Socapel PAM

A Programmable Axes Manager

PAM System V2.5

Reference Manual

Ordering Number: 006.8007.B
Rev. October 15, 1995

This upgraded and improved
version replaces all the previous.
We reserve the right to amend this
document without prior notice and
decline all responsibilities for
eventual errors.

Atlas Copco Controls SA Doc. No. 006.8007.B/PB-TK

En Montillier 4 O October 95
CH-1303 PENTHAZ by Atlas Copco Controls SA (previously SOCAPEL SA).
Switzerland All rights reserved.

Table of Contents

Socapel PAM Reference Manual 2.5

TABLE OF CONTENTS

I [g1 f0 o [0 o 1o o E PP P PP PP P PP PPPPPP 1-1
1.1 Introduction to the PAM Reference Manual.............cccccoooiiiiiiiiiiiiiiiiieeeeee e 1-1
1.1.1 Scope of PAM Reference Manual ... 1-1
1.1.2 Manual Organisation and CONENTScc.uvviiiiiieee i 1-1
1.1.3What's NeW iN VEISION 2.5ot 1-2
1.1.3. 1 PIpe BIOCKS. ... 1-2
1.1.3.2 Physical and Application ODJECEScccuvviiiiiieeeeeeeiiieeee e 1-2
1.1.4 This Revision of the PAM Reference Manualcccoveiiiieiiiiiiiiiiiieeeeenn 1-3
1.2 Basic System Concepts and DefinNitioNSuviiiiiiiiiiiiiii e 1-4
L 2. L Sy S I 1-4
1.2.0.0 DEFINITIONS ...ceeiieieeeie et a e e 1-5
1.2.0.2 EXAMPIE e 1-5
1.2.2 KiNAS Of SYSTEIMSceiiieiiiiiiie e e e e 1-5
1.2.2.1 AULO-CONFIQUIALIONeiiiiieeeiieiii e 1-7
1.2.2.2 Node fault tOlEranCeooviiiiiiiii s 1-7
1.3 Application Terms and DefiNitioNSiiiiiiiii e 1-8
1.3.1 PAralleliSIM ... 1-8
1.3 2 TaASK e 8... 1-
RS RS BT T [T o o =P 1-8
L34 ACTIONS ...ttt ettt e e e e e e e 1-8
1.4 Declaration and StatemMeENt SYNTAXcooiiuurriiiiiieeeee e 1-9
1.4.1 Symbols and ABDIreVIatioNS...........coouiiiiiiiiii e 1-9
1.4.2 ApPlication COMMENTSuueiiiiieeeiiiiiie et e e e e e e e e e e e e 1-9
1.5 Arrangement of AppliCation Programs...........ccuuviiiiiiieeeiiiiiieee e e 1-10
1.5.1 Application Information DecCIarationcccuveieiiieeeiiiiiieee e 1-10
1.6 APPIICALION SIZE....cco it 1-11
2 Physical Objects, Declarations and USESuuuuiiiiiiiii it a e e e aaa e 2-1
Doc. No. 006.8007.B Page: |

Rev. 10/15/95

Table of Contents
Socapel PAM Reference Manual 2.5

2.1 INEFOTUCTION ...ttt e e e e e e et e e e e e e s e n e e e e e e mmmmnnasne 2-1
2.1.1 Physical Object Declaration SYNAX...........ueeiieeeiiiiiiiiiiiiiiieeee e 2-1
2.1.2 Physical Object Parameters ACCESSccoviieiiiei e 2-1
2.2 RINg NOJE DECIAratiONScuiiiiiiiiieeeeeie et e e e 2-3
2.2.1 DECIArAtioN SYNTBX .. .eeeiiieeiiiiiiiitie it e e e e e e e e e e e e e e e e e s eaaeeeas 2-3
2.2.2 NOUE FUNCHIONSetiiiiiiiiee ettt e e e r e e e e e e e s e e aee s 2-3
2.2.3 Node Declaration EXamMPIES.........uuuuuuuiuuiiiiiciiires s eaa e e e e e e e aeaaeaens 2-4
2.3 AXIS ODJBCT. ...ttt e e e 2-6
2.3.1 Parameter Modification............cccocuviiiiiiiiiiiii 2-9
2.3. 1.1 TraVel_SPEEA.....cceieiiiiiitee ittt 2-9
2.3.1.2 ACCEIETALION ...ttt e e 2-9
2.3.1.3 DECEIETALION ...ttt e e 2-10
2.4 INPUE ODJECES ...ttt e e e e e e e e e e e e 2-11
2.4.1 DECIAratioN SYNTBX ... eeeeiiieiiiiiiiiiieeit e e e e e e et e e e e s r e e e e e e e e s s e e e e eeeas 2-11
2.4.2 BINANY INPUL ..ottt e e e e e r e e e e e e e e e 2-12
2.4.3 DIgItal INPULoeeiii et e e e e 2-13
2.4.4 COUNET INPUL ...coiiiiiiiiiiii ettt s 2-14
245 KBY INPUL. ...ttt ettt e e e e e e et e e e e eeeeeaaa s 2-15
2.5 OULPUL OBJECES ...ttt e e e e s 2:17
2.5.1 DECIAratioN SYNTBXeeeiiieeiiiiiiiiiiieiie e e e e e ettt e e e e e e e e e e s s s e e e e aee s 2-17
2.5.2 BINAIY OULPUL......cuiiiiiiiiiee ettt e e e e e e e e e e e e e e eeeeas 2-18
2.5.3 DIGItAl OULPUL ..o, 2-19
2.5.4 ANAIOG OUIPUL....coiiiiiiieie ettt e e e s r e e e e e e e nee s 2-20
2.5.5 L0 OULPUL ..ottt e e e e e r et e e e e e e e eeeaaeas 2-21
2.5.6 Display OUtpUt (7 SEGMENTS).....cccuiiiiiiiiiiiiii e e e e e e e 2-22
2.5.7 PAM ANAIOG OUIPUL ...ttt e e e et e e e e e e 2-23
2.6 SPECIAI OULPULS.eeeeieieeeieiiitte ettt e e e e r e e e e e e e e s st eeeeeeeeeenns 2:25
2.6.1 DC MOTOT ...coeiiiiiiieieeeeeeeee ettt e e e e e e e e e e e e eeas 2-25
2.7 ENCOUET ODJECT ...ttt e e e e e e eemmn s 2:21.
Page: Il Doc. No. 006.8007.B

