For safe and proper use, follow these instructions. Keep them for future reference.
Record of Document Revisions

<table>
<thead>
<tr>
<th>Revision</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>02/2017</td>
<td>X6 Pin 1 corrected (no 5V output), warning notes, handling separate chapter, single cable connection new, SFD3/Hiperface DSL new</td>
</tr>
<tr>
<td>11/2018</td>
<td>Connector X1 corrected (male->female), HR table updated, layout of the warning notes updated, user expertise updated, new readers note on cover page, Wiki replaced by KDN</td>
</tr>
<tr>
<td>07/2019</td>
<td>CE Conformity (RoHS), dc bus link (examples), layout updates</td>
</tr>
</tbody>
</table>

Hardware Revision (HR)

<table>
<thead>
<tr>
<th>Hardware Rev.</th>
<th>Firmware Rev.</th>
<th>Export classification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>01.01</td>
<td>5.00 - 5.17</td>
<td>AL-3A225</td>
<td>Starting version (STO and Safety pending)</td>
</tr>
<tr>
<td>02.10</td>
<td>5.18 - 5.99</td>
<td>AL-3A225</td>
<td>STO and Safety Cards approved</td>
</tr>
<tr>
<td>02.20</td>
<td>5.18_ND0 - 5.99_ND0</td>
<td>-</td>
<td>New data structure</td>
</tr>
<tr>
<td>02.30</td>
<td>≥ 6.00_ND0</td>
<td>-</td>
<td>SFD3/DSL support</td>
</tr>
</tbody>
</table>

Trademarks

- WINDOWS is a registered trademark of Microsoft Corporation
- HIPERFACE is a registered trademark of Max Stegmann GmbH
- sercos® is a registered trademark of sercos® international e.V.
- EnDat is a registered trademark of Dr. Johannes Heidenhain GmbH
- EtherCAT is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH

Technical changes which improve the performance of the device may be made without prior notice!

This document is the intellectual property of Kollmorgen. All rights reserved. No part of this work may be reproduced in any form (by photocopying, microfilm or any other method) or stored, processed, copied or distributed by electronic means without the written permission of Kollmorgen.
1 Table of Contents

1 Table of Contents .. 3

2 General .. 9
 2.1 About this manual .. 9
 2.2 Using the PDF Format .. 9
 2.3 Symbols Used ... 10
 2.4 Standards used ... 11
 2.5 Abbreviations Used ... 12

3 Safety .. 13
 3.1 You should pay attention to this ... 13
 3.2 Warning notes placed on the product ... 15
 3.3 Use as Directed ... 16
 3.4 Prohibited Use .. 17

4 Product life cycle handling ... 18
 4.1 Transport ... 18
 4.2 Packaging .. 18
 4.3 Storage ... 18
 4.4 Decommissioning .. 18
 4.5 Maintenance and cleaning .. 19
 4.6 Disassembly .. 19
 4.7 System Repair ... 20
 4.8 Disposal ... 20

5 Approvals .. 21
 5.1 Conformance with UL ... 21
 5.2 CE conformance .. 22
 5.2.1 European Directives and Standards for the machine builder .. 22
 5.2.2 Functional Safety Conformance according to EC Machinery Directive .. 23
 5.3 Conformance with RoHS .. 23
 5.4 Conformance with REACH ... 23
 5.5 Conformance with EAC ... 24

6 Package ... 25
 6.1 Package supplied ... 25
 6.2 Nameplate ... 25
 6.3 Part number scheme ... 26

7 Technical description .. 27
 7.1 The S700 family of digital servo amplifiers ... 27
 7.2 Technical data ... 30
 7.2.1 Rated data .. 30
 7.2.2 Inputs, outputs, aux. voltage supply ... 31
 7.2.3 Connectors ... 31
 7.2.4 Recommended tightening torques .. 31
 7.2.5 Fusing ... 32
 7.2.6 Ambient Conditions, Ventilation, and Mounting Position ... 32
 7.2.7 Conductor cross-sections ... 33
 7.3 Motor holding brake .. 34
 7.4 LED display .. 35
 7.5 Grounding system .. 35
 7.6 Dynamic braking (brake circuit) ... 35
 7.7 Switch-on and switch-off behavior ... 36
 7.7.1 Behavior in standard operation ... 37
 7.7.2 Behavior in the event of an error (with standard setting) .. 38
9.10 Motor connection ... 73
9.10.1 Motor power connection (X8) .. 73
9.10.2 Motor holding brake connection (X8, X9) 74
9.11 Feedback systems ... 74
9.12 Primary and secondary feedback types 75
9.12.1 SFD3 (X1), single cable connection 76
9.12.2 HIPERFACE DSL (X1), single cable connection 77
9.12.3 Resolver (X2) .. 78
9.12.4 Sine Encoder with BiSS analog (X1) 79
9.12.5 Encoder with BiSS digital (X1) ... 80
9.12.6 Sine Encoder with EnDat 2.1 (X1) .. 81
9.12.7 Encoder with EnDat 2.2 (X1) ... 82
9.12.8 Sine Encoder with HIPERFACE (X1) 83
9.12.9 Sine Encoder with SSI (X1) .. 84
9.12.10 Sine Encoder without data channel (X1) 85
9.12.11 Sine Encoder with Hall (X1) .. 86
9.12.12 ROD (AquadB) 5V, 1.5MHz (X1) .. 87
9.12.13 ROD (AquadB) 5V, 350kHz (X1) .. 88
9.12.14 ROD (AquadB) 5V, 350kHz with Hall (X1) 89
9.12.15 ROD (AquadB) 24V (X3) .. 90
9.12.16 ROD (AquadB) 24V with Hall (X3, X1) 91
9.12.17 SSI absolute Encoder (X1) .. 92
9.12.18 Hall sensors (X1) ... 93
9.13 Electronic Gearing, Master-Slave operation 94
9.13.1 Encoder control types ... 94
9.13.2 Connection to stepper motor controllers (step and direction) 95
9.13.2.1 Step / Direction with 5 V signal level (X1) 95
9.13.2.2 Step / Direction with 24 V signal level (X3) 95
9.13.3 Master-Slave operation .. 96
9.13.3.1 Connection to an S700 master, 5V signal level (X1) 96
9.13.3.2 Connection to an S700 Master, 5V signal level (X5) 96
9.14 Encoder Emulation, position output 97
9.14.1 Incremental encoder output - A quad B (X1) 97
9.14.2 SSI encoder output (X1) .. 98
9.15 Digital and analog inputs and outputs 99
9.15.1 Analog Inputs (X3B) ... 99
9.15.2 Digital Inputs (X3A, X3B, X4) .. 100
9.15.2.1 Connector X3A, X3B .. 100
9.15.2.2 Connector X4 .. 101
9.15.3 Digital Outputs (X3A, X3B, X4) ... 102
9.15.3.1 Connectors X3A, X3B .. 103
9.15.3.2 Connector X4 .. 103
9.16 RS232 interface, PC connection (X6) 104
9.17 CAN-bus interface (X6) .. 105
9.18 EtherNet interface (X7) ... 106
9.19 Memory card ... 107
10 Setup .. 108
10.1 Important notes ... 108
10.2 Setup software ... 109
10.2.1 Use as directed ... 109
10.2.2 Software description .. 109
10.2.3 Hardware requirements, operating systems 110
10.2.4 Installation under WINDOWS .. 110
10.3 Quickstart, initial drive test .. 111
10.3.1 Preparation ... 111
10.3.2 Connect ... 113
10.3.3 Important Screen Elements .. 114
10.3.4 Setup Wizard .. 115
 10.3.4.1 Basic Setup .. 115
 10.3.4.2 Units/Mechanical .. 116
 10.3.4.3 Motor (rotary) and Feedback 117
 10.3.4.4 Motor (linear) / Feedback (Encoder) 117
 10.3.4.5 Save Parameters and Restart 118
10.3.5 Motion Service (Jog Mode) .. 118
10.3.6 More Setup Screens .. 119
10.4 Multi axis system .. 120
10.5 Keypad operation and LED display 120
 10.5.1 Operation .. 121
 10.5.2 Status display .. 121
 10.5.3 Standard menu structure 121
 10.5.4 Advanced menu structure 122
10.6 Error messages ... 123
10.7 Warning messages .. 124
10.8 Trouble shooting .. 125
11 Expansions .. 126
 11.1 Expansion cards for slot 1 ... 126
 11.1.1 Guide to installation of expansion cards in slot 1 126
 11.1.2 Expansion card -I/O-14/08- 127
 11.1.2.1 Technical data ... 127
 11.1.2.2 LEDs ... 127
 11.1.2.3 Entering a motion block number (example) 127
 11.1.2.4 Connector assignments 128
 11.1.2.5 Connection diagram (default) 129
 11.1.3 Expansion card -PROFIBUS- 130
 11.1.3.1 Connection technology 130
 11.1.3.2 Connection diagram 130
 11.1.4 Expansion card -SERCOS- 131
 11.1.4.1 LEDs ... 131
 11.1.4.2 Connection technology 131
 11.1.4.3 Connection diagram 132
 11.1.4.4 Setup ... 132
 11.1.5 Expansion card -DEVICENET- 133
 11.1.5.1 Connection technology, Connection diagram 133
 11.1.5.2 Combined module status and network status LED 134
 11.1.5.3 Setup ... 134
 11.1.5.4 Bus cable ... 135
 11.1.6 Expansion card -SYNQNET- 136
 11.1.6.1 NODE ID Switch ... 136
 11.1.6.2 NODE LED table ... 136
 11.1.6.3 SynqNet Connection, Connector X21B / X21C (RJ-45) .. 136
 11.1.6.4 Digital inputs and outputs, connector X21A (SubD 15-pin, socket) 137
 11.1.6.5 Connection diagram digital inputs and outputs, connector X21A ... 137
 11.1.7 Expansion card - FB-2to1- 138
 11.1.7.1 Pinout .. 138
 11.1.7.2 Wiring example with BiSS digital (primary) and SinCos (secondary) ... 139
 11.1.8 Expansion module -2CAN- 140
 11.1.8.1 Installation ... 140
 11.1.8.2 Connection technology 140
11.1.8.3 Connector assignments ... 141
11.1.8.4 Setup of Station Address and Baud Rate .. 141
11.2 Expansion cards for slot 2 ... 142
 11.2.1 Guide to installation of expansion cards in slot 2 142
 11.2.2 Option “F2”, controlled Fan ... 142
 11.2.3 Expansion cards “Pos/I/O” & “Pos/I/O-Monitor” 143
 11.2.3.1 Feedback .. 144
 11.2.3.1.1 ROD (AquadB) 5V (X5, X1) .. 144
 11.2.3.1.2 ROD (AquadB) 5V with Hall (X5, X1) 145
 11.2.3.1.3 SSI Encoder (X5, X1) ... 146
 11.2.3.1.4 Sine Encoder with SSI (X5, X1) 147
 11.2.3.2 Electronic gearing, Master-Slave operation (X5) 148
 11.2.3.2.1 Connection to a S700 master, 5V signal level (X5) 148
 11.2.3.2.2 Connection to stepper motor controllers with 5V signal level (X5) ... 148
 11.2.3.3 Encoder-Emulation (X5) ... 149
 11.2.3.3.1 Incremental encoder output - A quad B (X5) 149
 11.2.3.3.2 SSI encoder output (X5) .. 150
 11.2.3.4 Analog Inputs and Outputs .. 151
 11.2.3.4.1 Analog Outputs ANALOG-OUT 1 and 2 151
 11.2.3.4.2 Analog Inputs ANALOG-IN 3 and 4 151
 11.3 Expansion cards for slot 3 ... 152
 11.3.1 Guide to installation of expansion cards in slot 3 152
 11.3.2 Option “F2”, controlled Fan ... 152
 11.3.3 Expansion cards “Pos/I/O” & “Pos/I/O-Monitor” 152
 11.3.4 Expansion card “Safety 2-2” (S4) .. 153
 11.3.4.1 Safe drive functions S2-2 ... 153
 11.3.4.2 Safety Notes S2-2 ... 153
 11.3.4.3 Wiring supply voltage 24 V for digital outputs 154
 11.3.4.4 Safe inputs and outputs S2-2 .. 154
 11.3.5 Expansion card “Safety 1-2” (S3) ... 155
 11.3.5.1 S Safe drive functions S1-2 .. 155
 11.3.5.2 Safety Notes S1-2 ... 155
 11.3.5.3 External encoder S1-2 ... 156
 11.3.5.4 Wiring supply voltage 24 V for digital outputs S1-2 156
 11.3.5.5 Safe inputs and outputs S1-2 .. 156
12 Appendix ... 157
 12.1 Glossary .. 157
 12.2 Order codes .. 159
 12.2.1 Servo amplifiers .. 159
 12.2.2 Memory Card ... 159
 12.2.3 Expansion cards ... 160
 12.2.3.1 Covers for Option Slots ... 160
 12.2.3.2 Slot 1 .. 160
 12.2.3.3 Slot 2 .. 160
 12.2.3.4 Slot 3 .. 160
13 Index .. 161
14 Record of Document Revisions ... 165
2 General

2.1 About this manual

This manual describes the S748-S772 series of digital servo amplifiers (standard version: 48A ...72A rated current). S701 to S724 amplifiers are described in an additional manuals. A more detailed description of the expansion cards that are currently available and the digital connection to automation systems can be found, together with our application notes, in Acrobat-Reader format on the accompanying CD-ROM (system requirements: WINDOWS, Internet Browser, Acrobat Reader) in different languages.

Technical data and dimensional drawings of accessories such as cables, brake resistors, mains supplies, etc., can be found in the accessories manual.

This documentation (PDF) can be printed out on any standard commercial printer. More background information can be found in our "Kollmorgen Developer Network" kdn.kollmorgen.com.

2.2 Using the PDF Format

This document includes several features for ease of navigation

<table>
<thead>
<tr>
<th>Cross References</th>
<th>Table of contents and index include active cross references.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table of contents and index</td>
<td>Lines are active cross references. Click on the line and the appropriate page is accessed.</td>
</tr>
<tr>
<td>Page/chapter numbers in the text</td>
<td>Page/chapter numbers with cross references are active links.</td>
</tr>
</tbody>
</table>
2.3 Symbols Used

Warning Symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Indication</th>
</tr>
</thead>
<tbody>
<tr>
<td>⚠️ DANGER</td>
<td>Indicates a hazardous situation which, if not avoided, will result in death or serious injury.</td>
</tr>
<tr>
<td>⚠️ WARNING</td>
<td>Indicates a hazardous situation which, if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td>⚠️ CAUTION</td>
<td>Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.</td>
</tr>
<tr>
<td>📝 NOTICE</td>
<td>Indicates situations which, if not avoided, could result in property damage.</td>
</tr>
<tr>
<td>📝 NOTE</td>
<td>This symbol indicates important notes.</td>
</tr>
</tbody>
</table>

Drawing symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal ground</td>
<td>Diode</td>
<td>Chassis ground</td>
<td>Relay</td>
</tr>
<tr>
<td>Protective earth</td>
<td>Relay switch off delayed</td>
<td>Resistor</td>
<td>Normally open contact</td>
</tr>
<tr>
<td>Fuse</td>
<td>Normally closed contact</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.4 Standards used

<table>
<thead>
<tr>
<th>Standard</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISO 4762</td>
<td>Hexagon socket head cap screws</td>
</tr>
<tr>
<td>ISO 12100</td>
<td>Safety of machinery: Basic concepts, general principles for design</td>
</tr>
<tr>
<td>ISO 13849</td>
<td>Safety of machinery: Safety-related parts of control systems (former EN 954)</td>
</tr>
<tr>
<td>IEC 60068</td>
<td>Electrical insulation - Thermal evaluation and designation Maintenance</td>
</tr>
<tr>
<td>IEC 60204</td>
<td>Safety of Machinery: Electrical equipment of machinery</td>
</tr>
<tr>
<td>IEC 60364</td>
<td>Low-voltage electrical installations</td>
</tr>
<tr>
<td>IEC 60439</td>
<td>Low-Voltage Switchgear and Controlgear Assemblies</td>
</tr>
<tr>
<td>IEC 60529</td>
<td>Protection categories by housing (IP Code)</td>
</tr>
<tr>
<td>IEC 60664</td>
<td>Insulation coordination for equipment within low-voltage systems</td>
</tr>
<tr>
<td>IEC 60721</td>
<td>Classification of environmental conditions</td>
</tr>
<tr>
<td>IEC 61000</td>
<td>Electromagnetic compatibility (EMC)</td>
</tr>
<tr>
<td>IEC 61131</td>
<td>Programmable controllers</td>
</tr>
<tr>
<td>IEC 61491</td>
<td>Electrical equipment of industrial machines – Serial data link for real-time communications between controls and drives.</td>
</tr>
<tr>
<td>IEC 61508</td>
<td>Functional safety of electrical/electronic/programmable electronic safety-related systems</td>
</tr>
<tr>
<td>IEC 61800</td>
<td>Adjustable speed electrical power drive systems</td>
</tr>
<tr>
<td>IEC 62061</td>
<td>Functional safety of electrical/electronic/programmable electronic safety-related systems</td>
</tr>
<tr>
<td>IEC 62277</td>
<td>Preparation of instructions for use - Structuring, content and presentation</td>
</tr>
<tr>
<td>UL 840</td>
<td>UL Standard for Safety for Insulation Coordination</td>
</tr>
<tr>
<td>UL 508C</td>
<td>UL Standard for Safety Power Conversion Equipment</td>
</tr>
</tbody>
</table>

IEC: International Electrotechnical Commission
ISO: International Organization for Standardization
UL: Underwriters Laboratories
2.5 Abbreviations Used

<table>
<thead>
<tr>
<th>Abbrev.</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>(➡ # xx)</td>
<td>See page xx. Example (➡ # 53): see page 53.</td>
</tr>
<tr>
<td>AGND</td>
<td>Analog ground</td>
</tr>
<tr>
<td>BTB/RTO</td>
<td>Ready to operate</td>
</tr>
<tr>
<td>CAN</td>
<td>Fieldbus (CANopen)</td>
</tr>
<tr>
<td>CLK</td>
<td>Clock signal</td>
</tr>
<tr>
<td>COM</td>
<td>Serial interface for a PC-AT</td>
</tr>
<tr>
<td>DGND</td>
<td>Digital ground</td>
</tr>
<tr>
<td>Disk</td>
<td>Magnetic storage (diskette, hard disk)</td>
</tr>
<tr>
<td>EEPROM</td>
<td>Electrically erasable programmable memory</td>
</tr>
<tr>
<td>EMC</td>
<td>Electromagnetic compatibility</td>
</tr>
<tr>
<td>EMI</td>
<td>Electromagnetic interference</td>
</tr>
<tr>
<td>ESD</td>
<td>Electrostatic discharge</td>
</tr>
<tr>
<td>F-SMA</td>
<td>Fiber Optic Cable connector according to IEC 60874-2</td>
</tr>
<tr>
<td>INC</td>
<td>Incremental Interface</td>
</tr>
<tr>
<td>LED</td>
<td>Light-emitting diode</td>
</tr>
<tr>
<td>MB</td>
<td>Megabyte</td>
</tr>
<tr>
<td>NI</td>
<td>Zero pulse</td>
</tr>
<tr>
<td>PC</td>
<td>Personal computer</td>
</tr>
<tr>
<td>PELV</td>
<td>Protected low voltage</td>
</tr>
<tr>
<td>PL</td>
<td>Performance Level</td>
</tr>
<tr>
<td>PLC</td>
<td>Programmable logic controller</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse width modulation</td>
</tr>
<tr>
<td>RAM</td>
<td>Volatile memory</td>
</tr>
<tr>
<td>RB</td>
<td>Brake (regen) resistor</td>
</tr>
<tr>
<td>RBext</td>
<td>External brake resistor</td>
</tr>
<tr>
<td>RBint</td>
<td>Internal brake resistor</td>
</tr>
<tr>
<td>RES</td>
<td>Resolver</td>
</tr>
<tr>
<td>ROD</td>
<td>A quad B encoder</td>
</tr>
<tr>
<td>SDI</td>
<td>Safe direction</td>
</tr>
<tr>
<td>SIL</td>
<td>Safety Integrity Level</td>
</tr>
<tr>
<td>SIL CL</td>
<td>Safety Integrity Level Claim Limit</td>
</tr>
<tr>
<td>SLI</td>
<td>Safe limited increments</td>
</tr>
<tr>
<td>SLP</td>
<td>Safe limited position</td>
</tr>
<tr>
<td>SLS</td>
<td>Safe limited speed</td>
</tr>
<tr>
<td>SOS</td>
<td>Safe operating stop</td>
</tr>
<tr>
<td>SRAM</td>
<td>Static RAM</td>
</tr>
<tr>
<td>SS1</td>
<td>Safe stop</td>
</tr>
<tr>
<td>SS2</td>
<td>Safe operational stop</td>
</tr>
<tr>
<td>SSI</td>
<td>Synchronous serial interface</td>
</tr>
<tr>
<td>SSR</td>
<td>Safe speed range</td>
</tr>
<tr>
<td>STO</td>
<td>Safe Torque Off</td>
</tr>
<tr>
<td>V AC</td>
<td>AC voltage</td>
</tr>
<tr>
<td>V DC</td>
<td>DC voltage</td>
</tr>
<tr>
<td>VDE</td>
<td>Verein deutscher Elektrotechniker</td>
</tr>
</tbody>
</table>
3 Safety

This section helps you to recognize and avoid dangers to people and objects.

3.1 You should pay attention to this

Specialist staff required!

Only properly qualified personnel are permitted to perform such tasks as transport, installation and setup. Qualified specialist staff are persons with expertise in transport, installation, assembly, commissioning and operation of electrotechnical equipment.

- Transport, storage, unpacking: only by personnel with knowledge of handling electrostatically sensitive components.
- Mechanical installation: only by personnel with mechanical expertise.
- Electrical installation: only by personnel with expertise in electrical engineering.
- Basic tests / setup: only by personnel with expertise in electrical engineering and drive technology.

The qualified personnel must know and observe ISO 12100 / IEC 60364 / IEC 60664 and national accident prevention regulations.

Read the documentation!

Read the available documentation before installation and commissioning. Improper handling of the devices can cause harm to people or damage to property. The operator of systems using the drive system must ensure that all personnel who work with the drive read and understand the manual before using the drive.

Check Hardware Revision!

Check the Hardware Revision Number of the product (see product label). This number is the link between your product and the manual. The product Hardware Revision Number must match the Hardware Revision Number on the cover page of the manual.

Pay attention to the technical data!

Adhere to the technical data and the specifications on connection conditions. If permissible voltage values or current values are exceeded, the devices can be damaged. Unsuitable motor or wrong wiring will damage the system components. Check the combination of drive and motor. Compare the rated voltage and current of the units.

Perform a risk assessment!

The manufacturer of the machine must generate a risk assessment for the machine, and take appropriate measures to ensure that unforeseen movements cannot cause injury or damage to any person or property. Additional requirements on specialist staff may also result from the risk assessment.

Observe electrostatically sensitive components!

The devices contain electrostatically sensitive components which may be damaged by incorrect handling. Electrostatically discharge your body before touching the device. Avoid contact with highly insulating materials (artificial fabrics, plastic film etc.). Place the device on a conductive surface.
Automatic Restart!

The drive might restart automatically after power on, voltage dip or interruption of the supply voltage, depending on the parameter setting. Risk of death or serious injury for humans working in the machine. If the parameter AENA is set to 1, then place a warning sign to the machine (Warning: Automatic Restart at Power On) and ensure, that power on is not possible, while humans are in a dangerous zone of the machine. In case of using an under-voltage protection device, you must observe EN 60204-1.

Hot surface!

Drives may have hot surfaces during operation. The housing can reach temperatures above 80°C. Risk of minor burns! Measure the temperature, and wait until the housing has cooled down below 40 °C before touching it.

Earthing!

It is vital that you ensure that the drive is safely earthed to the PE (protective earth) busbar in the switch cabinet. Risk of electric shock. Without low-resistance earthing no personal protection can be guaranteed.

Leakage Current!

Since the leakage current to PE is more than 3.5 mA, in compliance with IEC61800-5-1 the PE connection must either be doubled or a connecting cable with a cross-section >10 mm² must be used. Deviating measures according to regional standards might be possible.

High voltages!

The equipment produces high electric voltages up to 900V. Do not open or touch the equipment during operation. Keep all covers closed.

During operation, S700 may have uncovered live sections, according to their level of enclosure protection.

Lethal danger exists at live parts of the device. Built-in protection measures such as insulation or shielding may not be removed. Work on the electrical installation may only be performed by trained and qualified personnel, in compliance with the regulations for safety at work, and only with switched off mains supply, and secured against restart.

Never undo any electrical connections to the S700 while it is live. There is a danger of electrical arcing with damage to contacts and personal injury. Wait at least 10 minutes after disconnecting the product from the supply voltages (mains supply and 24V supply) before touching potentially live sections of the equipment (such as contacts) or removing any connections.

Always measure the voltage in the DC bus link and wait until the voltage is below 50 V before handling components.

Functional Safety

The STO safety implementation on the S700 is certified. The assessment of the safety functions according to EN13849 or EN 62061 must finally be done by the user.

Reinforced Insulation

Thermal sensors, motor holding brakes and feedback systems built into the connected motor must have reinforced insulation (according to IEC61800-5-1) against system components with power voltage, according to the required application test voltage. All Kollmorgen components meet these requirements.

Never modify the drive!

It is not allowed to modify the drive hardware without permission by the manufacturer. Opening the housing causes loss of warranty.
3.2 Warning notes placed on the product

S748/772

Residual Voltage.
Wait 10 minutes
after removing power.

NOTICE If these signs are damaged, they must be replaced immediately.
3.3 Use as Directed

The servo amplifiers are components which are built into electrical equipment or machines, and can only be used as integral components of such equipment. If the servo amplifiers are used in residential areas, or in business or commercial premises, then additional filter measures must be implemented by the user.

Cabinet and Wiring

- The servo amplifiers may only be operated in a closed switchgear cabinet, taking into account the ambient conditions (⇒ # 32) and the dimensions (⇒ # 54). Ventilation or cooling may be necessary to prevent enclosure ambient from exceeding 40°C (104°F).
- Use only copper wire. Wire size may be determined from EN 60204 (or table 310-16 of the NEC 60°C or 75°C column for AWG size).

Power supply

- Servo amplifiers in the S700 series can be supplied from 1-phase or 3-phase grounded (earthed) industrial supply networks (TN-system, TT-system with grounded neutral point, no more than 42kA symmetrical rated current).
- S7480/S7720: In case of mains voltage asymmetry >3% a mains choke must be used.
- Periodic overvoltages between outer conductor (L1, L2, L3) and housing of the servo amplifier may not exceed 1000V (peak value). Transient overvoltages (< 50µs) between the outer conductors may not exceed 1000V. Transient overvoltages (< 50µs) between outer conductors and housing may not exceed 2000V.

For the cases of DC input power for single and group installations

S700 has not been evaluated by Kollmorgen, UL, or TÜV for replacing AC mains input with DC input - for either single or group installations.

DC installations must be reviewed and evaluated by the user for branch circuit protection*, wire size, wire voltage rating, fuse protection, system dielectric requirements, overvoltage and input** current rating.

In case of DC supplied drives the built-in EMC filter will not work. The user is responsible to keep the conducted emissions and the immunity of the drive within the required noise levels.

*Special care must be taken in branch circuit design with mixed rating drives to avoid the smaller drives becoming the effective ‘fuse’ rather than the circuit protective fuse.

**The power supply system design must ensure inrush current protection by limiting input current during power up. DC supply polarity must be properly wired. Improper polarity of DC power will damage the drive and void warranty.

Motors

- The S700 family of servo amplifiers is only intended to drive specific brushless synchronous servomotors, with closed-loop control of torque, speed and/or position. The rated voltage of the motors must be at least as high as the DC bus link voltage of the servo amplifier.

Functional Safety

- Consider the specific "use as directed" information (⇒ # 41) when you use the safety function STO.
- To achieve PL e or SIL CL3, the safe switching of the pulse inhibitor must be tested periodically by analyzing the feedback signal from the safety control.
- Observe the user documentation for safety cards S1-2(S3) / S2-2(S4) when you use a safety expansion card.
3.4 Prohibited Use

Other use than that described in chapter "Use as directed" is not intended and can lead to personnel injuries and equipment damage.

The use of the servo amplifier in the following environments is prohibited:

- potentially explosive areas,
- environments with corrosive and/or electrically conductive acids, alkaline solutions, oils, vapors, dusts,
- directly on non-grounded supply networks or on asymmetrically grounded supplies with a voltage >240V,
- ships or offshore applications.

Commissioning the servo amplifier is prohibited if the machine in which it was installed,

- does not meet the requirements of the EC Machinery Directive,
- does not comply with the EMC Directive,
- does not comply with the Low Voltage Directive.

The control of holding brakes by the S700 alone may not be used in applications, where functional safety is to be ensured with the brake.
4 Product life cycle handling

4.1 Transport

- Only by qualified personnel in the manufacturer's original recyclable packaging
- Avoid shocks
- Temperature: –25 to +70°C, max. 20K/h rate of change, class 2K3 acc. to EN61800-2, EN60721-3-1
- Humidity: max. 95% relative humidity, no condensation, class 2K3 acc. to EN61800-2, EN60721-3-1
- If the packaging is damaged, check the unit for visible damage. In this case, inform the shipper and the manufacturer.

NOTICE
The servo amplifiers contain electrostatically sensitive components which can be damaged by incorrect handling. Discharge yourself before touching the servo amplifier. Avoid contact with highly insulating materials (artificial fabrics, plastic films etc.). Place the servo amplifier on a conductive surface.

4.2 Packaging

The S700 packaging consists of recyclable cardboard with inserts.

- Dimensions S748/S772: (HxWxD) 390x600x400 mm
- Labeling: nameplate outside at the box

4.3 Storage

- Storage only in the manufacturer's original recyclable packaging
- Max. stacking height S748...S772: 3 cartons
- Storage temperature: -25 to +55°C, max. rate of change 20K/h, class 1K4 acc. to EN61800-2, EN60721-3-1
- Storage humidity: 5...95% relative humidity, no condensation, class 1K3 acc. to EN61800-2, EN60721-3-1
- Storage duration: Less than 1 year without restriction.
 More than 1 year: capacitors must be re-formed before setting up and operating the servo amplifier. To do this, remove all electrical connections and apply single-phase 230V AC for about 30 minutes to the terminals L1 / L2.

4.4 Decommissioning

NOTICE
Only professional staff who are qualified in electrical engineering are allowed to decommission parts of the system.

DANGER: Lethal Voltages!
There is a danger of serious personal injury or death by electrical shock or electrical arcing.

- Switch off the main switch of the switchgear cabinet.
- Secure the system against restarting.
- Block the main switch.
- Wait at least 10 minutes after disconnecting.
4.5 Maintenance and cleaning

The device does not require maintenance. Opening the device voids the warranty. The inside of the unit can only be cleaned by the manufacturer.

NOTICE

Do not immerse or spray the device. Avoid that liquid enters the device.

To clean the device exterior:

1. Decommission the device (see chapter 4.4 "Decommissioning").
2. Casing: Clean with isopropanol or similar cleaning solution.
 - **Caution**: Highly Flammable! Risk of injury by explosion and fire.
 - Observe the safety notes given on the cleaning liquid package.
 - Wait at least 30 minutes after cleaning before putting the device back into operation.
3. Protective grill on fan: Clean with a dry brush.

4.6 Disassembly

NOTICE

Only professional staff who are qualified in electrical engineering are allowed to disassemble parts of the system.

