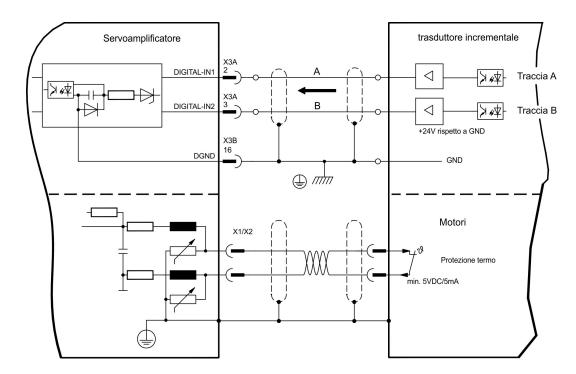
Collegamento di una unità di retroazione realizzata con ComCoder (primario feedback, (→ #74)). Per la commutazione si utilizzano sensori di Hall e per la risoluzione un trasduttore incrementale (AquadB) integrato. La protezione termica nel motore viene collegato sul X1 e qui analizzato. Il nostro cavo di collegamento ComCoder preconfezionato consente di collegare tutti i segnali. Se si prevedono cavi di lunghezza superiore a 25 m rivolgersi al nostro settore applicazioni. Nei sistemi di trasduttori separati (trasduttore incrementale separato dal sensore Hall) il cablaggio deve seguire le indicazioni del (→ #86). I collegamenti sull'amplificatore corrispondono allo schema sottostante. Frequenza limite (A, B): 350 kHz

La piedinatura indicata sul lato trasduttore si riferisce ai motori AKM.

9.12.15 ROD (AquadB) 24V (X3)

Come sistema di retroazione è possibile impiegare un trasduttore incrementale da 24V (ROD, AquadB) (primario o secondario feedback, (→ #74)). Vengono utilizzati gli ingressi digitali DIGITAL-IN 1 e 2 sul connettore X3. Ad ogni inserzione dell'alimentazione a 24V l'amplificatore richiede le informazioni di partenza per il regolatore di posizione (parametro MPHASE). Con questo tipo di retroazione pertanto ad ogni inserzione dell'alimentazione a 24V si esegue un Wake&Shake.

AVVERTENZA Il carico verticale potrebbe cadere!

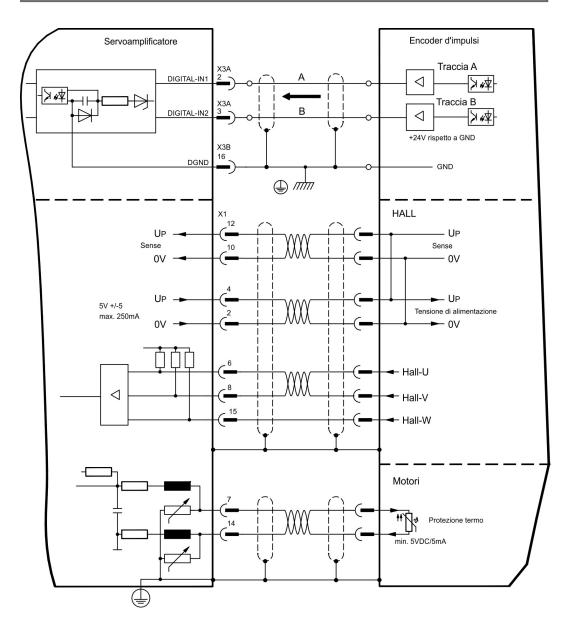

In caso di asse verticale il carico può cadere liberamente, in quanto la funzione Wake&Shake rilascia il freno e non è possibile erogare una coppia sufficiente a trattenerlo.

• Non usare Wake&Shake con carichi sospesi verticali.

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1 o X2. Se si prevedono cavi di lunghezza superiore a 25 m rivolgersi al nostro settore applicazioni.

Frequenza limite: 100 kHz, transconduttanza tv ≤ 0,1µs

Tipo	FBTYPE	EXTPOS	GEARMODE	Nota
ROD (AquadB) 24V	12	2	2	MPHASE dalla EEPROM
ROD (AquadB) 24V	16	2	2	MPHASE con wake & shake



9.12.16 ROD (AquadB) 24V con Hall (X3, X1)

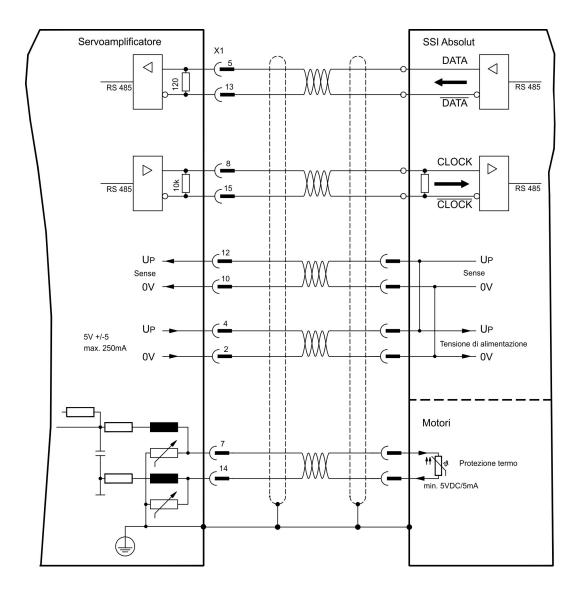
Collegamento di una unità di retroazione realizzata con un trasduttore incrementale da 24V (ROD, AquadB) e un sensore Hall (primario feedback, (→ #74)). Per la commutazione si utilizza il sensore di Hall e per la risoluzione il trasduttore incrementale. La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1.

Se si prevedono cavi di lunghezza superiore a 25 m rivolgersi al nostro settore applicazioni. Frequenza limite X3: 100 kHz, X1: 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE
ROD (AquadB) 24V	14	-	-
ROD (AquadB) 24V	16	2	2

9.12.17 Encoder SSI assoluto (X1)

Collegamento di una unità di retroazione realizzata con un trasduttore assoluto sincrono seriale (primario o secondario feedback, (→ #74)).. È possibile leggere dati in formato binario o Gray.

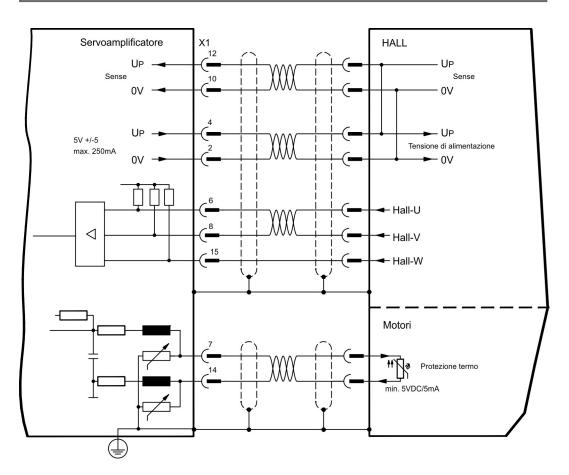

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni.

Frequenza limite: 1,5MHz Risoluzione/girata: max. 16 Bit

Girate: max. 16 Bit

Tipo	FBTYPE	EXTPOS	GEARMODE
SSI	25	25	25

Accendere la tensione di alimentazione dell'encoder X1: ENCVON = 1



9.12.18 Encoder Hall (X1)

Collegamento di una unità di retroazione realizzata con un sensore Hall (primario feedback, (→ #74)).

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1. Se si prevedono cavi di lunghezza superiore a 25 m rivolgersi al nostro settore applicazioni. Frequenza limite: 350 kHz

Tipo	FBTYPE	EXTPOS	GEARMODE
Hall	11	-	-

9.13 Trasmissione elettronico e master-slave

Con la funzione "Trasmissione elettronica" (vedere il software di messa in funzione e la descrizione del parametro GEARMODE) il servoamplificatore viene comandato da una retroazione secondaria in qualità di "follower".

È possibile realizzare sistemi master-slave, usare un encoder esterno come trasduttore di valori nominali oppure collegare l'amplificatore all'unità di controllo di un motore passo-passo.

I parametri del servoamplificatore vengono impostati con il software di messa in funzione (trasmissione elettronico). La risoluzione (numero impulsi/rotazione) è regolabile.

INFORMAZIONI

Se si utilizza l'ingresso X1 senza alimentatore di tensione X1 (pin 2, 4, 10, 12), (per esempio nel funzionamento master-slave con altri servoamplificatori), è necessario disattivare il controllo dell'alimentatore di tensione per evitare che si visualizzi il messaggio di errore F04. Per far questo è necessario modificare il bit 20 del parametro DRVCNFG2 (si veda il riferimento oggetto ASCII nella guida on-line).

9.13.1 Fonti del segnale

Si possono usare i trasduttori esterni indicati di seguito:

Tipo di retroazione secondaria	Frequenza limite	Connettore	Schema di collegamento	GEARMODE
Encoder BiSS digital	1,5 MHz	X1	(→ #80)	11, 12
SinCos Encoder ENDAT 2.1	350 kHz	X1	(→ #81)	8
Encoder ENDAT 2.2	1,5 MHz	X1	(→ #82)	13
SinCos Encoder HIPERFACE	350 kHz	X1	(→ #83)	9
SinCos Encoder senza traccia dati	350 kHz	X1	(→ #85)	6, 7
ROD* (AquadB) 5V	1,5 MHz	X1	(→ #87)	30
ROD* (AquadB) 5V	350 kHz	X1	(→ #88)	10
ROD* (AquadB) 24V	100 kHz	Х3	(→ #90)	2
SSI 5V	1,5 MHz	X1	(→ #92)	25
Direzione/Impulsi 5V	1,5 MHz	X1	(→ #95)	27
Direzione/Impulsi 24V	100 kHz	Х3	(→ #95)	1

La scheda di espansione "PosI/O" o "PosI/O-Monitor" (→ # 143) nello slot 2 o 3 consente inoltre di usare i trasduttori veloci indicati di seguito:

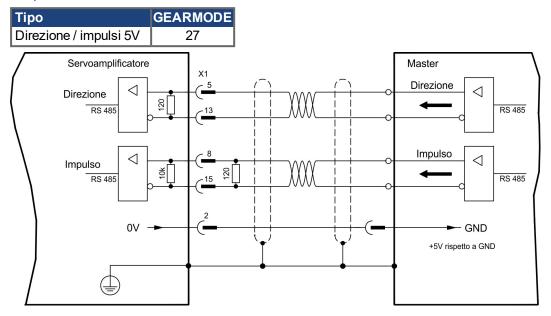
Tipo di retroazione secondaria	Frequenza limite	Connettore	Schema di collegamento	GEARMODE
SSI 5V	1,5 MHz	X5	(→ #146)	5
ROD* (AquadB) 5V	1,5 MHz	X5	(→ # 148)	3
Direzione/Impulsi 5V	1,5 MHz	X5	(→ # 148)	4

^{*} ROD è la sigla che indica il encoder incrementale

9.13.2 Collegamento al comandi motore passo-passo (direzione impulsi)

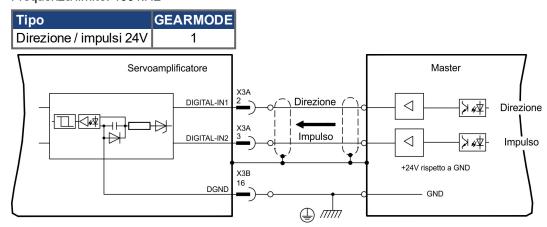
È possibile collegare il servoamplificatore all'unità di controllo di un motore passo-passo (qualsiasi marca).

I parametri del servoamplificatore vengono impostati con il software di messa in funzione (trasmissione elettrica). Il numero di passi è regolabile, in modo da poter adattare il servoamplificatore ai segnali di direzione/impulso di qualsiasi comando per motori passopasso. È anche possibile emettere vari messaggi.


INFORMAZIONI

L'uso di un trasduttore ROD (encoder incrementale) consente una maggiore immunità elettromagnetica.

9.13.2.1 Direzione / impulsi di 5V (X1)


Collegamento dei comando di un motore passo-passo con un livello del segnale di 5V. A questo scopo viene utilizzato il connettore X1 SubD.

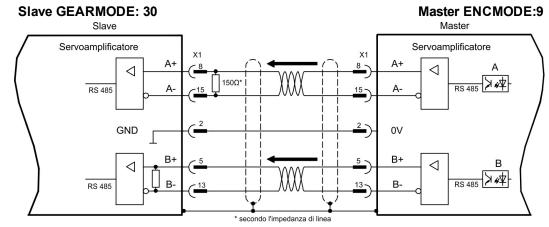
Frequenza limite: 1,5 MHz

9.13.2.2 Direzione / impulsi di 24V (X3)

Collegamento dei comando di un motore passo-passo con un livello del segnale di 24V. A questo scopo vengono utilizzati gli ingressi digitali DIGITAL-IN 1 e 2 sul connettore X3. Frequenza limite: 100 kHz

9.13.3 Master-Slave

9.13.3.1 Collegamento al master di S700, livello di 5V (X1)


È possibile collegare due amplificatori S700. In questo modo il master comanda un amplificatore slave mediante l'uscita dell'encoder X1 (→ #97).

Regolazione master: uscita di posizione su X1 sulla videata "Emulazione Encoder".

Regolazione slave: sulla videata "Asso Elettrico" (GEARMODE)

Frequenza limite: 1,5 MHz

Esempio di sistemi master-slave con due amplificatori S700 (emulazione AquadB, ROD):

Se l'emulazione di SSI è usata, il master ENCMODE deve essere regolato a 10 ed allo slave GEARMODE a 25.

9.13.3.2 Collegamento al master di S700, livello di 5V (X5)

Se una scheda di espansione Pos I/O o una Pos I/O monitor (vedi (→ # 143) ff) viene utilizzata, la emulazione encoder sarà disponibile su X5.

Utilizzando questa interfaccia un massimo di 16 unità slave possono essere connesse ad una unità master. Collegamenti a (→ # 148).

9.14 Emulazione del codificatore, uscita di posizione

9.14.1 Interfaccia ROD (AquadB) (X1)

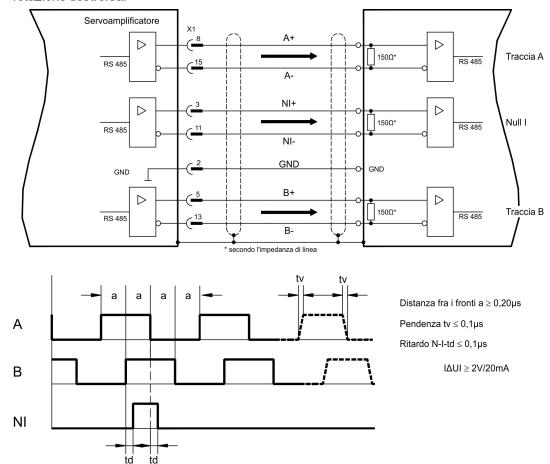
L'interfaccia del trasduttore incrementale è compresa nella dotazione. Scegliere la funzione dell'encoder ROD (videata "Encoder"). La posizione dell'albero motore viene calcolata nel servoamplificatore sulla base dei segnali ciclici assoluti del resolver o dell' encoder. In funzione di queste informazioni vengono generati impulsi compatibili con il trasduttore incrementale. Sul connettore X1 SubD gli impulsi vengono emessi sotto forma di due segnali A e B sfasati elettricamente di 90° e in un impulso di zero.

La risoluzione (prima della moltiplicazione) può essere impostata:

Funzione dell'enco- der (ENCMODE)	Sistema di Feedback (FBTYPE)	Risoluzione (ENCOUT)	Impulso zero
	0, Resolver	324096	
9, ROD => X1	>0, Encoder etc.		una volta per giro (solo a A=B=1)

INFORMAZIONI

Se una carta di sicurezza è built-in, solo le risoluzioni binarie fino a 2¹² sono possibili.


È possibile impostare e memorizzare la posizione dell'impulso di zero in un giro meccanico (parametro ENCZERO). Il circuito d'uscita è alimentato internamente.

INFORMAZIONI

La lunghezza di cavo al massimo ammissibile è di 100 m.

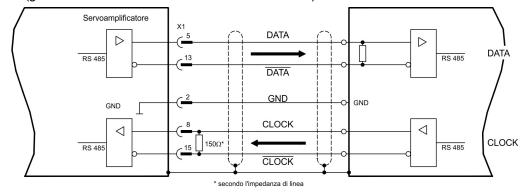
Descrizione del collegamento e dei segnali dell'interfaccia del trasduttore incrementale

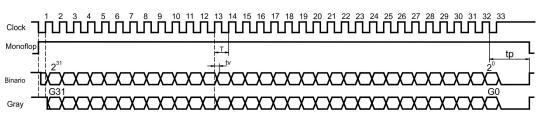
La direzione di numerazione è impostata in modo ascendente rispetto all'asse motore con rotazione destrorsa.

9.14.2 Interfaccia SSI (X1)

L'interfaccia SSI (emulazione dell'encoder assoluto seriale sincrono) fa parte della dotazione fornita. Selezionare la funzione dell'encoder SSI (schermata "Encoder", ENCMODE 10). Il servoamplificatore calcola la posizione dell'albero del motore sulla base di segnali assoluti ciclici del resolver o dell'encoder. Da queste informazioni viene fornita una data SSI (secondo la specifica di brevetto Stegmann DE 3445617C2). Vengono trasmessi al massimo 32 bit. Il bit di dati guida contiene il numero di giri ed è selezionabile da 12 a 16 bit. I successivi 16 bit max. contengono la risoluzione e non sono variabili.

La tabella seguente indica l'assegnazione della data SSI a seconda del numero di giri selezionato:


				Giro											F	Risc	oluz	ion	e	(va	ari	ab	ile	€)							
	SSI	RE	√OL	-																											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0							П	П	П		П		П			
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		 	١,,	١,,	 	١,,		ٳ			ا ـ ا				4	
		13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	111	10	9	ď	'	þ	၁	4	3	^	1	ľ
			12	11	10	9	8	7	6	5	4	3	2	1	0							П	П			П					
				11	10	9	8	7	6	5	4	3	2	1	0											П					


La sequenza di segnali può essere emessa nel codice **Gray** o **binario** (standard) (parametro SSI-CODE). Il servoamplificatore può essere regolato alla frequenza di clock della propria valutazione SSI attraverso il parametro SSI-TIMEOUT.

Il circuito d'uscita è alimentato internamente.

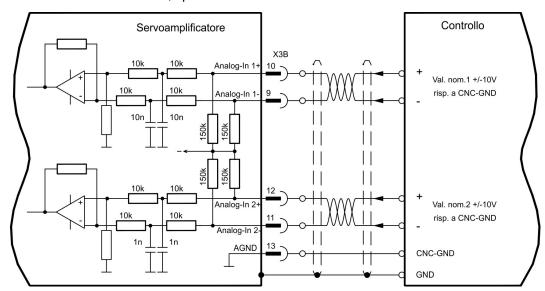
Collegamento e segnali per l'interfaccia SSI:

la direzione di conteggio per l'interfaccia SSI è UP quando l'albero del motore ruota in senso orario (guardando verso l'estremità dell'albero del motore).