Rev. 10/15/95

Table of Contents

Socapel PAM Reference Manual 2.5

2.7 L INETOTUCTION .ottt e e e e e e e e e e e e e e e e e s 2-27
2.7.2 DECIAratioN SYNTAX ...uuvvveeieieieeiiieiiiiiie et e e e e e e e e e e e e e e e e 2-27
2.7.3 Encoder Use and BENAVIOUTuuiiiiiiiiiiiiiiiiieee e 2-28
2.7.4 Specifying Encoder Address Parametercceevvvvveieiiiiiiiiiiieeeeeee e 2-29
2.7.5 Example of encoded address determinationccoocvvveiieeiieeeniisnieeeeeen 2-30
3 Application Objects Declarations and USES............ccooiviiiiiiiiiiiiiiieiieeeeeeeeeeevvaaeesveeeveearaeennneannes 3-1
S.L INTrOTUCTION ...ttt et e e e e e e e e s mnemnne e 3-1
3.1.1 Application Object Declaration SYNTaX...........ccicciiiiiiieriiieei i e 3-1
3.1.2 Application Object Parameters ACCESSuuuuurrrrrirmniiiiiiiiisssssessseasaeaaseeaeeens 3-1
G I \\ Lo Lo [=E 3 €] £ 10 o 1 T 3:2.
T R U o101 = 3-2
3.2.2 dECIAration SYNIAX........uuuuuururiiriiiiiiiiuriinne e a e e s e e e aaaaaaaaaaaaas 3-2
3.2.3 Declaration EXamPIEcoooiiiiiiiiiiieeieeeeeeeeeeeee 3-2
.3 AXES SBU ...ttt st e 3-4
G0 T I U o101 = 3-4
3.3.2 dECIAration SYNIAX........uuuuuuriiiiriiiiriiiuriinne s aa e e e s e e e aaaaaaaaaaaaas 3-4
3.3.3 Optimize Parameter..........ooooiiiiiiiiee et 3-5
3.3.3.10ptiMIze = YES. ..o 3-5
3.3.3.2 Criteria for determining identical axes........cccccceeeviiiiiiieeeeiee, 3-5
3.3.3.3 Optimize = NO (default). ... 3-5
3.3.4 SUDSEL PAIAMELETciiiiiiiiiie ittt 3-6
3.3.4.1 When Subsets should be Createdccovveiiiiiiiiiiiiii e 3-6
3.3.4.2 Servicing SUDSELScoooviiiiiiieeeeeeeeeeee - 3-6
3.3 43 EXAMPIE...ccc 3-6
B8 SINK ettt ettt ae e aeeeanes 3-8
3.4.1 USE WIth @ CONVEITETeeiiiiiiiiiie ettt 3-8
3.5 ZEIO-POSITIONE ...ttt 3-9
G TR TR R U o101 = 3-9
3.5.2 DECIaration SYNTAXcceviiiiiiiiiiiiiieiiiieeiiiesierrrererrnr 3-9
3.5.3 ZEIrOING SEUUEICE ...uvvviiiiriiietiirtiiintiiaaea s s s e s s s s s s s s s e s e e s e s e e e e e e e e e aaaaaaaaaaaaaaaaaas 3-10
Doc. No. 006.8007.B Page: IlI

Rev. 10/15/95

Table of Contents
Socapel PAM Reference Manual 2.5

3.5.3.1 general iNfOrmMatioN............oeiiiiiiiiiiiii e 3-10
3.5.3.2 Phase 1 - Coarse phase waiting for boolean Sensor.cccccccueennne. 3-11
3.5.3.3 Phase 2 - Fine phase waiting for boolean sensor.ccccccoeeeviieneinnnnn. 3-11
3.5.3.4 Phase 3 - Resolver POSItiONINGcccoooviiiiiiiieeeeeeeeeeeeeeeeeee 3-11
3.5.4 Application EXAmMPIE.......c.eeeiiiiiiiiiiiieiiiiiieieiie s 3-11
3.6 VAlTADIES. ... ee e 3-14
3.6.1 INErOTUCTION ...ttt e e e e e e e e e e e e e e e e e e aeeas 3-14
R ST 1 g LT = TS = GO 3-14
3.6.3 Internal Variables.............ooiiiiiii e 3-15
3.6.3.1 Internal Flag Variable ... 3-16
3.6.3.2 Internal Word Variable ... 3-17
3.6.3.3 Internal Real Variable..............oooiiiiiii e 3-18
3.6.4 CommON VariabIES...........uuiiiiiiiiiiiii e 3-19
3.6.4.1 Common Flag Variable...........oooiii 3-20
3.6.4.2 Common Word Variable.............cccoviiiiiiiieeee e 3-21
3.6.4.3 Common Real Variable............cccuviiiiiiiiii e 3-22
T = To o L=F=T g =0 B =4[] L 3:23...
I A N 1170 [Tox 1o o PRSP P PP 3-23
3.7.2 Declaration SYNTAX.........cooiiiiiiiiii ettt 3-23
3.7.3 Objects that can be used in Boolean EQUAatiONS ..o 3-24
3.7.4 BOOIEAN OPEIALOIS.uutiiiiiieeeeiiiiiiee et e e e e e e s e e e e e e e e r e e e e e e e e s annneneeees 3-24
3.7.5 Inquire Functions in Boolean EqQUAtIONS............cc.vvviiiiiieeiiiiiieeeee e 3-24
3.7.6 Comparison Expressions in Boolean EQUALIONS ... 3-24
3.7.6.1 ComMPAriSON OPEIALOISceiiieeiiiiiiiiirieeie e e e e e e e e e e e e e e e eeaeens 3-25
3.7.7 Writing Boolean EXPreSSIONS.coouiiiiiiiiiiiieeeeeeeiee e 3-25
3.7.8 Boolean Equation Declaration EXamplesccuvviveiiiiiiiiiiiiiieeeeeee e 3-25
3.8 ACLIONS GIOUP ..ottt e ettt e ettt e e e e e e e r e et e e e e e s e e e naneas 3:26
3.8 L INETOTUCTION ...ttt e e e e e e e e e e e eeeas 3-26
3.8.2 DeClaration SYNTAXueeiiiieiiiiiiiiiiiieie e e e e e 3-26
BL8.3 FUNCHIONS ...ttt e e e e et e e e e e e e 3-26
3.8.4 CyCleS SPECITICALIONSceeeeiiiiiiiiie et 3-27

Page: IV

Doc. No. 006.8007.B
Rev. 10/15/95

Table of Contents

Socapel PAM Reference Manual 2.5

i85 ACHIONS ...t e e 1. 3-2
3.8.6 POWERON ACLONSceiiiiiiiiiiiiiiiiiiiiitiiieenteieeie s e e e e e e e e e e e e e e e e e e e aaeeas 3-27
3.9 ROULINES GIOUP ..ceeiiiieiiiiiiite ettt ettt e e e e st e e e e e e e e r e e e e e e e e e e e mnnnen 3-28.
3.9.1 DeClaration SYNTAXccuuvureiiiiieeeiaiiiiii et e e e e e e e e e e 3-28
3.9.2 FUNCHIONS ...ttt e e e e e e e e e s r e e e e e e e e e e nnnnes 3-28
3.9.3 ROULINE Call...ccoiiiii e 3-29
3.9.3.1 Call Statement SYNTAXccoviiiiiiiiiiiiiee e e 3-29
3.9.4 Routine connected to0 8 COMPARATOR........ccciiiiiiiiieceeeeee e 3-29
3.9.5 ROULINE EXAMPIE ..ottt e e e 3-30
L0 TASKS .ttt e et e e e e e e mmnnn s 3-31
3.10.1 INETOTUCTION .ttt ettt e e e e et e e e e e e e s e e e e e e e e e e aannes 3-31
3.10.2 DECIaration SYNTAXc..uvureeeieieeeiiiiiiiiee ittt e e e e e e e e e e s r e e e e e e e e anne 3-31
3.10.3 FUNCLIONS ...ttt e e et e e e e e e e e et e e e e e e e e e e annnnes 3-32
3.10.4 Tasks States and RUIESooiiiiiiiii e 3-32
3.10.5 TaSK SPECITICALIONS.cceeiiiiiiiiiii ittt e e e ees 3-32
BLL0.5. 1 DUPKLL. ..t 3-32
B.L0.5.2 CYCLES ... e 3-32
3106 EVENTS ...ttt a e et e a e 3-33
I T80 KO A ST =T o [5[] o1 2RO 3-34
3.10.7.1 Sequence States and RUIEScooviiiiiiiiiiieeeee e 3-34
3.10.7.2 POWERON SEOUENCE ...ttt 3-34
3.10.8 TASK EXAMPIES.....ciiieiiiiiiiieee e 3-34
Y E=Y (=] 4 1T £ PP 4-1
I [1o To [F o{ o] o TP PP PUPPPPPPPPRRRPPR 4-1
4.2 General DefiNitiONSooiiiiiiiiii e 4:-1.
4.3 Object access StateMENL........cccoieeiiiii i, 2. 4-
4.3.1 GENEIAl SYNEAX ..vvvvvviiiiiiiiiiiieiiiinii s s s s e s e s e e e s e e e s e e e e e aaaaaaaaaaaaaaaaaaaaeaaaeeess 4-2
4.3.2 FUNCLIONS ..ottt ettt e e e e e s e e e e 4-2
4.3.2.1 Object value access functionsccceeeeieii 4-3
4.3.3 Inquire-Set Value Combination Statement...............ccccce e, 4-3
Page: V