1. Decommission the device (see chapter 4.4 "Decommissioning").
2. Check temperature.
 - **CAUTION**: High Temperature! Risk of minor burns. During operation, the heat sink of the drive may reach temperatures above 80 °C (176 °F). Before touching the device, check the temperature and wait until it has cooled below 40 °C (104 °F).
3. Remove the connectors. Disconnect the potential earth connection last.
4. Demount: loosen the fastening screws. Remove the device.
4.7 System Repair

NOTICE
Only professional staff who are qualified in electrical engineering are allowed to exchange parts of the drive system.

CAUTION: Automatic Start! During replacement work a combination of hazards and multiple episodes may occur.

- Work on the electrical installation may only be performed by trained and qualified personnel, in compliance with the regulations for safety at work, and only with use of prescribed personal safety equipment.

Exchange of the device

Only the manufacturer can repair the device. Opening the device voids the warranty.

1. Decommission the device (see chapter 4.4 “Decommissioning”).
2. Demount the device (see chapter 4.6 “Disassembly”).
3. Send the device to the manufacturer.
4. Install a new device as described in this manual.
5. Setup the system as described in this manual.

Exchange of other drive system parts

If parts of the drive system (for example cables) must be replaced, proceed as follows:

1. Decommission the device (see chapter 4.4 “Decommissioning”).
2. Exchange the parts.
3. Check all connections for correct fastening.
4. Setup the system as described in this manual.

4.8 Disposal

NOTICE
To dispose the unit properly, contact a certified electronic scrap disposal merchant.

In accordance with the WEEE-2012/19/EC guideline and similar, the manufacturer accepts returns of old devices and accessories for professional disposal. Transport costs are the responsibility of the sender.

Contact Kollmorgen and clarify the logistics.
5 Approvals

Certificates (CE, functional safety) can be found at the Kollmorgen Website.

5.1 Conformance with UL

The servo amplifiers are listed under UL file number E217428.

UL-certified servo amplifiers (Underwriters Laboratories Inc.) fulfill the relevant U.S. standards (in this case UL 840 and UL 508C). The UL certification relates only to the mechanical and electrical construction design of the device. This standard describes the fulfillment by design of minimum requirements for electrically operated power conversion equipment, such as frequency converters and servo amplifiers, which is intended to eliminate the risk of fire, electric shock, or injury to persons, being caused by such equipment. The technical conformance with the U.S. standard is determined by an independent UL inspector through the type testing and regular checkups. Apart from the notes on installation and safety in the documentation, the customer does not have to observe any other points in direct connection with the UL-certification of the equipment.

UL 508C: UL 508C describes the fulfillment by design of minimum requirements for electrically operated power conversion equipment, such as frequency converters and servo amplifiers, which is intended to eliminate the risk of fire being caused by such equipment.

UL 840: UL 840 describes the fulfillment by design of air and insulation creepage spacings for electrical equipment and printed circuit boards.

UL Markings

- Use 60°C or 75°C copper wire only.
- Tightening torque for field wiring terminals:
 - X0 8-2 AWG, TQ Lb In. 40.
 - X8 8-2 AWG, TQ Lb In. 40.
- Use in a pollution degree 2 environment.
- These devices provide solid state motor overload protection at 130% of full load current.
- Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes.
- These devices are not provided with motor over-temperature sensing.
- Suitable for use on a circuit capable of delivering not more than 42kA rms symmetrical amperes for a max. voltage of 480 Vac.
- Supply circuit protection:

<table>
<thead>
<tr>
<th>Model</th>
<th>Fuse class</th>
<th>Rating Voltage/SCCR</th>
<th>Max. Fuse Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>S7480</td>
<td>RK5, CC, J, T</td>
<td>600VAC 200kA</td>
<td>60A</td>
</tr>
<tr>
<td>S7720</td>
<td>RK5, CC, J, T</td>
<td>600VAC 200kA</td>
<td>80A</td>
</tr>
</tbody>
</table>

- For use on a solidly grounded wye source only.
5.2 CE conformance

The servo amplifiers have been tested by an authorized testing laboratory in a defined configuration, using the system components that are described in this documentation. Any divergence from the configuration and installation described in this documentation means that you will be responsible for carrying out new measurements to ensure conformance with regulatory requirements.

Kollmorgen declares the conformity of the products S748 and S772 with the following directives

- EC Machinery Directive 2006/42
- EC EMC Directive 2014/30/EC
- EC Low Voltage Directive 2014/35/EC

Concerning noise immunity the servo amplifier meets the requirements to the 2nd environmental category (industrial environment). For noise emission the amplifier meets the requirement to a product of the category C2 (motor cable up to 10 m). With a motor cable length from 10 m onwards, the servo amplifier meets the requirement to the category C3.

NOTICE

This product can cause high-frequency interferences in non industrial environments which can require measures for interference suppression.

5.2.1 European Directives and Standards for the machine builder

Servo amplifiers are safety components that are intended to be incorporated into electrical plant and machines for industrial use. When the servo amplifiers are built into machines or plant, the amplifier must not be used until it has been established that the machine or equipment fulfills the requirements of the

- EC Machinery Directive (2006/42/EC)
- EC EMC Directive (2014/30/EC)
- EC Low Voltage Directive (2014/35/EC)

Standards to be applied for conformance with EC Machinery Directive (2006/42/EC)

- IEC 60204-1 (Safety and Electrical Equipment in Machines)
- ISO 12100 (Safety of Machines)

NOTICE

The manufacturer of the machine must generate a risk assessment for the machine, and must implement appropriate measures to ensure that unforeseen movements cannot cause injury or damage to any person or property.

The machine manufacturer must check whether other standards or EC Directives must be applied to the machine.

Standards to be applied for conformance with EC Low Voltage Directive(2014/35/EC)

- IEC 60204-1 (Safety and Electrical Equipment in Machines)
- IEC 60439-1 (Low-voltage switchgear and controller assemblies)

Standards to be applied for conformance with EC EMC Directive (2014/30/EC)

- IEC 61000-6-1 / 2 (Interference Immunity in Residential & Industrial Areas)
- IEC 61000-6-3 / 4 (Interference Generation in Residential & Industrial Areas)

The manufacturer of the machine is responsible for ensuring that it meets the limits required by the EMC regulations. Advice on the correct installation for EMC can be found in this documentation.

We only guarantee the conformance of the servo system with the standards cited in this chapter if the components (motor, cables, chokes etc.) are those supplied by us.
5.2.2 Functional Safety Conformance according to EC Machinery Directive

STO (Safe Torque Off)

The S700 servo amplifier offers a two channel STO function (Safe Torque Off). The function blocks the trigger pulses of the power transistors (pulse inhibitor).

The STO safety concept is certified by the TÜV. The safety circuit concept for realizing the safety function "Safe Torque Off" in the servo amplifiers S700 is suited for SIL CL3 according to IEC 62061 and PLe according to ISO 13849-1. The subsystems (servo amplifiers) are totally described for safety techniques with the characteristic data SIL CL, PFHD and TM.

<table>
<thead>
<tr>
<th>Device</th>
<th>Operation mode</th>
<th>EN 13849-1</th>
<th>EN 62061</th>
<th>PFHD [1/h]</th>
<th>TM [Year]</th>
</tr>
</thead>
<tbody>
<tr>
<td>STO1/2 Enable</td>
<td>single channel</td>
<td>PLd, Cat.3</td>
<td>SIL CL 2</td>
<td>7.05E-08</td>
<td>20</td>
</tr>
<tr>
<td>STO1-Enable + STO2-Enable</td>
<td>dual channel</td>
<td>PLd, Cat.3</td>
<td>SIL CL 2</td>
<td>7.05E-08</td>
<td>20</td>
</tr>
<tr>
<td>STO1-Enable + STO2-Enable + STO-Status</td>
<td>dual channel + periodical testing</td>
<td>PLe, Cat.4</td>
<td>SIL CL 3</td>
<td>1.38E-09</td>
<td>20</td>
</tr>
</tbody>
</table>

SIL2 / PLd solutions can be implemented with single-channel or dual-channel control with simple safety switching devices.

SIL3 / PLe solutions requires a safety control that periodically tests the safe switching of the pulse inhibitor by analyzing the feedback signal.

Expansion card "Safety 2-2" (S4)

This expansion card (Basic version) includes various safety functions for the safe operation of drive shafts. All functions fulfill the safety requirements SIL CL2 according to IEC 62061 respectively performance level PLd according to ISO 13849-1. The functional safety is certified by the TÜV. Safety characteristic data are listed in the Instructions Manual of the expansion card.

Expansion card "Safety 1-2" (S3)

This expansion card (full version) includes several safety functions. All functions fulfill the safety requirements SIL CL3 acc. to IEC 62061 respectively performance level PLe acc. to ISO 13849-1. The functional safety is certified by the TÜV. Safety characteristic data are listed in the Instructions Manual of the expansion card.

5.3 Conformance with RoHS

The device is manufactured in conformance with RoHS Directive 2011/65/EC with delegated directive 2015/863/EC for installation into a machine.

5.4 Conformance with REACH

EU Regulation no. 1907/2006 deals with the registration, evaluation, authorization and restriction of chemical substances (abbreviated to "REACH").

The device does not contain any substances (CMR substances, PBT substances, vPvB substances and similar hazardous substances stipulated in individual cases based on scientific criteria) above 0.1 mass percent per product that are included on the candidate list.
5.5 Conformance with EAC

EAC is the abbreviation for Eurasian Conformity. The mark is used in the states of the Eurasian Customs Union (Russia, Belarus, Kazakhstan) similar to the European CE mark. Kollmorgen declares, that the device has passed all required conformity procedures in a member state of the Eurasian Customs Union, and that the device meets all technical requirements requested in the member states of the Eurasian Customs Union:

- Low voltage (TP TC 020/2011)
- Electromagnetic Compatibility (TP TC 004/2011)

Contact: Intelisys LLC., Bakuninskaya Str. d 14, Building 10, RU-105005 Moskau
6 Package

6.1 Package supplied

When an amplifier from the S700 series is ordered (order numbers (⇒ #159)), the following is supplied:

- Servo amplifier S700 with shielding plate and shield clamps
- Product Safety Guide S700 (printed)
- Online documentation and setup software on CD-ROM
- Mating connectors X3A, X3B, X4, X9A, X9B

NOTE
The mating SubD connectors are not part of the package!

Accessories: (must be ordered separately, if required; description see accessories manual)

- Hybrid motor cable (prefabricated) for single cable connection
- Motor cable as a cut-off length
- Feedback cable (prefabricated) or both feedback connectors separately, with the feedback cable as a cut-off length
- External brake resistor BAS(U)
- Communication cable to the PC (⇒ #104) for setting parameters from a PC
- Power cable, control cables, fieldbus cables (as cut-off lengths)
- Mains choke if mains voltage is more than 3% asymmetrical

6.2 Nameplate

The nameplate is attached to the side of the servo amplifier. The information described below is printed in the individual fields. Picture similar to the original nameplate.
6.3 Part number scheme

Use the part number scheme for product identification only, not for the order process, because not all combinations of features are possible, always.

Example 1: S77202-EIF2PM-NA-000

S7 S700
72 72A rated current
0 208...480V rated voltage
2 no electr./mech. option
EI I/O expansion card in Slot 1
F2 Expansion card Controlled Fan in Slot 2
PM Posi/O expansion card in Slot 3
NA Standard (EtherCAT&CANopen onboard)
000 no customer specific specials

Example 2: S7480C-EIF2S4-NA-000

S7 S700
48 48A rated current
0 208...480V rated voltage
C Coldplate
EI I/O expansion card in Slot 1
F2 Expansion card Controlled Fan in Slot 2
S4 Safety Card S2-2 in Slot 3
NA Standard (EtherCAT&CANopen onboard)
000 no customer specific specials

Notes:
1. a is void with standard
2. b is void with standard, additional coding defines customer specific specials.
7 Technical description

7.1 The S700 family of digital servo amplifiers

Standard version

- Large supply voltage range: 3 x 208V -10% ... 480V +10%
 (with mains voltage below 300V set parameters NONBTB=3 and VBUSBAL=1)
- Overvoltage category III acc. to IEC 61800-5-1
- CANopen on board
- EtherCAT on board
- RS232 and 24V pulse direction interface on board
- Resolver-, Encoder-, AquadB Encoder-, ComCoder- evaluation on board
- Position controller on board
- Safe Stop STO on board (up to SIL CL3, PLe)
- 3 front side slots for expansion cards
- Memory Card slot on board
- Synchronous servomotors, linear motors, asynchronous motors and DC motors can be used

Power section

- Directly on grounded mains supply, 3x208V -10% ... 3x480V +10%, 50/60Hz
 (with mains voltage below 300V set parameters NONBTB=3 and VBUSBAL=1)
- TN-network or TT-network with grounded neutral point, 42kA max. symmetrical current rating, connection to other supply types only via isolating transformer (➤ #68)
- B6 bridge rectifier, integral supply filter and soft-start circuit
- Single-phase supply operation possible (e.g. for setup)
- Fusing (e.g. fusible cutout): to be provided by the user
- Shielding: All shielding connections are made directly on the amplifier
- Output stage: IGBT module with floating current measurement
- Brake circuit: With dynamic distribution of the generated power between several amplifiers on the same DC bus link circuit. External brake resistors if required.
- DC bus link voltage: 260...900 V DC, can be connected in parallel.
- Interference suppression filters are integrated for the electrical supply feed and the 24 V auxiliary supply voltage (with motor cable 10 m for C2 as per IEC 61800-3, with motor cable > 10 m for C3 as per IEC 61800-3).
Integrated safety

- Appropriate insulation and creepage distances and electrical isolation ensure safe electrical separation, as per IEC 61800-5-1, between the power input / motor connections and the signal electronics.
- Soft-start, overvoltage detection, short-circuit protection, phase-failure monitoring.
- Temperature monitoring of the servo amplifier and motor (if our motors and prefabricated cables are used).
- Safe stop (up to SILCL3 acc. to IEC 62061, PLe acc. to ISO13849-1), (⇒ # 41)
- Slot for safety card with more safety functions for the safe drive operation, (⇒ # 153)

Auxiliary supply voltage 24V DC

- Electrically isolated, internal fusing, from an external 24V DC power supply unit.
- Separate 24V supply input for internal electronic supply
- Separate 24V supply input for motor holding brake supply
- Separate 24V supply input for digital outputs

Operation and parameter setting

- With our user-friendly setup software DRIVEGUI.EXE, for setup via the serial interface of a PC.
- If no PC is available: direct operation by two keys on the servo amplifier and a 3-character LED display.
- Fully programmable via RS232 interface.
- Read and write access to parameter records and firmware via smartcard.

Completely digital control

- Digital current controller (space vector, pulse-width modulation, 62.5 μs)
- Adjustable digital speed controller (62.5 μs)
- Integrated position controller, with adaptation possibilities for all applications (250 μs, optionally 125 μs)
- Integrated 24V step/direction interface for connecting a servomotor to a stepper controller

Inputs and Outputs

- Programmable analog inputs (⇒ # 99)
- Programmable analog inputs (⇒ # 100)
- 2 programmable digital inputs/outputs (direction selectable) (⇒ # 100)
- Programmable logical combinations of digital signal
- 1 input Enable (⇒ # 100)
- 2 inputs STO Enable (⇒ # 101)
- 2 STO-Status Outputs (⇒ # 102)
Expansions

Slot 1
Expansion cards in slot 1 can be combined with F2 Option in slot 2. More combinations of slot 1 and slot 2 expansion cards are not possible.

- I/O-14/08 expansion card, (✈ # 127)
- PROFIBUS expansion card, (✈ # 130)
- sercos® II expansion card, (✈ # 131)
- DeviceNet expansion card, (✈ # 133)
- SynqNet expansion card, (✈ # 136)
- FB-2to1 expansion card, (✈ # 138)
- -2CAN- expansion module, separated connectors for CAN bus and RS232, (✈ # 140)

Slot 2

- PosI/O expansion card,(✈ # 143)
- PosI/O-Monitor expansion card, (✈ # 143)
- F2 Option, controlled fan, later insertion not possible,(✈ # 152), can be combined with expansion cards in slot 1.

Slot 3

- PosI/O expansion card, (✈ # 152)
- PosI/O-Monitor expansion card, (✈ # 152)
- F2 Option, controlled fan, later insertion not possible, (✈ # 152)
- Safety expansion card (S3) S1-2 (SIL CL3), (✈ # 155)
- Safety expansion card (S4) S2-2 (SIL CL2), (✈ # 153)

Several third-party expansion cards (ModBus, LightBus, FIP-IO etc. please contact the manufacturer for further information)

Macro programming

More information can be found in our KDN Makro-Programming.

- 62.5μs / 250μs / 1ms / 4ms / 16ms / IDLE / IRQ
- 128 kByte memory
- IEC 61131 structured text
- 400 easy instructions every 62.5 μs
- CAN objects for multi axis control
7.2 Technical data

7.2.1 Rated data

<table>
<thead>
<tr>
<th>Electrical data</th>
<th>DIM</th>
<th>S74802</th>
<th>S77202</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated supply voltage (grounded supply. phase to phase) (L1L2L3)</td>
<td>V~</td>
<td>3 x 208V-10% … 3 x 480V+10%. 50/60 Hz</td>
<td></td>
</tr>
<tr>
<td>Rated input power for cont. operation</td>
<td>kVA</td>
<td>35</td>
<td>50</td>
</tr>
<tr>
<td>Permitted switch on/off frequency</td>
<td>1/h</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>Auxiliary voltage supply</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum DC bus link voltage</td>
<td>V=</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>Rated output current (rms value, 3%) at 3x208V</td>
<td>Arms</td>
<td>48</td>
<td>72</td>
</tr>
<tr>
<td>at 3x230V</td>
<td>Arms</td>
<td>48</td>
<td>72</td>
</tr>
<tr>
<td>at 3x400V</td>
<td>Arms</td>
<td>48</td>
<td>72</td>
</tr>
<tr>
<td>at 3x480V</td>
<td>Arms</td>
<td>48</td>
<td>72</td>
</tr>
<tr>
<td>Peak output current (for max. 5s. ± 3%)</td>
<td>Arms</td>
<td>96</td>
<td>140</td>
</tr>
<tr>
<td>Switching frequency of output stage</td>
<td>kHz</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>- at reduced current (50%)</td>
<td>kHz</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Voltage rise speed dU/dt, (measured without connected motor, (⇒ # 73))</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>at 3x208V</td>
<td>kV/µs</td>
<td>2.1</td>
<td></td>
</tr>
<tr>
<td>at 3x230V</td>
<td>kV/µs</td>
<td>2.3</td>
<td></td>
</tr>
<tr>
<td>at 3x400V</td>
<td>kV/µs</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>at 3x480V</td>
<td>kV/µs</td>
<td>4.8</td>
<td></td>
</tr>
<tr>
<td>Technical data for brake circuit</td>
<td>—</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Threshold for overvoltage switch-off</td>
<td>VDC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor inductance min. at 3x208V</td>
<td>mH</td>
<td>0.38</td>
<td>0.26</td>
</tr>
<tr>
<td>Motor inductance min. at 3x230V</td>
<td>mH</td>
<td>0.42</td>
<td>0.29</td>
</tr>
<tr>
<td>Motor inductance min. at 3x400V</td>
<td>mH</td>
<td>0.74</td>
<td>0.51</td>
</tr>
<tr>
<td>Motor inductance min. at 3x480V</td>
<td>mH</td>
<td>0.88</td>
<td>0.61</td>
</tr>
<tr>
<td>Motor inductance max.</td>
<td>mH</td>
<td>Consult our support</td>
<td></td>
</tr>
<tr>
<td>Form factor of the output current (rated conditions, min. load inductance)</td>
<td>—</td>
<td>1.01</td>
<td></td>
</tr>
<tr>
<td>Bandwidth of current controller</td>
<td>kHz</td>
<td>> 1.2 (up to 5)</td>
<td></td>
</tr>
<tr>
<td>Residual voltage drop at rated current</td>
<td>V</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Thermal dissipation, output stage disabled</td>
<td>W</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>Thermal dissipation at rated current (without brake dissipation) at 3x230V</td>
<td>W</td>
<td>555</td>
<td>855</td>
</tr>
<tr>
<td>at 3x400V</td>
<td>W</td>
<td>635</td>
<td>1005</td>
</tr>
<tr>
<td>at 3x480V</td>
<td>W</td>
<td>685</td>
<td>1135</td>
</tr>
<tr>
<td>Noise emission max.</td>
<td>dB(A)</td>
<td>62</td>
<td>68</td>
</tr>
</tbody>
</table>

Mechanical data

Weight	kg	13
Weight Coldplate Version (S7480C, S7480A)	kg	10.4
Height, without/with connectors & shielding plate	mm	386/505
Width	mm	190
Depth, without/with connectors	mm	244/285

In case of mains voltage below 300V, set parameters NONBTD=3 and VBUSBAL=1.
7.2.2 Inputs, outputs, aux. voltage supply

<table>
<thead>
<tr>
<th>Interface</th>
<th>electr. data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog inputs 1 and 2 Max. common-mode voltage</td>
<td>±10 V ±10 V</td>
</tr>
<tr>
<td>Digital control inputs</td>
<td>as per EN 61131-2 Typ1. max. 30 VDC. 15 mA</td>
</tr>
<tr>
<td>Digital control outputs</td>
<td>as per EN 61131-2 Typ1. max. 30 VDC. 100 mA</td>
</tr>
<tr>
<td>BTB/RTO output, relay contacts</td>
<td>max. 30 VDC. max 42 VAC, 500 mA</td>
</tr>
<tr>
<td>24V-IO for digital outputs</td>
<td>20 V ... 30 V</td>
</tr>
<tr>
<td>Auxiliary supply voltage PELV, PELV</td>
<td></td>
</tr>
<tr>
<td>- Electronics (with fan, no option card)</td>
<td>24 V (-0% +15%), 2A</td>
</tr>
<tr>
<td>- Motor brake, min./max. output current</td>
<td>24 V (-0% +15%), 0.15 A / 3 A</td>
</tr>
</tbody>
</table>

7.2.3 Connectors

<table>
<thead>
<tr>
<th>Connector</th>
<th>Type</th>
<th>max. cross section</th>
<th>permiss. current</th>
<th>permiss. voltage</th>
</tr>
</thead>
<tbody>
<tr>
<td>X0 Mains</td>
<td>Terminals</td>
<td>35 mm²</td>
<td>125 A</td>
<td>1000 V</td>
</tr>
<tr>
<td>X1 Encoder input</td>
<td>SubD15pol. (female)</td>
<td>0.5 mm²</td>
<td>1 A</td>
<td><100 V</td>
</tr>
<tr>
<td>X2 Resolver input</td>
<td>SubD 9pol. (female)</td>
<td>0.5 mm²</td>
<td>1 A</td>
<td><100 V</td>
</tr>
<tr>
<td>X3A, X3B Control signals</td>
<td>Mini-Combicon connector</td>
<td>1.5 mm²</td>
<td>4 A</td>
<td>160 V</td>
</tr>
<tr>
<td>X4 Aux. voltage, STO</td>
<td>Mini-Combicon connector</td>
<td>1.5 mm²</td>
<td>4 A</td>
<td>160 V</td>
</tr>
<tr>
<td>X5 (optional) Encoder Emulation, ROD/SSI</td>
<td>SubD 9pol. (male)</td>
<td>0.5 mm²</td>
<td>1 A</td>
<td><100 V</td>
</tr>
<tr>
<td>X6 PC interface, CAN</td>
<td>SubD 9pol. (male)</td>
<td>0.5 mm²</td>
<td>1 A</td>
<td><100 V</td>
</tr>
<tr>
<td>X7A,B EtherNET</td>
<td>RJ45 connector</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X8 DC Bus link, Motor, Brake Resistor</td>
<td>Terminals</td>
<td>35 mm²</td>
<td>125 A</td>
<td>1000 V</td>
</tr>
<tr>
<td>X9A,B Motor brake</td>
<td>Mini-Combicon connector</td>
<td>1.5 mm²</td>
<td>4 A</td>
<td>160 V</td>
</tr>
</tbody>
</table>

*1 single-line connection
*2 single-line connection with recommended conductor cross section (➜ # 33)
*3 rated voltage with pollution level 2

7.2.4 Recommended tightening torques

<table>
<thead>
<tr>
<th>Connector</th>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>X0 with up to 25mm² wire</td>
<td>2.5 Nm</td>
</tr>
<tr>
<td>X0 with 35mm² wire</td>
<td>4.5 Nm</td>
</tr>
<tr>
<td>X3A,B</td>
<td>Cage clamps</td>
</tr>
<tr>
<td>X4</td>
<td>Cage clamps</td>
</tr>
<tr>
<td>X8 with up to 25mm² wire</td>
<td>2.5 Nm</td>
</tr>
<tr>
<td>X8 with 35mm² wire</td>
<td>4.5 Nm</td>
</tr>
<tr>
<td>X9A</td>
<td>Cage clamps, Mounting flange: 0.5 Nm</td>
</tr>
<tr>
<td>Grounding bolt</td>
<td>3.5 Nm</td>
</tr>
</tbody>
</table>
7.2.5 Fusing

Internal fusing, wire fuse or electronic

<table>
<thead>
<tr>
<th>Circuit</th>
<th>S748 / S772</th>
</tr>
</thead>
<tbody>
<tr>
<td>24V Electronics</td>
<td>4 A</td>
</tr>
<tr>
<td>24V Motor brake</td>
<td>4 A</td>
</tr>
<tr>
<td>Brake resistor</td>
<td>electronic</td>
</tr>
</tbody>
</table>

External fusing

<table>
<thead>
<tr>
<th>Fusible cutouts or similar</th>
<th>S748</th>
<th>S772</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC supply $F_{N1/2/3}$</td>
<td>60 A*</td>
<td>80 A*</td>
</tr>
<tr>
<td>24V Electronics $F_{H1/2}$</td>
<td>8 A**</td>
<td>8 A**</td>
</tr>
<tr>
<td>24V Brake $F_{H3/4}$</td>
<td>8 A**</td>
<td>8 A**</td>
</tr>
<tr>
<td>Brake resistor $F_{B1/2}$</td>
<td>100 A***</td>
<td>100 A***</td>
</tr>
</tbody>
</table>

* EU fuses: types gRL or gL, 400V/500V
* US fuses: class RK5 or CC or J or T, 600VAC 200kA, time-delay
** e.g. wire fuses or micro fuse or Automatic Circuit Brakers
*** EU fuses: Bussmann HLS, 690V/100A
US fuses: Bussmann FWP-xxA22F, Size 22x58mm, UL approved for 500Vdc

Tips and detailed information can be found in the "KDN".

7.2.6 Ambient Conditions, Ventilation, and Mounting Position

Storage, hints	(☞ # 18)
Transport, hints	(☞ # 18)
Surrounding air tem-	0 to +40°C (32 to 104°F) at rated data
perature in o-	+40 to +55°C (113 to 131°F) with power derating 2.5% / K
peration	rel. humidity 85%, no condensation, class 3K3
Site altitude	up to 1000m a.m.s.l. without restriction
	1000 — 2500m a.m.s.l. with power derating 1.5%/100m
Pollution level	Pollution level 2 to EN 60664-1
Vibrations	Class 3M1 according to IEC 60721-3-3
Enclosure protection	IP 20 according to EN60529
Mounting position	generally vertical (☞ # 56)
Ventilation	built-on/built-in fan (optionally controlled, option F2)

NOTICE

The servo amplifier shuts down (F01 and F13 (☞ # 123), motor has no torque) in case of excessively high temperature in the control cabinet. Make sure that there is sufficient forced ventilation within the switchgear cabinet.

Kollmorgen requirements for servo amplifiers with Coldplate:

Flatness of the mounting (cooling) plate: ≤ 25 μm / 100 mm

<table>
<thead>
<tr>
<th>Mains voltage</th>
<th>Max. thermal resistance</th>
<th>Max. allowed temperature at center of coldplate</th>
</tr>
</thead>
<tbody>
<tr>
<td>230 V</td>
<td>0.063 K/W</td>
<td>75 °C</td>
</tr>
<tr>
<td>400 V</td>
<td>0.055 K/W</td>
<td>75 °C</td>
</tr>
<tr>
<td>480 V</td>
<td>0.051 K/W</td>
<td>75 °C</td>
</tr>
</tbody>
</table>

NOTICE

The cooling plate temperature must not be more than 10 K below the environment temperature. With a difference of more than 10 K there is a risk of condensation. Condensation may destroy the electronics of the servo amplifier.
7.2.7 Conductor cross-sections

Recommendations for cables (material and construction (➡ #63).
Following IEC 60204 (B2), we recommend for **single-axis systems**:

<table>
<thead>
<tr>
<th>Interface</th>
<th>Cross section</th>
<th>Techn. requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC connection</td>
<td>S748: 16 mm²</td>
<td>600 V, 80°C</td>
</tr>
<tr>
<td></td>
<td>S772: 25 mm²</td>
<td></td>
</tr>
<tr>
<td>DC bus link</td>
<td>S748: 25 mm²</td>
<td>1000 V, 80°C, shielded for lengths >0.50 m</td>
</tr>
<tr>
<td></td>
<td>S772: 25 mm²</td>
<td></td>
</tr>
<tr>
<td>Brake resistor</td>
<td>S748: 35 mm²</td>
<td>1000 V, 80°C, shielded for lengths >0.50 m</td>
</tr>
<tr>
<td></td>
<td>S772: 35 mm²</td>
<td></td>
</tr>
<tr>
<td>Motor cables</td>
<td>S748: 16 mm²</td>
<td>600 V, 80°C, shielded, capacitance <150 pF/m</td>
</tr>
<tr>
<td></td>
<td>S772: 25 mm²</td>
<td></td>
</tr>
<tr>
<td>Resolver, motor thermal control, max.100m*</td>
<td>4x2x0.25 mm²</td>
<td>twisted pairs, shielded, C<120 pF/m</td>
</tr>
<tr>
<td>Encode, motor thermal control, max. 50m*</td>
<td>7x2x0.25 mm²</td>
<td>twisted pairs, shielded, C<120 pF/m</td>
</tr>
<tr>
<td>ComCoder, motor thermal control, max. 25m</td>
<td>8x2x0.25 mm²</td>
<td>twisted pairs, shielded, C<120 pF/m</td>
</tr>
<tr>
<td>Setpoints, AGND, max 30m</td>
<td>0.25 mm²</td>
<td>twisted pairs, shielded</td>
</tr>
<tr>
<td>Control signals, BTB, DGND, max. 30m</td>
<td>0.5 mm²</td>
<td></td>
</tr>
<tr>
<td>Holding brake (motor)</td>
<td>min. 0.75 mm²</td>
<td>600 V, 80°C, shielded, check voltage drop</td>
</tr>
<tr>
<td>+24 V electronics, max 30m</td>
<td>max. 1.5 mm²</td>
<td>check voltage drop</td>
</tr>
<tr>
<td>+24 V motor brake, max 30m</td>
<td>max. 1.5 mm²</td>
<td>check voltage drop</td>
</tr>
</tbody>
</table>

NOTICE

For multi-axis systems, observe the specific operating conditions for your system.
To reach functional safety with the max. permitted cable length, observe cable requirements (➡ #63)

* Kollmorgen North America supplies cables up to 39 meters, Europe up to max. length
7.3 Motor holding brake

A 24 V holding brake in the motor can be controlled directly by the amplifier. A special 24 V supply voltage (X9B) is used. Brakes with up to 3 A can be controlled directly.

CAUTION
No functional safety!
Danger by falling load (in case of suspended load, vertical axes). An additional mechanical brake is required for functional safety, which must be safely operated, e.g. via the Safety Card S1-2 (➡ # 155).

The brake only works with sufficient voltage level (➡ # 31). Check voltage drop, measure the voltage at brake input and check brake function (brake and no brake).