Tempo di commutazione dati $tv \le 300 ns$ Durata minima periodo T = 600 ns

Time Out tp = $3\mu s/13\mu s$ (SSITOUT)

Uscita $I\Delta UI \ge 2V/20mA$ Ingresso $I\Delta UI \ge 0.3V$


9.15 Ingressi/Uscite digitali e analogici

9.15.1 Ingressi analogici (X3B)

Per i valori nominali analogici il servoamplificatore dispone di due ingressi differenziali programmabili. Come riferimento di potenziale occorre collegare sempre AGND (X3B/13) con CNC-GND dell'unità di controllo.

Caratteristiche tecniche

- Tensione d'ingresso differenziale di max. ± 10 V
- Massa di riferimento: AGND, morsetto X3B/13
- Resistenza d'ingresso di 150 kΩ
- Intervallo tensione sincrona per entrambi gli ingressi di ulteriori ± 10 V
- Velocità di scansione 62,5 µs

Ingresso Analog-In 1 (morsetti X3B/10-9)

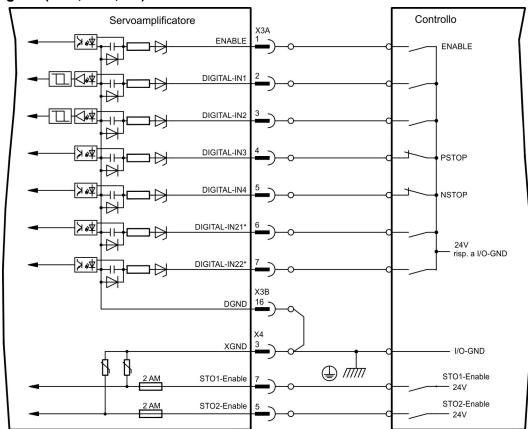
Tensioni d'ingresso differenziali di max. ± 10 V, risoluzione di 16 Bit (precisione 13 Bit), scalabili. Impostazione standard: valore nominale velocità

Ingresso Analog-In 2 (morsetti X3B/12-11)

Tensioni d'ingresso differenziali di max. ± 10 V, risoluzione di 16 Bit (precisione 13 Bit), scalabili. Impostazione standard: valore nominale coppia Esempi applicativi per ingresso valore nominale Analog-In 2:

- Limitazione della corrente esterna regolabile
- Ingresso attenuato per modo di messa a punto / passo-passo
- Pilotaggio / oltrecorsa

Quando ad un ingresso viene assegnata una funzione preprogrammata, il record di dati deve essere memorizzato nella Eeprom del servoamplificatore e l'alimentazione della tensione ausiliaria a 24V del servoamplificatore deve essere disinserita e reinserita (reset del software dell'amplificatore).


Assegnazione direzione di rotazione

Impostazione standard: rotazione destrorsa dell'albero motore (vista dell'albero)

- Tensione positiva su morsetto X3B/10 (+) presa morsetto X3B/9 () oppure
- Tensione positiva su morsetto X3B/12 (+) presa morsetto X3B/11 ()

Per invertire il senso di rotazione è possibile scambiare l'assegnazione dei morsetti X3B/10-9 o X3B/12-11 o modificare il parametro SENSO DI ROTAZIONE sulla videata "Velocità".

9.15.2 Ingressi digitali (X3A, X3B, X4)

^{*} DIGITAL-IN21/22 si devono definire come ingressi con il software di messa in funzione (videata "I/O digitali")

9.15.2.1 Connettori X3A, X3B

Ingresso ENABLE

- PLC compatibile (EN 61131-2 Typ 1), potenziale zero, massa di riferimento DGND
- High: 15...30 V / 2...15 mA , Low: -3...5 V / <1mA
- Velocità di scansione Software:250 µs

È possibile abilitare lo stadio finale del servoamplificatore con il segnale di abilitazione (morsetto X3A/1, **attivo alto**). Abilitazione possibile solo se l'ingressi ha un segnale STOx-Enable 24V (vedi (→ #41) e ss). Nello stato bloccato (segnale)basso il motore collegato è privo di coppia.

Inoltre con il software di messa in funzione occorre configurare un'abilitazione software (collegamento AND) che possa comunque anche rimanere sempre attiva (videata "impostazioni di base" del software di messa in funzione DRIVEGUI.EXE).

Ingressi digitali programmabili a piacere X3:

È possibile utilizzare gli ingressi digitali X3A/2...7 per attivare funzioni memorizzate preprogrammate nel servoamplificatore. Un elenco delle funzioni preprogrammate è disponibile nella videata "I/O digitali" del nostro software di messa in funzione. Quando ad un ingresso viene assegnata una funzione preprogrammata, il record di dati deve essere memorizzato nella Eeprom del servoamplificatore e l'alimentazione della tensione ausiliaria a 24V del servoamplificatore deve essere disinserita e reinserita (reset del software dell'amplificatore).

Ingressi digitali DIGITAL-IN 1 e 2 (X3A/2 e X3A/3):

Questi ingressi sono particolarmente rapidi e quindi adatti ad esempio a funzioni latch o segnali di retroazione veloci.

- PLC compatibile (EN 61131-2 Typ 1), potenziale zero, massa di riferimento DGND
- High: 15...30 V / 2...15 mA , Low: -3...5 V / <1mA
- Velocità di scansione: Hardware 2 µs

Ingressi digitali DIGITAL-IN 3 e 4 (X3A/4 e X3A/5):

Inoltre questi ingressi si possono configurare per le funzioni di analisi dei finecorsa PSTOP e NSTOP. Selezionare la funzione desiderata nel software di messa in funzione (videata "I/O digitali").

- PLC compatibile (EN 61131-2 Typ 1), potenziale zero, massa di riferimento DGND
- High: 15...30 V / 2...15 mA , Low: -3...5 V / <1mA
- Velocità di scansione: Software 25 0µs

Ingressi digitali DIGITAL-IN21 e 22 (X3A/6 e X3A/7):

I pin 6 e 7 di X3A si possono usare a scelta come ingresso o uscita. Selezionare la funzione desiderata nel software di messa in funzione (videata "I/O digitali").

- PLC compatibile (EN 61131-2 Typ 1), potenziale zero, massa di riferimento DGND
- High: 15...30 V / 2...15 mA , Low: -3...5 V / <1mA
- Velocità di scansione: Software 250 µs

INFORMAZIONI

A seconda della funzione selezionata si attivano gli ingressi High o Low.

9.15.2.2 Connettore X4

In questo modo, si ottiene un blocco contro il riavvio per la sicurezza funzionale utilizzando l'ingressi STO1-Enable et STO2-Enable insieme ad un circuito di sicurezza esterno.

Ingressi STO1-ENABLE (X4/7) e STO2-Enable (X4/5))

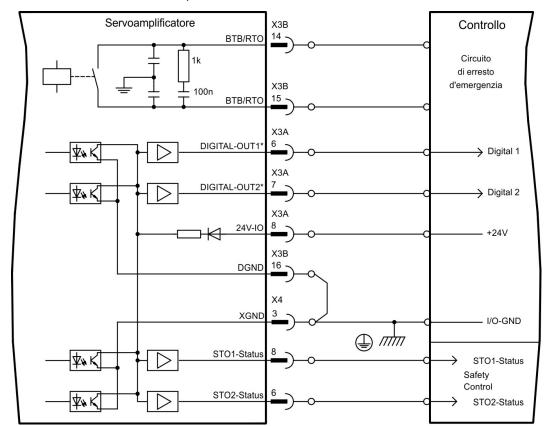
- A potenziale zero, massa di riferimento XGND
- 20V...30V / 33mA...45mA

INFORMAZIONI

Questo ingresso non è compatibile con EN 61131-2.

Questi ingressi digitali supplementari inibisce lo stadio d'uscita di potenza dell'amplificatore fino a quando il segnale da 24V viene applicato a questo ingresso. Se l'ingressi STO va in circuito aperto, il motore non viene più alimentato, l'azionamento perde tutta la coppia e si arresta.

AVVISO


Una funzione di arresto fail-safe per l'azionamento, se richiesta, deve essere assicurata attraverso un freno meccanico, poiché la frenatura elettrica con l'aiuto dell'azionamento non è più possibile.

Per ulteriori informazioni e per esempi di collegamento consultare (→ #41) e ss.

9.15.3 Uscite digitali (X3A, X3B, X4)

Caratteristiche tecniche

- Tensione a morsetti X3A/8 (24V-IO) e X3B/16 (DGND)
- Tutte le uscite digitali sono a potenziale zero
- 24V-IO: 20V DC...30V DC
 DIGITAL-OUT1 / 2: PLC compatibile (EN 61131-2 Typ 1), max. 100mA
 STO1/2-Status: PLC compatibile (EN 61131-2 Typ 1), max. 100mA
 BTB/RTO: Uscita relè, max. 30V DC o 42V AC, 0,5A
- Velocità di scansione : 250 μs

^{*} DIGITAL-OUT1/2 si devono definire come uscite con il software di messa in funzione.

9.15.3.1 Connettori X3A, X3B

Contatto di pronto per l'uso BTB/RTO (X3B/14, 15)

La disponibilità per l'uso (morsetto X3B/14 e X3B/15) viene segnalata da un contatto a relè pulito. Il contatto è chiuso a servoamplificatore operativo, il contatto non viene influenzato dal segnale enable, dalla limitazione l²t e dalla soglia della resistenza di frenatura.

INFORMAZIONI

Tutti gli errori comportano una caduta del contatto BTB e la disinserzione dello stadio finale (con contatto BTB aperto lo stadio finale è bloccato -> potenza nulla). Per l'elenco dei messaggi d'errore si rimanda a (→ # 123).

Uscite digitali programmabili DIGITAL-OUT 1 e 2 (X3A/6, 7):

I pin 6 e 7 di X3A si possono usare a scelta come ingresso o uscita. Selezionare la funzione desiderata nel software di messa in funzione. Le uscite sono a potenziale zero, la tensione di collegamento a 24V si deve derivare dall'esterno.

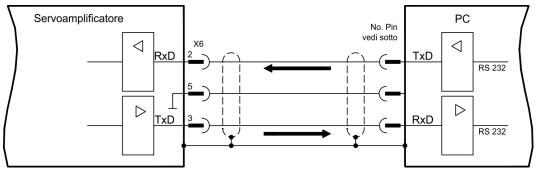
Se programmati come uscite, si possono usare per messaggi riguardanti le funzioni programmate memorizzate nel servoamplificatore. Un elenco delle funzioni preprogrammate è disponibile nella videata "I/O digitali" del nostro software di messa in funzione.

Se un'uscita deve essere assegnata ad una funzione preprogrammata, il set di dati deve essere salvato nella EEPROM del servoamplificatore e deve essere eseguito un avvio a freddo (reset software dell'amplificatore).

9.15.3.2 Connettore X4

Messaggi di stato STO1-Status (X4/8) e STO2-Status (X4/6):

I pin 6 e 8 su X4 riportano lo stato degli ingressi STO-Enable. Le uscite sono uscite flottanti, quindi la tensione di commutazione a 24 V deve essere fornita da un'alimentazione esterna tramite X3A / 8.

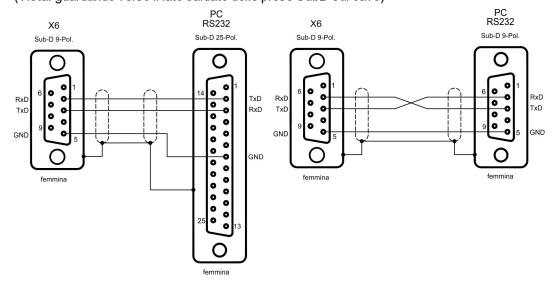

9.16 Interfaccia RS232, collegamento per PC (X6)

L'impostazione dei parametri d'esercizio, di regolazione della posizione e dei record di movimento può avere luogo con il software di messa in funzione su un normale personal computer (→ # 110).

Con tensioni di alimentazione disinserite collegare l'interfaccia PC (X6) del servoamplificatore con un'interfaccia seriale del PC.

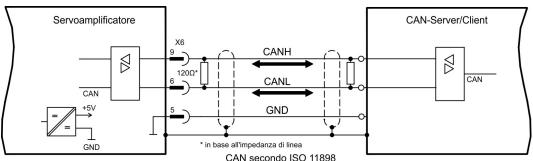
INFORMAZIONI

Non un cavo null modem power link!


L'interfaccia è isolata galvanicamente mediante optoaccoppiatori ed ha lo stesso potenziale dell'interfaccia CANopen.

L'interfaccia viene selezionata e impostata nel software di messa in funzione. Per ulteriori indicazioni, si rimanda alla (→ # 109).

Con la modulo di espansione opzionale -2CAN-, entrambe le interfacce RS232 e CAN, che occupano lo stesso connettore X6, vengono distribuite su due connettori (→ # 140).


Cavo di trasmissione tra PC e servoamplificatore della serie S700:

(Vista: guardando verso il lato saldato delle prese SubD sul cavo)

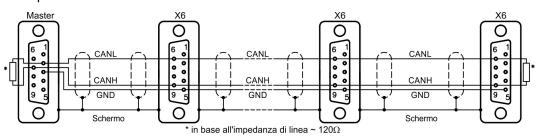
9.17 Interfaccia CAN-Bus (X6)

Interfaccia per il collegamento al CAN Bus (valore predefinito: 500 kBaud). Il profilo integrato si basa sul profilo di comunicazione CANopen DS301 e sul profilo di trasmissione DS402. In base al regolatore di posizione, tra le altre sono disponibili le funzioni seguenti: passo-passo con velocità variabile, corse al punto di riferimento, avvio di un task di traslazione, avvio di un task di traslazione diretto, predefinizione dei valori nominali digitali, funzioni di trasmissione dati e molto altro. Per informazioni dettagliate si rimanda al manuale CANopen. L'interfaccia è isolata galvanicamente mediante optoaccoppiatori ed ha lo stesso potenziale dell'interfaccia RS232. Gli ingressi analogici dei valori nominali possono essere comunque utilizzati. Con la modulo di espansione opzionale -2CAN-, entrambe le interfacce RS232 e CAN, che occupano lo stesso connettore X6, vengono distribuite su due connettori (→ # 140).

Cavo bus CAN

Ai sensi della norma ISO 11898 occorre utilizzare un cavo bus con un'impedenza caratteristica di 120. La lunghezza del cavo utilizzabile per garantire una comunicazione sicura diminuisce con l'aumento della velocità di trasmissione. Come indicazione è possibile utilizzare i seguenti valori, da noi misurati, che tuttavia non sono da considerarsi come valori limite:

- Impedenza caratteristica 100-120 Ω
- Capacità d'esercizio max. 60 nF/km
- Resistenza conduttori (loop)159,8 Ω/km


Lunghezza del cavo a seconda delle velocità di trasmissione (esempio)

Baud rate / kBaud	Lunghezza max. del cavo / m
1000	10
500	70
250	115

Con capacità d'esercizio (max. 30 nF/km) e resistenza dei conduttori ridotte (loop, 115Ω /km) è possibile raggiungere distanze di trasmissione maggiori. (impedenza caratteristica $150 \pm 5\Omega$ resistenza terminale $150 \pm 5\Omega$).

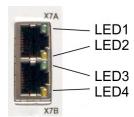
Per ragioni di compatibilità elettromagnetica il corpo connettore SubD deve rispondere ai seguenti requisiti:

- corpo metallico o rivestito in metallo
- possibilità di collegamento per la schermatura nel corpo, collegamento su ampia superficie

9.18 Interfaccia EtherNET (X7)

Mediante i due connettori RJ45 questa interfaccia costituisce un sistema hardware compatibile TCP/IP con trasmissione dati (protocollo) configurabile. A seconda del firmware installato il servoamplificatore può comunicare con le reti indicate di seguito:

• EtherCAT (standard, CAN over EtherCAT)


INFORMAZIONI

L'interfaccia è disattivata, se una scheda di espansione del bus del campo è inserita ad una slot di espansione.

Il protocollo installato con il firmware deve essere abilitato (comando ASCII ETHMODE).

Setup normale: se un collegamento di EtherCAT è rilevato mentre caric il sistemaare il servo amplificatore, quindi EtherCAT è attivato, altrimenti CANopen (→ # 105) è attivato.

Le diverse versioni del firmware si possono scaricare nel servoamplificatore con l'apposito tool (sul CD-ROM del prodotto e nell'area download del nostro sito).

I LED integrati nel connettore segnalano lo stato della comunicazione.

Connettore	LED#	Nome	Funzione					
	LED1	LINK IN	Acceso = ricezione valida (porta IN)					
	LEDI	LINK_IIN	Spento = non valida, mancanza tensione o reset.					
X7A			Acceso = rete ciclica					
	LED2	CYCLIC	Intermittente = rete non ciclica					
			Spento = mancanza tensione o reset					
	LED3	LINK OUT	Acceso = ricezione valida (porta OUT)					
	LEDS	LINK_OUT	Spento = non valida, mancanza tensione o reset.					
X7B			Acceso = ripetitore acceso, rete ciclica					
	LED4	REPEATER	Intermittente = ripetitore acceso, rete aciclica					
			Spento = ripetitore spento, mancanza tensione o					
			reset					

Pinout

X7A	Segnal	Х7В	Segnal
1	Inviare +	1	Ricevere +
2	Inviare -	2	Ricevere -
3	Ricevere +	3	Inviare +
4	n.c.	4	n.c.
5	n.c.	5	n.c.
6	Ricevere -	6	Inviare -
7	n.c.	7	n.c.
8	n.c.	8	n.c.

9.19 Scheda di memoria

Nella parte superiore del servoamplificatore si trova un lettore per schede di memoria. Su queste schede è possibile memorizzare il firmware e un set di parametri completo (con i tasti di comando o il software di messa in funzione) da ricaricare sul servoamplificatore. Le carte MMC e SD sono sostenuti.

Questa funzione permette di mettere in funzione un apparecchio di ricambio o assi identici di macchine prodotte in serie in modo estremamente rapido e semplice.

I Uploads e Downloads da ed alla scheda di memoria possono essere iniziati con la tastiera o il software di setup. Il trattamento con gli ordini di ASCII è descritto nel KDN alla pagina "Memory Card".

INFORMAZIONI

Inserire e togliere la scheda di memoria solo quando l' S700 è spento. Se si impiega un trasduttore assoluto, dopo aver caricato i parametri in un apparecchio nuovo occorre eseguire una corsa al punto di riferimento.

Per installare una nuova versione del firmware su un amplificatore senza connessione a un PC procedere come segue:

- 1. Salvare il firmware da programmare sulla scheda di memoria assegnandogli il nome "default.s19" (formato S Record) oppure "default.bin" (formato binario).
- 2. Isolare l'amplificatore (disattivare l'alimentazione a 24 V) e inserire la scheda di memoria nell'apposito slot.
- 3. Tenere premuti i due tasti di comando () e riattivare la tensione di alimentazione a 24 V dell'amplificatore. Sul display viene visualizzato "—" per segnalare che il programma monitor è stato attivato. Nel caso dei problemi di accesso l'esposizione dell'azionamento mostra le lettere "CCC". L'ordine interrotto continua dopo il reinserimento della scheda di memoria.
- 4. Per avviare la procedura di aggiornamento premere ancora i due tasti di comando. L'avanzamento della procedura viene visualizzato sul display:
 - Inizialmente il firmware viene copiato dalla scheda alla memoria interna.
 - Durante questa fase il display visualizza un conteggio da 0 a 100.
 - Successivamente viene cancellata la memoria firmware interna. Durante questa fase il display visualizza il numero 100.
 - A cancellazione avvenuta, ha inizio la scrittura del firmware. Durante questa fase sul display viene visualizzato un conto alla rovescia da 100 a 0.
- 5. Completata la programmazione, il sistema si avvia automaticamente.