Doc. No. 006.8007.B
Rev. 10/15/95

Table of Contents
Socapel PAM Reference Manual 2.5

4.3.4 Parameter ACCESS StatEMENTS.......ccoviii i 4-3
4.3.4.1 Parameter INQUIrY SYNTAXccooiiiiiiiiiiiiiiieieees 4-4
4.3.4.2 Parameter Modification SYNEAXuueuuueimmiiiiiiaceeee e 4-4
4.4 FIOW-CONtrol StateMENTS......ccoiiiiiiiiiii e e e e e e e e e e 4-5
o N [a1 0T [U T [0 o PP PP 4-5
4421F ... Then ... Else ... ENif ... 4-5
4.4.3 LOOP ... ENG LOOP ...ttt e e 4-6
4.4.4 XEQ _SEQUENGCE ...ttt ee et 4-7
B.4.5 XEQ_TASK ..ottt eee et ee et ee e, 4-8
4.4.5.1 Correct Usage of XEQ _TASK .. oo 4-9
4.4.5.2 Incorrect Usage of XEQ_TASKeuiiiiiiiiiiiiiiiiiiiiiee e 4-11
4.5 Transition ConditioN StAEMENTSeiiiiiiiiiiiiii e e e 4-13
4.5.1 CONDITION StatemMENt........ccooiiiiiiiiiiie et e e e ee e 4-13
4.5.2 CONDITION DUPL_START ...ttt e e e 4-15
A5.3WAIT _TIME.... ettt e e e ee b 4-16
A.5.4 CASE ... e 7.. 4-1
4.6 EXCeption State@mMENTSuvviiiiiiieeeiiiiiiie e e e eee e e e e e il Ol 4
4.6.1 EXCEPLION ... SEOUENCEcoiiiiiiiiiiiiieee et ettt e e e e e e e e e e e e e 4-20
4.6.2 EXCEPLION ... ENIY .ot e e e e e 4-21
4.6.3 EXCEPLION ... XEO_TASK ..ottt 4-22
4.6.3.1 Correct Usage of EXCEPTION...XEQ_TASK... ..., 4-23
4.6.3.2 Incorrect Usage of EXCEPTION...XEQ_TASK.....cccoeiiiiiiiiiiiiiaeeeenenn, 4-24
4.6.4 EXCeption ... ADOI_SEQUEINCEuuiiiiiieeeeiiiiiiee ettt 4-27
4.6.5 TIMEOUL PAIaMELETeiiiiiiiiiiiiitii et e e e e e e e e 4-28
4.6.6 EXCEPTION_ENTRY Loouiiiiiiiiiiii ettt 4-30
4.6.7 REMOVE_EXCEPTION Statement.........cccouiiiiiiiiiiiiiiiiiiineee et 4-31
D P IS ittt e e e e e e e e e e e e e e e e aa e e e e et e e et et e ettt ettt eee e s — 5-1
SN g oo (U1t i o] o H PO PP PP PPN 5-1
5.2 Creation, Activation and DiSACHIVALIONccuuveeeeeee ettt e e e e e e e e 5-3
5.2.1 Creation, ACtIVAtiON STAtEMENTSveeeieie ettt e e r et e e reeaaees 5-3
Page: VI Doc. No. 006.8007.B

Rev. 10/15/95

Table of Contents

Socapel PAM Reference Manual 2.5

5.2.2 PIpes ACHVAION CAULIONuuiieiiiiiieee e e e e e e e e e e e e e e e aaaaaaaaaeaaees 5-3
5.2.3 PiPe DISACHVALION........iiiiiiiiiieiee ettt e e e e e e e e e e e e annes 5-4
5.3 BUIA UP RUIES ...t e e 5:5
5.3.1 DEIINITIONS ...ttt e e e e e e e e e e 5-5
5.3.2 Mutual EXCIUSION RUIEcoiiiiiiiiii e 5-5
5.3.3 BIOCK Sharing RUIE............uiiiiiiiiieiiii e 5-5
5.4 Pipe Blocks General INfOrMatioN............ooviiieiiiiiiiiiiieie e 5-7
5.4.1 LITEEIME ..ot e e e e e e e e s e e e e e e e 5-7
5.4.2 Periodicity and phase of COMPULALIONccooiiiiiiiiiiiiiiee e 5-7
5.4.3 Pipe BIOCKS Parameters ACCESSuuuiiiieiiiiiiiiiiiiiieeee e e e e s e e e 5-8
5.4.4 Pipe BIOCK FUNCLONS.........uiiiiiiiiiiiee ittt 5-8
5.5 AMIPIITIET ..ot e e e 5-9
5.5.1 parameter MOAIfICAIONScoiiiiiiiiiiiiii e 5-10
5.5, AN ettt e e e e 5-10
5.5.0.2 OffSBE .ttt 5-10
BB M e ettt e e e e e e e b b e s e— 5-11
5.6.1 DECIAIALIONSceeiieiiiiiiiit ettt e e e e 5-11
5.6.1.1 Cam Declaration SYNTAX.........ccuuurreiiieeiiiiiiiiieeie e 5-11
5.6.1.2 Profile Declaration SYNEAXccccvririiiieieieiiiiiieeie e 5-12
5.6.2 Changing Profile Parameters ..o 5-13
5.6.3 Shape SPECITICALIONcciiiiiiiiiiii i e e e e 5-14
5.6.4 UNIES TUIBS ...ttt e e e e e e e e e e as 5-14
5.6.5 Cam's Input-Output Transfer FUNCHON ... 5-14
5.6.6 Interpolation Between Data POINTS............oeiiiiiiiiiiiiiiiiiieeeeeee e 5-15
5.6.7 Typical APPHCALIONSeviiiiiiieiiiiiiie e e e e 5-15
I 0] 0] o= T =1 (o] AP P PP PUPPPPPPPPRPRRTPIN 5:17
5.7.1 ComMPArator MOUESc.uuiiiiiiiieieee ettt e e e e e e et r e e e e e e e e aanas 5-18
5.7.2 EXAMPIES .ottt a e e 5-18
5.7.3 Using Through Zero Reference MOde............oeeviiiiiiiiiiiiiiiiieeee e 5-19
5.7.4 Comparator Response Time CONSIAEratioNSuuuueeumeriiiieeiiianiaaeeeaneeeeeeeeeens 5-19
Doc. No. 006.8007.B Page: VI

Rev. 10/15/95

Table of Contents
Socapel PAM Reference Manual 2.5

5.7.5 CoNNECHNG 8 ROULINEooiiiiiiiiiiiiie e 5-19
5.8 CONVEITEI ...ttt i 5-20
5.8.1 Converter's Mode and DesStiNatioNooiiiiiiiiiiiiieeiiiiee e 5-21
5.8.2 Destination Objects BENAVIOUTc..uuiiiiiiiiiiiic e 5-22
LR B 0] =Tox (o] PP 5-23
5.9.1 determining COIreCtion VAIUESouuiiiiiiiiiiiiiiiiie e 5-26
5.9.2 corrector states deSCrIPLION.oieiiiiiiii e 5-27
5.9.3 Delay COMPENSALIONuuiiiiiieieeiiiiiit ittt e e e e e e e e e 5-29
5.9.4 WOIKING MOUESoiiiiiiiiieeiiie ettt e e e e e s s e e e e e e s 5-29
5.9.5 Typical USES Of COMECIONSuuuiiiiiiieeeeiiiiiiiie et 5-29
5.9.6 NUMETrICaAl EXAMPIES.....coi it a e 5-30
5.9.6.1 OULPUL FEIEIENCEueieeee e 5-30
5.9.7 INPUL TETEIENCE ... 5-32
5.9.8 Adjusting Delay Compensation TiMEuuiiiiiiieiiiiiiiiiiiee e 5-32
5.10 DEIIVALOI ...ttt ettt ettt e e e e e e e et e e e e e e e e r e e e e e aeeeaane 5:34
5.10.1 VALUE_PERIOD Parameter.........ccceuuuuiiieiiiieiiiiiaa et eeeeenes 5-35
5.10.2 INitial BENAVIOUT........uiiiiiiiiiiiiiii ettt 5-35
5.11 DISHHDULON et e e e e 5-36
5.11.1 DiIStHDULOT TUIES ...t 5-37
5.11.2 Distribution PrinCiple ..o 5-37
5.11.3 EXAMIPIE. ..ottt a e e e 5-37
5.12 MUIti-COMPAIATOT......eeeieieieeee e e ettt e e e e e e e e e e e e r e e e e e e e s s annneeeees 5:39...
5.12.1 OPErating MOUES........coiiiiiiiiiiiiie ettt e e e e eeaeeeas 5-40
5.12.1.1 Learn Mode OPeration...........uuueireiieeiiiiiiiiiiiieiee e e e s s ee e e e e e e s 5-41
5.12.1.2 Execute Mode OPEIatioNccooiuuiiiiiiiieeeeee et 5-41
5.12.1.3 Time Origin REfEreNCecccuuiiiiiiiiiee e 5-41
5.12.2 CoNNECHING & ROULINEoiiiiiieiieie e e e 5-43
5.12.3 Installing @ REfEIENCE........ccciiiieeieiie e 5-43
5.12.4 How a Multi-Comparator WOTKSccceeeiiiiiiiiiiiieeee e 5-44
5.12.5 EXAMIPIE. ..ttt e e 5-45
Page: VIII Doc. No. 006.8007.B