The brake function must be enabled through the BRAKE setting (screen page: Motor). In the diagram below you can see the timing and functional relationships between the ENABLE signal, speed setpoint, speed and braking force. All values can be adjusted with parameters, the values in the diagram are default values.

During the internal ENABLE delay time of 100 ms (DECDIS), the speed setpoint of the servo amplifier is internally driven down along an adjustable ramp to 0V. The output for the brake is switched on when the speed has reached 5 rpm (VELO), at the latest after 5 s (EMRGTO). The release delay time (tbrH) and the engage delay time (tbrL) of the holding brake that is built into the motor are different for the various types of motor (see motor manual), the matching data are loaded from the motor database when the motor is selected. A description of the interface can be found on page (➡ # 73).
7.4 LED display

A 3-character LED-Display indicates the status of the amplifier after switching on the 24 V supply (⇒ # 121). When the keys on the front panel are used, the parameter and function numbers are shown, as well as the numbers for any errors and warnings that may occur (⇒ # 123).

7.5 Grounding system

AGND - analog inputs, internal analog ground
DGND - 24V-I/O, digital inputs and digital outputs, optically isolated.
GND - internal digital ground, encoder Emulation, RS232, CAN
XGND - 24V supply, STO Enable, ventillator
BRGND - 24V motor brake supply

7.6 Dynamic braking (brake circuit)

During braking with the aid of the motor, energy is fed back into the servo amplifier. This generated energy is dissipated as heat in the brake resistor. The brake resistor is switched in by the brake circuit. The setup software can be used to adapt the brake circuit (thresholds) according to the electrical supply voltage. Our customer service can help you with the calculation of the brake power that is necessary for your system. A simple method is described in the "KDN". A description of the interface can be found on page (⇒ # 71).

Functional description:

1.- Individual amplifiers, not coupled through the DC bus link circuit (DC+, DC-)

When the energy fed back from the motor has an average or peak power that exceeds the preset level for the brake power rating, then the servo amplifier generates the warning “n02 brake power exceeded” and the brake circuit is switched off. The next internal check of the DC bus link voltage (after a few milliseconds) detects an overvoltage and the output stage is switched off, showing the error message “Overvoltage F02” (⇒ # 123).

The BTB/RTO contact (terminals X3B/14,15) will be opened at the same time (⇒ # 102).

2.- Several servo amplifiers coupled through the DC bus link (DC+, DC-)

Using the built-in brake circuit, several amplifiers of the same series can be operated off a common DC bus link (observe (⇒ # 70)), without requiring any additional measures. 90% of the combined power of all amplifiers is always available for peak and continuous power.

The switch-off on overvoltage takes place as described under 1. (above) for the amplifier that has the lowest switch-off threshold (resulting from tolerances).

Technical data of the brake circuits depend on the amplifiers type and the mains voltage situation (VBUSBAL).

<table>
<thead>
<tr>
<th>Technical Data</th>
<th>Rated data</th>
<th>DIM 1:230 V</th>
<th>2:400 V</th>
<th>3:480 V</th>
<th>4*:480 V</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch-on threshold of brake circuit</td>
<td>V</td>
<td>400</td>
<td>720</td>
<td>840</td>
<td>790</td>
</tr>
<tr>
<td>Overvoltage F02</td>
<td>V</td>
<td>455</td>
<td>800</td>
<td>900</td>
<td>900</td>
</tr>
<tr>
<td>Pulse brake power</td>
<td>kW</td>
<td>16</td>
<td>50</td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>External brake resistor (RBe), S748</td>
<td>Ohm</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>External brake resistor (RBe), S772</td>
<td>Ohm</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Continuous brake power (RBe)</td>
<td>kW</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Kollmorgen recommends setting VBUSBAL=4 in case of 480 V mains supply, with this setting the optimized calculation method is used.

NOTE

Suitable external brake resistors can be found in our accessories manual.
7.7 Switch-on and switch-off behavior

This chapter describes the switch-on and switch-off behavior of the S700 and the steps required to achieve operational stopping or emergency stop behavior that complies with standards.

The servo amplifier’s 24 V supply must remain constant.

The ASCII commands ACTFAULT (error response, also depends on the specific error, see ERRCODE) and STOPMODE (Enable signal response) dictate how the drive will behave.

<table>
<thead>
<tr>
<th>ACTFAULT & STOPMODE</th>
<th>Behavior: (see also ASCII reference in the Online Help of the setup software)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Motor coasts to a standstill in an uncontrolled manner</td>
</tr>
<tr>
<td>1 (default)</td>
<td>Motor is braked in a controlled manner</td>
</tr>
</tbody>
</table>

Behavior during a power failure

The servo amplifiers use an integrated circuit to detect if one or more input phases (power supply feed) fail. The behavior of the servo amplifier is set using the setup software:

Under “Response to Loss of Input Phase” (PMODE) on the Basic Setup screen, select:

- **Warning** if the higher-level control system is to bring the drive to a standstill: Warning n05 is output if an input phase is missing, and the motor current is limited to 4 A. The servo amplifier is not disabled. The higher-level control system can now selectively end the current cycle or start bringing the drive to a standstill. Therefore, the error message “MAINS BTB, F16” is output on a digital
- **Error message** if the servo amplifier is to bring the drive to a standstill: Error message F19 is output if an input phase is missing. The servo amplifier is disabled and the BTB contact opens. Where the factory setting is unchanged (ACTFAULT=1), the motor is braked using the set “EMERGENCY STOP RAMP”.

Behavior when undervoltage threshold is reached

If the undervoltage threshold is undershot in the DC bus link (the threshold value depends on the type of servo amplifier), the error message “UNDervoltage, F05” is displayed. The drive response depends on the ACTFAULT and STOPMODE setting.

Behavior with enabled “holding brake” function

Servo amplifiers with an enabled holding brake function have a special procedure for switching off the output stage (➜ # 34). Removing the ENABLE signal triggers electrical braking. As with all electronic circuits, the general rule applies that there is a possibility of the internal “holding brake” module failing. Functional safety, e.g. with hanging load (vertical axes), requires an additional mechanical brake which must be safely operated, e.g. via the Safety Card S1-2.

Behavior of the safety function STO

With the functional safe restart lock STO, the drive can be secured on standstill using its internal electronics so that even when power is being supplied, the drive shaft is protected against unintentional restart. The chapter “Safety function STO” describes how to use the STO function. See (➜ # 41) onwards.
7.7.1 Behavior in standard operation

The behavior of the servo amplifier always depends on the current setting of a number of different parameters (e.g., ACTFAULT, VBUSMIN, VELO, STOPMODE, see Online Help). The diagram below illustrates the correct functional sequence for switching the servo amplifier on and off.

![Diagram showing the correct functional sequence for switching the servo amplifier on and off.](image)

- Devices which are equipped with a selected “Brake” function use a special sequence for switching off the output stage (➜ #34).

The built-in safety function STO can be used to switch off the drive, so that functional safety is ensured at the drive shaft (➜ #41).

- In case of a built-in safety card, wait for the Ready Acknowledge (X30 Pin 16) of the safety card before enabling the servo amplifier again.
7.7.2 Behavior in the event of an error (with standard setting)

The behavior of the servo amplifier always depends on the current setting of a number of different parameters (e.g., ACTFAULT, VBUSMIN, VELO, STOPMODE, see Online Help).

CAUTION Uncontrolled coasting!

Some faults (see ERRCODE) force the output stage to switch-off immediately, independent from the ACTFAULT setting. Danger of injury by uncontrolled coasting of the load. An additional mechanical brake is required for functional safety, which must be safely operated.

The diagram shows the startup procedure and the procedure that the internal control system follows in the event of motor overtemperature, assuming that the standard parameter settings apply. Fault F06 does not switch-off the output stage immediately, with ACTFAULT=1 a controlled emergency brake is started first.

(F06 = error messages "Motor Temperature")

Even if there is no intervention from an external control system (in the example, the ENABLE signal remains active), the motor is immediately braked using the emergency stop ramp if the error is detected and assuming that no changes have been made to the factory setting (ACTFAULT=1).

NOTE In case of a built-in safety card, wait for the Ready Acknowledge (X30 Pin 16) of the safety card before enabling the servo amplifier again.
7.8 Stop-, Emergency Stop-, Emergency Off Function to IEC 60204

With the functional safe, certified function STO (➜ # 41) the drive can be secured on standstill (torque-free) using its internal electronics so that even when power is being supplied, the drive shaft is protected against unintentional restart (up to SIL CL3 according to IEC 62061, PLe according to ISO 13849-1).

With built-in “Safety” expansion card, more safe drive functions in accordance with IEC 61508 are provided (➜ # 153).

The parameters “STOPMODE” and “ACTFAULT” must be set to 1 in order to implement the stop and emergency stop categories. If necessary, change the parameters via the terminal screen of the setup software and store the data in the EEPROM.

Examples for implementation can be found in the KDN on page Stop and Emergency Stop Function.

7.8.1 Stop

The Stop function is used to shut down the machine in normal operation. The Stop functions are defined by IEC 60204.

Category 0: Shut-down by immediate switching-off of the energy supply to the drive machinery (i.e. an uncontrolled shut-down); this can be done with the built-in STO functionality (➜ # 41).

Category 1: A controlled shut-down, whereby the energy supply to the drive machinery is maintained to perform the shut-down, and the energy supply is only interrupted when the shut-down has been completed;

Category 2: A controlled shut-down, whereby the energy supply to the drive machinery is maintained.

The Stop Category must be determined by a risk evaluation of the machine. In addition, suitable means must be provided to guarantee a reliable shut-down.

Category 0 and Category 1 Stops must be operable independently of the operating mode, whereby a Category 0 Stop must have priority. Stop functions must be implemented by disconnection of the appropriate circuitry, and have priority over assigned start functions.

If necessary, provision must be made for the connection of protective devices and lock-outs. If applicable, the Stop function must signal its status to the control logic. A reset of the Stop function must not create a hazardous situation.

Examples for implementation can be found in the KDN on page Stop and Emergency Stop Function.
7.8.2 Emergency Stop

The Emergency Stop function is used for the **fastest possible shutdown** of the machine in a dangerous situation. The Emergency Stop function is defined by IEC 60204. Principles of emergency stop devices and functional aspects are defined in ISO 13850.

The Emergency Stop function will be triggered by the manual actions of a single person. It must be fully functional and available at all times. The user must understand instantly how to operate this mechanism (without consulting references or instructions).

NOTE

The Stop Category for the Emergency Stop must be determined by a risk evaluation of the machine.

In addition to the requirements for stop, the Emergency Stop must fulfil the following requirements:

- Emergency Stop must have priority over all other functions and controls in all operating modes.
- The energy supply to any drive machinery that could cause dangerous situations must be switched off as fast as possible, without causing any further hazards (Stop Category 0) or must be controlled in such a way, that any movement that causes danger, is stopped as fast as possible (Stop Category 1).
- The reset must not initiate a restart.

Examples for implementation can be found in the KDN on page Stop and Emergency Stop Function.

7.8.3 Emergency Off

The Emergency Off function is used to switch-off the electrical power supply of the machine. This is done to prevent users from any risk from electrical energy (for example electrical impact). Functional aspects for Emergency Off are defined in IEC 60364-5-53.

The Emergency Off function will be triggered by the manual actions of a single person.

NOTE

The result of a risk evaluation of the machine determines the necessity for an Emergency Off function.

Emergency Off is done by switching off the supply energy by electro-mechanical switching devices. This results in a category 0 stop. If this stop category is not possible in the application, then the Emergency Off function must be replaced by other measures (for example by protection against direct touching).
7.9 Safety function STO

A frequently required application task is the safe torque off and the protection of personnel against unintentioned restarting of drives. The S700 servo amplifier offers, even in the basic version, a two channel STO function (Safe Torque Off). The function blocks the trigger pulses of the power transistors (pulse inhibitor).

Advantages of the safety function STO:

- the DC bus link remains charged up, since the mains supply line remains active
- only low voltages are switched, so there is no contact wear
- very little wiring is required
- single or dual channel control possible
- SIL2 or SIL3 solutions possible

The STO safety function corresponds to stop category 0 (uncontrolled stopping) acc. to EN 60204-1. The safety function STO can be operated from external safety switch gears (relays), from a safe external control (semiconductor output or driven contact) or from the built-in safety card S1-2 (➡ # 155) or S2-2 (➡ # 153).

NOTE

SIL2 / PLd solutions can be implemented with single-channel or dual-channel control with simple safety switching devices.

A SIL3 / PLe solution requires a safety control that periodically tests the safe switching of the pulse inhibitor by analyzing the feedback (status) signal.

7.9.1 Safety characteristic data

The subsystems (servo amplifiers) are totally described for safety technics with the characteristic data SIL CL, PFHD and TM..

<table>
<thead>
<tr>
<th>Unit</th>
<th>Operation Mode</th>
<th>EN 13849-1</th>
<th>EN 62061</th>
<th>PFHD [1/h]</th>
<th>TM [Years]</th>
</tr>
</thead>
<tbody>
<tr>
<td>STO1/2 Enable</td>
<td>single channel</td>
<td>PLd, Cat.3</td>
<td>SIL CL 2</td>
<td>7.05E-08</td>
<td>20</td>
</tr>
<tr>
<td>STO1-Enable+ STO2-Enable</td>
<td>dual channel</td>
<td>PLd, Cat.3</td>
<td>SIL CL 2</td>
<td>7.05E-08</td>
<td>20</td>
</tr>
<tr>
<td>STO1-Enable+ STO2-Enable+ STO-Status</td>
<td>dual channel + periodical testing</td>
<td>PLe, Cat.4</td>
<td>SIL CL 3</td>
<td>1.38E-09</td>
<td>20</td>
</tr>
</tbody>
</table>
7.9.2 Safety notes

WARNING High electrical voltage!
Risk of electric shock! The function STO does not provide an electrical separation from the power output. If access to the motor power terminals is necessary,
- disconnect the servo amplifier from mains supply,
- consider the discharging time of the intermediate circuit.

WARNING No Brake Power!
Serious injury could result when a suspended load is not properly blocked. The servo amplifier cannot hold a vertical load when STO is active.
- Add a safe mechanical blocking (for instance, a motor-holding brake).

CAUTION Uncontrolled movement!
Danger of personal injury. If STO is engaged during operation by separating input STO1-Enable and STO2-Enable from 24 VDC, the motor runs down out of control and the servo amplifier displays the error F27. There is no possibility of braking the drive controlled.
- Brake the drive in a controlled way first and then separate the STO inputs from +24VDC time-delayed.

NOTICE
In case of single channel control:
If the STO is automatically activated by a control system, then make sure that the output of the control is supervised for possible malfunction. This can be used to prevent a faulty output from unintentionally activating the function STO. Since STO is used in a single-channel system, erroneous engaging will not be recognized.

NOTICE
Controlled braking:
Keep to the following functional sequence when the drive must be braked in a controlled manner:
1. Brake the drive in a controlled manner (velocity setpoint = 0V)
2. When speed = 0 rpm, disable the servo amplifier (enable = 0V)
3. If there is a suspended load, block the drive mechanically
4. Activate STO (STO1-Enable and STO2-Enable = 0V)
7.9.3 Use as directed

The STO function is exclusively intended to provide functional safety, by preventing the restart of a system.

- To achieve this functional safety, the wiring of the safety circuits must meet the safety requirements of IEC60204, ISO12100, IEC62061 respectively ISO13849-1.
- In case of single channel control: if STO is automatically activated by a control system, then make sure that the output of the control is monitored for possible malfunction.
- To achieve PL e or SIL CL3, the safe switching of the pulse inhibitor must be tested periodically by analyzing the feedback signal from the safety control (\(\Rightarrow \) #51).

7.9.4 Prohibited Use STO

The STO function must not be used if the drive is to be made inactive for the following reasons:

- Cleaning, maintenance and repair operations, long inoperative periods: In such cases, the entire system should be disconnected from the supply by the personnel, and secured (main switch).
- Emergency-Off situations: the mains contactor must be switched off (by the emergency-Off button).

7.9.5 Enclosure

Since the servo amplifier meets enclosure IP20, you must select the enclosure ensuring a safe operation of the servo amplifier referring to the enclosure. The enclosure must meet IP54 at least.

7.9.6 Wiring

When using STO wiring leads outside the control cabinet, the cables must be laid durably (firmly), protected from outside damage (e.g. laying in a cable duct), in different sheathed cables or protected individually by grounding connection.

Wiring remaining within the demanded enclosure must meet the requirements of the standard IEC 60204-1.

7.9.7 Technical data

<table>
<thead>
<tr>
<th>STO1-Enable and STO2-Enable</th>
<th>Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input voltage</td>
<td>20 V..30 V</td>
</tr>
<tr>
<td>Input current</td>
<td>33 mA – 40 mA (Ieff)</td>
</tr>
<tr>
<td>Peak current</td>
<td>100 mA (I(_s))</td>
</tr>
<tr>
<td>Response time</td>
<td></td>
</tr>
<tr>
<td>(falling edge at STO input until energy supply to motor is interrupted)</td>
<td>STO1: 1 ms</td>
</tr>
<tr>
<td></td>
<td>STO2: 2 ms</td>
</tr>
</tbody>
</table>
To achieve PLe / SIL CL3, the safe switching of the pulse inhibitor must be tested periodically by analyzing the status signal from a safety control.
7.9.9 Functional description

In case of use of the STO function the inputs STO1-Enable and STO2-Enable must be connected to the exits of a security control or a safety relay, which meets at least to the requirements of the SIL CL2 according to IEC 62061 and PLd according to ISO 13849-1 (see diagrams from (⇒ #47)).

Possible states of the servo amplifier in connection with STO:

<table>
<thead>
<tr>
<th>STO1-ENABLE</th>
<th>STO2-ENABLE</th>
<th>Display</th>
<th>Motor has torque</th>
<th>SIL CL2 or 3 safety</th>
</tr>
</thead>
<tbody>
<tr>
<td>0V</td>
<td>0V</td>
<td>-S-</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>0V</td>
<td>+24V</td>
<td>F27</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>+24V</td>
<td>0V</td>
<td>normal status e.g. 06</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>+24V</td>
<td>+24V</td>
<td>normal status e.g. E06</td>
<td>yes</td>
<td>no</td>
</tr>
</tbody>
</table>

SIL2/PLd Single Channel Control

With the single-channel control of the STO (SIL2/PLd) safety function, both switch-off paths STO1-Enable and STO2-Enable are switched by one output of a safety switching device (e.g. safety relay), see example (⇒ #47).

In case of single channel usage of STO, erroneous engaging will not be recognized. Therefore the output of the control must be supervised for possible malfunction.

SIL2/PLd Dual Channel Control

With the dual-channel control of the STO (SIL2/PLd) safety function, the switch-off paths STO1-Enable and STO2-Enable are switched separately by two outputs of a safety switching device (e.g. safety relay), see example (⇒ #48).

SIL3/PLe Dual Channel Control

With the dual-channel control of the STO safety function, the switch-off paths STO1-Enable and STO2-Enable are switched separately by two outputs of a safety control, see example (⇒ #49).

To achieve PL e or SIL CL3, the safe switching of the pulse inhibitor must be tested periodically by analyzing the feedback (status) signal from the safety control (⇒ #51).

NOTICE

When wiring the STO inputs within an enclosure it must be paid attention to the fact that the used cables and the enclosure meet the requirements of IEC 60204-1.

If the wiring leads outside the demanded enclosure, the cables must be laid durably (firmly), and protected from outside damage (⇒ #43).

NOTE

If STO function is not needed in the application, then the inputs STO1-ENABLE and STO2-ENABLE must be connected directly with +24VDC. STO is passed by now and cannot be used. Now the servo amplifier is not a safety component referring to the EC Machine Directive.
7.9.9.1 Safe operation sequence

If a controlled braking before the use of STO is necessary, the drive must be braked and the inputs STO1-ENABLE and STO2-Enable have to be separated from +24 VDC time-delayed.

1. Brake the drive in a controlled manner (speed setpoint = 0V)
2. When speed = 0 rpm, disable the servo amplifier (enable = 0V)
3. If there is a suspended load, block the drive mechanically
4. Activate STO (STO1-Enable and STO2-Enable = 0V)

The diagram shows how STO should be used to ensure a safe stop of the drive and error free operation of the servo amplifier.
7.9.9.2 Control circuit single channel SIL2/PLd (example)

The example shows a circuit diagram with one axis connected to an emergency stop circuit. The STO of the drives is switched by a protective screen. A single channel switch-off is used. The safety switch gears used in the example are manufactured by Pilz and fulfill at least the PLd acc. to ISO 13849-1. Further information to the safety switch gears is available from Pilz. The use of safety switch gears of other manufacturers is possible, if these also fulfill the SIL CL2 according to IEC 62061 and PLd according to ISO 13849-1.

Consider the wiring instructions (⇒ #43).
7.9.9.3 Control circuit dual channel SIL2/PLd (example)

The example shows a circuit diagram with one axis connected to an emergency stop circuit. The STO of the drives is switched by a protective screen. A dual channel switch-off is used. The safety switch gears used in the example are manufactured by Pilz and fulfill at least the PLd acc. to ISO 13849-1. Further information to the safety switch gears is available from Pilz. The use of safety switch gears of other manufacturers is possible, if these also fulfill the SIL CL2 according to IEC 62061 and PLd according to ISO 13849-1.

NOTE

Consider the wiring instructions (⇒ # 43).
7.9.9.4 Control circuit dual channel SIL3/PLe (example)

The example shows a circuit diagram with one axis connected to an emergency stop circuit. The STO of the drives is switched by a protective screen. A dual channel switch-off is used. The safe switching of the pulse inhibitor must be tested periodically by analyzing the feedback in the safety control.

The safety controller used in the example is manufactured by Pilz and fulfills at least the PLe acc. to ISO 13849-1. Further information to the safety controllers are available from Pilz. The use of safety controllers from other manufacturers is possible, if these also fulfill the SIL CL3 according to IEC 62061 and PLe according to ISO 13849-1.

Consider the wiring instructions (→ # 43)
7.9.9.5 Main supply circuit (example)

7.9.10 Functional test

7.9.10.1 Single or Dual Channel control, SIL CL2 / PLd

NOTICE With initial starting and after each interference into the wiring of the drive or after exchange of one or several components of the drive the function of STO must be tested.

1. **Method:**
 1. Stop drive, with setpoint 0V, keep servo amplifier enabled (Enable=24V).

 DANGER: Do not enter hazardous area!
 2. Activate STO1-Enable and STO2-Enable e.g. by opening protective screen (voltage at X4/7=0V and X4/5=0V).

 Correct behavior: the BTB/RTO contact opens, the net contactor releases and the servo amplifier displays error F27.

2. **Method:**
 1. Stop all drives, with setpoint 0V, disable servo amplifier (Enable=0V).
 2. Activate STO1-Enable and STO2-Enable e.g. by opening protective screen (voltage at X4/7=0V and X4/5=0V).

 Correct behavior: the servo amplifier displays **-S-**.
7.9.10.2 SIL CL3 / PLe Dual Channel control

NOTICE To achieve PLe / SIL CL3, the safe switching of the pulse inhibitor must be tested periodically by analyzing the feedback signal from a safety control:

- At the start of a system
- At the restart after triggering a protective device
- At least every 8 hours by the operator.

The inputs STO1-ENABLE and STO2-ENABLE are switched in turns according to a defined test sequence. The switching states of the pulse inhibitor are available at the status outputs of the S748/772 and are analyzed by a safety control.

The test sequence for the functional test of the safe pulse inhibitor must be performed as shown in the following time chart.

Prerequisites for the start of the test sequence:

- Operational readiness BTB/RTO = “1”
- Enable signal ENABLE = “0”
- STO1-ENABLE and STO2-ENABLE = “0”

![Diagram of test sequence](image-url)
7.10 Shock-hazard Protection

7.10.1 Leakage current

Leakage current via the PE conductor results from the combination of equipment and cable leakage currents. The leakage current frequency pattern includes a number of frequencies, whereby the residual-current circuit breakers definitively evaluate the 50 Hz current. For this reason, the leakage current cannot be measured using a conventional multimeter. As a rule of thumb, the following assumption can be made for leakage current on our low capacitance cables at a mains voltage of 400 V, depending on the clock frequency of the output stage:

- \[I_{\text{leak}} = n \times 20 \text{ mA} + L \times 1 \text{ mA/m} \] at 8 kHz clock frequency at the output stage
- \[I_{\text{leak}} = n \times 20 \text{ mA} + L \times 2 \text{ mA/m} \] at a 16 kHz clock frequency at the output stage

(where \(I_{\text{leak}} = \) leakage current, \(n = \) number of drives, \(L = \) length of motor cable)

At other mains voltage ratings, the leakage current varies in proportion to the voltage.

Example:
2 x drives + a 25 m motor cable at a clock frequency of 8 kHz:
\[2 \times 20 \text{ mA} + 25 \times 1 \text{ mA/m} = 65 \text{ mA leakage current}. \]

NOTE
Since the leakage current to PE is more than 3.5 mA, in compliance with IEC61800-5-1 the PE connection must either be doubled or a connecting cable with a cross-section >10 mm² must be used. Use the PE terminal and the PE connection screws in order to fulfill this requirement.

The following measures can be used to minimize leakage currents:
- Reduce the length of the engine cable.
- Use low-capacity cables (\(\Rightarrow \#63 \)).
- Remove external EMC filters (radio-interference suppressors are integrated).

7.10.2 Residual current protective device (RCD)

In conformity with IEC 60364-4-41 – Regulations for installation and IEC 60204 – Electrical equipment of machinery, residual current protective devices (RCDs) can be used provided the requisite regulations are complied with. The S700 is a 3-phase system with a B6 bridge. Therefore, RCDs which are sensitive to all currents must be used in order to detect any DC fault current. Refer to the chapter above for the rule of thumb for determining the leakage current. Rated residual currents in the RCDs:

<table>
<thead>
<tr>
<th>10 to 30 mA</th>
<th>Protection against "indirect contact" for stationary and mobile equipment, as well as for "direct contact".</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 to 300 mA</td>
<td>Protection against "indirect contact" for stationary equipment</td>
</tr>
</tbody>
</table>

NOTE
Recommendation: In order to protect against direct contact (with motor cables shorter than 5 m) Kollmorgen recommends that each drive be protected individually using a 30 mA RCD which is sensitive to all currents.

If you use a selective RCD, the more intelligent evaluation process will prevent spurious tripping of the RCD.

7.10.3 Isolating transformers

When protection against indirect contact is absolutely essential despite a higher leakage current, or when an alternative form of shock-hazard protection is sought, the S700 can also be operated via an isolating transformer (schematic connection (\(\Rightarrow \#68 \)). A ground-leakage monitor can be used to monitor for short circuits.

NOTE
Keep the length of wiring between the transformer and the drive as short as possible.
8 Mechanical Installation

8.1 Important Notes

CAUTION High EMC Voltage Level!
Risk of electrical shock, if the servo amplifier (or the motor) is not properly EMC-grounded.
- Do not use painted (i.e. non-conductive) mounting plates.
- In unfavourable circumstances, use copper mesh tape between the earthing bolts and earth potential to deflect currents.

NOTICE
Protect the servo amplifier from impermissible stresses. In particular, do not let any components become bent or any insulation distances altered during transport and handling. Avoid contact with electronic components and contacts.

NOTICE
The servo amplifier will switch itself off in case of overheating. Ensure that there is an adequate flow of cool, filtered air into the bottom of the control cabinet, or use a heat exchanger (→ #32).

NOTICE
Do not mount devices that produce magnetic fields directly beside the servo amplifier. Strong magnetic fields can directly affect internal components. Mount devices which produce magnetic field with distance to the servo amplifier and/or shield the magnetic fields.

8.2 Guide to Mechanical Installation
The following notes should assist you to carry out the mechanical installation in a sensible sequence, without overlooking anything important.

| Site | ● Mount in a closed switchgear cabinet (→ #32).
 | ● The site must be free from conductive or corrosive materials.
 | ● For the mounting position in the cabinet refer to (→ #56). |
|------|---|
| Ventilation | ● Check that the ventilation of the servo amplifier is unimpeded and keep within the permitted ambient temperature (→ #32).
 | ● Keep the required space clear above and below the servo amplifier (→ #56). |
| Assembly | ● Assemble the servo amplifier and power supply, filter and choke close together on the conductive, grounded mounting plate in the cabinet. |
| Grounding Shielding | ● EMC-compliant (EMI) shielding and grounding (→ #67).
 | ● Earth (ground) the mounting plate, motor housing and CNC-GND of the controls. Notes on connection techniques (→ #62). |
8.3 Dimensions

8.3.1 Device with heat sink

Material: four M5 hexagon socket screws to ISO 4762
8.3.2 Device with Coldplate

NOTICE These devices are not UL listed and are not EAC and Safety certified.

Material: six M5 hexagon socket screws to ISO 4762
8.4 Assembly

8.4.1 Mounting the shielding plate

Material: unscrew existing screws and re-use them
Tool required: standard screw driver (cross)
8.4.2 Backplane mounting - devices with heat sink

Material: five M5 hexagon socket screws to ISO 4762
Tool required: 4 mm Allen key
8.4.3 Backplane mounting - devices with Coldplate

These devices are not UL listed and are not EAC and Safety certified.

Material: six M5 hexagon socket screws to ISO 4762

Ambient requirements see (► # 32), mounting plate flatness: ≤ 25 μm / 100 mm

Heat conducting film to increase the heat conduction, e.g. Kunze KU-CG20.

Tool required: 4 mm Allen key
9 Electrical Installation

9.1 Important Notes

DANGER High Voltage up to 900 V!

There is a danger of serious personal injury or death by electrical shock or electrical arcing. Capacitors can still have dangerous voltages present up to 10 minutes after switching off the supply power. Control and power connections can still be live, even if the motor is not rotating.

- Only install and wire the equipment when it is not live.
- Make sure that the cabinet is safely disconnected (for instance, with a lock-out and warning signs).
- Never remove electrical connections to the drive while it is live.
- Wait at least 10 minutes after disconnecting the drive from the main supply power before touching potentially live sections of the equipment (e.g. contacts) or undoing any connections.
- To be sure, measure the voltage in the DC bus link and wait until it has fallen below 50 V.

NOTICE Wrong mains voltage, unsuitable motor or wrong wiring will damage the amplifier. Check the combination of servo amplifier and motor. Compare the rated voltage and current of the units. Implement the wiring according to the connection diagram (➡ #61)

Make sure that the maximum permissible rated voltage at the terminals L1, L2, L3 or +DC, – DC is not exceeded by more than 10% even in the most unfavorable circumstances (see IEC 60204-1).

NOTICE Excessively high external fusing will endanger cables and devices. The fusing of the voltage supply must be installed by the user, best values (➡ #32). Hints for use of Residual-current circuit breakers (FI), (➡ #52).

NOTICE The servo amplifier's status must be monitored by the PLC to acknowledge critical situations. Wire the BTB/RTO contact in series into the emergency off circuit of the installation. The emergency off circuit must operate the supply contactor.
9.2 Guide to electrical installation

NOTICE
Correct wiring is the basis for reliable functioning of the servo system. Route power and control cables separately. We recommend a distance of at least 200 mm. This improves the interference immunity. If a motor power cable is used that includes cores for brake control, the brake control cores must be separately shielded. Ground the shielding at both ends. Ground all shielding with large areas (low impedance), with metalized connector housings or shield connection clamps wherever possible. Notes on connection techniques (⇒ #62).

NOTICE
Feedback lines may not be extended, since thereby the shielding would be interrupted and the signal processing could be disturbed. Lines between servo amplifiers and filter or external brake resistor must be shielded. Install all power cables with an adequate cross-section, as per IEC 60204 to reach max. cable length (⇒ #63).

The following notes should assist you to carry out the electrical installation in a sensible sequence, without overlooking anything important.