Durante il riavvio il file dei parametri viene caricato automaticamente. Se sulla scheda di memoria è presente un file di parametri denominato "default.par", a questo punto della procedura il firmware procede a caricarlo. Questo permette di aggiornare in modo completamente automatico il firmware e i parametri.

10 Messa in funzione

A titolo di esempio descriviamo la procedura da seguire per la messa in funzione. A seconda del tipo di apparecchi impiegati può risultare opportuna una procedura diversa. In caso di sistemi multiasse mettere in funzione ogni servoamplificatore singolarmente. Il produttore della macchina è tenuto a realizzare una valutazione di rischio per il macchinario e ad adottare le misure necessarie, affinché eventuali movimenti imprevisti non causino danni a persone o a cose.

10.1 Indicazioni importanti

AVVISO

Solo personale specializzato con ampie nozioni nel campo dell'elettronica e della tecnologia di azionamento può eseguire i test e la configurazione del servoamplificatore.

⚠ PERICOLO Tensione letale!

Rischio di scossa elettrica. Pericolo di morte in prossimità di parti del dispositivo sotto tensione.

- Le misure di protezione integrate come l'isolamento o la schermatura non possono essere rimosse.
- I lavori sull'impianto elettrico possono essere eseguiti unicamente da personale qualificato e debitamente addestrato, nel rispetto della normativa vigente in materia di sicurezza sul lavoro, e solo con l'interruttore principale spento e protetto da un riavvio indesiderato.

AVVERTENZA Riavvio automatico!

Sussiste il pericolo di lesioni gravi o di morte per il personale addetto ai lavori sulla macchina. L'azionamento potrebbe riavviarsi automaticamente dopo l'accensione, cali di tensione o interruzione della tensione di alimentazione, a seconda della parametrizzazione. Se il parametro AENA è impostato su 1,

- occorre apporre un cartello di avvertenza sulla macchina (Avvertenza: riavvio automatico dopo l'inserzione!) e
- assicurarsi che l'inserzione della tensione di rete non sia possibile in presenza di persone nella zona pericolosa della macchina.

AVVISO

Se il servoamplificatore è rimasto fermo per più di un anno, i condensatori del circuito intermedio devono essere ricondizionati. A questo scopo, allentare tutti i collegamenti elettrici. Alimentare il servoamplificatore per ca. 30 min. con l'alimentazione minima consentita sui morsetti L1/L2. In questo modo i condensatori vengono ricondizionati.

INFORMAZIONI

Ulteriori informazioni sulla messa in funzione:

l'adeguamento dei parametri e gli effetti sul tipo di controllo sono descritti nel <u>online help</u> di software di messa in funzione.

La messa in funzione della scheda d'espansione eventualmente presente è descritta nelle istruzioni su CD-ROM.

Ulteriori approfondimenti in merito vengono forniti durante i nostri corsi di addestramento (su richiesta).

10.2 Software di messa in funzione

Questo capitolo descrive l'installazione del software di messa in funzione DRIVEGUI.EXE per i servoamplificatori digitali S700.

Su richiesta offriamo corsi di addestramento e di pratica.

10.2.1 Uso conforme

Il software di messa in funzione serve per modificare e memorizzare i parametri d'esercizio dei servoamplificatori della serie S700. Il servoamplificatore collegato viene messo in funzione mediante il software - a questo proposito, l'azionamento può essere comandato direttamente con le funzioni di assistenza.

L'impostazione online dei parametri di un azionamento in funzione è consentita esclusivamente al personale addetto che disponga delle conoscenze tecniche descritte a (→ # 13).

I record di dati memorizzati si supporto non sono protetti da modifiche accidentali. Dopo il caricamento di un record di dati prima di abilitare il servoamplificatore occorre pertanto controllare dettagliatamente tutti i parametri.

10.2.2 Descrizione del software

I servoamplificatori devono essere adeguati alle condizioni della macchina in uso. L'impostazione dei parametri generalmente non viene eseguita sull'amplificatore, ma su un personal computer mediante il software di messa in funzione.

II PC è collegato ad un cavo null modem (seriale, (→ # 104)) con il servoamplificatore. Il software di messa in funzione instaura la comunicazione tra PC e S700.

Il software di messa in funzione è contenuto nel CD-ROM allegato e nella pagina Internet all'interno della sezione download.

Con estrema facilità, è possibile modificare i parametri e riconoscerne immediatamente l'effetto sull'azionamento, in quanto sussiste un collegamento costante (online) con l'amplificatore. Contemporaneamente i valori reali dall'amplificatore vengono letti e visualizzati sul monitor del PC (funzioni oscilloscopio).

I moduli delle interfacce eventualmente incorporati nell'amplificatore (schede d'espansione) vengono riconosciuti automaticamente; i parametri supplementari necessari per la regolazione della posizione o la definizione dei record di movimento risultano quindi subito disponibili.

È possibile memorizzare i record di dati su un supporto (archivio) da cui ricaricarli. I record di dati possono essere stampati.

I nostri record predefiniti riferiti al motore si applicano alle più probabili combinazioni tra servoamplificatore e motore, e nella maggior parte delle applicazioni consentono di mettere in funzione l'azionamento in uso senza alcun problema.

Un'ampia Online-Help con descrizione integrata di tutte le variabili e le funzioni supportate in ogni situazione.

10.2.3 Requisiti hardware, sistemi operativi

L'interfaccia PC (X6, RS232) del servoamplificatore viene collegata mediante un cavo null modem (**non un cavo null modem link**) con un'interfaccia seriale del PC (→ # 104).

AVVISO

Estrarre e inserire il cavo di collegamento solo con tensioni di alimentazione disinserite (amplificatore e PC).

L'interfaccia nel servoamplificatore è isolata galvanicamente mediante optoaccoppiatori ed ha lo stesso potenziale dell'interfaccia CANopen.

Requisiti minimi per il PC:

Processore: Pentium® II o superiore
Scheda grafica: Windows compatibile, a colori

Drive: Disco fisso (almeno 10 MB liberi), drive per CD-ROM

Interfaccia: Interfaccia seriale libera (COM1...COM10) o USB con un convertitore

seriale USB

Sistema operativi WINDOWS 2000, XP, VISTA, 7, 8, 10

DRIVEGUI.EXE è compatibile con WINDOWS 2000, XP, VISTA, 7, 8 e 10.

In casi di emergenza è possibile comandare il sistema con un'emulazione ASCII del terminale (senza interfaccia uomo-macchina). Impostazione dell'interfaccia: 38400 Baud, Databit 8, no Parity, Stopbit 1, no flow control

Sistema operativi Unix, Linux

Die Funktion der Software wurde nicht für Windows unter Unix oder Linux getestet.

10.2.4 Installation unter WINDOWS

Il funzionamento del software **non** è stato testato per il funzionamento con Unix o Linux.

Installazione

Funzione Autorun attivata:

Introdurre il CD-ROM nel drive. Si apre la videata di avvio del CD, che contiene un collegamento al software di messa in funzione DRIVEGUI.EXE. Fare clic sul collegamento e seguire le istruzioni.

Funzione Autorun disattivata:

Introdurre il CD-ROM nel drive. Fare clic su **START** (barra dei comandi), poi su **Esegui**. Nella finestra d'immissione, inserire il percorso del programma : **x:\index.htm** (x= lettera dell'unità CD).

Fare clic su **OK** e procedere come indicato sopra.

Collegamento all'interfaccia seriale del PC

Collegare il cavo di trasmissione ad un'interfaccia seriale del PC (COM1...COM10) e all'interfaccia PC (X6) di S700 (→ # 104).

10.3 Avvio immediato, test rapido

10.3.1 Preparazione

Disimballi, monti e configuri il servoamplificatore

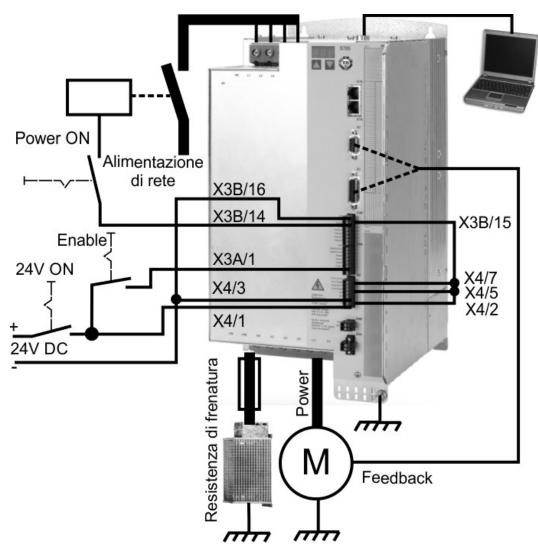
- 1. Togliere dall'imballo il servoamplificatore e gli accessori.
- 2. Rispettare gli avvertimenti riportati nei manuali
- 3. Montare il servoamplificatore come descritto nel (→ #53).
- 4. Cablare il servoamplificatore come descritto nel (→ # 59) allestire il cablaggio minimo per il test rapido
- 5. Installi il software come descritto di seguito.
- 6. Informazioni necessarie sui componenti di azionamento:
 - Tensione di rete nominale,
 - Tipo di motore (dati del motore, se il motore non è contemplato nella banca dati, consultare la Online Help),
 - Unità di retroazione integrata nel motore (tipo, numero di poli/numero di linee/protocollo dati, ecc.),
 - Momento d'inerzia del carico.

Documentazione

La documentazione necessaria è la seguente (in formato PDF sul CD-ROM del prodotto con la possibilità, di scaricare la versione via via più aggiornata del manuale dal nostro sito web):

- Manuale di Istruzioni.
- Profilo di comunicazione CANopen.
- Profilo di comunicazione EtherCAT.
- Manuale degli accessori

In funzione della scheda di espansione integrata si richiede una delle seguenti documentazioni:


- Operating Manual Safety Expansion Card Sx
- Profilo di comunicazione PROFIBUS DP.
- Profilo di comunicazione DeviceNet.
- Profilo di comunicazione SERCOS.

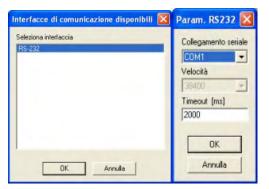
Per leggere i file in PDF occorre PDF Reader. Su ogni videata del CD-ROM del prodotto è presente un link per l'installazione.

Cablaggio minimo richiesto per il test rapido senza carico

INFORMAZIONI

Questi collegamenti non soddisfano alcune condizioni a sicurezza o a funzionalità della vostra applicazione ma mostrano solamente i collegamenti richiesti per provare l'azionamento senza carico.

10.3.2 Collegamenti


- Collegare il cavo di trasmissione seriale a un'interfaccia seriale del PC e all'interfaccia seriale X6 del servoamplificatore. Come opzione si può utilizzare un convertitore seriale USB
- Inserire l'alimentazione a 24 V del servoamplificatore.
- Attendere ca. 30s, finché il display sulla piastra frontale del servoamplificatore non indica i tipidi corrente (per es. per 48 A). Se anche l'alimentazione di potenza è inserita, compare l'indicazione di una P di riferimento (per es. per Power, 48A).

Qualora sia riportato un codice di guasto () o un'avvertenza () un'indicazione (./_/ E/S), vedere (→ # 123) o (→ # 124) la relativa descrizione e i rimedi consigliati. In caso di codice di guasto: eliminare la causa.

Per avviare il software DRIVEGUI.EXE cliccare sull'icona presente sul desktop di Windows.

DRIVEGUI.EXE offre la possibilità di lavorare off-line oppure on-line. Lavoriamo on-line.

La prima volta che si instaura un contatto, si devono impostare i parametri di comunicazione.

Selezionare il sistema di comunicazione e l'interfaccia a cui è collegato il servoamplificatore e cliccare su OK.

Il software tenta ora di creare un collegamento con il servoamplificatore. Se non si stabilisce una comunicazione, appare il seguente messaggio di errore:

La cause più frequenti sono:

- interfaccia errata
- collegamento all'amplificatore errato
- porta di comunicazione già usata
- alimentazione ausiliaria a 24V disinserita
- cavo di trasmissione difettoso o errato

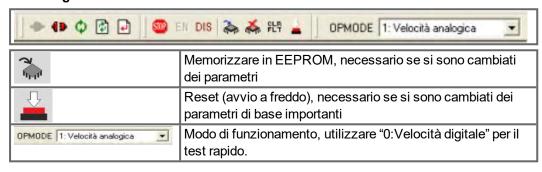
Dopo la conferma del messaggio di errore, il software passa alla modalità off-line. Ciò richiede una selezione manuale del servoamplificatore. Interrompere la selezione chiudendo la finestra. Cercare ed eliminare l'errore o il guasto che impedisce la comunicazione.

Riavviare il software in modalità on-line.

Se si stabilisce una comunicazione, viene visualizzata la seguente schermata di avvio: Selezionare "Wizard di configurazione" nella finestra di navigazione.

AVVISO

Assicurarsi che l'amplificatore sia disabilitato (ingresso HW-Enable morsetto X3A/1 0V o aperto)!


10.3.3 Elementi principali della videata

Funzione di guida

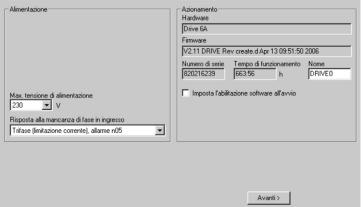
Nella Online Help (guida in linea) sono riportate informazioni dettagliate su tutti i parametri che il servoamplificatore può elaborare.

Tasto F1 Avvia la guida in linea per la videata attiva			
Barra dei menu ?	Avvia la guida in linea con indice analitico		
	Guida contestuale. Innanzitutto cliccare sul simbolo di aiuto e successivamente sulla funzione per cui si richiede assistenza.		

Barra degli strumenti

Barra di stato

Il simbolo on-line verde indica che la comunicazione è attiva.

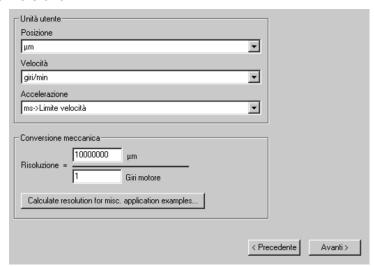

10.3.4 Setup Wizard

Il Wizard di configurazione guida l'utente attraverso le fasi fondamentali della configurazione di base dell'azionamento. A seconda della funzione da portare a termine vengono rappresentate solo le videate necessarie.

Per un test rapido della funzionalità selezionare il tipo di setup "Setup rapido" Avviare il Wizard.

10.3.4.1 Impostazioni di base

Qui si impostano i valori fondamentali.


Max. tensione di alimentazione: Impostare la tensione nominale di rete disponibile Risposta alla mancanza di fase in ingresso: Selezionare funzionamento trifase. In caso di funzionamento trifase si può scegliere l'uscita dell'allarme "n05" o dell'errore "F19". "F19" determina la disattivazione dello stadio finale, "n05" viene trattato come messaggio.

Nome: Si può assegnare un nome al servoamplificatore (max. 8 caratteri). Ciò facilita l'identificazione dell'azionamento nel sistema.

Attivare "Imposta l'abilitazione software all'avvio": Non selezionare questa opzione per il test rapido!

Cliccare su AVANTI.

10.3.4.2 Unità/conversione

Qui si preselezionano le unità utente per tutte le indicazioni concernenti il software di messa in funzione.


Posizione, velocità, accelerazione

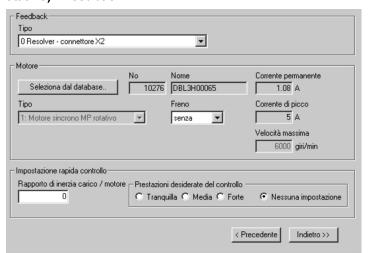
Selezionare le unità opportune per l'applicazione in relazione al carico in movimento.

Conversione meccanica

In questa parte si crea un riferimento tra giri dell'albero motore e corsa di traslazione del carico. Si possono includere i rapporti di cambio. Per spiegazioni più dettagliate consultare la Online-Help. Per individuare la risoluzione basandosi sulle applicazioni esemplificate selezionate utilizzare lo strumento di calcolo:

Calcolo PGEARI/PGEARO per..."

Se nessuno degli esempi riportati corrisponde alla vostra applicazione, inserire i parametri richiesti direttamente nei campi della videata "Unità".


Innanzitutto selezionare l'uso che corrisponde alla vostra applicazione. Poi impostare l'unità di posizione. Selezionare l'unità di posizione che consente di raffigurare la precisione richiesta dalla vostra applicazione.

Inserire ora i dati meccanici inerenti all'applicazione in oggetto. Se un riduttore è collegato al motore tramite flangia, nelle applicazioni che via via si introducono si possono inserire anche i dati del riduttore ovvero il numero dei denti o il rapporto dei giri.

Alla fine cliccare sul pulsante "Calcolate conversion factors and return" (Calcola fattori di conversione e chiudi).

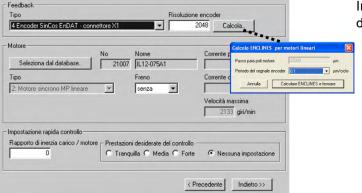
Cliccare su AVANTI.

10.3.4.3 Motore (rotativo) / Feedback

Impostazione semplificata dei parametri del motore

Feedback: Selezionare il sistema di retroazione (feedback) utilizzato nel motore.

INFORMAZIONI


I numero di poli del resolver è fissato a 2 nella modalità di impostazione "Setup rapido"! Se necessario, modificare il numero di poli nel "Setup completo" della finestra "Feedback". Tipo di motore: Cliccare sul pulsante

Tipo di motore: Cliccare sul pulsante "**Seleziona dal database...**". Aprire il file del database memorizzato (mdb___.csv) e selezionare il tipo di motore impiegato. I motori speciali devono essere definiti con il "Setup completo".

Freno: Se l'amplificatore deve azionare un freno, modificare selezionando CON. **Impostazione rapida controllo:** Se si conosce il rapporto di inerzia carico/motore (0 significa carico assente), inserire il numero e selezionare il grado di rigidità desiderata per la regolazione. Se non si conosce il rapporto, selezionare "Nessuna impostazione".

Cliccare su INDIETRO

10.3.4.4 Motore (lineare) / Feedback

Impostazione semplificata dei parametri del motore

Feedback: Selezionare il sistema di retroazione (feedback) utilizzato.

Tipo di motore: Cliccare sul pulsante "**Seleziona dal database...**". Aprire il file del database memorizzato (mdb___.csv) e selezionare il tipo di motore impiegato. I motori speciali devono essere definiti con il "Setup completo".

Risoluzione encoder (appare con feedback tipo Encoder Sin.): Cliccare su "Calcola" e riportare il periodo del segnale encoder.

Freno: Se l'amplificatore deve azionare un freno, modificare selezionando CON.

Impostazione rapida controllo: Se si conosce il rapporto di inerzia carico/motore (0 significa carico assente), inserire il numero e selezionare il grado di rigidità desiderata per la regolazione. Se non si conosce il rapporto, selezionare "Nessuna impostazione". Cliccare su INDIETRO

10.3.4.5 Memorizzazione parametri e riavvio

Si sta per terminare l'installazione di base e si sono modificati/impostati dei parametri. A prescindere dai parametri che si sono variati, ora il programma può reagire in due modi:

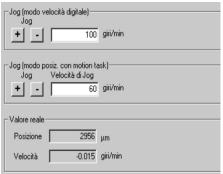
Sono stati modificati dei parametri di configurazione importanti

Compare un'avvertenza in cui si richiede il riavvio dell'amplificatore (avvio a freddo).