Rev. 10/15/95

Table of Contents

Socapel PAM Reference Manual 2.5

5.1 PRASET ... eeennnn e 5-47
5.13.1 parameter MOAIfICAtIONSoiiuiiiiiiiiii e 5-49
5. 1800 PRASE ..t 5-49
5.13.1.2 standby Valuecoooeiiiiiiie 5-49
5.14 PMP GENEIALONccoeiiiiiieiieeeiiie ettt 5-50....
5.14.1 Parameters MOdIfICAtIONcccuuriiiiiiiiee oo 5-54
5.14. 1.1 Travel_SPeedcooo i 5-54
5.14.1.2 ACCEIETALION ...t 5-54
SRt O TN T 5-54
5.14.1.4 Initial POSITIONcvviiiiiiiiiiieee et 5-55
5.14.1.5 EXQMPIES ..eeveeiiiiiiiiie e a e 5-55
LT IS T= 1o 41 0] L= PP 5-58
5.16 Trapezoidal motion profile geNerator............ccccoiiiiii e 5-60
5.16.1 Travel_speed Parameter ModifiCationcuvvuiiiiiiiiiiicccceeee e, 5-63
5.16.2 Acceleration Parameter MOdifiCatioNnoooociiiiiiiiiieeieeeeee e 5-63
5.16.3 Deceleration Parameter MOdifiCation ..o 5-63
5.16.4 Initial POSItION PArameterooiiiiiiiiiiiieee e 5-63
TR TR b= o o] = S 5-64
6 Mathematical FUNCIONS aNd OPEIatOrS........c.cviviiiiieiiiiieiiiiiiiiriieeirrer s 6-1
6.1 INTFOTUCTION.......veiiiiiiiii ittt e e e e e e emnmme s 6-1
6.2 MathematiCal FUNCLIONS...........uiiiiiiiiieii e 6-1
L R 1= a1 = VS] = O 6-1
B.2.2 EXAMPIES ...coeeiiiiieeeeeeeeeeeeeeee e 6-1
6.2.3 ADS, CeIl, FIOO ..ottt 6-1
LI B o T I o T o To 0 T | O 6-1
6.2.5 C0S, SN, TAN .ot 6-2
B.2.6 ACOS, ASIN, ATAN . .cetniiitieit ettt e et e et e et e et et e e r e et e e 6-2
B.2.7 COSN, SINN, TaNN oottt et e et e e et e et e e ea e e e e e eanreeenaeees 6-2
6.3 Mathematical OPEratorsS...........ooiiieiiie e 6-3
6.3.1 GENEIAl SYNLAX ...eiiiiiiiiiiiiiiiieeeeeeeeeee e 6-3
Doc. No. 006.8007.B Page: IX

Rev. 10/15/95

Table of Contents
Socapel PAM Reference Manual 2.5

6.3.2 Addition, Subtraction, Multiplication, DiViSIONcccccevviiiiiieeeeeee 6-3
6.3.3 RaISING t0 @ POWETccoiiiiiiiiiiiiiic e 6-3
6.3.4 REMAINUET ...ttt e e e e e et e e e e s s e eeeeeees 6-3

6.4 MathematiCal CONSTANTS ..ot e e e 6-4

6.5 Precedence and AssociatiVity Of OPEIatOrS.cuuiieeiiiiiiiiiiiiiiieee e 6-4

7 Physical & Appl. Object EXeCULiVE FUNCHIONS...........uuviiiiiiiiiiiiiiiii s 7-1

7.1 Compatibility with Previous Software VErsionS..............uueeieeiiiiiiiiiisiesisessenseeeeeeeeeen 7-1

A AN o110 1N (=T 0 [0 1Y PP 1:2..

7.3 POSIION ...ttt e 7-3

T4 POWET _OfT .t e e e e e e e e e e e e e 7-4

.5 POWET 0N ..ttt et e 1:5

7.6 REIALIVE _IMOVE ...ttt e e e e e e s bbb e e e 7:6.

B A U | o PSP PP RRRPIN 7-7

T8 SHAI et e seaaeaaaaaan s 7-8

82 IS 1 (0]« PP 7-9

7. 10 UPAALE STATUS.....coei ittt e e ettt e e e e e e e e e e e s s e e e e e e e e e e e e 7-10

8 Pipe Blocks Executive FUNCLIONS...........coooiiiiii e 8-1...

8.1 Compatibility with Previous Software VErSIiONS............uuuuuiiiiiiiiiiiiiciiseeseeesseeeeeen e 8-1

8.2 ADSOIULE IMOVEeuiiiiiiiiiii et e 8:2..

8.3 Change _all FAliOS.......cceviiiiiiiiiiiiiiiiiiii e e e e e e e e e e e e e e 8-4..

8.4 Change _ratiOccoeeeieee i —— 8:5

8.5 CONNECT..... i s 8-6

8.6 CONNECL All....ueeeeeeeeee e 8-7

8.7 DUSACHIVALE ...ttt e s renmne e 8-8

8.8 DUSCONMNECT ...ttt et e et e e ettt e e e ettt e e e st e e e e o 1 8-9

8.9 DiIscoNNECt_all.....ccccoiieiiiiii e, 8-10

Page: X Doc. No. 006.8007.B

Rev. 10/15/95

Table of Contents

Socapel PAM Reference Manual 2.5

Rev. 10/15/95

S T O (=T o] U PP 8-11
00 I I I T o PP 8-12
812 POSITION .ttt ettt e e e e e e e s 8-13
B.13 REIALIVE _MOVE ...ccvviiii i e e et e e e e e e e et s e e e e e e eenrand -14..
8L RUN ...t e ettt e ettt e e e e e e e e b b e 8-15
S T RIS -1 TP RER 8-16
8.16 StArt COIMECIION.....ceiiiiiiie ettt ettt e e st e e e et e 8-17
B SOttt ettt e e e et e e ee b e e— 8-18
TN T I T [0 =1 SO PP PR 8-19
T e T I T [=1 o i USSP 8:20
O AXES INQUITE FUNCHIONS. ...ttt e e e e e e e e e s s e 9-1
1S 20 R 1 (o] U 9-1
9.2 Error_code (DOO0IEAN)coiiiiiiiiiiiiee e T2 D
9.3 Error_code (NUMETICAI)uuuiiiiiiieeiiiiiie ettt e e 2... 9-
9.4 GENEIALON_POSITION.uiiiiiieeeee e e e ettt e e e e e e e e e e e s r e e e e e e e e e s b e s 9-3..
9.5 PiIPE MOTIONIESS......ceiiiieeeiieeie ettt e e e e et e e e e s s e 94
9.6 POSITION ..ttt e e e e e e e e e e e e e e aaeeaas 9-6
0.7 REATY ...ttt e et e e e e e e 9-8
9.7.1 Ready RUIES TOI AXEScciiiiiiiiiiiie ettt e e e 9-8
0.8 SPEEA.ttt e e e e e 9-10
9.9 SHAUS (IDOOIEAIN) ... s 9-11
9.10 StatuS (NUMETICAI) ... e e e e e e enees 9-11..
LS TR0 I Y - T 9-12
10 Pipe BIOcks INQUIre FUNCHIONS.......ccciiieieiee e, 10-1.
10.1 ACCEIETALION ...ttt e et e e enmmnn e 10-1
(KO 2 Ofo T (=T 1o o EE O TP TP PP PP PPPPPP PP 10:2
Doc. No. 006.8007.B Page: XI