<table>
<thead>
<tr>
<th>Cable selection</th>
<th>Select cables according to EN 60204, (⇒ #33).</th>
</tr>
</thead>
</table>
| **Grounding Shielding** | EMC-compliant (EMI) shielding and grounding, (⇒ #67).
| | Earth (ground) the mounting plate, motor housing and CNC-GND of the controls (⇒ #62). |

Wiring
Route power leads and control cables separately. Wire the BTB/RTO contact in series into the emergency off circuit of the system.

1. Connect the digital control inputs to the servo amplifier.
2. Connect up AGND (also if fieldbuses are used).
3. Connect the analog setpoint, if required.
4. Connect up the feedback unit (resolver and/or encoder).
5. Connect the encoder emulation, if required.
6. Connect the expansion card (⇒ #126).
7. Connect the motor cables, connect shielding at both ends.
8. Connect motor-holding brake, connect shielding at both ends.
9. Connect the external brake resistor (with fusing).
10. Connect aux. supply (for max. permissible voltage values (⇒ #31)).
11. Connect main power supply (for max. permissible voltage values (⇒ #31), hints for use of residual-current circuit breakers (FI) (⇒ #52)
12. Connect PC (⇒ #104).

Final check
Final check of the implementation of the wiring, according to the wiring diagrams which have been used.
9.3 Wiring

The installation procedure is described as an example. A different procedure may be appropriate or necessary, depending on the application of the equipments. We provide further know-how through training courses (on request).

DANGER High voltage up to 900V!

There is a danger of electrical arcing with damage to contacts and serious personal injury.

- Only install and wire up the equipment when it is not live, i.e. when neither the electrical supply nor the 24 V auxiliary voltage nor the supply voltages of any other connected equipment is switched on.
- Make sure that the cabinet is safely disconnected (for instance, with a lock-out and warning signs).

NOTE

The ground symbol which you will find in all the wiring diagrams, indicates that you must take care to provide an electrically conductive connection with the largest feasible surface area between the unit indicated and the mounting plate in the control cabinet.

This connection is for the effective grounding of HF interference, and must not be confused with the PE-symbol (PE = protective earth, safety measure as per IEC 60204).

Use the following connection diagrams:

- Overview: (➡ #67)
- Safe Torque Off STO: (➡ #44)
- Voltage supply: (➡ #68)
- Motor: (➡ #73)
- Feedback: (➡ #74)
- Electronic Gearing and Master Slave: (➡ #94)
- Pulse-Direction: (➡ #95)
- Master-Slave: (➡ #96)
- Digital and analog inputs and outputs: (➡ #99)
- RS232 / PC connection: (➡ #104)
- CANopen Interface: (➡ #105)
- EtherNet Interface: (➡ #106)

Expansion cards for slot 1:

- I/O-14/08: (➡ #127)
- PROFIBUS: (➡ #130)
- sercos® II: (➡ #131)
- DeviceNet: (➡ #133)
- SyqNet: (➡ #136)
- FB-2to1: (➡ #138)
- -2CAN-: (➡ #140)

Expansion cards for slot 2:

- PosI/O & PosI/O-Monitor: (➡ #143)

Expansion cards for slot 3:

- PosI/O & PosI/O-Monitor: (➡ #152)
- Safety Cards: (➡ #153)
9.3.1 Shielding connection to the front panel

Remove the outside shroud of the cable and the shielding braid on the desired core length.
Secure the cores with a cable tie.

Remove the outside shroud of the line on a length from for instance 30 mm without damaging the shielding braid.

Strip all wires and fit wire end ferrules.

Use cable ties to attach the cable to the side (1) or bottom (2) shroud of the servo amplifier, securing the braided shield of the cable to the shroud of the servo amplifier with a cable tie.

Alternatively you can use shield connection terminal clamps (see accessories manual). These hook into the bottom shroud and ensure optimum contact between the shield and the shroud.

Wire the plug-in terminal blocks as shown in the connection diagram.

The motor cable shield is connected via a shield connection clamp to the bottom shielding plate (3). Clamp and shielding plate are part of delivery.
9.3.2 Technical data for connecting cables

For further information on the chemical, mechanical and electrical characteristics of the cables please refer to the accessories manual or contact our customer service.

NOTE

Observe the rules in the section "Conductor cross-sections" (→ # 33). To reach the max. permitted cable length, you must use cable material that matches the capacitance requirements listed below.

Capacitance (core to shield)

- Motor cable less than 150 pF/m
- Feedback cable less than 120 pF/m

Example: Motor cable:

```
Shield
Isolation
Core
Fill material
Core Isolation
```

Technical data

For a detailed description of Kollmorgen cable types and how to assemble them, please refer to the accessories manual.

Chokes

NOTE

With motor cables longer than 25m the use of a motor choke 3YLN may be necessary depending on the system. Contact our customer support.

If mains voltage is more than 3% asymmetrical, a mains choke 3L with 2% uk must be used. See Accessories Manual.
9.4 Components of a servo system

Cables drawn bold are shielded. Electrical ground is drawn with dash-dotted lines. Optional devices are connected with dashed lines to the servo amplifier. The required accessories are described in our accessories manual. STO function is deactivated in the example.
9.5 Block diagram

The block diagram below just provides an overview.
9.6 Connector assignments

View: looking at the face of the built-in connectors

- PE L1 L2 L3 X0 Mains
- X6 PC/CAN
 1 n.c.
 2 RxD
 3 TxO
 4 reserve
 5 GND

- X7B Ethernet
 5 R2
 4 S3
 3 S4
 2 5
 1 SHIELD

- X7A Ethernet
- X2 RESOLVER
 R1 9
 S1 8
 S2 7
 S6 6

- X1 ENCODER
 Clock-15
 6-14
 Data-13
 Sense+ 12
 A+ 11
 Sense- 10
 B+ 9

- X3B I/O
 DCN 18
 BTBRTO 15
 BTBRTO 14
 AGND 13
 Analog-In 2+ 12
 Analog-In 2- 11
 Analog-In 1+ 10
 Analog-In 1- 9
 +24V/J0 DIGITAL-IN22/OUT2
 DIGITAL-IN21/OUT1
 DIGITAL-IN4 8
 DIGITAL-IN3 7
 DIGITAL-IN2 6
 DIGITAL-IN1 5
 ENABLE 4

- X3A
 ST01-STATUS 3
 ST01-ENABLE 2
 ST02-STATUS 1
 ST02-ENABLE 0

- X4 24V/STO
 XGND 8
 +24V 7

- X9B Brake
 BR+ 2
 BR 1

- X9A

Coding Keys

- -RB +RB W2 V2 U2 -DC +DC PE
9.7 Connection diagram (Overview)

Reference Safety Instructions (➔ #13) and Use Ass Direct (➔ #16)!

S748...S772

Control
+/-10V speed setpoint referred to
CNC-GND
CNC-GND
+/-10V speed setpoint referred to
CNC-GND
CNC-GND
+24V referred
to 0V/GND

Emerg. Stop
Circuit

Digital1
Digital2

STO2-ENABLE
STO2-STATUS
STO1-ENABLE
STO1-STATUS
XGND

X7
Ethernet
EtherCat
SynqNet

X6
CAN

X4
+24V

Expansion Slots
1 I/O-14/08
PROFIBUS
SERCOS
DEVICENET
SYNOCKET

2 Pos/O
Pos/O-Monitor

3 Safety
- S1.2 (S3)
- S2.2 (S4)

PC

Participant

Participant

CAN-Master

COM1/COM2

shield connection via plug

shield connection at the front panel

chassis ground connection (panel)

PE-connection (protective earth)
9.8 Voltage supply

9.8.1 Connection to various mains supply networks

NOTICE An isolating transformer is required for 400V to 480V networks that are asymmetrically grounded or not grounded as shown below.
9.8.2 Mains supply connection (X0)

- Directly to 3-phase supply network, filter is integrated, supply networks (➔ # 68)
 (with mains voltage below 300V set parameters NONBTB=3 and VBUSBAL=1)
- Fusing (e.g. fusible cut-outs) to be provided by the user (➔ # 32)
- Screwdriver for plus-minus-screws (Combiprofile Slotted/Pozidriv) size 2

<table>
<thead>
<tr>
<th>NOTICE</th>
</tr>
</thead>
</table>
If mains voltage is more than 3% asymmetrical, a mains choke 3L with 2% uk must be used. See Accessories Manual. For EMC reasons the choke should be mounted electrically isolated to the cabinet.

9.8.3 24V auxiliary supply (X4)

- External 24V DC power supply, electrically isolated, e.g. via an isolating transformer
- Required current rating (➔ # 31)
- Integrated EMC filter for the 24V auxiliary supply
9.9 DC bus link (X8)

Terminals X8/-DC and X8/+RBe. Can be connected in parallel, whereby the brake power is divided between all the amplifiers that are connected to the same DC bus link circuit.

- Screw driver for plus-minus-screws (Combiprofile Slotted/Pozidriv) size 2

In case of mains supply from the same mains (identical mains supply voltage) three servo amplifiers S748/772 may be connected by the DC bus link.

NOTICE

- The servo amplifiers can be destroyed, if DC bus link voltages are different. Only servo amplifiers with mains supply from the same mains (identical mains supply voltage) may be connected by the DC bus link.
- VBUSBAL must be identical with all devices on the same DC bus.
- The sum of the rated currents for all of the servo amplifiers connected in parallel to an S748/772 must not exceed 96 Arms (140 Apeak).
- Examples: S748-S748-S748 oder S772-S748 oder S772-S772
- Use unshielded single cores with a max. length of 500mm (cross reference see (➜ # 33)); use shielded cables for longer lengths.
- Servo amplifiers working generatively very often, should be placed beside amplifiers, which need energy. That reduces current flow on longer distances.

Fusing information are explained in detail in the KDN on page "DC Bus link in parallel".

Wiring example with external brake resistor

![Diagram of wiring example with external brake resistor](image)
9.9.1 DC Bus topology

Without intermediate circuit fuses, other devices can become damaged or destroyed if, for example, a device fails due to an internal short circuit. If a device fails due to a short-circuit, only its intermediate fuses are tripped and the rest of the network continues uninterrupted. Fuses cannot avoid damage by current peaks completely. The solid busbars can conduct large currents.

Fuse types see (⇒ # 32). More information can be found in the "KDN".

![Diagram of DC bus topology]

9.9.2 External brake resistor (X8)

An external brake resistor can be connected to X8 (-RB, +RB).

Fuse types (⇒ # 32).
Brake circuit and technical data: (⇒ # 34).
If you want to link the DC bus with neighbored S748/772 servo amplifiers, see connection example in chapter "DC Bus link".

- Screwdriver for plus-minus-screws (Combiprofile Slotted/Pozidriv) size 2

![Diagram of external brake resistor connection]
9.9.3 Capacitor Module KCM (X8)

The **KCM** modules (KOLLMORGEN Capacitor Module) absorb energy generated by the motor when it is operating in generator mode. Normally, this energy is dissipated as waste via brake resistors. KCM modules, however, feed the energy they have stored back into the DC Bus link as and when it is required.

Dimensions (HxWxD): 300x100x201 mm

KCM-S	Saves energy: The energy stored in the capacitor module during regenerative braking is available the next time acceleration happens. The module's inception voltage is calculated automatically during the first load cycles.
KCM-P	Power in spite of power failure: If the power supply fails, the module provides the servo amplifier with the stored energy that is required to bring the drive to a standstill in a controlled manner (this only applies to the power supply voltage; battery-back the 24 V supply separately).
KCM-E	Expansion module for both applications. Expansion modules are available in two capacitance classes.

NOTE

The KCM modules can be connected to S7010 ... S7480 devices (mains supply voltage 400/480V). Information for mounting, installation and setup can be found in the KCM Instructions Manual and in KDN.

Technical Data of KCM Modules

<table>
<thead>
<tr>
<th>Type</th>
<th>Storage capacity [Ws]</th>
<th>Rated supply voltage [V=]</th>
<th>Peak supply voltage [V=]</th>
<th>Mains [kW]</th>
<th>Protection class</th>
<th>Inception voltage [V=]</th>
<th>Weight [kg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KCM-S200</td>
<td>1600</td>
<td>850 VDC</td>
<td>max. 950 VDC (30s in 6min)</td>
<td>18</td>
<td>IP20</td>
<td>470 VDC</td>
<td>6.9</td>
</tr>
<tr>
<td>KCM-P200</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.9</td>
</tr>
<tr>
<td>KCM-E200</td>
<td>2000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.1</td>
</tr>
<tr>
<td>KCM-E400</td>
<td>4000</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6.2</td>
</tr>
</tbody>
</table>

DANGER High DC voltage up to 900 V!

There is a danger of serious personal injury or death by electrical shock or electrical arcing. It can take over an hour for the modules to self-discharge.

- Switch off (disconnect) the line voltage. You must only work on the connections when the system is disconnected.
- Check the state of charge with a measuring device that is suitable for a DC voltage of up to 1,000 V.
- When measuring a voltage of over 50V between the DC+/DC- terminals or to ground, wait some minutes and measure again or discharge the modules as described in the KCM instructions manual.
9.10 Motor connection

9.10.1 Motor power connection (X8)

The S748/772 drive is able to protect the connected motor from overloading, if the parameters are set correctly and the thermal protection sensor is connected and supervised. With Kollmorgen motors the valid data are automatically set by the internal motor database. With motors from other manufacturers the data from the nameplate must be entered to the referring fields in the motor view of the setup software DriveGUI.

Together with the motor supply cable and motor winding, the power output of the servo amplifier forms an oscillating circuit. Characteristics such as cable capacity, cable length, motor inductance, frequency and voltage rise speed (see Technical Data) determine the maximum voltage in the system.

NOTICE

The dynamic voltage rise can lead to a reduction in the motor's operating life and, on unsuitable motors, to flash overs in the motor winding.

- Only install motors with insulation class F (acc. to IEC 60085) or above
- Only install cables that meet the requirements on (⇒ # 33) and (⇒ # 63).

Use screw driver for plus-minus-screws (Combiprofile Slotted/Pozidriv) size 2.

Standard applications up to 25m cable length

![Diagram](image1)

Application with cable length >25m and special conditions

NOTICE

With long motor cables overvoltage may endanger the motor winding. For cable lengths above 25m a motor choke 3YLN may be wired into the motor cable, close to the amplifier.

Contact our customer support.

![Diagram](image2)
9.10.2 Motor holding brake connection (X8, X9)

The motor holding brake can be controller by the servo amplifier. An external 24V supply voltage delivers the required electrical power for the connected brake.

CAUTION No functional safety!

Serious injury could result when a suspended load is not properly blocked.

- An additional mechanical brake is required for functional safety, which must be safely operated, e.g. via the Safety Card S1-2 (→ # 155).

![Motor Holding Brake Connection Diagram](image)

Observe the requirements to auxiliary voltage supply (→ # 31).

9.11 Feedback systems

Every closed servo system will normally require at least one feedback device for sending actual values from the motor to the servo drive. Depending on the type of feedback device used, information will be fed back to the servo amplifier using digital or analog means. Up to three feedback devices can be used at the same time. S700 supports the most common types of feedbacks whose functions must be assigned with the parameters:

- **FBTYPE**
 DRIVEGUI.EXE screen page FEEDBACK, primary Feedback (→ # 75)
- **EXTPOS**
 Screen pagePOSITION CONTROLLER, secondary position (→ # 75)
- **GEARMODE**
 Screen page ELECTRONIC GEARING, encoder control (→ # 94)

in the setup software. Scaling and other settings must always be made here.

For a detailed description of the ASCII parameters, please refer to the DRIVEGUI.EXE Online-Help.
9.12 Primary and secondary feedback types

This chapter provides an overview of the supported feedback types, their corresponding parameters and a reference to the relevant connection diagram in each case.

Single Cable connection (Power and Feedback in one cable)

<table>
<thead>
<tr>
<th>Feedback type</th>
<th>Connector</th>
<th>Wiring</th>
<th>primary FBTYP</th>
<th>secondary EXTPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SFD3</td>
<td>X1</td>
<td>(# 76)</td>
<td>36</td>
<td>-</td>
</tr>
<tr>
<td>HIPERFACE DSL</td>
<td>X1</td>
<td>(# 77)</td>
<td>35</td>
<td>-</td>
</tr>
</tbody>
</table>

Dual cable connection (Power and Feedback separated)

Motor cables and Feedback cables see Accessories Manual

<table>
<thead>
<tr>
<th>Feedback type</th>
<th>Connector</th>
<th>Wiring</th>
<th>primary FBTYP</th>
<th>secondary EXTPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolver</td>
<td>X2</td>
<td>(# 78)</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>SinCos Encoder BiSS (B) analog</td>
<td>X1</td>
<td>(# 79)</td>
<td>23, 24</td>
<td>-</td>
</tr>
<tr>
<td>Encoder BiSS (B, C) digital</td>
<td>X1</td>
<td>(# 80)</td>
<td>20, 22, 33</td>
<td>11, 12</td>
</tr>
<tr>
<td>SinCos Encoder ENDAT 2.1</td>
<td>X1</td>
<td>(# 81)</td>
<td>4, 21</td>
<td>8</td>
</tr>
<tr>
<td>Encoder ENDAT 2.2</td>
<td>X1</td>
<td>(# 82)</td>
<td>32, 34</td>
<td>13</td>
</tr>
<tr>
<td>SinCos Encoder HIPERFACE</td>
<td>X1</td>
<td>(# 83)</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>SinCos Encoder SSI (linear)</td>
<td>X1</td>
<td>(# 84)</td>
<td>26¹</td>
<td>-</td>
</tr>
<tr>
<td>SinCos Encoder without data channel</td>
<td>X1</td>
<td>(# 85)</td>
<td>1, 3, 7, 8</td>
<td>6, 7</td>
</tr>
<tr>
<td>SinCos Encoder + Hall</td>
<td>X1</td>
<td>(# 86)</td>
<td>5</td>
<td>-</td>
</tr>
<tr>
<td>ROD* 5V without zero, 1.5MHz</td>
<td>X1</td>
<td>(# 87)</td>
<td>30, 31</td>
<td>30</td>
</tr>
<tr>
<td>ROD* 5V with zero, 350kHz</td>
<td>X1</td>
<td>(# 88)</td>
<td>17, 27</td>
<td>10</td>
</tr>
<tr>
<td>ROD* 5V with zero + Hallgeber</td>
<td>X1</td>
<td>(# 89)</td>
<td>15</td>
<td>-</td>
</tr>
<tr>
<td>ROD* 24V without zero</td>
<td>X3</td>
<td>(# 90)</td>
<td>12, 16</td>
<td>2</td>
</tr>
<tr>
<td>ROD* 24V without zero + Hallgeber</td>
<td>X3/X1</td>
<td>(# 91)</td>
<td>14</td>
<td>-</td>
</tr>
<tr>
<td>SSI</td>
<td>X1</td>
<td>(# 92)</td>
<td>25¹</td>
<td>25¹</td>
</tr>
<tr>
<td>Hall</td>
<td>X1</td>
<td>(# 93)</td>
<td>11</td>
<td>-</td>
</tr>
<tr>
<td>Step/Direction 24V</td>
<td>X3</td>
<td>(# 95)</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Sensorless (without Feedback)</td>
<td>-</td>
<td>-</td>
<td>10</td>
<td>-</td>
</tr>
</tbody>
</table>

with expansion card "PosI/O" or "PosI/O-Monitor"

<table>
<thead>
<tr>
<th>Feedback type</th>
<th>Connector</th>
<th>Wiring</th>
<th>primary FBTYP</th>
<th>secondary EXTPOS</th>
</tr>
</thead>
<tbody>
<tr>
<td>ROD* 5V with zero</td>
<td>X5</td>
<td>(# 144)</td>
<td>13¹, 19¹</td>
<td>3</td>
</tr>
<tr>
<td>ROD* 5V with zero + Hall</td>
<td>X5/X1</td>
<td>(# 145)</td>
<td>18</td>
<td>-</td>
</tr>
<tr>
<td>SSI</td>
<td>X5</td>
<td>(# 146)</td>
<td>9¹</td>
<td>5¹</td>
</tr>
<tr>
<td>SinCos Encoder SSI (linear)</td>
<td>X5/X1</td>
<td>(# 147)</td>
<td>28</td>
<td>-</td>
</tr>
<tr>
<td>Step/Direction 5V</td>
<td>X5</td>
<td>(# 148)</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

¹ ROD is an abbreviation for "incremental encoder".
1) Switch on the encoder supply voltage on X1: set ENCVON to 1
2) BiSS C support for Renishaw encoders, Hengstler encoders are not supported.

NOTE

The expansion card FB2to1 (→ # 138) enables simultaneous connection of a digital primary feedback and of an analog secondary feedback to the connector X1.
9.12.1 SFD3 (X1), single cable connection

Connection of the Kollmorgen feedback system SFD3 (primary, \(\rightarrow\) # 74)). SFD3 can be used only with the special Kollmorgen hybrid cable \(\rightarrow\) (on request).

Maximum cable length 25 m.

FBTYPE: 36

The pin assignment shown on the motor side relates to the AKM motors (connector code D).
9.12.2 HIPERFACE DSL (X1), single cable connection

Connection of HIPERFACE DSL feedback (primary, #74). HIPERFACE DSL can be used only with the special Kollmorgen hybrid cable (on request).

Maximum cable length 25 m.

FBTYPE: 35

The pin assignment shown on the motor side relates to the AKM motors (connector code D).

Kollmorgen | kdn.kollmorgen.com | July 2019 77
9.12.3 Resolver (X2)

Connection of a Resolver (2 to 36-poles) as a feedback system (primary, \(\rightarrow \# 74\)). The thermal control in the motor is connected via the resolver cable to X2 and evaluated there. If cable lengths of more than 100 m are planned, please consult our customer service.

FBTYPE: 0

The pin assignment shown on the motor side relates to the AKM motors (connector code D).
9.12.4 Sine Encoder with BiSS analog (X1)

Wiring of a single-turn or multi-turn sine-cosine encoder with BiSS interface as a feedback system (primary and secondary, (→ #74)).

The thermal control in the motor is connected via the encoder cable to X1 and evaluated there. All signals are connected using our pre-assembled encoder connection cable. If cable lengths of more than 50 m are planned, please consult our customer service.

Frequency limit (sin, cos): 350 kHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
<th>Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V analog (BiSS B)</td>
<td>23</td>
<td>-</td>
<td>-</td>
<td>5V +/-5%</td>
</tr>
<tr>
<td>12V analog (BiSS B)</td>
<td>24</td>
<td>-</td>
<td>-</td>
<td>7.5...11V</td>
</tr>
</tbody>
</table>

The pin assignment shown on the motor side relates to the AKM motors.
9.12.5 Encoder with BiSS digital (X1)

Wiring of a single-turn or multi-turn digital encoder with BiSS interface as a feedback system (primary and secondary, (→ #74)).

The thermal control in the motor is connected via the encoder cable to X1 and evaluated there. All signals are connected using our pre-assembled encoder connection cable. If cable lengths of more than 50 m are planned, please consult our customer service.

Frequency limit: 1.5MHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
<th>Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V digital (BiSS B)</td>
<td>20</td>
<td>11</td>
<td>11</td>
<td>5V +/-5%</td>
</tr>
<tr>
<td>12V digital (BiSS B)</td>
<td>22</td>
<td>11</td>
<td>11</td>
<td>7.5...11V</td>
</tr>
<tr>
<td>5V digital (BiSS C, Renishaw)</td>
<td>33</td>
<td>12</td>
<td>12</td>
<td>5V +/-5%</td>
</tr>
</tbody>
</table>

The pin assignment shown on the motor side relates to the AKM motors.
9.12.6 Sine Encoder with EnDat 2.1 (X1)

Wiring of a single-turn or multi-turn sine-cosine encoder with EnDat 2.1 interface as a feedback system (primary and secondary, (➔ # 74)). Preferred types are the optical encoder ECN1313 / EQN1325 and the inductive encoder ECI 1118/1319 or EQI 1130/1331.

The thermal control in the motor is connected via the encoder cable to X1 and evaluated there. All signals are connected using our pre-assembled encoder connection cable. If cable lengths of more than 50 m are planned, please consult our customer service.

Frequency limit (sin, cos): 350 kHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENDAT 2.1</td>
<td>4</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>ENDAT 2.1 + Wake&Shake</td>
<td>21</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

The pin assignment shown on the motor side relates to the AKM motors.
9.12.7 Encoder with EnDat 2.2 (X1)

Wiring of a single-turn or multi-turn encoder with EnDat 2.2 interface as a feedback system (primary, \(\rightarrow\) # 74). The thermal control in the motor is connected via the encoder cable to X1 and evaluated there. All signals are connected using our pre-assembled encoder connection cable.

If cable lengths of more than 50 m are planned, please consult our customer service.

Frequency limit: 1.5MHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPEn</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
<th>Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>5V ENDAT 2.2</td>
<td>32</td>
<td>13</td>
<td>13</td>
<td>5V +/-5%</td>
</tr>
<tr>
<td>12V ENDAT 2.2</td>
<td>34</td>
<td>13</td>
<td>13</td>
<td>7.5...11V</td>
</tr>
</tbody>
</table>

The pin assignment shown on the motor side relates to the AKM motors.
9.12.8 Sine Encoder with HIPERFACE (X1)

Wiring of a single-turn or multi-turn sine-cosine encoder with HIPERFACE interface as a feedback system (primary and secondary, (⇒ # 74)).

The thermal control in the motor is connected via the encoder cable to X1 and evaluated there. All signals are connected using our pre-assembled encoder connection cable.

If cable lengths of more than 50 m are planned, please consult our customer service.

Frequency limit (sin, cos): 350 kHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIPERFACE</td>
<td>2</td>
<td>9</td>
<td>9</td>
</tr>
</tbody>
</table>

The pin assignment shown on the motor side relates to the AKM motors.
9.12.9 Sine Encoder with SSI (X1)

Wiring of sine-cosine encoder with SSI interface as a linear feedback system (primary, (⇒ # 74)).

The thermal control in the motor is connected via the encoder cable to X1 and evaluated there. All signals are connected using our pre-assembled encoder connection cable. If cable lengths of more than 50 m are planned, please consult our customer service.

Frequency limit (sin, cos): 350 kHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SinCos SSI 5V linear</td>
<td>26</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Switch on supply voltage for the encoder at X1: set ENCVON to 1.
9.12.10 Sine Encoder without data channel (X1)

Wiring of a sine-cosine encoder without data channel as a feedback (primary and secondary, \(\rightarrow\) #74). Every time the 24V auxiliary voltage is switched on, the amplifier needs start-up information for the position controller (parameter value MPHASE). Depending on the feedback type either wake&shake is executed or the value for MPHASE is read out of the amplifier's EEPROM.

WARNING Vertical load can fall!

With vertical load the load could fall during wake&shake, because the brake is not active and torque is not sufficient to hold the load.

- Don’t use wake&shake with vertical load (hanging load).

The thermal control in the motor is connected via the encoder cable to X1. If lead lengths of more than 50 m are planned, please consult our customer service. Frequency limit (sin, cos): 350 kHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
<th>Up</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>SinCos 5V</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>5V +/-5%</td>
<td>MPHASE from EEPROM</td>
</tr>
<tr>
<td>SinCos 12V</td>
<td>3</td>
<td>7</td>
<td>7</td>
<td>7.5...11V</td>
<td>MPHASE from EEPROM</td>
</tr>
<tr>
<td>SinCos 5V</td>
<td>7</td>
<td>6</td>
<td>6</td>
<td>5V +/-5%</td>
<td>MPHASE wake & shake</td>
</tr>
<tr>
<td>SinCos 12V</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>7.5...11V</td>
<td>MPHASE wake & shake</td>
</tr>
</tbody>
</table>
9.12.11 Sine Encoder with Hall (X1)

Feedback devices (incremental or sine-cosine), which don't deliver an absolute information for commutation, can be used as complete feedback system combined with an additional Hall encoder (primary, \(\Rightarrow \# 74\)).

The thermal control in the motor is connected to X1 and evaluated there.

All signals are connected to X1 and evaluated there. If cable lengths of more than 25 m are planned, please consult our customer service.

Frequency limit (sin, cos): 350 kHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
<th>Up</th>
</tr>
</thead>
<tbody>
<tr>
<td>SinCos 5V mit Hall</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>5V +/-5%</td>
</tr>
<tr>
<td>SinCos 12V mit Hall</td>
<td>6</td>
<td>-</td>
<td>-</td>
<td>7.5...11V</td>
</tr>
</tbody>
</table>
9.12.12 ROD (AquadB) 5V, 1.5MHz (X1)

Wiring of a 5V incremental encoder (ROD, AquadB) as a feedback (primary or secondary, (→ #74)). Every time the 24V auxiliary voltage is switched on, the amplifier need start-up information for the position controller (parameter value MPHASE). Depending on the setting of FBTYPE a wake&shake is executed or the value for MPHASE is taken out of the servo amplifier's EEPROM.

⚠️ **WARNING** Vertical load can fall!

With vertical load the load could fall during wake&shake, because the brake is not active and torque is not sufficient to hold the load.

- Don't use wake&shake with vertical load (hanging load).

The thermal control in the motor is connected via the encoder cable to X1. All signals are connected using our pre-assembled encoder connection cable. If cable lengths of more than 50 m are planned, please consult our customer service.

Frequency limit (A, B): 1.5MHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AquadB 5V</td>
<td>31</td>
<td>30</td>
<td>30</td>
<td>MPHASE from EEPROM</td>
</tr>
<tr>
<td>AquadB 5V</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>MPHASE with wake & shake</td>
</tr>
</tbody>
</table>

Diagram:

- Drive
- Incremental Encoder
- Motor
- 5V +/-5 max. 250mA
- 0V
- Up-sense
- Voltage supply
- Thermal control
- Up

With vertical load the load could fall during wake&shake, because the brake is not active and torque is not sufficient to hold the load.
9.12.13 ROD (AquadB) 5V, 350kHz (X1)

Wiring of a 5V incremental encoder (ROD, AquadB) as a feedback (primary or secondary, \(\rightarrow\ #74\)). Every time the 24V auxiliary voltage is switched on, the amplifier need start-up information for the position controller (parameter value MPHASE). Depending on the setting of FBTYPE a wake&shake is executed or the value for MPHASE is taken out of the servo amplifier's EEPROM.

⚠️ WARNING Vertical load can fall!

With vertical load the load could fall during wake&shake, because the brake is not active and torque is not sufficient to hold the load.

- Don't use wake&shake with vertical load (hanging load).

The thermal control in the motor is connected to X1. If lead lengths of more than 50 m are planned, please consult our customer service. Frequency limit (A, B): 350 kHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AquadB 5V</td>
<td>27</td>
<td>10</td>
<td>10</td>
<td>MPHASE from EEPROM</td>
</tr>
<tr>
<td>AquadB 5V</td>
<td>17</td>
<td>10</td>
<td>10</td>
<td>MPHASE with wake & shake</td>
</tr>
</tbody>
</table>

The pin assignment shown on the motor side relates to the AKM motors.
9.12.14 ROD (AquadB) 5V, 350kHz with Hall (X1)

Wiring of a ComCoder as a feedback unit (primary, \(\rightarrow \#74\)). For the commutation hall sensors are used and for the resolution an incremental encoder.

The thermal control in the motor is connected to X1 and evaluated there. With our ComCoder cable all signals are connected correctly. If cable lengths of more than 25 m are planned, please consult our customer service. With separate feedback devices (Encoder and Hall are two devices) the wiring must be done similar to \(\rightarrow \#86\), but the amplifier's pinout is identical to the wiring diagram shown below.

Frequency limit (A,B): 350 kHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AquadB 5V + Hall</td>
<td>15</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

The pin assignment shown on the motor side relates to the AKM motors.
9.12.15 ROD (AquadB) 24V (X3)

Wiring of a 24V incremental encoder (ROD AquadB) as a feedback system (primary or secondary, (➜ #74)). This uses the digital inputs DIGITAL-IN 1 and 2 on connector X3.

