KOLLMORGEN

www.DanaherMotion.com

PicoDAD-SN Compact Dual-Axis SynqNet Servo Drive

User Manual Revision No: 2.0 Date: 30 January 2006

Table Of Contents

1.	Revision History	7
	Conventions	
	Product Description	
3.1	General	
3.2	SYNQNET®	
3.3	PART NUMBER	
3.4	ELECTRICAL INTERFACE	
3.5	CONTROL SPECIFICATIONS	
3.6	MOTOR TYPES	
3.7	MOTOR FEEDBACK	
3.8	Secondary Encoder	
3.9	I/O	
3.9		
3.9		
3.10	POSITION CAPTURE	
3.11	DIAGNOSTICS	
3.12	ROTARY SWITCH	
3.12	SERIAL COMMUNICATIONS	
	Naming Conventions	
4. 4.1	Axis Numbering	
	Drive Architecture	
5.1	DRIVE PROCESSOR AND SYNQNET FPGA	
5.2	FIRMWARE VERSIONS	
5.2		
5.2		
5.3	SOFTWARE COMPATIBILITY TABLE	
5.4	DRIVE PROCESSOR MEMORY DESCRIPTIONS	
6.	Electrical Specifications	
6.1	INPUT POWER	16
6.2	PROTECTION AND ENVIRONMENT	16
6.3	I/O	17
6.4	Encoder Feedback	
6.5	Resolver	19
7.	Mounting	
7.1	HARDWARE SPECIFICATIONS	
7.2	OUTLINE DIMENSIONS	
7.2	2.1 Front View	
7.2	2.2 Side View	
7.3	MOUNTING ALIGNMENT	
8.	Wiring	
8.1	WIRING DIAGRAM	
8.2	CONNECTOR PIN-OUTS	
8.2 8.2		
8.2	0	
0.2 8.2		
8.2 8.2		
	WIRING A MOTOR TO THE DRIVE	
8.3		
8.3	8.1 Kollmorgen AKM Motors	

PicoDAD-SN User Manual

8.4	CONNECTOR KIT	32
8.5	GROUNDING TREE	33
8.6	ELECTRICAL INTERFACES	33
8.6.1	Over-Travel Limits and Home	33
8.6.2	Remote Enable	34
8.6.3	General-Purpose Inputs	34
8.6.4	General-Purpose Outputs	34
8.6.5	High Speed Inputs	35
8.6.6	High Speed Outputs	35
8.6.7	Analog Inputs	
8.6.8	Fault Relay	36
8.6.9	Brake Relay	
8.6.10	Sine Encoder	
8.6.11	Halls	
8.6.12	Quadrature Encoder	36
9. Sys	tem Operation	37
9.1	POWERING UP	37
9.2	SYNQNET UTILITIES	37
9.3	ROTARY SWITCH CONFIGURATION	37
9.4	CURRENT SCALING	
9.5	PWM SATURATION	38
9.6	DRIVE PARAMETERS	38
9.6.1	Memory Operations on Drive Parameters	39
9.6.2	Accessing Individual Parameters	
9.6.3	Accessing an Entire Parameter Set	
9.6.4	Drive Parameter Map File	
9.6.5	Drive Configuration File	
9.7	MOTOR POSITION	
9.7.1	Position Feedback Parameter	43
9.7.2	Mechanical Position	44
9.7.3	Position Resolution	44
9.7.4	Timing of the Position Update	44
9.8	DRIVE CONFIGURATION	44
9.8.1	The CONFIG Function	45
9.8.2	Motor Parameters	45
<i>9.8.3</i>	Feedback Parameters	47
9.8.4	Current Loop Parameters	50
9.8.5	Phase Advance Parameters	52
9.8.6	Back-EMF Compensation	53
9.8.7	Current Limits	
9.8.8	Application Current Limits	
9.8.9	Reading Actual Current	56
9.8.10	Current Measurement Filters	
9.8.11	Current Foldback	
9.8.12	Application Velocity Limit	
9.8.13	Under-Voltage Fault Processing	
9.8.14	Motor Over-Temperature Fault Processing	
9.9	SETTING THE MPHASE PARAMETER	
9.9.1	Introduction	
9.9.2	Parameter Definition	
9.9.3	Calculating MPHASE using the ZERO Procedure	
9.9.4	Setting MPHASE with AKM Motors	
9.10	ENCODER INDEX POSITION	
9.10.1	The MENCOFF Parameter	
9.10.2	MENCOFF for Kollmorgen AKM Motors	
9.10.3	Encoder Index Initialization	64

9.11	COMMUTATION INITIALIZATION WITH COMMUTATION SIGNALS	66
9.11.1	The MFBDIR Parameter	66
9.11.2	For Resolver Feedback	66
9.11.3	For Encoder Feedback with Commutation Signals	66
9.12	COMMUTATION INITIALIZATION WITHOUT COMMUTATION SIGNALS (PHASE FINDING)	69
9.12.1	Overview	69
9.12.2	Autonomous Drive Actions	69
9.12.3	Parameters Used During Phase Finding	70
9.12.4	Phase Finding and the MENCTYPE Parameter	
9.12.5	The Process	
9.12.6	Evaluating the Commutation Initialization Process	73
9.13	CONSIDERATIONS FOR WORKING WITH ENDAT SINE ENCODERS	
9.13.1	Setting the Encoder Type	73
9.13.2	Equivalent Counts per Revolution	73
9.13.3	Hardware Absolute Position	73
9.13.4	Absolute Position Mode	74
9.13.5	Position Feedback Offset	74
9.13.6	Saving Parameters in the EnDat Encoder	75
9.13.7	Sine/Cosine Calibration	
9.14	SINE/COSINE CALIBRATION	76
9.14.1	Overview	76
9.14.2	The Process	76
9.14.3	Calibration Data	77
9.15	DRIVE ENABLE	
9.16	FAULTS AND WARNINGS	80
9.16.1	Warnings	80
9.16.2	Faults	
9.16.3	Reading Warnings Over SynqNet	
9.16.4	Reading Faults Over SynqNet	
9.16.5	Using the SqDriveMsg Utility	
9.16.6	Clearing Faults	
9.16.7	Fault History	
9.17	DIRECT COMMANDS	
9.17.1	Table of Direct Command Codes	
9.17.2	Direct Command Syntax	
9.17.3	Examples of Direct Commands	
9.18	REAL TIME MONITORING	
9.18.1	Values Available for Real-Time Monitoring	
9.18.2	Setting up Real-Time Monitoring	
9.18.3	Viewing Monitored Data on MotionScope	
9.19	ANALOG INPUTS	
9.19.1	Reading Analog Inputs using Drive Parameters	
9.19.2	Accessing Analog Inputs Using Direct Commands	
9.19.3	Analog Value Monitoring	
9.19.4	Zeroing the Analog Input Offset	
9.19.5	Low-pass Filtering on the Analog Inputs	
9.20	SYNQNET CYCLIC STATUS BITS	
9.21	POSITION CAPTURE	
9.21.1	Controller Time-Based Position Capture	
,	mware Upgrade Procedure	
10.1	Identifying the Firmware Files	•••••••
10.1	PREPARATIONS	
10.2	Retrieve Drive Parameters	
10.2.1	Clear the Drive Parameters	
10.2.2	UPDATE DRIVE FIRMWARE	
10.5	Using MotionConsole	
10.3.1		

10.3.2	Using the sqNodeFlash Utility	101	
10.4	RESUMING OPERATION		
10.4.1	Verify the VERSION	102	
10.4.2	Restore Drive Parameters	102	
11. Tr	ouble Shooting	••••••	104
11.1	SYNQNET LEDS		
11.1.1	IN Port	105	
11.1.2			
11.2	DRIVE STATUS 7-SEGMENT LED		
11.3	RETRIEVING FAULT INFORMATION OVER SYNQNET	107	
11.4	FAULT R-8: A/B OUT-OF RANGE		
11.4.1	Background	108	
11.4.2			
11.4.3	· · · · · · · · · · · · · · · · · · ·		
11.5	IDENTIFYING FIRMWARE VERSIONS	110	
11.6	DRIVE ERROR RESPONSE	111	
12. Ap	pendix: SynqNet Utilities		113
13. Ap	pendix: Application Programming Considerations		114
13.1	FPGA RUN-TIME IMAGE		
13.2	MOTOR POSITION	114	
13.3	Drive Parameters	114	
14. Ap	pendix: Sample Drive Parameter Map File		115
	pendix: Sample Drive Configuration File		
	pendix: Reference Guide		
16.1	INSTRUCTIONS		
16.2	PARAMETERS		
16.3	EFFECT OF RSTVAR AND CLREEPROM		
	pendix: Upgrading Firmware over the Serial Port		125
17.1 Ap	TERMINOLOGY		123
17.2	Important Files		
17.3	PREPARATIONS		
17.3.1			
17.3.2			
17.4	UPDATE DRIVE FIRMWARE		
17.4.1	-		
17.4.2	0		
17.4.3			
17.5	RESUMING OPERATION.		
17.5.1			
17.5.2	1		
17.6	CONSIDERATIONS FOR HARDWARE EMBER		

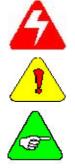
Table of Figures

Figure 5-1: Drive Memory Architecture	15
Figure 9-1: Current Scaling	38
Figure 9-2: Current Foldback	58
Figure 9-3: Commutation Initialization Velocity Response	73
Figure 9-4: Warning indication in MotionConsole	81
Figure 9-5: VM3 Screen Showing Monitored Data	90
Figure 9-6: Selecting Traces in MotionScope	91

Danaher Motion Kollmorgen January 30, 2006

Figure 9-7: Defining New Traces in MotionScope	92
Figure 10-1: SqNode Summary Window for Firmware Download	99
Figure 17-1: MotionLink Main Screen	125
Figure 17-2: MotionLink Drive Backup Screen	126
Figure 17-3: Ignite28xx Main Screen	

Revision Number	Date	Description
1.0	December 22, 2004	First official version
1.1		 Added clarification on Rotary Switch Mounting: book or brick SN Connector: RJ-45 Added info on velocity limit Added info on under-voltage and motor over-temp processing Added clarification regarding position capture Added sine encoder input frequency limit
1.3	January 18, 2005	 Corrections to mating connector part numbers
1.4		 Corrections to pin-out of Controller I/O Clarification of Current Scaling Clarification of Mounting Added information on Position Capture (both Controller- and Drive-Based) Added information on Commutation Initialization without Halls Added Warning register information Added information on the Connector Kit
1.5	June 10, 2005	 Added information on <u>PWM saturation</u> Real-time monitoring: clarification on how to find the monitor data Added information on <u>current foldback</u> Added information on <u>drive parameter Map files</u> Added information on downloading firmware using sqNodeFlash
1.6	July 22, 2005	 Added information on 1.5V reference failure Corrections to syntax for reading analog inputs using Direct Command 0x30 Added information on the VLIM parameter Added information on <u>EnDat</u> Added information on <u>sine/cosine calibration</u> Added information on <u>firmware upgrade using the serial port</u>
1.7	August 30, 2005	 Clarification to <u>DIPEAK</u> and <u>DICONT</u> The PicoDAD will NOT run brush DC motors Added description of <u>UVTIME</u> for UVMODE=2 Added description for <u>ABSPOSMOD</u> Added description for <u>PFBOFF</u> Added clarification on <u>Current Scaling</u> Added information on configuring the drive (<u>CONFIG</u>) Added information on using MOTORTYPE=3 with AKM motors Added descriptions of <u>MPHASE</u> and <u>MENCOFF</u> Added current measurement filters Calculating MPHASE with the <u>ZERO</u> function <u>Phase finding</u>
1.8	September 21, 2005	 Added information on the <u>RS-232</u> port, and on <u>Hardware Ember</u> Added description of the flashing '-' & '3' LED indication. Refer to <u>Drive</u> <u>Status 7-segment LED</u> information. Removed information on drive-controlled position capture (not supported) Added wiring diagram information
1.9	December 5, 2005	 Added clarifications to the <u>Phase Finding</u> description Removed <u>MPHASE calculation</u> for AKM motors. When using AKM, always set <u>MOTORTYPE=3</u>. Clarification regarding setting <u>MENCOFF for AKM motors</u>. Corrected range for <u>MSININT</u>, <u>MKT</u>, MJ, MICONT, MOTORTYPE, FOLDMODE Added descriptions for analog input zeroing, offset, and low-pass filtering Removed irrelevant parameters from the <u>reference</u> Clarification added for requiring CONFIG when changing parameters Added descriptions for READY and ACTIVE Added descriptions for <u>zeroing</u> the analog input offset. Added descriptions of the <u>analog input low-pass filter</u>


1. Revision History

Danaher Motion Kollmorgen

January	30	2006
January	JU,	2000

	 Added descriptions for changing the <u>allowed range of sine/cosine inputs</u>
2.0	Clarifications to Product Description.
	 Removed reference to linear motors. The PicoDAD will only work with rotary brushless motors. Refer to the MOTORTYPE parameter.
	Clarification regarding supported feedback types

2. Conventions

Warning identifies hazards that could result in personal injury or death.

Caution identifies hazards that could result in personal injury or equipment damage.

Note identifies information critical to the user's understanding or use of the equipment.

3. Product Description

3.1 General

The PicoDAD-SN is a low-voltage Dual-Axis SynqNet® Drive. Incorporating two independent servo drives, this product saves space on a machine, and lowers the system cost by utilizing shared components. The PicoDAD operates on 48VDC for the Bus power, and separate 24VDC for Logic power. Separation of Bus and Logic power allows bus power control to be incorporated into the machine safety chain, while not losing application information or real-time monitoring data during E-stop events. Each axis is capable of individually sourcing 10A RMS continuous current to the motor. One version of the drive offers 10A RMS peak current per axis, and the other option offers 20A RMS peak current.

The PicoDAD-SN is designed as a torque drive, while servo control is executed by the centralized motion controller. Compensation of the drive for use with a specific motor is achieved by programming a set of parameters that reflect the physical characteristics of the electro-mechanical system. Real-time data monitoring allows for on-line diagnostics and preventative maintenance. Extensive I/O support is provided, including dedicated Home, Over-travel limits, brake control, and general-purpose opto-isolated and high-speed I/Os. Machine-oriented I/O is separate from Controller-oriented I/O, for ease of cabling.

In addition to status information being accessible via SynqNet®, 7-segment LEDs provide a clear drive status display, individually for each axis. All drive capabilities are accessible over SynqNet, including firmware download.

3.2 SynqNet®

SynqNet (<u>http://www.synqnet.org/</u>) is an all-digital motion control interface for connections between controllers and drives. The physical layer of SynqNet is based on IEEE 802.3 standards for 100Base-TX, the physical layer of Ethernet. The data link and application layers of SynqNet are specifically designed for motion control applications. The 100BASE-TX media system is based on specifications published in the ANSI TP-PMD physical media standard. The 100BASE-TX system operates over two pairs of wires, one pair for 'receive' data signals and the other pair for 'transmit' data signals.

SynqNet replaces the noise-prone analog drive-motion controller interface (±10V + Encoder) with a realtime digital network that brings additional diagnostic, performance and reliability benefits to a machine.

3.3 Part Number

PDD 04 xx 165

where

- **XX** refers to the current level that the drive can source.
 - o 10: 10 Amps RMS continuous and 10 Amps RMS peak
 - o 20: 10 Amps RMS continuous and 20 Amps RMS peak

3.4 Electrical Interface

- Bus Voltage 48VDC
- Logic Power 24VDC
- Motor Power 10A RMS continuous, with either 10A RMS or 20A RMS peak per axis

For more details, please refer to the Electrical Specification.

3.5 Control Specifications

- Current loop closure rate: 62.5msec (16kHz)
- PWM Frequency: 16kHz

3.6 Motor Types

The drive will work with rotary brushless motors.

3.7 Motor Feedback

Encoder, Resolver and Sine Encoder feedback options are supported as standard. All options are supported in a single model number; and the feedback type is set by a drive parameter.

The following table describes which feedback configurations are supported, and in which firmware versions.

Firmware Version	Feedback Types Supported
0.1.9	Incremental Encoder
	A/B plus Halls (MENCTYPE=6)
	A/B/I plus Halls (MENCTYPE=0)
	A/B only (MENCTYPE=4)
	Resolver

Firmware Version	Feedback Types Supported	
1.0.0.0	Incremental Encoder	
	A/B/I plus Halls (MENCTYPE=0)	
	 A/B only with explicit initialization (MENCTYPE=3). Refer to <u>Phase</u> <u>Finding</u>. 	
	A/B only (MENCTYPE=4)	
	A/B plus Halls (MENCTYPE=6)	
	Sine Encoder	
	 A/B only with explicit initialization (MENCTYPE=3). Refer to <u>Phase</u> <u>Finding</u>. 	
	A/B only (MENCTYPE=4)	
	EnDat (MENCTYPE=9)	
	Resolver	

For more details, please refer to the sections on Feedback Devices and Configuring Motor Feedback.

3.8 Secondary Encoder

Secondary feedback is supported on both axes, and accommodates a differential A/B quadrature encoder signal. An Index signal is supported on axis 2 only. The drive provides 5V power individually to each of the secondary encoders.

The Secondary Feedback inputs are located on the Machine I/O connector.

3.9 *I/*O

The I/O is divided into two general categories, Machine I/O and Controller I/O. There are two corresponding I/O connectors on the drive. The I/O electrical interfaces are described in the <u>Electrical</u> <u>Interfaces</u> section.

3.9.1 Machine I/O

The following I/O points exist for each axis independently:

- Home
- Positive and negative over-travel limits
- Brake control. The brake relays are driven by the "Brake Apply" output of the SynqNet FPGA. Each relay is rated to 24VDC and can carry up to 1A.

These signals are routed to and controlled by the SynqNet FPGA, and are thus processed at the controller level only.

3.9.2 Controller I/O

- 8 general purpose opto-isolated inputs
- 4 general purpose opto-isolated outputs
- Enable. Each axis has its own Remote Enable input. By default, the remote enable input has to be asserted in order to enable the drive, but this requirement may be ignored by using the RMTMODE drive parameter.
- High-speed I/O
 - Four RS-422 inputs. These may be used for **position capture**.
 - Six RS-422 outputs

Danaher Motion Kollmorgen January 30, 2006

- 4 general-purpose analog inputs
 - o +/- 10Vdc
 - o 12-bit resolution
- Dry-contact fault relay. There is one fault relay, driven by the "Node Alarm" output of the SynqNet FPGA.

All General Purpose Digital I/O signals are wired directly to the SynqNet FPGA, and are thus processed at the controller level only. The analog inputs are processed by the DSP, and available for reading over either the service channel or via Real-Time Monitoring.

3.10 Position Capture

The following inputs are available for use as triggers for Position Capture:

- All 8 general purpose opto-isolated inputs.
- All 4 RS-422 inputs.
- The Home input on both axes
- The over-travel limits on both axes.

The user should be aware that opto-isolated inputs have an inherent delay in the order of tens of microseconds.

3.11 Diagnostics

- 7-Segment LED shows axis status and fault codes. Please refer to <u>Drive Status 7-Segment LED</u> for more details.
- SynqNet LEDs provide information on the SynqNet connection. Refer to the section on <u>SynqNet</u> <u>LEDs</u> for more details.
- Real-time indication of a warning or a fault is communicated over the cyclic status bits
- The fault status word contains information on each existing fault, and can be read by the motion controller.
- Internal analog input for measurement of Bus voltage and of Drive temperature
- Real-time data monitoring for the following values:
 - o Bus voltage
 - o Drive temperature
 - o Analog inputs
 - Phase currents and overall torque

3.12 Rotary Switch

The PicoDAD is equipped with a 16-pole rotary switch. The switch is connected to the SynqNet FPGA and its use is application-specific. The switch is mounted on the top of the drive. For more information, refer to the section on <u>rotary switch configuration</u>.

3.13 Serial Communications

Serial communications over <u>RS-232</u> is supported, primarily for debugging purposes. It is possible to set parameters and to download firmware over this port. However, in the interests of system simplicity, it is best to use one communications channel, viz. SynqNet, for these operations.

4. Naming Conventions

4.1 Axis Numbering

The axes on the drive are labeled Axis 1 and Axis 2. This convention is used when describing connector pin-outs.

From a software point of view, the axes are identified over SynqNet as being Axes 0 and 1 respectively.

5. Drive Architecture

5.1 Drive Processor and SynqNet FPGA

The PicoDAD consists of two primary components, these being a Drive Processor (DP), coupled with a SynqNet FPGA. The DP performs the current loop and commutation functions, while the FPGA implements the SynqNet and I/O interface. DP is held in a reset state by the SynqNet FPGA, and is released from this state only upon execution of a SynqNet RESET.

Note: After power up, and before the SynqNet RESET is executed, only the decimal point on the drive LED will be lit

5.2 Firmware Versions

Both the DP and the FPGA have a firmware associated with them. These files are independent of each other, and provide different aspects of the drive's functionality. By executing the VERSION SynqNet utility, one can get information on the versions of all these entities. The VERSION utility is typically executed from within a DOS window, and run from the *\XMP\BIN\WinNT directory.

5.2.1 FPGA Firmware

The FPGA provide the SynqNet and the I/O functionality. It has two FPGA images, one called a BOOT image and the other called a RUNTIME image. A valid run-time image is needed for the drive to be operational, and the run-time image version must be compatible with the version of the MPI.

Each MPI installation includes the run-time files for each drive partner. The PicoDAD FPGA is identified by the prefix *C0FE0035_xyzw*, while the 4-digit suffix (xyzw) identifies the version of the run-time image. When starting up MoCon, a message will be displayed if the run-time version of the FPGA is not compatible with the MPI, and an interface provided for download the correct version (refer to section on <u>Firmware Upgrade Procedure</u>). The correct version is found in the XMP\BIN sub-directory of the software installation, in a *.sff file.

Note: The PicoDAD is shipped from the factory with the FPGA run-time image cleared. This is done because customers may have different versions of the MPI, and each version may require a different version of the run-time image. Application programs should check the version at system initialization, and download the correct run-time image if necessary. In general, this will be done once for each drive, as the image is stored in non-volatile memory.

5.2.2 DP Firmware

The DP firmware provides the current loop and other drive configuration functionality. It is updated as the need arises in order to support new features. It is not necessarily related to a specific version of MPI or FPGA run-time image. The firmware file is identified by a file name having the following general format:

pDad_xyz.i00

where xyz represents the firmware version. For example, '013' is firmware version 0.1.3.

5.3 Software Compatibility Table

There are at least three elements of software/firmware in the SynqNet system:

- Motion controller software (called the MPI)
- FPGA run-time image
- Drive Processor firmware

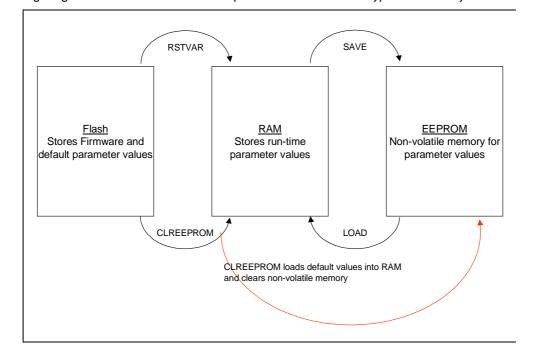
The following table shows compatible sets of these software entities.

MPI	FPGA	Drive Processor
03.02.00	C0FE0035_0343.sff	0.1.6
03.02.00	C0FE0035_0343.sff	0.1.9

5.4 Drive Processor Memory Descriptions

The drive contains a number of different memory types:

- Flash Memory: used to store the drive firmware
- RAM: used to store drive parameters during run-time
- DSP EEPROM: non-volatile memory used to store drive parameters even when the power is off


At power up, the drive will attempt to load parameter values from the EEPROM into the RAM. A checksum of these parameter values is kept, and this is verified when the EEPROM contents are loaded. If the checksum is invalid, default values for drive parameters are loaded into RAM. These default values are hard-coded, and are as such part of the firmware file.

When parameter values are set, these values are stored in RAM, and will be lost when power is removed form the drive. Once a working set of drive parameters has been found, the parameters can be stored in non-volatile EEPROM memory. This is done using either the serial SAVE command, or the SynqNet 0x1C <u>Direct Command</u>.

Changes made to parameter values are stored in RAM. It is possible to revert to a saved configuration by explicitly loading the parameters from the EEPROM. This is done using either the serial LOAD command, or the SynqNet 0x1E Direct Command.

The default parameter values can be loaded into RAM by executing either the serial RSTVAR command, or the SynqNet 0x1D Direct Command.

The EEPROM may be cleared using either the serial CLREEPROM command, or the SynqNet 0x1F Direct Command.

The following diagram illustrates the relationship between the different types of memory.

Figure 5-1: Drive Memory Architecture

6. Electrical Specifications

6.1 Input Power

Drive Model		10A	20A	
Main Input Power (both axes)	Voltage (DC) Nominal ± 10%	48	48VDC	
	KVA			
	Continuous current (Amps)			
	Peak Current (Amps) for 500 msec			
	Peak Current (Amps) for 2 sec			
	Line fuses			
Rated Output Power (Per Axis)Continuous Power (VA) at 48VDC Input and 45°C (113°F) Ambient0.35		0.35		
	Continuous Current (Arms)	10A for each axis	10A for each axis	
	Peak Current (Arms) for 500 mSec	10A for each axis	20A for each axis	
	Peak Current (Arms) for 2 Sec	10A for each axis	TBD	
	PWM Frequency (kHz) PWM	16		
	Motor Current Ripple (kHz)	32		
	PWM Saturation 92.5% ¹		5% ¹	
Logic Power	+24 VDC Ext. Logic Voltage (volts)	22 to 27		
	+24 VDC Ext. Logic Current (amps sink)			
	+24 VDC Ext. Logic Current (amps max in- rush)	2A for 5msec, and then 1.5A for 7msec		

6.2 Protection and Environment

	Under Voltage trip	User programmable from 12 to 36VDC
Protective Functions	Over Voltage Trip	60VDC (FW versions up to and including 0.1.9)
		70VDC (FW versions above 0.1.9)
	Over Temperature Trip	80° C / 176° F
	Operating Temperature	5°C (41°F) to 45°C (113°F)
Environment	Storage Temperature	0°C (32°F) to 70°C (158°F)
	Ambient Humidity	10% to 90%

¹ PWM saturation affects the useable bus voltage. With a 48V input and with PWM saturation set to 92.5%, the effective bus voltage is 44.4V. This affects the maximum achievable speed.

6.3	I/O

Analog Inputs	Maximum Voltage	±12.5 V differential
	Operating Voltage Range	±10 V differential
	Input Resolution	12 bit
	Sensitivity	6.1mV ²
	Input Impedance/CMR	> 10 K ohms/50 dB
	Frequency Response	LPF at 3.8Khz
	Accuracy	
	Repeatability	
Bus Voltage Measurement	Filtering	LPF at 3Hz
Drive Temperature Measurement	Filtering	LPF at 1.5kHz
General Purpose Digital Inputs	Input circuit characteristic	Opto-coupler
Over-Travel and Home		
Remote Enable		
	Input voltage	5-24Vdc
	Maximum current	10mA per input
	Delay	
General Purpose Digital Outputs	Output circuit characteristic	Opto-coupler; open collector, common emitter, Sink configuration
	Maximum load capacity	24Vdc / 60mA
	Maximum saturated voltage	2V
Fast Inputs	Input Signal Characteristic	RS422
	Maximum frequency	2.5MHz
Fast Outputs	Output format	RS422
	Maximum frequency	2.5MHz

² 25V(full span)/4096 (12 bit)

Encoder power supply	Encoder supply Voltage	5VDC
	Encoder supply current	300mA for each encoder interface
Quadrature Encoder	Signal Characteristics	
	A/B	Differential RS422
	Index	Differential RS422
	Halls	Differential, single-ended or open- collector
	Maximum quadrature input frequency	3MHz (before quadrature)
Sine Encoder	Signal Characteristics	
	A/B	Differential, 1Vp-p @ 2.5V offset
	Index	Differential 1Vp-p or RS422
	Halls	Differential, single-ended or open- collector
	EnDat	RS422 data + clock
	Maximum sine encoder input frequency	-3dB at 265kHz
	Interpolation	Set by a drive parameter (MSININT)
		Maximum value is x512 before quadrature.
		Equivalent resolution in counts per rev is
		MENCRES * MSININT * 4

6.4 Encoder Feedback

Note: The quadrature encoder **must** have differential RS-422 A, B, Z signals. The PicoDAD will not work with single-ended TTL feedback signals.

6.5 Resolver

The PicoDAD can use single-speed (two-pole) resolver feedback to monitor the motor shaft position. A resolver can be thought of as a transformer whose output is unique for any given shaft position (an absolute position feedback). The transformer is driven with a sine wave reference signal. Two AC signals are returned from the resolver into the Sine and Cosine inputs.

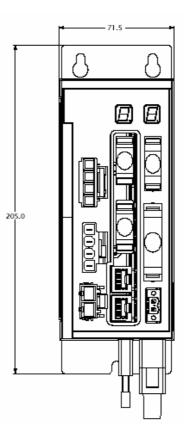
Туре	Single-pole
Transformation Ratio	0.4 to 0.6 (dependant on the Resolver itself)
Modulation Frequency	8kHz
Input Voltage (From Drive)	
Max DC Resistance	
Max Drive Current	
Output Voltage (To Drive)	
Accuracy	
ResBW = 300	TBD ArcMin
ResBW = 600	TBD ArcMin
Repeatability	
ResBW = 300	TBD ArcMin
ResBW = 600	TBD ArcMin

7. Mounting

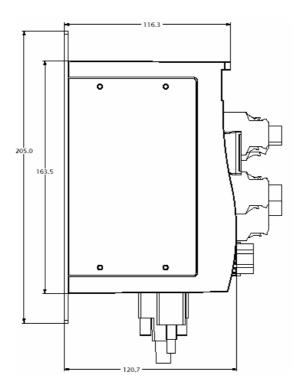
The PicoDAD-SN is designed for **book** mounting. This panel assembly is then mounted in a metallic enclosure. Enclosures are supplied by the manufacturers of the final product and meet the environmental IP rating of the end product. To ensure proper grounding (and to optimize EMC), the enclosure should have continuous ground continuity maintained between all metal panels. This ground continuity is intended to be both a safety ground and a high frequency ground.

The units are mounted on a backplane installed into the enclosure. Ideally, the backplane should be an unpainted metallic surface to optimize electrical bonding of the frame and provide the lowest possible impedance path to earth ground. These enclosures also provide added safety.