Table of Contents
Socapel PAM Reference Manual 2.5

OB (=T o U (PP 10-3
10.4 Latched _dd ValUeoo i e e e e e eeeeaeend 0-4.... 1
10.5 Latched _d ValUEcoovvuei e e e e e e e e e e eeees 10:5....
OB = 10 = To 7= 10T PR 10-6.
10,7 POSITION ...ttt ettt e e e e e e et e e e e e s e e e e e e e e e e e ammnnnnn e 10-7
O J {T- To | 10-8
0N IR == o SRR 10-9
10.10 Status (BOOIEAN)cciiiiiiiiiiieeeeeeeeeeee e e e e e e ns 10-10...
10.11 Status (NUMETICAD....uueeeeieie e, 10-11...
O 2 I o o =T (=T IR PSPPI 10-12
000 I TV - 111 = SRR 10-13
11 DISPlAY FUNCHIONSeeiiiiieeeiiiiiiitee ettt e e et e e e e e s e e bbb r e e e e e e s smmmmmmnen e 11-1
5 0 = T o 11-1
A B 1] o] - PP PP PPPPPPPPPRPPPP 11-2
11.2.1 Display of Character StrNG........cccuuureiiiieeeeee e 11-2
11.2.2 Display Of VAlUEeuiiiiiiiiiiee et e e 11-2
113 NO_BINK ..ot n et enn et memeee e 11-3
R [Y= 4 TP OPP PR 11-3
iR R T < PP TP PUPPRRPTTIN 11-4
LB S ittt e e e et e e e e e ettt s — 11-4
11,7 PAIM DISPIAY....eutteiiiieeeeee ettt e e e e e e e e e mmnnae 11-5
SO 0 R 1 1 o To 18 o3 10 o PP PPPPPPPPPPPPPP 11-5
11.7.2 PAM Display MeSSage COUES........uuuiiiiiiieiiiiiiiiiiiee e 11-6
11.8 PamDisplay FUNCHONS..........ccoiiiiiiee ettt eereesnneenne Z... 11-
L11.8.1 MESSAGEeeereeeruennrinititiittbieb e aaaaaaaaaas 11-7
L1182 WAINING ..ottt e et e e e e e e et e e e e e e e e e e e b bn e e e e e e e e e e eaanns 11-7
L11.8.3 ENU_WAINING ..eeiiiiiieeiiiiiiiie ettt e e e e e e e e e e e st n e e e e e e e e enanns 11-8
Page: XII Doc. No. 006.8007.B

Rev. 10/15/95

Table of Contents

Socapel PAM Reference Manual 2.5

11.8.3.1 Handling of ENd_Warningc.cceuveeiiiiiiiiiiiiieeeee e 11-8
00T TR e g o U URRPPPRN 5.0 IS B |
L1185 ENU_ETTON oottt ettt e e e e e e e e e 11-9
11.8.5.1 Handling of ENA_EITOr.........ooiiiiiiiiiiieeeee e 11-10
12.8.6 MONITOTING ...ttt ettt e e e e e e e e e e e e e e e e a bt nr e e e e e e e e aaans 11-10
12 Error and Status FUNCHONSuiiiicece e 12-1
2 I 4 o LU o 1] PP 12:-1.
12,11 EMOr_COUE ... 12-1
12.1.1.1Foran STLINOAEcoooeiiiiecie e, 12-1
12.1. 1.2 FOr @n AXIS oo e e 12-1
12.1.1.3 Defining Special Masksccccoiiiiiiiii e 12-2
12.1.1.4Fora Smart_ IO NOAEccovvviviiiiieie e, 12-3
12.1.1.5 Defining Special Masksccccoiiiiiiiieeeeeeeeeee s 12-4
12.1.1.6 Binary Output 0N SMart_i0 NOUEcccvviiuiiiiiiiiiiee et 12-4
12.1.1.7 FOr @ DC MO0 ...ccvuniiiiii e e e e e e e aaa e 12-4
12.1.1.8 Defining Special Masks ... 12-5
A 4 (o] (P RPSRRPPRR o WO 7
12.2 StatuS FUNCHIONoviiiiiiiii i 12-7..
12.2.1 Status (NUMETIC FUNCHION) ...t 12-7
12.2.2 Status (Boolean fUNCLON)uuuueeiicecc e 12-7
12.3 Fatal Error Panel ... 12-8.
12.3.1 Fatal Error Message Format............ccceeeeeeieeee e, 12-8
12.3.2 Simatic Fatal Error Panel LOCAtioNccevvvevviiiiieiiieiiiiiiiieviiesiinnennennnennnnnnnes 12-9
12.3.3 VME Fatal Error Panel LOCAtiON...........uuuiuiiiiiiiiiiiceeees s e e e e 12-9
12.3.4 Serial Line Fatal Error Panel LOCatioN.............uuuueeeuiiiiiiiiiiieeeiees s eee s eee e 12-10
D B) o) = 1= L 1) £ T 12-10
12.4 Managing Sequence WOIKSPACEScooiiiiiiiiiiiiee et 12-12
13 VME BUS DUAIPOI. ...ttt e e e e e e e e e e e e e e e e e e e nnnnssemnneeeeens 13-1
IR 20 A [1 1 o o 15 o 1o] 1SS USSP 13-1
Doc. No. 006.8007.B Page: XllI

Rev. 10/15/95

Table of Contents
Socapel PAM Reference Manual 2.5

13.2 General Concept for Exchanging Variables.............cooooiiiieeen 13-1
13.2.2 INPUEVANADIES ... 13-1
RS I o T 1 o1 UL Y = T = 1] = RS 13-1
13.3 DUAIPOIT STIUCTUIE ...ttt r e e e e e e 13-2..
13.3.2INPUL FIFO NEATET ... 13-2
13.3.2 OULPUL FIFO NEAAEToeeiiieeeiee e 13-3
13.3.3 WALCNAOG .ot 13-3
13,304 SYNCRITO ..ttt e e e e 13-3
13.3.5 VME master COMMAaNT POIcuriiiiiiiiiiiiiiiiiee et s e e e 13-3
13.3.6 Fatal Error PANElooo it 13-4
R e A 1] o 11 o | SRR 13-5
13.3.8 OULPUL FIFO ..t e et a e e e e aebb s 13-5
R 3 =T g U | T 13-6
13.4.1 Start-Up Pre-Set ... 13-6
13.4.2 SYNCRIONISALION......iiiiiiiie e e e e e e 13-6
13.4.2.1 Master Ready TiMEOUL..........ccocuuriiiiiieee et e e 13-7
13.4.3 Configuration PRASE..........ooiiiiiiiiiiiiee et 13-7
13.4.3. 1 INErOAUCTIONveieieie ettt r e e e e e e e 13-7
13.4.3.2 Input Variables Configurationeuvvevviieiiiiiiiiiriiiiiiienen. 13-8
13.4.3.3 Output Variables Configurationccccooucuviiimiieeeeeeniiiiiiieeeeeeeen 13-10
13.4.3.4 Master Configuration TIMEOULccueeeiiiiiiiiiiiiiiieeee e 13-13
13.4.4 PAM Error messages during configuration.............cccuuvveeieeeinnniiiiiiniiieeeee e 13-13
13.4.5 Configuration Files for Inclusion in VME MaSter...........cccccccviiiiiininiieeeennnnns 13-14
13.4.6 INITANISALION ...t e e e e e e e e as 13-14
13.4.6. 2 INTOAUCTIONvveeieieeee ettt e e e e e e e e e 13-14
13.4.6.2 Output VariabIesS....... ..o 13-14
13.4.6.3 INPUL VANTADIES. ...t 13-14
13.4.6.4 pam error messages during variable initialisationcccccevveee.... 13-15
13.5 EXeCUtiON Ph@Secccoiiiiiiiiiiiii 13-17...
13.5. 2 INFOAUCTION ...ttt e e e e e e e e r e e e e e e e e aaa 13-17
13.5.2 Starting PAM AppliCation @XECULIONcevviieiiiiiiiiieiee e 13-17
Page: XIV Doc. No. 006.8007.B