Cliccare su Sì. Ora i parametri vengono memorizzati automaticamente nella EEPROM del servoamplificatore e un comando di reset

riavvia l'amplificatore (l'operazione richiede alcuni secondi).

Sono stati modificati pochi parametri di rilievo


Non compare alcuna avvertenza. Salvare i parametri nella EEPROM del servoamplificatore manualmente. A tal fine cliccare sul simbolo necessario un riavvio dell'amplificatore. Ora selezionare la pagina Funzioni di assistenza.

10.3.5 Funzioni di assistenza (Jog)

AVVISO

Verificare che la posizione in uso permetta i seguenti movimenti del carico. Altrimenti l'asse può traslare sul finecorsa hardware o sulla battuta meccanica. Assicurarsi che uno strappo o un'accelerazione improvvisa del carico non causi alcun danno. Per l'applicazione tenere conto dei requisiti di una "velocità ridotta sicura"!

- Inserire l'alimentazione dell'azionamento.
- STO-Enable: +24 V su ingressi STO1-Enable [X4/5] e STO2-Enable [X4/7]
- **Hardware-Enable**: +24 V su ingresso Enable [X3A/1]. Se STO-Enable è assente nell'hardware Enable, compare sul display della piastra frontale $\frac{1}{3}$ $\frac{1}{3}$.

Jog (modo velocità digitale):

Qui si può far avanzare l'azionamento a velocità costante. Immettere la velocità desiderata.

Col pulsante premuto (+ o -) l'azionamento avanza alla velocità impostata, si arresta quando si lascia il pulsante.

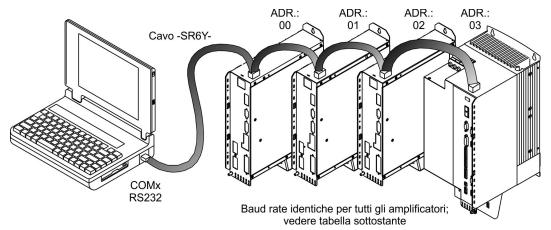
Gli allarmi e gli errori attuali sono elencati nella videata "**Status**". La descrizione dei messaggi di errore / degli allarmi è riportata nella guida on-line o a (→ # 123).

A questo punto la messa in funzione e il test delle funzioni fondamentali dell'azionamento sono stati portati a termine con successo.

10.3.6 Altre impostazioni possibili

AVVISO

Prima di modificare altri parametri, attenersi alle indicazioni di sicurezza riportate nei manuali e nella Online-Help.


Per tutte le altre impostazioni possibili consultare le indicazioni dettagliate della Online-Help e i riferimenti ai comandi ivi integrati.

Per attivare tutte le possibilità di input, selezionare la voce "Setup completo" nel Wizard di configurazione. Si ottiene l'accesso a:

- Impostazioni CanBus/Bus di campo: Configurazione degli indirizzi apparecchio e della velocità di trasmissione
- **Feedback:** adattamento dettagliato alle unità di retroazione impiegate Motore: adattamento dettagliato al motore utilizzato
- Circuito di regolazione: i regolatori di corrente, di numero di giri e di posizione possono essere ottimizzati manualmente
- Dati di posizione: adeguamento della regolazione della posizione alle condizioni della macchina
- **Registro di posizione:** si possono controllare max. 16 valori di posizione nell'ambito di una corsa di traslazione.
- Asse elettrico: se il servoamplificatore deve seguire un valore teorico predefinito, qui si può selezionare la fonte del valore teorico e impostare un rapporto di trasmissione.
- Emulazione Encoder: selezione dell'emulazione encoder (uscita di posizione)
- I/O analogici: impostazione degli ingressi analogici
- I/O digitali: impostazione degli ingressi / delle uscite digitali
- Stato (errori/allarmi): visualizzazione dello stato storico dell'apparecchio, errori/allarmi attuali
- Monitor: visualizzazione dei dati di funzionamento (valori reali)
- Ricerca dell/origine: impostazione e avvio della corsa al punto di riferimento
- Tabella Motion Task: definizione e avvio dei task di movimento
- Oscilloscopio: oscilloscopio a 4 canali con funzioni multiple
- **Diagramma di Bode:** strumento per l'ottimizzazione dell'azionamento
- Terminale: uso del servoamplificatore mediante comandi ASCII
- Scheda di espansione: in base alla scheda installata appare una voce di menu supplementare
- Autotuning: ottimizzazione veloce del ciclo di velocità

10.4 Sistemi multiasse

Mediante un cavo speciale è possibile collegare al PC fino a 255 servoamplificatori: Tipo di cavo -SR6Y- (per 4 amplificatori) o -SR6Y6- (per 6 amplificatori) vedi Manuale degli accessori.

Dopo il collegamento ad un solo servoamplificatore, con il software di messa in funzione è possibile selezionare e parametrizzare tutti amplificatori mediante gli indirizzi di stazione impostati.

Indirizza stazione per CAN-Bus

È possibile impostare gli indirizzi di stazione dei singoli amplificatori e la velocità di trasmissione per la comunicazione agendo sulla tastiera della piastra frontale (→ # 122). È in ogni caso preferibile importare tutti i parametri con il software di messa in funzione.

Baud rate per CAN-Bus

Dopo aver modificato l'indirizzo della stazione e il baud rate occorre disinserire e reinserire la tensione ausiliaria a 24V dei servoamplificatori.

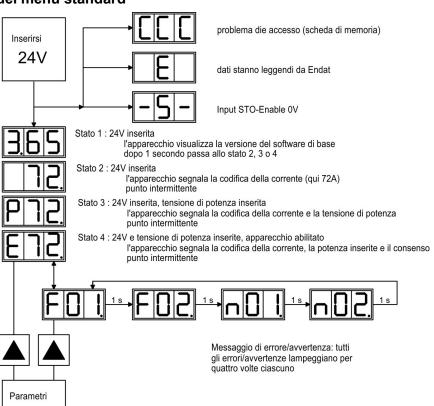
Codifica del baud rate sul display a LED:

Codifica	Baudrate in kBit/s	Codifica	Baudrate in kBit/s
1	10	25	250
2	20	33	333
5	50	50	500
10	100	66	666
12	125	80	800
		100	1000

10.5 Comando a tasti / Display a LED

Qui di seguito sono illustrate due possibili strutture del menu di comando e le modalità di comando con la tastiera sulla piastra frontale. Normalmente S visualizza solo il menu standard. Se si desidera comandare l'amplificatore mediante il menu dettagliato, durante l'inserzione della tensione di alimentazione a 24V occorre tenere premuto il tasto destro.

10.5.1 Comando a tasti


I due tasti consentono di eseguire le funzioni qui elencate:

	·
Tasto	Funzioni
	premere una volta : per scorrere il menu verso l'alto, per aumentare un valore di un'unità
	premere velocemente per due volte consecutive: per aumentare un valore di una decina
	premere una volta : per scorrere il menu verso il basso, per diminuire un valore di un'unità
	premere velocemente per due volte consecutive: : per diminuire il valore di una decina
	tenere premuto il tasto destro e contemporaneamente premere il tasto sinistro : per immettere numeri, funzione return
502	
<u> </u>	V

10.5.2 Visualizzazione delle condizioni di stato


10.5.3 Struttura del menu standard

10.5.4 Struttura del menu dettagliato

INFORMAZIONI

Durante l'inserzione della tensione di alimentazione a 24V occorre tenere premuto il tasto destro.

10.6 Messaggi d'errore

Eventuali errori vengono visualizzati sotto forma di codice sul <u>display a LED</u> della piastra frontale. Per gli errori che sono evidenziati nella tabella che segue con "*", ulteriori informazioni con l'identificatore "ixx" sono visualizzato (<u>ERRCODE2</u>). La reazione del servoamplificatore dipende dall'errore e dall'impostazione del parametro <u>ACTFAULT</u>. Gli errori possono essere resettati con il reset dell'hardware del servoamplificatore o anche con il comando <u>CLRFAULT</u> a seconda dell'errore (vedere <u>ERRCODE</u>).

Cod.	Denominazione	Spiegazione (ASCII Reference ERRCODE)
ΕοP	Messaggio di stato	Messaggio di stato, nessun avvertenza, vedere (→ # 121)
	Messaggio di stato	Amplificatore aggiorna la configurazione startup
-	Messaggio di stato	Messa. di stato, nessun avvertenza, modo programmaz.
- S -	STO-Enable	Ingressi STO = 0V (se azionamento disabled)
ССС	Memory Card	Problema di accesso (scheda di memoria)
F01	Temp. radiatore	Temperatura termodispersore eccessiva (default 80°C)
F02	Sovratensione	Sovraccarico nel circuito intermedio. Soglia in funzione della tensione di rete.
F03	Errore di inseguimen.	Messaggio del regolatore di posizione
F04*	Feedback	Rottura cavo, cortocircuito, dispersione a terra
F05	Sottotensione	Bassa tensione nel DC-Link (default 100V)
F06	Temperatura motore	Sensore difettoso o temperatura del motore eccessiva.
F07*	Tensione interna	Tensione ausiliaria interna non regolare
F08	Super. Velocità	Motore in fuga, velocità eccessiva
F09	EEPROM	Errore di checksum
F10	riservato	riservato
F11	Freno motore	Rottura cavo, cortocircuito, dispersione a terra
F12	Fase motore	Manca fase motore (rottura cavo o similari)
F13	Temperatura ambiente	Temperatura ambiente eccessiva
F14*	Stadio di potenzia	Errore nello stadio finale della potenza, anche con il cavo errato del motore o la
		schermo insufficiente del cavo
F15	I²t max.	Valore massimo l²t superato
F16	Rete BTB/RTO	Mancanza di 2 o 3 fasi dell'alimentazione
F17	Convertitore A/D	Errore nella conversione analogico-digitale, spesso causato da disturbi
		elettromagnetici molto intensi
F18*	Circuito di frenatura	Circuito di frenatura difettoso o impostazione errata
F19	Errore di fase	Manca la fase di rete
F20*	Errore slot	Errore della scheda di espansione, vedi Guida on-line
F21	Errore handling	Errore software della scheda di espansione
F22	riservato	riservato
F23	CAN Bus inattivo	Interruzione comunicazione CAN Bus
F24	Avvertenza	II messaggio d'avviso viene interpretato come errore
F25*	Commutazione	Errore di commutazione
F26	Finecorsa	Errore finecorsa durante homing (finecorsa raggiunto)
F27	STO	Errore durante il comando del STO, gli STO-ENABLE e ENABLE sono stati
E20	Creare bus di a	settati contemporaneamente
F28	Errore bus di campo	vedi Riferimento ai comandi ASCII
F29*	Errore bus di campo	La comunicazione è disturbata, vedi riferimento ai comandi ASCII
F30	Time Out	Time out arresto di emergenza
F31	Errore Safety Card	Errore della carta di sicurezza, numero di errore: oXX=numero di error, iYY= subindex di errore
F32*	Errore di sistema	Il software di sistema non reagisce correttamente
F32	LITUIE UI SISTEITIA	n sortware di sistema non reagisce conettamente

10.7 Messaggi di avvertenza

I guasti che non comportano la disinserzione dello stadio finale dell'amplificatore (il contatto BTB rimane chiuso) vengono visualizzati sotto forma di codice sul <u>display a LED</u> sulla piastra frontale. Alcuni messaggi comportano l'arresto controllato del motore (frenatura con rampa d'emergenza).

La reazione del servoamplificatore dipende dall'avvertenza (vedere STATCODE).

Codice	Denominazione	Spiegazione (ASCII Reference STATCODE)
ΕοΡ	Messaggio di stato	Messaggio di stato, nessun avvertenza, vedere (→ # 121)
	Messaggio di stato	Amplificatore aggiorna la configurazione startup
-	Messaggio di stato	Messa. di stato, nessun avvertenza, modo programmaz.
- S -	STO-Enable	Ingressi STO = 0V (se azionamento disabled)
n01	l²t	Valore soglia I²t superato
n02	Potenza di frenatura	Potenza di frenatura impostata raggiunta
n03	FError	Superato l'intervallo di errore di inseguimento impostato
n04	Sorveglianza nodo	Controllo watch-dog (bus di campo) attivo
n05	Fase di rete	Manca fase di rete
n06	Finecorsa software 1	Finecorsa software 1 raggiunto
n07	Finecorsa software 2	Finecorsa software 2 raggiunto
n08	Errore del task	E' stato avviato un task di traslazione errato
n09	Nessun punto di riferimento	Durante l'avvio del task di traslazione non è stato impostato alcun punto di riferimento
n10	PSTOP	Finecorsa PSTOP azionato
n11	NSTOP	Finecorsa NSTOP azionato
n12	Valori predefiniti motore caricati	Solo ENDAT o HIPERFACE®: Numeri motore diversi memorizzati nell'encoder e nell'amplificatore, sono stati caricati valori predefiniti del motore
n13	Avviso slot	Assenza alimentazione a 24V della scheda di espansione I/O
n14	SinCos Feedback	Commutazione SinCos (wake & shake) non compiuta, viene resettato dopo consenso all'amplificatore ed esecuzione wake & shake
n15	Errore tabella	Errore tabella velocità/corrente INXMODE 35
n16	Allarme cumulativo	Allarme cumulativo da n17 a n31
n17	Bus di campo sinc.	CAN sinc. non registrato
n18	Superamento numero max. giri	Superamento del numero max. di giri con encoder multi-turn
n19	Limitazione della rampa con record di movimento	Superamento del campo valori con dati relativi al record di movimento
n20	Record di movimento	Record di movimento non valido
n21	Avviso del programma del PLC	Il significato dipende dal programma
n22	Superamento temperatura del motore	L'avviso permette all'utente di reagire prima che il guasto "Surriscaldamento del motore" determini lo spegnimento del regolatore
n23	Encoder sin/cos.	Raggiunta soglia di guardia
n24	Ingressi digitali	Configurazione non logica
n25-n31	riservato	riservato
n32	Firmware versione Beta	Versione firmware di test

INFORMAZIONI

Ulteriori informazioni sui messaggi e sulla rimozione dei guasti sono reperibili nel <u>ASCII</u> <u>Object Reference</u> e sulla <u>Online Help</u>.

10.8 Eliminazione dei guasti

A seconda delle condizioni dell'impianto in uso diverse possono essere le cause di un'anomalia. Nei sistemi multiasse le ragioni possono essere a monte, anche non evidenti.

AVVISO

Eliminare eventuali errori ed anomalie nel pieno rispetto delle norme in materia di sicurezza sul lavoro. L'eliminazione degli errori deve essere affidata unicamente a personale specializzato e qualificato.

INFORMAZIONI

I suggerimenti per rimozione dei difetti possono essere trovati in <u>assistenza onlin</u>e nel capitolo "Trouble-Shooting". Il nostro settore applicazioni è comunque in grado di offrire un valido supporto.

Errore	Cause possibili	Misure per l'eliminazione dell'errore
Messaggio	Uso di un cavo errato	Utilizzare un cavo null modem
Anomalia di	Cavo inserito nel connettore errato sul	Inserire il cavo nei connettori corretti sul
comunicazione	servoamplificatore o sul PC	servoamplificatore e sul PC
	Interfaccia PC errata	Selezionare l'interfaccia corretta
II motore non gira	Servoamplificatore non abilitato	Attivare il segnale ENABLE
	Cavo valori nominali interrotto	Controllare il cavo valori nominali
	Fasi motore scambiate	Impostare le fasi del motore
		correttamente
	Freno non rilasciato	Controllare il comando del freno
	Azionamento bloccato meccanicamente	Controllare la meccanica
	Numero di poli motore non impostato	Impostare il parametro numero di poli
	correttamente	motore
	Retroazione impostata in modo errato	Impostare correttamente la retroazione
II motore oscilla	Amplificazione eccessiva (velocità)	Ridurre il Kp (velocità)
	Schermatura cavo di retroazione interrotta AGND non cablato	Sostituire il cavo di retroazione Collegge A CND agg CNC CND
		Collegare AGND con CNC-GND
L'azionamento	Valori Irms o Ipeak troppo bassi	Aumentare Irms o Ipeak (attenersi ai
segnala un errore	Banana walani na mainali a a a a a iwa	dati del motore)
di inseguimento	Rampa valori nominali eccessiva	Ridurre la rampa Setp. +/-
II motore si	Valori Irms/Ipeak troppo alti	Ridurre Irms/Ipeak
surriscalda		
Azionamento	Kp (velocità) insufficiente	Kp (velocità) aumentare
troppo dolce	Tn (velocità) eccessivo	Tn (velocità), valore predefinito motore
	ARLPF / ARHPF eccessivo ARLPR - ARHPF eccessivo	ARLPF / ARHPF ridurre ARL RO ridure
	ARLP2 eccessivo	ARLP2 ridurre
L'azionamento	Kp (velocità) eccessivo Tr (velocità) in cufficiente	Kp (velocità) ridurre To (velocità) veloce per definite per desire
funziona a strappi	Tn (velocità) insufficiente ARLPF / ARHPF insufficiente	 Tn (velocità), valore predefinito motore ARLPF / ARHPF aumentare
	ARLPF / ARHPF Insufficiente ARLP2 insufficiente	ARLPF / ARHPF aumentare ARLP2 aumentare
Darius acce acc		
Deriva asse con valore	Offset con valore nominale analogico prodefinite per compensate correttemente	Compensare l'offset del software (application I/O)
nominale=0V	predefinito non compensato correttamenteAGND non collegato con CNC-GND	(analogico I/O) Collegare AGND e CNC-GND
IIOIIIIIaie=UV	dell'unità di controllo	Collegate AGIND & CINC-GIND
	uen unita ui contiono	

11 Espansione

Per informazioni in merito alla disponibilità e ai codici di ordinazione consultare (→ #159).

11.1 Schede di espansione per lo slot 1

11.1.1 Indicazioni per l'installazione delle schede di espansione nello slot 1

1 - Limite slot 1

2 - Allentare la pellicola

3 - Staccare la pellicola

4 - Spezzare la linguetta

5 - Spezzare la linguetta

6 - Spezzare il lamierino

7 - Spezzare il lamierino

8 - Inserire la scheda 9

9 - Serrare le viti

11.1.2 Scheda di espansione -I/O-14/08-

Questo capitolo descrive la scheda di espansione I/O-14/08-. Sono descritte esclusivamente le proprietà aggiuntive che la scheda di espansione conferisce al S700.

La -I/O-14/08- mette a disposizione 14 ingressi digitali e 8 uscite digitali aggiuntive. La funzione degli ingressi e delle uscite è impostata.

INFORMAZIONI

La tensione di alimentazione da 24VCC deve essere messa a disposizione da una fonte di tensione con separazione di potenziale (ad es. con trasformatore di disaccoppiamento).

Gli ingressi/uscite si utilizzano per avviare task di movimento memorizzati nel servoamplificatore e per valutare i messaggi del regolatore di posizione integrato nell'unità di controllo subordinata. La funzione degli ingressi e delle uscite dei segnali corrisponde alle funzioni che possono essere assegnate agli I/O digitali sul connettore X3 del S700. L'alimentazione della scheda di espansione con 24V CC avviene tramite il controllo. Tutti gli ingressi e le uscite sono isolate mediante optoaccoppiatori e a potenziale zero rispetto al servoamplificatore.