Particular care should be used when layout of an enclosure is designed. Separate power wires from small signal wires. The following guidelines highlight some important wiring practices to implement:


- Control and signal cables must be separated from power and motor cables. Distance of 20 cm (8 in.) is sufficient in most cases.
- Control and signal cables must be shielded to reduce the effects of radiated interference.
- When control cables must cross power or motor cables, they should cross at an angle of 90°, if possible. This reduces the field coupling effect

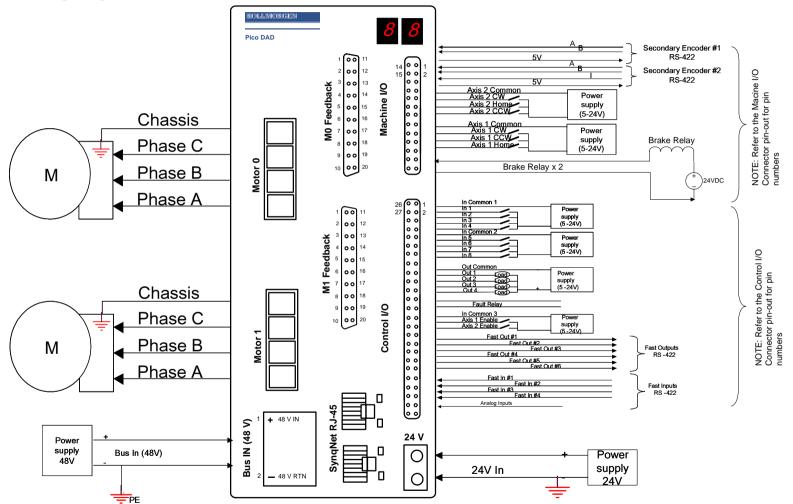
7.1 Hardware Specifications


7.2 Outline Dimensions

163.2 (Height) x 71.5 (Width) x 116.3 (Depth) mm. (6.44" x 2.81" x 4.58") The Height dimensions specified here do not include the mounting flange.

7.2.1 Front View

7.2.2 Side View



7.3 Mounting Alignment

The drive must be vertically mounted, to allow for convection cooling. At least 1cm of space must be left between adjacent drives

8. Wiring

8.1 Wiring Diagram

8.2 Connector Pin-Outs

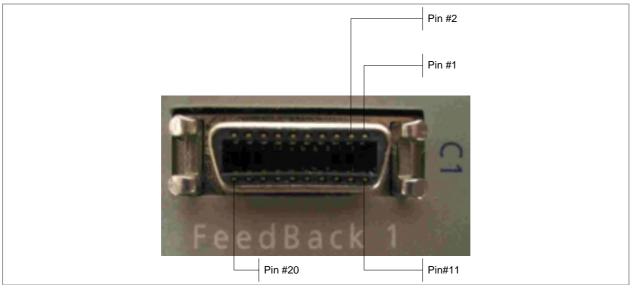
8.2.1 Logic Power

Connector Definition			
Manufacturer		Phoenix Contact	
Part Number		MSTB 2,5/2-GF-5,08	
Mating Connector Part Number		MSTBT 2,5/ 2-STF-5,08	
Pin Out			
Pin #	Description	Comments	
1 Logic Power			
2	Logic Power return	Refer to Grounding Tree	

8.2.2 Bus Power

Connector Definition			
Manufacturer		Molex	
Part Number		42820-2212	
Mating Connector Part Number		42816-0212 (Housing)	
		42815-0011 (Pins)	
		63813-0500 (Manual Extraction Tool)	
Pin Out			
Pin #	Description	Comments	
1	Bus Power		
2	Bus Power return	Refer to Grounding Tree	

8.2.3 Motor Power


Connector Definition			
Manufacturer		Molex	
Part Number		43160-3104	
Mating Connector Part Number		44441-2004 (Housing)	
		43375-0001 (Pins)	
		63813-0500 (Manual Extraction Tool)	
Pin Out			
Pin #	Description	Comments	
1	Chassis	Refer to Grounding Tree	
2	Phase C		
3	Phase B		
4	Phase A		

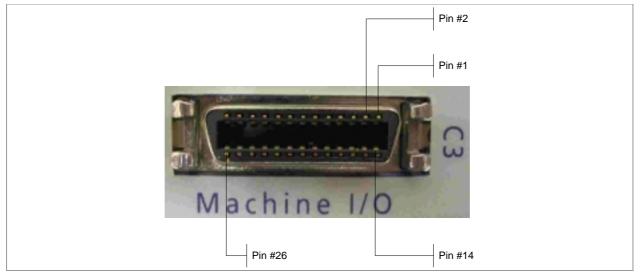
8.2.4 Feedback

8.2.4.1 Connector Definition

Manufacturer	Connectors from any of the following manufacturers are used: 3M; ACON; Hirose	
Part Number	3M N10220-52B2VC ACON HBR20-20K3211 Hirose DX106GM-20SE	
Mating Connector Part Number	3M Connector: 10120-6000EC Housing: 10320-3210-00 Cable: 3M 3444C-10P	

8.2.4.2 Connector Pin Arrangement

Pin #	Incremental Encoder	Resolver	Sine Encoder EnDat	Sine Encoder C/D
1	E5V	E5V	E5V	E5V
2	E5V	E5V	E5V	E5V
3	A	Sine	А	A
4	A\	Sine\	A\	A\
5	Z	Ref		
6	Z\	Ref\		
7	Hall1		SSI Data	С
8	Hall1\		SSI Data\	C/
9	Hall3			
10	Hall3\			
11	DGND	DGND	DGND	DGND
12	DGND	DGND	DGND	DGND
13	В	Cosine	В	В
14	B\	Cosine\	B\	B\
15	DGND	DGND	DGND	DGND
16	DGND	DGND	DGND	DGND
17	Hall2		SSI Clock	D
18	Hall2\		SSI Clock\	D\
19	Motor temp	Motor temp	Motor temp	Motor temp
20	Motor temp rtn	Motor temp rtn	Motor temp rtn	Motor temp rtn


8.2.4.3 Pin Out

8.2.5 Machine I/O

8.2.5.1 Connector Definition

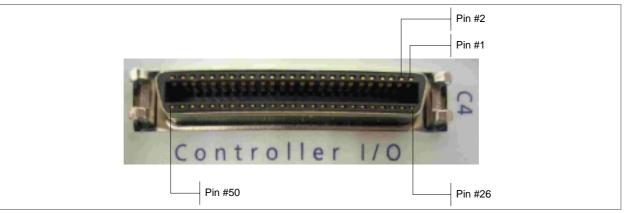
Manufacturer	Connectors from any of the following manufacturers are used: 3M; ACON; Hirose	
Part Number	3M N10226-52B2VC ACON HBR26-20K3211 Hirose DX106GM-26SE	
Mating Connector Part Number	3M Connector: 10126-6000EC Housing: 10326-3210-00 Cable: 3M 3444C-13P	

8.2.5.2 Connector Pin Arrangement

8.2.5.3 Pin Out

Pin #	Description	Comments	
1	Common for Axis 1 inputs	Common for CW, CCW and Home	
2	Axis 1 negative limit	Opto input; 5-24V; Wired to SynqNet FPGA	
		Referenced to Common on pin #1	
3	Axis 1 secondary encoder B signal	RS-422 input	
4	Axis 1 secondary encoder B-complement signal		
5	Axis 1 secondary encoder A signal	RS-422 input	
6	Axis 1 secondary encoder A-complement signal	- 10-422 liiput	
7	Axis 2 positive limit	Opto input; 5-24V; Wired to SynqNet FPGA	
		Referenced to Common on pin #20	
8	Axis 2 home signal	Opto input; 5-24V; Wired to SynqNet FPGA	
		Referenced to Common on pin #20	
9	Axis 2 negative limit	Opto input; 5-24V; Wired to SynqNet FPGA	
		Referenced to Common on pin #20	
10	Axis 2 secondary encoder Index signal		
11	Axis 2 secondary encoder Index-complement signal	RS-422 input; wired to SynqNet FPGA	
12	Axis 2 brake+ contact	Dry contact relay; controlled by SynqNet FPGA.	
13	Axis 2 brake- contact	Note polarization	
14	Axis 1 positive limit	Opto input; 5-24V; Wired to SynqNet FPGA	
		Referenced to Common on pin #1	
15	5VDC supply to secondary encoder	Fuse-protected; resettable fuse	
16	Axis 1 home signal	Opto input; 5-24V; Wired to SynqNet FPGA	
		Referenced to Common on pin #1	
17	Ground for secondary encoder power	Connected to Digital Ground in the drive	

Danaher Motion Kollmorgen January 30, 2006


Pin #	Description	Comments	
18	Axis 1 brake+ contact	Dry contact relay; controlled by SynqNet FPGA.	
19	Axis 1 brake- contact	Note polarization	
20	Common for Axis 2 inputs	Common for CW, CCW and Home	
21	Axis 2 secondary encoder B-complement signal	RS-422 input; wired to SyngNet FPGA	
22	Axis 2 secondary encoder B signal		
23	Ground for secondary encoder power	Connected to Digital Ground in the drive	
24	Axis 2 secondary encoder A-complement signal	RS-422 input (with pin 26); wired to SynqNet FPGA	
25	5VDC supply to secondary encoder	Fuse-protected; resettable fuse	
26	Axis 2 secondary encoder A signal	RS-422 input (with pin 24); wired to SynqNet FPGA	

8.2.6 Controller I/O

8.2.6.1 Connector Definition

Manufacturer	Connectors from any of the following manufacturers are used: 3M; ACON; Hirose	
Part Number	3M N10250-52B2VC ACON HBR50-20K3211 Hirose DX106GM-50SE	
Mating Connector Part Number	3M Connector 10150-6000EC Housing 10350-A200-00 Cable: 3M 3444C-25P	

8.2.6.2 Connector Pin Arrangement

8.2.6.3 Pin Out

Pin #	Description	Comments
1	Common for Opto-isolated Inputs 1, 2, 3, 4	
2	Motor 0, OPTO IN2	Referenced to Common on pin #1
3	Motor 0, OPTO IN1	Referenced to Common on pin #1

January	30,	2006
---------	-----	------

Pin #	Description	Comments
4	Motor 1, OPTO IN2	Referenced to Common on pin #30
5	Motor 1, OPTO IN1	Referenced to Common on pin #30
6	Motor 1, REMOTE ENABLE	Referenced to Common on pin #33
7	Motor 0, REMOTE ENABLE	Referenced to Common on pin #33
8	Common for Opto-isolated Outputs 1, 2, 3, 4	
9	Motor 1, OPTO OUT1	Referenced to Common on pin #8
10	Motor 1, OPTO OUT0	Referenced to Common on pin #8
11	Motor 0, RS422 OUT3	RS-422 output; wired to SynqNet FPGA
12	Motor 0, RS422 OUT3 Complement	- R3-422 output, when to Synquet FFGA
13	Motor 0, RS422 OUT2	PS 422 output: wired to SynaNot EPCA
14	Motor 0, RS422 OUT2 Complement	RS-422 output; wired to SynqNet FPGA
15	Motor 1, RS422 OUT1 Complement	PS 422 output: wired to SyngNot EDCA
16	Motor 1, RS422 OUT1	RS-422 output; wired to SynqNet FPGA
17	Motor 0, RS422 IN2	BS 422 input: wired to SynaNet EDCA
18	Motor 0, RS422 IN2 Complement	 RS-422 input; wired to SynqNet FPGA
19	Motor 0, RS422 IN1	DC 422 inputs wired to SuperNet EDCA
20	Motor 0, RS422 IN1 Complement	 RS-422 input; wired to SynqNet FPGA
21	Analog Ground	Reference ground for Axis 1 analog inputs. This pin should be connected to the ground of the analog command source.
22	Analog Ground	Reference ground for Axis 2 analog inputs. This pin should be connected to the ground of the analog command source.
23	Axis 1 Analog Input #2	 Differential analog Input; ±10Vdc
24	Axis 1 Analog Input #2 Complement	
25	Axis 2 Analog Input #2	Differential analog Input; ±10Vdc. Paired with pin #50
26	Fault Relay Terminal #1	Dry contact relay. Polarity of wiring is not
27	Fault Relay Terminal #2	constrained
28	Motor 0, OPTO IN4	Referenced to Common on pin #1
29	Motor 0, OPTO IN3	Referenced to Common on pin #1
30	Common for Opto-isolated Inputs 5, 6, 7, 8	
31	Motor 1, OPTO IN4	Referenced to Common on pin #30
32	Motor 1, OPTO IN3	Referenced to Common on pin #30
33	Common for Remote Enable Inputs	
34	Motor 0, OPTO OUT1	Referenced to Common on pin #8
35	Motor 0, OPTO OUT0	Referenced to Common on pin #8
36	Motor 0, RS422 OUT1 Complement	DC 422 outputs wired to Complete EDCA
37	Motor 0, RS422 OUT1	 RS-422 output; wired to SynqNet FPGA
38	Motor 1, RS422 OUT2	
39	Motor 1, RS422 OUT2 Complement	 RS-422 output; wired to SynqNet FPGA
40	Motor 1, RS422 OUT3 Complement	
41	Motor 1, RS422 OUT3	RS-422 output; wired to SynqNet FPGA

Danaher Motion Kollmorgen January 30, 2006

Pin #	Description	Comments	
42	Motor 1, RS422 IN1 Complement	RS-422 input; wired to SyngNet FPGA	
43	Motor 1, RS422 IN1		
44	Motor 1, RS422 IN2 Complement	RS-422 input; wired to SyngNet FPGA	
45	Motor 1, RS422 IN2		
46	Axis 1 Analog Input #1	Differential analog Input; ±10Vdc	
47	Axis 1 Analog Input #1 Complement		
48	Axis 2 Analog Input #1	Differential analog Input; ±10Vdc	
49	Axis 2 Analog Input #1 Complement		
50	Axis 2 Analog Input #2 complement	Differential analog Input; ±10Vdc. Paired with pin #25	

8.2.7 SynqNet

Connector Definition				
Connector Type		RJ-45		
Manufacturer		Molex		
Part Number		85505-0001	85505-0001	
Mating Connector Part Number		Mates with indus	stry standard FCC 68 plugs	
Pin Out				
Pin #	IN		OUT	
1	TD0+		RD0+	
2	TD0-		RD0-	
3	RD0+		TD0+	
4 TTERMO			RTERM1	
5	TTERM1		RTERM1	
6	RD0-		TD0-	
7	RTERM0		TTERM1	
8	RTERM1		TTERM1	

8.2.8 RS-232

Connector Definition			
Connector Type		Male 9 pin D-Sub	
Manufacturer		e-tec	
Part Number		SSM-009-U908-02/R	
Mating Connector Part Number			
Pin Out			
Pin #	Description		Comments
1	NC		
2	Rx		RS-232 Receive
3	Тх		RS-232 Transmit
4	NC		
5	DGND		Ground. Used for <u>Hardware Ember</u>

6	NC	
7	HW Ember	Used for Hardware Ember
8	BRXD	Daisy chain Receive
9	BTXD	Daisy chain Transmit

Note: The RS-232 cable between a computer or terminal and the PicoDAD must have **only** pins 2, 3 and 5 connected.

8.3 Wiring a Motor to the Drive

8.3.1 Kollmorgen AKM Motors

The motor phases and feedback signals must be wired as described in the following tables. In addition, set drive parameter MOTORTYPE to the value '3'.

Motor Phases

Historically Kollmorgen motor phases have been designated with the letters 'A', 'B', and 'C' for each of the 3 phase connections. The AKM motors are labeled 'U', 'V', and 'W'. The relationship of these signals is shown in the following table:

Motor Phase	Wire Color	Drive Phase
U	BLUE	С
V	BROWN	В
W	VIOLET	А

Commutation Track Signals (for the encoder motor):

Motor Signal Name	Drive feedback signal name	Drive feedback pin number
U	HALL3	9
U\	HALLS3\	10
V	HALL2	17
N	HALL2\	18
W	HALL1	7
W\	HALL1\	8

Wiring of the commutation track signal complements is optional; for improved noise immunity it is recommended to connect them.

Encoder Feedback Signals

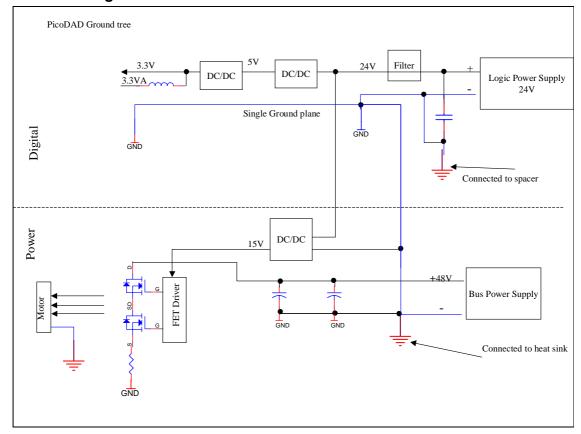
Motor Signal Name	Wire Color	Drive feedback signal name	Drive feedback pin number
А	BLUE	В	13
A\	BLUE/BLK	B/	14
В	GREEN	A	3
B/	GRN/BLK	A\	4
Z	VIOLET	Z	5
Z\	VIOLET/BLK	Z\	6

Motor Signal Name	Wire Color	Drive feedback signal name	Drive feedback pin number
S1, SIN+	RED	Cosine	13
S3, SIN-	BLACK	Cosine\	14
S2, COS+	YELLOW	Sine\	4
S4, COS-	BLUE	Sine	3
R1, REF+	RED/WHT	Ref\	6
R2, REF-	BLK/WHT	Ref	5

Resolver Feedback Signals

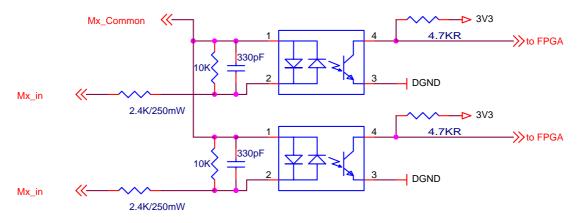
8.4 Connector Kit

A connector / integration kit is available. This kit contains mating connectors and crimp pins for the power connectors, and cables with MDR connectors on the one end and flying leads on the other for the feedback and I/O connectors. The part number for this kit is

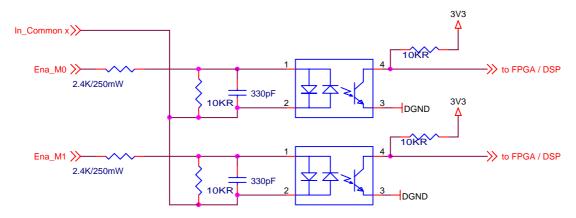

CON-KIT-STX-2

The exact contents of the kit are as follows:

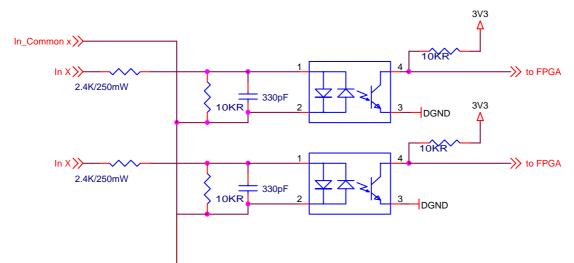
Item Description	Quantity
Motors feedback cables	2
26-pin Machine I/O cable	1
50-pin Control I/O cable	1
Bus power (48V) connector	1
Logic power (24V) connector	1
Motors power connectors	2
Crimp pins for motor power connector	8
Crimp pins for bus power connector	2

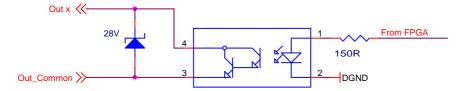

This connector kit is available from the Danaher Motion facility of Kollmorgen Servotronix only.

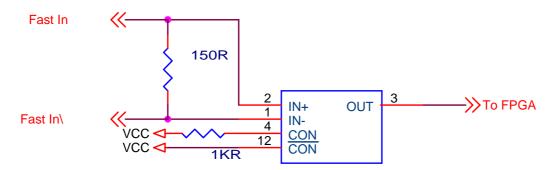
8.5 Grounding Tree

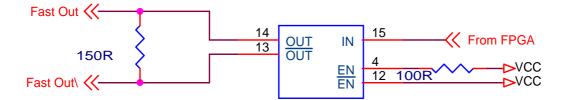


8.6 Electrical Interfaces

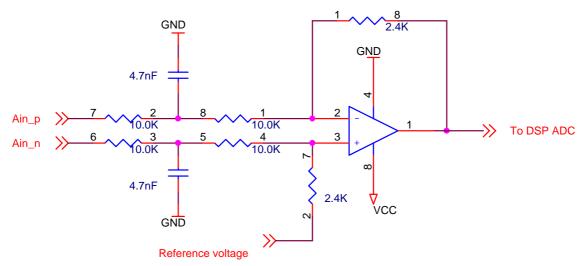

8.6.1 Over-Travel Limits and Home


8.6.2 Remote Enable

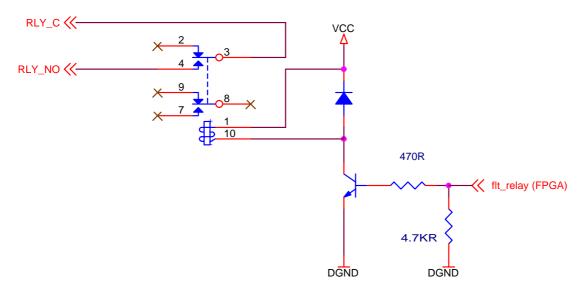

8.6.3 General-Purpose Inputs


8.6.4 General-Purpose Outputs

8.6.5 High Speed Inputs



8.6.6 High Speed Outputs



8.6.7 Analog Inputs

The Analog inputs are differential, but the common mode is limited. The AGND pin should be connected to the ground of the analog command source.

8.6.8 Fault Relay

8.6.9 Brake Relay

8.6.10 Sine Encoder

8.6.11 Halls

8.6.12 Quadrature Encoder

9. System Operation

9.1 Powering Up

One of the characteristics of SynqNet drives is that at power up, the drive DSP is held in a RESET state by the SynqNet FPGA in the drive. The DSP reset is only released when a SynqNet RESET command is issued from the controller. Once this is done, the drive will come up.

The SynqNet RESET can be done in two ways:

- Using MotionConsole: Click on the RESET button in the Controller Summary window (on the ACTIONS tab)
- Using a DOS command:
 - Open a DOS PROMPT window in the * XMP\ Bin\ WinNT folder
 - Type RESET at the command prompt

9.2 SynqNet Utilities

A set of SynqNet utilities is installed in the *\XMP\BIN\WINNT folder. These utilities can be used to perform many drive configuration operations over SynqNet. This manual references many of these utilities, but provides, for the purposes of legibility, only an abbreviated description of their syntax. The complete syntax is found on the Motion Engineering support web site, at http://support.motioneng.com/. Reference should be made to the web site for complete syntax information.

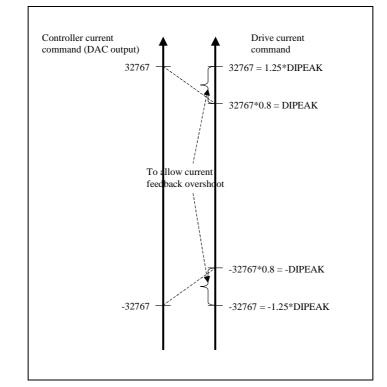
9.3 Rotary Switch Configuration

The PicoDAD is equipped with a 16-pole rotary switch, accessible from the top of the unit. The switch has no functional use for either the drive or the network. It can be used at the application level to identify specific nodes on a network.

Caution: The switch must be set to a non-zero value. Setting it to zero causes the SynqNet RESET to be bypassed, and the drive will not function correctly on the SynqNet network.

9.4 Current Scaling

The torque command from the controller is multiplied by 0.8 in the drive, and resultant value is used as the torque command within the drive. That is:


Drive internal torque command = Controller torque command * 0.8

The reasoning is as follows:

The torque command from the motion controller is a value in the range -32768 to +32767, while currents in the drive are referenced to the drive peak current, DIPEAK.

While DIPEAK represents the absolute maximum current that can be commanded by the drive, the drive is designed to be able measure actual current 25% above DIPEAK. This is done in order to be able to measure, and control, current overshoots. Thus, the maximum current that can be represented in the drive is DIPEAK*1.25.

The torque command from the motion controller must be scaled to the maximum current that the drive can represent, which is DIPEAK*1.25. However, the controller should not be able to command current above DIPEAK. Thus, the torque command from the controller is multiplied by 0.8.

A full-scale torque command of 32767 is thus interpreted in the drive as 26213, and this value is equivalent to DIPEAK, as shown in the following diagram.

Figure 9-1: Current Scaling

9.5 *PWM Saturation*

The PWM saturation level is 92.5%. This affects the useable bus voltage. With a 48V input and with PWM saturation set to 92.5%, the effective bus voltage is 44.4V. This affects the maximum achievable speed.

9.6 Drive Parameters

The drive functionality is set using various drive parameters and instructions, which are communicated over SynqNet. Parameters may be subject to read-only access, or may be available for read/write access. The parameters can be stored in non-volatile memory in the drive, to be used on each power-up. Examples of read-only parameters are: amplifier current rating, absolute current limit, and analog input values. Examples of read/write drive parameters are: motor current rating, application current limit and encoder resolution.

Drives are shipped from the factory with motor parameters set to zero and application parameters set to their default values.

Parameters are identified both by their mnemonics and by an index. It is the index that is used when accessing a parameter over SynqNet. A list of parameters appears in Section titled Instruction Set.

Drive parameters are implemented for particular drive models and firmware versions; the supported parameter set may be different for different version of firmware.

The MPI library contains a general drive parameter interface, able to handle any set of drive parameters, independent of the MPI library version. It uses a drive parameter map file to determine the valid drive parameters. Individual drive parameters can be set (or read) using MPI methods or the sqDriveParam utility program. A list of drive parameters can be set (or read) using MPI methods or the sqDriveConfig utility program.

The following sections describe the syntax of utilities used when accessing parameters. These utilities are typically executed from a DOS window in the XMP\BIN\WINNT directory. For application programming methods, please refer to the Motion Engineering support website: <u>http://support.motioneng.com</u>.

9.6.1 Memory Operations on Drive Parameters

As described in the section on the <u>Drive Processor Memory Description</u>, the drive firmware runs using parameters stored in RAM. These parameters can, however, be saved in non-volatile memory (E²PROM), from where they would be loaded into RAM upon power up. The non-volatile memory can also be cleared. Parameters may be reset to their default values, and a set of saved parameters may be loaded from the non-volatile memory into the RAM.

The operations described above are executed using SynqNet <u>Direct Commands</u>. The following table summarizes these commands. The command mnemonic serves to identify the specific command. It also indicates the syntax of the command used when communicating with the drive over the serial port.

Description	Command Mnemonic	SynqNet Direct Command	Notes
Save Parameters	SAVE	0x1C	Save all parameters to non- volatile memory
Clear non-volatile memory	CLREEPROM	0x1F	Clear contents of non-volatile memory. CLREEPROM sets all parameters to their default values, and sets motor parameters to the value zero
Reset parameters to default	RSTVAR	0x1D	Reset application parameters to their default values. This command does not affect motor parameters
Load parameters from memory	LOAD	0x1E	Load a set of saved parameters from non-volatile memory.

Both the CLREEPROM command (Direct Command 0x1F) and the RSTVAR command (Direct Command 0x1D) return parameters to their default values. The difference, however, is that RSTVAR does not affect motor or current limit parameters. The specific parameters not affected by RSTVAR are:

Motor Parameters

MIPEAK, MICONT, MPITCH, MOTORTYPE, MSPEED, MKT, MBEMF, MENCRES, MSININT, MENCTYPE, MENCOFF, MPHASE, MPOLES, MBEMFCOMP, MLMIN, MLGAINC, MLGAINP, MTANGLC, MTANGLP, MVANGLH, MVANGLF

Current Limit Parameters

ILIM, ICONT

Foldback Parameters

FOLDD, FOLDR, FOLDT

9.6.2 Accessing Individual Parameters

Use the *sqDriveParam* utility for accessing individual parameters. For the syntax below the following conventions hold:

PicoDAD-SN User Manual

x is the node number. Nodes are numbered from 0.

y is the drive, or axis, number on that node. Drives are numbered from 0.

<parameter index> identifies the parameter being accessed

<data value> is the data being written to the parameter

<map file name> is the name of the map file being used.

Syntax for reading drive parameters:

sqdriveparam -node x -drive y -read <parameter index>

Syntax for writing drive parameters:

sqdriveparam -node x -drive y -write <parameter index> -data <value>

Examples:

Read the value of the drive rated peak current:

sqdriveparam -node x -drive y -read 0x3

Set the encoder resolution to 2048:

sqdriveparam -node x -drive y -write 0x7 -data 2048

9.6.3 Accessing an Entire Parameter Set

Use the *sqDriveConfig* utility for reading or writing an entire set of drive parameters. The utility uses a <u>map file</u> (see next section) that contains definitions and properties of the drive parameters. The map file needs to match the drive processor firmware version in terms of version number and in terms of the set of supported parameters.

Syntax for reading an entire set of parameters to a file:

SqDriveConfig -node x -drive y -get <destination file name> -map <map file name>

Syntax for writing an entire set of parameters from a file:

SqDriveConfig -node x -drive y -set <source file name> -map <map file name>

9.6.4 Drive Parameter Map File

The drive parameter map file is a text file that contains a list of valid drive parameters for a particular drive model. The file contains five sections: File Header, Drive Identification, Parameter Identification, Configuration and File Footer. Each Drive Identification section is matched with a Parameter Identification section and a Configuration section. There may be more than one such set of sections for a specific drive, allowing for different parameter sets being supported by different firmware versions.

The format is described below. Words in *Italics* indicate items that are file-specific. A sample map file, for firmware version 0.1.9, is shown in the appendix <u>*Drive Parameter Map File*</u>

Note: The drive parameter map file is distributed with the MEI software installation. For the PicoDAD, the relevant map file is called "Kollmorgen_Picodad.dm", and it is generally located in the \XMP\BIN directory. Map files are matched to drive firmware versions. The most up to date map files can be found on the MEI Support Website, at

http://support.motioneng.com/Downloads-Notes/Firmware/fw_picodad.htm

9.6.4.1 File Header

The file header contains one line, and is always

#MPI Drive Parameters

9.6.4.2 Drive Identification Section

This section contains one line, describing The name of the manufacturer, the model number, and the drive firmware versions that are compatible with the drive parameter list.