Every time the 24V auxiliary voltage is switched on, the amplifier need start-up information for the position controller (parameter value MPHASE). Depending on the setting of FBTYPET a wake&shake is executed or the value for MPHASE is taken out of the servo amplifier’s EEPROM.

WARNING Vertical load can fall!

With vertical load the load could fall during wake&shake, because the brake is not active and torque is not sufficient to hold the load.

- Don’t use wake&shake with vertical load (hanging load).

The thermal control in the motor is connected to X1 or X2. If cable lengths of more than 25 m are planned, please consult our customer service.

Frequency limit: 100 kHz, transition time $t_v \leq 0.1 \mu s$

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPET</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AquadB 24V</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>MPHASE from EEPROM</td>
</tr>
<tr>
<td>AquadB 24V</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>MPHASE with wake & shake</td>
</tr>
</tbody>
</table>
9.12.16 ROD (AquadB) 24V with Hall (X3, X1)

Wiring of a 24V incremental encoder (ROD, AquadB) and Hall sensors as a feedback unit (primary, (➜ # 74)). For the commutation hall sensors are used and for the resolution an incremental encoder.

The thermal control in the motor is connected to X1 and evaluated there. If cable lengths of more than 25 m are planned, please consult our customer service.

Frequency limit X3: 100 kHz, X1: 350 kHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AquadB 24V + Hall</td>
<td>14</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
9.1.17 SSI absolute Encoder (X1)

Wiring of a synchronous serial absolute-encoded as a feedback system (primary or secondary, (➜ # 74)). The signal sequence can be read in Gray code or in Binary (standard) code. The thermal control in the motor is connected to X1 and evaluated there. If cable lengths of more than 50 m are planned, please consult our customer service.

Frequency limit: 1.5MHz

Resolution/turn: max. 16 Bit

Turns: max. 16 Bit

Anschluss eines synchron seriellen Multiturn-Absolutgebers als Rückführeinheit (primär oder sekundär, (➜ # 74)). Die Signalsequenz kann in Graycode oder in Standardbinarycode gelesen werden. Der Wärmeschutz im Motor ist an X1 angeschlossen und dort beurteilt. Bei Kabelängen von mehr als 50 m sind bitte unsere Kundenservice zu kontaktieren.

Frequency limit: 1.5MHz

Resolution/turn: max. 16 Bit

Turns: max. 16 Bit

<table>
<thead>
<tr>
<th>Gebertyp</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSI</td>
<td>25</td>
<td>25</td>
<td>25</td>
</tr>
</tbody>
</table>

Versorgungsspannung des Gebers auf X1 einschalten: ENCVOH auf 1 setzen.

Drive

RS 485

Up Sense

0V

5V +5 Volt

max. 250mA

X1

13

15

10

Synchron serieller Multiturn-Absolutgeber als Rückführeinheit (primär oder sekundär, (➜ # 74)). Die Signalsequenz kann in Graycode oder in Standardbinarycode gelesen werden. Der Wärmeschutz im Motor ist an X1 angeschlossen und dort beurteilt. Bei Kabelängen von mehr als 50 m sind bitte unsere Kundenservice zu kontaktieren.

Frequency limit: 1.5MHz

Resolution/turn: max. 16 Bit

Turns: max. 16 Bit
9.12.18 Hall sensors (X1)

Wiring of Hall sensors as a feedback unit (primary, (➜ #74)).

The thermal control in the motor is connected to X1 and evaluated there. If cable lengths of more than 25 m are planned, please consult our customer service.

Frequency limit: 350 kHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hall</td>
<td>11</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

5V +/-5
max. 250mA

Drive

0V

HALL

Hall-U
Hall-V
Hall-W

Motor

min. 5VDC/5mA
9.13 Electronic Gearing, Master-Slave operation

In the case of the "electronic gearing" functionality (see setup software and description of GEARMODE parameter), the servo amplifier is controlled by a secondary feedback device as a slave.

It is possible to set up master/slave systems, use an external encoder as a setpoint encoder or connect the amplifier to a stepper motor control.

The amplifier is parameterized using the setup software (electronic gearing, parameter GEARMODE).

The resolution (number of pulses per revolution) can be adjusted.

NOTE

If input X1 is used without the X1 power supply (pins 2, 4, 10, 12), e.g. master-slave operation with other servoamplifiers, the monitoring of this power supply must be switched off in order to prevent error message F04 from appearing. To do this, you must change Bit 20 of the DRVCFG2 parameter (see ASCII object reference in the online help).

9.13.1 Encoder control types

The following types of external encoder can be used for control:

<table>
<thead>
<tr>
<th>S700 controlled by</th>
<th>Frequency limit</th>
<th>Connector</th>
<th>Wiring diagram</th>
<th>GEARMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encoder BiSS digital</td>
<td>1.5 MHz</td>
<td>X1</td>
<td>☞ #80</td>
<td>11, 12</td>
</tr>
<tr>
<td>SinCos Encoder ENDAT 2.1</td>
<td>350 kHz</td>
<td>X1</td>
<td>☞ #81</td>
<td>8</td>
</tr>
<tr>
<td>Encoder ENDAT 2.2</td>
<td>1.5 MHz</td>
<td>X1</td>
<td>☞ #82</td>
<td>13</td>
</tr>
<tr>
<td>SinCos Encoder HIPERFACE</td>
<td>350 kHz</td>
<td>X1</td>
<td>☞ #83</td>
<td>9</td>
</tr>
<tr>
<td>SinCos Encoder without data channel</td>
<td>350 kHz</td>
<td>X1</td>
<td>☞ #85</td>
<td>6, 7</td>
</tr>
<tr>
<td>ROD* (AquadB) 5V</td>
<td>1.5 MHz</td>
<td>X1</td>
<td>☞ #87</td>
<td>30</td>
</tr>
<tr>
<td>ROD* (AquadB) 5V</td>
<td>350 kHz</td>
<td>X1</td>
<td>☞ #88</td>
<td>10</td>
</tr>
<tr>
<td>ROD* (AquadB) 24V</td>
<td>100 kHz</td>
<td>X3</td>
<td>☞ #90</td>
<td>2</td>
</tr>
<tr>
<td>SSI 5V</td>
<td>1.5 MHz</td>
<td>X1</td>
<td>☞ #92</td>
<td>25</td>
</tr>
<tr>
<td>Step/direction 5V</td>
<td>1.5 MHz</td>
<td>X1</td>
<td>☞ #95</td>
<td>27</td>
</tr>
<tr>
<td>Step/direction 24V</td>
<td>100 kHz</td>
<td>X3</td>
<td>☞ #95</td>
<td>1</td>
</tr>
</tbody>
</table>

With a "PosI/O" or "PosI/O-Monitor" expansion card in slot 2 or 3 (☞ #143 ff), the following encoder types can be used:

<table>
<thead>
<tr>
<th>S700 controlled by</th>
<th>Frequency limit</th>
<th>Connector</th>
<th>Wiring diagram</th>
<th>GEARMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSI 5V</td>
<td>1.5 MHz</td>
<td>X5</td>
<td>☞ #146</td>
<td>5</td>
</tr>
<tr>
<td>ROD* (AquadB) 5V</td>
<td>1.5 MHz</td>
<td>X5</td>
<td>☞ #148</td>
<td>3</td>
</tr>
<tr>
<td>Step/direction 5V</td>
<td>1.5 MHz</td>
<td>X5</td>
<td>☞ #148</td>
<td>4</td>
</tr>
</tbody>
</table>

*ROD is an abbreviation for incremental encoder
9.13.2 Connection to stepper motor controllers (step and direction)

You can connect the servo amplifier to a third-party stepper-motor controller. Parameter setting for the slave amplifier is carried out with the aid of the setup software (electronic gearing). The number of steps can be adjusted, so that the servo amplifier can be adapted to match the step-direction signals of any stepper controller. Various monitoring signals can be generated.

NOTE
Using an A quad B encoder provides better EMC noise immunity.

9.13.2.1 Step / Direction with 5 V signal level (X1)

Wiring of the servo amplifier (SubD connector X1) to a stepper-motor controller with a 5V signal level.

Frequency limit: 1.5 MHz

<table>
<thead>
<tr>
<th>Control</th>
<th>GEARMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step/direction5V</td>
<td>27</td>
</tr>
</tbody>
</table>

9.13.2.2 Step / Direction with 24 V signal level (X3)

Wiring of the servo amplifier to a stepper-motor controller with a 24 V signal level. The digital inputs DIGITAL-IN 1 and 2 on connector X3 are used.

Frequency limit: 100 kHz

<table>
<thead>
<tr>
<th>Control</th>
<th>GEARMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step/direction24V</td>
<td>1</td>
</tr>
</tbody>
</table>
9.13.3 Master-Slave operation

9.13.3.1 Connection to an S700 master, 5V signal level (X1)

You can link two S700 amplifiers together in master-slave operation. One slave amplifier can be controlled by the master, via the encoder output X1 (➜ #97).

Master: position output to X1 (screen page "Encoder emulation")
Slave: screen page "Electronic gearing" (GEARMODE)

Frequency limit: 1.5 MHz

Example for Master-Slave operation with two S700 amplifiers:

<table>
<thead>
<tr>
<th>Slave GEARMODE: 30</th>
<th>Master ENCMODE: 9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive A+ A-</td>
<td>Drive A+ A-</td>
</tr>
<tr>
<td>X1 B+ B- 1000Ω</td>
<td>X1 B+ B- 1000Ω</td>
</tr>
<tr>
<td>RS 485 RS 485</td>
<td>RS 485 RS 485</td>
</tr>
<tr>
<td>GND</td>
<td>GND</td>
</tr>
</tbody>
</table>

If using SSI emulation, then the master must be set to ENCMODE 10 and the slave to GEARMODE 25.

9.13.3.2 Connection to an S700 Master, 5V signal level (X5)

If an expansion card PosI/O or PosI/O-Monitor (➜ #143) is built-in, you can use the encoder emulation via X5.

With this interface up to 16 Slaves can be connected to one Master, because no internal termination resistors are built-in with X5. Wiring (➜ #148).
9.14 Encoder Emulation, position output

9.14.1 Incremental encoder output - A quad B (X1)

Fast incremental encoder interface. Select encoder function ROD (A Quad B) Encoder ("Encoder Emulation" screen page). The servo amplifier calculates the motor shaft position from the cyclic-absolute signals of the resolver or encoder, generating incremental-encoder compatible pulses from this information. Pulse outputs on the SubD connector X1 are 2 signals, A and B, with 90° phase difference (i.e. in quadrature, hence the alternative term "A quad B" output), with a zero pulse.

The resolution (before multiplication) can be set:

<table>
<thead>
<tr>
<th>Encoder function (ENCMODE)</th>
<th>Feedback system (FBTYPE)</th>
<th>Resolution (ENCOUT)</th>
<th>Zero pulse (NI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9, ROD => X1</td>
<td>0, Resolver</td>
<td>32…4096</td>
<td>once per turn (only at A=B=1)</td>
</tr>
<tr>
<td></td>
<td>>0, Encoder</td>
<td>256…524288 (2^8 … 2^19)</td>
<td></td>
</tr>
</tbody>
</table>

With built in safety card only binary resolutions up to 2^12 are possible.

Use the NI-OFFSET parameter to adjust + save the zero pulse position within one mechanical turn. The drivers operate off an internal supply voltage.

The maximum permissible cable length is 100 meters.

Connections and signals for the incremental encoder interface:

Default count direction: UP when the motor shaft is rotating clockwise (looking at the shaft’s end)
9.14.2 SSI encoder output (X1)

SSI interface (synchronous serial absolute-encoder emulation). Select encoder function SSI ("Encoder Emulation" screen page, ENCMODE 10). The servo amplifier calculates the motor shaft position from the cyclic-absolute signals of the resolver or encoder. From this information a SSI date (Stegmann patent specification DE 3445617C2) is provided. Max 32 bits are transferred.

The leading data bit contains the number of revolutions and are selectable from 12 to 16 bits. The following max. 16 bits contain the resolution and are not variable.

The following table shows the allocation of the SSI date depending upon selected number of revolutions:

<table>
<thead>
<tr>
<th>Revolution</th>
<th>Resolution (variable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 14 13 12 11</td>
<td>10 9 8 7 6 5 4 3 2 1 0</td>
</tr>
<tr>
<td>14 13 12 11 10</td>
<td>9 8 7 6 5 4 3 2 1 0</td>
</tr>
<tr>
<td>13 12 11 10 9 8 7 6 5 4 3 2 1 0</td>
<td></td>
</tr>
<tr>
<td>12 11 10 9 8 7 6 5 4 3 2 1 0</td>
<td></td>
</tr>
<tr>
<td>11 10 9 8 7 6 5 4 3 2 1 0</td>
<td></td>
</tr>
</tbody>
</table>

The signal sequence can be output in Gray code or in Binary (standard) code. The servo amplifier can be adjusted to the clock frequency of your SSI-evaluation with the setup software.

The drivers operate off an internal supply voltage.

Connection and signals for the SSI interface:

Default count direction: UP when the motor shaft is rotating clockwise (looking at the end of the motor shaft)
9.15 Digital and analog inputs and outputs

9.15.1 Analog Inputs (X3B)

The servo amplifier is fitted with two programmable differential inputs for analog setpoints. AGND (X3B/13) must always be joined to control GND as a ground reference.

Technical characteristics

- Differential-input voltage max. ±10 V
- Ground reference AGND, terminal X3B/13
- Input resistance 150 k
- Common-mode voltage range for both inputs ±10 V
- Update rate 62.5 μs

Analog-In 1 input (terminals X3B/10-X3B/9)

Differential input voltage max. ±10 V, resolution 16 Bit (accuracy 13 Bit), scalable.
Standard setting: speed setpoint

Analog-In 2 input (terminals X3B/12-X3B/11)

Differential input voltage max. ±10 V, resolution 16 Bit (accuracy 13 Bit), scalable.
Standard setting: torque setpoint

Application examples for setpoint input Analog-In 2:

- adjustable external current limit
- reduced-sensitivity input for setup or jog operation
- pre-control, override

If an input was freshly assigned to a pre-programmed function, then the data set must be saved in the EEPROM of the servo amplifier and a reset has to be carried out (with the amplifier setup software for example).

Defining the direction of rotation

Standard setting: clockwise rotation of the motor shaft (looking at the shaft end)

- Positive voltage between terminal X3B/10 (+) and terminal X3B/9 (-) or
- Positive voltage between terminal X3B/12 (+) and terminal X3B/11 (-)

To reverse the direction of rotation, swap the connections to terminals X3B/10-X3B/9 or X3B/12-X3B/11 respectively, or change the COUNT DIRECTION parameter in the "Feedback" screen page.
9.15.2 Digital Inputs (X3A, X3B, X4)

DIGITAL-IN 21 and 22 must be defined as inputs using the setup software (“Digital I/O” screen page).

9.15.2.1 Connector X3A, X3B

Input ENABLE

- PLC compatible (IEC 61131-2 type 1), floating, reference ground is DGND
- High: 15...30 V / 2...15 mA, Low: -3...5 V / <1mA
- Update rate: Software: 250 µs

The output stage of the servo amplifier is enabled by applying the ENABLE signal (Terminal X3A/1, active high). Enable is possible only if inputs STOx-Enable have a 24 V signal (➔ # 41) ff. In the disabled state (low signal) the connected motor has no torque.

A software enable by means of the setup software is also required (AND link), although this can also be permanently enabled (“Basic Setup” screen page of the DRIVEGUI.EXE setup software).

Programmable digital inputs X3:

You can use the digital inputs X3A/2 to X3A/7 to initiate pre-programmed functions that are stored in the servo amplifier. A list of these pre-programmed functions can be found on the “Digital I/O” screen page of our setup software.

If an input was freshly assigned to a pre-programmed function, then the data set must be saved in the EEPROM of the servo amplifier and a reset has to be carried out (with the amplifier setup software for example).
Digital Inputs DIGITAL-IN 1 and 2 (X3A/2, X3A/3):
These inputs are particularly fast and are therefore suitable for latch functions or for high-speed feedback signals, for example.

- PLC compatible (IEC 61131-2 type 1), floating, reference ground is DGND
- High: 15...30 V / 2...15 mA, Low: -3...5 V / <1mA
- Update rate: Hardware: 2µs

Digital Inputs DIGITAL-IN 3 and 4 (X3A/4, X3A/5):
The PSTOP and NSTOP limit switch evaluation functions, for instance, can be assigned to these inputs. Choose the function you require in the setup software (“Digital I/O” screen page).

- PLC compatible (IEC 61131-2 type 1), floating, reference ground is DGND
- High: 15...30 V / 2...15 mA, Low: -3...5 V / <1mA
- Update rate: Software: 250 µs

Digital Inputs DIGITAL-IN21 and 22 (X3A/6, X3A/7):
Pins 6 and 7 on X3A can be used as either inputs or outputs. Choose the function you require in the setup software (“Digital I/O” screen page).

- PLC compatible (IEC 61131-2 type 1), floating, reference ground is DGND
- High: 15...30 V / 2...15 mA, Low: -3...5 V / <1mA
- Update rate: Software: 250 µs

Depending on the selected function the inputs are high or low active.

NOTE

9.15.2.2 Connector X4
You can thus achieve a restart lock-out for functional safety by using the STO1-Enable and STO2-Enable inputs in conjunction with an external safety circuit.

Input STO1-ENABLE (X4/7) and STO2-Enable (X4/5)

- Floating, reference ground is XGND
- 20V...30V / 33mA...45mA

NOTE

These inputs are not compatible with EN 61131-2.

These additional digital inputs releases the power output stage of the amplifier as long as a 24 V signal is applied to these inputs. If the STO inputs go open-circuit, then power will no longer be supplied to the motor, the drive will lose all torque and coast down to a stop.

NOTICE

Failsafe braking of the drive, if required, must be provided by means of an additional mechanical brake, since electrical braking by the drive is no longer possible.

You can find further information and connection examples (➜ #43)ff.
9.15.3 Digital Outputs (X3A, X3B, X4)

Technical characteristics

- Power supply at terminals X3A/8 (24V-IO) and X3B/16 (DGND)
- All digital outputs are floating
- 24V-IO : 20V DC ... 30V DC

 DIGITAL-OUT1/2 : PLC compatible (IEC 61131-2 type 1), max. 100mA

 STO1/2-Status : PLC compatible (IEC 61131-2 type 1), max. 100mA

 BTB/RTO : Relay output, max. 30V DC or 42V AC, 0.5A
- Update rate : 250 µs

* DIGITAL-OUT 1/2 must be defined as outputs using the setup software ("Digital I/O" screen page).
9.15.3.1 Connectors X3A, X3B

Ready-to-operate contact BTB/RTO (X3B/14, X3B/15)
Operational readiness (terminals X3B/14 and X3B/15) is signaled by a floating relay contact. The contact is closed when the servo amplifier is ready for operation, and the signal is not influenced by the enable signal, the I²t-limit, or the brake threshold.

NOTE
All faults cause the BTB/RTO contact to open and the output stage to be switched off (if the BTB/RTO contact is open, the output stage is inhibited -> no power output). Error messages are listed on page (⇒ # 123).

Programmable digital outputs DIGITAL-OUT 1 and 2 (X3A/6, X3A/7):
Pins 6 and 7 on X3A can be used as either inputs or outputs. Choose the function you require in the setup software (OsMODE). The outputs are floating outputs, so the 24 V switching voltage must be provided by an external supply.

If they are programmed as digital outputs, messages from pre-programmed functions stored in the servo amplifier can be output here. A list of these pre-programmed functions can be found on the “I/O digital” screen page of our setup software DRIVEGUI.EXE.

If an output is to be freshly assigned to a pre-programmed function, then the parameter set must be saved in the EEPROM of the servo amplifier and a reset has to be carried out (with the amplifier setup software for example).

9.15.3.2 Connector X4

Status messages STO1-Status (X4/8) and STO2-Status (X4/6):
Pin 6 and 8 on X4 report the status of the STO-Enable inputs. The outputs are floating outputs, so the 24 V switching voltage must be provided by an external supply via X3A/8.
9.16 RS232 interface, PC connection (X6)

Operating, position control, and motion-block parameters can be set up by using the setup software on an ordinary commercial PC (➔ # 110).

Connect the PC interface (X6) of the servo amplifier to a serial interface on the PC, while the power supply to the equipment is switched off.

NOTE

Do not use a null-modem power link cable!

This interface has the same electrical potential as the CANopen interface. The interface is selected and set up in the setup software. Further notes (➔ # 109).

With the optional expansion module -2CAN- the two interfaces for RS232 and CAN, which otherwise use the same connector X6, are separated onto two connectors (➔ # 140).

Interface cable between the PC and servo amplifiers of the S700 series:
(View : looking at the solder side of the SubD sockets on the cable)
9.17 CAN-bus interface (X6)

The interface for connection to the CAN-bus (default: 500 kBaud). The integrated profile is based on the CANopen DS301 communication profile and the DS402 drive profile. The following functions are available in connection with the position controller: Jogging with variable speed, homing run (zeroing to reference), start motion task, start direct task, digital setpoint provision, data transmission functions and many others. Detailed information can be found in the CANopen manual. The interface is at the same electrical potential as the RS232 interface. The analog setpoint inputs can still be used. With the optional expansion module -2CAN- the two interfaces for RS232 and CAN, which otherwise use the same connector X6, are separated onto two connectors (☞ #140).

CAN-bus cable

To meet ISO 11898, a bus cable with a characteristic impedance of 120 Ω should be used. The maximum usable cable length for reliable communication decreases with increasing transmission speed. As a guide, you can use the following values which we have measured, but they are not to be taken as assured limits:

- Characteristic impedance 100-120 Ω
- Cable capacitance max. 60 nF / 1000m
- Lead loop resistance 159.8 Ω / 1000m

Cable length, depending on the transmission rate (samples)

<table>
<thead>
<tr>
<th>Baudrate / kBaud</th>
<th>max. cable length / m</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>500</td>
<td>70</td>
</tr>
<tr>
<td>250</td>
<td>115</td>
</tr>
</tbody>
</table>

Lower cable capacitance (max. 30 nF / km) and lower lead resistance (loop resistance, 115Ω / km) make it possible to achieve greater distances. (Characteristic impedance 150 ± 5Ω => terminating resistor 150 ± 5Ω).

For EMC reasons, the SubD connector housing must fulfill the following requirements:

- metal or metalized housing
- provision for cable shielding connection on the housing, large-area connection
9.18 EtherNet interface (X7)

This interface with its two RJ-45 connectors can be used for communicating with various fieldbus devices depending on the used firmware version:

- EtherCAT (Standard, CAN over EtherCAT)

NOTE

The interface is deactivated, if a field bus extension card is inserted to an extension slot. The protocol that has been installed with the firmware must be enabled (ASCII command ETHMODE).

Standard setting: if an EtherCAT connection is detected while booting the servo amplifier, then EtherCAT is activated, otherwise CANopen (→ # 105) is activated.

With the Download Tool (on the product CDROM and within the download area of our website) the different firmware versions can be loaded into the servo amplifier.

The communication status is indicated by the built-in LEDs.

<table>
<thead>
<tr>
<th>Connector</th>
<th>LED#</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>X7A</td>
<td>LED1</td>
<td>LINK_IN</td>
<td>ON = receive valid (IN port)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF = not valid, power off or reset.</td>
</tr>
<tr>
<td></td>
<td>LED2</td>
<td>CYCLIC</td>
<td>ON = network cyclic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BLINK = network not cyclic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF = power off or reset</td>
</tr>
<tr>
<td>X7B</td>
<td>LED3</td>
<td>LINK_OUT</td>
<td>ON = receive valid (OUT port)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF = not valid, power off or reset</td>
</tr>
<tr>
<td></td>
<td>LED4</td>
<td>REPEATER</td>
<td>ON = repeater on, network cyclic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BLINK = repeater on, network not cyclic</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>OFF = repeater off, power off or reset</td>
</tr>
</tbody>
</table>

Pinout

<table>
<thead>
<tr>
<th>X7A</th>
<th>Signal</th>
<th>X7B</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Transmit +</td>
<td>1</td>
<td>Receive +</td>
</tr>
<tr>
<td>2</td>
<td>Transmit -</td>
<td>2</td>
<td>Receive -</td>
</tr>
<tr>
<td>3</td>
<td>Receive +</td>
<td>3</td>
<td>Transmit +</td>
</tr>
<tr>
<td>4</td>
<td>n.c.</td>
<td>4</td>
<td>n.c.</td>
</tr>
<tr>
<td>5</td>
<td>n.c.</td>
<td>5</td>
<td>n.c.</td>
</tr>
<tr>
<td>6</td>
<td>Receive -</td>
<td>6</td>
<td>Transmit -</td>
</tr>
<tr>
<td>7</td>
<td>n.c.</td>
<td>7</td>
<td>n.c.</td>
</tr>
<tr>
<td>8</td>
<td>n.c.</td>
<td>8</td>
<td>n.c.</td>
</tr>
</tbody>
</table>
9.19 Memory card

In the top of the servo amplifier there is a card reader for memory cards. The firmware and a full set of parameters (with control buttons and setup software) can be stored on the memory card and reloaded onto the servo amplifier. MMC and SD cards are supported. This function means that a replacement device or identical shafts in standard production machines can be set up very quickly and easily.

Uploads and Downloads from and to the memory card can be started with the keypad or with the setup software using.

Operating with ASCII commands is described in the KDN on page "Memory Card" beschrieben.

NOTE

Always switch off the S700 before inserting or removing the memory card. If an absolute encoder is used, homing must be carried out before the parameters are loaded into a new device.

To download new firmware to an amplifier without a PC connection, proceed as follows:

1. Save the firmware to be programmed onto a memory card under the name "default.s19" (S-record format) or "default.bin" (binary format).
2. Disconnect the power to the amplifier (24 V supply OFF) and insert the card in the memory card slot on the amplifier.
3. Press and hold down both operating keys (ʼ ʼ) and switch on the 24 V supply voltage to the amplifier. “—” appears in the display to indicate that the monitor program has been activated. In case of access problems the drive display shows the letters “CCC”. The interrupted command proceeds after re-insertion of the memory card.
4. Press both operating keys again to start the update process. The progress of the update can be monitored in the display:
 - First, the firmware is downloaded from the card to the internal memory.
 - During this phase, the display counts from 0 to 100.
 - Next, the internal firmware memory is deleted. During this phase, 100 is displayed permanently.
 - Once the firmware memory has been deleted, the firmware is written. This phase is indicated in the display by the display counting backwards from 100 to 0.
5. Once programming has been completed, the firmware is started automatically.

The parameter file can also be loaded automatically on a restart. If a parameter file with the name "default.par" has already been saved on the memory card, it will be loaded by the firmware at this point. This allows automatic updating of firmware and parameters.
10 Setup

The procedure for setup is described as an example. Depending on the application, a different procedure may be appropriate or necessary. In multi-axis systems, set up each servo amplifier individually.

Before setting up, the manufacturer of the machine must generate a risk assessment for the machine, and take appropriate measures to ensure that unforeseen movements cannot cause injury or damage to any person or property.

10.1 Important notes

NOTICE
Only professional personnel with extensive knowledge in the fields of electrical engineering and drive technology are allowed to test and set up the drive.

DANGER Lethal Voltage!
There is a danger of serious personal injury or death by electrical shock. Lethal danger exists at live parts of the device.
- Built-in protection measures such as insulation or shielding may not be removed.
- Work on the electrical installation may only be performed by trained and qualified personnel, in compliance with the regulations for safety at work, and only with switched off mains supply, and secured against restart.

WARNING Automatic Restart!
Risk of death or serious injury for humans working in the machine. The servo amplifier might restart automatically after power on, voltage dip or interruption of the supply voltage, depending on the parameter setting. If parameter AENA is set to 1,
- then place a warning sign (Warning: Automatic Restart at Power On) to the machine.
- Ensure, that power on is not possible, while humans are in a dangerous zone of the machine.

NOTICE
If the servo amplifier has been stored for more than 1 year, it will be necessary to re-form the capacitors in the DC bus link circuit. To do this, disconnect all electrical connections and apply single-phase 208...240 V AC to terminals L1 and L2 of the servo amplifier for about 30 minutes. This will re-form the capacitors.

NOTE
The adaptation of parameters and the effects on the control loop behavior are described in the Online Help of the setup software.

The setting up of any expansion card that may be fitted is described in the corresponding manual on the CD-ROM.

We can provide further know-how through training courses (on request).
10.2 Setup software

This chapter describes the installation of the setup software DRIVEGUI.EXE for the S700 digital servo amplifiers. We offer training and familiarization courses on request.

10.2.1 Use as directed

The setup software is intended to be used for altering and saving the operating parameters for the S700 series of servo amplifiers. The attached servo amplifier can be set up with the help of this software, and during this procedure the drive can be controlled directly by the service functions.

Only professional personnel who have the relevant expertise described on page (➜ # 13) are permitted to carry out online parameter setting for a drive that is running.

Sets of data that have been stored on data media are not safe against unintended alteration by other persons. After loading a set of data you must therefore always check all parameters before enabling the servo amplifier.

10.2.2 Software description

The servo amplifiers must be adapted to the requirements of your machine. Usually you will not have to carry out this parameter setting yourself on the amplifier, but on a PC, with the assistance of the setup software. The PC is connected to the servo amplifier by a null-modem cable (serial, (➜ # 104)). The setup software provides the communication between the PC and S700.

You can find the setup software on the accompanying CD-ROM and in the download area of our website.

With very little effort you can alter parameters and instantly observe the effect on the drive, since there is a continuous (online) connection to the amplifier. At the same time, important actual values are read out from the amplifier and displayed on the monitor of the PC (oscilloscope functions).

Any expansion cards built into the amplifier are automatically recognized, and the additional parameters which are required for position control or motion-block definition are made available.

You can save sets of data on data media or on the memory card (archiving) and load them again. You can also print out the data sets.

We supply you with motor-specific default sets of data for the most common combinations of servo amplifier and motor. In most applications you will be able to use these default values to get your drive running without any problems.

An extensive Online Help with integrated description of all variables and functions supports you in each situation.
10.2.3 Hardware requirements, operating systems

The PC interface (X6, RS232) of the servo amplifier is connected to the serial interface of the PC by a null-modem cable (not a null-modem link cable!) (➡ # 104).

NOTICE

Connect or disconnect the interface cable only when the electrical supply is switched off for both the PC and the servo amplifier.

The interface in the servo amplifier has the same potential level as the CANopen interface.

Minimum requirements for the PC:

- **Processor:** At least Pentium® II or comparable
- **Graphics adapter:** Windows compatible, color
- **Drives:**
 - Hard disk with at least 10 MB free space
 - CD-ROM drive
- **Interface:** one free serial interface (COM1 … COM10) or USB with an USB-
 > Serial converter

Operating systems WINDOWS 2000, XP, VISTA, 7 / 8 / 10

DRIVEGUI.EXE will run under WINDOWS 2000, XP, VISTA, 7, 8 and 10.

Emergency operation is feasible through an ASCII terminal emulation (without graphical user interface).

Interface settings: 38400 bps, databit 8, no parity, stopbit 1, no flow control

Operating systems Unix, Linux

The functioning of the software has not been tested for WINDOWS running within Unix or Linux.

10.2.4 Installation under WINDOWS

The CD-ROM includes an installation program for the setup software.

Installation

- **Autostart function activated:**
 - Insert the CD-ROM into a free drive. A window with the start screen opens. There you find a link to the setup software DRIVEGUI.EXE. Click it and follow the instructions.

- **Autostart function deactivated:**
 - Insert the CD-ROM into a free drive. Click on **START** (task bar), then on **Run**. Enter the program call: `x:\index.htm` (x = correct CD drive letter).
 - Click **OK** and proceed as described above.