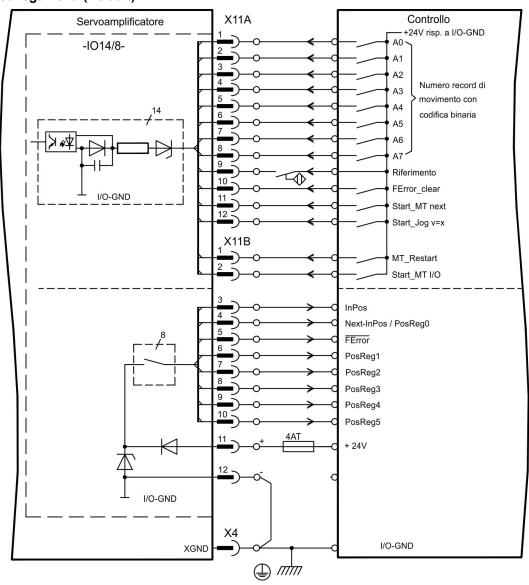
11.1.2.1 Dati tecnici

Ingressi di comando	24V / 7mA , PLC compatibile, EN 61131
Uscite dei segnali	24V / max. 500mA , PLC compatibile, EN 61131
Ingressi alimentazione	24V (1836V) / 100 mA più corrente cumulativa delle uscite
conformi a EN 61131	(a seconda del circuito in entrata del controllo).
Protezione (esterna)	4 AT
Connettori	MiniCombicon, a 12 poli, codificato su PIN1 o 12
Cavo	Dati - fino a 50 m di lunghezza: 22 x 0,5 mm², non schermato, alimentazione - 2 x 1 mm², prestare attenzione alle eventuali cadute di tensione
Attesa fra 2 task di movimento	a seconda del tempo di reazione del controllo
Tempo di indirizzamento (min.)	4ms
Ritardo avviamento (max.)	2ms
Tempo di reazione uscite digitali	max. 10ms

11.1.2.2 Diodi luminosi

Accanto ai morsetti della scheda di espansione sono stati applicati due LED. Il LED verde segnala la disponibilità della tensione ausiliaria di 24 V necessaria per la scheda di espansione. Il LED rosso segnala eventuali errori sulle uscite della scheda di espansione (sovraccarico degli elementi del commutatore e cortocircuito).

11.1.2.3 Selezionare il codice di task di movimento (esempio)


Codice del task di movimento	A7	A6	A5	A4	А3	A2	A1	A0
binario 1010 1110	1	0	1	0	1	1	1	0
decimale 174	128	-	32	-	8	4	2	-

11.1.2.4 Assegnazione dei connettori

Le funzioni sono registrabili con il software di messa a punto.

Pin		Default	Descrizione
	nettore X		Descrizione
1	Ingresso		Codice del record di movimento 2 ⁰ , LSB
2	Ingresso		Codice del record di movimento 2 ¹
	_		Codice del record di movimento 2 ²
3	Ingresso		
4	Ingresso		Codice del record di movimento 2 ³
5	Ingresso	A4	Codice del record di movimento 2 ⁴
6	Ingresso	A5	Codice del record di movimento 2 ⁵
7	Ingresso	A6	Codice del record di movimento 2 ⁶
8	Ingresso	A7	Codice del record di movimento 2 ⁷ , MSB
9	Ingresso	Reference	Richiesta del commutatore di riferimento Se si utilizza un ingresso digitale sul dispositivo di base come ingresso di riferimento, l'ingresso della scheda I/O non sarà rilevato.
10	Ingresso	F_error_clear	Errore di inseguimento n03 o annulla controllo intervento n04.
11	Ingresso	Start_MT_ Next	Il task di sequenza definito nel record di movimento con l'im- postazione "Avvia tramite I/O" viene eseguito. La posizione d'arrivo del record di movimento corrente deve essere raggi- unta prima dell'avvio del task di sequenza. Il task di movimen- to in sequenza può essere avviato anche con un ingresso digitale appositamente definito nel dispositivo di base.
12	Ingresso	Start_Jog v=x	Avviare il modo di funzionamento per la messa a punto "Velocità costante". "x" rappresenta la velocità memorizzata nel amplificatore per la funzione VELOCITÀ COSTANTE. Una rampa in salita avvia il movimento, una rampa in discesa interrompe il movimento.
Con	nettore X	11B	
1	Ingresso	FRestart	Riprende l'ultimo task di movimento interrotto.
2	Ingresso	Start_MT I/O	Avvio del task di movimento, che risulta indirizzato su A0-A7 (connettore X11A/1-X11A/8). Se non è indirizzato alcun task di movimento, viene avviata la corsa al punto di riferimento
3	Uscita	InPos	Il raggiungimento della posizione d'arrivodi un task di movimento viene segnalato tramite l'emissione di un segnale alto. La rottura dei cavi non viene riconosciuta.
4	Uscita	Next-InPos	L'avvio di ogni task di movimento facente parte di una sequenza eseguita automaticamente viene segnalato dall'inversione del segnale di uscita. All'avviamento del primo task di movimento della sequenza, l'uscita emette un segnale basso. La forma dei segnali può essere modificata servendosi dei comandi ASCII.
		PosReg 0	Impostazione possibile soltanto per comandi ASCII.
5	Uscita	F_error	L'uscita dalla finestra Errore di inseguimento impostata viene segnalato con un segnale basso.
6	Uscita	PosReg1	Impostazione predeinita: finecorsa SW 1, indicato con High.
7	Uscita	PosReg2	Impostazione predeinita: finecorsa SW 2, indicato con High.
8	Uscita	PosReg3	Impostazione possibile soltanto per comandi ASCII
9	Uscita	PosReg4	Impostazione possibile soltanto per comandi ASCII
10	Uscita	PosReg5	Impostazione possibile soltanto per comandi ASCII
11	Alim.	24V DC	Alimentazione per il segnale d'ingresso
12	Alim.	I/O-GND	GND digitale del controllo

11.1.2.5 Schema collegamenti (Default)

11.1.3 Scheda di espansione -PROFIBUS-

PROFIBUS Questo capitolo descrive la scheda di espansione PROFIBUS per S700. Le informazioni sul volume di funzioni e sul protocollo software si trovano nella manuale "Profilo di comunicazione PROFIBUS DP".

La scheda di espansione PROFIBUS dispone due connettori femmina Sub-D a 9 poli, cablati in parallelo. L'alimentazione della scheda di espansione avviene tramite il servoalimentatore.

11.1.3.1 Sistema di allacciamento

La scelta dei cavi, la conduttività dei cavi, la schermatura, il connettore di collegamento bus, la terminazione bus e i tempi d'esercizio sono descritti nelle "Indicazioni di montaggio PROFIBUS-DP/FMS" dell'Associazione degli utenti PROFIBUS PNO.

11.1.3.2 Schema collegamenti

11.1.4 Scheda di espansione -SERCOS-

TT

Questo capitolo descrive la scheda di espansione sercos[®] II per S700.

Le informazioni sul volume di funzioni e sul protocollo software si trovano nella nostra descrizione "Guida di riferimento sercos[®] II".

11.1.4.1 Diodi luminosi

fornisce indicazioni sulla correttezza della ricezione dei telegrammi sercos[®]. Nella fase finale della comunicazione (fase 4), questo LED dovrebbe illuminarsi, in quanto la ricezione dei telegrammi avviene ciclicamente.

Fornisce indicazioni sulla correttezza della spedizione dei telegrammi sercos[®]. Nella fase finale della comunicazione (fase 4), questo LED dovrebbe illuminarsi, in quanto la spedizione dei telegrammi avviene ciclicamente. Verificare gli indirizzi delle stazioni nell'unità di controllo e nel servoamplificatore se:

- il LED non si accende mai durante la fase sercos® oppure
- se l'asse non può essere messo in funzione, nonostante il LED RT si accenda ciclicamente.

Informa di eventuali errori o disturbi nella comunicazione sercos®.

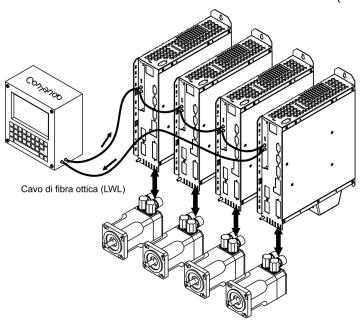
Se questo LED lampeggia intensamente, la comunicazione è fortemente disturbata o addirittura non disponibile. Verificare la velocità di trasmissione sercos[®] sull'unità di controllo e nel servoamplificatore (BAUDRATE) e nel collegamento del cavo di fibra ottica.

Quando questo LED si accende, la comunicazione sercos[®] è lievemente disturbata, la potenza di trasmissione non è perfettamente adatta alla lunghezza del cavo. Verificare la potenza di trasmissione della stazione sercos[®] fisica precedente. La prestazione di trasmissione dei servoamplificatori può essere impostata dalla videata sercos[®] del software di messa in funzione DRIVEGUI.EXE adattandola alla lunghezza del cavo tramite il parametro relativo alla lunghezza del cavo a fibre ottiche.

11.1.4.2 Sistema di allacciamento

Per il collegamento del cavo di fibra ottica, si consiglia di utilizzare soltanto componenti sercos[®] conformi allo standard EN 61491.

Dati di ricezione


Il cavo di fibra ottica con i dati di ricezione per l'azionamento nella struttura ad anello si connette con un connettore F-SMA al X13

Dati di trasmissione

collegare il cavo di fibra ottica per l'uscita dei dati con un connettore F-SMA al X14.

11.1.4.3 Schema collegamenti

Struttura del sistema bus ad anello con cavo di fibra ottica (schema elementare).

11.1.4.4 Setup

Modifica dell'indirizzo stazione

L'indirizzo dell'azionamento si può settare tra 0 e 63. Se l'indirizzo è 0 l'azionamento viene assegnato all'anello sercos® come amplificatore. Impostazione dell'indirizzo stazione:

Tasti sulla piastra frontale del servoamplificatore

L'indirizzo si può modificare tramite i tasti sull'amplificatore (→ # 120).

Software di messa in funzione

L'indirizzo si può modificare anche con il software di messa in funzione (vedere il manuale "Software di messa in funzione" o la Online-Help). In alternativa nella videata "Terminale" è possibile immettere il comando ADDR #, dove # indica il nuovo indirizzo dell'azionamento.

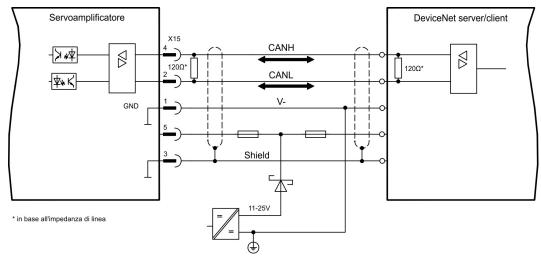
Baud rate e potenza ottica

Se il baud rate non è impostato correttamente la comunicazione non avviene. Il baud rate si imposta con il parametro **SBAUD** #, dove # indica la velocità di trasmissione. Se la potenza ottica non è regolata correttamente si verificano errori di trasmissione dei telegrammi e si accende il LED rosso sull'azionamento. Durante la normale comunicazione i LED verdi di trasmissione e ricezione lampeggiano rapidamente, dando l'impressione di essere sempre accesi. Il parametro **SLEN** # consente di regolare il campo ottico per un cavo a fibra ottica standard da 1 mm²; # corrisponde alla lunghezza del cavo (in metri).

SBA	SBAUD SLEN		
2	2 Mbaud	0m	Collegamento molto corto
4	4 Mbaud	1< 15m	Lunghezza del collegamento con un cavo in plastica da 1 mm²
8	8 Mbaud	15< 30m	Lunghezza del collegamento con un cavo in plastica da 1 mm²
16	16 Mbaud	≥ 30m	Lunghezza del collegamento con un cavo in plastica da 1 mm²

Software di messa in funzione

I parametri si possono modificare con il software di messa in funzione, dalla videata "SERCOS". Per ulteriori informazioni consultare il manuale "Software di messa in funzione" o Online-Help). In alternativa nella videata "Terminale" si possono immettere i comandi SBAUD # e SLEN #.


11.1.5 Scheda di espansione - DEVICENET -

Questo capitolo descrive la scheda di espansione DeviceNet per S700. Per informazioni sulle funzioni e sul protocollo del software, si rimanda al manuale "Profilo di comunicazione di DeviceNet".

11.1.5.1 Sistema di allacciamento, schema collegamenti

Scelta dei collegamenti, guida dei cavi, schermatura, connettore di collegamento al bus, terminazione del bus e tempi ciclo sono descritti nella "Specifica di DeviceNet, volume I, II, edizione 2.0", edita da ODVA.

11.1.5.2 LED modulo/stato rete combinato

LED	Significato::
	L'apparecchio non è online.
spento	L'apparecchio non ha terminato il test Dup_MAC_ID.
	L'apparecchio potrebbe essere spento.
verde	L'apparecchio funziona nello stato normale, è online e i collegamenti sono
	nello stato stabilito.
	L'apparecchio è assegnato ad un master.
	L'apparecchio funziona nello stato normale, è online e i collegamenti non
	sono nello stato stabilito.
verde	L'apparecchio ha superato il test Dup_MAC_ID ed è online, ma i
lampeggiante	
	Questo apparecchio non è assegnato ad alcun master.
	Configurazione mancante, incompleta o errata.
rosso	Errore eliminabile e/o almeno un collegamento I/O si trova nello stato di
lampeggiante	attesa.
	Sull'apparecchio si è verificato un errore non eliminabile; deve essere
	eventualmente sostituito.
rosso	Apparecchio di comunicazione guasto. L'apparecchio ha riconosciuto un
	errore che impedisce la comunicazione con la rete (ad es. MAC ID
	doppio o BUSOFF).

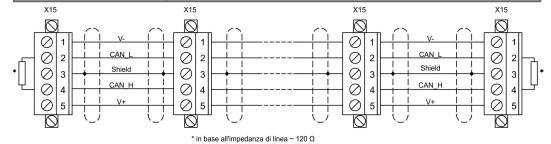
11.1.5.3 Setup

Impostazione dell'indirizzo stazione (indirizzo dispositivo)

L'indirizzo stazione del servoamplificatore si può impostare in tre modi:

- Portare i selettori rotativi sul frontalino della scheda di espansione su un valore compreso tra 0 e 63. Ogni rotella imposta una cifra decimale. Per assegnare all'azionamento l'indirizzo 10 portare MSD su 1 e LSD su 0.
- Portare i selettori rotativi sul frontalino della scheda di espansione su un valore maggiore di 63. A questo punto è possibile impostare l'indirizzo della stazione con i comandi ASCII DNMACID x, SAVE, COLDSTART, dove "x" (l'indirizzo della stazione).
- Portare i selettori rotativi sul frontalino della scheda opzionale su un valore maggiore di 63.
 A questo punto l'indirizzo della stazione si può impostare tramite l'oggetto DeviceNet (classe 0x03, attributo 1). A questo scopo avvalersi di un dispositivo di messa in funzione DeviceNet. Il parametro si deve salvare nella memoria non volatile (classe 0x25, attributo 0x65); dopo aver modificato l'indirizzo riavviare l'azionamento.

Impostazione della velocità di trasmissione


La velocità di trasmissione di DeviceNet si può impostare in tre modi diversi:

- Portare il selettore rotativo per il baud rate sul frontalino della scheda opzionale su un valore compreso tra 0 e 2, 0 = 125 Kbit/s, 1 = 250 Kbit/s, 2 = 500 Kbit/s.
- Portare i selettori rotativi sul frontalino della scheda opzionale su un valore maggiore di 2.
 A questo punto è possibile impostare il baud rate con i comandi da terminale DNBAUD x, SAVE, COLDSTART, dove "x" indica 125, 250 o 500.
- Portare i selettori rotativi sul frontalino della scheda opzionale su un valore maggiore di 2.
 A questo punto è possibile impostare il baud rate su un valore compreso tra 0 e 2 tramite l'oggetto DeviceNet (classe 0x03, attributo 2). A questo scopo avvalersi di un dispositivo di messa in funzione DeviceNet. Il parametro si deve salvare nella memoria non volatile (classe 0x25, attributo 0x65); dopo aver modificato il baud rate riavviare l'azionamento.

11.1.5.4 Cavo bus

In ottemperanza alla norma ISO 989 è necessario impiegare un cavo bus con impedenza caratteristica di 1200hm. Con l'aumentare della velocità di trasmissione la lunghezza dei cavi in grado di assicurare una comunicazione affidabile si riduce progressivamente. I valori riportati di seguito, risultato di misurazioni da noi condotte, sono puramente indicativi e non si devono interpretare come valori limite.

Caratteristica generale	Specifica
Bitraten	125 kBit, 250 kBit, 500 kBit
Dietaura ann abanna	500 m @ 125 kBaud
Distanza con sbarra collettrice spessa	250 m @ 250 kBaud
Collettifice spessa	100 m @ 500 kBaud
Numero dei nodi	64
Trasmissione del segnale	CAN
Modulazione	Larghezza di banda di fondo
Accoppiamento mezzi di comunicazione	Funzionamento in trasmissione / ricezione differenziale collegato in corrente continua
Isolamento	500 V (opzione: optoaccoppiatore sul lato del nodo del ricetrasmettitore)
Impedenza differenziale di ingresso tipica (stato recessivo)	Shunt C = 5pF Shunt R = $25k\Omega$ (power on)
Impedenza differenziale di ingresso min. (stato recessivo)	Shunt C = 24pF + 36 pF/m della linea di derivazione fissa Shunt R = $20k\Omega$
Campo di tensione massimo assoluto	da -25 V a +18 V (CAN_H, CAN_L). Le tensioni su CAN_H e CAN_L si riferiscono al perno di terra IC del ricetrasmettitore. Questa tensione supera il morsetto V- di un valore corrispondente alla caduta di tensione del diodo Schottky (max 0,6 V).

Messa a terra:

Per evitare loop di terra il dispositivo DeviceNet si deve collegare a massa su un solo punto. I circuiti del layer fisico di tutti i dispositivi sono riferiti al segnale bus V-. Il collegamento a terra avviene mediante l'alimentatore bus. Il flusso di corrente tra V- e terra può avvenire solo attraverso un alimentatore di corrente.

Topologia bus:

Il mezzo di comunicazione DeviceNet ha una topologia bus lineare. Sono necessarie resistenze di chiusura su ogni estremità del cavo di collegamento. Sono ammesse iramazioni

fino a 6 m ciascuna, in modo da poter collegare almeno un nodo.

Resistenze di chiusura:

Per DeviceNet occorre installare una resistenza di chiusura su ogni estremità del cavo di collegamento. Dati resistenza: 120Ω , 1% film metallico, 1/4 W

11.1.6 Scheda di espansione -SYNQNET-

Questo capitolo descrive la scheda di espansione SynqNet. Per informazioni sulle funzioni e sul protocollo software si rimanda alla documentazione SynqNet.