#" Manufacturer and Model" "drive firmware version"

For the PicoDAD, the "Manufacturer and Model" text will always be "Kollmorgen PicoDAD"

Example:

"Kollmorgen PicoDAD" "0.1.9"

9.6.4.3 Parameter identification Section

This section contains definitions of the parameters that are valid for the firmware version(s) listed in the Drive Identification section. The section begins with a header, as follows:

#parameters

Each line in this section contains the following parameter identification information, separated by whitespaces:

number	drive parameter number (in hex)
name	drive parameter name, or mnemonic
read/write access	read/write (rw) or read-only (ro)
data type	one of the pre-defined data types (see table below)
values	list of valid values, range of valid values, or an address
default value	parameter value to be used if value is not specified
help string	simple string to provide user help

All service commands and drive parameters are accessed over the service channel as 32 bit quantities, but these 32bits of data can represent many different types of data. To support various data types with generic software tools, the supported data types have been predefined. Here are the data type names that are supported for the drive parameter map file.

Name	Description
unsigned8	An 8-bit unsigned binary number
unsigned16	A 16-bit unsigned binary number
unsigned32	A 32-bit unsigned binary number
signed8	An 8-bit binary, twos-complement number
signed16	An 16-bit binary, twos-complement number
signed32	An 32-bit binary, twos-complement number
hex32	An 32-bit unsigned hexadecimal number (same as unsigned32 but displayed as hexadecimal)
enumerated	A list of numbers 1,2,3,4 where each number has a specific meaning (same as unsigned32 but displayed as a selectable list)
mask	A set of bits 1, 2, 4, 8 where each bit has a specific meaning (same as unsigned32 but displayed as a set of selectable flags)
character	An ASCII character
single	A 32-bit floating pint number according to IEEE754
action	A write-only parameter where the data is always zero. Performs an action/command on the drive that does not need any data.

A few examples from the PicoDAD are:

0x01 MBEMFCOMP	rw signed16	{0-100}	0 "Back EMF compensation percentage"
0x02 DICONT	ro signed16	{10-1100}	0 "Drive rated continuous current"
0x03 DIPEAK	ro signed16	{10-1100}	0 "Drive rated peak current"
0x04 ICONT	rw signed16	{0-1000}	0 "Application rated continuous current"

9.6.4.4 Configuration Section

The Configuration Section lists the parameters that will be downloaded to a drive from a drive configuration file or uploaded from a drive to a configuration file, using the *sqDriveConfig* utility. The section begins with a header, as follows:

#config

The header is followed by a list of drive parameter names (names only; not values). For example:

MPITCH MOTORTYPE MIPEAK MICONT

// – Indicates a comment and the line is ignored by the parser.

The sequence of names does not need to correspond to the sequence in the Parameter identification section. It does, however, need to follow the sequence of parameters required by the drive.

PicoDAD-SN User Manual

9.6.4.5 File Footer

#end – Designates the end of the parameter map file.

9.6.5 Drive Configuration File

The drive configuration file contains the actual parameter values. The file has a one-line header that identifies the node and drive number, the drive identification, and the firmware version number. Thus, the drive configuration file has to be matched to the map file, the firmware version of the drive being addressed, and the location of that drive on the SynqNet network.

An example of the header line is:

sqNode[0] drive[1] "Kollmorgen PicoDAD" "0.1.9"

This header shows that the file contains data for the second axis of the PicoDAD that is located on Node 0. Axes in the PicoDAD are numbered 0 and 1 respectively. The header also specifies that the drive has firmware version 0.1.9.

The rest of the file consists of parameter mnemonics followed by their values. A sample parameter file is shown in the appendix <u>Sample Drive Configuration File</u>.

The easiest way to create a template for the drive configuration file is to read a file of data from a drive. Of course, the map file must exist and must be valid.

9.7 Motor Position

9.7.1 Position Feedback Parameter

The motor feedback device is read and processed by the drive processor, and stored in a drive parameter called PFB (Position Feedback). This is a 32-bit signed value, and may be read over the serial port or over SynqNet. This is the position value that the drive communicates to the motion controller for use in closing the position loop.

PFB	Position feedback. Displays the cumulative position feedback from the feedback device.		
Parameter Index	0x19	Firmware Version	0.0.1
Data Access	Read only	Data Type	32-bit signed Integer
Units	Encoder counts	Range	-2147483648 to 2147483647
Default	Set to 0 at power up for incremental quad or sine encoder and for resolver.	EEPROM	No
	For EnDat, the value at power up is based on the value read from the EnDat encoder (see <u>HWPOS</u>)		

9.7.2 Mechanical Position

PRD	Sets the absolute position feedback of the hardware feedback device (for both resolver and encoder based systems). PRD will increment from 0 to 65,535 throughout the course of one mechanical motor shaft revolution (360 degrees). The range of PRD will not change. Its resolution for resolver feedback systems is dependent upon the value of RDRES:		
	 RDRES = 12, resolution of PRD = 16 counts RDRES = 13, resolution of PRD = 8 RDRES = 14, resolution of PRD = 2 		
	For encoder-based systems, until the encoder has been initialized, PRD will be un-initialized and its value will not be useful or meaningful. The encoder is initialized once the first Hall transition has passed.		
Parameter Index	0x4d Firmware Version 0.1.9		
Data Access	Read Data Type Integer		
Units	N/A	Range	0 to 65,535
Default	N/A	EEPROM	No

9.7.3 Position Resolution

The position resolution, expressed as the number of equivalent encoder counts per motor revolution, is set and calculated differently for each type of feedback device.

Feedback type	Relevant Parameters	Resolution Calculation
Quad Encoder	MENCRES	MENCRES * 4
Resolver	RDRES	RDRES=12 -> 4096 counts per rev
		RDRES=13 -> 8192 counts per rev
		RDRES=14 -> 16384 counts per rev
Sine Encoder	MENCRES, MSININT	MENCRES * MSININT * 4

9.7.4 Timing of the Position Update

The drive processor reads the feedback device every 62.5µseconds. For quadrature encoder feedback, the position is available in the same sample. For Resolver and Sin Encoder, however, the position is generated by a process of interpolation, and the position is available with a delay on one 62.5µsecond sample. An additional 62.5µseconds delay is introduced because of a delay of one sample in writing the data to the SynqNet FPGA. The following table shows the estimated position delays:

Feedback Type	Delay in position being written to the FPGA
Quad Encoder	62.5µseconds
Resolver	125µseconds
Sine Encoder	125µseconds

9.8 Drive Configuration

The axes on the PicoDAD are configured via a set of parameters. This section describes how to set these parameters, and other operations related to them such as saving them in memory. The parameters are grouped by function.

9.8.1 The CONFIG Function

The drive's current loop structure is not directly accessible by the user. Instead of setting PID parameters, for example, the current loop is configured internally based primarily on motor parameters. When entering motor parameters, or other parameters that affect the behavior of the current loop, the drive with enter a state that is called NO-COMP, short for No Compensation. This means that the current loop is not compensated. In this state the drive is a no-comp fault state, as indicated by an alternating '-' and '1' on the 7-segemnt LED, and is not available for controlling motion. The CONFIG command must be executed in order to configure the current loop and return the drive to an operable state. This command is accessed via <u>Direct Command</u> 0x20.

 $\ensuremath{\textbf{Note:}}$ To configure the drive, set all the parameters and then execute the CONFIG instruction

9.8.2 Motor Parameters

MPITCH	MPITCH is a variable for use with linear motors (MOTORTYPE = 2). It defines the pole- pitch (length in millimeters of one electrical cycle - 360 electrical degrees) of the motor and allows the drive to calculate other variables (such as velocity). The drive assumes a 'no- comp' state after an entry of this parameter and requires the CONFIG command.			
Parameter Index	0x23	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Integer	
Units	Millimeters per 360 electrical degrees	Range	1 to 500	
Default	0	EEPROM	Yes	
MOTORTYPE	Sets the drive control algorithms to different motor types. When working with Linear motors, the motor pitch (<u>MPITCH</u>) must also be set. <u>NOTE</u> : For firmware versions up to and including 1.0.0.0, support for Linear Motors is not provided. This may be added in future versions. MOTORTYPE 3 should be used with Kollmorgen AKM motors only. In this case, the drive configures the commutation phasing internally such that the <u>MPHASE</u> parameter can be set to zero.			
Parameter Index	0x27	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Integer	
Units	N/A	Range	0 – Rotary	
			2 – Linear	
			3 – Kollmorgen AKM	
Default	0	EEPROM	Yes	
MIPEAK	Sets the motor's rated peak current. When this variable is set, the drive enters a no- comp state, requiring a CONFIG command			
Parameter Index	0x0A	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Integer	
Units	Amperes RMS * 0.1	Range	10 to 3,500	
Default	0	EEPROM	Yes	

MICONT	Sets the motor's continuous rated current. When this variable is set, the drive enters a no- comp state, requiring a CONFIG command			
Parameter Index	0x09	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Integer	
Units	Amperes RMS * 0.1	Range	10 to 1750	
Default	0	EEPROM	Yes	
MSPEED	Defines the maximum recommend the drive enters a no-comp state,			
	This parameter is used in velocity	phase advance calcula	tions.	
Parameter Index	0x11	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Integer	
Units	Rotary: RPM	Range	10 to 32767	
	Linear. mm/sec			
Default	0	EEPROM	Yes	
Default MJ	0 Sets the <i>combined</i> inertia of the inertia is that of the rotor, and for mass (linear motors, <u>MOTORTYP</u> Shake" encoder commutation initi	motor and the load. For linear motors the motor <u>PE</u> = 2). This parameter is	rotary motors, the motor inertia refers to the motor co	
	Sets the <i>combined</i> inertia of the inertia is that of the rotor, and for mass (linear motors, MOTORTYP	motor and the load. For linear motors the motor <u>PE</u> = 2). This parameter is	rotary motors, the motor inertia refers to the motor co	
MJ	Sets the <i>combined</i> inertia of the inertia is that of the rotor, and for mass (linear motors, <u>MOTORTYP</u> Shake" encoder commutation initi	motor and the load. For linear motors the motor <u>PE</u> = 2). This parameter is alization is used.	rotary motors, the motor inertia refers to the motor co s necessary when "Wake-No	
MJ Parameter Index	Sets the <i>combined</i> inertia of the inertia is that of the rotor, and for mass (linear motors, <u>MOTORTYP</u> Shake" encoder commutation initi 0x32 Read/Write	motor and the load. For linear motors the motor <u>PE</u> = 2). This parameter is alization is used. Firmware Version	rotary motors, the motor inertia refers to the motor co s necessary when "Wake-No 0.1.1	
MJ Parameter Index Data Access	Sets the <i>combined</i> inertia of the inertia is that of the rotor, and for mass (linear motors, <u>MOTORTYP</u> Shake" encoder commutation initi 0x32	motor and the load. For linear motors the motor PE= 2). This parameter is alization is used. Firmware Version Data Type	rotary motors, the motor inertia refers to the motor co s necessary when "Wake-No 0.1.1 Integer	
MJ Parameter Index Data Access	Sets the <i>combined</i> inertia of the inertia is that of the rotor, and for mass (linear motors, <u>MOTORTYP</u> Shake" encoder commutation initi 0x32 Read/Write rotary: Kg * m ² * 10 ⁻⁶	motor and the load. For linear motors the motor PE= 2). This parameter is alization is used. Firmware Version Data Type	rotary motors, the motor inertia refers to the motor co s necessary when "Wake-No 0.1.1 Integer	
MJ Parameter Index Data Access Units	Sets the <i>combined</i> inertia of the inertia is that of the rotor, and for mass (linear motors, <u>MOTORTYP</u> Shake" encoder commutation initi 0x32 Read/Write rotary: Kg * m ² * 10 ⁻⁶ linear: grams	motor and the load. For linear motors the motor PE= 2). This parameter is alization is used. Firmware Version Data Type Range EEPROM This variable is used for al magnetic poles of the rs a state, requiring a CO	rotary motors, the motor inertia refers to the motor co s necessary when "Wake-No 0.1.1 Integer 0 to 2,000,000,000 Yes commutation control and motor (not pole pairs). Whe DNFIG command. When	
MJ Parameter Index Data Access Units Default	Sets the <i>combined</i> inertia of the rinertia is that of the rotor, and for mass (linear motors, <u>MOTORTYP</u> Shake" encoder commutation initi $0x32$ Read/Write rotary: Kg * m ² * 10 ⁻⁶ linear: grams 0 Sets the number of motor poles. Trepresents the number of individu this variable is set, the drive enter	motor and the load. For linear motors the motor PE= 2). This parameter is alization is used. Firmware Version Data Type Range EEPROM This variable is used for al magnetic poles of the rs a state, requiring a CO	rotary motors, the motor inertia refers to the motor co s necessary when "Wake-No 0.1.1 Integer 0 to 2,000,000,000 Yes commutation control and motor (not pole pairs). Whe DNFIG command. When	
MJ Parameter Index Data Access Units Default MPOLES Parameter Index	Sets the <i>combined</i> inertia of the rinertia is that of the rotor, and for mass (linear motors, <u>MOTORTYP</u> Shake" encoder commutation initi 0x32 Read/Write rotary: Kg * m ² * 10 ⁻⁶ linear: grams 0 Sets the number of motor poles. The represents the number of individuant this variable is set, the drive enter MOTORTYPE = 2 (Linear Motor),	motor and the load. For linear motors the motor PE= 2). This parameter is alization is used. Firmware Version Data Type Range EEPROM This variable is used for al magnetic poles of the rs a state, requiring a CO this variable must be se	rotary motors, the motor inertia refers to the motor co s necessary when "Wake-No 0.1.1 Integer 0 to 2,000,000,000 Yes commutation control and e motor (not pole pairs). Whe DNFIG command. When et to a value of 2.	
MJ Parameter Index Data Access Units Default MPOLES	Sets the <i>combined</i> inertia of the rinertia is that of the rotor, and for mass (linear motors, <u>MOTORTYP</u> Shake" encoder commutation inition 0x32 Read/Write rotary: Kg * m ² * 10 ⁻⁶ linear: grams 0 Sets the number of motor poles. The represents the number of individue this variable is set, the drive enter <u>MOTORTYPE</u> = 2 (Linear Motor), 0x10	motor and the load. For linear motors the motor PE= 2). This parameter is alization is used. Firmware Version Data Type Range EEPROM This variable is used for al magnetic poles of the 's a state, requiring a CC this variable must be se Firmware Version	rotary motors, the motor inertia refers to the motor co s necessary when "Wake-No 0.1.1 Integer 0 to 2,000,000,000 Yes commutation control and motor (not pole pairs). When DNFIG command. When et to a value of 2. 0.0.1	

9.8.3 Feedback Parameters

FEEDBACK	Sets feedback type. This parameter must be matched with type of feedback connected to the axis. Always disconnect the feedback before making changes to this parameter.		
Parameter Index	0x43	Firmware Version	1.0.0
Data Access	Read/Write	Data Type	Integer
Units	N/A	Range	0 - Not defined
			1 - Resolver
			2 - Encoder
			3 - Sine encoder
			4 - Halls only
Default	0	EEPROM	Yes
MENCTYPE	Sets the motor encoder type w feedback. This parameter is ig When this variable is set on ar comp state, requiring a CONF	nored when using Reso n encoder-based system	lver feedback.
Parameter Index	0x24	Firmware Version	0.1.0
Data Access	Read/Write	Data Type	Integer
Units	N/A	Range	0 (A/B/I with Halls)
			3 (A/B only; phase- finding is triggered by the phase-finding routines in the motion controller) 4 (A/B only; phase-
			finding is triggered by Enable) 6 (A/B with Halls)
			9 (EnDat)
Default	0	EEPROM	Yes

Notes on MENCTYPE:

1) MENTYPE values 0 and 6 are supported for quadrature encoder feedback only (and not for sine encoder).

2) When using an encoder that has A/B signals only, commutation initialization by moving the motor a few electrical degrees. The drive takes control over the motion of the motor during this process. Refer to the section on <u>Commutation Initialization</u> <u>without Halls</u>

MENCRES	the motor (in the case of a rota	ary motor) or number of s parameter is used who		
	For an incremental encoder, the per pitch is obtained by multiple		ounts per revolution or	
	For a sine encoder, the number of encoder counts per revolution is by multiplying MENCRES by MSININT and by 4. The equivalent nu counts per revolution is limited by MSININT * MENCRES <= 2 ³⁰			
	Setting this value puts the driv of the CONFIG command to re	e into a no-comp state,		
Parameter Index	0x07	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Long Integer	
Units	Rotary: Lines per motor revolution	Range	100 to 10,000,000	
Defectly	Linear. Lines per motor pitch			
Default	0	EEPROM	Yes	
HALLS	Returns the hall switch values values are displayed as a three			
	Although the range of values to 7 are illegal; the 3 HALL signa			
	The HALL states can also be s I/O window	seen in Motion Console,	in the Motor Summary	
Parameter Index	0x44	Firmware Version	0.0.1	
Data Access	Read only	Data Type	Integer	
Units	N/A	Range	0 to 7, expressed as a bit-wise value.	
Default	N/A	EEPROM	No	
HALLSTYPE	Sets the type of electrical sign when using quadrature encode		is option is relevant only	
Parameter Index	0x6D	Firmware Version	0.0.4.3	
Data Access	Read/Write	Data Type	Boolean	
Units	N/A	Range	0 (differential)	
		-	1 (single-ended)	
Default	0	EEPROM	Yes	
MHINVA	MHINVA is a variable that applies to encoder- based systems that use hall switches to commutate. This variable inverts the hall sensor A feedback, causing the system to read the 'A' hall channel as inverted data.			
Parameter Index	0x1E	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Boolean	
Units	N/A	Range	0 (not invert)	
		÷	1 (invert)	
Default	0	EEPROM	Yes	

January	30,	2006
---------	-----	------

MHINVB	MHINVB is a variable that applies to encoder- based systems that use h switches to commutate. This variable inverts the hall sensor B feedback, causing the system to read the 'B' hall channel as inverted data.		
_	• •		
Parameter Index	0x1F	Firmware Version	0.0.1
Data Access	Read/Write	Data Type	Boolean
Units	N/A	Range	0 (not invert) 1 (invert)
Default	0	EEPROM	Yes
MHINVC	switches to commutate	that applies to encoder- based e. This variable inverts the hall read the 'C' hall channel as inv	sensor C feedback,
Parameter Index	0x20	Firmware Version	0.0.1
Data Access	Read/Write	Data Type	Boolean
Units	N/A	Range	0 (not invert)
			1 (invert)
Default	0	EEPROM	Yes
MSININT	level of the drive. The from	d with the sine encoder option a equivalent number of counts pe	
	MSININT * MENCRE	-	
		er of counts per revolution is lim	ited by
	The equivalent numbe	er of counts per revolution is lim	ited by
Parameter Index Data Access	The equivalent numbe MSININT * MENCRE	F of counts per revolution is lim $\Xi S \le 2^{30}$	ited by Integer
Index	The equivalent numbe MSININT * MENCRE 0x41	er of counts per revolution is lim ES <= 2 ³⁰ Firmware Version	

Danaher Motion Kollmorgen Ja

RDRES	Sets the resolution of the resolver feedback in resolver systems. The value is in bits, and indicates how many equivalent encoder counts there are per mechanical revolution.			
	Higher resolution may also result in greater noise on the feedback signal.			
Parameter Index	0x4B	Firmware Version	0.1.6	
Data Access	Read/Write	Data Type	Integer	
Units	N/A	Range	12 (4096 counts per rev)	
			13 (8192 counts per rev)	
			14 (16384 counts per rev)	
Default	14	EEPROM	No	
RESBW	Sets the bandwidth of software resolver mechanism. As a general rule of thumb, set RESBW to 4 or 5 times the velocity loop bandwidth.			
Parameter Index	0x4C	Firmware Version	0.1.6	
Data Access	Read/Write	Data Type	Integer	
Units	N/A	Range	200 to 800	
Default	300	EEPROM	Yes	

The following parameters must be set when using resolver feedback.

9.8.4 Current Loop Parameters

The Current controller gain is proportional to (G*I*L/V), where

- > I is the drive peak current rating (as given by the DIPEAK parameter)
- L is the line-to-line inductance (set by the MLMIN parameter)
- V is bus voltage (set by the VBUS parameter)
- > G is the adaptive gain (set by the MLGAINC and MLGAINP parameters)

MLGAINC sets the adaptive gain at motor continuous current (MICONT), and MLGAINP sets the adaptive gain at motor peak current (MIPEAK). Together, with unity gain at zero current, they creates two piece linear curve, where the drive calculates the adaptive gain for a given motor current. The current-based adaptive gain algorithm is a gain calculation method that increases current loop stability by reducing the current loop gain as the motor current increases (there are motors that their magnetic flux decreases when the current increases, and so their gain increases). A value of 10 (unity gain) is a good starting point.

MLMIN	Sets the motor's minimum line- to- line inductance. This variable is used for current loop controller design and as an input to the Torque Angle Control algorithms. The current loop gain is directly proportional to the value of MLMIN. When this variable is set, the drive enters a no-comp state, requiring a CONFIG command			
Parameter Index	0x0E	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Integer	
Units	Milli-Henries *10 ⁻²	Range	1 to 32,767	
Default	0	EEPROM	Yes	
VBUS	Sets the drive bus voltage. The current loop gain is inversion also affects the value of VM, drive will enter a no- comp s	ersely proportional to the v AX (see VMAX). When th	value of VBUS. VBUS is variable is set, the	
Parameter Index	0x17	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Integer	
Units	Volts	Range	10 to 850	
Default	48	EEPROM	Yes	
MLGAINC	Sets the current loop adaptive this variable is set, the drive command			
MLGAINC Parameter Index	this variable is set, the drive			
	this variable is set, the drive command	enters a no-comp state,	requiring a CONFIG	
Parameter Index	this variable is set, the drive command 0x0C	enters a no-comp state, Firmware Version	requiring a CONFIG	
Parameter Index Data Access	this variable is set, the drive command 0x0C Read/Write	enters a no-comp state, Firmware Version Data Type	requiring a CONFIG 0.0.1 Integer	
Parameter Index Data Access Units Default	this variable is set, the drive command 0x0C Read/Write % * 10	enters a no-comp state, Firmware Version Data Type Range EEPROM ve gain value at peak mot	requiring a CONFIG 0.0.1 Integer 1 to 100 Yes tor current. When this	
Parameter Index Data Access Units Default MLGAINP	this variable is set, the drive command 0x0C Read/Write % * 10 8 Sets the current loop adaptiv variable is set, the drive enter	enters a no-comp state, Firmware Version Data Type Range EEPROM ve gain value at peak mot	requiring a CONFIG 0.0.1 Integer 1 to 100 Yes tor current. When this	
Parameter Index Data Access Units	this variable is set, the drive command 0x0C Read/Write % * 10 8 Sets the current loop adaptive variable is set, the drive enter command	enters a no-comp state, Firmware Version Data Type Range EEPROM ve gain value at peak mot ers a no- comp state, requ	requiring a CONFIG 0.0.1 Integer 1 to 100 Yes tor current. When this uiring a CONFIG	
Parameter Index Data Access Units Default MLGAINP Parameter Index	this variable is set, the drive command 0x0C Read/Write % * 10 8 Sets the current loop adaptive variable is set, the drive enter command 0x0D	enters a no-comp state, Firmware Version Data Type Range EEPROM ve gain value at peak mot ers a no- comp state, requ	requiring a CONFIG 0.0.1 Integer 1 to 100 Yes tor current. When this uiring a CONFIG 0.0.1	
Parameter Index Data Access Units Default MLGAINP Parameter Index Data Access	this variable is set, the drive command 0x0C Read/Write % * 10 8 Sets the current loop adaptiv variable is set, the drive enter command 0x0D Read/Write	enters a no-comp state, Firmware Version Data Type Range EEPROM ve gain value at peak mot ers a no- comp state, requ Firmware Version Data Type	requiring a CONFIG 0.0.1 Integer 1 to 100 Yes tor current. When this uiring a CONFIG 0.0.1 Integer	
Parameter Index Data Access Units Default MLGAINP Parameter Index Data Access Units	this variable is set, the drive command 0x0C Read/Write % * 10 8 Sets the current loop adaptive variable is set, the drive enter command 0x0D Read/Write % * 10	enters a no-comp state, Firmware Version Data Type Range EEPROM ve gain value at peak mot ers a no- comp state, requ Firmware Version Data Type Range EEPROM	requiring a CONFIG 0.0.1 Integer 1 to 100 Yes tor current. When this uiring a CONFIG 0.0.1 Integer 1 to 100 Yes	
Parameter Index Data Access Units Default MLGAINP Parameter Index Data Access Units Default PWMFRQ	this variable is set, the drive command 0x0C Read/Write % * 10 8 Sets the current loop adaptive variable is set, the drive enter command 0x0D Read/Write % * 10 4 PWM frequency. This value	enters a no-comp state, Firmware Version Data Type Range EEPROM ve gain value at peak mot ers a no- comp state, requ Firmware Version Data Type Range EEPROM	requiring a CONFIG 0.0.1 Integer 1 to 100 Yes tor current. When this uiring a CONFIG 0.0.1 Integer 1 to 100 Yes	
Parameter Index Data Access Units Default MLGAINP Parameter Index Data Access Units Default	this variable is set, the drive command 0x0C Read/Write % * 10 8 Sets the current loop adaptin variable is set, the drive enter command 0x0D Read/Write % * 10 4 PWM frequency. This value stage being used	enters a no-comp state, Firmware Version Data Type Range EEPROM ve gain value at peak mot ers a no- comp state, requ Firmware Version Data Type Range EEPROM generally set by the drive	requiring a CONFIG 0.0.1 Integer 1 to 100 Yes tor current. When this uiring a CONFIG 0.0.1 Integer 1 to 100 Yes e according to the power	
Parameter Index Data Access Units Default MLGAINP Parameter Index Data Access Units Default PWMFRQ Parameter Index	this variable is set, the drive command 0x0C Read/Write % * 10 8 Sets the current loop adaptiv variable is set, the drive enter command 0x0D Read/Write % * 10 4 PWM frequency. This value stage being used 0x16	enters a no-comp state, Firmware Version Data Type Range EEPROM ve gain value at peak mot ers a no- comp state, requ Firmware Version Data Type Range EEPROM generally set by the drive Firmware Version	requiring a CONFIG 0.0.1 Integer 1 to 100 Yes tor current. When this uiring a CONFIG 0.0.1 Integer 1 to 100 Yes e according to the power 0.1.6	

9.8.5 Phase Advance Parameters

The torque-based phase advance helps to achieve higher torque for a given motor current. Usually, it is applicable for buried magnet rotor (as opposed to surface mounted magnet rotor). For a surface mounted magnet rotor the MTANGLx parameters should be set to 0. However, if MVANGLx parameters were not set optimally, non-zero MTANGLx parameters can help to get more torque.

MTANGLC sets the phase advance angle at motor continuous current (MICONT) in electrical degrees, and MTANGLP sets the phase advance angle at motor peak current (MIPEAK) in electrical degrees. Together, with zero angle advance at zero current, it creates two piece linear curve, where the drive calculates the phase advance for a given motor current.

MTANGLC	Sets the value of the torque-related commutation angle advance at the motor's continuous current rating.			
Parameter Index	0x12	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Integer	
Units	Electrical degrees	Range	0 to 45	
Default	10	EEPROM	Yes	
MTANGLP	Sets the value of the torque-re motor's peak current.	lated commutation angle	e advance at the	
MTANGLP Parameter Index		lated commutation angl Firmware Version	e advance at the 0.0.1	
	motor's peak current.	-		
Parameter Index	motor's peak current. 0x13	Firmware Version	0.0.1	

The velocity-based phase advance helps to achieve higher torque for a given motor speed. These parameters are independent of the rotor magnets. They come to compensate for computing time and current loop phase lag. In general, they shouldn't be set to 0.

MVANGLH sets the phase advance angle at half of motor speed (MSPEED/2) in electrical degrees, and MVANGLF sets the phase advance angle at motor speed (MSPEED) in electrical degrees. Together, with zero angle advance at zero speed, it creates two piece linear curve, where the drive calculates the phase advance for a given motor speed.

MVANGLH	Sets the value of the velocity-rated commutation angle advance to be used when the motor is operating at half of the motor max speed.			
Parameter Index	0x15	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Integer	
Units	Electrical degrees	Range	0 to 90	
Default	0	EEPROM	Yes	
MVANGLF	Sets the value of the velocity-rawhen the motor is operating at		advance to be used	
MVANGLF Parameter Index			e advance to be used 0.0.1	
	when the motor is operating at	motor max speed.		
Parameter Index	when the motor is operating at 0x14	motor max speed. Firmware Version	0.0.1	

9.8.6 Back-EMF Compensation

The Back-EMF is a feed-forward for the current loop. It takes the velocity, multiplies it by motor torque constant (set using MKT), and multiplies the result by the specified Back-EMF gain (MBEMFCOMP). Then it performs commutation (multiplies the above result by the same sin, sin+120, and sin+240, as it multiplies the current command). The results (one per phase) are added to the output of the corresponding current controller outputs, and the sums generate the PWM commands for each phase. One can consider the Back-EMF of the motor as a disturbance to the current loop. The drive has the capability to estimate the amount of Back-EMF, and to inject feed-forward correction.

Higher currents will be used when Back-EMF compensation is on, since the Back-EMF is a feed-forward to the current loop. The advantage of using Back-EMF compensation is that it bypass the current controller with its finite bandwidth (the back EMF comp is a gain only, and has "unlimited" bandwidth). As the motor speed increases, the commutation frequency increases, the current controller gets closer to its bandwidth, and the Back-EMF compensation effect is more emphasized. The disadvantage with using Back-EMF compensation is that it injects noise since it has "unlimited" bandwidth. As always, a balance needs to be found.

Since the torque constant and the back-EMF constant are equivalent, either the torque/force constant can be set, using the MKT parameter, or the back-EMF constant can be set, using the <u>MBEMF</u> parameter.