Rev. 10/15/95

Table of Contents

Socapel PAM Reference Manual 2.5

13.5.3 Changing DualPort Variable Valuescccccoiiiiiiiiiiieeee 13-17
13.5.3.1 input variable changes...............ooui 13-17
13.5.3.2 Output Variable Changescccueiiiiiiiiiiiieee e 13-19
13.6 FIFO reading and wWriting ProtOCO|oiiiiiiiiiiiiiiiiiiiiiiiiiiiii e 13-21
13.6.1 Writing into INPUt FIFO......ccoiiiii e 13-21
13.6.2 Reading from OULPUL FIFOu e 13-21
13.6.3 WALCNUOG ... ceeeeeeeeeeee ettt e e e e e e e e e e e e s 13-22
13.6.3.1 Watchdog TIMEOUL EITOXccuiiiiiiiiieeeeee e 13-23
13.7 VME DUalPort DECIAratioNS..........c.uuurriiiiieeeiiiiiiiir e e e e e e e e e 13-24
13.7.1 VME DUAIPOIt HEAET ...t 13-24
13.7.2 DU@IPOIt PArameter ACCESSuuuiiiieeeiiiiiiiiiiiiie e e e e e e e e e e e eeeees 13-25
13.8 DualPort Variable DeCIarationoooouriiiiiiiieee e 13-27
13.8.1 DualPort Input Flag Variable ... 13-28
13.8.2 DualPort Output Flag Variable...............coooiiiiceee e 13-28
13.8.3 DualPort Input Word Variable ... 13-29
13.8.4 DualPort Output Word Variable.............ccooiiiiiieeeee e 13-29
13.8.5 DualPort Input LoNg Variableooeiiiiiiiiiiiicee e 13-30
13.8.6 DualPort Output Long Variablecoiiiiiiiee e 13-30
13.8.7 DualPort Input Real Variablec..uuiiiiiiiii e 13-31
13.8.8 DualPort Output Real Variablec.ooiiiiiiiieeeee e 13-31
13.8.9 DualPort Variables Declaration EXamplecccccceeiiiiiiiiiiiiiiieee e 13-32
14 SIMATIC S5 DUAIPOI ..ottt e e e e e e e s st ee e e e e e e s mmnnne 14-1
14,1 INEOAUCTION ...ttt e et e e et e e e e e mne e 14-1
14.2 General Concept for Exchanging Variablesccccccceeee, 14-1
14.2.1 input Word Variables ..o 14-1
14.2.2 INpUt Flag VariabIEScevveiiiiiiiiiiiiii s e e 14-1
14.2.3 0utput Variables..........ooooo i 14-1
14.3 DUAIPOIt DESCHPLIONcceiiiiiiiiiii ettt 2. 14
14.3.1 DUAIPOI SIIUCKUIEciiiiiiee ettt e e 14-2
Doc. No. 006.8007.B Page: XV

Rev. 10/15/95

Table of Contents
Socapel PAM Reference Manual 2.5

14.3.1.1 DUAIPOIt Cell ... 14-2
14.3.2 Input and OULPUL FIFOSoeiiiiiiiiiii et 14-2
14.3.3 SCANNEA INPULS ATEEeeiiiiiiee ettt e e e e e 14-3
14.3.4 WOId INPULS ATNBA.....ceiiiiiiiiiiiiie ettt e e e eaeeeeas 14-3
I B @ 111 01U K3 =T PP 14-3
14.3.6 FIFO reading and Writing ProtOCOIuuuiiiiiiieiiiiiiieeee e 14-3
14.3.6.1 Writing into INPUL FIFOcooiiiiiiiieeeee e 14-4
14.3.7 Reading from OULPUL FIFOuiiiiiiiiiiii e 14-4
14.3.8 Fatal Error PANEIooo it 14-5
14.3.9 WALCNAOQG ..ttt e e e e e 14-5
14.4 Synchronisation and Initialisation UPON STAM-UPccooiiiiiiiiiiiiiiieeeee e 14-5
14.4.1 MASTER_READY _TIMEOUT ...t 14-6
14.4.2 MASTER_CONFIGURATION_TIMEOUTcooiiiiiiiii e, 14-6
14.5 WALCNUOG. ..ottt e e e e e e e e e e e e e e e e e e e s s 14-7
14.5.1 Implementing a Watchdog Timer FUNCHONcccuviiiiiieiiiiiieceee e 14-7
14.5.1.1 MASTER_INACTIVITY_TIMEOUTccoiiiiiiiiiiiiiii e 14-7
14.6 DualPort DeClarationcceeeeeiiiiiiiiiiiieeeeeeeeesiiiiieeeeeee e ssienneeeeeeee e 42900 1
14.6.1 DUAIPOIt Parameter ACCESS.ccciiiiiiiiiiiiieteeeee e ettt e e e et e e e e aanes 14-11
14.7 DUAIPOIT VariabIES ...t 14-13...
14.7.1 General Declaration SYNTAXccuiieeiriiiiiiiiiiieeee e 14-13
14.7.2 DualPort Input Flag Variable ... 14-14
14.7.3 DualPort Output Flag Variable ... 14-15
14.7.4 DualPort Input Word Variable...............oooiiiiieee e 14-16
14.7.5 DualPort Output Word Variableeeiiiiiiiiiieieee e 14-17
14.7.6 DualPort Variables Declaration examples ... 14-18
15 RS422 Serial Communications ChaNNEl............oooiiiiiiiiiie e 15-1
15,1 INEFOAUCTION ...ttt e e e e eeene s 15:1
15.2 RS422 Port SOftware ROULINES.........ccoiiiiiiiiiiiiiie et 15-1
15.3 System Start-up with an Inactive RS422 MaSter...........cccoviieiiiiiiie e 15-1
Page: XVI Doc. No. 006.8007.B

Rev. 10/15/95

Table of Contents

Socapel PAM Reference Manual 2.5

15.4 RSA422 POIt DECIAIALIONceveiieiiiiiiiiteee ettt e e e e e e e 15-2
15.4.1 RSA22 POt HEAUET ...ttt e e 15-2
15.4.2 PAramMELEI ACCESS......uuuuuuuiiiaaesaaasaaa s e s e s e e s s s e raeene e e e e e e eeeeeeees 15-3
15.4.3 MASTER_INACTIVITY_TIMEOUT ...t 15-3
15.4.4 PAM_WATCHDOG_MESSAGE_PERIODooooiiiiiiiiiiiieeeei e 154

15.4.4.1 Relationship to RS422_watchdog_timeout...........cccoovevviiiiiieiiinnnnnenn. 15-4

15.5 RS422 Port TIMe-0ULS BENAVIOUTuuiiiiiiiiiiiii et 15-4
15.5.1 MASTER_READY_TIMEOUT ...ttt 15-4
15.5.2 MASTER_CONFIGURATION_TIMEOUT ..ot 15-4
15.5.3 MASTER_INACTIVITY_TIMEOUT ..ot 15-5

15.6 RS422 Variables DeCIarationcooiiiiiiiiiiiiiiiie e 15-6
15.6.1 RS422 Input Flag Variableooo e 15-7
15.6.2 RS422 Output Flag Variableooooii e 15-7
15.6.3 RS422 Input WOord Variable ... 15-8
15.6.4 RS422 Output Word Variable ... 15-8
15.6.5 RS422 Input LONG Variable............coeiiiiiiiiiiiiiiiiieeeee e 15-9
15.6.6 RS422 Output Long Variableoooiiiiiii e 15-9
15.6.7 RS422 Input Real Variable.............oooiiiiii e 15-10
15.6.8 RS422 Output Real Variableccuuiiiiiiiiee e 15-10
15.6.9 RS422 Variables Declaration EXample ... 15-11