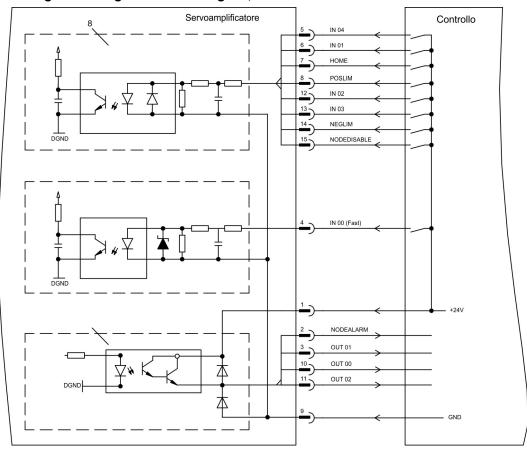
11.1.6.1 Selettore NODE ID

Il selettore rotativo esadecimale consente di impostare separatamente il byte superiore e inferiore di Node ID. Per funzionare correttamente in rete SynqNet non esige necessariamente un indirizzo, per alcune applicazioni questo può essere tuttavia utile al riconoscimento da parte di un software applicativo.

11.1.6.2 Tabella dei LED NODE

LED#	Nome	Funzione	
LED1	LINK_IN	acceso = ricezione valida (porta IN)	
		spento = non valida, mancanza tensione o reset.	
		acceso = rete ciclica	
LED2	CYCLIC	intermittente = rete non ciclica	
		spento = mancanza tensione o reset	
LED2	LINK_OUT	acceso = ricezione valida (porta OUT)	
LED3		spento = non valida, mancanza tensione o reset.	
		acceso = ripetitore acceso, rete ciclica	
LED4	REPEATER	intermittente = ripetitore acceso, rete non ciclica	
		spento = ripetitore spento, mancanza tensione o reset	

11.1.6.3 Collegamenti SynqNet, connettore X21B e X21C (RJ-45)


Collegamenti alla rete SynqNet tramite connettori femmina RJ-45 (porte IN e OUT) con LED integrati.

11.1.6.4 Ingressi/uscite digitali, connettore X21A (SubD a 15 poli, presa)

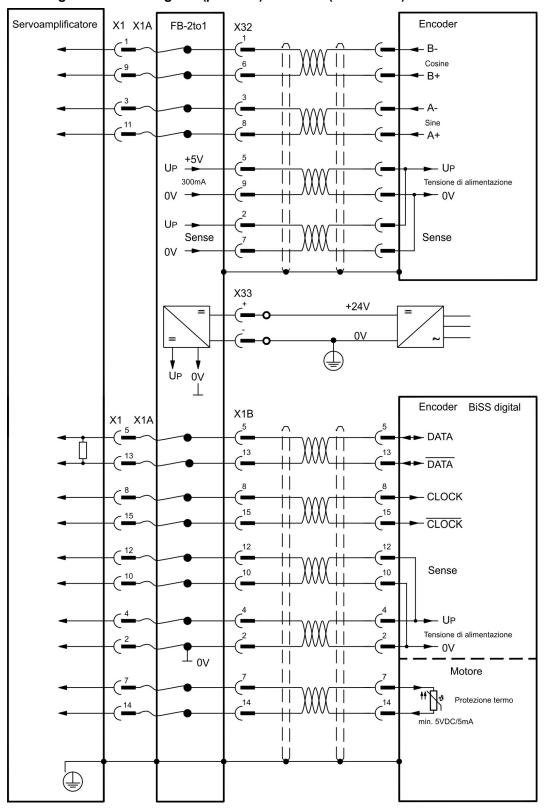
Ingressi (In): 24V (20...28V), disaccoppiamento ottico, un ingresso alto-speed (pin 4) Uscite (Out): 24V, disaccoppiamento ottico, driver Darlington

Tabella di assegnazione connettore X21A (SubD a 15 poli)					
Pin	Tipo	Descrizione			
1	In	+24V	Tensione di alimentazione		
2	Out	NODEALARM	Segnala problemi sul nodo		
3	Out	OUT_01	Uscita digitale		
4	In	IN_00 (fast)	Ingresso Capture (rapido)		
5	In	IN_04	Ingresso digitale		
6	In	IN_01	Ingresso digitale		
7	In	HOME	Commutatore di riferimento		
8	In	POSLIM	Finecorsa senso di rotazione pos.		
9	In	GND	Tensione di alimentazione		
10	Out	OUT_00	Uscita digitale		
11	Out	OUT_02	Uscita digitale		
12	In	IN_02	Ingresso digitale		
13	In	IN_03	Ingresso digitale		
14	In	NEGLIM	Finecorsa senso di rotazione neg.		
15	In	NODEDISABLE	Nodo disattivato		

11.1.6.5 Schema di collegamento ingressi / uscite digitali, connettore X21A

11.1.7 Scheda di espansione - FB-2to1 -

Il presente capitolo descrive la scheda di espansione per retroazione FB-2to1 per l'S700. La scheda consente il collegamento simultaneo di una retroazione digitale primaria e di una analogica secondaria al connettore X1. L'alimentazione con una tensione 24 V CC su X33 viene convertita nella scheda di espansione in un'alimentazione 5 V CC precisa del trasduttore per la retroazione secondaria.



11.1.7.1 Assegnazione dei connettori

ı	X33	Assegnazione connettore Combicon
1	+	+24V DC (2030V), approx. 500mA
1	-	GND

X32	Assegnazione SubD 9 poli (retroazione secondaria) SinCos (1V p-p)	Х1В	Assegnazione SubD 15 poli (retroazione primaria) EnDat 2.2, BiSS digitale, SSI assoluto
1	B- (Cosine)	1	n.c.
2	SENSE+	2	0V
3	A- (Sine)	3	n.c.
4	n.c.	4	+5V DC
5	+5V DC (300mA)	5	DATA
6	B+ (Cosine)	6	n.c.
7	SENSE-	7	Sensore temperatura motore
8	A+ (Sine)	8	CLOCK
9	0V	9	n.c.
-	-	10	Sense 0V
-	-	11	n.c.
-	-	12	Sense +5V
-	-	13	DATA
-	-	14	Sensore temperatura motore
-	-	15	CLOCK

11.1.7.2 Esempio di collegamento BiSS digitale (primario) e SinCos (secondario)

11.1.8 Modulo di espansione -2CAN-

2CANAI connettore x6 di S700 sono assegnati i segnali dell'interfaccia RS232 e dell'interfaccia CAN. Ciò non consente un'assegnazione standard dei pin alle interfacce ed è necessario un cavo speciale, qualora si intenda utilizzare contemporaneamente entrambe le interfacce. Il modulo di espansione -2CAN- permette di utilizzare le interfacce su connettori Sub-D separati. I due connettori CAN sono cablati parallelamente. Con il commutatore è possibile inserire una resistenza di terminazione (120) per CAN Bus, se il S700 è l'ultimo del bus.

11.1.8.1 Montaggio del modulo di espansione

Il modulo si avvita sul vano opzionale, dopo aver tolto la copertura (→ # 126):

INFORMAZIONI

- Avvitare le parti di distanza nelle barre di fissaggio della vano opzionale
- Disporre il modulo di espansione sullo vano opzionale
- Avvitare le viti nei filetti delle parti di distanza
- Inserire lo zoccolo Sub-D9 il connettore X6 da S700

11.1.8.2 Sistema di allacciamento

Per le interfacce RS232 e CAN è possibile utilizzare cavi standard schermati.

INFORMAZIONI

Se il servoamplificatore è l'ultimo dispositivo sul CAN Bus, il commutatore di terminazione del bus deve essere posizionato su ON.

In caso contrario, il commutatore deve essere posizionato su OFF (stato al momento della consegna).

11.1.8.3 Assegnazione dei connettori

RS232		CAN1=CAN2		
X6A Pin	Segnale	X6B=X6C Pin	Segnale	
1		1		
2	RxD	2	CAN-basso	
3	TxD	3	CAN-GND	
4		4		
5	GND	5		
6		6		
7		7	CAN-alto	
8		8		
9		9		

11.1.8.4 Impostazione dell'indirizzo stazione e del Baud Rate

Durante la messa in servizio è possibile utilizzare il tastierino per impostare l'indirizzo dell'azionamento e il baud rate.

INFORMAZIONI

Dopo aver modificato l'indirizzo della stazione e il baud rate occorre disinserire e reinserire la tensione ausiliaria a 24V dei servoamplificatori.

Possibili modi per l'impostazione:

- Tastierino sul frontale dell'azionamento
- Software di configurazione (DriveGUI): Pagina "CAN / Fieldbus"
- Interfaccia seriale con una sequenza di comandi ASCII:
 ADDR nn → SAVE → COLDSTART (nn = indirizzi di stazione)
 CBAUD bb → SAVE → COLDSTART (bb = baud rate in kB)

Codifica del baud rate sul display a LED:

Codifica	Baudrate in kBit/s	Codifica	Baudrate in kBit/s
1	10	25	250
2	20	33	333
5	50	50	500
10	100	66	666
12	125	80	800
		100	1000

11.2 Schede di espansione per lo slot 2

11.2.1 Indicazioni per l'installazione delle schede di espansione nello slot 2

Limite slot 2

Le schede di espansione per lo slot 2 si montano in modo analogo a quanto descritto per lo slot 1 (→ # 126).

- Staccare la parte tratteggiata inferiore della pellicola (rettangolo 2).
- Facendo leva, staccare le lamiere di copertura sottostanti.
- Inserire la scheda di espansione nello slot.
- Avvitare la piastra frontale della scheda di espansione con le viti in dotazione.

11.2.2 Opzione "F2"

Per ridurre il rumore l'azionamento può essere ordinato con la scheda opzione F2. Questa scheda non può essere inserita successivamente. L'opzione F2 occupa lo slot2 o 3 (Per la codifica vedere (→ # 26)).

INFORMAZIONI

La carta di opzione F2 può essere usata ha unito con un'altra carta in slot 1 anche se è tappata per slot 2!

Funzionamento

Il ventilatore è commutato in funzione e a riposo o funziona con velocità stimato di 50% secondo la temperatura. Questo riduce il rumore medio emesso.

Temperatura d'attivazione

Monitoraggio	ventola off	ventola ~50%	ventola on
Temperatura esterna	< 55°C	~ 58°C	> 65°C
Temperatura del dissipatore	< 58°C	~ 68°C	> 80°C

11.2.3 Scheda di espansione "Posl/O" e "Posl/O-Monitor"

La scheda di espansione "PosI/O" e "PosI/O-Monitor" si può inserire nello slot 2 o 3. Le carte di espansione non possono essere unite e l'uso di soltanto una scanalatura a tempo è permesso.

PosI/O

La scheda offre un ulteriore connettore SubD X5 con ingressi/uscite digitali rapide e bidirezionali da 5V. Con il software di messa in servizio è possibile selezionare diverse funzioni di ingresso e uscita, ad esempio:

- Emulazione di un trasduttore di posizione (compatibile ROD o SSI)
- Ingresso per segnali veloci RS485 da 5V (trasmissione elettronica, master-slave).

Posl/O-Monitor

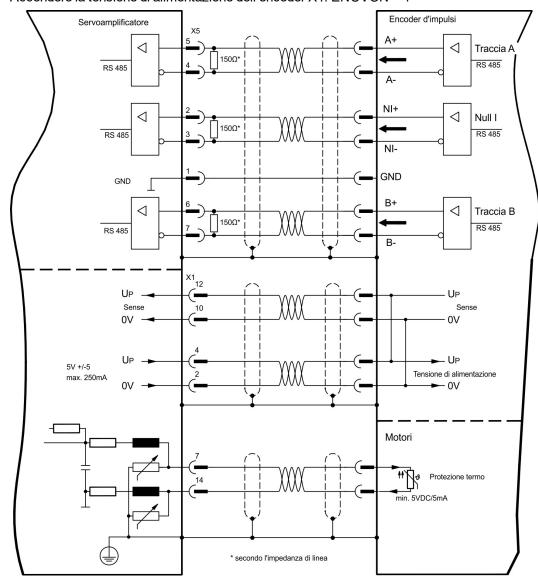
La scheda offre le caratteristiche della carta di Posl/O più un ulteriore connettore SubD X3C con ingressi/uscite analogici da +/-10V ((→ #151), capitolo "Ingressi/Uscite analogici"), la cui funzione è configurabile con il software di messa in funzione o funzioni macro.

11.2.3.1 Feedback

11.2.3.1.1 ROD (AquadB) 5V (X5, X1)

Come sistema di retroazione è possibile impiegare un trasduttore incrementale da 5V (ROD, AquadB) (primario o secondario feedback, (→ #75)). Ad ogni inserzione dell'alimentazione a 24V l'amplificatore richiede le informazioni di partenza per il regolatore di posizione (parametro MPHASE). In base al tipo di retroazione si esegue un Wake&Shake o si rileva il valore di MPHASE dalla EEPROM del servoamplificatore.

AVVERTENZA Il carico verticale potrebbe cadere!

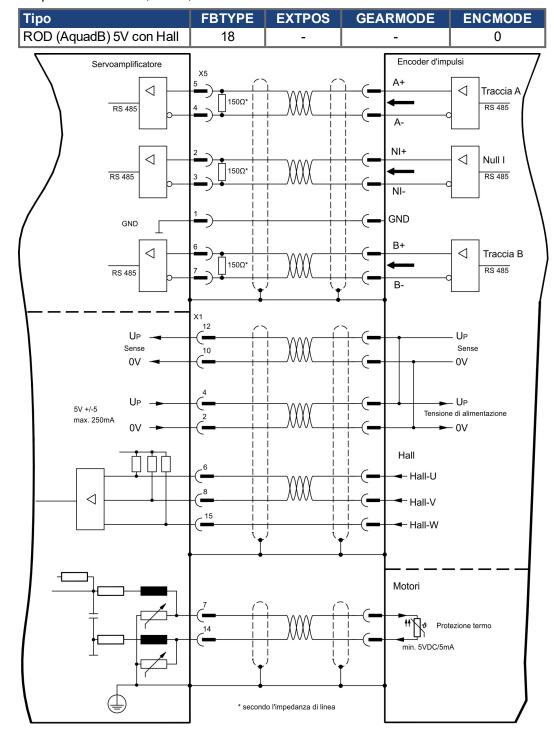

In caso di asse verticale il carico può cadere liberamente, in quanto la funzione Wake&Shake rilascia il freno e non è possibile erogare una coppia sufficiente a trattenerlo.

• Non usare Wake&Shake con carichi sospesi verticali.

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni. Frequenza limite (A, B, N): 1.5 MHz

Tipo	FBTYPE	EXTPOS/Gearmode	ENCMODE	Nota
ROD (AquadB) 5V	13	3	0	MPHASE dalla EEPROM
ROD (AquadB) 5V	19	3	0	MPHASE wake&shake

Accendere la tensione di alimentazione dell'encoder X1: ENCVON = 1

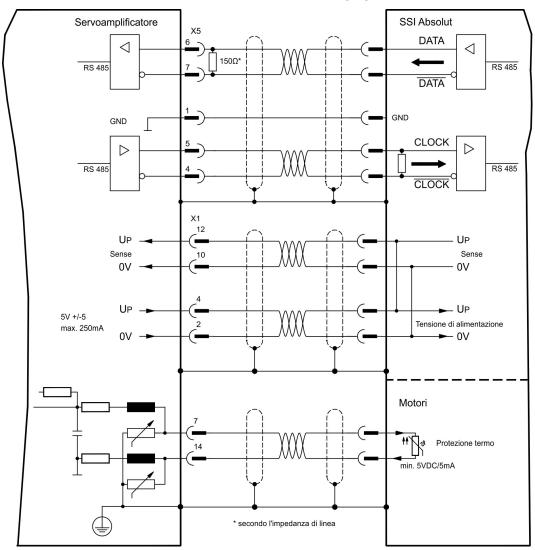


11.2.3.1.2 ROD (AquadB) 5V mit Hall (X5, X1)

Collegamento di una unità di retroazione realizzata con un trasduttore incrementale da 5V (ROD, AquadB) e un sensore Hall (primario feedback, (→ #75)). Per la commutazione si utilizza il sensore di Hall e per la risoluzione il trasduttore incrementale.

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1. Se si prevedono cavi di lunghezza superiore a 25 m rivolgersi al nostro settore applicazioni.

Frequenza limite X5: 1,5 MHz, X1: 350 kHz

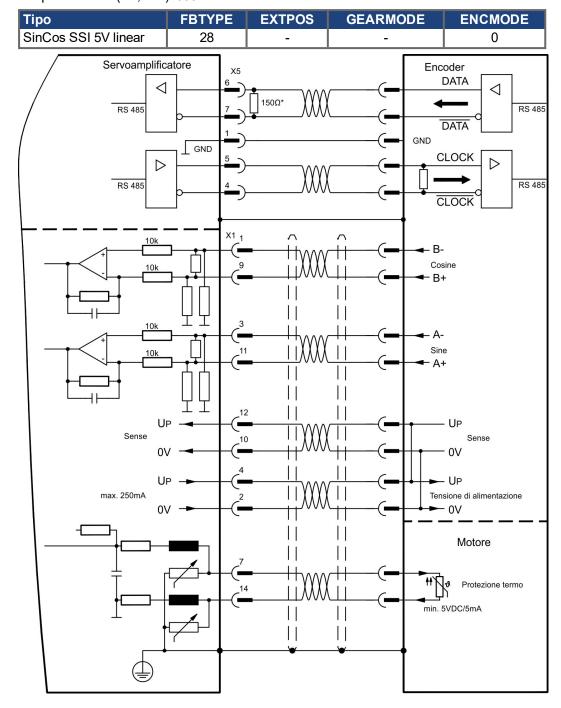

11.2.3.1.3 SSI Absolutgeber (X5, X1)

Collegamento di una unità di retroazione realizzata con un trasduttore assoluto sincrono seriale (primario o secondario feedback, (→ #75)). È possibile leggere dati in formato binario o Gray.

La protezione termica del motore viene collegato all'amplificatore mediante il connettore X1. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni. Frequenza limite:1,5 MHz

Tipo	FBTYPE	EXTPOS	GEARMODE	ENCMODE
SSI assoluto	9	5	5	0

Accendere la tensione di alimentazione dell'encoder X1: ENCVON = 1



11.2.3.1.4 Encoder seno con SSI (X5, X1)

Collegamento di un sistema di retroazione lineari realizzato con encoder sin/cos e protocollo SSI (primario feedback, (→ #75)).

La protezione termica del motore viene collegato al connettore X1 mediante il cavo encoder. Il nostro cavo di collegamento encoder preconfezionato consente di collegare tutti i segnali. Se si prevedono cavi di lunghezza superiore a 50 m rivolgersi al nostro settore applicazioni.

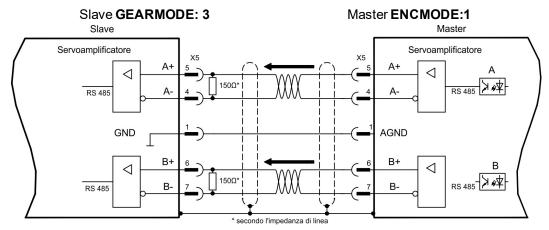
Frequenza limite (sin, cos): 350 kHz

11.2.3.2 Trasmissione elettronico e master-slave, (X5)

11.2.3.2.1 Collegamento al master di S700, livello di 5V (X5)

È possibile collegare fino a 17 amplificatori S700. Fino a 16 amplificatori slave sono controllati dal master tramite l'uscita dell'encoder. Per questo viene utilizzato il plug SubD X5.