MBEMFCOMP	Sets the amount of BEMF compensation. This variable affects the amount of back EMF compensation that is applied to the motor command.			
	You can consider the BEMF of the motor as a disturbance to the current loop. The drive has the capability to estimate the amount of BEMF, and to inject feed-forward correction.			
	MBEMFCOMP=0 means no BEMF compensation.			
	MBEMFCOMP=100 means that BEMF compensation equals to the estimated BEMF.			
	Typical values of MBEMFCOM	P are 50 to 80.		
Parameter Index	0x01	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Integer	
Units	Percent	Range	0 to 130	
Default	0	EEPROM	Yes	
МКТ	Sets the motor's torque or force constant. MKT is part of the Back EMF compensation algorithm. This parameter can be set in place of MBEMF, in cases where the torque or force constant is specified.			
	or force constant is specified.			
	The conversion from back-EMF <i>Rotary</i> : MKT = MBEMF * 16.55 where MBEMF is in un	its of V/1000RPM		
	The conversion from back-EMF <i>Rotary</i> : MKT = MBEMF * 16.55	its of V/1000RPM CH * 16.55 / (60 * SQRT(2)		
	The conversion from back-EMF Rotary: MKT = MBEMF * 16.55 where MBEMF is in un Linear: MKT = MBEMF * MPITO where MBEMF is in un To convert from units of Ib-in/A	its of V/1000RPM CH * 16.55 / (60 * SQRT(2) its of V/m/s mp to N-m/A, multiply by 0.1) 130	
	The conversion from back-EMF Rotary: MKT = MBEMF * 16.55 where MBEMF is in un Linear: MKT = MBEMF * MPIT where MBEMF is in un	its of V/1000RPM CH * 16.55 / (60 * SQRT(2) its of V/m/s mp to N-m/A, multiply by 0.1) 130	
Parameter Index	The conversion from back-EMF Rotary: MKT = MBEMF * 16.55 where MBEMF is in un Linear: MKT = MBEMF * MPITO where MBEMF is in un To convert from units of Ib-in/A When this variable is set, the d	its of V/1000RPM CH * 16.55 / (60 * SQRT(2) its of V/m/s mp to N-m/A, multiply by 0.1) 130	
Parameter Index Data Access	The conversion from back-EMF Rotary: MKT = MBEMF * 16.55 where MBEMF is in un Linear: MKT = MBEMF * MPITO where MBEMF is in un To convert from units of Ib-in/Au When this variable is set, the du command	its of V/1000RPM CH * 16.55 / (60 * SQRT(2) its of V/m/s mp to N-m/A, multiply by 0.1 rive enters a no- comp state,) 130 requiring a CONFIG	
	The conversion from back-EMF Rotary: MKT = MBEMF * 16.55 where MBEMF is in un Linear: MKT = MBEMF * MPITO where MBEMF is in un To convert from units of Ib-in/A When this variable is set, the di command 0x0B	its of V/1000RPM CH * 16.55 / (60 * SQRT(2) its of V/m/s mp to N-m/A, multiply by 0.1 rive enters a no- comp state, Firmware Version) 130 requiring a CONFIG 0.0.1	

MBEMF				
	Motor data sheets often specify the back-EMF constant (MBEMF). The converse from back-EMF constant to torque constant is done as follows:			
	Rotary: MKT = MBEMF * 16.55 where MBEMF is in units of V/1000RPM			
	Linear: MKT = MBEMF * MPITCH * 16.55 / (60 * SQRT(2)) where MBEMF is in units of V/m/s			
	To convert from units of lb-in/A	mp to N-m/A, multiply by 0.1	130	
	When this variable is set, the drive enters a no- comp state, requiring a CONFIC command			
Parameter Index	0x0B	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Integer	
Units	<i>Rotary</i> : V/1000RPM <i>Linear</i> : V/m/s	Range	1 to 3900	
Default	0	EEPROM	Yes	

9.8.7 Current Limits

The drive current limits are set primarily by the drive peak current and drive continuous current ratings (DIPEAK and DICONT, respectively). The drive current rating is coded in hardware, and these values are initialized at power up according to that coding. All drive current limits derive from these two values, and all parameters rated to current are scaled to the value of DIPEAK.

DIPEAK	Defines the rated peak current of the drive. All current values in the drive are scaled to DIPEAK.			
	The drive current rating is the firmware during the p		power section of the drive, and read by	
	Although the parameter is defined as read-only, writing the same value as that defined in the hardware will be accepted, and the drive will enter the no-comp fault state. If a value different from that defined in hardware is written, a "Not Programmable" error will be returned.			
Parameter Index	0x03	Firmware Version	0.0.1	
Data Access	Read-Only	Data Type	Integer	
Units	Amperes RMS * 0.1	Range	10 to 2,200 The value '200' implies 20Amp RMS	
Default	Hardware-defined	EEPROM	No	

DICONT	Defines the rated continuo	us current of the drive.	
	The drive current rating is coded in hardware in the power section of the drive, and read by he firmware during the power up cycle.		
	Although the parameter is defined as read-only, writing the same value as that defined in the hardware will be accepted, and the drive will enter the no-comp fault state. If a value different from that defined in hardware is written, a "Not Programmable" error will be returned.		
Parameter Index	0x02	Firmware Version	0.0.1
Data Access	Read-Only	Data Type	Integer
Units	Amperes RMS * 0.1	Range	10 to 1,100
			The value '100' implies 10Amp RMS
Default	Hardware-defined	EEPROM	No
ΙΜΑΧ	Defines the maximum curr calculated as follows:	ent that the drive will allow	. IMAX is scaled to DIPEAK. It is
ΙΜΑΧ	calculated as follows:	nan or equal to DIPEAK, IN	MAX is scaled to DIPEAK. It isMAX is set to 1000 (which represents
ΙΜΑΧ	calculated as follows: 1. If MIPEAK is greater th	nan or equal to DIPEAK, IN < current)	MAX is set to 1000 (which represents
ΙΜΑΧ	calculated as follows:1. If MIPEAK is greater the 100% of the drive peal	nan or equal to DIPEAK, IN < current) DIPEAK, IMAX is calculate	MAX is set to 1000 (which represents
IMAX Parameter Index	calculated as follows:1. If MIPEAK is greater th 100% of the drive peal2. If MIPEAK is less that	nan or equal to DIPEAK, IN < current) DIPEAK, IMAX is calculate	MAX is set to 1000 (which represents
Parameter	 calculated as follows: 1. If MIPEAK is greater the 100% of the drive peal 2. If MIPEAK is less that IMAX = MIPEAK/D 	nan or equal to DIPEAK, IN < current) DIPEAK, IMAX is calculate DIPEAK * 1000	MAX is set to 1000 (which represents ed as follows:
Parameter Index Data	 calculated as follows: 1. If MIPEAK is greater th 100% of the drive peal 2. If MIPEAK is less that IMAX = MIPEAK/D 0x06 	nan or equal to DIPEAK, IN c current) DIPEAK, IMAX is calculate DIPEAK * 1000 Firmware Version	MAX is set to 1000 (which represents ed as follows: 0.0.1
Parameter Index Data Access	 calculated as follows: 1. If MIPEAK is greater th 100% of the drive peal 2. If MIPEAK is less that IMAX = MIPEAK/D 0x06 Read-Only 	nan or equal to DIPEAK, IN c current) DIPEAK, IMAX is calculate DIPEAK * 1000 Firmware Version Data Type	MAX is set to 1000 (which represents ed as follows: 0.0.1 Integer

9.8.8 Application Current Limits

ILIM Sets the application current limit, allowing the user to limit the drive's peak current. This variable limits the current command issued by the control loops. This variable is an independent variable that is not calculated from hardware parameters and is not tied to any other variables.

Set ILIM as follows:

- 1. If MIPEAK is greater than or equal to DIPEAK, set ILIM to 1000 (which represents 100% of the drive peak current)
- 2. If MIPEAK is less that DIPEAK, calculate ILIM as follows:

	ILIM = MIPEAK/DIPEAK * 1000		
Parameter Index	0x05	Firmware Version	0.0.1
Data Access	Read/Write	Data Type	Integer
Units	% of DIPEAK * 0.1	Range	0 to IMAX
Default	IMAX	EEPROM	Yes

ICONT	Sets the system continuous current. This variable is used in the <u>foldback</u> algorithm. The default value of this variable is the minimum of DICONT (Drive Continuous Current) and MICONT (Motor Continuous Current), unless that value exceeds IMAX, in which case ICONT is set equal to IMAX. This variable is reset to its default whenever DICONT or MICONT is changed. The user can override the default.		
Parameter Index	0x04	Firmware Version	0.0.1
Data Access	Read/Write	Data Type	Integer
Units Default	% of DIPEAK * 0.1 min of DICONT and MICONT	Range EEPROM	0 to IMAX Yes

9.8.9 Reading Actual Current

The actual current can be read in two ways:

- Reading an instantaneous value of the current by querying a drive parameter
- Getting a continuous reading of current using the real-time monitoring feature.

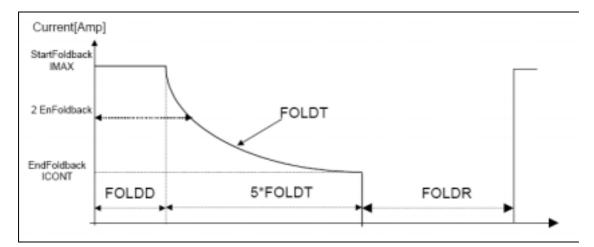
This section will describe the parameter used to read instantaneous value of current. For continuous readings, refer to the section on <u>Real-Time Data Monitoring</u>.

I	This parameter reads overall motor current. Motor current is calculated as the root- mean-square of the individual phase currents:				
	$I = \sqrt{(Ia^2 + Ib^2 + Ic^2)}$				
	Note that this is an absolute value. Note, too, that it is not in the same units as the torque command. In order to get a signed value of current, in the same units as the torque command, the current must be read using the <u>Real-Time Monitoring</u> feature.				
Parameter Index	0x45	Firmware Version	0.0.2.9		
Data Access	Read-Only	Data Type	Integer		
Units	% of DIPEAK * 0.1	Range	0 to 1,000		
Default	N/A	EEPROM	No		
IA	This parameter reads the instanta	neous value of the current on	phase A		
Parameter Index	0x2A	Firmware Version	0.0.1		
Data Access	Read-Only	Data Type	Integer		
Units	% of DIPEAK * 0.1	Range	0 to 1,000		
Default	0	EEPROM	No		
IC	This parameter reads the instanta	neous value of the current on	phase C		
Parameter Index	0x2B	Firmware Version	0.0.1		
Data Access	Read-Only	Data Type	Integer		
Units	% of DIPEAK * 0.1	Range	0 to 1,000		
Default	0	EEPROM	No		

9.8.10 Current Measurement Filters

Low-pass filters may be applied to the current measurements in order to reduce noise that may exist on the measurement or on the motor cables. Two filters exist, one that is applied to phases A and C, and one that is applied to phase B. The reason for this differentiation is that current is actually measured on phases A and C, while it is calculated for phase B.

Note: Using low-pass filters on the current measurement adds phase lag to the current loop, and results in a slower current loop response. This is not necessarily good or bad; it just has to be considered within the context of the control system.


IACLPF	Sets the low-pass filter that is applied to the current measurement on phases A and				
	C.				
	Setting the value to 0 disables the	1			
Parameter Index	0x6B	Firmware Version	0.0.2.5		
Data Access	Read-Only	Data Type	Integer		
Units	Hz	Range	0 to 5000		
Default	0	EEPROM	Yes		
IBLPF	Sets the low-pass filter that is appli	ed to the current measurem	ent on phase B.		
IBLPF	Sets the low-pass filter that is appli Setting the value to 0 disables the		ent on phase B.		
IBLPF Parameter Index			ent on phase B. 0.0.2.5		
	Setting the value to 0 disables the	low-pass filter			
Parameter Index	Setting the value to 0 disables the 0x6C	low-pass filter Firmware Version	0.0.2.5		
Parameter Index Data Access	Setting the value to 0 disables the 0x6C Read-Only	low-pass filter Firmware Version Data Type	0.0.2.5 Integer		

9.8.11 Current Foldback

Current Foldback is the mechanism by which the drive processor limits the actual current to the rated continuous current.

The drive's microprocessor monitors the current feedback signal and develops an RMS value of this signal for the purpose of providing a value that represents the current in the motor. The system is similar to an I^2 t accumulator.

If the actual current exceeds the continuous current rating of the drive/motor combination (<u>ICONT</u>), the foldback algorithm begins reducing the current towards the ICONT level. When the current starts to decrease, the drive is said to have entered the Foldback mode. When in the foldback mode, a steady 'F' is displayed on the 7-segment LED, and the Warning bit (bit number 14) is set in the Cyclic Status Flags. Refer to the section on <u>Warnings</u>.

The diagram below illustrates the current foldback process:

Figure 9-2: Current Foldback

Current is folded back exponentially from IMAX, where IMAX is the maximum allowed system current limit. The application current limit is set by the ILIM parameter. ILIM can be set to any value up to IMAX. If ILIM is less than IMAX, then foldback will, of course, be from the ILIM level and not from the IMAX level. In this case, foldback will begin after a time that is greater than FOLDD; the exponential current decrease is always calculated from IMAX.

FOLDD	Sets the delay time for drive foldback. This is the minimum amount of time that the system current can exceed ICONT before the drive enters the drive foldback state. The delay time assumes a worst- case scenario where the drive is applying IMAX current. A current level of less than IMAX can be allowed for a longer time. It is highly recommended to use the default value of this parameter.			
Parameter Index Data Access Units Default	0x51 Read/Write Milli-seconds 1000 – 2000; depends on power stage rating	Firmware Version Data Type Range EEPROM	0.0.1 Integer 1 to 32,767 Yes	
FOLDT	Sets the time constant for drive foldback. After the drive enters the drive foldback state, this variable defines how long it will take the drive to reduce the system current level to ICONT.			
Parameter Index	0x54	Firmware Version	0.0.1	
Data Access	Read/Write	Data Type	Integer	
Units	Milli-seconds	Range	1 to 32,767	
Default	1450 – 2500: depends on power	EEPROM	Yes	

FOLDR	Foldback recover	Foldback recovery time				
Parameter Index	0x53	Firmware Version	0.0.1			
Data Access	Read/Write	Data Type	Integer			
Units	Milli-seconds	Range	1 to 32,767			
Default	12000 –17000: depends on powe stage rating	EEPROM	Yes			
FOLDMODE		Sets the mode for drive current foldback and motor current foldback operation. Only one value is supported for FOLDMODE				
	0 = norma	al foldback from ILIM to I	CONT			
Parameter Index	0x52	Firmware Version	0.0.1			
Data Access	Read/Write	Data Type	Integer			
Units	N/A	Range	0 to 0			
Default	0	EEPROM	Yes			
FOLDTIME		Sets the time from foldback detection to foldback fault latch, for FOLDMODE=1 only.				
Parameter Index	0x55	Firmware Version	0.0.1			
Data Access	Read/Write	Data Type	Integer			
Units	Milli-seconds	Range	1 to 300			
Default	30	EEPROM	Yes			

9.8.12 Application Velocity Limit

VLIM	Sets an application maximum velocity. VLIM is used in the drive as follows:			
	1) For velocity calculation and reporting			
	2) In back-	EMF compensation.		
	3) In spee	d phase advance.		
	4) In WNS	6 (commutation initializat	ion) process.	
	speeds. In order to internal velocity va bits/250usec are e lower the VLIM, th	a large variety of feedba be able to provide for a riables are scaled so tha quivalent to VLIM (in RP e better the velocity reso to maximum application	ll options, the drive's tt 16384 internal M). This means that the lution is. Thus, this	
	VLIM is not used o	lirectly; rather, the actual	velocity is used.	
Parameter Index	0x28	Firmware Version	0.1.0	
Data Access	Read/Write	Data Type	Integer	
Units	Rotary: RPM	Range	10 to VMAX	
	Linear: mm/sec			
Default	10	EEPROM	Yes	

9.8.13 Under-Voltage Fault Processing

Both the under-voltage trip level, and the drive's response to an under-voltage situation, can be programmed.

UVTRESH		oltage threshold level. This under-voltage event will be		
	response to the event can be programmed using the UVMODE, UVTIME and UVRECOVER parameters.			
Parameter Index	0x61	Firmware Version	0.1.6	
Data Access	Read/Write	Data Type	Integer	
Units	DC Volts	Range	TBD	
Default	36	EEPROM	Yes	
UVMODE	Defines how the drive will respond to an under-voltage (UV) fau			
	 0 = latch 	fault immediately, display	flashing "u".	
	 1 = displ 	ay steady "u". Warning onl	y, with no fault latch.	
	 2 = displ 	ay steady "u". After <u>UVTIN</u>	IE elapses, latch fault.	
	If UVMODE= 1, a	and the drive is disabled, the	ne UV fault is ignored.	
	See also UVREC	OVER.		
Parameter Index	0x33	Firmware Version	0.1.6	
Data Access	Read/Write	Data Type	Integer	
Units	N/A	Range	0, 1, 2	
Default	0	EEPROM	Yes	
UVTIME		of time an under-voltage ved when UVMODE=2.	varning is displayed ("u"	
Parameter Index	0x34	Firmware Version	0.0.2.7	
Data Access	Read/Write	Data Type	Integer	
Dala AULESS			•	
Units	Seconds	Range	1 to 300	
	Seconds 30	Range EEPROM	1 to 300 Yes	
Units	30	-	Yes	
Units Default	30 Defines how the fault: • 0 = recov UV cond	EEPROM drive will recover from an ver by executing Clear Fau ition clears	Yes under- voltage (UV) ilts procedure after the	
Units Default	30 Defines how the fault: 0 = recor UV cond = 1 = autor	EEPROM drive will recover from an ver by executing Clear Fau lition clears matically recover when the	Yes under- voltage (UV) ilts procedure after the	
Units Default UVRECOVER	30 Defines how the fault: • 0 = recor UV cond • 1 = autor See also <u>UVMOR</u>	EEPROM drive will recover from an ver by executing Clear Fau ition clears matically recover when the DE.	Yes under- voltage (UV) ilts procedure after the UV condition clears	
Units Default UVRECOVER Parameter Index	30 Defines how the fault: • 0 = recov UV cond • 1 = autor See also <u>UVMOR</u> 0x35	EEPROM drive will recover from an a ver by executing Clear Fau lition clears matically recover when the DE. Firmware Version	Yes under- voltage (UV) alts procedure after the UV condition clears 0.1.2	
Units Default UVRECOVER Parameter Index Data Access	30 Defines how the fault: • 0 = recor UV cond • 1 = autor See also <u>UVMOR</u> 0x35 Read/Write	EEPROM drive will recover from an over by executing Clear Faulition clears matically recover when the DE. Firmware Version Data Type	Yes under- voltage (UV) Its procedure after the UV condition clears 0.1.2 Integer	
Units Default UVRECOVER Parameter Index	30 Defines how the fault: • 0 = recov UV cond • 1 = autor See also <u>UVMOR</u> 0x35	EEPROM drive will recover from an a ver by executing Clear Fau lition clears matically recover when the DE. Firmware Version	Yes under- voltage (UV) alts procedure after the UV condition clears 0.1.2	

9.8.14 Motor Over-Temperature Fault Processing

A motor over-temperature fault can be identified if the motor has a thermal sensor, and if the drive is set up correctly to interface to this sensor. The following instructions explain how this is done.

The following table defines the behavior of the sensor reading and of the fault as a function of the THERTYPE setting:

Motor over-temp switch state	THERMTYPE	THERM	Fault
Closed	0	0	No
Closed	1	1	Yes
Open	0	1	Yes
Open	1	0	No

THERMODE	Determines the operation of the drive when the Motor Thermostat Input (THERM) opens.				
	 0 = disable 	e drive and open fault rel	ay immediately		
	 1 = ignore thermostat input 				
	Set this parameter to 1 if the motor does not have thermal sensor, or if the thermal sensor is not wired. The sensor should be wired between pins 19 and 20 on the feedback connector.				
Parameter Index	0x37	Firmware Version	0.1.6		
Data Access	Read/Write	Data Type	Integer		
Units	N/A	Range	0, 1		
Default	0	EEPROM	Yes		
THERMTYPE	Sets the motor temperature sensor type:				
	 0 = PTC (F 	Positive Temperature Co	efficient)		
	■ 1 = NTC (N	Negative Temperature C	oefficient)		
Parameter Index	0x38	Firmware Version	0.1.1		
Data Access	Read/Write	Data Type	Integer		
Units	N/A	Range	0, 1		
Default	0	EEPROM	Yes		
THERM	Indicates the state	of the motor thermostat	input.		
	 0 = thermo 	stat input closed (norma	al).		
	 1 = thermo 	stat input open (overhea	at condition)		
Parameter Index	0x36	Firmware Version	0.1.6		
Data Access	Read only	Data Type	Integer		
Units	N/A	Range	0, 1		
Default	Hardware defined	EEPROM	No		

9.9 Setting the MPHASE Parameter

9.9.1 Introduction

Brushless sine drives produce electrical commutation to match the motor sinusoidal torque curves. The PicoDAD performs commutation by using one of several available position feedback devices. The alignment between the motor electrical position and the commutation-generated current has a significant effect on operation and performance of the system.

MPHASE tuning is relevant for systems with absolute electrical position sensing, i.e. Resolver. Incremental Encoder with halls and EnDat sine encoder. For incremental encoder system where no electrical positioning sensors exist MPHASE should be set to zero, and not tuned.

MPHASE tuning may be required if one of the following occurs:

- Motor torque is lower than expected.
- Positive torque causes negative velocity. •
- Motor performance is not symmetrical in both motion directions.
- There is no torgue at any position with non-zero current.

MPHASE tuning will not solve:

- Motor lockup in certain locations. .
- No motion due to current not flowing through the motor.
- Motor sometimes operates well and sometimes runs away.

MPHASE	Defines the commutation angle offset relative to the standard commutation. Tuning of MPHASE may be required to achieve motion in the required direction, and to achieve balanced motion.				
Parameter Index	0x0F	0x0F Firmware Version 0.0.1			
Data Access	Read/Write	Data Type	Integer		
Units	Electrical Degrees	Range	0 to 359		
Default	0	EEPROM	Yes		
			For EnDat systems, the value is stored in the EnDat EEPROM.		

9.9.2 Parameter Definition

The MPHASE parameter can be used to reverse the direction of motion. For example, if a positive torque command is causing motion in the negative direction, MPHASE can be adjusted by 180 degrees to reverse the direction of motion.

9.9.3 Calculating MPHASE using the ZERO Procedure

The value of MPHASE can be calculated from results obtained when doing the ZERO procedure. The ZERO procedure is generally used to align the feedback device to the motor. In this case, we can use it to calculate the correct value of MPHASE. The procedure uses the PRD parameter, which provides the absolute position of the feedback device. Refer to details of the PRD instruction.

ZERO	 Enables and disables feedback Zeroing Mode. If Zeroing Mode is enabled, the drive rotates the motor to an electrical null by placing IZERO current from the motor C terminal to the B terminal. 0 = zeroing mode disabled 1 = zeroing mode enabled 		
Parameter Index	0x3A	Firmware Version	0.0.2.9
Data Access	Read/Write	Data Type	Integer
Units	N/A	Range	0, 1
Default	0	EEPROM	No
IZERO	Sets the C- B phas	se current for ZERO Mod	e.
Parameter Index	0x39	Firmware Version	0.0.2.9
Data Access	Read/Write	Data Type	Integer
Units	% of MICONT	Range	1 to 177
Default	25	EEPROM	Yes

Caution: When the zeroing mode is enabled, the drive moves the motor without control from the motion controller. When using this mode, the motion controller

The procedure is as follows:

- Start the system
- Ignore index pulse if exists (set MENCTYPE=6 if working with a quad encoder).
- If working with <u>Halls</u>, make sure a hall transition occurs before proceeding.
- Set ZERO=1
- Enable the drive.
- Increase IZERO to obtain accurate position holding.
- Query <u>PRD</u> value at the lock position.
- Query MPOLES value.
- Follow the formula for computing MPHASE.

MPHASE = -PRD/65536*MPOLES/2*360

• Add or subtract multiples of 360 so that 0 <= MPHASE < 360

9.9.4 Setting MPHASE with AKM Motors

First, make sure that the motor is wired to the drive according to the descriptions given in the section on <u>wiring Kollmorgen AKM motors</u>. Next, verify that the <u>MOTORTYPE</u> parameter is set to 3. Then, MPHASE will be zero.

9.10 Encoder Index Position

For motors that have hall sensors embedded in the motor for commutation initialization, an index signal may be advantageous in order to improve commutation accuracy, and hence motor-drive efficiency. The <u>MENCTYPE</u> parameter is used to tell the drive whether it has halls with an index (MENCTYPE=0), or halls only (MENCTYPE=6).

9.10.1 The MENCOFF Parameter

When using an index, the position of the index must be known. This position is recorded in the MENCOFF parameter. The value of MENCOFF is either known from the motor data sheet, or it needs to be detected by the drive using an Encoder Initialization procedure.

MENCOFF	Sets the encoder index position, and is relevant only for systems that use encoder feedback, and that use the Index mark. The Index mark is used to provide a correction to the drive commutation. It should be used when commutation may suffer from inaccuracies, such as if hall-effect signals are inaccurate.		
	This variable is expressed in units of encoder counts after quadrature. If it is not known from the motor data sheet, it can be set automatically using <u>ENCINIT</u> .		
	When this variable is set, the d CONFIG command.	rive enters a no-comp s	tate, requiring a
Parameter Index	0x08	Firmware Version	
Data Access	Read/Write	Data Type	Long Integer
Units	Encoder counts/ mechanical motor rev	Range	0 to (4* <u>MENCRES</u>) – 1
Default	0	EEPROM	Yes

Caution: If the encoder index offset is not know from a motor data sheet, do not attempt to drive the motor until the ENCINIT process has been completed. Doing so may result in motor run-away when the index mark is crossed.

9.10.2 MENCOFF for Kollmorgen AKM Motors

When using Kollmorgen AKM motors, the value of MENCOFF can be calculated using the following equation:

MENCOFF = <u>MENCRES</u>x4 / (<u>MPOLES</u>/2) x 240/360

Note that the value for MENCOFF needs to be set explicitly, even when the <u>MOTORTYPE</u> parameter is set to the value 3.

9.10.3 Encoder Index Initialization

The drive has a procedure called ENCINIT, using which the index position can be automatically determined. The procedure is as follows:

• First issue the ENCINIT command.

The drive enters a mode in which it looks for the index mark. The ENCINITST parameter will return 1.

- Move the motor manually. When the index is crossed the ENCINITST command will return 2. At this point MENCOFF is updated to the index location.
- Save the MENCOFF value by executing the <u>SAVE</u> command.

ENCINIT	Execute the encoder initialization procedure, in order to find the index position. This procedure should be used only when the drive is configured for working with encoder feedback containing commutation tracks (or hall-effect signals) and an index signal (MENCTYPE=0)			
	This is an "action"-type instruction; it does not read or write a parameter, but causes a specific action to be take. Use this parameter as if it were a write-only parameter with a data value of zero.			
Parameter Index	0x62	Firmware Version	0.0.2.9	
Data Access	Action	Data Type	Integer	
Units	N/A	Range	0	
Default	N/A	EEPROM	No	
ENCINITST		atus of the encoder initializa t to 0 when the index positic		
ENCINITST	variable is rese MENCOFF).		on is set manually (see	
ENCINITST	variable is rese <u>MENCOFF</u>). 0 = initi	t to 0 when the index position	n is set manually (see egun	
ENCINITST	variable is rese <u>MENCOFF</u>). 0 = initi 1 = enc	t to 0 when the index position	on is set manually (see egun ess	
ENCINITST Parameter Index	variable is rese <u>MENCOFF</u>). 0 = initi 1 = enc	t to 0 when the index position ialization process has not be coder initialization is in progr	on is set manually (see egun ess	
	variable is rese <u>MENCOFF</u>). 0 = initi 1 = end 2 = end	t to 0 when the index position ialization process has not be coder initialization is in progr coder initialization has been	on is set manually (see egun ress completed	
Parameter Index	variable is rese <u>MENCOFF</u>). 0 = initi 1 = enc 2 = enc 0x63	t to 0 when the index position ialization process has not be coder initialization is in progr coder initialization has been Firmware Version	on is set manually (see egun ess completed 0.0.2.9	

9.11 Commutation Initialization with Commutation Signals

9.11.1 The MFBDIR Parameter

MFBDIR	bits 0, 1 and 2 being correctly to ensure the motion in the positive is set, the drive enter command. Bit 0 – controls the of 0 – Normal, follows the counts. Bit 1 – controls the of 0 – Normal, follows the velocity and positive encoder counts. 1 – Reversed, follows counts. Negative velocity and positive encoder counts. 1 – Reversed, follows counts. Negative velocity enter increments of A/B enter Bit 2 – controls the inter according to the hall	significant. This param hat a positive torque cor e direction, and vice-ver rs a no-comp state, requination direction of PRD. the increments of A/B en with the negated increment direction of PFB. the increments of A/B en PFB increments for posi- vers the negated increment locity and negative PFB incoder counts. Inversion of the initial co s.	mmand results in rsa. When this variable uiring a CONFIG ncoder counts. nts of A/B encoder ncoder counts. Positive sitive increments of A/B nts of A/B encoder increments for positive mmutation angle,
	0 – Normal, initial commutation angle according hall state.		
	1 – Reversed, initial commutation angle equals 360 – angle according hall state.		
Parameter Index	0x29	Firmware Version	0.1.1
Data Access	Read/Write	Data Type	Integer
Units	N/A	Range	0 to 7
Default	0	EEPROM	Yes

Note: Set MFBDIR once all other feedback parameters have been set.

9.11.2 For Resolver Feedback

For resolver feedback, no commutation signals or parameters are required, since the resolver sine and cosine signals themselves provide the commutation initialization information.

9.11.3 For Encoder Feedback with Commutation Signals

The following procedure allows the user to configure drive parameters such that commutation will be correct. The procedure is valid when the feedback type is Incremental Encoder with Halls (<u>MENCTYPE</u>=0 or MENCTYPE=6). The drive parameters used in this procedure are <u>MPHASE</u>, <u>MFBDIR</u> and <u>MHINVx</u>.

In addition, the <u>HALLS</u> instruction is used to read the value of the halls sensor states. The HALLS instruction can be executed from within a MotionLink terminal. The HALL states can also be seen in Motion Console, in the Motor Summary I/O window. The drive returns a 3-digit value, with each digit being '1' or '0' and representing a hall state. The left-hand digit represents hall sensor C, the middle digit represents hall sensor B, and the right-hand digit represents hall sensor A. For example the halls sensor pattern

011

indicates that

- Hall C is 0
- Hall B is 1
- Hall A is 1

This section of the document makes use of a value of the *halls sequence*, with the value being a decimal representation of the binary halls states. In the above example, where the HALLS instruction returns the value '011', the equivalent halls sequence value is 3. Similarly, a HALLS pattern of '110' is equivalent to a halls sequence value of 6.

Assumption: wiring predefined. Once the motor and feedback have been wired to the drive, no change in wiring is allowed.

9.11.3.1 Reset Parameters

Set MPHASE=0, MFBDIR=0, MHINVx=0.

9.11.3.2 Identify the direction of motor phases.

- Disconnect motor leads from drive.
- Use lab power supply with current limit capability.
- Apply current (the amount of current is the minimum that still locks the motor firmly) from motor
 phase C (connected to the positive terminal of the power supply) to motor phase B (connected to
 the negative terminal of the power supply).
- Make sure the motor is locked in position.
- Apply the same current from motor phase C to motor phase A. The motor should jump 60 electrical degrees.
- Watch the direction of the motor jump.
- Let define this direction as "positive motor phase direction".