Doc. No. 006.8007.B Page: XVII

Rev. 10/15/95

Table of Contents
Socapel PAM Reference Manual 2.5

FIGURE 1-1
FIGURE 1-2
FIGURE 1-3
FIGURE 1-4
FIGURE 1-5
FIGURE 2-1
FIGURE 2-2
FIGURE 2-3
FIGURE 3-1
FIGURE 3-2
FIGURE 4-1
FIGURE 4-2
FIGURE 4-3
FIGURE 4-4
FIGURE 5-1
FIGURE 5-2
FIGURE 5-3
FIGURE 5-4
FIGURE 5-5
FIGURE 5-6
FIGURE 5-7
FIGURE 5-8
FIGURE 5-9
FIGURE 5-10
FIGURE 5-11
FIGURE 5-12
FIGURE 5-13
FIGURE 5-14
FIGURE 5-15
FIGURE 5-16
FIGURE 5-17
FIGURE 5-18
FIGURE 5-19
FIGURE 13-1
FIGURE 13-2
FIGURE 13-3
FIGURE 13-4
FIGURE 13-5
FIGURE 13-6
FIGURE 13-7
FIGURE 14-1
FIGURE 14-2
FIGURE 14-3

TABLE OF FIGURES

GRAPHICAL REPRESENTATION OF A SYSTEM

SINGLE SYSTEM
MULTIPLE SYSTEM

AXIS OBJECT FUNCTIONAL DIAGRAM

GENERAL PIPE STRUCTURE

PIPE CREATION-ACTIVATION STATEMENT

ILLUSTRATION OF PIPE DEFINITIONS

CAM PROFILE FOR PERIODIC SYSTEM

CORRECTOR BLOCK DIAGRAM

COMPARE_MODE PARAMETER

PMP PARAMETERS ILLUSTRATION

DUALPORT MEMORY PARTITIONING
FIFO HEADER ARRANGEMENT

START-UP PRE-SET
SYNCHRONISATION SEQUENCE

DUALPORT MEMORY PARTITIONING

1-4
ALTERNATIVE GRAPHICAL REPRESENTATION OF A SYSTEM 1-5
SINGLE SYSTEM WITH THREE COMPONENTS 1-6
MULTIPLE SYSTEM WITH STATIC CONFIGURATION 1-6
MULTIPLE SYSTEM WITH DYNAMIC CONFIGURATION 1-7
2-4
2-5
2-6
SYSTEM WITH THREE IDENTICAL COMPONENTS 3-2
AXIS MOTION CORRESPONDING TO ZERO-POSITIONING EXAMPLE 31
PROPER USE OF XEQ_TASK STATEMENTS 41
INCORRECT USE OF XEQ_TASK STATEMENT 412
CORRECT USAGE OF EXCEPTION ... XEQ_TASK 4-24
INCORRECT USAGE OF EXCEPTION ... XEQ_TASK 42
5-1
TYPICAL PIPE STRUCTURE WITH SOURCE AND DESTINATION OBJECTS 5-1
ALTERNATIVE PIPE STRUCTURE WITH TMP GENERATGR 5-2
5-3
5-6
PIPES WITH SAME DESTINATION AND SHARED BLOCKS 5-6
CAM PROFILE FOR NON-PERIODIC SYSTEM 515
5-16
CORRECTOR PARAMETERS IMPACT ON TRAJECTORY 5-25
5-27
CORRECTOR STATE TRANSITION DIAGRAM 5-28
CORRECTOR OPERATION WITH OUTPUT REFERENCE 5-31
CORRECTOR OPERATION WITH INPUT REFERENCE 5-3
REFERENCE AND TIME ORIGIN PARAMETERS ILLUSTRATION 5-42
5-42
5-52
PMP MOTION PROFILES FOR A RELATIVE MOVE 556
PMP MOTION PROFILES FOR A FORWARD-BACKWARD MOTION 557
TRAJECTORIES RESULTING FROM EXAMPLE PROGRAM 5-65
13-2
13-3
VME MASTER COMMAND PORT ARRANGEMENT 13-4
2
13-7
COMMAND PORT DURING INPUT VARIABLES CONFIGURATION 13-8
COMMAND PORT DURING OUTPUT VARIABLES CONFIGURATION 13-11
14-2
INPUT AND OUTPUT FIFO STRUCTURE 14-3
14-7

WATCH_DOG FLAG VARIABLE

Page: XVIII

Doc. No. 006.8007.B
Rev. 10/15/95

Introduction

Socapel PAM Reference Manual 2.5

INTRODUCTION

1.1 INTRODUCTION TO THE PAM REFERENCE MANUAL
1.1.1 ScopPE OF PAM REFERENCE MANUAL
This manual is intended to serve as a reference for individuals who will be designing and writing
motion control application programs for the PAM (Programmable Axes Manager). This manual
presents details on the syntax, structure and use of the declarations and statements which
comprise the PAM application language. It also provides descriptions of the PAM physical and
application objects and details on applying them. Examples are used to illustrate concepts and
syntax structures.
The scope of this manual is limited to the PAM applications programming language and the
software interfaces to other PAM peripherals. For a complete listing of all technical publications
covering PAM and it's associated peripherals (i.e. ST1, Smart I-O, VME Bus Master and Simatic
S5), refer to the Technical Publications Overview in the PAM User's Manual (document
006.8017.A).
1.1.2 MANUAL ORGANISATION AND CONTENTS
This manual is organised into fifteen chapters and seven appendices. Each chapter covers one or
more types of related objects or statements. Most object and statement descriptions include
examples which illustrate proper syntax or use for the object/statement. Where appropriate,
supplemental information or precautions regarding the use an item are included in the text. The
following is a summary of the manual contents by chapter:
Chapter 1 description of manual organisation and contents
some basic definitions and concepts
symbols, abbreviations and conventions used in defining various syntactic
structures
Chapter 2 Descriptions, declaration syntax, summary of available functions and
declaration examples for physical objects
Chapter 3 Descriptions, declaration syntax, summary of available functions and
declaration examples for application objects
Chapter 4 Descriptions, syntax, usage examples for all statement types except
mathematical statements
Chapter 5 Concept of pipes
Rules for creating activating and de-activating pipes
Description, intended use, declaration syntax, summary of available functions,
declaration and usage examples for all pipe block types
Chapter 6 Mathematical functions, operators and expressions
Chapter 7 Descriptions, syntax and examples of physical and application object executive
functions
Chapter 8 Descriptions, syntax and examples of pipe block executive functions
Chapter 9 Descriptions, syntax and examples of physical and application object inquire
functions
Chapter 10 Descriptions, syntax and examples of pipe block inquire functions
Chapter 11 Functions used to control LEDs, seven segment displays and the PamDisplay
Uses of the PamDisplay by applications
Doc. No. 006.8007.B Page: 1-1

Rev. 10/15/95

Introduction
Socapel PAM Reference Manual 2.5

Chapter 12 Functions for error and status monitoring
Description and use of the Fatal Error Panel

Chapter 13 Operation and use of the VME Bus DualPort

Chapter 14 Operation and use of the Simatic S5 DualPort.

Chapter 15 Operation and use of the RS422 Serial Port

Appendix A PAM programming language reserved words

Appendix B PamDisplay User Error Codes

Appendix C Seven Segment Display Codes

Appendix D ST1 10 Addresses and Connectors

Appendix E Smart 10 Addresses

Appendix F Smart 10 Displayed Errors

Appendix G Workspace Errors

In addition to this summary of manual contents, the Table of Contents and Index will be helpful
for locating information on specific topics.