Regolazione master:

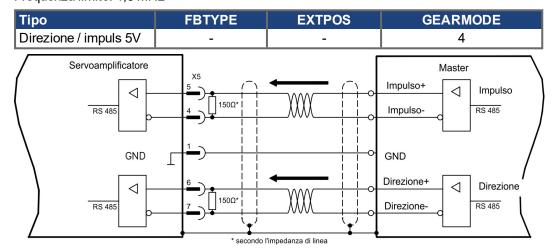

Uscita di posizione su X5 sulla videata "Emulazione Encoder".

Regolazione slave::

Sulla videata "Asso Elettrico" (GEARMODE)

Frequenza limite: 1,5 MHz

Esempio di sistemi master-slave con due amplificatori S700, emulazione ROD:



Se l'emulazione di SSI è usata, il master ENCMODE deve essere regolato a 2 ed allo slave GEARMODE a 5.

11.2.3.2.2 Collegamento al comandi motore passo-passo di 5V (X5)

Collegamento dei comando di un motore passo-passo con un livello del segnale di 5V. A questo scopo viene utilizzato il connettore X5 SubD.

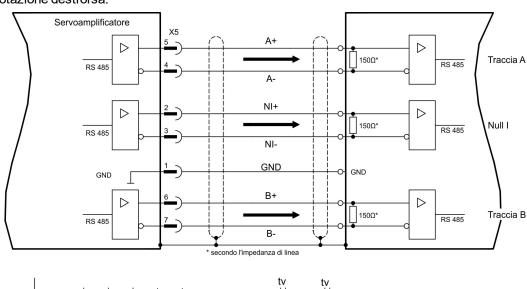
Frequenza limite: 1,5 MHz

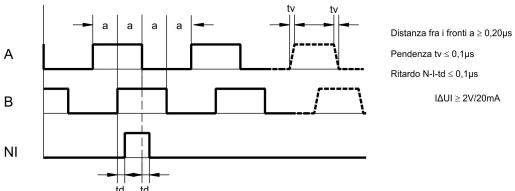
11.2.3.3 Emulazioni encoder (X5)

11.2.3.3.1 Interfaccia trasduttore incrementale ROD (AquadB) (X5)

L'interfaccia del trasduttore incrementale è compresa nella dotazione. Scegliere la funzione dell'encoder ROD (videata "Encoder"). La posizione dell'albero motore viene calcolata nel servoamplificatore sulla base dei segnali ciclici assoluti del resolver o dell'encoder. In funzione di queste informazioni vengono generati impulsi compatibili con il trasduttore incrementale. Sul connettore X5 SubD gli impulsi vengono emessi sotto forma di due segnali A e B sfasati elettricamente di 90° e in un impulso di zero. La risoluzione (prima della moltiplicazione) può essere impostata con il parametro RISOLUZIONE:

Funzione dell'encoder (ENCMODE)	Feedback (FBTYPE)	Risoluzione (ENCOUT)	Impulso zero
4 DOD	0, Resolver	324096	una volta per giro (solo a A=B=1)
1, ROD	>0, Encoder	256524288 (2 ⁸ 2 ¹⁹)	una volta per giro (solo a A=B=1)
3, Interpolazione ROD	Encoder	2 ⁴ 2 ⁷ (moltiplicazione) Linea TTL x risol.encoder	segnale dell'encoder passato da X1 verso X5


Se una carta di sicurezza è built-in, solo le risoluzioni binarie fino a 2¹² sono possibilii. È possibile impostare e memorizzare la posizione dell'impulso di zero in un giro meccanico (parametro OFFSET-NI). Il circuito d'uscita è alimentato internamente.


INFORMAZIONI

La lunghezza di cavo al massimo ammissibile è di 100 m.

Descrizione del collegamento e dei segnali dell'interfaccia del trasduttore incr.

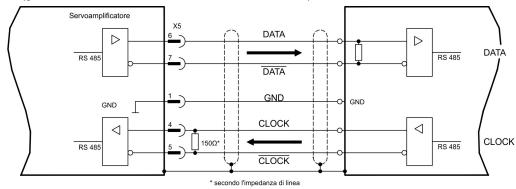
La direzione di numerazione è impostata in modo ascendente rispetto all'asse motore con rotazione destrorsa.

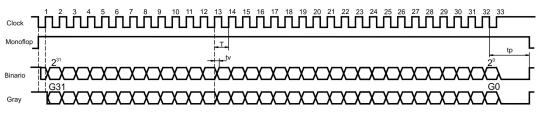
11.2.3.3.2 Interfaccia SSI (X5)

L'interfaccia SSI (emulazione dell'encoder assoluto seriale sincrono) fa parte della dotazione fornita. Selezionare la funzione dell'encoder SSI (schermata "Encoder", ENCMODE 2). Il servoamplificatore calcola la posizione dell'albero del motore sulla base di segnali assoluti ciclici del resolver o dell'encoder. Da queste informazioni viene fornita una data SSI (secondo la specifica di brevetto Stegmann DE 3445617C2).

Vengono trasmessi al massimo 32 bit. Il bit di dati guida contiene il numero di giri ed è selezionabile da 12 a 16 bit. I successivi 16 bit max. contengono la risoluzione e non sono variabili.

La tabella seguente indica l'assegnazione della data SSI a seconda del numero di giri selezionato:


	Giro								F	Risc	oluz	ion	е	(va	ari	ab	ile	e)													
	SSI	RE۱	/OL	-																											
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0								П	П	Г	П	П	П			П
	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0		 	١,,	١,,	 	١,,	١	۱		ړ	إرا					
		13	12	11	10	9	8	7	6	5	4	3	2	1	0	15	14	13	12	111	10	9	ď	'	þ	၂၁	4	3	^	1	ľ
			12	11	10	9	8	7	6	5	4	3	2	1	0									П		П	П				
				11	10	9	8	7	6	5	4	3	2	1	0																


La sequenza di segnali può essere emessa nel codice **Gray** o **binario** (standard) (parametro SSI-CODE). Il servoamplificatore può essere regolato alla frequenza di clock della propria valutazione SSI attraverso il parametro SSI-TIMEOUT.

Il circuito d'uscita è alimentato internamente.

Collegamento e segnali per l'interfaccia SSI:

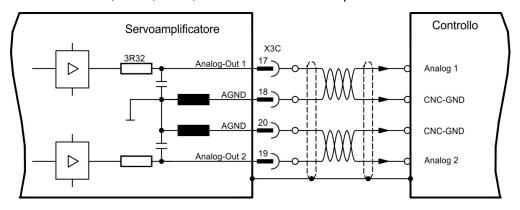
la direzione di conteggio per l'interfaccia SSI è UP quando l'albero del motore ruota in senso orario (guardando verso l'estremità dell'albero del motore).

Tempo di commutazione dati $tv \le 300$ ns Durata minima periodo T = 600 ns

Time Out tp = $3\mu s/13\mu s$ (SSITOUT)

 $\begin{array}{ll} \mbox{Uscita} & \mbox{I} \Delta \mbox{UI} \geq 2 \mbox{V} / 20 \mbox{mA} \\ \mbox{Ingresso} & \mbox{I} \Delta \mbox{UI} \geq 0.3 \mbox{V} \\ \end{array}$

11.2.3.4 Ingressi/Uscite analogici

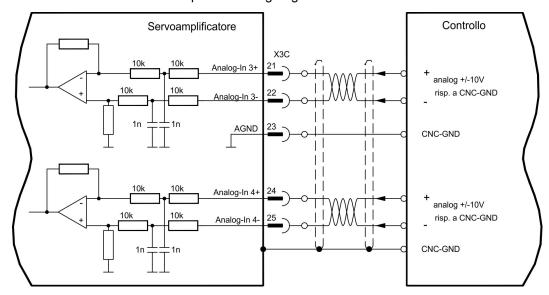

II " della carta di espansione "**Posl/O-Monitor**" aggiunge le entrate analogiche e le uscite al servo amplificatore, erano segnali preprogrammati possono essere assegnate a. Un elenco delle funzioni preprogrammate è disponibile nella videata "I/O analogici" del nostro software di messa in funzione.

11.2.3.4.1 Uscite analogici ANALOG-OUT 1 e 2

È possibile utilizzare il morsetto X3C/17 (Analog-Out 1) o il morsetto X3C/19 (Analog-Out 2) per emettere valori analogici trasformati a partire da valori di misurazione digitali rilevati nel servoamplificatore.

Caratteristiche tecniche

- Massa di riferimento Analog-GND (AGND, morsetto X3C/18 e X3C/20)
- Secondo EN 61131-2 Table 11
- Tensione d'uscita di ±10 V
- Risoluzione: 0,38 mV, 16 Bit, velocità di scansione 250µs



11.2.3.4.2 Ingressi analogici ANALOG-IN 3 e 4

È possibile utilizzare il morsetto X3C/21-22 (Analog-In 3) o il morsetto X3C/24-25 (Analog-In 4) con parecchie funzioni preprogrammate.

Caratteristiche tecniche

- Tensione d'ingresso differenziale di max. ± 10 V
- Risoluzione 1.25 mV, 16 bits, evolutivo, velocità di scansione 62,5 μs
- Massa di riferimento: AGND, morsetto X3C/23
- Resistenza d'ingresso di 20 kΩ
- Intervallo tensione sincrona per entrambi gli ingressi di ulteriori ± 10 V

11.3 Schede di espansione per lo slot 3

11.3.1 Indicazioni per l'installazione delle schede di espansione nello slot 3

Limite slot 3

Le schede di espansione per lo slot 3 si montano in modo analogo a quanto descritto per lo slot 1 (→ # 126).

- Staccare la parte tratteggiata inferiore della pellicola (rettangolo 3).
- Facendo leva, staccare le lamiere di copertura sottostanti.
- Rimuova il piccolo circuito stampato (STO Bridge)
 che è inserito la scanalatura. Utilizzi le pinze adatte.
- Inserire la scheda di espansione nello slot.
- Avvitare la piastra frontale della scheda di espansione con le viti in dotazione.

11.3.2 Opzione "F2"

Per ridurre il rumore l'azionamento può essere ordinato con la scheda opzione F2. Questa scheda non può essere inserita successivamente. L'opzione F2 occupa lo slot2 o 3 (Per la codifica vedere (→ # 26)).

INFORMAZIONI

La carta di opzione F2 può essere usata ha unito con un'altra carta in slot 1 anche se è tappata per slot 2!

Funzionamento

Il ventilatore è commutato in funzione e a riposo o funziona con velocità stimato di 50% secondo la temperatura. Questo riduce il rumore medio emesso.

Temperatura d'attivazione

Monitoraggio	ventola off	ventola ~50%	ventola on
Temperatura esterna	< 55°C	~ 58°C	> 65°C
Temperatura del dissipatore	< 58°C	~ 68°C	> 80°C

11.3.3 Scheda di espansione "Posl/O" e "Posl/O-Monitor"

La scheda di espansione "PosI/O" e "PosI/O-Monitor" si può inserire nello slot 2 o 3. Le carte di espansione non possono essere unite e l'uso di soltanto una scanalatura a tempo è permesso.

Per una descrizione dettagliata delle interfacce vedere (→ # 143) e seguenti.

11.3.4 Scheda di espansione "Safety 2-2" (S4)

Offre diverse funzioni (versione di base) per la sicurezza di funzionamento degli assi di azionamento. I motori snchronous rotatori sono permessi quando usando questa carta di sicurezza. Tutte le funzioni soddisfanno le condizioni **SIL CL2** di sicurezza secondo IEC 62061 rispettivamente del livello di rendimento **PLd** secondo ISO13849-1.

INFORMAZIONI

La scheda di sicurezza limita varianti di feedback del servoamplificatore (consultare la Card di sicurezza Manuale d'uso o per la ou KDN).

11.3.4.1 Funzioni di azionamento di sicurezza S2-2

Die Anwahl und Aktivierung der Sicherheitsfunktionen erfolgt über die digitalen Eingänge der Erweiterungskarte. Folgende Funktionen stehen zur Verfügung:

Sistema di protezione contro il riavvio accidentale, Safe Torque Off (STO)

Con la funzione STO l'energia diretta al motore viene interrotta in modo sicuro direttamente nell'azionamento. Questo corrisponde a una frenatura non controllata a norma EN 60204-1, categoria 0.

Arresto sicuro 1, Safe Stop 1 (SS1)

Con la funzione SS1 l'azionamento viene arrestato con una frenata controllata, quindi l'alimentazione diretta al motore viene interrotta in modo sicuro.

Questo corrisponde a una frenatura non controllata a norma EN 60204-1, categoria 1.

Arresto sicuro 2, Safe Stop 2 (SS2)

Con la funzione SS2 l'azionamento viene arrestato con una frenatura controllata, quindi rimane in arresto regolato (SOS).

Questo corrisponde a una frenatura controllata a norma EN 60204-1, categoria 2.

Arresto operativo sicuro, Safe Operating Stop (SOS)

La funzione SOS controlla la posizione di arresto raggiunta ed impedisce lo spostamento dal campo definito.

Velocità limitata sicuro, Safely Limited Speed (SLS)

La funzione SLS controlla che l'azionamento mantenga una velocità definita.

Incremento limitato sicuro, Safe Limited Increments (SLI)

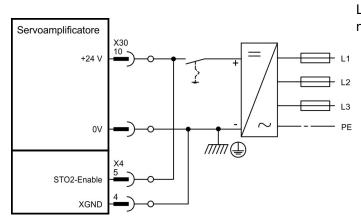
La funzione SLI controlla il mantenimento della posizione relativa da parte dell'azionamento.

Range di velocità sicuro, Safe Speed Range (SSR)

La funzione SSR controlla il valore di velocità effettivo dell'azionamento rispetto a una soglia massima e minima.

Direzione di movimento sicura, Safe Direction (SDI)

La funzione SDI garantisce che il movimento dell'azionamento avvenga solo in una direzione (definita).


11.3.4.2 Indicazioni di sicurezza S2-2

Rispettare il manuale utente della scheda di sicurezza. Il manuale utente è disponibile sul CD-ROM allegato al prodotto o sul sito Internet.

11.3.4.3 Collegamenti di alimentazione S2-2

AVVISO

Dell'input X4/5 "STO2-Enable" deve essere collegato a +24V CC e non deve essere usato come input supplementare di STO!

L'input STO1-Enable [X4/7] non deve essere collegato.

11.3.4.4 Ingressi/uscite di sicurezza S2-2

AVVISO

Gli ingressi X30/1 SS1_Activate e X30/20 Reset devono essere sempre collegati. Tutti gli ingressi devono essere collegati ad uscite controllate di un modulo di sicurezza.

X30	Pin	I/U	Descrizione
SS1 Activate	1	I	Funzione attivata: SS1
10	2	T	Programmabile, attivare la funzione di sicurezza X
l1	3	I	Programmabile, attivare la funzione di sicurezza X
12	4	I	Programmabile, attivare la funzione di sicurezza X
STO Acknowledge	5	U	Messaggio:STO attivato
O0	6	U	Programmabile, Stato: Funzione x attivata
O1	7	U	Programmabile, Stato: Funzione x attivata
O2	8	U	Programmabile, Stato: Funzione x attivata
O3	9	U	Programmabile, Stato: Funzione x attivata
24V Supply	10	-	24V alimentazione per uscite di sicurezza
n.c.	11	-	non usato
13	12	I	Programmabile, attivare la funzione di sicurezza X
14	13	I	Programmabile, attivare la funzione di sicurezza X
15	14	T	Programmabile, attivare la funzione di sicurezza X
16	15	T	Programmabile, attivare la funzione di sicurezza X
Ready	16	U	Messaggio:"Disponibilità per l'uso"
n.c.	17	U	non usato
n.c.	18	U	non usato
n.c.	19	U	non usato
Reset	20	Τ	Ingresso per Reset
0V Supply	21	-	0V alimentazione per uscite di sicurezza
0V Supply	22	-	0V alimentazione per uscite di sicurezza

11.3.5 Scheda di espansione "Safety 1-2" (S3)

Questa carta di espansione comprende tutte le funzioni di sicurezza disponibili. I motori snchronous rotatori sono permessi quando usando questa carta di sicurezza. Tutte le funzioni soddisfanno le condizioni **SIL CL3** di sicurezza secondo IEC 62061 rispettivamente del livello di rendimento **PLe** secondo ISO13849-1.

INFORMAZIONI

La scheda di sicurezza limita varianti di feedback del servoamplificatore (consultare la Card di sicurezza Manuale d'uso o per la <u>KDN</u>).

11.3.5.1 Funzioni di azionamento di sicurezza S1-2

Le funzioni di sicurezza si attivano mediante gli ingressi digitali della scheda di espansione.

Sistema di protezione contro il riavvio accidentale, Safe Torque Off (STO)

Con la funzione STO l'energia diretta al motore viene interrotta in modo sicuro direttamente nell'azionamento. Questo corrisponde a una frenatura non controllata a norma EN 60204-1, categoria 0.

Arresto sicuro 1, Safe Stop 1 (SS1)

Con la funzione SS1 l'azionamento viene arrestato con una frenata controllata, quindi l'alimentazione diretta al motore viene interrotta in modo sicuro.

Questo corrisponde a una frenatura non controllata a norma EN 60204-1, categoria 1.

Arresto sicuro 2, Safe Stop 2 (SS2)

Con la funzione SS2 l'azionamento viene arrestato con una frenatura controllata, quindi rimane in arresto regolato.

Questo corrisponde a una frenatura controllata a norma EN 60204-1, categoria 2.

Arresto operativo sicuro, Safe Operating Stop (SOS)

La funzione SOS controlla la posizione di arresto raggiunta ed impedisce lo spostamento dal campo definito.

Velocità limitata sicuro, Safely Limited Speed (SLS)

La funzione SLS controlla che l'azionamento mantenga una velocità definita.

Incremento limitato sicuro, Safe Limited Increments (SLI)

La funzione SLI controlla il mantenimento della posizione relativa.

Posizione assoluta sicura, Safe Limited Position (SLP)

La funzione SLP controlla il mantenimento della posizione assoluta.

Range di velocità sicuro, Safe Speed Range (SSR)

La funzione SSR controlla il valore di velocità effettivo dell'azionamento rispetto a una soglia massima e minima.

Direzione di movimento sicura, Safe Direction (SDI)

La funzione SDI garantisce che il movimento dell'azionamento avvenga solo in una direzione (definita).

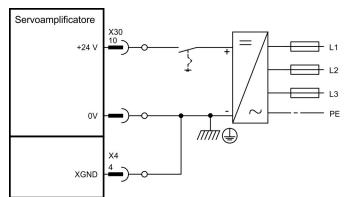
Controllo sicuro del freno, Safe Brake Control (SBC)

Un freno meccanico esterno può essere controllato dai 2 pali uscite "SBC+/SBC" della carta di sicurezza. Lo SBC diventerà attivo con STO.

Prova di freno sicura, Safe Brake Test (SBT)

La funzione di sicurezza SBT può essere usata per le prove il freno meccanico esterno e del freno interno del motore.

11.3.5.2 Indicazioni di sicurezza S1-2


Rispettare il manuale utente della scheda di sicurezza. Il manuale utente è disponibile sul CD-ROM allegato al prodotto o sul sito Internet.

11.3.5.3 Encoder esterno S1-2

I encoder incrementali (TTL) o con i segnali di SSI possono essere collegati a X31. L'alimentazione per l'encoder esterno è collegato a X30/11 (+) e X30/22 (-).