9.11.3.3 Set MFBDIR bit 2.

- Rotate the motor manually slowly to the positive motor phase direction, and monitor the hall state using HALLS command (from MotionLink Terminal).
- Positive hall sequence is {1,5,4,6,2,3}. Check only the sequence, not the start point.
- If the hall sequence is backwards, set MFBDIR bit 2 to 1.
- Please pay attention that setting this bit doesn't change the readout of HALLS command.

9.11.3.4 Align the halls to motor phase (set MPHASE).

- Apply current from motor phase C to motor phase B (same way as in item 2).
- Read hall state.
- Try to manually move a bit (right and left) the motor from where it locked, while reading the hall state, to see if the motor is close to hall edge.

 When current is applied from motor phase C to motor phase B the motor should be locked between hall states 1 and 3.

Hall edge	Angle	Angle	
	MFBDIR bit 2 = 0	MFBDIR bit 2 = 1	
3 and 1	0	0	
1 and 5	60	300	
5 and 4	120	240	
4 and 6	180	180	
6 and 2	240	120	
2 and 3	300	60	

Calculate the locking location angle according to the following table:

- Set MPHASE = 360 Angle.
- If machine positive direction is opposite to motor phase direction, add (or subtract) 180 from MPHASE.

9.11.3.5 Set MFBDIR bit 0.

- Rotate the motor manually one rev (or one pitch). The direction is not relevant.
- Rotate the motor manually slowly to the positive motor phase direction, and monitor PRD.
- If PRD counts down, set MFBDIR bit 0 to 1.

9.11.3.6 Set MFBDIR bit 1.

- Rotate the motor manually slowly to machine positive direction, and monitor PFB.
- If PFB counts down, set MFBDIR bit 1 to 1.

9.11.3.7 Operate the system.

Save Settings

At this point, everything should be working properly. Save the settings to the CD's EEPROM (using the serial SAVE command or the SynqNet 0x1C Direct Command) and to disk.

Confirm Proper Commutation at All Initialization Conditions

Disable the drive. Push the drive by hand until the HALL state is 001. Turn off power to the drive and wait for the LED display to go blank, and then wait 5 seconds more. Turn on power to the drive. Slowly increase positive DAC input to the drive until motion just begins in the positive direction. Slowly decrease negative DAC input to the drive until motion just begins in the negative direction. The positive and negative DAC values should be approximately the same (assuming the motor is level). Repeat this process by starting from each of the six Hall states.

Confirm Proper Operation in the Application Conditions

Tune the servo loop. Command aggressive moves and the highest acceleration used by the application. Observe the peak value of DAC input required for forward and reverse motion. These values should be approximately the same (within about 10%). If desired/required, adjust MPHASE up or down to give equal peak DAC output in both directions.

9.12 Commutation Initialization without Commutation Signals (Phase Finding)

9.12.1 Overview

Servo drives need to know the electrical angle of the shaft so that they can commutate the motor correctly. If the electrical angle is not known correctly this will result in a reduction of the available torque, the addition of a static bias to the torque and possibly an inversion of the torque's polarity. The electrical angle is available directly if a resolver, commutating encoder or absolute encoder is used. However in certain circumstances only an incremental position measurement is available and it is necessary to carry out a process of determining the electrical angle, i.e. "Phase Finding".

There are various phase-finding techniques; generally they rely on the shaft (or the forcer in the case of a linear motor) being free of static loads or excessive inertias. If these conditions are met then phase-finding can be carried out by a technique such as:

- Applying a forced commutation to move the motor to a predetermined position where the torque generated is zero and updating controller variables accordingly.
- Using a motion control algorithm that will "bring" the commutation angle of the motor from the initial, unknown position to the current motor position (instead of moving the motor).

The disadvantage of the first method is that it requires the motor to be moved, which produces a "jumpy" motion that may not be tolerable in some cases (for example - linear motor applications).

The second method is designed to solve this problem by implementing a closed loop commutation-lock algorithm that adjusts the commutation angle to the motor position rather than moving the motor to a predetermined place. The motor will move very slightly; motion of about ± 4 electrical degrees is expected, but it can also be as high as ± 15 electrical degrees.

Phase Finding is commonly used on applications with linear scales. The presence of a static load such as gravity or an end-stop spring is problematic and may cause phase finding to generate an erroneous value.

9.12.2 Autonomous Drive Actions

An autonomous drive action is one where the motion is controlled and sequenced locally by the drive rather than by the motion controller. Phase Finding is a typical autonomous drive action.

Normal, networked-controlled, closed-loop operation of a drive under SynqNet involves supplying a torque demand to the drive and receiving position feedback. At this time the network is cyclic and the amplifier enable (AMPEN) bit is set.

If the drive is carrying out an autonomous drive action such as phase-finding or drive-sequenced homing then we deviate from normal SynqNet closed-loop operation of a drive: on the one hand AMPEN must be true to allow the drive to operate (in some drives this is a hard-wired signal, not just a software flag) and the network must by cyclic but on the other hand the motion controller's control law must not influence the torque applied to the motor.

The motion controller firmware has built-in mechanisms to manage this process. For more information, refer to the Motion Engineering Support website, at

http://support.motioneng.com/Software-MPI/Topics/mtr_phase_finding.htm

INITGAIN	Sets the gain for the encoder initialization process controller. Generally, it is set to		
		e if too much motion is expe	
Parameter Index	0x30	Firmware Version	0.1.9
Data Access	Read/Write	Data Type	Integer
Units	N/A	Range	100 - 10000
Default	1000	EEPROM	Yes
IENCSTART	Sets the maximum current for the commutation initialization process.		
Parameter Index	0x31	Firmware Version	0.1.9
Data Access	Read/Write	Data Type	Integer
Units	% of MICONT	Range	0 to 177
Default	25	EEPROM	Yes
ENCSTART	Explicitly put the drive into its Encoder Initialization state. This can be used when <u>MENCTYPE</u> is set to the values 3 or 4, for encoder initialization without Halls. This is an "action"-type instruction; it does not read or write a parameter, but causes a specific action to be take. Use this parameter as if it were a write-only parameter with a data value of zero. If the ENCTSTART instruction is executed with the encoder type (MENCTYPE) set to a value other than 3 or 4, an error message MENCTYPE MISMATCH will be returned. If ENCSTART is executed when the feedback type is Resolver, the error message NOT AVAILABLE will be returned.		
	The ENCSTART instructio used in the PhaseFind.exe	n is also implemented in <u>Dir</u> e	ect Command 0x60. This is
Parameter Index	0x49	Firmware Version	0.1.9
Data Access	Action	Data Type	Integer
Units	N/A	Range	0
Default	N/A	EEPROM	No
INITTIME	Sets the timer for the commutation initialization process. This is the time between the first and second current steps. Increasing this time can help with phase finding when the friction is low.		
Parameter Index	0x64	Firmware Version	0.1.9
Data Access	Read/Write	Data Type	Integer
Units	Milli-seconds	Range	108 to 16000
Default	25	EEPROM	Yes
MJ	Sets the <i>combined</i> inertia of the motor and the load. For rotary motors, the motor inertia is that of the rotor, and for linear motors the motor inertia refers to the motor coil mass (linear motors, <u>MOTORTYPE</u> = 2). This parameter is necessary when "Wake-No-Shake" encoder commutation initialization is used.		
Parameter Index	0x32	Firmware Version	0.1.1
Data Access	Read/Write	Data Type	Integer
Units	rotary: Kg * m ² * 10 ⁻⁶ linear: grams	Range	0 to 2,000,000,000
Default	0	EEPROM	Yes

9.12.3 Parameters Used During Phase Finding

9.12.4 Phase Finding and the MENCTYPE Parameter

The MENCTYPE parameter is set by the user to tell the drive what type of encoder is connected. When using an encoder that has A/B lines only, and for which execution of the Phase Finding process is necessary, the MENCTYPE parameter may be set to either of the values 3 or 4.

When MENCTYPE is set to 3, phase finding is triggered by two conditions:

- An explicit command, called ENCSTART, is issued to command phase finding, followed by
- Enable of the servo drive

When MENCTYPE is set to 4, phase finding is triggered by the Enable signal only. Note, however, that once phase finding has been successfully executed, enabling the drive will not trigger phase finding again. In this case, if the user wishes to execute phase finding again, an ENCSTART command needs to be issued prior to enabling the drive.

Caution: When using MENCTYPE=4, the phase finding process is triggered by Enable only. When the Enable signal is set, the drive takes control over the motion, and ignores the torque command from the motion controller. When the phase finding process completes, the drive remains enabled, and the drive resumes responding to the torque command. Since the phase finding process moves the motor, it should be assumed that there will be a non-zero torque command at the end of the phase finding process. The drive will then see this as a step command. Depending on the size of the torque step, the resultant motion can be violent.

Thus, when using MENTYPE=4, the motion controller's Output Offset should be set to zero before the drive is enabled. After the phase finding, the drive should be disabled, the output offset restored, and then the drive can be re-enabled.

For these reasons, it is strongly recommended to use MENCTYPE=3 only.

9.12.5 The Process

- 1. Disable the drive
- Select the encoder initialization process by setting <u>MENCTYPE</u> to 3. Execute the <u>CONFIG</u> instruction after changing MENCTYPE. At this point, the 7-segment LED on the drive should show a flashing '2'. If MENCTYPE=3 has been saved in the non-volatile memory, the drive will be in this state automatically after power up, and explicit setting of MENCTYPE will not be required.

At this point, bit 2 in the drive Warning Register will be set.

- 3. Set the encoder initialization current using the <u>IENCSTART</u> instruction. Set this to the maximum allowed application current.
- 4. Set the gain for the process using the <u>INITGAIN</u> instruction. This value will be adjusted during the tuning process, and the tuning process will be somewhat of a cut-and-try process.
- 5. Set the <u>MJ</u> parameter to the value of the combined inertia of the motor and the load.
- Clear faults on the Motion Supervisor, and run the *phaseFind*.exe utility. This utility is found in the XMP/BIN/WINNT subdirectory of the MPI installation. In addition, the process can be enabled at any time when the drive is disabled by entering the *ENCSTART* command (SynqNet parameter 0x49).
- 7. Monitor the process by looking at the velocity, and by reading the status word WNSERR and the status of ACTIVE

Danaher Motion Kollmorgen January 30, 2006

8. If the process completes successfully, the 7-segment LED will show a steady '2', and the Warning bit will be cleared. Otherwise, the LED will show an alternating '-' and '3'. If the process is not successful, bits in the WNSERR query give information that may be helpful in identifying the cause.

Bit Value	Error Description	Possible Corrective Action
0x0001	WNS Stopped	
	Indicates whether the WNS process was interrupted due to drive disable (due to fault or disable command).	
0x0002	Maximum velocity error	Reduce value of INITGAIN
	At the end of WNS process the motor should stand still. If the velocity at that time is above threshold, this bit is set.	
0x0004	Too much motion	Reduce value of INITGAIN
	The motor moved distance which is above threshold during the WNS process.	
0x0008	Motion Profile	Reduce value of INITGAIN
	If the settling time of the WNS process (step response) is above threshold this bit is set.	
0x0010	Too little motion	Increase value of IENCSTART,
	Minimum movement of 4.5 electrical degrees is required. This prevents cases of locked motor or not enough current to move the motor.	and/or increase value of INITGAIN
0x0020	Encoder initialization failed	
	This bit is a summary bit of bits 0 to 5.	
0x0040	Encoder initialization has been executed (but not necessarily succeeded)	

In case bit 2, 3, or 4 were set, the user should modify the WNS gains (INITGAIN, IENCSTART)

9.12.6 Evaluating the Commutation Initialization Process

The process makes two velocity jumps. The first velocity jump varies in size and direction (depending on initial location). By examining the nature of the velocity during the commutation initialization, we can come to certain conclusions regarding the validity of the tuning parameters that were used. The following plot shows what form we are looking for in the velocity. We see that the velocity is smooth (more or less), and we see that there is no oscillation.

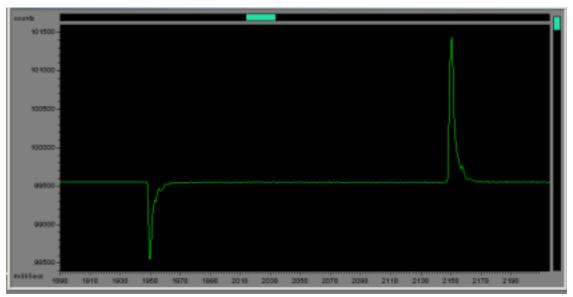


Figure 9-3: Commutation Initialization Velocity Response

In the plot above, we see some velocity instability at the end of the deceleration. Ideally, the parameters (IENCSTART and INITGAIN) should be tuned such that this oscillation is not seen.

9.13 Considerations for Working with EnDat Sine Encoders

9.13.1 Setting the Encoder Type

The <u>MENCTYPE</u> parameter is used to tell the drive with which type of encoder it is working. Set MENCTYPE to the value 9 when working with EnDat encoder.

9.13.2 Equivalent Counts per Revolution

The equivalent number of counts per revolution is calculated from

```
MENCRES * MSININT *4
```

Where <u>MENCRES</u> is the encoder resolution (in lines per rev) and <u>MSININT</u> is the interpolation level.

9.13.3 Hardware Absolute Position

The EnDat encoder provides an absolute position value that can be read using the HWPOS parameter. The resolution and range of this value is dependant of the encoder model. For example, the ECN-1113 encoder is a single-turn encoder having 512 lines-per-rev, and 8192 position values per rev. Querying HPWOS on this encoder will show 8192 values per rev, and a range of 0 to 8192. The EQN-1125, on the other hand, is a multi-turn encoder. It also has 512 lines-per-rev and 8192 position values per rev, but it supports 4096 revolutions. In this case, HWPOS will increment by 8192 values for each revolution.

The HWPOS value is read by the drive at power up and after a feedback loss fault, and is used, together with the analog information from the sine and cosine signals, to calculate the initial 32-bit position value, PFB. Once this is done, the drive continues to increment PFB based on interpolation of the sine and cosine signals.

Note: HWPOS is not subject to the sine encoder interpolation setting in the drive (MSININT). It's resolution is determined solely by the encoder.

HWPOS	Read encoder absolute position directly from the	e EnDat encoder.	
	This operation is relevant only for EnDat encode	ers.	
Parameter Index	0x4A	Firmware Version	0.0.2.9
Data Access	Read-only	Data Type	Long Integer
Units	Encoder counts, before quadrature and before interpolation	Range	Depends on EnDat model
Default	N/A	EEPROM	No

9.13.4 Absolute Position Mode

The absolute position is read by the drive from the encoder at power up. This information can be read in either signed or unsigned format, and this affects the way the users sees this absolute position. The ABSPOSMOD drive parameter is used to determine whether the absolute position read on power up is signed or unsigned.

To illustrate this, let us assume that the encoder has a single turn, the encoder resolution is 2048 and the interpolation level is 256. Thus, the equivalent number of encoder counts per revolution is 2,097,152.

- If the ABSPOSMOD parameter is set to 0 (unsigned format), then the absolute position on power up will be in the range 0 through 2,097,151.
- If the ABSPOSMOD parameter is set to 1 (signed format), then the absolute position on power up will be in the range -1,048,576 through 1,048,575.

This parameter defines whether the absolute position read at power up from the EnDat encoder will be interpreted as a signed or an unsigned value. 0 – Handle absolute position as an unsigned value		
•	-	
0x40	Firmware Version	0.0.1
Read/Write	Data Type	Integer
Encoder counts	Range	0, 1
0	EEPROM	Yes
	the EnDat encoder will be inter 0 – Handle absolute position as 1 - Handle absolute position as 0x40 Read/Write Encoder counts	the EnDat encoder will be interpreted as a signed or an0 - Handle absolute position as an unsigned value1 - Handle absolute position as a signed value0x40Firmware VersionRead/WriteData TypeEncoder countsRange

9.13.5 Position Feedback Offset

A position feedback offset can be set in order to change the value of the absolute position as seen by the user. This is done using the PFBOFF parameter. This parameter is a feedback offset that is added to the internal cumulative position counter to give the value of the PFB (the position counter). It can be used, for example, to set the absolute position read by the user to zero. In order to do this, follow the following steps:

- Set PFBOFF to zero
- Read PFB
- Set PFBOFF to the negative value of PFB

The value of PFBOFF is stored in the EnDat encoder EEPROM when the <u>HSAVE</u> Command is executed. At power up the value is read from the EnDat EEPROM, and PFB is automatically compensated.

PFBOFF	A feedback offset that is add give the value of PFB. This zero.		•
Parameter Index	0x42	Firmware Version	0.0.1
Data Access	Read/Write	Data Type	Integer
Units	Encoder counts	Range	-2,147,483,648 to 2,147,483,647
Default	0	EEPROM	Yes.
			For EnDat systems, the value is stored in the EnDat EEPROM.

9.13.6 Saving Parameters in the EnDat Encoder

When using an EnDat encoder, the MPHASE and PFBOFF parameters are read from the encoder at power up, and not from the drive's non-volatile memory.

HSAVE	SAVE Save the <u>MPHASE</u> and <u>PFBOFF</u> parameters to the EnDa EEPROM. This is an "action"-type instruction; it does not read or writ		s to the EnDat
	parameter, but caus	pe instruction; it does no es a specific action to be re a write-only paramete	e take. Use this
Parameter Index	0x47	Firmware Version	1.1.0
Data Access	Action	Data Type	Integer
Units	N/A	Range	0
Default	N/A	EEPROM	No

9.13.7 Sine/Cosine Calibration

For maximum position accuracy, the amplitudes of the sine and cosine signals need to be well matched. The Heidenhain encoder specification shows that these signals may have amplitudes independently in the range of 0.8V to 1.2V. The CD SynqNet provides the ability to calibrate the sine and cosine signals. Refer to the section on <u>Sine/Cosine Calibration</u>.

9.14 Sine/Cosine Calibration

9.14.1 Overview

The software Sine Encoder and software Resolver algorithms are based on sampling the incoming sine and cosine signals. Although the process is transparent to the user, and therefore does not require additional commands, the accuracy of the process depends on the sampling accuracy and on the matching of the sine and cosine values. In order to prevent accuracy degradation due to electronic component tolerances, the sine and cosine values must be gain- and offset-compensated.

The process of finding the gain and offset compensation parameters matches an amplifier to an encoder or resolver. After the process terminates the gain and offset values are stored in the non-volatile memory and are loaded each time the amplifier is powered on.

Note: The calibration is automatic and is done at every power up. Thus, explicit execution of the calibration is not generally necessary.

The process includes finding 128 maximum and minimum, Sine and Cosine peaks and calculating the average gain and offset values. Due to accuracy restrictions the motor must be rotated at a slow speed so that the Sine/Cosine waves generated will be at a frequency low enough for a valid result. The speed must be such that the frequency of the Sine/Cosine signals does not exceed 250Hz. The maximum motor speed can be seen from the following table:

Motor Type	Feedback Type	Maximum Motor Speed
Rotary	Resolver	15000 RPM
Rotary	Sine Encoder	60 x 250 / (MENCRES x MSININT)
Linear	Sine Encoder	250 x MPITCH / (MSININT x MENCRES)

where:

- <u>MENCRES</u> is the encoder resolution
- MSININT is the sine encoder interpolation level
- <u>MPITCH</u> is the linear motor pitch

9.14.2 The Process

During calibration the motor can be moved manually or under servo control (preferably under velocity control). The following steps should be taken:

- Initialize the process by entering the instruction SININIT. This is done by accessing the SININIT drive parameter (0x48). When the process is initialized, the SININITST parameter (SynqNet parameter 0x3B) is set to 1, to indicate that the process is running.
- Move the motor in either direction.
- While moving the motor, query the status using the SININITST parameter.
- The process is complete when SININITST returns a value of 0 (procedure not running).

Once the process has been completed, the sine and cosine offset and gain values are stored automatically in the drive's non-volatile memory (EEPROM). These values may be read, but they do not have physical units. Refer to the SINPARAMx parameters (SynqNet parameters 0x3C to 0x3F).

		/ I III /I //			
SININIT	Initialize the sine/cosine calibration routine.				
		n"-type instruction; it does r			
		causes a specific action to b			
		it were a write-only parame	ter with a data value of		
	zero.				
Parameter Index	0x48	Firmware Version	0.0.2.9		
Data Access	Action	Data Type	Integer		
Units	N/A	Range	0		
Default	N/A	EEPROM	No		
SININITST		tus of the sine calibration pr returned by the query:	ocess. The following		
SININITST		returned by the query:	ocess. The following		
SININITST	values may be r 0 - no re	returned by the query:	ocess. The following		
SININITST	values may be r 0 - no re 1 - proc	eturned by the query:	ocess. The following		
SININITST Parameter Index	values may be r 0 - no re 1 - proc	returned by the query: equest sess running	ocess. The following 0.0.2.9		
	values may be r 0 - no re 1 - proc 2 – velo	returned by the query: equest ress running poity too high			
Parameter Index	values may be r 0 - no ro 1 - proc 2 – velo 0x3B	returned by the query: equest sess running poity too high Firmware Version	0.0.2.9		

9.14.3 Calibration Data

The calibration data are stored in the drives' non-volatile memory.

Queries the sine	e signal offset	
0x3C	Firmware Version	0.0.2.9
Read Only	Data Type	Hexadecimal Integer
N/A	Range	0 to 0xFFF0. The least significant 4 bits are always zero.
0	FERRAM	Vaa
0	EEPROM	Yes
0 Queries the cosi		Yes
		0.0.2.9
Queries the cosi	ine signal offset	
Queries the cosi 0x3D	ine signal offset Firmware Version	0.0.2.9
	0x3C Read Only N/A	Read Only Data Type N/A Range

SINPARAM3		to cosine matching gain.	
	have the same a calculated from the amplitude dif close to 1. The f	equires that the sine and c amplitude. The factor used (SINPARAM3 / 2 ^ SINPA (fference of the sine and co irmware multiplies the Sin same amplitude for the Si	I to match them is RAM4), and represents osine signals. It should be e signal samples by this
Parameter Index	0x3E	Firmware Version	0.0.2.9
Data Access	Read Only	Data Type	Integer
Units	N/A	Range	1 to 32767
Default	0x4000	EEPROM	Yes
SINPARAM4	Queries the sine	to cosine matching scale	
	calculated from (the amplitude dif close to 1. The f value to get the signals.	amplitude. The factor used (SINPARAM3 / 2 ^ SINPA fference of the sine and co irmware multiplies the Sin same amplitude for the Si	RAM4), and represents osine signals. It should be e signal samples by this ne and the Cosine
Parameter Index	0x3F	Firmware Version	0.0.2.9
Data Access	Read Only	Data Type	Integer
Units	N/A	Range	1 to 15
Default	14	EEPROM	Yes
SINPARAM5	Queries the full-	scale gain.	
	This parameter	is relevant for resolver	feedback only.
	scaled to 32768 represents the fa should be in the	equires that the sine and c . The final value equals (g actor to multiply the sine a range 1.2 to 1.3. The firm als samples by this value.	ain / 2^scale), and it ind cosine signals. It
			0.0.2.9
Parameter Index	0x5A	Firmware Version	
Parameter Index Data Access	0x5A Read Only	Data Type	Integer
Data Access			Integer 1 to 32767
	Read Only	Data Type	-
Data Access Units	Read Only N/A 0x4000	Data Type Range	1 to 32767
Data Access Units Default	Read Only N/A 0x4000 Queries the full-s	Data Type Range EEPROM	1 to 32767 Yes
Data Access Units Default	Read Only N/A 0x4000 Queries the full-s This parameter The algorithm re scaled to 32768 represents the fa should be in the	Data Type Range EEPROM scale matching scale.	1 to 32767 Yes feedback only. osine signals should be ain / 2^scale), and it ind cosine signals. It
Data Access Units Default SINPARAM6	Read Only N/A 0x4000 Queries the full-s This parameter The algorithm re scaled to 32768 represents the fa should be in the	Data Type Range EEPROM scale matching scale. is relevant for resolver equires that the sine and c . The final value equals (g actor to multiply the sine a range 1.2 to 1.3. The firm	1 to 32767 Yes feedback only. osine signals should be ain / 2^scale), and it ind cosine signals. It
Data Access Units Default SINPARAM6	Read Only N/A 0x4000 Queries the full-s This parameter The algorithm re scaled to 32768, represents the fa should be in the and cosine signa	Data Type Range EEPROM scale matching scale. is relevant for resolver equires that the sine and c . The final value equals (g actor to multiply the sine a range 1.2 to 1.3. The firm als samples by this value.	1 to 32767 Yes feedback only. osine signals should be ain / 2^scale), and it and cosine signals. It ware multiplies the sine
Data Access Units Default SINPARAM6	Read Only N/A 0x4000 Queries the full-s This parameter The algorithm re scaled to 32768 represents the fa should be in the and cosine signa 0x5B	Data Type Range EEPROM scale matching scale. is relevant for resolver equires that the sine and c . The final value equals (g actor to multiply the sine a range 1.2 to 1.3. The firm als samples by this value. Firmware Version	1 to 32767 Yes feedback only. osine signals should be ain / 2^scale), and it ind cosine signals. It ware multiplies the sine 0.0.2.9

9.15 Drive Enable

The drive is enabled by a combination of 3 signals or states:

- Remote Enable. This is a signal in the range of 5-24Vdc, applied to the Remote Enable input on the Controller I/O connector. The state of this signal can be checked using the REMOTE parameter. The drive can be configured to ignore the Remote Enable signal by setting the RMTMODE parameter to the value of 1.
- Software Enable. This command is provided by the motion controller.
- The drive can be enabled only when no faults exist.

The following are descriptions of the REMOTE and the RMTMODE parameters.

REMOTE	Indicates the	e state of the extern	al hardware enable input line.
Parameter Index	0x25	Firmware Version	0.0.1
Data Access	Read only	Data Type	Boolean
Units	N/A	Range	0 (remote enable input off)
			1 (remote enable input on)
RMTMODE			
Parameter Index	0x	Firmware Version	0.1.9
Data Access	Read/Write	Data Type	Boolean
Units	N/A	Range	0: Do not ignore the REMOTE signal
			1: Ignore the REMOTE signal
Default	0	EEPROM	Yes.
			For EnDat systems, the value is stored in the EnDat EEPROM.

The READY indication in the drive is set when the drive is ready to be enabled. The ACTIVE indication is set when the drive is enabled.

READY			s ready to be enabled or not. The drive is ready to be d and there are no faults.
Parameter Index	0x59	Firmware Version	0.0.1
Data Access	Read only	Data Type	Boolean
Units	N/A	Range	0 (drive not ready for enable)
			1 (drive is ready for enable)
ACTIVE	Indicates w	nether the drive is	s enabled or not.
Parameter Index	0x26	Firmware Version	0.0.1
Data Access	Read only	Data Type	Boolean
Units	N/A	Range	0 (drive is not enabled)
			1 (drive is enabled)

9.16 Faults and Warnings

The PicoDAD has a number of different fault codes. Faults and warnings are indicated in a 32-bit Fault Status word, with each bit indicating a specific fault or warning. The drive is disabled when a fault occurs, and will be re-enabled when the fault condition is removed and the fault state is cleared.

9.16.1 Warnings

Bit 14 in the Cyclic Status Flags is set when a warning condition exists. The warning register can be read using Direct Command 0xA to determine which warning conditions exist.

Bit Number	Bit Mask	Warning Description	Possible Cause	What to do
0	0x0001	Foldback	The drive monitors the average current using an I ² t algorithm. When the rated RMS continuous current is exceeded a warning is issued; the current folds back but the drive will not be automatically disabled when foldback occurs. The warning be cleared automatically when the foldback condition no longer exists.	 Make sure that the ICONT parameter is set correctly. It may be set lower than necessary Reduce the duty cycle of the motion Check the drive and motor sizing; maybe higher power equipment is required
1	0x0002	Under- Voltage	An under-voltage warning is issued if the bus voltage drops below the threshold (specified by the UVTRESH parameter), and UVMODE is set to 1. This fault may be indicative of the bus power supply not being able to supply the current needed for the application.	 Check the bus voltage without motion. Make sure it is as expected. Check that the bus power supply is able to keep the output voltage constant even when the maximum application current is being drawn.
2	0x0004	Phase Finding Required	This bit is set when phase finding (commutation initialization) is required.	Follow the <u>Commutation</u> <u>Initialization</u> procedure.
3-15		Reserved		

The following table describes the bits in the Warning Register.

The warning summary bit is shown in MotionConsole, in the Motor Summary window. The warning status appears in the bottom section of this window, and is the last entry in the I/O tab.

Wotor Summary: Con	troller 0		
Config Events 1/0 Info	SinCom		
	Motor 0	Motor 1	
Save To Flesh			
view Sub-objects		HIIIII	
4mp Enalole	Enabled	Enabled	
ype	Servo	Servo	
Amp Disable Action	Critid = Act	Cred = Act	
Vinery Encoder Phase	Reversed	Reversed	
Vimary Encoder Type	DRIVE	DRIVE	
Vinery Encoder Onts/Rev	0	0	
Secondary Encoder Phase	Reversed	Reversed	
Secondary Encoder Type	QUAD_AB	QUAD_AB	
Secondary Encoder Onts/Rev	0	0	
Amp Disable Delay	0	0	
Stake Mode	Delay	Delay	
Brake Apply Delay	0	0	
Brake Release Delay	0	0	
fault Config	0x00000066	0x00000066	1
have Enabled Antiban	Minne	Mona	-
Status 1/0			-
Vrtp Enable	2 Disabled	Citabled	
4mp Bhaible Bit	Low	- Law	
Brake Release	Low	Law	
Amp Fault	OHigh	QHigh	
ivake Applied	⊖ High	OHigh	
Home Sensor	-Low	Low	
HWUmit	Low	Low	
HWLINE	-Low	Low	
ndex, Primary	Low	Law	
ndex, Secondary	Low	Low	
eesback Fault	Low	Low	
Captured	-Low	Low	
In A	QHigh	QHigh	
Hell B	Offigh	-Law	
M C	Low	OHgh	
ang Active	Low .	Law	
Varning	Low	Low	-

Figure 9-4: Warning indication in MotionConsole

9.16.2 Faults

When a fault occurs, a bit in the Fault Status word is latched and bit 15 in the SynqNet Cyclic Status Flags is set to indicate this state. The fault status word has 32 bits. Bit 14 in the lower 16 bits indicates that a feedback loss fault has occurred, and the upper 16 bits are used to identify the specific faults associated with a feedback loss. The fault status word is read using Direct Command 0x08.