Connection to the serial interface of the PC:

Connect the interface cable to a serial interface on your PC (COM1 to COM10) and to the serial interface of the servo amplifier S700 (➡ # 104).
10.3 Quickstart, initial drive test

10.3.1 Preparation

Unpacking, Mounting and Wiring the Servo Amplifier

1. Unpack servo amplifier and accessories.
2. Observe safety instructions in the manuals.
3. Mount the servo amplifier as described in chapter "Mechanical Installation" (➜ # 53).
4. Wire the servo amplifier as described in chapter "Electrical Installation" (➜ # 59) or apply the minimum wiring for drive testing as described on the next page.
5. Install the software (➜ # 109).
6. You need this information concerning the drive components:
 - Rated mains supply voltage
 - Motor type (motor data, if the motor type is not listed in the motor database, see Online-Help)
 - Feedback unit built into the motor (type, poles, lines, protocol etc.)
 - Moment of inertia of the load

Documents

You need access to these documents (located on the product CD-ROM, you can download the latest editions from our website):

- Instruction manual (this manual)
- CANopen Fieldbus Interface Manual
- EtherCAT Fieldbus Interface Manual
- Accessories manual

Depending on the installed expansion card you need one of these documents:

- Operating Manual Safety Expansion Card Sx
- PROFIBUS DP Fieldbus Interface Manual
- DeviceNet Fieldbus Interface Manual
- sercos® Fieldbus Interface Manual

You need Acrobat Reader to read the PDFs, an installation link is on every screen of the product CD-ROM.
Minimum Wiring for Drive Test

NOTE
This wiring does not fulfill any requirements to safety or functionality of your application, it just shows the required wiring for drive testing without load.
10.3.2 Connect

- Connect the interface cable to a serial interface on your PC and to the serial interface X6 of the servo amplifier. USB to serial converter can be used optionally.
- Switch on the 24 V power supply for the servo amplifier.
- Wait about 30 seconds, until the front display of the servo amplifier displays the current class (e.g. 48 for 48 A) and switches on. If the power supply voltage is switched on, too, leading P is displayed (e.g. P.48 for Power, 48 A).

If a fault code (F, W, E) or a warning (R, W, E) or a status message (./_/E/S) appears in the display, you will find the description on page (➡ #123) or (➡ #124). If a fault message appears, fix the problem.

Double-Click the DRIVEGUI.EXE icon on your Windows desktop to start the software. You can work offline or online with DRIVEGUI.EXE. Work ONLINE now.

If the communication is started for the first time, you have to set up the communication parameters. Choose the communication system and the interface, where the servo amplifier is connected to. Click OK.

The software tries to communicate with these parameters. If it's not successful, you receive this error message:

Frequent causes:
- wrong interface chosen
- wrong connector chosen at the servo amplifier
- interface is used by another software
- 24 V auxiliary voltage for the servo amplifier not working
- interface cable broken or wrong wiring

Quit the error message. The software starts in the offline mode now, that requires the manual selection of the amplifier's type. Quit this selection by closing the window. Fix the communication problem. Restart the software in Online mode.
If communication works, you see the start screen. Select "Setup Wizard" in the navigation frame.

NOTICE

Make sure that the amplifier is disabled (Input Enable connector X3A pin 1 must be 0 V or open!)

10.3.3 Important Screen Elements

Help Function
The online help gives detailed information to all parameters the servo amplifier can work with.

Key F1	Starts online help for the actual screen page.
Menu bar Help	Starts online help with the first page.
Help Symbol	Context Help. Click the help symbol first. Then click the function for which you need help.

Tool Bar

	Save to EEPROM, required if you changed parameters.
	Reset, required if you changed configuration parameters.
Operation Mode	Operation Mode, use "0: Digital Velocity" mode for drive testing.

Status Bar
The status bar shows a green Online symbol, indicating that the communication works.
10.3.4 Setup Wizard

The Setup Wizard leads you through the necessary steps for configuring your servo amplifier. Depending on the selected application, only the active screen pages are necessary.

For a quick setup / drive test, select the setup type "Quick Motor/Drive Setup". Start the Wizard.

10.3.4.1 Basic Setup

Basic parameters are set here.

Mains Voltage: Select actual mains voltage.

Response to Loss of Input Phase: Select Three-Phase operation. With three-phase operation you can select either warning "n05" or error "F19" in case of phase loss. The reaction "F19" disables the output stage, "n05" is just a message.

Name: You can enter a name for the servo amplifier (up to 8 characters). This simplifies the drive identification in the system.

Set Software Enable on Bootup: Do not select this option for the quick test.

Click NEXT.
10.3.4.2 Units/Mechanical

The user units for all input fields in the setup software can be preselected here.

Position, Velocity, Acceleration
Select usable units for your application referring to the moved load.

Mechanical Conversion
The relationship between motor shaft revolution (pole pair pitch with linear motors) and motion distance of the load is specified here. Gear ratio can be calculated here as well. Detailed information can be found in the Online-Help.
Use the tool based on sample applications for calculating the resolution value:

Calculate PGEARI/PGEARO for... button
If your application does not correspond to any of the listed examples, enter the required parameters directly in the fields on the "Units" screen.

First, select the application that corresponds to your own. Next, set the position unit. Select the position unit that provides you with the required accuracy for your application.
Set the mechanical data for your application now. If a gearhead is flange-mounted on the motor, you must also enter the gearhead data (either the number of teeth or the ratio of the revolutions).
Then click the “Calculate conversion factors and return” button.
Click NEXT.
10.3.4.3 Motor (rotary) and Feedback

Feedback: Select the feedback system used in the motor.

- **Resolver:** Fixed to 2 pole in the Quick Motor/Drive Setup. Change "pole n" on feedback screen in Complete Setup later, if required.
- **Motor type:** Click the button "Select from Database...". Open the database file (mdb___.csv) and select the used motor out of the list. Special motors must be defined in the "Complete Setup".
- **Brake:** If the amplifier shall control a brake, change the Brake parameter to "With"
- **Calculated quick tuning:** If you know the Load-to-motor inertia ratio (0 is for no load), enter the number here and select the desired servo performance. If you don't know the inertia ratio, select "Do not tune". Click **FINISH**.

10.3.4.4 Motor (linear) / Feedback (Encoder)

Feedback: Select the feedback system used.

- **Motor type:** Click the button "Select from Database...". Open the database file (mdb___.csv) and select the used motor. Special motors must be defined in the "Complete Setup".
- **Encoder Lines** (appears with Feedback Type Sine Encoder): Click "Calculate" and fill in the Encoder signal period.
- **Brake:** If the amplifier shall control a brake, change the Brake parameter to "With"
- **Calculated quick tuning:** If you know the Load-to-motor inertia ratio, enter the number here and select the desired servo performance. Otherwise select "Do not tune". Click **FINISH**.
10.3.4.5 Save Parameters and Restart

You are going to finish the Setup Wizard and you have changed several basic parameters. Depending on the parameters you changed, two possible reactions will occur now:

Configuration parameters changed

A warning appears, that you have to restart the amplifier, this is called "coldstart".

Click "YES". The parameters are saved to the amplifier’s EEPROM automatically and a reset command restarts the amplifier (takes some seconds).

Other parameters changed

No warning appears. Save the parameters to the EEPROM of the servo amplifier manually by clicking the symbol 🔄 in the tool bar. A coldstart of the amplifier is not necessary.

Select the screen "Motion Service" in the navigation frame.

10.3.5 Motion Service (Jog Mode)

NOTICE

Be aware that the actual position of the load permits the subsequent moving operations. The axis could move to the hardware limit-switch or the mechanical stop. Make sure that a jerk or a fast acceleration of the load cannot cause any damage. Observe the "safe reduced speed" requirements for your application!

- Switch on the power supply for the drive.
- **STO-Enable**: Apply +24 V to STO1-Enable [X4/5] and to STO2-Enable [X4/7]
- **Hardware-Enable**: Apply +24 V to input Enable [X3A/1]. If STO-Enable is missed or the sequence was wrong, the front display shows 🔄.
- **Software-Enable**: Click the symbol 🔄 in the tool bar.

Now the front display shows an E and the current class (e.g. 🔄48 for Enable, 48A).

Click the symbol 🔄 to switch off the output stage (disable).

Jog (Digital Velocity Mode):

You can move the drive with constant speed. Enter the desired speed.

The drive moves with the preset speed when the + or - button is pressed. It stops when the button is released.

Actual errors and warnings are listed on the screen "Status". A description of errors and warnings can be found in the Online-Help or on page (➔ # 123) ff.

Now you have setup and tested the basic functions of the drive successfully.
10.3.6 More Setup Screens

NOTICE Observe the safety instructions in the manuals and in the online help before you change parameters in the additional setup screens.

For all setup functions detailed information can be found in the online help system and the integrated command reference.

Select "Complete Setup" in the Setup-Wizard. Now you have access to:

- **CAN- and Feldus settings**: Setup address and baudrate
- **Feedback**: Adjust the used feedback unit
- **Motor**: Adjust the used motor
- **Control Loops**: Current-, Velocity- and Position-Loops can be optimized
- **Position Data**: Adjust the position control for the requirements of your application.
- **Position Registers**: Up to 16 position values in the motion way can be monitored.
- **Electronic Gearing**: If the servo amplifier will follow a setpoint as a slave with a gear ratio, you can select the gearing source here and define the gear ratio.
- **Encoder Emulation**: Select the encoder emulation (position output)
- **Analog I/O**: Setup the analog inputs
- **Digital I/O**: Setup the digital inputs and digital outputs
- **Status (Errors/Warnings)**: Displays amplifiers data with history, actual faults and warnings
- **Monitor**: Displays the drive data (actual values)
- **Homing**: Definition and start of homing
- **Motion task**: Definition and start of motion task
- **Oscilloscope**: 4 channel oscilloscope with multiple functionality
- **Bode Plot**: Tool for optimizing the drive
- **Terminal**: Setup the servo amplifier with ASCII commands
- **Expansion Card**: Depending on the built-in expansion card a menu appears
- **Autotuning**: Fast tuning of the velocity controller
10.4 Multi axis system

With a special cable you can connect up to 255 servo amplifiers to your PC: cable type -SR6Y- (for four amplifiers) or -SR6Y6- (for six amplifiers) see Accessories Manual.

With the PC connected to only one amplifiers you can select every amplifier in the system via the set station address with the setup software.

Node address for CAN-bus

You can use the keypad on the front panel to preset the station addresses for the individual amplifiers and the baud rate for communication (→ # 122). Usually the setup software is used to set all parameters.

Baud rate for CAN-bus

After changing the station address and baud rate you must turn the 24V auxiliary supply for the servo amplifier off and on again.

Coding of the Baud rate in the LED display:

<table>
<thead>
<tr>
<th>Coding</th>
<th>Baud rate in kBit/s</th>
<th>Coding</th>
<th>Baud rate in kBit/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>25</td>
<td>250</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>33</td>
<td>333</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>50</td>
<td>500</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>66</td>
<td>666</td>
</tr>
<tr>
<td>12</td>
<td>125</td>
<td>80</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>1000</td>
</tr>
</tbody>
</table>

10.5 Keypad operation and LED display

This section illustrates the two possible operating menus and the use of the keys on the front panel. Normally, the S700 only presents the standard menu for your use. If you want to operate the amplifier via the detailed menu, you must keep the right key pressed while switching on the 24V supply.
10.5.1 Operation

The two keys can be used to perform the following functions:

<table>
<thead>
<tr>
<th>Key symbol</th>
<th>Functions</th>
</tr>
</thead>
<tbody>
<tr>
<td>▲</td>
<td>press once: go up one menu item, increase number by one</td>
</tr>
<tr>
<td>▲</td>
<td>press twice in rapid succession: increase number by ten</td>
</tr>
<tr>
<td>▼</td>
<td>press once: go down one menu item, decrease number by one</td>
</tr>
<tr>
<td>▼</td>
<td>press twice in rapid succession: decrease number by ten</td>
</tr>
<tr>
<td>▲ ▼</td>
<td>press and hold right key, then press left key as well: enter a number, return function name</td>
</tr>
</tbody>
</table>

10.5.2 Status display

State

000 to 127

Station adress
the entry will be stored automatically, when you exit the input field.

10.5.3 Standard menu structure

Switch on 24V

Access problem Memory Card

Data are being read from EnDat

Input STO-Enable 0V

status 1: 24V switched on
unit indicates software version after 1 sec. shift to status 2, 3 or 4
status 2: 24V switched on
unit indicates current (here 72A) flashing dot
status 3: 24V switched on, mains supply switched on
unit indicates current and mains supply on flashing dot
status 4: 24V and mains supply on, unit enabled
unit indicates current, mains supply on and enable flashing dot

Parameters

fault/warning signal: each error/warning that has occurred will be indicated successively for 4 blinks each
10.5.4 Advanced menu structure

NOTE To operate the amplifier via the detailed menu, you must keep the right key pressed while switching on the 24 V supply.

- State
- Block1: 730
- Block2: 201
- Block3: 014

serial number: 9-digit number divided in 3 blocks, decimal dot indicates number of block

ASCII-command M_Reset (macros are newly compiled)

ASCII-command RSTVAR (parameter will be reset to default values)

save data to EEPROM

load data from EEPROM

- S07: 0 or 1
 - MDRV (Multilink)

- S06: OFF or On
 - brake

- S05: OFF or Rod
 - position output

- S04: 0 to 999
 - motor type - see reference guide "motor database"

- S03: -99 to 99
 - setpoint-offset [mV]

- S02: 0 to 999
 - Tr-speed control [ms]

- S01: 0.00 to 9.99
 - KP-speed control

- bdr: 001
 - baudrate

- Adr: 000 to 127
 - station address
10.6 Error messages

Any errors that occur are shown in coded form by an error number in the LED-Display on the front panel. **ERRCODE** shows additional information coded with "ixx" for faults with an asterix "*" in the table below. The servo amplifier reaction depends on the fault and on the setting of parameter **ACTFAULT**. Faults can be reset by hardware reset of the servo amplifier or depending on the fault (see **ERRCODE**) by ASCII command **CLRFAULT**.

<table>
<thead>
<tr>
<th>Number</th>
<th>Designation</th>
<th>Explanation (ASCII Reference ERRCODE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E or P</td>
<td>Status messages</td>
<td>Status messages, no error (⇒ # 121)</td>
</tr>
<tr>
<td>. . .</td>
<td>Status message</td>
<td>Updating the startup configuration</td>
</tr>
<tr>
<td>-</td>
<td>Status message</td>
<td>Programming mode</td>
</tr>
<tr>
<td>-S-</td>
<td>STO-Enable</td>
<td>STO-Enable input is 0V (with disabled drive only)</td>
</tr>
<tr>
<td>CCC</td>
<td>Memory Card</td>
<td>Access problems memory card</td>
</tr>
<tr>
<td>F01</td>
<td>Heat Sink Temperature</td>
<td>Heat sink temperature too high limit is set by manufacturer to 80°</td>
</tr>
<tr>
<td>F02</td>
<td>Overvoltage</td>
<td>Overvoltage in DC bus link limit depends on the electrical supply voltage</td>
</tr>
<tr>
<td>F03</td>
<td>Following Error</td>
<td>Message from the position controller</td>
</tr>
<tr>
<td>F04*</td>
<td>Feedback</td>
<td>Cable break, short-circuit, short to ground</td>
</tr>
<tr>
<td>F05</td>
<td>Undervoltage</td>
<td>Undervoltage in DC bus link, limit is set by manufacturer to 100V</td>
</tr>
<tr>
<td>F06</td>
<td>Motor Temperature</td>
<td>Motor temperature too high or temp. sensor defect</td>
</tr>
<tr>
<td>F07*</td>
<td>Internal Voltages</td>
<td>Internal amplifier supply voltages are out of tolerance</td>
</tr>
<tr>
<td>F08</td>
<td>Overspeed</td>
<td>Motor over-revs, speed is too high</td>
</tr>
<tr>
<td>F09</td>
<td>EEPROM</td>
<td>Checksum error</td>
</tr>
<tr>
<td>F10</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>F11</td>
<td>Motor Brake</td>
<td>Motor cable break, short-circuit, short to ground</td>
</tr>
<tr>
<td>F12</td>
<td>Motor Phase</td>
<td>Motor phase missing (cable break or similar)</td>
</tr>
<tr>
<td>F13</td>
<td>Ambient Temperature</td>
<td>Ambient temperature too high</td>
</tr>
<tr>
<td>F14*</td>
<td>Output Stage</td>
<td>Fault in the power output stage or wrong motor cable or bad cable shielding</td>
</tr>
<tr>
<td>F15</td>
<td>I²t max.</td>
<td>I²t maximum value exceeded</td>
</tr>
<tr>
<td>F16</td>
<td>Mains BTB/RTO</td>
<td>2 or 3 phases missing in the mains supply feed</td>
</tr>
<tr>
<td>F17</td>
<td>A/D Converter</td>
<td>Error in the analog-digital conversion</td>
</tr>
<tr>
<td>F18*</td>
<td>Brake Circuit</td>
<td>Brake circuit faulty or incorrect setting</td>
</tr>
<tr>
<td>F19</td>
<td>Phase error</td>
<td>Mains phase missed</td>
</tr>
<tr>
<td>F20*</td>
<td>Slot Error</td>
<td>Slot error, depends on the type of expansion card, see ASCII object reference, ERRCODE</td>
</tr>
<tr>
<td>F21</td>
<td>Handling Error</td>
<td>Handling error on the expansion card</td>
</tr>
<tr>
<td>F22</td>
<td>Reserved</td>
<td>Reserved</td>
</tr>
<tr>
<td>F23</td>
<td>CAN Bus Off</td>
<td>Severe CAN bus communication error</td>
</tr>
<tr>
<td>F24</td>
<td>Warning</td>
<td>Warning is displayed as fault</td>
</tr>
<tr>
<td>F25*</td>
<td>Commutation Error</td>
<td>Commutation error</td>
</tr>
<tr>
<td>F26</td>
<td>Limit Switch</td>
<td>Hardware limit switch error on homing move</td>
</tr>
<tr>
<td>F27</td>
<td>STO</td>
<td>Operational error with STO, input for STO-Enable and ENABLE have been set at the same time</td>
</tr>
<tr>
<td>F28</td>
<td>Fieldbus Error</td>
<td>Fieldbus error, see ASCII object reference, ERRCODE</td>
</tr>
<tr>
<td>F29*</td>
<td>Fieldbus Error</td>
<td>Communication disturbed, see ASCII object reference, ERRCODE</td>
</tr>
<tr>
<td>F30</td>
<td>Emergency Timeout</td>
<td>Timeout emergency stop</td>
</tr>
<tr>
<td>F31</td>
<td>Safety Supervision</td>
<td>Safety card error. Error code follows: oXX=error number, iYY=error subindex</td>
</tr>
<tr>
<td>F32*</td>
<td>System Error</td>
<td>System software not responding correctly</td>
</tr>
</tbody>
</table>
10.7 Warning messages

Faults which occur, but which do not cause a switch-off of the amplifier output stage (BTB/RTO contact remains closed), are indicated in the **LED-Display** on the front panel by a coded warning number.

Some warning messages result in a controlled shut-down of the drive (braking by emergency stop ramp). The servo amplifier reaction depends on the warning (see [STATCODE](#)).

<table>
<thead>
<tr>
<th>Number</th>
<th>Designation</th>
<th>Explanation (ASCII Referenz STATCODE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E/P</td>
<td>Status Messages</td>
<td>Status messages, no error (➜ # 121)</td>
</tr>
<tr>
<td>...</td>
<td>Status Message</td>
<td>Updating the startup configuration</td>
</tr>
<tr>
<td>-</td>
<td>Status Message</td>
<td>Programming mode</td>
</tr>
<tr>
<td>- S -</td>
<td>STO-Enable</td>
<td>STO-Enable input is 0V (with disabled drive only)</td>
</tr>
<tr>
<td>n01</td>
<td>(I^2t)</td>
<td>(I^2t) threshold exceeded</td>
</tr>
<tr>
<td>n02</td>
<td>Brake power</td>
<td>Reached preset electrical brake power limit</td>
</tr>
<tr>
<td>n03</td>
<td>S_fault</td>
<td>Exceeded preset following error limit</td>
</tr>
<tr>
<td>n04</td>
<td>Response monitoring</td>
<td>Response monitoring (fieldbus) has been activated</td>
</tr>
<tr>
<td>n05</td>
<td>Supply phase</td>
<td>Mains supply phase missing</td>
</tr>
<tr>
<td>n06</td>
<td>SW limit switch 1</td>
<td>Underrun software limit switch 1</td>
</tr>
<tr>
<td>n07</td>
<td>SW limit switch 2</td>
<td>Overrun software limit switch 2</td>
</tr>
<tr>
<td>n08</td>
<td>Motion task error</td>
<td>A faulty motion task was started</td>
</tr>
<tr>
<td>n09</td>
<td>No reference point</td>
<td>No reference point (Home) set at start of motion task</td>
</tr>
<tr>
<td>n10</td>
<td>PSTOP</td>
<td>PSTOP limit-switch activated</td>
</tr>
<tr>
<td>n11</td>
<td>NSTOP</td>
<td>NSTOP limit-switch activated</td>
</tr>
<tr>
<td>n12</td>
<td>Motor default values loaded</td>
<td>Only for ENDAT/HIPERFACE: discrepancy between motor number saved in the encoder and the amplifier, motor default values loaded</td>
</tr>
<tr>
<td>n13</td>
<td>Expansion card</td>
<td>24V supply of the I/O expansion board is missing</td>
</tr>
<tr>
<td>n14</td>
<td>SinCos feedback</td>
<td>SinCos commutation (wake & shake) not completed, will be canceled when amplifier is enabled and wake & shake carried out</td>
</tr>
<tr>
<td>n15</td>
<td>Reserve</td>
<td>Reserve</td>
</tr>
<tr>
<td>n16</td>
<td>Summarized warning</td>
<td>Summarized warning for n17 to n31</td>
</tr>
<tr>
<td>n17</td>
<td>Fielbus Synchronization</td>
<td>CAN sync is not logged in</td>
</tr>
<tr>
<td>n18</td>
<td>Multiturn overrun</td>
<td>Max. number of motor turns exceeded</td>
</tr>
<tr>
<td>n19</td>
<td>Motion task ramps are limited</td>
<td>Range overflow on motion task data</td>
</tr>
<tr>
<td>n20</td>
<td>Invalid motion task</td>
<td>Invalid motion task</td>
</tr>
<tr>
<td>n21</td>
<td>PLC program error</td>
<td>For details see PLC code</td>
</tr>
<tr>
<td>n22</td>
<td>Max. motor temperature reached</td>
<td>The user can shut down the process before the temperature error will interrupt the process immediately</td>
</tr>
<tr>
<td>n23</td>
<td>Sin Cos feedback</td>
<td>Warning level reached</td>
</tr>
<tr>
<td>n24</td>
<td>Digital I/O</td>
<td>Configuration is not logical</td>
</tr>
<tr>
<td>n25...n31</td>
<td>reserved</td>
<td>reserved</td>
</tr>
<tr>
<td>n32</td>
<td>Firmware beta version</td>
<td>Firmware is an unreleased beta version</td>
</tr>
</tbody>
</table>

NOTE

More information to the messages can be found in the ASCII Object Reference ([online help](#)), see parameter [STATCODE](#). Hints for removal can be found in section “Trouble-Shooting” of the online help.
10.8 Troubleshooting

Depending on the conditions in your installation, there may be a wide variety of reasons for the fault. In multi-axis systems there may be further hidden causes of a fault.

NOTICE

Eliminate errors and faults in compliance with work safety rules. Troubleshooting only by qualified and trained staff.

NOTE

Detailed hints for removal of faults can be found in the online help chapter "Trouble-Shooting". Our customer service can give you further assistance with problems.

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible causes</th>
<th>Measures to remove the cause of the fault</th>
</tr>
</thead>
</table>
| HMI message: communication fault | ● wrong cable used
● cable plugged into wrong position in servo amplifier or PC
● wrong PC interface selected | ● use null-modem cable
● plug cable into the correct sockets on the servo amplifier and PC
● select correct interface |
| Motor does not rotate | ● servo amplifier not enabled
● break in setpoint cable
● motor phases swapped
● brake not released
● drive is mechanically blocked
● no. of motor poles set incorrectly
● feedback set up incorrectly | ● apply enable signal
● check setpoint cable
● correct motor phase sequence
● check brake control
● check mechanism
● set no. of motor poles
● set up feedback correctly |
| Motor oscillates | ● gain too high (speed controller)
● shielding in feedback cable is broken
● AGND not wired up | ● reduce Kp (speed controller)
● replace feedback cable
● join AGND to CNC-GND |
| Drive reports following error | ● I_{rms} or I_{peak} is set to low
● setpoint ramp is too long | ● increase I_{rms} or I_{peak} (keep within motor limits!)
● shorten setpoint ramp +/- |
| Motor overheating | ● I_{rms}/I_{peak} set too high | ● reduce I_{rms}/I_{peak} |
| Drive too soft | ● Kp (speed controller) too low
● T_n (speed controller) too high
● ARLPF / ARHPF too high
● ARLP2 too high | ● increase Kp (speed controller)
● use motor default value for T_n (speed controller)
● reduce ARLPF / ARHPF
● reduce ARLP2 |
| Drive runs roughly | ● Kp (speed controller) too high
● T_n (speed controller) too low
● ARLPF / ARHPF too low
● ARLP2 too low | ● reduce Kp (speed controller)
● use motor default value for T_n (speed controller)
● increase ARLPF / ARHPF
● increase ARLP2 |
| Axis drifts at setpoint = 0V | ● offset not correctly adjusted for analog setpoint provision
● AGND not joined to the CNC-GND of the controls | ● adjust setpoint-offset (analog I/O)
● join AGND and CNC-GND |
11 Expansions

Information about availability and order numbers see (➔ # 159).

11.1 Expansion cards for slot 1

11.1.1 Guide to installation of expansion cards in slot 1

1 - Boundary of SLOT1

2 - Detach the film (at the perforations)

3 - Tear off the film (as far as the mark)

4 - Break the top rib

5 - Break the bottom rib

6 - Pull out the top plate

7 - Pull out the bottom plate

8 - Push in the card

9 - Fasten the screws
11.1.2 Expansion card -I/O-14/08-

This section describes the additional features that the expansion card -I/O-14/08- provides for the S700. If you ordered the expansion card together with the servo amplifier, then it will be delivered already inserted into the expansion slot of the servo amplifier and screwed in place.

The -I/O-14/08- provides you with 14 additional digital inputs and 8 digital outputs. The functions of the inputs and outputs are adjustable with the setup software.

The 24V DC voltage must be supplied by an electrically isolated power supply (e.g. with isolating transformer).

The I/Os are used to initiate the motion tasks that are stored in the servo amplifier and to evaluate signals from the integrated position control in the higher-level control system. The functions of the inputs and signal outputs correspond to the functions that can be assigned to the digital I/Os on connector X3. All inputs and outputs are electrically isolated from the servo amplifier by optocouplers.

11.1.2.1 Technical data

Control inputs	24V / 7mA , PLC compatible, IEC 61131
Signal output	24V / max. 500mA , PLC compatible, IEC 61131
Supply inputs, to IEC 61131	24V (18...36V) / 100mA plus total current of the outputs (depends on the input wiring of the controls)
Fusing (external)	4 AT
Connectors	MiniCombicon, 12-pin, coded on PIN1 and 12
Cables	Data – up to 50m long : 22 x 0.5 mm², unshielded, Supply – 2 x 1mm², check voltage drop
Waiting time between 2 motion tasks	Depends on the response time of the control system
Addressing time (minimum)	4ms
Starting delay (maximum)	2ms
Response time of digital outputs	max. 10ms

11.1.2.2 LEDs

Two LEDs are mounted next to the terminals on the expansion card. The green LED signals that the 24V auxiliary supply is available for the expansion card. The red LED signals faults in the outputs from the expansion card (overload of switching components, short-circuit).

11.1.2.3 Entering a motion block number (example)

<table>
<thead>
<tr>
<th>Motion block number</th>
<th>A7</th>
<th>A6</th>
<th>A5</th>
<th>A4</th>
<th>A3</th>
<th>A2</th>
<th>A1</th>
<th>A0</th>
</tr>
</thead>
<tbody>
<tr>
<td>binary 1010 1110</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>decimal 174</td>
<td>128</td>
<td>-</td>
<td>32</td>
<td>-</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>-</td>
</tr>
</tbody>
</table>
11.1.2.4 Connector assignments

The functions are adjustable with the setup software.

<table>
<thead>
<tr>
<th>Pin</th>
<th>Dir</th>
<th>Default</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector X11A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>In</td>
<td>A0</td>
<td>Motion block number 2^0, LSB</td>
</tr>
<tr>
<td>2</td>
<td>In</td>
<td>A1</td>
<td>Motion block number 2^1</td>
</tr>
<tr>
<td>3</td>
<td>In</td>
<td>A2</td>
<td>Motion block number 2^2</td>
</tr>
<tr>
<td>4</td>
<td>In</td>
<td>A3</td>
<td>Motion block number 2^3</td>
</tr>
<tr>
<td>5</td>
<td>In</td>
<td>A4</td>
<td>Motion block number 2^4</td>
</tr>
<tr>
<td>6</td>
<td>In</td>
<td>A5</td>
<td>Motion block number 2^5</td>
</tr>
<tr>
<td>7</td>
<td>In</td>
<td>A6</td>
<td>Motion block number 2^6</td>
</tr>
<tr>
<td>8</td>
<td>In</td>
<td>A7</td>
<td>Motion block number 2^7, MSB</td>
</tr>
<tr>
<td>9</td>
<td>In</td>
<td>Reference</td>
<td>Polls the home switch. If a digital input on the base unit is used as a home input, then the input on the expansion card will not be evaluated.</td>
</tr>
<tr>
<td>10</td>
<td>In</td>
<td>F_error_clear</td>
<td>Clears the warning of a following error (n03) or the response monitoring (n04)</td>
</tr>
<tr>
<td>11</td>
<td>In</td>
<td>F_error_clear</td>
<td>The following task, that is defined in the motion task by “Start with I/O” is started. The target position of the present motion task must be reached before the following task can be started. The next motion block can also be started by an appropriately configured digital input on the base unit.</td>
</tr>
<tr>
<td>12</td>
<td>In</td>
<td>Start_Jog $v=x$</td>
<td>Starts the “Jog Mode” with a defined speed. “x” is the speed saved in the servo amplifier for the function “Jog Mode”. A rising edge starts the motion, a falling edge cancels the motion.</td>
</tr>
<tr>
<td>Connector X11B</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>In</td>
<td>MT_Restart</td>
<td>Continues the motion task that was previously interrupted.</td>
</tr>
<tr>
<td>2</td>
<td>Out</td>
<td>Start_MT I/O</td>
<td>Starts the motion task that is addressed by A0-A7 (connector X11A/1 to X11A8). If no motion task is addressed, then a homing task is started.</td>
</tr>
<tr>
<td>3</td>
<td>Out</td>
<td>InPos</td>
<td>When the target position for a motion task has been reached (the InPosition window), this is signaled by the output of a HIGH signal. A cable break will not be detected.</td>
</tr>
<tr>
<td>4</td>
<td>Out</td>
<td>Next-InPos</td>
<td>The start of each motion task in an automatically executed sequence of motion tasks is signaled by an inversion of the output signal. The output produces a LOW signal at the start of the first motion task of the sequence. The form of the message can be varied by using ASCII commands.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PosReg 0</td>
<td>Can be adjusted by ASCII commands only.</td>
</tr>
<tr>
<td>5</td>
<td>Out</td>
<td>F_error</td>
<td>A LOW signal indicates that the position has gone outside the acceptable following error window.</td>
</tr>
<tr>
<td>6</td>
<td>Out</td>
<td>PosReg1</td>
<td>default: SW limit 1, indicated by a HIGH signal</td>
</tr>
<tr>
<td>7</td>
<td>Out</td>
<td>PosReg2</td>
<td>default: SW limit 2, indicated by a HIGH signal</td>
</tr>
<tr>
<td>8</td>
<td>Out</td>
<td>PosReg3</td>
<td>Can only be adjusted by ASCII commands</td>
</tr>
<tr>
<td>9</td>
<td>Out</td>
<td>PosReg4</td>
<td>Can only be adjusted by ASCII commands</td>
</tr>
<tr>
<td>10</td>
<td>Out</td>
<td>PosReg5</td>
<td>Can only be adjusted by ASCII commands</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>24V DC</td>
<td>Supply voltage for output signals.</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>I/O-GND</td>
<td>Digital GND for the control system.</td>
</tr>
</tbody>
</table>
11.1.3 Expansion card -PROFIBUS-

This section describes the PROFIBUS expansion card for the S700. Information on the range of functions and the software protocol can be found in our manual “Communication Profile PROFIBUS DP”.