X31 Pin	Encoder in- crementale (TTL)	SSI Encoder	X31 Pin	Encoder in- crementale (TTL)	SSI Encoder
1	Channel A+	Clock +	6	Channel A-	Clock-
2	Channel B+	Data +	7	Channel B-	Data-
3	Reference Z+	n.c.	8	Reference Z-	n.c.
4	U+	U+	9	0 V	0 V
5	n.c.	n.c.			

11.3.5.4 Collegamenti di alimentazione S1-2

L'input STO1-Enable [X4/7] non deve essere collegato.

11.3.5.5 Ingressi/uscite di sicurezza S1-2

AVVISO

Ingressi X30/1 SS1_Activate e X30/20 SS1_SIL3/Reset devono essere sempre collegati. Tutti gli ingressi devono essere collegati ad uscite controllate di un modulo di sicurezza.

X30	Pin	I/U	Descrizione
SS1 Activate	1	Т	Funzione attivata: SS1
10	2	П	Programmabile, attivare la funzione di sicurezza X
l1	3	Π	Programmabile, attivare la funzione di sicurezza X
12	4	Π	Programmabile, attivare la funzione di sicurezza X
STO Acknowledge	5	U	Messaggio:STO attivato
O0	6	U	Programmabile, Stato: Funzione x attivata
01	7	U	Programmabile, Stato: Funzione x attivata
O2	8	U	Programmabile, Stato: Funzione x attivata
O3	9	U	Programmabile, Stato: Funzione x attivata
24V Supply	10	-	24V alimentazione per uscite di sicurezza
n.c.	11	-	alimentazione per encoder esterno
13	12	Π	Programmabile, attivare la funzione di sicurezza X
14	13		Programmabile, attivare la funzione di sicurezza X
15	14		Programmabile, attivare la funzione di sicurezza X
16	15		Programmabile, attivare la funzione di sicurezza X
Ready	16	U	Messaggio:"Disponibilità per l'uso"
n.c.	17	U	Controlli il freno esterno +
n.c.	18	U	Controlli il freno esterno -
n.c.	19	U	Uscite
Reset	20		Ingresso per SIL3 e RESET
0V Supply	21	-	0V alimentazione per uscite di sicurezza
0V Supply	22	-	0V alimentazione per uscite di sicurezza

12 Allegato

12.1 Glossario

Ε

Circuito di frenatura Mediante la resistenza di frenatura si trasforma in calore

l'energia in eccesso accumulata dal motore durante la

frenatura.

Circuito intermedio Tensione di potenza raddrizzata e livellata

Clock Segnale di temporizzazione

Costante del tempo di filtrazione nella retroazione della Contagiri T, costante di tempo

velocità del circuito di regolazione

Impulsi di conteggio interni, 1 imp. = 1 / 2²⁰ Umdr⁻¹ Conteggi

Libera circolazione d'aria per il raffreddamento Convezione libera Cortocircuito qui: collegamento a conduzione elettrica tra 2 fasi

D Deriva ingresso Modifiche di un ingresso analogico dovute a temperatura e

invecchiamento

Disable Disabilitazione del segnale ENABLE

Dispersione a terra Collegamento conduttivo tra una fase e PE Enable Segnale di abilitazione per il servoamplificatore

Dispositivo per I deviare verso PE anomalie sui cavi Filtro di rete

dell'alimentazione di potenza

Finecorsa Limitatore della corsa di traslazione della macchina

esecuzione come contatto normalmente chiuso

Formato GRAY Forma speciale della rappresentazione numerica binaria Freno di arresto Freno motore che può essere impiegato solo a motore fermo Impulso nullo

Viene emesso da trasduttori incrementali una volta per giro e

serve per l'azzeramento della macchina

CANopen, PROFIBUS, SERCOS, e così via Interfaccia bus di campo Interfaccia SSI Output ciclico della posizione assoluta seriale

Interfaccia trasduttore incrementale Segnalazione della posizione mediante 2 segnali sfalsati di

90°, output della posizione assoluta assente

Interface Interfaccia

Protezione dell'impianto con controllo della caduta di fase Interruttore di potenza

Valore efficace della corrente d'impulso Ipeak, corrente di picco Irms, corrente efficace Valore efficace della corrente continua

Κ Kp, amplificazione P Amplificazione proporzionale di un circuito di regolazione

M Macchina Globalità di componenti o dispositivi collegati tra loro, di cui

almeno uno è in movimento

Modo di inversione Funzionamento con cambio periodico della direzione di

rotazione

0 Optoaccoppiatore Collegamento ottico tra due sistemi indipendenti da un punto

di vista elettrico

PID-T2 Costante del tempo di filtrazione per l'uscita del regolatore di

velocità

Potenza continuativa di frenatura Potenza media, che può essere gestita nel circuito di frenatura

Potenza d'impulso di frenatura Potenza massima che può essere gestita nel circuito di

frenatura

R Rampe SW Limitazione della velocità di variazione del valore nominale di

velocità

Record di movimento Record di dati con tutti i parametri di regolazione della

posizione necessari per un task di traslazione

Regolatore di corrente Regola la differenza tra il valore nominale e quello reale della

corrente rispetto a 0.

Uscita: tensione di uscita della potenza

Regolatore di posizione Regola la differenza tra il valore nominale e il valore reale della

posizione rispetto a 0.

Uscita: valore nominale velocità

Regolatore P Circuito di regolazione che funziona in modo puramente

proporzionale

Regolatore PID Circuito di regolazione con comportamento proporzionale,

integrale e differenziale

Regolatore velocità Regola la differenza tra la velocità nominale e quella reale

rispetto a 0.

Uscita: valore nominale della corrente

Reset Riavvio del microprocessore

Resolver-Digital-Converter Conversione dei segnali analogici del resolver in informazioni

digitali

S Separazione del potenziale Disaccoppiamento elettrico

Servoamplificatore Organo per la regolazione di coppia, velocità e posizione di un

servomotore

Sfasamento Compensazione del ritardo tra il campo elettromagnetico e il

campo magnetico nel motore

Sistema multiasse Macchina con più assi di trasmissione indipendenti

Soglia I2t Controllo della corrente efficace Irms effettivamente richiesta

T Tensione contagiri Tensione proporzionale al valore reale della velocità

Tensione sincrona Ampiezza di disturbo che un ingresso analogico (ingresso

differenziale) può regolare

Termocontatto di protezione Interruttore a rilevamento termico incorporato

nell'avvolgimento del motore

Tn, tempo di inerzia I Parte integrante del circuito di regolazione
Uscita monitor Uscita di un valore di misurazione analogico

✓ Velocità finale Valore massimo per la standardizzazione della velocità a

±10V

U

12.2 Numeri d'ordine

Per numeri di ordinazione di accessori quali cavi, resistenze di carico, alimentatori e così via consultare il manuale degli accessori.

12.2.1 Servoamplificatori

Articolo (Tipologie standard)*	Numero d'ordine EU Numero d'ordine US					
Servoamplificatore S74802	S74802-N	NANANA				
Servoamplificatore S77202	S77202-1	NANANA				

^{*=} Standard: con dissipatore di calore, CANopen e EtherCAT on board, STO doppio canale, nessuna scheda di espansione. Vedi "Schema di numero del prodotto" (→ # 26).

Article (Tipologie standard con opzione F2 in Slot 2)	Numero d'ordine EU	Numero d'ordine US			
Servoamplificatore S74802-NAF2NA	S74802-NAF2NA				
Servoamplificatore S77202-NAF2NA	S77202-I	NAF2NA			

Article (Tipologie standard con opzione F2 in Slot 3)	Numero d'ordine EU	Numero d'ordine US			
Servoamplificatore S74802-NANAF2	S74802-NANAF2				
Servoamplificatore S77202-NANAF2	S77202-I	NANAF2			

12.2.2 Memory Card

Article	Numero d'ordine EU	Numero d'ordine US
Industrial Memory Card (può rimanere	DE-201257	non disponibile
nell'azionamento)		

12.2.3 Scheda di Espansione et Opzione

12.2.3.1 Coperture per le Slots

Article	Numero d'ordine EU	Numero d'ordine US
Slot Covers (1 por Slot 1 & 1 por 2 o 3)	DE-201295	DE-201295

12.2.3.2 Slot 1

Article	Numero d'ordine EU	Numero d'ordine US
Scheda di espansione DeviceNet	DE-103571	OPT-DN
Scheda di espansione PROFIBUS DP	DE-106712	OPT-PB3
Scheda di espansione SERCOS	DE-90879	OPT-SE
Scheda di espansione I/0-14/08	DE-90057	OPT-EI
Scheda di espansione SynqNet	DE-200073	OPT-SN
Scheda di espansione FB-2to1	DE-201664	non disponibile
Modulo di espansione 2CAN	DE-201076	OPT-CB

12.2.3.3 Slot 2

Article	Numero d'ordine EU	Numero d'ordine US
Scheda di espansione PosI/O	DE-200881	OPT-E1
Scheda di espansione PosI/O-Monitor	DE-201294	OPT-PA

12.2.3.4 Slot 3

Article	Numero d'ordine EU	Numero d'ordine US
Scheda di espansione Posl/O	DE-200881	OPT-E1
Scheda di espansione Posl/O-Monitor	DE-201294	OPT-PA
Scheda di espansione Safety 1-2, SIL CL3	DE-201873	OPT-S3
Scheda di espansione Safety 2-2, SIL CL2	DE-201874	OPT-S4
STO Bridge (anziché la carta di sicurezza)	DE-200566	OPT-BR

12.2.4 Accoppiatori

Article	Numero d'ordine EU	Numero d'ordine US
Accoppiatori X3A	DE-200447	CON-S7X3A
Accoppiatori X3B	DE-200448	CON-S7X3B
Accoppiatori X3C	DE-200957	CON-S7X3C
Accoppiatori X4	DE-201241	CON-S7X4
Accoppiatori X9A	DE-201194	CON-S7X9A
Accoppiatori X9B	DE-201193	CON-S7X9B

13 Index

A

Abbreviazioni Altitudine d'installazione Arresto Arresto d'emergenza Assegnazione dei connettori Avvertenze sul prodotto	32 39 40 66
Avvio immediato, test rapido	111
В	
Baudrate 2CAN	
CAN	
Devicenet	
SERCOS	
BiSS Encoder analogo, Interfaccia	
BiSS Encoder digitale, Interfaccia	
BTB/RTO	103
С	
CablaggioCAN Bus	61
Cavo	105
Interfaccia	
CE	
ciclo di vita del prodotto	
Collegamento alla rete, Interfaccia	
Collegamento del motore, Interfaccia	
Collegamento dello schermo	
Collegamento per PC	
Comando a tasti	
ComCoder, Interfaccia	
Componenti di un servosistema	
Conformità	
CE	22
EAC	
Safety	
UL	
Connettore	
Conservazione	
Coppie di serraggio	
Corrente di dispersione	
D	
-	
Dati tecnici	30
DC-link, Interfaccia	
Devicenet cavo bus	
Diagramma a blocchi	
Dimensioni	

Direzione / impulsi di 24V, X3 Direzione / impulsi di 5V, X1 Direzione / impulsi di 5V, X5 Display a LED 35, DSL, Interfaccia	.95 148 120
E	
Eliminazione dei guasti Emissione di rumore Emulazione del codificatore X1	.30
X5	
Encoder Hall, Interfaccia	
Encoder seno con Hall	
Encoder SSI assoluto, X1	
Encoder SSI assoluto, X1	
EnDat 2.1 Encoder, Interfaccia	
EnDat 2.1 Encoder, Interfaccia	. 0 I 22
EtherNet, interfaccia	
	100
F	
Frenaggio dinamico Freno di arresto motore Funzione di sicurezza	
STO	.41
Funzioni sicurezza	155
Scheda S3 Scheda S4	
Fusibili	
1 usibili	. 52
G	
Glossario	157
Grado di imbrattamento	
Grado di protezione	
Н	
Hiperface Encoder, Interfaccia	83
I	
ImballaggioImballaggio fornito	
Indirizzo stazione	
2CAN	141
CAN-Bus	
Devicenet	
SERCOS	132
Ingressi	
Analog-In 1/2	
Analog-In 3/4	
Enable	
programmabili	100

Ingressi/uscite31 Installazione	Ricondizionati	
Elettrica59	ROD (AquadB) 24V con Hall, X3	
Meccanica53	ROD (AquadB) 24V, X3	
Scheda di espansione Slot1	ROD (AquadB) 5V con Hall, 350kHz, X1	
Scheda di espansione Slot2	ROD (AquadB) 5V con Hall, 350kHz, X5	
Scheda di espansione Slot3	ROD (Aquadb) 5V, 1.5MHz, X1	
Software	ROD (Aquadb) 5V, 1.5MHz, X5	
Interruttori di sicurezza per le correnti di	ROD (Aquadb) 5V, 350kHz, X1	
•	ROD Emulazione X1	
guasto52		
1	ROD Emulazione X5	
L	RoHS	
Lucas di montonnio	RS232/PC, Interfaccia	104
Luogo di montaggio53	•	
M	S	
IVI	Oakada di sanansiana	
Manutanniana 40	Scheda di espansione	4.40
Manutenzione 19	-2CAN	
Master-Slave X1	-DEVICENET-	
Master-Slave X5	-FB-2to1-	
Messa a terra	-I/O-14/08	
Installazione60	-PosI/O	143
Schema collegamenti	-PosI/O-Monitor	143
Messa fuori servizio18	-PROFIBUS	130
Messa in funzione108	-Safety S3	
Messaggi d'errore	-Safety S4	
Messaggi di avvertenza124	-SERCOS-	
Moduli Condensatore72	-SYNQNET-	
Montaggio56	Scheda di memoria	
	Schema collegamenti (descrizione)	
N	Schema di numero del prodotto	
Norme utilizzati11	Schermatura	
Numeri d'ordine	Setup Wizard	
Trainer a draine	Sezioni dei cavi	
0	SFD3, Interfaccia	
	Simboli usati	
Omologazioni	Simbolo della massache	
Opzione "F2"	SinCos+SSI, X1	84
Opzione 12142, 132	SinCos+SSI, X5	147
P	Sistema di messa	35
Г	Sistemi operativi	110
Parametri caratteristici Safety23	Smaltimento	20
_	Smontaggio	
Posizione di montaggio	Spegnimento d'emergenza	
Potenza ottica	SSI Emulazione X1	
Procedura di inserzione e disinserzione 36	SSI Emulazione X5	
Protezione dal contatto accidentale 52	STO, Safe Torque Off	
Pulizia 19	oro, baile rorque on	
R	Т	
DEACH 22	Targhetta di omologazione	25
REACH 23	Temperatura ambiente	
Requisiti hardware	Tensione ausiliaria da 24V, Interfaccia	
Resistenza di frenatura	Tipi di retroazione	
Dati S7xx035	Trasformatori d'isolamento	
Interfaccia71	Trasmissione elettronico	32
Resolver, Interfaccia		0.4
Retroazione 74	X1	94

X5	148
Trasporto	18
U	
UL	21
Umidità atmosferica	
Uscita di posizione X1	
Uscita di posizione X5	
Uscite	
Analog-Out 1/2	151
BTB/RTO	
Digital-Out 1/2	103
Uso conforme	
Servoamplificatore	16
Software di Setup	
STO	43
V	
Varie reti	68
Ventilazione	
Installazione	
Vibrazioni	22

14 Edizioni fino ad ora pubblicate

Edizione	Nota
02/2010	Product brand, memory card, part number scheme, faults, EnDat 2.2, Multilink, certificates, GOST-R, SSI input (X5 clock - inverted), PosI/O-Monitor added, Safety Card S1 added, TÜV proved safety, FAN option F2, X4A/3 changed from XGND to STO2-Enable, Emergency Stop examples moved to WIKI
07/2010	new DriveGUI icon, bridge DGND-GND (dig-I/O) changed, type 6 integrated
12/2010	Expansion module 2CAN, company address and name, name plate, CE certificate, fax form
06/2011	Schema di numero del prodotto, emulazione encoder via X1, BiSS-C, feedback systems visualized, STO SIL3/PLe, certificates removed
09/2011	New certificates added, safety characteristic data
06/2012	Fusing corrected, expansion card FB-2to1 new, emergency stop updated
08/2012	Feedback - ENCVON note, FBTYPE 34, KCM modules, CE certificate, formal improvements, BiSS C note
07/2013	Avvertenza ENCVON - retroazione, FBTYPE 34, moduli KCM, certificato CE, miglioramenti formali, BiSS C Renishaw, adattamento alla norma IEC 82079, carte Safety S3/S4 nuove, flow chart "Comportamento in caso di errore" corretto
08/2013	Correction S4 safety card (SLP not possible)
12/2013	Hint automatic restart, fault table, switch off behaviour in case of faults, SSI emulation timing updated, safe to touch voltage 40V->60V
05/2014	Simbolo di avvertenza aggiornato; fusibili resistenza di frenatura/DCBUS; informazioni collegamento DCBUS; kit X8Y e X4A mini
07/2014	Cablaggio termosensore aggiornato (retroazione)
12/2014	Nota relativa alle restrizioni per la retroazione dell'azionamento con schede di sicurezza, certificazioni CE eliminate, GOST-R eliminato, certificati di sicurezza eliminati, classificazione di esportazione
02/2015	Certificato EAC, targhetta di omologazione aggiornata con il marchio EAC
12/2015	Capitolo sull'approvazione della sicurezza funzionale ampliato, cablaggio KCM aggiornato, modulo fax eliminato, uso previsto ampliato, tensione sicura 60V->50V, LVD 2014/35/CE, EMCD 2014/30/CE
02/2017	Pin 1 X6 corretto (nessuna uscita 5V), avvertenze, capitolo Utilizzo separato, connessione a cavo singolo nuova, SFD3 / Hiperface DSL nuovo
11/2018	Connettore X1 corretto (maschio->femmina), tabella HR aggiornata, layout delle avvertenze aggiornato, competenze dell'utente aggiornate, nuova copertina nota lettori, Wiki sostituito con KDN
07/2019	Conformità CE (RoHS), DC link (esempi), regolazioni di layout, varie ottimizzazioni

Servizio

Ci impegniamo a fornire un servizio di qualità al cliente. Per servire nel senso più efficace, prego mettasi in contatto con il vostro rappresentante locale per assistenza. Contattateci per maggiori informazioni.

Visitate il Kollmorgen <u>Developer Network</u> (solo in inglese), consultate la "Knowledge Base", fate domande alla community, scaricate i file e proponete dei miglioramenti.

Italia

KOLLMORGEN

Internet: www.kollmorgen.com/it-it
E-Mail: mil-info@kollmorgen.com

Tel.: +39 0362 / 594260 Fax: +39 0362 / 594263

Europe

KOLLMORGEN

Internet: www.kollmorgen.com/uk
E-Mail: technik@kollmorgen.com/uk

Tel.: +49 - 2102 - 9394 - 0 Fax: +49 - 2102 - 9394 - 3155

North America

KOLLMORGEN

Internet: www.kollmorgen.com/en-us
E-Mail: support@kollmorgen.com

Tel.: +1 - 540 - 633 - 3545 Fax: +1 - 540 - 639 - 4162

South America

KOLLMORGEN

Internet: www.kollmorgen.com/pt-br E-Mail: contato@kollmorgen.com

Tel.: +55 - 11 - 4615-6300

Asia

KOLLMORGEN

Internet: www.kollmorgen.cn

E-Mail: sales.china@kollmorgen.com

Tel: +86 - 400 668 2802 Fax: +86 - 21 6248 5367

KOLLMORGEN