The following table describes the bits in the Fault Status word.

Bit mask of Faults Status word	Fault Description	Possible Cause
0x0001	EEPROM checksum fail	EEPROM checksum invalid on power up. Set all drive parameters and save them in the EEPROM.

January	30,	2006
---------	-----	------

Bit mask of Faults Status word	Fault Description	Possible Cause
0x0002	Over current The over current fault can only be cleared by either a SynqNet RESET or a power cycle.	 Power stage surge current. Can be caused by Short circuit of motor power leads Excessive current loop gain (try reducing MLMIN or increasing VBUS)
0x0004	Over voltage	Excessive deceleration rate, resulting in increased bus voltage due to regeneration
0x0008	Unused	
0x0010	Drive over temperature	The temperature on the heat sink has exceeded 80°C.
0x0020	Under voltage	Bus voltage is too low. Check that AC power is still applied.
0x0040	Not configured	Invalid motor data or control loops not initialized.
0x0080	Unused	
0x0100	EEPROM fault	
0x0200	Unused	
0x0400	1.5V Reference fail	Internal hardware failure
0x0800	Unused	
0x1000	SynqNet communication fault	The SynqNet cable has been disconnected. This fault is latched upon receiving a dedicated bit (bit 9) in the downstream cyclic demand flags register. The drive doesn't filter this bit, nor doesn't it wait until the communication (between the SynqNet FPGA and the DSP) stabilizes. It means that even a single appearance of this bit can latch the fault.
0x2000	Unused	
0x4000	Feedback loss	Some type of feedback loss has occurred. Read the Feedback Loss Status Word to see discover the cause.
0x8000	Unused	
0x00010000	A/B Line Break	
0x00020000	Illegal halls	Illegal halls combination detected. The combinations 000 and 111 are invalid. Either the signals are not connected properly, or they have been inverted incorrectly. See <u>MHINVx</u> instructions.
0x00040000	Index break	
0x00080000	Encoder not initialized	
0x00100000	EnDat fault	Check that the EnDat encoder is connected, or check the MENCTYPE parameter to verify that it is correctly set.
0x00200000	A/B Out of range	Check that the sine/cosine signals are connected and are in the proper range. Sine Encoder signals should be $1Vp$ -p, $\pm 10\%$.

Bit mask of Faults Status word	Fault Description	Possible Cause
0x00400000	Motor over-temperature fault	 Motor thermistor leads are not connected (should be connected between pins 13 and 25 of connector C2) Motor has overheated There is no thermistor in the motor. Set THERMODE to 1 The thermistor type is not set correctly. Set THERMTYPE to 0 for a PTC device, or 1 for an NTC device
0x00800000	Sine-quad mismatch	This fault is set toggled when the digital counter quad and analog quad mismatch at least 2 consequent sample times and the motor is moving more than 3 counts in digital counter.
0x01000000	Unused	
0x02000000	Unused	
0x04000000	Unused	
0x08000000	Unused	
0x1000000	Unused	
0x20000000	Unused	
0x40000000	Unused	
0x80000000	Unused	

9.16.3 Reading Warnings Over SynqNet

The Warning register can be read using Direct Command 0x0A (see section Direct Commands for details on how to use Direct Commands). When using the *sqCmd* utility, the following instruction will cause the Warning register to be read:

```
sqCmd -node x -channel y -memory 3 -addr 0xA -read
```

where

x is the node number. Nodes are numbered from 0.

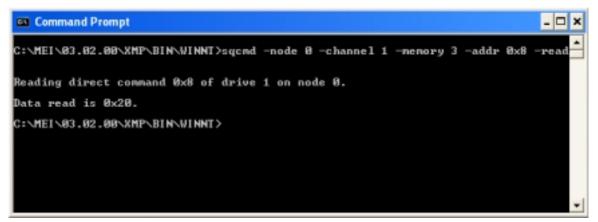
y is the drive, or axis, number on that node. Drives are numbered from 0.

0x8 is the Direct Command identifier for reading the fault status word

9.16.4 Reading Faults Over SynqNet

The Fault Status word can be read using Direct Command 0x08 (see section Direct Commands for details on how to use Direct Commands). When using the *sqCmd* utility, the following instruction will cause the Fault Status word to be read:

sqCmd -node x -channel y -memory 3 -addr 0x8 -read


where

x is the node number. Nodes are numbered from 0.

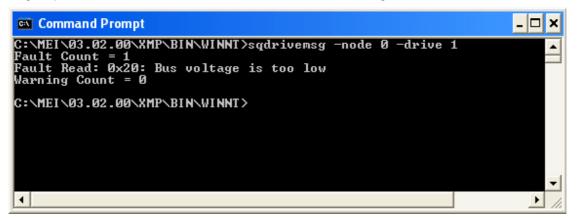
y is the drive, or axis, number on that node. Drives are numbered from 0.

0x8 is the Direct Command identifier for reading the fault status word

The following response was received from a drive that has an under-voltage fault:

9.16.5 Using the SqDriveMsg Utility

Another way of reading faults and warnings is to use the *sqDriveMsg* utility as follows:


SqDriveMsg -node x -drive y

where

x is the node number. Nodes are numbered from 0.

y is the drive, or axis, number on that node. Drives are numbered from 0.

This utility has the advantage of retuning a textual description of all the faults that exist on the drive. The following response was received from an axis that has an under-voltage fault:

9.16.6 Clearing Faults

Faults cleared using Direct Command 0x09 (see section on <u>Direct Commands</u> for details on how to use Direct Commands). Faults will only be cleared if the fault condition no longer exists.). When using the *sqCmd* utility, the following instruction will cause the faults to be cleared:

PicoDAD-SN User Manual

sqCmd -node x -channel y -memory 3 -addr 0x9 -write

where

x is the node number. Nodes are numbered from 0.

y is the drive, or axis, number on that node. Drives are numbered from 0.

0x9 is the Direct Command identifier for clearing the fault status word

Notes:

- The Over Current and Watchdog faults can only be cleared by a power cycle.
- The Current Foldback bit is a warning only; the drive is not disabled when foldback occurs, and this bit is not latched. It is cleared when the drive is no longer in the foldback state.

Faults can also be cleared through MotionConsole, by clicking on the CLEAR FAULT button in the Motion Supervisor Actions window.

9.16.7 Fault History

The drive stores the last 10 faults in a cyclic buffer. Each fault has a time stamp, indicating the time at which the fault occurred. The timer is reset to zero at each power up. The fault history log is accessible only from the serial port, and is read using the FTLHIST instruction.

9.17 Direct Commands

Direct Commands are used to service commands to the drive. Service commands include accessing drive parameters, and executing instructions.

9.17.1 Table of Direct Command Codes

The direct commands are summarized in the following table. Commands appearing in Grey are not implemented.

Command Code	Definition	R/W	Pipelining applicable?	Description
0x00	NOP	-	N	Null command
0x01	Get_Synq_Period / Set_Synq_Period	R/W	N	in units of 40ns
0x02	Get_Drive_Update_Period / Set_Drive_Update_Period	R/W	N	in units of 40ns
0x03	Download_Page_Start	W	Ν	data field selects the download page
0x04	Download_Data	VV	Y	
0x05	Download_Page_Write	W	Ν	activates writing to non-volatile memory at the drive
0x06	Upload_Page_Start	W	N	data field selects the upload page
0x07	Upload_Data	R	Y	
0x08	Fault_Read	R	N	Reads code of the existing Fault(s)
0x09	Fault_Clear	W	N	Clears all existing Faults
0x09	Fault_Count	R	Ν	Returns how many Faults now exist
0x0A	Warning_Read	R	Ν	Reads code of the existing
0x0B	Warning _Clear	VV	N	Warning(s) Clears all existing Warnings

Command Code	Definition	R/W	Pipelining applicable?	Description
0x0B	Warning_Count	R	Ν	Returns how many Warning now exist
0x0D	Turn_Count_Read	R	Ν	Reads the number of turns from the absolute encoder
0x0E	Turn_Count _Clear	VV	Ν	Sets the number of turns of the absolute encoder to zero
0x0F	Get_Monitor_A_Table / Set_Monitor_A_Table	R/W	N	Using the data passed, Pointer_A is set to one of the tabulated values in tabulated values
0x10	Get_Monitor_A_Memory/ Set_Monitor_A_Memory	R/W	N	Using the data passed, Pointer_A is set to point to a memory location in the data memory space
0x11	Get_Monitor_B_Table / Set_Monitor_B_Table	R/W	N	Using the data passed, Pointer_B is set to one of the tabulated values.
0x12	Get_Monitor_B_Memory/ Set_Monitor_B_Memory	R/W	N	Using the data passed, Pointer_B is set to point to a memory location in the data memory space
0x13	Get_Monitor_C_Table / Set_Monitor_C_Table	R/W	N	Using the data passed, Pointer_C is set to one of the tabulated values in tabulated values
0x14	Get_Monitor_C_Memory/ Set_Monitor_C_Memory	R/W	N	Using the data passed, Pointer_C is set to point to a memory location in the data memory space
0x15	Get_Char / Put_Char	R/W	Ν	Gets a character from the virtual serial port buffer or puts a character into the virtual serial port buffer.
0x19	Get_Parameter_Index ³ / Set_Parameter_Index	R/W	N	Returns/Sets-up the parameter pointer to point to the motor's N th parameter
0x1A	Get_Parameter / Set_Parameter	R/W	N	Accesses the value of the parameter pointed to by the parameter pointer
0x1C	Store Parameters	W	N	Copies the motor's parameter table from the Drive Processor's RAM to its local EEPROM ⁴
0x1D	Restore_Factory_Defaults	W	N	Loads the motor's parameter table in the Drive Processor's RAM with a set of factory default parameters
0x1E	Reload_Parameters	W	N	Copies the motor's parameter table in the drive Processor's local EEPROM to the Drive Processor's RAM

³ The parameter functions provide a general way of accessing drive quantities that are not otherwise accessible by direct commands, for example gains.

⁴ A local serial EEPROM attached to the DP. Note that this Parameter EEPROM is distinct from the Identification EEPROM.

Command Code	Definition	R/W	Pipelining applicable?	Description
0x1F	<u>Clear_Parameters</u>	W	Ν	Clears the motor's parameter table from the Drive Processor's local EEPROM. NOTE: This instruction can only be executed when both axes are disabled.
0x20	Config From Parameters	W	N	Causes the Drive Processor to re- compute the set of internal variables that are derived from the motor's parameter list that is now in RAM.
0x30	Get_ADC	R	N	Get the value of an ADC channel implemented at the Drive Processor.
0x40	Get_Monitor_A_Switch	R	N	0 = Pointer_A points to one of the tabulated values 1 = Pointer_A points to a memory location in the data memory space
0x41	Get_Monitor_B_Switch	R	N	0 = Pointer_B points to one of the tabulated values 1 = Pointer_B points to a memory location in the data memory space
0x42	Get_Monitor_C_Switch	R	N	0 = Pointer_B points to one of the tabulated values 1 = Pointer_Apoints to a memory location in the data memory space
0x60	Set_Autonomous_Drive_Action _Type	W	N	Sets-up the next autonomous drive action
0x61	Cancel_Autonomous_Drive_Act ion	W	N	The drive returns to the state prior to starting the autonomous drive action
0x62	Get_Phase_Finding_Status	R	N	The drive returns a value indicating the status of the phase-finding process

9.17.2 Direct Command Syntax

When using the *sqCmd* utility, the command syntax is as follows:

```
sqCmd -node x -channel y - memory 3 -addr <command code> [-write -data <data value>] [-read]
```

where

x is the node number. Nodes are numbered from 0.

y is the drive, or axis, number on that node. Drives are numbered from 0.

<command code> is the Direct Command identifier

<data value> is the data to be written, when accessing a Direct Command that takes data.

Note: Some Direct Commands are defined as being of the WRITE type, but they do not take any data.

9.17.3 Examples of Direct Commands

The following are some examples of commonly used Direct Commands, showing the syntax of the *sqCmd* utility. In all cases the following notation applies:

Read Faults:

```
sqCmd -node x -channel y -memory 3 -addr 0x08 -read
```

Clear Faults:

sqCmd –node x –channel y –memory 3 –addr 0x09 -write

Store parameters in non-volatile memory:

sqCmd –node x –channel y –memory 3 –addr 0x1C -write

Read value from analog input 1:

sqCmd –node x –channel y –memory 3 –addr 0x30 –read –data 0

Read value from analog input 2:

sqCmd -node x -channel y -memory 3 -addr 0x30 -read -data 1

Drive parameter access:

Drive parameter access is done in two stages. First, the parameter index is set using Direct Command 0x19. Next, the parameter is either read by using Direct Command 0x1A, or written by using Direct Command 0x1A.

However, a much easier way of accessing drive parameters is with the sqDriveParam utility. To read a parameter, the syntax is

SqDriveParam -node x -drive y -read <parameter index>

To write a parameter, the syntax is

SqDriveParam -node x -drive y -write <parameter index> -data <data value>

9.18 Real Time Monitoring

The SynqNet protocol provides for simultaneous real-time monitoring of up to 3 16-bit data values. The data is communicated from the drive to the motion controller in the cyclic upstream message. Place for this data is always reserved in the protocol, so using or not using the monitor function does not affect the cycle time.

PicoDAD-SN User Manual

Danaher Motion Kollmorgen January 30, 2006

Monitoring can be performed on a number of pre-defined values or on any memory location. Monitoring is set up using Direct Commands, and thereafter the data can be either gathered and analyzed by the application, or graphed using MotionScope.

9.18.1 Values Available for Real-Time Monitoring

The following table shows the pre-defined data that are available for real-time monitoring.

Monitor Index	Data (16-bit)
0	U phase current
1	V phase current
2	W phase current
10	Actual current
30	Analogue Input 1
31	Analogue Input 2
36	Bus Voltage Analogue Input
37	Drive Temperature Analogue Input
40	Sine signal
	The signal is shown in units of milli-volts, referenced to the signal as it enters the drive.
41	Cosine signal
42	Out of range calculation for sine encoder and resolver
50	Lower 16 bits of Position
51	Upper 16 bits of Position

Notes:

1. The 4 available Analog inputs are mapped as two per axis

2. The actual current appears in the same units as the torque command.

9.18.2 Setting up Real-Time Monitoring

Monitoring is set up using the *sqDriveMonitor* utility. The syntax is as follows:

SqDriveMonitor -node x -drive y -<monitor channel> -index <monitor index> [-poll]

where

x is the node number. Nodes are numbered from 0.

y is the drive, or axis, number on that node. Drives are numbered from 0.

<monitor channel> is one of **MonitorA**, **MonitorB** or **MonitorC**.

<monitor index> identifies the data to be monitored

The *-poll* flag is optional. When used, the monitored data are displayed constantly in the DOS window, until the ESC key is hit. Using this flag provides an easy way to see if the monitor configuration was done correctly.

The following are examples of how to set up monitoring, using the sqDriveMonitor utility.

Actual Torque on MonitorA:

SqDriveMonitor -node x -drive y -monitorA -index 10

Analog input 2 on channel B:

SqDriveMonitor -node x -drive y -monitorB -index 31

Bus Voltage on channel C:

SqDriveMonitor -node x -drive y -monitorC -index 36

9.18.3 Viewing Monitored Data on MotionScope

When using MPI version 03.03.00 or later, the real-time monitors can be selected from the trace selection window in MotionScope.

In order to view monitored data on MotionScope when using MPI versions prior to (but not including) 03.03.00, one needs to know the internal address at which the data appears. Once the address known, a trace can be created in MotionScope. The following section describes how to find that address and how to set up the trace in MotionScope.

9.18.3.1 Finding the Monitored Data Address

The address is found using the VM3 utility.

- Open VM3
- Press the 'F4" key to show data in hexadecimal format
- Press the 'S' key to get to the '*RinconBufferInternal*' page.

The monitored data is labeled by the **Status.Motor[x].Monitor[y]** field, as shown in the screen-capture below.

🖬 Motion Engineering, Inc FWO Ver. 5.61A	4 Opt. 0 Memory (Hex)		- 🗆 >
RinconBufferInternal			
Header	0×01000100:	0x8000FF01	
CycleCount	0×01000104:	0×00000000	
Denand.Header	0×01000108:	0×00000004	_
Demand.Motor[0].DemandA	0x0100010C:	0x00000003	
Demand.Motor[1].DemandA	0×01000110:	0×00000003	
Control.Header	0x01000114:	0xFF000005	
Control.SrvCnd.Address	0×01000118:	0×000C0408	
Control.SruCnd.Data	0x0100011C:	0x00000000	
Control.Motor[0].loOutput	0x01000120:	8×88888888	
Control.Motor[0].CptCmpFlags	0×01000124:	0×00000000	
Control.Motor[1].IoOutput	0x01000128:	8×88888888	
Control.Motor[1].CptCmpFlags	0×0100012C:	8×88888888	
TestPacket	0x01000130:	0×0000FF24	
Unused[0]	0x01000134:	0×00000000	
Unused[1]	0×01000138:	0×00000000	
Unused[2]	0x0100013C:	8×8888888	
Status.Header	0×01000140:	0×00040082	
Status.SrvCnd.Response	0x01000144:	ØxFFFFFFF	
Status.Motor[0].loInput	0×01000148:	8×00000302	
Status, Motor[0], Monitor[0]	0×0100014C:	0×023B0CB4	
Status, Motor[0], Monitor[1]	8x81888158:	0x0392E370	
Status.Motor[1].loInput	0×01000154:	0×00000402	
Status.Motor[1].Monitor[0]	0x01000158:	8×888E888E	
Status.Motor[1].Monitor[1]	0×0100015C:	0×0392000E	

Figure 9-5: VM3 Screen Showing Monitored Data

In this screen the Monitored data appear in two 32-bit words, Monitor[0] and Monitor[1]. Monitor A and Monitor B are in the lower and upper 16 bits respectively of Monitor[0], and Monitor C is in the lower 16 bits of Monitor[1].

9.18.3.2 Defining New Traces in MotionScope

In MotionScope, click on the *Traces* button. The Select Traces screen appears.

Select Traces Set		×
Select Traces From This List Act 0 Act Pos Act 0 Pos Act 0 Pos Act 0 Pos Act 0 Pos Act 0 TC.Velocity Act 0 TC.Velocity Act 0 TC.Accel F10 DAC Dut MS 0 Status. Art agent MS 0 Status. Art agent MS 0 Status. Informe MS 0 Status. Inf	Trace Set for Pane	Scoup highlighted Traces

Figure 9-6: Selecting Traces in MotionScope

Click on the *New* button to get to a dialog screen in which we will define the monitored data traces.

Danaher Motion Kollmorgen

Assuming that the monitored data has been set up such that analog input 1 is being monitored on channel A and analog input 2 is being monitored on channel B, the new traces will be defined as shown in the following screen capture:

Edit Trace Properties		Edit Trace Properties	
Nome: Analog Input #1 Address: (0x100014c hes BitMasking IF Masking Enabled Mask (0x11 hes IF Nomaize Bight Units C	Data Type C [ong [32 bits] C [soat [32 bits] C graigned long (32 bits) F ghot (16 bits) C unsigned short (16 bits) C upper word	None: Analog Input #2 Address: Dx100014c hes BitMasking IF Masking Enabled Mask Dx110000 hes IF Normalize Bight Units C Gounts/Sec	Data Type C [org [32 bits] C [jost [32 bits] C greigned long (32 bits) F ghost (16 bits) C unsigned signt (16 bits) C upper word
C Counts/Seg ¹¹² MillSecs Mill_tots Degrees Real (complex) Integ (complex) Deobels Ngne Scale	Gyper word Gyper word Display as Hey AutoScale During Acguire During Display Divisions Num Dive (0 = Auto)	Counts/Seg**2 Mill&ecs Mill&des Degrees Real (complex) Complex) Complex Comple	AutoScale During Acquire During Display Divisions Num Dive (0 = Auto)
@ Linesr @ Log10 OK	Cancel	€ Linesr € Log10 OK	Cancel

Figure 9-7: Defining New Traces in MotionScope

Since the monitor data is in a 32-bit word and the data itself is 16-bits wide, the address must be masked.

- The data for channel A is masked by applying the mask value 0xffff. This masks out the upper 16 bits (which belong to monitor channel B).
- The data for channel B is masked by applying the mask value 0xffff0000. This masks out the lower 16 bits (which belong to monitor channel A).
- The data returned from the drive is a signed 16-bit value, and so the Data Type **short** is selected.

The analog inputs will now appear as traces on MotionScope.

Note: The actual addresses will vary according to which motion controller is being used, and on which node and axis the data are being monitored. The example above shows the address from a PCI ZMP motion controller, with one PicoDAD on the network.

9.19 Analog Inputs

The PicoDAD has 4 external analog inputs, having a range of ±10V. However, from a

The inputs can be read in one of three ways:

- By reading the relevant drive parameter
- By using Monitored Data in the cyclic channel

• By using the Direct Commands mechanism.

9.19.1 Reading Analog Inputs using Drive Parameters

The drive parameters ANIN1 and ANIN2 are used to read the analog inputs. The values are returned in units of milli-volts. An internal offset can be applied to an analog input, and this is typically used to zero an analog signal.

Note: The physical inputs are identified as analog inputs 1 through 4. From a firmware point of view, each axis on the drive has two analog inputs mapped to it.

- Analog inputs 1 and 3 are mapped to the first axis on the drive
- Analog inputs 2 and 4 are mapped to the second axis on the drive

Examples:

Read the first analog input on the first axis

sqdriveparam -node 0 -drive 0 -read 0x1a -type signed16

Read the first analog input on the second axis

sqdriveparam -node 0 -drive 1 -read 0x1a -type signed16

Note: By default, the sqDriveParam utility will return a 32-bit result. When reading analog inputs, make sure to specify 16-bit data, otherwise negative values will be returned incorrectly.

9.19.2 Accessing Analog Inputs Using Direct Commands

Analog inputs can be read using the *Get_ADC* Direct Command. The specific analog input being accessed is specified as shown in the table below.

ADC_Channel	Analog Input definition
0	Analog Input 0
1	Analog Input 1

All direct commands have data size of 32 bits. If only 16 bits are valid, they will be returned being padded with zero's or sign extended accordingly. Thus, analog input values less than zero will have a 0xFFFF sign extension.

Examples:

Read value from analog input 1 on the first axis:

sqCmd –node x –channel 0 –memory 3 –addr 0x30 –read –data 0

Read value from analog input 2 on the first axis:

sqCmd –node x –channel 0 –memory 3 –addr 0x30 –read –data 1

Read value from analog input 1 on the second axis:

sqCmd –node x –channel 1 –memory 3 –addr 0x30 –read –data 0

Read value from analog input 2 on the second axis:

sqCmd -node x -channel 1 -memory 3 -addr 0x30 -read -data 1

9.19.3 Analog Value Monitoring

Follow the procedures for setting up real-time monitoring. Select monitor index 30 or 31 for analog inputs 1 and 2 respectively. Note that the same indices are used on both axes.

9.19.4 Zeroing the Analog Input Offset

The ANZEROx instructions allow the user to zero out an analog input offset. The analog input is sampled, and then the value of the analog input offset, ANOFFx, is set in order to have the analog input reading be zero. The analog input offset may be set explicitly by the user as well.

ANZERO1	Perform Analog Ze	ro process for analog inp	out 1
Parameter Index	0x5C	Firmware Version	0.1.9
Data Access	Action	Data Type	Integer
Units	N/A	Range	0
Default	N/A	EEPROM	No
ANZERO2	Perform Analog Ze	ro process for analog inp	out 2
Parameter Index	0x5D	Firmware Version	0.1.9
Data Access	Action	Data Type	Integer
Units	N/A	Range	0
Default	N/A	EEPROM	No
ANOFF1	Set or query the value of the analog offset on axis 1. The analog offset can be set explicitly. It will be set implicitly as part of the Analog Zero process.		
	Analog Zero proce	SS.	<i>,</i> ,
Parameter Index	Analog Zero proce 0x1C	ss. Firmware Version	0.1.9
Parameter Index Data Access	e .		
	0x1C	Firmware Version	0.1.9
Data Access	0x1C Read/Write	Firmware Version Data Type	0.1.9 Integer
Data Access Units	0x1C Read/Write Milli-volts 0 Set or query the va	Firmware Version Data Type Range EEPROM Ilue of the analog offset of xplicitly. It will be set imp	0.1.9 Integer -5000 to 5000 Yes on axis 2. The analog
Data Access Units Default	0x1C Read/Write Milli-volts 0 Set or query the va offset can be set et	Firmware Version Data Type Range EEPROM Ilue of the analog offset of xplicitly. It will be set imp	0.1.9 Integer -5000 to 5000 Yes on axis 2. The analog
Data Access Units Default ANOFF2	0x1C Read/Write Milli-volts 0 Set or query the va offset can be set et Analog Zero proce	Firmware Version Data Type Range EEPROM Ilue of the analog offset of xplicitly. It will be set imp ss.	0.1.9 Integer -5000 to 5000 Yes on axis 2. The analog licitly as part of the
Data Access Units Default ANOFF2 Parameter Index	0x1C Read/Write Milli-volts 0 Set or query the va offset can be set ex Analog Zero proce 0x1D	Firmware Version Data Type Range EEPROM Ilue of the analog offset of xplicitly. It will be set imp ss. Firmware Version	0.1.9 Integer -5000 to 5000 Yes on axis 2. The analog licitly as part of the 0.1.9
Data Access Units Default ANOFF2 Parameter Index Data Access	0x1C Read/Write Milli-volts 0 Set or query the va offset can be set et Analog Zero proce 0x1D Read/Write	Firmware Version Data Type Range EEPROM Indue of the analog offset of explicitly. It will be set imp ss. Firmware Version Data Type	0.1.9 Integer -5000 to 5000 Yes on axis 2. The analog licitly as part of the 0.1.9 Integer

9.19.5 Low-pass Filtering on the Analog Inputs

A digital low-pass filter may be applied to the analog inputs. Note that there is also a low-pass filter in hardware, with the -3dB point set at 3.8kHz. The filter default is set to 10,000Hz, at which value there is effective no digital filter applied to the analog input

ANLPFHZ1	Set or query the value of the analog input low-pass filter on axis 1.			
Parameter Index	0x5E Firmware Version 0.1.9			
Data Access	Read/Write	Data Type	Integer	
Units	Hz	Range	1 to 10,000	
Default	10,000	EEPROM	Yes	

ANLPFHZ2	Set or query the value of the analog input low-pass filter on axis 2.		
Parameter Index	0x5F Firmware Version 0.1.9		
Data Access	Read/Write	Data Type	Integer
Units	Hz	Range	1 to 10,000
Default	10,000	EEPROM	Yes

9.20 SynqNet Cyclic Status Bits

The status flags are set by the drive processor as follows. These bits provide real-time summary status information to the controller. These bits can be found in VM3 at the *Motor[x].IO.DedicatedIn* location, are their mapping is shown in the table below.

Bit#	Description	Definition	Bit Location in Motor[x].IO.DedicatedIn
0	Reserved		
1	Reserved		
2	Reserved		
3	HALL A		Bit # 7
4	HALL B		Bit # 8
5	HALL C		Bit # 9
6	Reserved		
7	Ready for remote control	This amplifier is ready for remote control i.e.:-	Bit #5
		1. the amplfier is powered	
		2. the amplifier is not inhibited by any input	
		3. the amplifier is not inhibited by any fault	
		4. the amplfier will operate when AMPEN is set.	
8	Drive Processor Watchdog	DP toggles this at every ~DRIVE_STROBE	
9	Autonomous drive	Autonomous_Drive_Action_Complete:	Bit #14
	action complete	0= The drive is busy carrying out an autonomous action such as	
		phase-finding or homing if such an action has been requested	
		1=The autonomous drive action has been completed	
10	Reserved		
11	Amp Active	1=Amplifier is applying voltages to the motor windings	Bit #11
		0=Amplifier is off	
12	Drive Ready	Phase locked and able to exchange data cyclically	Bit #6

Danaher Motion Kollmorgen January 30, 2006

Bit#	Description	Definition	Bit Location in Motor[x].IO.DedicatedIn
13	Capture	1 = Drive Processor has captured the position according to the	Bit #7
		condition previously specified by a service command	
		0 = Capture has not occurred; it may or may not be armed-	
14	Warning	The drive has a <u>warning</u>	Bit #13
15	Fault	The drive has a <u>fault</u>	Bit #1

9.21 Position Capture

9.21.1 Controller Time-Based Position Capture

Position capture in the PicoDAD will always be time-based, since the feedback signals are connected to the drive processor only.

The SynqNet architecture supports time-based capture at the servo cycle rate. The time at which the capture trigger occurred is received at the controller every servo interval, and the controller firmware calculates the position using linear interpolation between the positions prior to and following the time of capture. The accuracy of the position capture thus depends on how constant the velocity is during the servo cycle where the capture occurred.

The accuracy in time-based capture is based on a few things:

- The encoder position is read very regularly (no time based jitter)
- The validity of linear interpolation to get an intermediate position. The closer the actual position behaves as constant velocity, the better. Time based capture gets more accurate at higher sample rates because the samples to interpolate between are closer together.

The following drive inputs, for each axis, can be used to trigger position capture:

- Any of the opto-isolated inputs (OPTO IN1, OPTO IN2, OPTO IN3, OPTO IN4)
- Any of the RS422 inputs (RS422 IN1, RS422 IN2)
- CW and CCW limits
- Home
- Secondary Encoder Index

10. Firmware Upgrade Procedure

Both the FPGA run-time image and the drive processor firmware can be upgraded over SynqNet. The best way to do this is via the **SqNode** Summary window within MotionConsole. Alternately, the firmware download can also be done using the **sqNodeFlash** utility.

Note: This section describes firmware download over SynqNet. In some case, a user may want to download firmware over the serial port instead. The process for doing this is described in the Appendix: Upgrading Firmware over the Serial Port.

10.1 Identifying the Firmware Files

- The FPGA run-time image is provided together with the MPI installation, and can be found in the *\XMP\BIN folder. The PicoDAD FPGA is identified by the prefix *CoFE0035_xyzw*, while the 4digit suffix (xyzw) identifies the version of the run-time image.
- The drive processor firmware is provided by the vendor. The firmware file is identified by a file name having the following general format:

pDad_xyz.i00

where xyz represents the firmware version. For example, '016' is firmware version 0.1.6.

Note: Both of these files must be located in the *\XMP\BIN folder.

Note: Although the PicoDAD has two independent axes, there is only one drive processor, and thus only one version of firmware.