The PROFIBUS expansion card has two 9-pin SubD sockets wired in parallel. The supply voltage for the expansion card is provided by the servo amplifier.

11.1.3.1 Connection technology

Cable selection, cable routing, shielding, bus connector, bus termination and transmission times are all described in the “Installation Guidelines for PROFIBUS-DP/FMS” from PNO, the PROFIBUS User Organization.

11.1.3.2 Connection diagram
11.1.4 Expansion card -SERCOS-

This section describes the sercos® II expansion card for S700. Information on the range of functions and the software protocol can be found in our manual “IDN Reference Guide sercos®”.

11.1.4.1 LEDs

<table>
<thead>
<tr>
<th>RT</th>
<th>Indicates whether sercos® telegrams are being correctly received. In the final Communication Phase 4 this LED should flicker, since cyclical telegrams are being received.</th>
</tr>
</thead>
</table>
| TT | Indicates that sercos® telegrams are being transmitted. In the final Communication Phase 4 this LED should flicker, since cyclical telegrams are being transmitted. Check the station addresses for the controls and the servo amplifier if:
- the LED never lights up in sercos® Phase 1 or
- the axis cannot be operated, although the RT LED is lighting up cyclically. |
| ERR | Indicates that sercos® communication is faulty or suffering from interference. If this LED is very bright, then communication is suffering strong interference, or is non-existent. Check the sercos® transmission speed for the controls and the servo amplifier (BAUD RATE) and the fiber-optic connection. |
| | If this LED fades or flickers, this indicates a low level of interference for sercos® communication, or the optical transmitting power is not correctly matched to the length of cable. Check the transmitting power of the (physically) previous sercos® station. The transmitting power of the servo amplifier can be adjusted in the setup software DRIVEGUI.EXE on the sercos® screen page, by altering the length parameter for the cable length. |

11.1.4.2 Connection technology

For the fiber optic cable connection, only use sercos® components to the sercos® Standard IEC 61491.

Receive data

The fiber optic cable carrying receive data for the drive in the ring structure is connected to X13 with an F-SMA connector.

Transmit data

Connect the fiber optic cable for the data output to X14 by F-SMA connector.
11.1.4.3 Connection diagram

Layout of the sercos® bus system in ring topology, with fiber optical cables (schematic).

11.1.4.4 Setup

Modifying the station address
The drive address can be set to a value between 0 and 63. With address 0, the drive is assigned as an amplifier in the sercos® ring. Set the station address with the:

Keys on the front of the servo amplifier
The sercos® address can be modified using the keys on the front of the amplifier (→ # 120).

Setup software
The address can also be modified in the setup software, “CAN/Fieldbus” screen (please refer to the setup software Online Help). Alternatively, enter the command ADDR # in the “Terminal” screen, where # is the new address of the drive.

Modifying the baud rate and optical power
If the baud rate is not set correctly, communication is not possible.
The SBAUD # parameter can be used to set the baud rate, where # is the baud rate. If the optical power is not set correctly, errors occur in telegram transmission and the red LED on the drive lights up. During normal communication, the green send and receive LEDs flash, giving the impression that the relevant LED is on.
The SLEN # parameter can be used to specify the optical range for a standard 1 mm² glass fibre cable, where # is the length of the cable in meters.

<table>
<thead>
<tr>
<th>SBAUD</th>
<th>SLEN</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2 Mbaud</td>
<td>0 m</td>
</tr>
<tr>
<td>4</td>
<td>4 Mbaud</td>
<td>1…< 15 m</td>
</tr>
<tr>
<td>8</td>
<td>8 Mbaud</td>
<td>15…< 30 m</td>
</tr>
<tr>
<td>16</td>
<td>16 Mbaud</td>
<td>≥ 30 m</td>
</tr>
</tbody>
</table>

The parameters can be modified in the setup software, “SERCOS” screen (please refer to the setup software the Online Help). Alternatively, the commands SBAUD # and SLEN # can be entered in the “Terminal” screen.
11.1.5 Expansion card - DEVICENET -

This section describes the DeviceNet expansion card for S700. Information on the range of functions and the software protocol can be found in our manual “DeviceNet Communication Profile”.

11.1.5.1 Connection technology, Connection diagram

Cable selection, cable routing, shielding, bus connector, bus termination and transmission times are all described in the “DeviceNet Specification, Volume I, II”, published by ODVA.
11.1.5.2 Combined module status and network status LED

<table>
<thead>
<tr>
<th>LED</th>
<th>Bedeutung:</th>
</tr>
</thead>
<tbody>
<tr>
<td>off</td>
<td>The device is not online.</td>
</tr>
<tr>
<td></td>
<td>- The device has not yet finished the Dup_MAC_ID test.</td>
</tr>
<tr>
<td></td>
<td>- The device is possibly not yet switched on.</td>
</tr>
<tr>
<td>green</td>
<td>The device is operating as normal, is online, and the connections have been established. The device has been assigned to a master.</td>
</tr>
<tr>
<td>blinking green</td>
<td>The device is operating as normal, is online, but the connections have not been established.</td>
</tr>
<tr>
<td></td>
<td>- The device has passed the Dup_MAC_ID test and is online, but the connection to other nodes have not been established.</td>
</tr>
<tr>
<td></td>
<td>- This device has not been assigned to a master.</td>
</tr>
<tr>
<td></td>
<td>- Missing, incomplete or wrong configuration.</td>
</tr>
<tr>
<td>blinking red</td>
<td>An error that can be cleared and/or at least one I/O connection are in a waiting state.</td>
</tr>
<tr>
<td>red</td>
<td>- An error has occurred that cannot can be cleared; it may be necessary to replace the device.</td>
</tr>
<tr>
<td></td>
<td>- Communication device failure. The device has detected a fault that prevents communication with the network (for instance, a MAC ID appears twice or BUSOFF).</td>
</tr>
</tbody>
</table>

11.1.5.3 Setup

Setting the station address (device address)
The station address for the servo amplifier can be set in three different ways:

- Set the rotary switches at the front of the expansion card to a value between 0 and 63. Each switch represents a decimal figure. For example, to set the address for the drive to 10, set MSD to 1 and LSD to 0.
- Set the rotary switches at the front of the expansion card to a value higher than 63. Now you can set up the station address by using the ASCII commands DNMACID x, SAVE, COLDSTART, whereby “x” stands for the station address.
- Set the rotary switches at the front of the expansion card to a value higher than 63. Now you can set up the station address by using the DeviceNet Object (Class 0x03, Attribute 1). This is normally carried out with the help of a DeviceNet software setup tool. You must save the parameters in non-volatile memory (Class 0x25, Attribute 0x65) and then restart the drive after setting or altering the address.

Setting the transmission speed
The DeviceNet transmission speed can be set in three different ways:

- Set the rotary switch for Baud rate (at the front of the option card) to a value between 0 and 2. 0 = 125 kbit/s, 1 = 250 kbit/s, 2 = 500 kbit/s.
- Set the rotary switch for Baud rate (at the front of the option card) to a value higher than 2. Now you can set the Baud rate by using the terminal commands DNBAUD x, SAVE, COLDSTART, whereby “x” stands for 125, 250 or 500.
- Set the rotary switch for Baud rate (at the front of the option card) to a value higher than 2. Now you can set the Baud rate by using the DeviceNet Object (Class 0x03, Attribute 2) to a value between 0 and 2. This is normally carried out with the help of a DeviceNet software setup tool. You must save the parameters in non-volatile memory (Class 0x25, Attribute 0x65) and then restart the drive after altering the baud rate.
11.1.5.4 Bus cable

To meet ISO 11898, a bus cable with a characteristic impedance of 120 Ω should be used. The maximum usable cable length for reliable communication decreases with increasing transmission speed. As a guide, you can use the following values which we have measured, but they are not to be taken as assured limits.

<table>
<thead>
<tr>
<th>General characteristic</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bitrates</td>
<td>125 kBit, 250 kBit, 500 kBit</td>
</tr>
<tr>
<td>Distance with larger bus connections</td>
<td>500 m at 125 kBaud</td>
</tr>
<tr>
<td></td>
<td>250 m at 250 kBaud</td>
</tr>
<tr>
<td></td>
<td>100 m at 500 kBaud</td>
</tr>
<tr>
<td>Number of nodes</td>
<td>64</td>
</tr>
<tr>
<td>Modulation</td>
<td>Basic bandwidth</td>
</tr>
<tr>
<td>Coupling medium</td>
<td>DC-coupled differential transmit/receive operation</td>
</tr>
<tr>
<td>Isolation</td>
<td>500 V (option: optocoupler on the transceiver's node side)</td>
</tr>
<tr>
<td>Typical differential input impedance (recessive state)</td>
<td>Shunt C = 5pF</td>
</tr>
<tr>
<td></td>
<td>Shunt R = 25kΩ (power on)</td>
</tr>
<tr>
<td>Min. differential input impedance (recessive state)</td>
<td>Shunt C = 24pF + 36 pF/m of the permanently attached stub cable</td>
</tr>
<tr>
<td></td>
<td>Shunt R = 20kΩ</td>
</tr>
<tr>
<td>Absolute max. voltage range</td>
<td>-25 V bis +18 V (CAN_H, CAN_L). The voltages for CAN_H and CAN_L refer to the ground pin of the transceiver. The voltage is higher than that on the V-terminal by the amount of the forward voltage drop of the Schottky diode. This voltage drop must be < 0.6V.</td>
</tr>
</tbody>
</table>

Grounding:

The DeviceNet network must only be grounded at one point, to avoid ground loops. The circuitry for the physical layer in all devices are referenced to the V-bus signal. The ground connection is made via the power supply for the bus system. The current flowing between V- and ground must not flow through any device other than the power supply.

Bus topology:

The DeviceNet medium utilizes a linear bus topology. Termination resistors are required at each end of the connecting cable. Stub cables are permitted up to a length of 6 meters, so that at least one node can be connected.

Termination resistors:

DeviceNet requires a termination at each end of the connecting cable. These resistors must meet the following requirements: 120 Ω, 1% metal-film, ¼ W
11.1.6 Expansion card -SYNQNET-

This section describes the SynqNet expansion card for S700. Information on the range of functions and the software protocol can be found in the SynqNet documentation.

![SynqNet expansion card](image)

11.1.6.1 NODE ID Switch

With these hexadecimal switches you can set the main and low significant bytes of the Node ID separately. SynqNet does not require an address for correct operation in the network, however in some machines this can be a convenient way of identifying build options to the application program.

11.1.6.2 NODE LED table

<table>
<thead>
<tr>
<th>LED#</th>
<th>Name</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>LED1</td>
<td>LINK_IN</td>
<td>ON = receive valid (IN port)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF = not valid, power off, or reset.</td>
</tr>
<tr>
<td>LED2</td>
<td>CYCLIC</td>
<td>ON = network cyclic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLINK = network not cyclic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF = power off, or reset</td>
</tr>
<tr>
<td>LED3</td>
<td>LINK_OUT</td>
<td>ON = receive valid (OUT port)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF = not valid, power off, or reset</td>
</tr>
<tr>
<td>LED4</td>
<td>REPEATER</td>
<td>ON = repeater on, network cyclic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>BLINK = repeater on, network not cyclic</td>
</tr>
<tr>
<td></td>
<td></td>
<td>OFF = repeater off, power off, or reset</td>
</tr>
</tbody>
</table>

11.1.6.3 SynqNet Connection, Connector X21B / X21C (RJ-45)

Connection to the SynqNet network via RJ-45 connectors (IN and OUT ports) with integrated LEDs.
11.1.6.4 Digital inputs and outputs, connector X21A (SubD 15-pin, socket)

Inputs (In): 24V (20...28V), opto-isolated, one high-speed input (Pin 4)

Outputs (Out): 24V, opto-isolated, Darlington driver

<table>
<thead>
<tr>
<th>Pin</th>
<th>Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>In</td>
<td>+24V powersupply</td>
</tr>
<tr>
<td>2</td>
<td>Out</td>
<td>NODEALARM indicates a problem with the node</td>
</tr>
<tr>
<td>3</td>
<td>Out</td>
<td>OUT_01 digital output</td>
</tr>
<tr>
<td>4</td>
<td>In</td>
<td>IN_00 (fast) capture input (fast)</td>
</tr>
<tr>
<td>5</td>
<td>In</td>
<td>IN_04 digital input</td>
</tr>
<tr>
<td>6</td>
<td>In</td>
<td>IN_01 digital input</td>
</tr>
<tr>
<td>7</td>
<td>In</td>
<td>HOME reference switch</td>
</tr>
<tr>
<td>8</td>
<td>In</td>
<td>POSLIM limit switch, positive direction</td>
</tr>
<tr>
<td>9</td>
<td>In</td>
<td>GND power supply</td>
</tr>
<tr>
<td>10</td>
<td>Out</td>
<td>OUT_00 digital output</td>
</tr>
<tr>
<td>11</td>
<td>Out</td>
<td>OUT_02 digital output</td>
</tr>
<tr>
<td>12</td>
<td>In</td>
<td>IN_02 digital input</td>
</tr>
<tr>
<td>13</td>
<td>In</td>
<td>IN_03 digital input</td>
</tr>
<tr>
<td>14</td>
<td>In</td>
<td>NEGLIM limit switch, negative direction</td>
</tr>
<tr>
<td>15</td>
<td>In</td>
<td>NODEDISABLE disables Node</td>
</tr>
</tbody>
</table>

11.1.6.5 Connection diagram digital inputs and outputs, connector X21A
11.1.7 Expansion card - FB-2to1 -

This chapter describes the Feedback extension card FB-2to1 for the S700. The card enables simultaneous connection of a digital primary and of an analog secondary feedback to the connector X1. The supply of 24V DC auxiliary voltage to X33 is converted on the extension card into a precise 5V DC encoder supply for the secondary feedback.

11.1.7.1 Pinout

<table>
<thead>
<tr>
<th>X33</th>
<th>Pinout Combicon Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+24V DC (20…30V), approx. 500mA</td>
</tr>
<tr>
<td>-</td>
<td>GND</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X32</th>
<th>Pinout SubD 9 poles (secondary Feedback)</th>
<th>X1B</th>
<th>Pinout SubD 15 poles (primary Feedback)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SinCos (1V p-p)</td>
<td>EnDat 2.2, BiSS digital, SSI absolute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B- (cosine)</td>
<td>1</td>
<td>n.c.</td>
</tr>
<tr>
<td>2</td>
<td>SENSE+</td>
<td>2</td>
<td>0V</td>
</tr>
<tr>
<td>3</td>
<td>A- (sine)</td>
<td>3</td>
<td>n.c.</td>
</tr>
<tr>
<td>4</td>
<td>n.c.</td>
<td>4</td>
<td>+5V DC</td>
</tr>
<tr>
<td>5</td>
<td>+5V DC (300mA)</td>
<td>5</td>
<td>DATA</td>
</tr>
<tr>
<td>6</td>
<td>B+ (cosine)</td>
<td>6</td>
<td>n.c.</td>
</tr>
<tr>
<td>7</td>
<td>SENSE-</td>
<td>7</td>
<td>Temperature Sensor Motor</td>
</tr>
<tr>
<td>8</td>
<td>A+ (sine)</td>
<td>8</td>
<td>CLOCK</td>
</tr>
<tr>
<td>9</td>
<td>0V</td>
<td>9</td>
<td>n.c.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>10</td>
<td>Sense 0V</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>11</td>
<td>n.c.</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>12</td>
<td>Sense +5V</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>13</td>
<td>DATA</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>14</td>
<td>Temperature Sensor Motor</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>15</td>
<td>CLOCK</td>
</tr>
</tbody>
</table>
11.1.7.2 Wiring example with BiSS digital (primary) and SinCos (secondary)
11.1.8 Expansion module -2CAN-

2CAN Connector X6 of the S700 is assigned to the signals for the RS232 interface and the CAN interface. It is therefore not the standard pin assignment for these interfaces, and a special cable is required to be able to use both interfaces simultaneously. The -2CAN- expansion module provides the interfaces on separate Sub-D connectors. The two CAN connectors are wired in parallel. A termination resistor (120 Ω) for the CAN bus can be switched into circuit if the S700 is at the end of the bus.

11.1.8.1 Installation

The module must be placed onto the option slot after levering off the cover of the option slot 1 (➜ # 126):

- Screw the distance pieces into the fixing lugs of the option slot.
- Place the expansion module onto the option slot.
- Screw the screws into the threads of the distance pieces.
- Plug the Sub-D9 socket into connector X6 on the S700

11.1.8.2 Connection technology

Standard shielded cables can be used for the RS232 and CAN interfaces.

NOTE

If the servo amplifier is the last device on the CAN bus, then the switch for the bus termination must be set to ON.
Otherwise, the switch must be set to OFF (condition as delivered).
11.1.8.3 Connector assignments

<table>
<thead>
<tr>
<th>RS232 X6A Pin</th>
<th>Signal</th>
<th>CAN1=2 CAN2 X6B=X6C Pin</th>
<th>Signal</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>RxD</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>TxD</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11.1.8.4 Setup of Station Address and Baud Rate

During setup it makes sense to use the keypad on the front panel to preset the station addresses for the individual amplifiers and the Baud rate for communication.

After changing the station address and baud rate you must turn the 24V auxiliary supply for the servo amplifier off and on again.

NOTE

Possible ways for setup:

- keypad on the front panel of the servo amplifier
- setup software: screen page "CAN / Fieldbus"
- serial interface with a sequence of ASCII commands:

 ADDR nn => SAVE => COLDSTART (with nn = address)

 CBAUD bb => SAVE => COLDSTART (with bb = baud rate in kBaud)

Coding of the Baud rate in LED display:

<table>
<thead>
<tr>
<th>Coding</th>
<th>Baud rate in kBit/s</th>
<th>Coding</th>
<th>Baud rate in kBit/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td>25</td>
<td>250</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>33</td>
<td>333</td>
</tr>
<tr>
<td>5</td>
<td>50</td>
<td>50</td>
<td>500</td>
</tr>
<tr>
<td>10</td>
<td>100</td>
<td>66</td>
<td>666</td>
</tr>
<tr>
<td>12</td>
<td>125</td>
<td>80</td>
<td>800</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100</td>
<td>1000</td>
</tr>
</tbody>
</table>
11.2 Expansion cards for slot 2

11.2.1 Guide to installation of expansion cards in slot 2

The method of installing the expansion card in slot 2 is the same as that described for slot 1 (➜ #126).

- Remove the lower crosshatched area of the front film (labeled slot 2).
- Lever out the cover plates under the film.
- Push the expansion card into the slot.
- Use the screws provided to fasten the front plate of the expansion card in place.

![Boundary of SLOT2](image)

11.2.2 Option "F2", controlled Fan

To reduce noise emission the servo amplifiers can be ordered with the built-in option card F2. This option cannot be built-in later. The F2 option card fits to slot 2 or 3 (see part number scheme on (➜ #26)).

NOTE Option card F2 can be used combined with a card in slot 1 even if it is plugged to slot 2!

Function

The fan is switched on and off or runs with 50% rated speed depending on temperature. That reduces the average noise emission.

Switching temperature

<table>
<thead>
<tr>
<th>Monitoring</th>
<th>Fan off</th>
<th>Fan ~50%</th>
<th>Fan on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>< 55°C</td>
<td>~ 58°C</td>
<td>> 65°C</td>
</tr>
<tr>
<td>Heat sink temperature</td>
<td>< 58°C</td>
<td>~ 68°C</td>
<td>> 80°C</td>
</tr>
</tbody>
</table>
11.2.3 Expansion cards "PosI/O" & "PosI/O-Monitor"

The “PosI/O” and “PosI/O-Monitor” expansion card can be pushed into slot 2 or 3. The expansion cards cannot be combined and the use of only one slot in time is allowed.

PosI/O

This expansion card provides an extra SubD connector (X5) with high-speed, bidirectional, digital, 5 V inputs and outputs. The setup software can be used to preset various input and output functions, e.g.:

- Position encoder emulation (ROD- or SSI-compatible)
- Input for high-speed 5 V RS485 signals (electronic gearing, master-slave operation)

PosI/O-Monitor

This expansion card provides the features of the PosI/O card plus an extra connector X3C with analog +/-10V Inputs and Outputs (see chapter "Analog I/O" (➜ # 151)). Functionality can be set with the setup software or with macro functions.
11.2.3.1 Feedback

11.2.3.1.1 ROD (AquadB) 5V (X5, X1)

A 5V incremental encoder (AquadB) can be used as standard motor feedback (primary and secondary, \(\#75\)). Every time the 24V auxiliary voltage is switched on, the amplifier need start-up information for the position controller (parameter value MPHASE). Depending on the feedback type either wake&shake is executed or the value for MPHASE is read out of the amplifier’s EEPROM.

WARNING Vertical load can fall!

With vertical load the load could fall during wake&shake, because the brake is not active and torque is not sufficient to hold the load.
- Don’t use wake&shake with vertical load (hanging load).

The power supply for the encoder and thermal control in the motor is connected to X1. If lead lengths of more than 50 m are planned please consult our customer service.

Frequency limit (A, B, N): 1.5 MHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS/Gearmode</th>
<th>ENCMODE</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>AquadB 5V</td>
<td>13</td>
<td>3</td>
<td>0</td>
<td>MPHASE from EEPROM</td>
</tr>
<tr>
<td>AquadB 5V</td>
<td>19</td>
<td>3</td>
<td>0</td>
<td>MPHASE with wake&shake</td>
</tr>
</tbody>
</table>

Switch on supply voltage for the encoder at X1: set ENCVON to 1.

* matches RS485 with resistor according to line impedance
11.2.3.1.2 ROD (AquadB) 5V with Hall (X5, X1)

Wiring of a 5V incremental encoder (ROD, AquadB) with Hall sensors as a feedback unit (primary, (➜ # 75)). For the commutation hall sensors are used and for the resolution an incremental encoder.

The power supply for the encoder and thermal control in the motor is connected to X1 and evaluated there.

If cable lengths of more than 25m are planned, please consult our customer service.

Frequency limit X5: 1.5 MHz, X1: 350 kHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPEx</th>
<th>EXPOS</th>
<th>GEARMODE</th>
<th>ENCMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>AquadB 5V with Hall</td>
<td>18</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>

* matches RS485 with resistor according to line impedance
11.2.3.1.3 SSI Encoder (X5, X1)

Wiring of a synchronous serial absolute-encoder as a feedback system (primary or secondary, (➔ #75)). The signal sequence can be read in Gray code or in Binary (standard) code.

The power supply for the encoder and thermal control in the motor is connected to X1 and evaluated there.

If cable lengths of more than 50m are planned, please consult our customer service.

Frequency limit: 1.5 MHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPEx</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
<th>ENCMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSI</td>
<td>9</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Switch on supply voltage for the encoder at X1: set ENCVON to 1

* matches RS485 with resistor according to line impedance
11.2.3.1.4 Sine Encoder with SSI (X5, X1)

Wiring of sine-cosine encoder with SSI interface as a linear feedback system (primary, (→ # 75)).

The thermal control in the motor is connected via the encoder cable to X1 and evaluated there. All signals are connected using our pre-assembled encoder connection cable. If cable lengths of more than 50m are planned, please consult our customer service.

Frequency limit (sin, cos): 350 kHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
<th>ENCMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>SinCos SSI 5V linear</td>
<td>28</td>
<td>-</td>
<td>-</td>
<td>0</td>
</tr>
</tbody>
</table>
11.2.3.2 Electronic gearing, Master-Slave operation (X5)

11.2.3.2.1 Connection to a S700 master, 5V signal level (X5)

You can link several S700 amplifiers together in master-slave operation. Up to 16 slave amplifiers can be controlled by the master, via the encoder output. The SubD connector X5 is used for this purpose.

Master Setup: position output to X5, screen page "Encoder emulation" (ENCMODE)

Slave Setup: screen page "Electronic gearing" (GEARMODE)

Frequency limit at X5: 1.5 MHz

Example for Master-Slave operation with two S700 amplifiers, ROD emulation is used:

Slave **GEARMODE:** 3

Master **ENCMODE:** 1

If SSI emulation is used, the master ENCMODE must be set to 2 and the slave GEARMODE to 5.

11.2.3.2.2 Connection to stepper motor controllers with 5 V signal level (X5)

Wiring of the servo amplifier (SubD connector X5) to a stepper-motor controller with a 5 V signal level.

Frequency limit: 1.5 MHz

<table>
<thead>
<tr>
<th>Type</th>
<th>FBTYPE</th>
<th>EXTPOS</th>
<th>GEARMODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step/Direction 5V</td>
<td>-</td>
<td>-</td>
<td>4</td>
</tr>
</tbody>
</table>

If SSI485 is used, the master ENCMODE must be set to 2 and the slave GEARMODE to 5.
11.2.3.3 Encoder-Emulation (X5)

11.2.3.3.1 Incremental encoder output - A quad B (X5)

Fast incremental encoder interface. Select encoder function ROD (A Quad B) Encoder ("Encoder Emulation" screen page). The servo amplifier calculates the motor shaft position from the cyclic-absolute signals of the resolver or encoder, generating incremental-encoder compatible pulses from this information. Pulse outputs on the SubD connector X5 are 2 signals, A and B, with 90° phase difference (i.e. in quadrature, hence the alternative term "A quad B" output), with a zero pulse.

The resolution (before multiplication) can be set by the RESOLUTION function:

<table>
<thead>
<tr>
<th>Encoder function (ENCMODE)</th>
<th>Feedback (FBTYPE)</th>
<th>Resolution (ENCOUT)</th>
<th>Zero pulse</th>
</tr>
</thead>
<tbody>
<tr>
<td>1, ROD</td>
<td>0, Resolver</td>
<td>32...4096</td>
<td>once per turn (only at A=B=1)</td>
</tr>
<tr>
<td></td>
<td>>0, Encoder</td>
<td>256...524288</td>
<td>once per turn (only at A=B=1)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(2^8 ... 2^{19})</td>
<td></td>
</tr>
<tr>
<td>3, ROD interpolation</td>
<td>Encoder</td>
<td>2^4...2^7 (multiplication) TTL</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>line x encoder resolution</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>encoder signal passed through from X1 to X5</td>
<td></td>
</tr>
</tbody>
</table>

With built-in safety card only binary resolutions up to 2^{12} are possible. Use the NI-OFFSET parameter to adjust + save the zero pulse position within one mechanical turn. The drivers operate off an internal supply voltage.

NOTE

The maximum permissible cable length is 100 meters.

Connections and signals for the incremental encoder interface:

Default count direction: UP when the motor shaft is rotating clockwise (view at shaft’s end)
11.2.3.3.2 SSI encoder output (X5)

SSI interface (synchronous serial absolute-encoder emulation). Select encoder function SSI ("Encoder Emulation" screen page, ENCMODE 2). The servo amplifier calculates the motor shaft position from the cyclic-absolute signals of the resolver or encoder. From this information a SSI date (Stegmann patent specification DE 3445617C2) is provided. Max 32 bits are transferred. The leading data bit contains the number of revolutions and are selectable from 12 to 16 bits. The following max. 16 bits contain the resolution and are not variable.

Die führenden Datenbit bilden die Anzahl der Umdrehungen ab und sind wählbar von 12 bis 16 Bit. Die darauf folgenden max. 16 Bit bilden die Auflösung ab und sind nicht veränderbar.

The following table shows the allocation of the SSI date depending upon selected number of revolutions:

<table>
<thead>
<tr>
<th>Revolution</th>
<th>Resolution (variable)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</td>
<td>15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</td>
</tr>
<tr>
<td>14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</td>
<td>14 13 12 11 10 9 8 7 6 5 4 3 2 1 0</td>
</tr>
<tr>
<td>13 12 11 10 9 8 7 6 5 4 3 2 1 0</td>
<td>13 12 11 10 9 8 7 6 5 4 3 2 1 0</td>
</tr>
<tr>
<td>12 11 10 9 8 7 6 5 4 3 2 1 0</td>
<td>12 11 10 9 8 7 6 5 4 3 2 1 0</td>
</tr>
<tr>
<td>11 10 9 8 7 6 5 4 3 2 1 0</td>
<td>11 10 9 8 7 6 5 4 3 2 1 0</td>
</tr>
</tbody>
</table>

The signal sequence can be output in Gray code or in Binary (standard) code. The servo amplifier can be adjusted to the clock frequency of your SSI-evaluation with the setup software. The drivers operate off an internal supply voltage.

Connection and signals for the SSI interface:

Default count direction: UP when the motor shaft is rotating clockwise (view at shaft’s end)

The drivers operate off an internal supply voltage.
11.2.3.4 Analogue Inputs and Outputs

The expansion card "Posi/O-Monitor" adds analog inputs and outputs to the servo amplifier were pre-programmed signals can be assigned to. A listing of these pre-programmed functions can be found on the screen page "Analog I/O" of the setup software.

11.2.3.4.1 Analog Outputs ANALOG-OUT 1 and 2

You can use terminals X3C/17 (Analog-Out 1) respectively X3C/19 (Analog-Out 2) to deliver analog values converted from internal digital values (e.g. tachometer voltage).

Technical characteristics

- Reference ground is Analog-GND (AGND, terminal X3C/18 and X3C/20)
- Specification according to EN 61131-2 table 11
- Output voltage ±10 V
- Resolution: 0.38 mV, 16 Bit, Update rate 250 μs

11.2.3.4.2 Analog Inputs ANALOG-IN 3 and 4

You can use terminals X3C/21-X3C/22 (Analog-In 3) respectively terminals X3C/24-X3C/25 (Analog-In 4) with several pre-programmed functions.

Technical characteristics

- Differential input voltage max. ±10 V
- Resolution 1.25 mV, 16 bits, scalable
- Ground reference AGND, terminal X3C/23
- Input resistance 20 kΩ
- Common-mode voltage range for both inputs ± 10 V
- Update rate 62.5 μs
11.3 Expansion cards for slot 3

11.3.1 Guide to installation of expansion cards in slot 3

The method of installing the expansion card in slot 3 is the same as that described for slot 1 (⇒ #126).
- Remove the area of the front film colored yellow (labeled slot 3).
- Lever out the cover plates under the film.
- Remove the small PCB (STO Bridge) which is plugged into slot. Use suitable pliers.
- Push the expansion card into the slot.
- Use the screws provided to fasten the front plate of the expansion card in place.

NOTE
Option card F2 can be used combined with a card in slot 1 even if it is plugged to slot 2!

Function
The fan is switched on and off or runs with 50% rated speed depending on temperature. That reduces the average noise emission.