10.2 Preparations

10.2.1 Retrieve Drive Parameters

It is recommended to retrieve and store the drive parameters before upgrading the firmware. New versions of firmware may have different sets of parameters; the drive verifies the checksum of the parameters and if a checksum error is found then the parameters are not loaded. Thus, if the new version has a different parameter set, the checksum will fail when the drive is powered up and the parameter settings will be lost.

Retrieving the drive parameters can be done using the *SqDriveConfig* utility. The syntax is described below. The syntax assumes that the utility is executed from the *\XMP\BIN\WINNT folder.

SqDriveConfig -node x -drive y -get <destination file name> -map <map file name>

where

x is the node number. Nodes are number from 0.

y is the drive, or axis, number on that node. Drives are numbered from 0.

<destination file name> is the name of the file that will be created with the drive parameters

<map file name> is the name of the map file being used

Example:

SqDriveConfig -node 0 -drive 1 -get Axis1.txt -map ..\Kollmorgen_Picodad.dm

This command will retrieve the parameters from the second axis on node 0, and store them in a file called "Axis1.txt". In this case, the map fiel being used is called "Kollmorgen_Picodad.dm", and it is located one directory level up from where the SqDriveConfig utility is being executed.

10.2.2 Clear the Drive Parameters

Drive parameters can be saved in non-volatile memory (EEPROM). Clearing the drive parameters entails clearing this EEPROM. This is done with a Direct Command using the *sqCmd* utility. The syntax is described below. The syntax assumes that the utility is executed from the *\XMP\BIN\WINNT folder.

sqCmd -node x -channel y -memory 3 -addr Ox1F -write

where

x is the node number. Nodes are numbered from 0.

y is the drive, or axis, number on that node. Drives are numbered from 0.

0x1F is the Direct Command identifier for the EEPROM clear instruction.

Example:

sqCmd -node 0 -channel 1 -memory 3 -addr 0x1F -write

This command will clear the parameters on axis 1.

Note: This command can only be executed when both axes are disabled.

10.3 Update Drive Firmware

10.3.1 Using MotionConsole

• Open the SqNode Summary window in MotionConsole. To do this, click on the icon labeled "N". The sqNode summary window is shown below.

이 많이 많이 다니 글에 표 IN Schode Summary:		
Config 10 Abort Info		•
to the late	Sallede 0	7
Binary Download	1000	
Save To Flash		
View Sub-objects		
Clear Status		
Alarm Mask	D=00000003	
Alarva Not Cyclic	F Enabled	
Alam isAbot	F Enebled	
Upstream Err . Pault Limit	4	
Upstream Err. Fail Limit	16	
Downstream Bry, Fault Lini	5	
Downstream Drr. Fail Linit	12	
User Pault Address	0v000AAE90	
User Foult Mask	Du:000000000	
User Fault Pattern	D::00000000	
		-
Status		-
	Sqliede 0	- 1
Upstream Err. Rate	D	
Upstream Bry . Count	0	
Downstream Err. Rate	0	
Cownstream By . Count CRC By . N D	0	
CRC ET. NO	0	
iOAbort	No	
Note Disable Input	No	
Node Alern Output	No	
Analog Power Fault	No	
User Pault	No	
Node Failure	No	-

Figure 10-1: SqNode Summary Window for Firmware Download

• Click on the Binary Download button in the CONFIG tab. The following dialog box appears.

Download Binary Image	to SqNode(s)	$\mathbf{ imes}$
Select file(s) to download to t SqNode 0, Controller 0: COF	ne following SynqNet node(s): E0035_0343.sff	
Channel	File	
Node FPGA Drive Processor 0 Firmware Drive Processor 1 Firmware	C:\MEI\03.02.00\XMP\BIN\C0FE0035_0343.sff (Unspecified) (Unspecified)	
Clear Selected Clear	All Browse Download Verify Close	

- To select an FPGA image, click on "Node FPGA", and click on BROSE to locate the file. It should be located in the *\XMP\BIN folder.
- To select drive processor firmware, click on "Drive Processor Firmware 0", and click on BROWSE to locate the file. You must have placed this file beforehand in the *\XMP\BIN folder.

Note: The FPGA image and the drive processor firmware may be downloaded during the same operation. To select only one of these files, click on the one you DO NOT want to download, and the click on CLEAR SELECTED.

 Once the files have been selected, click on DOWNLOAD. After a number of seconds, a progress bar will begin to appear. The entire process may take a few minutes.

Downloading Firmware to SqNode(s)		
Item	Error	
SqNode 0, Controller 0: Drive Processor 0 Firmware		
		Conset
		Cancel

PicoDAD-SN User Manual

Caution: Do not cancel a drive processor firmware download operation. The drive will then have invalid firmware and will not be able to boot up. While the situation can be recovered without sending the drive back to the factory, this situation should be avoided.

- During the firmware download process, the drive LED will have only the decimal point lit.
- After download is complete, the firmware download dialog box will again appear. Click on CLOSE to close it. The drive LED should now display an alternating "-" and "1" fault code. This code indicates that the drive has not been configured. This is to be expected, since we had previously cleared the drive's parameter memory.

Note: The fault code on the drive's LED will show a flashing "u" (under-voltage) if the bus power has been disconnected, or if the bus voltage is less than the default value of 36V. The under-voltage fault has higher priority, and therefore it, rather than the No-Configuration fault is shown

10.3.2 Using the sqNodeFlash Utility

The sqNodeFlash utility can be run either on the host PC or, when an eXMP is being used, on the eXMP itself. When using an eXMP, it is recommended to run the utility from the eXMP and not from the host. When using a host PC, the utility should be run from a DOS window under the XMP\BIN\WINNT folder.

The syntax for **sqNodeFlash** when downloading the FPGA image is as follows:

SqNodeFlash -node x -file <filename>

where

x is the node number. Nodes are numbered from 0.

filename is name of the file containing the image.

When running under the LINUX operating system, the syntax is

./SqNodeFlash -node x -file <filename>

Example:

SqNodeFlash -node 0 -file COFE0035_0343.sff

This command will download the FPGA image contained in file C0FE0035_0343.sff to the first node on the network.

The syntax for sqNodeFlash when downloading drive firmware is as follows

SqNodeFlash -node x -drive y -file <filename>

where

x is the node number. Nodes are numbered from 0.

y is the drive, or axis, number on that node. Drives are numbered from 0.

filename is name of the file containing the image.

For the PicoDAD, the firmware does not need to be loaded to both Drive 0 and Drive 1; it needs to be loaded only to Drive 0.

10.4 Resuming Operation

10.4.1 Verify the VERSION

Run the VERSION utility from the *\XMP\BIN\WINNT folder to get information on the MPI, FPGA and drive processor versions. A response similar to the following will be received.

```
- 🗆 X
 Command Prompt
C:\MEI\03.02.00\XMP\BIN\VINNT>version
MPI: version 03.02.00
MPI firmware: version 561 option 0
ZMP firmware: version 561 revision A sub-revision 4
option 0 branchId 0
Driver: version 3.00
Boot0 Version -1.65535
ZBoot Version 1.060
PLD : version 0x001C option 0x001C
Rincon: version 0x0224 package 0xA301
ZMP : T015-0001 Serial Number 510042
  yngnet:
                   1 Nodes, String
  ode[0] - Kollnorgen PicoDAD
Node Type : 0x00030020
Option # : 0x00000000
    deløj - K
Node Type
Option #
Serial #
Model #
Unique #
Switch #
                                                                 FPGA ID : 0xC0FE0035
FPGA Ver : 0x02400343
FPGA Branch : 0x000000000
FPGA Type : RUNTIME
FPGA Default: YES
                            0×00000024
                            0×00000003
         Match
                            YES
    Drive[0] Firmware version :
Drive[1] Firmware version :
                                                            0.1.6
  perating system
Vindows XP build 2600 Service Pack 1
  PU
    x86 Family 15 Model 1 Stepping 3
Intel(R) Celeron(R) CPU 1.80GHz
    Clock = 1794 MHz
   \MEI\03.02.00\XMP\BIN\VINNT>
```

10.4.2 Restore Drive Parameters

Download the previously saved drive parameters using the **SqDriveConfig** utility. The syntax is described below. The syntax assumes that the utility is executed from the *\XMP\BIN\WINNT folder.

SqDriveConfig -node x -drive y -set <destination file name> -map <map file name>

where

x is the node number. Nodes are numbered from 0.

y is the drive, or axis, number on that node. Drives are numbered from 0.

Note that we have now used the SET operator instead of the GET operator.

Example:

SqDriveConfig -node 0 -drive 1 -set Axis1.txt -map ..\Kollmorgen_picodad.dm

This command will send the parameters from the file called "Axis1.txt" to the second axis on node 0.

PicoDAD-SN User Manual

Danaher Motion Kollmorgen January 30, 2006

 After drive parameters have been set, the drive needs to configure it's internal loops and variables. This is done with a Direct Command using the *sqCmd* utility. The syntax is described below. The syntax assumes that the utility is executed from the *\XMP\BIN\WINNT folder.

```
sqCmd -node x -channel y -memory 3 -addr 0x20 -write
```

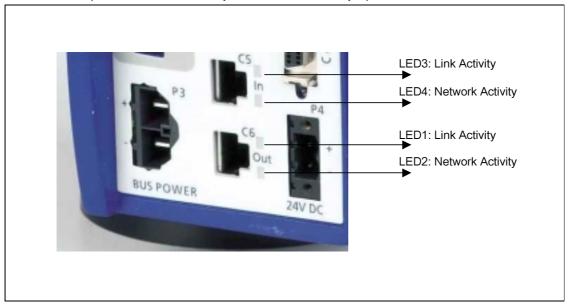
where

x is the node number. Nodes are numbered from 0.

y is the drive, or axis, number on that node. Drives are numbered from 0.

0x20 is the Direct Command identifier for the Configuration instruction.

Example:


sqCmd -node 0 -channel 1 -memory 3 -addr 0x20 -write

This command will configure axis 1.

11. Trouble Shooting

11.1 SynqNet LEDs

SynqNet LEDs will BLINK to indicate a fault (or undiscovered network). A controller with no blinking LEDs is in normal cyclic operation (without faults). Each SynqNet port has two LEDs, and each LED has a particular function, which is described in further detail below. The following picture shows a section of the PicoDAD front panel in order to identify the location of the SynqNet LEDs.

LED1 and LED3 = Link Activity

- On (Link Active). This is the normal state.
- Off (Link Inactive). This state is seen if the SynqNet cable is not making a proper connection between the nodes.

LED2 and LED4 = Network Activity

- On (Cyclic Phase--Tx and Rx are Active). This is the normal state.
- Off (Shutdown Phase--Idle State or network reset)
- Blink (Discovery Phase--only Tx is Active)

11.1.1 IN Port

LED	Port	Meaning	Controlled by	State
				ON = link active
LED3	IN	Link Activity	PHY	OFF = link inactive
				ON = Tx
				ON = Tx and Rx active (cyclic phase)
LED4	IN	Network Activity	MAC	BLINK = Tx only active (discovery phase)
				OFF = idle (shutdown phase), or during a network reset.

11.1.2 OUT Port

LED	Port	Meaning	Controlled by	State
LED1	OUT	Link Activity	PHY	ON = link active
				OFF = link inactive
			MAC	ON = Tx and Rx active (cyclic phase)
LED2	OUT	Network Activity		BLINK = Tx only active (discovery phase)
				OFF = Idle (shutdown phase), or during a network reset.

11.2 Drive Status 7-Segment LED

Drive Status is indicated using the 7-segment LED that is located on the front panel. This display shows drive status and drive fault codes. In the case that more than one fault exists, fault codes are displayed on the 7-segment LED according to their priority and only one fault code will be displayed. Read the Fault Status Word for a complete fault summary.

Most faults (except for Over-Current) are resettable, and do not require power cycling. When a fault occurs, remove the source of the fault and then execute the Fault Clear instruction. See section on Clearing Faults.

Danaher Motion Kollmorgen Januar

January 30, 2006

Description	Comments	Fault Display Priority
Decimal point only	After logic power is applied, the LED will show a decimal point only. The drive is not operational at this point; A SynqNet RESET needs to be executed in order to bring the drive to an operational state	
Steady '2' only	Torque Mode: the drive is configured and ready to be enabled	
Steady '2' with a decimal point	The decimal point is on when the drive is enabled	
Flashing '2'	When using MENCTYPE 4 (WNS encoder initialization), this indicates that the drive is configured and ready to be enabled. The encoder initialization process will begin when the drive is enabled.	
Steady 'F'	Drive in foldback (current limiting). This is a <i>warning</i> ony.	
Flashing	Flash memory checksum failure (at power up). Need to re-configure the drive's parameters and SAVE them in the flash memory.	1 (highest priority)
Flashing 'P	Over-current. Results from either a short circuit on the motor power, or by excessive current loop gain. This fault can only be cleared by cycling the power of the drive.	2
Flashing 'o'	Over-voltage. Generally caused by regenerative voltage when decelerating the motor. Use a regen resistor to absorb the regen energy.	3
Flashing 't'	Drive over-temperature	4
Flashing 'u'	Flashing 'u' Under-voltage. This fault will appear when the main AC power is not connected. It may also appear during high accelerations. If this is the case, consider programming UVMODE to ride through temporary voltage sags, and UVRECOVER to determine how the drive recovers from an under-voltage fault. The under-voltage threshold may also need to be set appropriately, and this is done using the UVTRESH parameter.	
Alternating '1' and minus sign (-)	and minus sign Configuration instruction (Direct Command 0x20). This fault will also	
E	EEPROM fault. This is a hardware failure and the drive must be returned for repair	7
Alternating 'c' and '1'	SynqNet communications fault. Check that the SynqNet cables are in place.	10
Alternating 'r' and '4'	Encoder wire break. Check that the encoder is properly connected. Check that differential encoder signals are being used.	11
Alternating 'r' and '6'	Illegal Halls. A state of either '000' or '111' was detected on the Halls signals.	12
Alternating 'r' and '5'	Alternating 'r' Index line break. Check that the Index is properly connected, and that	

The following table shows the display codes, the description and the fault priority.

Danaher Motion Kollmorgen Janu

January	30,	2006
---------	-----	------

Description	Comments	Fault Display Priority
Alternating '4' and minus sign (-)	The <u>commutation initialization process</u> has failed. Make sure that the values for <u>MJ</u> , <u>IENCSTART</u> and <u>INITGAIN</u> are set correctly.	14
Alternating 'r' and '1' and '0'	EnDat communications fault.	15
	The firmware initializes communication with the EnDat in following cases:	
	1) Commutation initialization required (power up, feedback loss, CONFIG command when encoder related parameters changed e.g. MSININT, MENCRES, etc.).	
	2) Execution of a user command that initializes communication with EnDat (<u>HWPOS</u> , HSAVE).	
	Check that the EnDat encoder is connected, or check the MENCTYPE parameter to verify that it is correctly set.	
Alternating 'r' and '8'	A/B out of range. For a sine encoder and a resolver, the drive checks that $\sin^2 + \cos^2 = 1$, within tolerance. This fault indicates that the signal amplitudes are out of tolerance. This fault is not relevant for Encoder feedback.	16
Flashing 'H'	Motor over-temperature. This fault may be triggered if the motor does not contain a temperature-sensing device. If this is the case, set THERMODE to 1, which will tell the drive to ignore this fault.	17
Alternating 'A' and '4'	Internal 1.5V reference failure.	18
	This is a drive hardware failure; the unit must be returned for repair.	
Alternating '3' and minus sign (-)	An Enable command was issued before an ENCSTART command.	
	When working in MENTYPE=3, an explicit ENCSTART command is required before enabling. The <u>Phase Finding procedure</u> should be followed.	
Three horizontal bars	Watchdog: drive firmware failure	

11.3 Retrieving Fault Information over SynqNet

The **sqDriveMsg** Utility displays all the faults and warnings present on the specified drive, by retrieving this information over SynqNet. It is typically executed from within a DOS window, and run from the *\XMP\BIN\WinNT directory.

Syntax

```
- 🗆 ×
CMD.EXE
                                                                                                                                                  ٠
C:\MEI\20030513\XMP\bin\WinNT>sqdrivemsg -?
The sqDriveMsg utility displays all warnings and faults for the specified
drive.
                       [-control #] [-server] [-port #] [-trace #] [-node #]
[-drive #] [-motor #]
sqdrivemsg
                             Controller number (default = 0).
    -control
                            Controller number (default = 0).
Name of the host running server.exe.
ICP/IP port on the host computer.
Bit mask to specify trace information outputs.
SyngNet Node address.
Drive index relative to the node.
Motor number associated with the drive.
    -server
    -port
    -trace
    -node
    -drive
    -motor
C:\MEI\20030513\XMP\bin\WinNT>
```

Arguments

-?	Help	
-control #	Controller number (default = 0)	
-server #	Name or IP address of the host running server.exe	
-port #	TCP/IP port on the host computer (default = 3300)	
-trace #	Bit mask to specify trace information outputs.	
-node #	Node address on the SynqNet network (default = 0).	
-drive #	Index of the drive relative to the node (default = 0)	
-motor #	The MPI motor object mapped to the drive (default = 0)	

Example

C:Mei\Xmp\Bin\WinNT>**sqdrivemsg** -node 1 Fault Count = 1 Fault Read: 0x20: Under voltage

11.4 Fault R-8: A/B Out-of Range

11.4.1 Background

For a sine encoder and a resolver, the drive continually checks that

 $\sin^2 + \cos^2 = 1$

This fault indicates that the signal amplitudes are out of tolerance. The fault will occur in the following circumstances:

- The feedback is disconnected
- The amplitude of the sine and/or the cosine is out of range due to encoder defect
- The amplitude of the sine and/or the cosine is out of range due to wide tolerance on the encoder

The amplitude of the sine and/or cosine may be out of range across the entire range of motion, or perhaps only at certain points on the encoder. For exposed linear encoders, dirt can often coat the scale, resulting in a decrease of sine/cosine amplitude at that point. Typically in a case like this, the R-8 fault will occur at particular points along the motor travel.

11.4.2 Viewing the Sine and Cosine Signals

The best way of troubleshooting the R-8 fault is to begin with recording the sine and cosine signals. The PicoDAD provides the capability to monitor the sine and cosine value in real-time, and thus to view these signals using MotionScope. Refer to the section on <u>real-time monitoring</u> for more details on how to do this. The user should monitor three signals: the sine, the cosine, and the sine/cosine out of range indication., The last item is an on/off indication of the fault. Viewing all three traces will enable the user to identify where the fault is occurring relative to the travel.

Note: The sine and cosine signals should never be saturated, or clipped, at the peaks. If they are, then the signal amplitudes should be verified with an oscilloscope.

11.4.3 Adjusting the Allowed Range

In some cases, the sine and cosine signals may be out of the normal range, simply because that's how the encoder is designed. If the signal amplitudes are too low, the R-8 fault may be triggered. Assuming that the sine/cosine amplitudes are constant across the entire range of motion, but simply of a low amplitude, then the acceptable amplitude range may be changed. There are four drive parameters used for changing the range of the R-8 fault trigger: two parameters are used to set the upper and lower limits for the sine encoder signals, and two are used to set the upper and lower limits for the resolver signals. The values for these parameters are not related to the physical amplitude of the sine and cosine signals; try different values until the fault no longer occurs.

Note: Working with lower amplitudes on the sine and cosine may result in a degradation of position accuracy, and thus greater velocity and current ripple.

OUTRNGLOSI	Lower out-of-range limit for Sine Encod	er feedback				
Parameter Index	0x67 Firmware Version 1.0.0.0					
Data Access	Read/Write	Data Type	Integer			
Units	N/A	Range	0 to 32767			
Default	7680	EEPROM	Yes			
OUTRNGHISI	Upper out-of-range limit for Sine Encod	er feedback				
Parameter Index	0x69	Firmware Version	1.0.0.0			
Data Access	Read/Write	Data Type	Integer			
Units	N/A	Range	0 to 32767			
Default	18432	EEPROM	Yes			
OUTRNGLORE	Lower out-of-range limit for Resolver fe	edback				
Parameter Index	0x68	Firmware Version	1.0.0.0			
Data Access	Read/Write	Data Type	Integer			
Units	N/A	Range	0 to 32767			
Default	2560	EEPROM	Yes			

The following are the drive parameters that are used to adjust the A/B out-of-range limits.

OUTRNGHIRE	Upper out-of-range limit for Resolver feedback					
Parameter Index	0x6A	Firmware Version	1.0.0.0			
Data Access	Read/Write	Data Type	Integer			
Units	N/A	Range	0 to 32767			
Default	18432	EEPROM	Yes			

11.5 Identifying Firmware Versions

There are many software entities in the SynqNet system, among which are

- Drive firmware
- Drive SynqNet runtime FPGA
- MPI version
- Motion controller (XMP or ZMP) firmware

By executing the VERSION SynqNet utility, one can get information on the versions of all these entities. The VERSION utility is typically executed from within a DOS window, and run from the MEI\XMP\BIN\WinNT directory.

Syntax

C:Mei\Xmp\Bin\WinNT>version

Response

A typical response will look like the following:

```
Command Prompt
                                                                                                                                                                                             - 🗆 🗙
C:\MEI\03.02.00\XMP\BIN\WINNT>version
MPI: version 03.02.00
MPI firmware: version 561 option 0
ZMP firmware: version 561 revision A sub-revision 4
option 0 branchId 0
                                                                                                                                                                                                         ٠
Driver: version 3.00
Boot0 Version -1.65535
ZBoot Version 1.060
PLD : version 0x001C option 0x001C
Rincon: version 0x0224 package 0xA301
ZMP : T015-0001 Serial Number 510042
  Syngnet: 1 Nodes, String
Node[0] - Kollmorgen PicoDAD
Node Type : 0x00030020
Option # : 0x00000000
Serial # :
Model # :
Unique # : 0x00000024
Switch # : 0x0000003
ID Match : YES
Drive[0] Firmware version :
                                                                                            ID : 0xC0FE0035
Ver : 0x02400343
Branch : 0x00000000
Type : RUNTIME
Default: YES
     Serial # - FPG
Model # : 0x00000024 FPG
Unique # : 0x00000003
Switch # : 0x00000003
ID Match : YES
Drive[0] Firmware version : 0.1.6
Drive[1] Firmware version : 0.1.6
 Operating system
Windows XP build 2600 Service Pack 1
   PU
    x86 Family 15 Model 1 Stepping 3
Intel(R> Celeron(R> CPU 1.80GHz
    Clock = 1794 MHz
 C:\MEI\03.02.00\XMP\BIN\WINNT>
```

11.6 Drive Error Response

If execution of a command failed, an error value will be returned in the Read Data LSW. The following table shows these possible error values.

Returned Error value	Error source	Description
20	Unknown command	Command is not recognized by the drive
22	Eeprom checksum error	Eeprom checksum invalid on Eeprom load sequence
23	Drive active	Command must be executed when drive is disabled
24	Drive Inactive	Command must be executed when drive is enabled
25	Value out of range	Value entered is out of range
27	Invalid opmode	Command is not supported for the current opmode
28	Syntax error	Command parsing is erroneous (serial i/f)
36	Not programmable	Variable is not programmable
42	Eeprom invalid	Drive can't communicate with Eeprom
43	Record active	Command must be executed when record feature is off
44	Record not active	Command must be executed when record feature is active
45	EEPROM empty	EEPROM doesn't contain any data – Load was performed after clear eeprom command
46	Argument not binary	Variable accepts only binary values
47	Burnin active	Command can't be executed when drive is in burnin mode
48	Burnin not active	Command can't be executed if drive is not in burnin mode
51	Not available	 Command not available for the current drive configuration. Examples: Executing ENCSTART when the feedback type is Resolver
55	Drive in zero mode	Command can't be executed since drive is in zero mode
60	Motor in motion	Command can't be executed because motor is moving
63	Endat not ready	No communication with Endat drive
64	Endat CRC error	Communicating with Endat device has invalid CRC
95	Feedback Not Defined	FEEDBACK parameter is 0
201	Config failed – current controller design	Config process failed during current controller design
202	Config failed – invalid MENCRES	Config process failed due to invalid MENCRES
203	Config failed – invalid MENCOFF	Config process failed due to invalid MENCOFF
204	Config failed – MSPEED	Config process failed due to invalid MSPEED
205	Config failed MBEMF	Config process failed due to invalid MBEMF

Danaher Motion Kollmorgen January 30, 2006

Returned Error value	Error source	Description
214	Config failed – MENCTYPE	MENCTYPE mismatch
		The command cannot be executed with the presently defined motor encoder type (MENCTYPE) and feedback type (FEEDBACK). Examples:
		• Executing ENCSTART if MENCTYPE is not 3 or 4
		The message will also be received if the Config process failed due to invalid MENCTYPE
250	Config failed – Velocity controller design	Config process failed during velocity controller config

12. Appendix: SynqNet Utilities

The following is a list of useful SynqNet utilities. These utilities are located in the *\XMP\BIN\WINNT folder, and are executed through a DOS command prompt window. Any utility may be entered with the argument "-?" in order to get syntax help. The Motion Engineering support site <u>http://support.motioneng.com/</u>) contains more detailed information.

Utility Name	Description
sqDriveConfig	The sqDriveConfig utility is used to upload and download drive parameters.
SqDriveMonitor	The sqDriveMonitor utility is used to configure the monitor data that is being sent from the drive.
SqCmd	The sqCmd utility sends low-level service commands to a node or drive. It is used to operate Direct Commands, for example to clear faults, or to clear drive parameter memory.
sqDriveMsg	The sqDriveMsg utility displays all the faults and warnings present on the specified drive.
SqDriveMonitor	The sqDriveMonitor utility is used to configure the real-time monitor data that is being sent from the drive.
sqDriveParam	The sqDriveParam utility allows control of the drive parameters on a SynqNet node. Typically, this utility is used for viewing or changing a single drive parameter.

13. Appendix: Application Programming Considerations

13.1 FPGA Run-time Image

The PicoDAD is shipped from the factory with the FPGA run-time image cleared. This is done because customers may have different versions of the MPI, and each version may require a different version of the run-time image. Application programs should check the version at system initialization, and download the correct run-time image if necessary. In general, this will be done once for each drive, as the image is stored in non-volatile memory.

13.2 Motor Position

The PicoDAD firmware calculates position, and communicates this data to the motion controller. Thus, the Primary Encoder Type must be set to DRIVE when working with the PicoDAD.

Use mpiMotorConfigGet/Set(...), with the MEIMotorConfig.Encoder.type structure, to set the primary encoder type.

13.3 Drive Parameters

The PicoDAD is shipped from the factory with all parameters cleared. This is done because each application will have it's own unique drive parameter settings. The application program should download the drive parameters at system initialization.

Individual drive parameters are accessed with the *meiSqNodeDriveParamGet* and *meiSqNodeDriveParamSet* for reading and writing respectively.

An entire set of drive parameters can be accessed using the *meiSqNodeDriveParamListGet* and *meiSqNodeDriveParamListSet* functions.

14. Appendix: Sample Drive Parameter Map File

The following is a drive parameter map file for PicoDAD firmware version 0.1.9

```
#MPI Drive Parameters
```

```
# "Kollmorgen PicoDAD" "0.1.9"
#parameters
```

0x01	MBEMFCOMP	rw	signed16	{0~100}	0	"Back EMF compensation percentage"
0x02	DICONT	ro	signed16	{10~1100}	0	"Drive rated continous current"
0x03	DIPEAK	ro	signed16	{10~1100}	0	"Drive rated peak current"
0x03	ICONT	rw	signed16	{0~1000}	0	"Application rated continuous current"
0x06	IMAX	ro	signed16	{0~1000}	0	"System current limit"
0x05	ILIM	rw	signed16	{0~1000}	0	"Application current limit"
0x03	MENCRES	rw	signed32	{100~1000000}	0	"Motor encoder resolution"
0x08	MENCOFF	rw	signed32	{0~2147483647}	0	"Encoder index position"
0x09	MICONT	rw	signed16	{10~1750}	0	"Motor rated continous
UXU9	MICONI	TW	SIGNEULO	{10~1/30}	0	current"
0x0A	MIPEAK	rw	signed16	{10~3500}	0	"Motor rated peak current"
0x0A 0x0B	MKT	rw	signed16	{16~64506}	0	"Motor Torque Constant"
0x0C	MLGAINC		signed16	{1~100}	8	"Continous Current Adaptive
		rw	5		-	Gain"
0x0D	MLGAINP	rw	signed16	{1~100}	4	"Peak Current Adaptive Gain"
0x0E	MLMIN	rw	signed16	{1~32767}	0	"Motor Minimum Inductance"
0x0F	MPHASE	rw	signed16	{1~359}	0	"Encoder phase relative to standard"
0x10	MPOLES	rw	signed16	{2~20}	0	"Motor Poles"
0x11	MSPEED	rw	signed16	{6~17464}	0	"Maximum Motor speed"
0x12	MTANGLC	rw	signed16	{0~45}	10	"Continuous Torque
-			5		-	Commutation Advance"
0x13	MTANGLP	rw	signed16	{0~45}	23	"Peak Torque Commutation Advance"
0x14	MVANGLF	rw	signed16	{0~90}	0	"Continuous Velocity Advance
0x15	MVANGLH	rw	signed16	{0~90}	0	"Peak Velocity Advance"
0x16	PWMFRQ	ro	signed16	{16}	16	"PWM Frequency"
0x17	VBUS	rw	signed16	{10~850}	24	"Bus Voltage"
0x18	VER	ro	unsigned32	{*}	0	"Firmware version"
0x19	PFB	rw	signed32	{*}	0	"Position feedback"
0x1A	ANIN1	ro	signed16	{-12000~12000}	0	"Analog Input 1"
0x1B	ANIN2	ro	signed16	{-12000~12000}	0	"Analog Input 2"
0x1C	ANOFF1	rw	signed16	{-5000~5000}	0	"Analog input offset 1"
0x1D	ANOFF2	rw	signed16	{-5000~5000}	0	"Analog input offset 2"
0x1E	MHINVA	rw	enumerated	{0=not invert,1=invert}	0	"HallA Invert"
0x1F	MHINVB	rw	enumerated	{0=not invert,1=invert}	0	"HallB Invert"
0x20	MHINVC	rw	enumerated	{0=not_invert,1=invert}	0	"HallC Invert"
0x23	MPITCH	rw	signed16	{1~500}	0	"Pole Pitch Distance"
0x23	MENCTYPE	rw	enumerated	{0=ABZ_UVW, 4=ABZ,	0	"Motor Encoder Type "
-	-	τw		6=AB_UVW, 9=EnDat}		
0x25	REMOTE	ro	enumerated	{0=Not_Enable,1=Enable}	0	"Remote Enable signal state"
0x26	ACTIVE	ro	enumerated	{0=Axis_Disabled,1=Axis_Ena bled}	0	"Axis Enable state"
0x27	MOTORTYPE	rw	enumerated	{0=Rotary, 2=Linear, 3=AKM}	0	"Motor Type"
0x28	VLIM	rw	signed16	{10~32767}	10	"Maximum velocity"
0x29	MFBDIR	rw	unsigned16	{1~7}	0	"Motor Feedback direction"
0x2F	WNSERR	ro	unsigned16	{0~65535}	0	"Phase Finding error response"
0x30	INITGAIN	rw	signed16	{100~10000}	1000	"WNS initialization Gain"
0x30 0x31	IENCSTART	rw	signed16	{1~100}	25	"WNS Maximum current"
0x31 0x32	MJ	rw	signed16 signed32	{0~200000000}	25	"Motor Inertia"
UXJZ		rw	signed32	(-	
0x33	UVMODE	rw	enumerated	{0=Fault_Immediately,	0	"Under-voltage mode"

Danaher Motion Kollmorgen

January 30, 2006

0 24					20	
0x34	34 UVTIME rw unsigned16 {1~300}		{1~300}	30	"Under-voltage fault delay time for UVMODE 2"	
0x35	INTERCOL			{0=Need Clear, 1=Automatic}	0	"Under-voltage recovery mode"
0x35 0x36	UVRECOVER THERM	rw ro	enumerated enumerated	{0=No_Motor_OverTemp_Fault,	0	"State of motor thermostat"
0230	ILERM	10	enumerated	1=Motor_OverTemp_Fault}	0	state of motor thermostat
0x37	THERMODE	rw	enumerated	{0=Disable_Drive,1=Ignore}	0	"Motor Thermostat Action"
0x37	THERMODE	rw	enumerated	{0=Positive_Coefficient,	0	"Motor Temperature Sensor
0230	IHERMIIPE	τw	enumerated	1=Negative_Coefficient}	0	Type"
0x39	IZERO	rw	signed16	{0~100}	25	"ZERO mode C-B current"
0x39 0x3A	ZERO	rw	enumerated	{0=disabled,1=enabled}	0	"Enable Feedback zeroing
UXSA	ZERO	τw	enumerated	{U=disabled, i=enabled}	U	mode"
0x3B	SININITST	ro	enumerated	{0=Sine_Calibration_Running	0	"Sine-Cosine Calibration
				,1=Sine_Calibration_Done}		status"
0x3C	SINPARAM1	ro	unsigned16	{0~65535}	0	"SININIT Sine offset"
0x3D	SINPARAM2	ro	unsigned16	{0~65535}	0	"SININIT Cosine offset"
0X3E	SINPARAM3	ro	unsigned16	{0~32767}	0	"SININIT Sine gain fix"
0X3F	SINPARAM4	ro	unsigned16	{0~15}	0	"SININIT Sine gain shift"
0x40	ABSPOSMOD	rw	enumerated	{0=unsigned,1=signed}	0	"EnDat initial position mode
						п
0x41	MSININT	rw	enumerated	{0,1,2,4,8,16,32,64,128,256	256	"Sine encoder interpolation
				,512}		level"
0x42	PFBOFF	rw	signed32	{*}	0	"Position Feedback Offset"
0x43	FEEDBACK	rw	enumerated	{0=not_defined, 1=Resolver,	0	"Feedback Type"
				2=Encoder, 3=Sine_encoder}		
0x44	HALLS	ro	signed16	{1~6}	0	"Commutation Signals status"
0x4A	HWPOS	ro	signed32	{*}	0	"EnDat Absolute Position"
0x4B	RDRES	rw	unsigned16	{12~14}	0	"Sets resolver resolution"
0x4C	RESBW	rw	signed16	{200~800}	300	"Sets resolver bandwidth"
0x4D	PRD	ro	unsigned16	{0~65535}	0	"Mechanical angle"
0x50	ICMD	ro	signed16	{-1000~1000}	0	"Current command"
0x51	FOLDD	rw	signed16	{1~32767}	0	"Foldback decay time"
0x53	FOLDR	rw	signed16	{1~32767}	0	"Foldback recovery time"
0x54	FOLDT	rw	signed16	{1~32767}	0	"Foldback initiation time"
0x57	MBEMF	rw	unsigned16	{1~3900}	0	"Motor Back-EMF"
0x5A	SINPARAM5	ro	unsigned16	{0~32767}	0	"SININIT Resolver gain fix"
0x5B	SINPARAM6	ro	unsigned16	{0~15}	0	"SININIT Resolver gain shift"
0x5E	ANLPFHZ1	rw	signed16	{1~10000}	0	"Analog input 1 LPF
UNDE	ANDELIIST	τw	SIGNEALO	{1-10000}	0	frequency"
0x5F	ANLPFHZ2	rw	signed16	{1~10000}	0	"Analog input 2 LPF
UNDI	ANDI 11122	± w	Signearo	[1 10000]	0	frequency"
0x60	RMTMODE	rw	unsigned16	{0~1}	0	"Remote Enable usage"
0x61	UVTRESH	rw	signed16	{6~40}	0	"Under-voltage threshold"
0x63	ENCINITST	ro	enumerated	{0=Not_Running,1=Running,2=	0	"Encoder Index finding
0X03	FUCTUTIST	10	enumerateu	Index Found}	0	process state"
0x64	INITTIME	rw	unsigned16	{108~16000}	0	"WNS process timer"
0x67	OUTRNGLOSI	rw	unsigned16	{0~32767}	7680	"Sine Encoder out of range
0.0.07	OUTRIGLOST	τw	unsigneare	{0~32767}	/080	lower limit"
0x68	OUTRNGLORE	201-1	unsigned16	{0~32767}	2560	"Resolver out of range lower
0200	OUIRNGLORE	rw	unsignedito	{0~32767}	2500	limit"
0x69	OUTRNGHISI	rw	unsigned16	{0~32767}	18432	"Sine Encoder out of range
0.0.0.9	COLUMGETST	τw	anargneuro		TOIJZ	upper limit"
0 22 6 7	OUTONOUTOT	~~~	ungignodic	[0.22767]	10/20	
0x6A	OUTRNGHIRE	rw	unsigned16	{0~32767}	18432	"Resolver out of range upper limit"
0(7)	TAGEDE				0	-
0x6B	IACLPF	rw	unsigned16	{0~5000}	0	"Phase A and C current
06.0	TDIDE				0	measurement low pass filter"
0x6C	IBLPF	rw	unsigned16	{0~5000}	0	"Phase B current measurement
		1		1	1	low pass filter"

#config DICONT DIPEAK MPITCH MOTORTYPE MIPEAK MICONT MSPEED MKT MENCRES MENCTYPE

Danaher Motion Kollmorgen

MENCOFF
MLMIN
MPHASE
MPOLES
MBEMFCOMP
MLGAINC
MLGAINP
MTANGLC
MTANGLC
MIANGLE
MVANGLF
MVANGLH
ANOFF1
ANOFF2
MHINVA
MHINVB
MHINVC
VBUS
ILIM
ICONT
VLIM
MFBDIR
INITGAIN
IENCSTART
MJ
UVMODE
UVTIME
UVRECOVER
THERMODE
THERMTYPE
IZERO
ABSPOSMOD
MSININT
PFBOFF
FEEDBACK
RDRES
RESBW
FOLDD
FOLDR
FOLDT
MBEMF
ANLPFHZ1
ANLPFHZ2
RMTMODE
UVTRESH
INITTIME
OUTRNGLOSI
OUTRNGLORE
OUTRNGHISI
OUTRNGHIRE
IACLPF
IBLPF#end

15. Appendix: Sample Drive Configuration File

sqNode[1] drive[1] "Kollmorgen PicoDAD" "0.0.2.9" DICONT 100 DIPEAK 100 MPITCH 32 MOTORTYPE 0 MIPEAK 116 MICONT 29 MSPEED 8000 MKT 166 MENCRES 2048 MENCTYPE 6 MENCOFF 910 MLMIN 80 MPHASE 182 MPOLES 6 MBEMFCOMP 0 MLGAINC 8 MLGAINP 7 MTANGLC 0 MTANGLP 0 MVANGLF 22 MVANGLH 7 ANOFF1 0 ANOFF2 0 MHINVA 0 MHINVB 0 MHINVC 0 VBUS 48 ILIM 820 ICONT 290 VLIM 3300 MFBDIR 0 INITGAIN 500 IENCSTART 50 MJ 2 UVMODE 0 UVTIME 30 UVRECOVER 0 THERMODE 1 THERMTYPE 0 IZERO 25 ABSPOSMOD 0 MSININT 256 PFBOFF 0 FEEDBACK 2 RDRES 14 RESBW 300 FOLDD 1000 FOLDR 6625 FOLDT 1450 MBEMF 10 ANLPFHZ1 10000 ANLPFHZ2 10000 RMTMODE 0 UVTRESH 20 INITTIME 108 OUTRNGLOSI 7680 OUTRNGLORE 2560 OUTRNGHISI 18432 OUTRNGHIRE 18432 IACLPF 3000 IBLPF 3000

16. Appendix: Reference Guide

16.1 Instructions

Instructions are Direct Commands, executed using the *sqCmd* SynqNet utility. These are all executed a WRITE instructions, but without data.

Mnemonic	Description	Purpose	Direct Command Index	
CLREEPROM	Clear drive non-volatile parameter memory	The parameter memory is cleared at the factory before shipping. The memory should also be cleared before changing drive firmware versions.	0x1F	
SAVE	Save parameter values from RAM to non-volatile memory	After setting up drive parameters, the parameters should be saved so that they are preserved during power cycles.	0x1C	
LOAD	Load parameters from non-volatile memory to RAM (operational memory)	Load a known set of parameters form the non-volatile memory	0x1E	
RSTVAR	Restore parameters to the factory defaults.	Restore parameters to the factory default.	0x1D	
CONFIG	Configure the drive's internal data fields, based on the parameter values.	After setting drive parameters, and primarily motor parameters, the drive will be in a NOT-CONFIGURED state. The LED will show a alternating '-' and '1'. It is necessary to execute the CONFIG instruction to configure the drives internal loops.	0x20	

16.2 Parameters

Parameters can be accessed individually using the **SqDriveParamer** SynqNet utility, or an entire set of parameters can be accessed using the **SqDriveConfig** utility.

Mnemonic	Parameter Index	R/W	Units	Lower Limit	Upper Limit	Data Type	Default	Description
A	0x21	R	N/A	N/A	N/A	Integer	N/A	Add one electrical degree to MPHASE (for debug)
ABSPOSMOD	0x40	R/W	N/A	0	1	Integer	0	Absolute position device data type
ACTIVE	0x26	R	N/A	0	1	Integer	N/A	Motor energized \ not energized
ANIN1	0x1A	R	mV	-12,000	12,000	Integer	N/A	Analog input 1
ANIN2	0x1B	R	mV	-12,000	12,000	Integer	N/A	Analog input 2
ANLPFHZ1	0x5E	R/W	Hz	1	10,000	Integer		Analog input 1 LPF frequency
ANLPFHZ2	0x5F	R/W	Hz	1	10,000	Integer		Analog input 2 LPF frequency
ANOFF1	0x1C	R/W	mV	-5,000	5,000	Integer	0	Analog input 1 Offset

Mnemonic	Parameter Index	R/W	Units	Lower Limit	Upper Limit	Data Type	Default	Description
ANOFF2	0x1D	R/W	mV	-5,000	5,000	Integer	0	Analog input 1 Offset
ANZERO1	0x5C	R	N/A	N/A	N/A	N/A	N/A	Perform ANZERO process for axis
ANZERO2	0x5D	R	N/A	N/A	N/A	N/A	N/A	Perform ANZERO process for axis 2
DICONT	0x02	R	Amperes * 0.1	10	1,100	Integer	Defined by hardware	Drive rated continuous current
DIPEAK	0x03	R	Amperes * 0.1	20	2,200	Integer	Defined by hardware	Drive rated peak current
ENCINIT	0x62	W	N/A	N/A	N/A	N/A	N/A	Mencoff update (look for index)
ENCINITST	0x63	R	N/A	0	2	Integer		Encinit process status
ENCSTART	0x49	R	N/A	0	1	Integer	N/A	Explicitly put the drive into its Encoder Initialization state. This can be used when <u>MENCTYPE</u> is set to 3 or 4, for encoder initialization without Halls.
FEEDBACK	0x43	R/W	N/A	0	5	Integer	0	Sets feedback type. This parameter must be matched with type of feedback connected to the axis. Always disconnect the feedback before making changes to this parameter. 0 - not defined 1 - resolver 2 - encoder 3 - sine encoder
FOLDD	0x51	R/W	mSec	1	32,767	Integer		
FOLDMODE	0x52	R/W	N/A	0	0	Integer	0	Determines the Foldback state reaction
FOLDR	0x53	R/W	mSec	1	32,767	Integer		Foldback recovery time
FOLDT	0x54	R/W	mSec	1	32,767	Integer		
FOLDTIME	0x55	R/W	Sec	1	300	Integer		
HALLS	0x44	R	N/A	N/A	N/A	Integer	N/A	Indicates halls state
HSAVE	0x47	W	N/A	N/A	N/A	Integer	N/A	Save motor data to feedback device
HWPOS	0x4A	R	Counts	0	Device - dependent	Long Integer	Device - dependent	Reads absolute feedback information
	0x45	R	% of DIPEAK * 0.1	0	1,000	Integer	N/A	Indicates motor current
IA	0x2A	R	% of DIPEAK * 0.1	N/A	N/A	Integer	N/A	Phase A current
IACLPF	0x6B	R/W	Hz	0	5000	Integer	0	Low-pass filter on current measurement on phases A and C. Set to 0 to disable the filter
IAOFF	0x2C	R	% of DIPEAK * 0.1	N/A	N/A	Integer	N/A	Phase A current offset
IBLPF	0x6C	R/W	Hz	0	5000	Integer		Low-pass filter on current measurement on phase B. Set to 0 to disable the filter

Mnemonic	Parameter Index	R/W	Units	Lower Limit	Upper Limit	Data Type	Default	Description
IC	0x2B	R	% of DIPEAK * 0.1	N/A	N/A	Integer	N/A	Phase C current
ICOFF	0x2D	R	% of DIPEAK * 0.1	N/A	N/A	Integer	N/A	Phase C current offset
ICONT	0x04	R/W	% of DIPEAK * 0.1	0	IMAX	Integer	Min(DICONT, MICONT)	System continuous current. This variable is used in the foldback algorithm.
IENCSTART	0x31	R/W	% of MICONT	0	177	Integer	25	Current of encoder initialization process
ILIM	0x05	R/W	% of DIPEAK * 0.1	0	IMAX	Integer	0	Application current limit
IMAX	0x06	R	% of DIPEAK * 0.1	0	1,000	Integer	Min(DIPEAK, MIPEAK)	System maximum current
INITGAIN	0x30	R/W	N/A	100	10,000	Integer	1,000	Wake-No-Shake gain
INITTIME	0x64	R/W	mSec	108	16000	Integer	108	WNS process timer
IZERO	0x39	R/W	% of MICONT	1	177	Integer	25	Sets current for zero mode
L	0x22	R	N/A	N/A	N/A	Integer	N/A	Decrease one electrical degree from MPHASE (for debug)
MBEMF	0x57	R/W	Volts * RMS/ kRPM	1	3900	Integer	Motor Data	Motor Back-EMF
MBEMFCOMP	0x01	R/W	Percent	1	100	Integer	50	Sets the percentage of BEMF compensation.
MENCOFF	0x08	R/W	Encoder counts / electrical motor revolution	0	(4* MENCRES) – 1	Long Integer	Motor Data	Encoder index position
MENCRES	0x07	R/W	Rotary: Lines per motor revolution Linear: Lines per motor pitch	100	10,000,000	Long Integer	Motor Data	Motor encoder resolution
MENCTYPE	0x24	R/W	N/A	0	10	Discrete values: 0,4,6,7,8,9, 10	Motor Data	Motor encoder type
MFBDIR	0x29	R/W	N/A	0	7	Integer	0	Motor feedback direction
MHINVA	0x1E	R/W	N/A	0	1	Integer	0	Hall sensor A invert
MHINVB	0x1F	R/W	N/A	0	1	Integer	0	Hall sensor B invert
MHINVC	0x20	R/W	N/A	0	1	Integer	0	Hall sensor C invert
MICONT	0x09	R/W	Amperes RMS * 0.1	10	1,175	Integer	Motor Data	Motor rated continuous current
MIPEAK	0x0A	R/W	Amperes RMS * 0.1	10	3,500	Integer	Motor Data	Motor rated peak current
MJ	0x32	R/W	Kg *m2 *10-6	0	2,000,000,000	Long Integer	Motor Data	Motor rotor inertia
MKT	0x0B	R/W	N * m / (1000 * Amp)	16	64,548	Unsigned Integer	Motor Data	Motor torque constant
MLGAINC	0x0C	R/W	% * 10	1	100	Integer	Motor Data	Current loop adaptive gain value at continuous motor current
MLGAINP	0x0D	R/W	% * 10	1	100	Integer	Motor Data	Current loop adaptive gain value at peak motor current
MLMIN	0x0E	R/W	Mill henries * (10 ^-2)	1	32,767	Integer	Motor Data	Motor minimum line-to-line inductance
MOTORTYPE	0x27	R/W	N/A	0	3	Discrete values: 0, 2, 3	Motor Data	Motor type selection
MPHASE	0x0F	R/W	Electrical degrees	0	359	Integer	Motor Data	Defines the encoder phase relative to the "standard" commutation table

Mnemonic	Parameter Index	R/W	Units	Lower Limit	Upper Limit	Data Type	Default	Description
MPITCH	0x23	R/W	mm per 360 elec. degrees	1	500	Integer	32	Length in millimeters of one electrical cycle - 360 electrical degrees
MPOLES	0x10	R/W	Poles	2	80	Integer	Motor Data	Number of motor poles.
MSININT	0x41	R/W	Bits	0	512	Discrete values: 1,2,4,8,16,32,64,128, 256,512	Motor Data	Sets interpolation level of the drive
MSPEED	0x11	R/W	RPM	6	17,464	Unsigned Integer	Motor Data	Motor rated maximum speed
MTANGLC	0x12	R/W	Electrical degrees	0	45	Integer	Motor Data	Sets the value of the torque- related commutation angle advance at the motor's continuous current rating
MTANGLP	0x13	R/W	Electrical degrees	0	45	Integer	Motor Data	Sets the value of the torque- related commutation angle advance at the motor's peak current
MVANGLF	0x14	R/W	Electrical degrees	0	90	Integer	Motor Data	Sets the value of the velocity-rated commutation angle advance to be used when the motor is operating at motor max speed
MVANGLH	0x15	R/W	Electrical degrees	0	90	Integer	Motor Data	Sets the value of the velocity-rated commutation angle advance to be used when the motor is operating at half of the motor max speed
OUTRNGHIRE	0x6A	R/W	Internal	0	32767	Integer	0	Out of range high limit (resolver)
OUTRNGHISI	0x69	R/W	Internal	0	32767	Integer		Out of range high limit (sine encoder)
OUTRNGLORE	0x68	R/W	Internal	0	32767	Integer		Out of range low limit (resolver)
OUTRNGLOSI	0x67	R/W	Internal	0	32767	Integer		Out of range low limit (sine encoder)
PFB	0x19	R	Counts	- 2,147,483,648	2,147,483,647	Long Integer	N/A	Cumulative position feedback counter
PFBOFF	0x42	R/W	Counts	2,147,483,648	2,147,483,647	Long Integer	0	feedback offset that is added to the internal cumulative position counter to yield the value of PFB
PRD	0x4D	R	Degrees*360/65536	0	65,535	Integer	Device - dependent	Mechanical angular information
PWMFRQ	0x16	R	KHz	16	16	Integer		PWM frequency
RDRES	0x4B	R/W	Bits	12	14	Integer	14	Sets resolver resolution
READY	0x59	R	N/A	0	1	Integer		Displays whether the drive can be enabled
REMOTE	0x25	R	N/A	N/A	N/A	Integer	N/A	Remote enable state
RESBW	0x4C	R/W	Hz	200	800	Integer		Sets SWR2D algorithm bandwidth

Mnemonic	Parameter Index	R/W	Units	Lower Limit	Upper Limit	Data Type	Default	Description
RMTMODE	0x60	R/W	N/A	0	1	Integer	0	A software switch that is used to tell the drive whether or not to ignore the Remote Enable signal. 0 = Drive does not ignore the Remote Enable signal 1 = Drive ignores the Remote Enable
SININIT	0x48	W	N/A	N/A	N/A	Integer	N/A	Initialize sine gain and offset calibration process
SININITST	0x3B	R	N/A	N/A	N/A	Integer	N/A	Status of the SININIT process
SINPARAM1	0x3C	R	Bits	0x8000	0x7fff	Integer	N/A	SININIT Sine offset
SINPARAM2	0x3D	R	Bits	0x8000	0x7fff	Integer	N/A	SININIT Cosine offset
SINPARAM3	0x3E	R	N/A	0	0x7fff	Integer	N/A	SININIT Sine gain fix
SINPARAM4	0x3F	R	N/A	0	Oxf	Integer	N/A	SININIT Sine gain shift
SINPARAM5	0x5A	R	N/A	0	0x7fff	Integer		SININIT Resolver gain fix
SINPARAM6	0x5B	R	N/A	0	0xf	Integer		SININIT Resolver gain shift
THERM	0x36	R	N/A	N/A	N/A	Integer	N/A	State of motor thermostat input
THERMODE	0x37	R/W	N/A	0	1	Integer	0	Sets drive response to motor thermostat input
THERMTYPE	0x38	R/W	N/A	0	1	Integer	0	Sets motor temperature sensor type
UVMODE	0x33	R/W	N/A	0	2	Integer	0	Under voltage state response
UVRECOVER	0x35	R/W	N/A	0	1	Integer	0	Under voltage recovery state
UVTIME	0x34	R/W	Sec	1	300	Integer		Under voltage warning time till fault is latched
UVTRESH	0x61	R/W	Volts	6	40	Integer	36	Under voltage threshold
VBUS	0x17	R/W	Volts	10	850	Integer		Sets the drive bus voltage
VER	0x18	R	Version number	N/A	N/A	Integer	N/A	Indicates the version of the drive firmware to use
VLIM	0x28	R/W	RPM	10	VMAX	Integer		Application velocity limit
VMAX	0x2E	R	RPM	10	24,000	Integer	10	System maximum velocity
WNSERR	0x2F	R	N/A			Integer		Wake-No-Shake error status bits
ZERO	0x3A	R/W	N/A	N/A	N/A	Integer	N/A	Enables\disables zero mode

16.3 Effect of RSTVAR and CLREEPROM

Both the CLREEPROM command (Direct Command 0x1F) and the RSTVAR command (Direct Command 0x1D) return parameters to their default values. The difference, however, is that RSTVAR does not affect motor or current limit parameters. The specific parameters not affected by RSTVAR are:

Motor Parameters

MIPEAK, MICONT, MPITCH, MOTORTYPE, MSPEED, MKT, MBEMF, MENCRES, MSININT, MENCTYPE, MENCOFF, MPHASE, MPOLES, MBEMFCOMP, MLMIN, MLGAINC, MLGAINP, MTANGLC, MTANGLP, MVANGLH, MVANGLF

Current Limit Parameters

ILIM, ICONT

Foldback Parameters FOLDD, FOLDR, FOLDT

17. Appendix: Upgrading Firmware over the Serial Port

Firmware on the drive is updated using a process called EMBER. Kollmorgen provides a program that downloads the firmware file to the drive over the RS232 serial communications link.

17.1 Terminology

- EMBER: Kollmorgen's terms for the firmware upgrade process
- IGNITE: the name of the utility that you use to upgrade the firmware

17.2 Important Files

- Ember.a00: The name of the file that manages the firmware upgrade and programs the DSP
- pdad_vvv.i00: The firmware file. The file extension has no relevance to the firmware version. The version is indicated in the 3-letter/digit suffix of the file name.

17.3 Preparations

17.3.1 Retrieve Drive Parameters

It is recommended to retrieve and store the drive parameters before upgrading the firmware. New versions of firmware may have different sets of parameters; the drive verifies the checksum of the parameters and if a checksum error is found then the parameters are not loaded. Thus, if the new version has a different parameter set, the checksum will fail when the drive is powered up and the parameter settings will be lost.

Using MotionLink

1. Go the Drive Backup screen

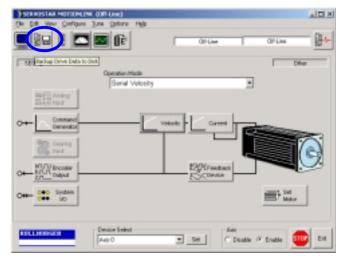


Figure 17-1: MotionLink Main Screen

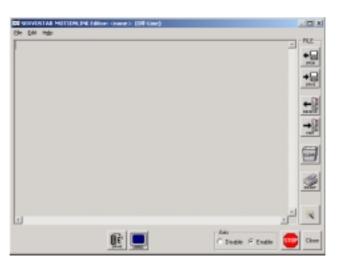


Figure 17-2: MotionLink Drive Backup Screen

- 2. Click on the Receive button to get the parameters from the drive.
- 3. Click on the Save button to save the file to disk.

• Using SynqNet Direct Commands

Retrieving the drive parameters can be done using the *SqDriveConfig* utility. The syntax is described below. The syntax assumes that the utility is executed from the *\XMP\BIN\WINNT folder.

SqDriveConfig -node x -drive y -get <destination file name> -map ..\drives.dm

where

x is the node number. Nodes are number from 0.

y is the drive, or axis, number on that node. Drives are numbered from 0.

Example:

SqDriveConfig -node 0 -drive 1 -get Axis1.txt -map ..\drives.dm

This command will retrieve the parameters from the second axis on node 0, and store them in a file called "Axis1.txt".

17.3.2 Clear the Drive Parameters

Drive parameters can be saved in non-volatile memory (EEPROM). Clearing the drive parameters entails clearing this EEPROM.

Using MotionLink

1. Execute a CLREEPROM instruction from the command prompt

Danaher Motion Kollmorgen January 30, 2006

Using SynqNet Direct Commands

This is done with a Direct Command using the **sqCmd** utility. The syntax is described below. The syntax assumes that the utility is executed from the \times MP\BIN\WINNT folder.

```
sqCmd -node x -channel y -memory 3 -addr 0x1F -write
```

where

x is the node number. Nodes are numbered from 0.

y is the drive, or axis, number on that node. Drives are numbered from 0.

0x1F is the Direct Command identifier for the EEPROM clear instruction.

Example:

sqCmd -node 0 -channel 1 -memory 3 -addr 0x1F -write

This command will clear the parameters on axis 1.

Note: This command can only be executed when both axes are disabled.

17.4 Update Drive Firmware

Use the *Ignite28_V305.exe* program to download the new firmware. This is a Windows program. Run the program; the following screen appears:

🕶 Ignite 28кк 3.0.9		_ 🗆 🗙			
Com Port Com1 Com2 Com3 Com4 Baud Rate C 9600 C 19200	This program will update your Drive firmware Before downloading new firmware it is highly recommended to backup drive parameters and to clear EEPROM. To do this, take the following steps: 1.) Select the correct Com port. File name:				
C 38400 C 56000 Ember Mode C Software C Hardware	Start Advanced	Exe			

Figure 17-3: Ignite28xx Main Screen

17.4.1 Communications Settings

- 1. Select the correct COM port
- 2. Set the Ember Mode to Software
- 3. Select the correct baud rate. The process should work at the highest baud rates. Sometimes, however, a lower baud rate needs to be used if the communications cable is not of a high quality.

17.4.2 Select Files

1. Click on the Advanced button. A display similar to the following appears:

Advanced options						
Files to download:						
File Name	File Path		Add			
pDed_025.00	C:\PicoDAD\pDad	025.00				
			Delete			
Ember program path:						
C:\PicoDAD\ember_ver309_I	Browse					
		OK	Cancel			

2. Click on the *Browse* button to search for the Ember file. This file as the Extension *.a00.

Browse For Embe	r File	? ×
Lookjn: 🔁	PicoDAD 💌 🕂 🛍 📬 🖽 -	
ember_ver309	9_D2810.e00	
1		_
File <u>n</u> ame:	<u>Open</u>	
Files of type:	Ember Program Files (*.a00) Cance	1
	C Open as read-only	
		11.

- 3. Select the *ember_ver309_D2810.a00* file and click on the *Open* button. This file contains the code that programs the firmware and manages the download. The IGNITE program downloads this file to the DSP first. Note that the Ember file name may change as new versions are released.
- 4. Files to Download:
 - A. Click on all files that are listed and DELETE them (one at a time).
 - B. Click on the *Add* button, to select the file to be downloaded.
 - C. Select the path to the *pdad_xyz.i00* file. This file contains the drive firmware.
 - D. Click on Open to return to the Advanced Options screen.
 - E. Click on OK to return to the main Ignite screen.

17.4.3 Start Firmware Update

1. <u>Click on the Start button to start the firmware download. The 7-segment LED display will show an</u>

2. When the process is complete, click on the Exit button. The 7-segment LED display will still show a steady

17.5 Resuming Operation

17.5.1 Return Drive to Operational State

A SynqNet RESET is required to return the drive to its operational state.

17.5.2 Restore Drive Parameters

- 1. Read the drive firmware version (VER instruction) to verify that the new firmware has indeed been loaded.
- 2. Use either MotionLink or the SynqNet drive configuration utility to download the original drive parameters.
- 3. Set any parameters that may have been added to the new version.
- 4. Save the parameters to the non-volatile parameter memory. This can be done by executing the SAVE command over the serial port.

17.6 Considerations for Hardware Ember

If the DSP code has been corrupted, then the Software Ember mechanism will not work. The code may be corrupted if, for example, the firmware download process is interrupted.

In the Software Ember process, the drive is instructed, via a drive instruction, to enter a mode wherein it can manage the firmware download process.

The DSP can be placed in a Hardware Ember mode by asserting a specific signal state on the DSP, and then powering up. The Hardware Ember state can be achieved by shorting pins 5 and 7 on the <u>RS-232</u> <u>connector</u>. The drive has to powered-up with these pins shorted. Once this has been done, run the Ignite utility, and select Hardware Ember mode instead of Software Ember mode.

👥 Ignite 28xx 3.0.9		_ 🗆 🗙
Com Port Com1 Com2 Com3 Com4	This program will update your Drive firmware Before downloading new firmware it is highly recommended to backup drive parameters and to clear EEPROM. To do this, take the following steps:	•
Baud Rate © 9600 © 19200 © 38400 © 56000	Select the correct Comport. File name: DSP Rev.	•
Ember Mode C Software F Hardware	Start Advanced E	xit