Switching temperature

<table>
<thead>
<tr>
<th>Monitoring</th>
<th>Fan off</th>
<th>Fan ~50%</th>
<th>Fan on</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambient temperature</td>
<td>< 55°C</td>
<td>~ 58°C</td>
<td>> 65°C</td>
</tr>
<tr>
<td>Heat sink temperature</td>
<td>< 58°C</td>
<td>~ 68°C</td>
<td>> 80°C</td>
</tr>
</tbody>
</table>

11.3.3 Expansion cards "Posl/O" & "Posl/O-Monitor"

The "Posl/O" and "Posl/O-Monitor" expansion cards can be pushed into slot 2 or 3. The expansion cards cannot be combined and the use of only one slot in time is allowed.

Detailed description of the interfaces (⇒ #143).
11.3.4 Expansion card "Safety 2-2" (S4)

This expansion card (Basic version) includes various safety functions for the safe operation of drive shafts. Rotatory synchronous motors are allowed when using this safety card. All functions fulfill the safety requirements SIL CL2 according to IEC 62061 respectively performance level PLd according to ISO 13849-1.

NOTE

The safety card restricts feedback capability of the drive (refer to Safety Card Operation Manual or to the KDN).

11.3.4.1 Safe drive functions S2-2

The safety functions are activated using the digital inputs on the expansion card. The following functions are available:

Safe Torque Off (STO)
With the STO function, the power supply to the motor is interrupted safely directly in the drive. This corresponds to an uncontrolled braking in accordance with IEC 60204-1, category 0.

Safe Stop 1 (SS1)
With the SS1 function, the drive is stopped by controlled braking and then the power supply to the motor is interrupted safely. This corresponds to an uncontrolled braking in accordance with IEC 60204-1, category 1.

Safe Stop 2 (SS2)
With the SS2 function, the drive is stopped by controlled braking and then remains at a controlled standstill (SOS). This corresponds to a controlled braking in accordance with IEC 60204-1, category 2.

Safe Operating Stop (SOS)
The SOS function monitors the stop position reached and prevents any deviation outside a defined range.

Safely Limited Speed (SLS)
The SLS function monitors the drive to ensure that it maintains a defined speed.

Safe Limited Increments (SLI)
The SLI function monitors that the drive maintains a relative position.

Safe Speed Range (SSR)
The SSR function checks the current speed of the drive against maximum and minimum limiting values.

Safe Direction (SDI)
The SDI function ensures that the drive can only move in one (defined) direction.

11.3.4.2 Safety Notes S2-2

Comply with the operating instructions for the safety card. You can find the operating instructions on the CD-ROM provided with the product or on the Kollmorgen website.
11.3.4.3 Wiring supply voltage 24 V for digital outputs

NOTICE

Input X4/5 "STO2-Enable" must be connected to +24V DC and must not be used as additional STO input!

![Diagram of wiring supply voltage 24 V for digital outputs]

Input STO1-Enable [X4/7] must not be connected.

11.3.4.4 Safe inputs and outputs S2-2

NOTICE

Inputs X30/1 SS1_Activate and X30/20 Reset must always be connected. Only tested outputs from a safety control system may be connected to all inputs on X30.

<table>
<thead>
<tr>
<th>X30</th>
<th>Pin</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS1 Activate</td>
<td>1</td>
<td>I</td>
<td>Activates function SS1</td>
</tr>
<tr>
<td>I0</td>
<td>2</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>I1</td>
<td>3</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>I2</td>
<td>4</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>STO Acknowledge</td>
<td>5</td>
<td>O</td>
<td>Status: STO activated</td>
</tr>
<tr>
<td>O0</td>
<td>6</td>
<td>O</td>
<td>Programmable, status: safety function X activated</td>
</tr>
<tr>
<td>O1</td>
<td>7</td>
<td>O</td>
<td>Programmable, status: safety function X activated</td>
</tr>
<tr>
<td>O2</td>
<td>8</td>
<td>O</td>
<td>Programmable, status: safety function X activated</td>
</tr>
<tr>
<td>O3</td>
<td>9</td>
<td>O</td>
<td>Programmable, status: safety function X activated</td>
</tr>
<tr>
<td>24V Supply</td>
<td>10</td>
<td>-</td>
<td>24V supply of digital outputs</td>
</tr>
<tr>
<td>n.c.</td>
<td>11</td>
<td>-</td>
<td>n.c.</td>
</tr>
<tr>
<td>I3</td>
<td>12</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>I4</td>
<td>13</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>I5</td>
<td>14</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>I6</td>
<td>15</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>Ready</td>
<td>16</td>
<td>O</td>
<td>Message "Safety card is ready to operate"</td>
</tr>
<tr>
<td>n.c.</td>
<td>17</td>
<td>O</td>
<td>n.c.</td>
</tr>
<tr>
<td>n.c.</td>
<td>18</td>
<td>O</td>
<td>n.c.</td>
</tr>
<tr>
<td>n.c.</td>
<td>19</td>
<td>O</td>
<td>n.c.</td>
</tr>
<tr>
<td>Reset</td>
<td>20</td>
<td>I</td>
<td>Input for Reset</td>
</tr>
<tr>
<td>0V Supply</td>
<td>21</td>
<td>-</td>
<td>0V supply of digital outputs</td>
</tr>
<tr>
<td>0V Supply</td>
<td>22</td>
<td>-</td>
<td>0V supply of digital outputs</td>
</tr>
</tbody>
</table>
11.3.5 Expansion card "Safety 1-2" (S3)

This expansion card includes all available safety functions. Rotatory synchronous motors are allowed when using this safety card. All functions fulfill the safety requirements SIL CL3 acc. to IEC 62061 respectively performance level PLe acc. to ISO 13849-1.

NOTE

The safety card restricts feedback capability of the drive (refer to Safety Card Operation Manual or to the KDN).

11.3.5.1 SSafe drive functions S1-2

The safety functions are activated using the digital inputs on the expansion card. The following functions are available:

Safe Torque Off (STO)

With the STO function, the power supply to the motor is interrupted safely directly in the drive. This corresponds to an uncontrolled braking in accordance with IEC 60204-1, cat. 0.

Safe Stop 1 (SS1)

With the SS1 function, the drive is stopped by controlled braking and then the power supply to the motor is interrupted safely. This corresponds to an uncontrolled braking in accordance with IEC 60204-1, cat. 1.

Safe Stop 2 (SS2)

With the SS2 function, the drive is stopped by controlled braking and then remains at a controlled standstill (SOS). This corresponds to a controlled braking in accordance with IEC 60204-1, cat. 2.

Safe Operating Stop (SOS)

The SOS function monitors the stop position reached and prevents any deviation outside a defined range.

Safely Limited Speed (SLS)

The SLS function monitors the drive to ensure that it maintains a defined speed.

Safe Limited Increments (SLI)

The SLI function monitors that the drive maintains a relative position.

Safe Limited Position (SLP)

The SLP function monitors that the drive maintains an absolute position.

Safe Speed Range (SSR)

The SSR function checks the current speed of the drive against maximum and minimum limiting values.

Safe Direction (SDI)

The SDI function ensures that the drive can only move in one (defined) direction.

Safe Brake Control (SBC)

An external mechanical brake can be controlled by the 2 poles output "SBC+/SBC" of the safety card. SBC will become active with STO.

Safe Brake Test (SBT)

The safety function SBT can be used for testing the external mechanical brake and the internal motor holding brake.

11.3.5.2 Safety Notes S1-2

Comply with the operating instructions for the safety card. You can find the operating instructions on the CD-ROM provided with the product or on the website.
11.3.5.3 External encoder S1-2

Incremental encoder (TTL) or encoder with SSI signals can be connected to X31. Supply voltage for the external encoder must be connected to X30/11 (+) and X30/22 (-).

<table>
<thead>
<tr>
<th>X31 Pin</th>
<th>Incremental Encoder (TTL)</th>
<th>SSI Encoder</th>
<th>X31 Pin</th>
<th>Incremental Encoder (TTL)</th>
<th>SSI Encoder</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Channel A+</td>
<td>Clock +</td>
<td>6</td>
<td>Channel A-</td>
<td>Clock -</td>
</tr>
<tr>
<td>2</td>
<td>Channel B+</td>
<td>Data +</td>
<td>7</td>
<td>Channel B-</td>
<td>Data -</td>
</tr>
<tr>
<td>3</td>
<td>Reference Z+</td>
<td>n.c.</td>
<td>8</td>
<td>Reference Z-</td>
<td>n.c.</td>
</tr>
<tr>
<td>4</td>
<td>U+</td>
<td>U+</td>
<td>9</td>
<td>0 V</td>
<td>0 V</td>
</tr>
<tr>
<td>5</td>
<td>n.c.</td>
<td>n.c.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11.3.5.4 Wiring supply voltage 24 V for digital outputs S1-2

Input STO1-Enable [X4/7] must not be connected.

11.3.5.5 Safe inputs and outputs S1-2

NOTICE

Inputs X30/1 SS1_Activate and X30/20 SS1_SIL3/Reset must always be connected. Only tested outputs from a safety control system may be connected to all inputs on X30.

<table>
<thead>
<tr>
<th>X30</th>
<th>Pin</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS1 Activate</td>
<td>1</td>
<td>I</td>
<td>Activates function SS1</td>
</tr>
<tr>
<td>I0</td>
<td>2</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>I1</td>
<td>3</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>I2</td>
<td>4</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>STO Acknowledge</td>
<td>5</td>
<td>O</td>
<td>Status: STO activated</td>
</tr>
<tr>
<td>O0</td>
<td>6</td>
<td>O</td>
<td>Programmable, status: safety function X activated</td>
</tr>
<tr>
<td>O1</td>
<td>7</td>
<td>O</td>
<td>Programmable, status: safety function X activated</td>
</tr>
<tr>
<td>O2</td>
<td>8</td>
<td>O</td>
<td>Programmable, status: safety function X activated</td>
</tr>
<tr>
<td>O3</td>
<td>9</td>
<td>O</td>
<td>Programmable, status: safety function X activated</td>
</tr>
<tr>
<td>24V Supply</td>
<td>10</td>
<td>-</td>
<td>24V supply of digital outputs</td>
</tr>
<tr>
<td>Encoder Supply</td>
<td>11</td>
<td>-</td>
<td>Versorgungsspannung für externen Geber</td>
</tr>
<tr>
<td>I3</td>
<td>12</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>I4</td>
<td>13</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>I5</td>
<td>14</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>I6</td>
<td>15</td>
<td>I</td>
<td>Programmable, activate safety function X</td>
</tr>
<tr>
<td>Ready Acknowledge</td>
<td>16</td>
<td>O</td>
<td>Message "Safety card is ready to operate"</td>
</tr>
<tr>
<td>SBC+</td>
<td>17</td>
<td>O</td>
<td>Control external brake +</td>
</tr>
<tr>
<td>SBC-</td>
<td>18</td>
<td>O</td>
<td>Control external brake -</td>
</tr>
<tr>
<td>STO SIL CL3</td>
<td>19</td>
<td>O</td>
<td>Output single</td>
</tr>
<tr>
<td>SS1 SIL CL3/Reset</td>
<td>20</td>
<td>I</td>
<td>Input for SIL CL3 and Reset</td>
</tr>
<tr>
<td>0V Supply</td>
<td>21</td>
<td>-</td>
<td>0V supply of digital outputs</td>
</tr>
<tr>
<td>0V Encoder Supply</td>
<td>22</td>
<td>-</td>
<td>0V supply of external encoder</td>
</tr>
</tbody>
</table>
12 Appendix

12.1 Glossary

<table>
<thead>
<tr>
<th>Letter</th>
<th>Term</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>Brake circuit</td>
<td>Converts generative energy fed back by the motor during braking (generated energy) to heat.</td>
</tr>
<tr>
<td>C</td>
<td>Clock</td>
<td>Clock signal</td>
</tr>
<tr>
<td>C</td>
<td>Common-mode voltage</td>
<td>The maximum amplitude of a disturbance (on both inputs) which a differential input can eliminate</td>
</tr>
<tr>
<td>C</td>
<td>Counts</td>
<td>Internal count pulses, 1 pulse = 1 / 2^{20} turn^{-1}</td>
</tr>
<tr>
<td>C</td>
<td>Continuous power of brake circuit</td>
<td>Mean power that can be dissipated in the brake circuit</td>
</tr>
<tr>
<td>C</td>
<td>Current controller</td>
<td>Regulates the difference between the current setpoint and the actual value to 0</td>
</tr>
<tr>
<td>C</td>
<td>Output: power output voltage</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>DC bus link</td>
<td>Rectified and smoothed power voltage</td>
</tr>
<tr>
<td>D</td>
<td>Disable</td>
<td>Removal of the ENABLE signal</td>
</tr>
<tr>
<td>E</td>
<td>Earth short</td>
<td>Electrical connection between a phase and the protective earth (PE)</td>
</tr>
<tr>
<td>E</td>
<td>Enable</td>
<td>Enable signal for the servo amplifier, Hardware-Enable with 24V signal to X3, Software-Enable command by setup Software, fieldbus or permanently set. Both are required for enabling the amplifier.</td>
</tr>
<tr>
<td>E</td>
<td>ENABLE</td>
<td>Enable signal for the servo amplifier (+24 V)</td>
</tr>
<tr>
<td>F</td>
<td>Fieldbus interface</td>
<td>CANopen, PROFIBUS, SERCOS etc.</td>
</tr>
<tr>
<td>F</td>
<td>Final speed (limit speed)</td>
<td>Maximum value for the speed normalization at ±10 V</td>
</tr>
<tr>
<td>G</td>
<td>GRAY-code</td>
<td>Special format for representing binary numbers</td>
</tr>
<tr>
<td>H</td>
<td>Holding brake</td>
<td>Brake in the motor, that can only be used when the motor is at standstill</td>
</tr>
<tr>
<td>I</td>
<td>I²t threshold</td>
<td>Monitoring of the r.m.s. current that is actually required</td>
</tr>
<tr>
<td>I</td>
<td>Input drift</td>
<td>Temperature and age-dependent alteration of an analog input</td>
</tr>
<tr>
<td>I</td>
<td>Incremental encoder interface</td>
<td>Position signaling by 2 signals with 90° phase difference (i.e. in quadrature), is not an absolute position output</td>
</tr>
<tr>
<td>I</td>
<td>Ipeak, peak current</td>
<td>The effective value of the peak current</td>
</tr>
<tr>
<td>I</td>
<td>Irms, effective current</td>
<td>The r.m.s. value of the continuous current</td>
</tr>
<tr>
<td>K</td>
<td>Kp, P-gain</td>
<td>Proportional gain of a control loop</td>
</tr>
<tr>
<td>L</td>
<td>Limit speed (final speed)</td>
<td>Maximum value for speed normalization at ±10 V</td>
</tr>
<tr>
<td>L</td>
<td>Limit switch</td>
<td>Switch limiting the traverse path of the machine; implemented as n.c. (break) contact</td>
</tr>
<tr>
<td>M</td>
<td>Machine</td>
<td>The complete assembly of all connected parts or devices, of which at least one is movable</td>
</tr>
<tr>
<td>M</td>
<td>Motion block</td>
<td>Data packet with all the position control parameters which are required for a motion task</td>
</tr>
<tr>
<td>M</td>
<td>Multi-axis system</td>
<td>Machine with several independently driven axes</td>
</tr>
<tr>
<td>N</td>
<td>Natural convection</td>
<td>Free movement of air for cooling</td>
</tr>
<tr>
<td>O</td>
<td>Optocoupler</td>
<td>Optical connection between two electrically independent systems</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>P</td>
<td>P-controller</td>
<td>Control loop with purely proportional behavior</td>
</tr>
<tr>
<td></td>
<td>Phase shift</td>
<td>Compensation for the lag between the electromagnetic and magnetic fields in the motor</td>
</tr>
<tr>
<td></td>
<td>PI-controller</td>
<td>Control loop with proportional and differential behavior</td>
</tr>
<tr>
<td></td>
<td>Position controller</td>
<td>Regulates the difference between the position setpoint and the actual position to 0</td>
</tr>
<tr>
<td></td>
<td>Output: speed setpoint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Potential isolation</td>
<td>electrically decoupled, electrical isolation</td>
</tr>
<tr>
<td></td>
<td>Power contactor</td>
<td>System protection device with phase monitoring</td>
</tr>
<tr>
<td></td>
<td>Pulse power of the brake circuit</td>
<td>Maximum power which can be dissipated in the brake circuit</td>
</tr>
<tr>
<td>R</td>
<td>Reset</td>
<td>New start of the microprocessor</td>
</tr>
<tr>
<td></td>
<td>Resolver to Digital converter</td>
<td>Conversion of the analog resolver signals into digital information</td>
</tr>
<tr>
<td></td>
<td>Reversing mode</td>
<td>Operation with a periodic change of direction</td>
</tr>
<tr>
<td></td>
<td>Ring core</td>
<td>Ferrite rings for interference suppression</td>
</tr>
<tr>
<td></td>
<td>ROD-interface</td>
<td>Incremental position output</td>
</tr>
<tr>
<td>S</td>
<td>Servo amplifier</td>
<td>Control device for regulating the speed, torque and position of a servomotor</td>
</tr>
<tr>
<td></td>
<td>Setpoint ramps</td>
<td>Limits for the rate of change of the speed setpoint</td>
</tr>
<tr>
<td></td>
<td>Short-circuit</td>
<td>here: electrically conductive connection between two phases</td>
</tr>
<tr>
<td></td>
<td>Speed controller</td>
<td>Regulates the difference between the speed setpoint and the actual value to 0</td>
</tr>
<tr>
<td></td>
<td>Output: current setpoint</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SSI-interface</td>
<td>Cyclically absolute, serial position output</td>
</tr>
<tr>
<td></td>
<td>Supply filter</td>
<td>Device to divert interference on the power supply cables to PE</td>
</tr>
<tr>
<td></td>
<td>Tachometer voltage</td>
<td>Voltage proportional to the actual speed</td>
</tr>
<tr>
<td></td>
<td>Thermal control</td>
<td>Temperature-sensitive device built into the motor winding (usually PTC)</td>
</tr>
<tr>
<td></td>
<td>Tn, I-integration time</td>
<td>Integral component of a control loop</td>
</tr>
<tr>
<td>Z</td>
<td>Zero pulse</td>
<td>Output once per turn from incremental encoder, used to zero the machine</td>
</tr>
</tbody>
</table>
12.2 Order codes

The order numbers of accessories such as cables, brake resistors, mains supplies, etc., can be found in the accessories manual (CDROM or website).

12.2.1 Servo amplifiers

<table>
<thead>
<tr>
<th>Article (standard version)*</th>
<th>EU order code</th>
<th>US order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servo amplifier S74802</td>
<td>S74802-NANANA</td>
<td></td>
</tr>
<tr>
<td>Servo amplifier S77202</td>
<td>S77202-NANANA</td>
<td></td>
</tr>
</tbody>
</table>

*= Standard: with heat sink, CANopen and EtherCAT onboard, dual channel STO, no expansion card. See "Part number scheme" (⇒ #26).

<table>
<thead>
<tr>
<th>Article (standard version with F2 option built Slot 2)</th>
<th>EU order code</th>
<th>US order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servo amplifier S74802-NAF2NA</td>
<td>S74802-NAF2NA</td>
<td></td>
</tr>
<tr>
<td>Servo amplifier S77202-NAF2NA</td>
<td>S77202-NAF2NA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Article (standard version with F2 option built Slot 3)</th>
<th>EU order code</th>
<th>US order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servo amplifier S74802-NANAF2</td>
<td>S74802-NANAF2</td>
<td></td>
</tr>
<tr>
<td>Servo amplifier S77202-NANAF2</td>
<td>S77202-NANAF2</td>
<td></td>
</tr>
</tbody>
</table>

12.2.2 Memory Card

<table>
<thead>
<tr>
<th>Article (can remain in the drive)</th>
<th>EU order code</th>
<th>US order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Memory Card</td>
<td>DE-201257</td>
<td>not available</td>
</tr>
</tbody>
</table>
12.2.3 Expansion cards

12.2.3.1 Covers for Option Slots

<table>
<thead>
<tr>
<th>Article</th>
<th>EU order code</th>
<th>US order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Slot Covers (1x Slot 1, 1x Slot 2 or 3)</td>
<td>DE-201295</td>
<td>DE-201295</td>
</tr>
</tbody>
</table>

12.2.3.2 Slot 1

<table>
<thead>
<tr>
<th>Article</th>
<th>EU order code</th>
<th>US order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion Card DeviceNet</td>
<td>DE-103571</td>
<td>OPT-DN</td>
</tr>
<tr>
<td>Expansion Card PROFIBUS DP</td>
<td>DE-106712</td>
<td>OPT-PB3</td>
</tr>
<tr>
<td>Expansion Card SERCOS</td>
<td>DE-90879</td>
<td>OPT-SE</td>
</tr>
<tr>
<td>Expansion Card I/O-14/08</td>
<td>DE-90057</td>
<td>OPT-EI</td>
</tr>
<tr>
<td>Expansion Card SynqNet</td>
<td>DE-200073</td>
<td>OPT-SN</td>
</tr>
<tr>
<td>Expansion Card FB-2to1</td>
<td>DE-201664</td>
<td>not available</td>
</tr>
<tr>
<td>Expansion module 2CAN</td>
<td>DE-201076</td>
<td>OPT-CB</td>
</tr>
</tbody>
</table>

12.2.3.3 Slot 2

<table>
<thead>
<tr>
<th>Article</th>
<th>EU order code</th>
<th>US order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion Card PosI/O</td>
<td>DE-200881</td>
<td>OPT-E1</td>
</tr>
<tr>
<td>Expansion Card PosI/O-Monitor</td>
<td>DE-201294</td>
<td>OPT-PA</td>
</tr>
</tbody>
</table>

12.2.3.4 Slot 3

<table>
<thead>
<tr>
<th>Article</th>
<th>EU order code</th>
<th>US order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Expansion Card PosI/O</td>
<td>DE-200881</td>
<td>OPT-E1</td>
</tr>
<tr>
<td>Expansion Card PosI/O-Monitor</td>
<td>DE-201294</td>
<td>OPT-PA</td>
</tr>
<tr>
<td>Expansion Card Safety 1-2, SIL CL3</td>
<td>DE-201873</td>
<td>OPT-S3</td>
</tr>
<tr>
<td>Expansion Card Safety 2-2, SIL CL2</td>
<td>DE-201874</td>
<td>OPT-S4</td>
</tr>
<tr>
<td>STO Bridge (instead of Safety Card)</td>
<td>DE-200566</td>
<td>OPT-BR</td>
</tr>
</tbody>
</table>

12.2.4 Mating connectors

<table>
<thead>
<tr>
<th>Article</th>
<th>EU order code</th>
<th>US order code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mating connectors X3A</td>
<td>DE-200447</td>
<td>CON-S7X3A</td>
</tr>
<tr>
<td>Mating connectors X3B</td>
<td>DE-200448</td>
<td>CON-S7X3B</td>
</tr>
<tr>
<td>Mating connectors X3C</td>
<td>DE-200957</td>
<td>CON-S7X3C</td>
</tr>
<tr>
<td>Mating connectors X4</td>
<td>DE-201241</td>
<td>CON-S7X4</td>
</tr>
<tr>
<td>Mating connectors X9A</td>
<td>DE-201194</td>
<td>CON-S7X9A</td>
</tr>
<tr>
<td>Mating connectors X9B</td>
<td>DE-201193</td>
<td>CON-S7X9B</td>
</tr>
</tbody>
</table>
13 Index

2

24V auxiliary supply, interface 69

A

A quad B Emulation X1 97
A quad B Emulation X5 149
Abbreviations ... 12
Approvals ... 21
Assembly .. 56

B

Baudrate

2CAN .. 141
CAN .. 105, 120
Devicenet ... 134
SERCOS ... 132
BiSS Encoder analog, interface 79
BiSS Encoder digital, interface 80
Block diagram ... 65
Brake Resistor

Interface .. 71
Technical Data S7xx0 35
Brake, Motor holding brake 34
BTB/RTO ... 103

C

CAN Bus

Cable .. 105
Interface .. 105
Capacitor Module 72
CE .. 22
ComCoder ... 89
Conductor cross-sections 33
Conformance

CE .. 22
EAC .. 24
REACH .. 23
RoHS ... 23
UL .. 21
Connection diagram, overview 67
Connector assignments 66
Connectors .. 31

D

DC bus link, interface 70
Decommission 18
Devicenet bus cable 135
Dimensions .. 54
Disassembly ... 19

Disposal .. 20
DSL, interface .. 77
Dynamic braking 35

E

EAC ... 24
Electronic Gearing

X1 .. 94
X5 .. 148
Emergency Off ... 40
Emergency Stop 40
Enclosure protection 32
Encoder-Emulation

X1 .. 97
X5 .. 149
EnDat 2.1 Encoder, interface 81
EnDat 2.2 Encoder, interface 82
Error messages 123
EtherNet interface 106
Expansion card

-2CAN- .. 140
-DEVICENET- 133
-FB-2to1- ... 138
-Posl/O- ... 143
-Posl/O-Monitor- 143
-PROFIBUS- .. 130
-Safety S3- ... 155
-Safety S43- ... 153
-SERCOM- .. 131
-SYNQNET- ... 136

F

Feedback systems 74
Feedback types .. 75
Forming ... 108
Fusing .. 32

G

Glossary .. 157
Ground symbol .. 61
Grounding

Connection diagram 67
Installation ... 60
Grounding system 35

H

Hall sensors ... 93
Hardware requirements 110
Hiperface Encoder, interface 83
Humidity .. 32
I

Inputs
- Analog-In 1/2 99
- Analog-In 3/4 151
- Enable 101
- Programmable 100
Inputs, outputs 31

Installation
- Electrical 59
- Expansion cards Slot 1 126
- Expansion cards Slot 2 142
- Expansion cards Slot 3 152
- Mechanical 53
- Software 110
Isolating transformers 52

K

Keypad operation 120

L

Leakage current 52
LED Display 35, 120

M

Maintenance 19
- Master-Slave X1 96
- Master-Slave X5 148
- Memory card 107
- Motor holding brake 34
- Motor, interface 73
- Mounting position 32

N

Nameplate 25
Node Address 25
- 2CAN 141
- CAN-Bus 120
- DeviceNet 134
- SERCOS 132
Noise emission 30

O

Operating systems 110
- Optical power 132
- Option “F2” 142, 152
- Order codes 159
Outputs
- Analog-Out 1/2 151
- BTB/RTO 103
- Digital-Out 1/2 103

P

Package supplied 25
Packaging 18
Part number scheme 26
Pollution level 32
- Position Output X1 97
- Position Output X5 149
Product life cycle 18

Q

Quickstart, initial drive test 111

R

REACH .. 23
Repair ... 20
- Residual current protective device 52
- Resolver, interface 78
- ROD (AquadB) 24V at X3 90
- ROD (AquadB) 24V at X3 with Hall 91
- ROD (AquadB) 5V at X1 with Hall 89
- ROD (AquadB) 5V at X1, 1.5MHz 87
- ROD (AquadB) 5V at X5 with Hall 145
- ROD (AquadB) 5V at X5, 1.5MHz 144
- ROD (AquadB) 5V, 350kHz 88
RoHS .. 23

S

Safety functions
- S3 Card 155
- S4 Card 153
- STO ... 41
Setpoint inputs 99
Setup .. 108
Setup Wizard 115
- SFD3, interface 76
- Shielding 60
- Shielding connection 62
- Shock-hazard protection 52
- SinCos+SSI at X1 84
- SinCos+SSI at X5 147
- Sine Encoder with Hall 86
- Sine Encoder without data channel 85
Site .. 53
- Site altitude 32
- SSI absolute Encoder X1 92
- SSI absolute Encoder X5 146
- SSI Emulation X1 98
- SSI Emulation X5 150
Standards ... 11
- Step/Direction 24V at X3 95
- Step/Direction 5V at X1 95
- Step/Direction 5V at X5 148
- STO, Safe Torque Off 41
14 Record of Document Revisions

<table>
<thead>
<tr>
<th>Revision</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>07/2009</td>
<td>First edition</td>
</tr>
<tr>
<td>09/2009</td>
<td>Repair, disposal, standards, directives, GOST-R</td>
</tr>
<tr>
<td>11/2009</td>
<td>Safety expansion cards S1/S2, UL listed, FAN option card F2</td>
</tr>
<tr>
<td>09/2011</td>
<td>Part number scheme, safety approved, emergency Stop examples moved to WIKI, S1/S2 cards updated, new DriveGUI icon, bridge DGND-GND (dig-I/O) changed, notes holding brake, climatic classes, WIKI links updated, 2CAN module, company data, encoder emulation X1, BiSS-C</td>
</tr>
<tr>
<td>06/2012</td>
<td>Expansion card FB-2to1 new, Stop/Emergency Stop/Emergency Off updated</td>
</tr>
<tr>
<td>07/2013</td>
<td>Feedback - ENCVON note, FBTYPE 34, CE declaration of conformity, formal improvements, BiSS C Renishaw, according to IEC 82079, safety cards S1/S2 replaced by S3/S4, diagram "Behavior in the event of an error" updated.</td>
</tr>
<tr>
<td>08/2013</td>
<td>Correction S4 safety card (SLP not possible)</td>
</tr>
<tr>
<td>11/2013</td>
<td>Hint automatic restart, fault table, switch off behaviour in case of faults, VBUSBAL=4</td>
</tr>
<tr>
<td>05/2014</td>
<td>Warning symbols updated, SSI emulation timing updated, safe to touch voltage 40V->60V</td>
</tr>
<tr>
<td>07/2014</td>
<td>Wiring thermo sensor updated (Feedback)</td>
</tr>
<tr>
<td>12/2014</td>
<td>Note drive feedback restrictions with Safety Cards, CE declaration of conformity removed, GOST-R removed, Safety certificates removed, HWR, export classification</td>
</tr>
<tr>
<td>02/2015</td>
<td>EAC certification, nameplate with EAC sign, coldplate version new</td>
</tr>
<tr>
<td>12/2015</td>
<td>Functional Safety certification expanded, safety chapter typo: discharge time corrected, fax form removed, use as directed extended, safe to touch voltage 60V->50V, fuse FB1/2 to 100A, LVD 2014/35/EC, EMCD 2014/30/EC</td>
</tr>
<tr>
<td>02/2017</td>
<td>X6 Pin 1 corrected (no 5V output), warning notes, handling separate chapter, single cable connection new, SFD3/Hiperface DSL new</td>
</tr>
<tr>
<td>11/2018</td>
<td>Connector X1 corrected (male->female), HR table updated, layout of the warning notes updated, user expertise updated, new readers note on cover page, Wiki replaced by KDN</td>
</tr>
<tr>
<td>07/2019</td>
<td>CE Conformity (RoHS), dc bus link (examples), layout updates</td>
</tr>
</tbody>
</table>
Service
We are committed to quality customer service. In order to serve in the most effective way, please contact your local sales representative for assistance.
If you are unaware of your local sales representative, please contact the Customer Support.

Join the Kollmorgen Developer Network for product support. Ask the community questions, search the knowledge base for answers, get downloads, and suggest improvements.

Europe
KOLLMORGEN
Internet: www.kollmorgen.com/uk
E-Mail: technik@kollmorgen.com
Tel.: +49 - 2102 - 9394 - 0
Fax: +49 - 2102 - 9394 - 3155

North America
KOLLMORGEN
Internet: www.kollmorgen.com/en-us
E-Mail: support@kollmorgen.com
Tel.: +1 - 540 - 633 - 3545
Fax: +1 - 540 - 639 - 4162

South America
KOLLMORGEN
Internet: www.kollmorgen.com/pt-br
E-Mail: contato@kollmorgen.com
Tel.: +55 - 11 - 4615-6300

Asia
KOLLMORGEN
Internet: www.kollmorgen.cn
E-Mail: sales.china@kollmorgen.com
Tel: +86 - 400 668 2802
Fax: +86 - 21 6248 5367