1.1.3 WHAT’S NEW IN VERSION 2.5

The following is a summary of the major changes in PAM software version 2.5:

1.1.3.1 PirPEBLOCKS
 The Phaser has been added

 For the Corrector, CORRECTION _MODE , VALUE PERIOD | VALUE RANGE, and
CORRECTION _REFERENCE parameters have been added.

* For the Comparator, ttREVERSE_ROUTINE parameter has been added.
* For the Amplifier,GAIN _SLOPE andOFFSET_SLOPE parameters have been added.

e For the TMP Generator, a nemnNTI _DELAY parameter has been added. HGSITION
parameter has been renamedIAL _POSITION and it's access level is (RW). TRERIOD
parameter access level is now (RO). PasITION _PERIOD parameter access level is now
(RW).

e For the PMP Generator, a neawTl _DELAY parameter has been added. HGSITION
parameter has been renamedIAL _POSITION and it's access level is (RW). TRERIOD
parameter access level is now (RO).

* For the Sampler, theERIOD parameter access is now (RO).

1.1.3.2 PHYSICAL AND APPLICATION OBJECTS

* For theAXIS object, theeOSITION parameter has been renanma@iAL _POSITION, and it's
access level is (NA). A new inquire functichpipe_motionlesshas been added.

* For theAXES_SET object, thesHIFT parameter has been renansBsSET. A new inquire
function,? pipe_motionlesshas been added.

e For theZERO_POSITIONER, the access level for theEDARSE_SPEED, COARSE_MOVE,
FINE_MOVE andRESOLVER_OFFSET parameters has been changed to (RW).

* For the ENCODER, the POSITION_PERIOD parameter access is now (RW). The
functionality of the Encoder is expanded to permit access to additional ST1 outputs. In

Page: 1-2 Doc. No. 006.8007.B
Rev. 10/15/95

Introduction

Socapel PAM Reference Manual 2.5

suppot of this expanded functionafit the ADDRESS paraneter has been redefined. A new
inquire function,? valug has been added.

* A newSINK object has been added.

1.1.4 THIS REVISION OF THE PAM REFERENCE MANUAL
Revision B (this edition) of the PAM Reference Manual incorporates all ggzaorginally
docunental in Releas Notes 006.805 (Releag 2.2) and 006.8026 (Release 2.3) as well as the
changes related to Release @&e paragraph 1.1.3).

Doc. No. 006.8007.B Page: 1-3

Rev. 10/15/95

Introduction
Socapel PAM Reference Manual 2.5

1.2 BASIC SYSTEM CONCEPTS AND DEFINITIONS

1.2.1 SYSTEM

Systems are comprised of components, and each component of the system is comprised of one or
more ring nodes (nodes). Peripherals of various types are located at each node. The hierarchical
relationship among system, components, nodes and peripherals is shown in Figure 1-1 and Figure
1-2.

Node Node

Peripheral| | Peripheral Peripheral|| Peripheral
Peripheral Peripheral
Node

Peripheral| | Peripheral
Peripheral
Node

Peripheral|| Peripheral Peripheral| | Peripheral
Peripheral Peripheral
Node

Peripheral| | Peripheral
Peripheral

Figure 1-1 Graphical representation of a system

Node

Node
Peripheral| | Peripheral Peripheral| | Peripheral
Peripheral Peripheral
Node

Peripheral| | Peripheral
Peripheral

Page: 1-4 Doc. No. 006.8007.B
Rev. 10/15/95

Introduction

Socapel PAM Reference Manual 2.5

System
Component Component Component
/N AN
Node Node Node Node Node
Peripheral PeripheralPeripheral PeripheraPeripheral PeripheraPeripheral Peripheral Peripheral

Figure 1-2 Alternative graphical representation of a system

1.2.11 DEFINITIONS

The behaviour of a component is the description of what a component does and how it does it.

This behaviour is defined using the AGL (Alternative Graphical Language) declarations and
statements in a PAM application program.

The function of a component is the set of operations executed by the component in the system.
1.2.1.2 EXAMPLE

Imagine a system comprised of two drilling machines (two components). The drilling machines
have drills of different diameter. These two components have the same behaviour (drilling
holes), but different functions (drill holes of different diameters).

1.2.2 KINDS OF SYSTEMS

From a PAM point of view, there are three basic kinds of systems:
1. Single

Each component of the system has its own behaviour, which is different than the other
system components' behaviour. All nodes of all components must be present and operational

to have a working system. Figure 1-3 show a "single" system.
Component 1 Component 2 Component 3
Behaviour A Behaviour B Behaviour C

== Function: a Function: b Function: ¢

I E, .

ol = 228 . = 222 .

v OooEo@ OEEEEE

) H

T Node K Node S Node V Node W

Doc. No. 006.8007.B Page: 1-5

Rev. 10/15/95

Introduction

Socapel PAM Reference Manual 2.5

Figure 1-3 Single system with three components

2. Multiple with static configuration

Several components of the system have the same behaviour, but different functions. The
static configuration requires that all nodes of all components be present and operational to

have a working system.

Figure 1-4 show a "multiple with static configuration”

system.

Component 1 Component 2 Component 3
Behaviour A Behaviour A Behaviour A

=) Function: al Function: a2 Function: a3

k 5 5 2

ol " ogm ® " ogm ® " ggm ®

PAM OoOoE@E [mimiminin} poooEE

g

Node K[1] Node S[1] Node K[2] Node S[2] Node K [3] Node S

Figure 1-4 Multiple System with static configuration

3. Multiple with dynamic configuration

Several components of the system have the same behaviour. With dynamic configuration the
system can work even if some of these components are not present or not operational.
Figure 1-5 show a "multiple system with dynamic configuration” .

Component 1

Component 2

Component 3

Behaviour A Behaviour A Behaviour A
Function: al Function: a2 Function: a3
o o =
" ggm = " ggm = " ggm =
IiEmEm@EeE [mimiminin} poooEE
Node K[1] Node S[1] Node K[2] Node S[Zj Node K [3] Node S[§]

Figure 1-5 Multiple system with dynamic configuration

Multiple systems with dynamic configuration have two main advantages:

Page: 1-6

Doc. No. 00

Rev.

6.8007.B
10/15/95

Introduction

Socapel PAM Reference Manual 2.5

e auto-configuration

* node fault tolerance.

1.2.2.1 AUTO-CONFIGURATION
Using auto-configuration the same application (software) can drive systems with 1, 2, 3 or n
identical components without modification or recompilation of the application.

1.2.2.2 NODE FAULT TOLERANCE
If a faulty component's node is bypassed on the ring, the whole faulty component (which can be
composed of several nodes) will be ignored by the application without modification or
recompilation of the application. To use auto-configuration with node fault tolerance, the
application must know which nodes are assigned to a component. For this pxposs,
GROUPS are used.

Doc. No. 006.8007.B Page: 1-7

Rev. 10/15/95

Introduction
Socapel PAM Reference Manual 2.5

1.3 APPLICATION TERMS AND DEFINITIONS

1.3.1 PARALLELISM
All applications have a common characteristic, parallelism. Parallelism means that several
components of the controlled machine or system must work simultaneously. To describe this
behaviour in the application, we use tasks.

1.3.2 TASK
A task describes totally or partially the behaviour of a component of the system. A task can be
divided into several sequences of operations. Only one sequence within a task can be active
(under execution) at any time; however, multiple tasks may be executed simultaneously.

1.3.3 SEQUENCE
A sequence is started when an event occurs, a condition is true, an exception occurs or at power
on. In a sequence, beyond statements involving physical objects (10, axes, nodes, variables, etc.),
it is possible to start another sequence within the same task, execute another task, abort the task,
install or remove an exception, wait for a condition or a "time out", etc.

1.3.4 ACTIONS
An action is a succession of statements (excluding statements which wait for a condition.). An
action is executed when an event occurs or at power on. Actions reside outside the task/sequence
structure and are therefore executed whenever the triggering event or the state of a boolean
variable is true.

Page: 1-8 Doc. No. 006.8007.B

Rev. 10/15/95

Introduction

Socapel PAM Reference Manual 2.5

1.4 DECLARATION AND STATEMENT SYNTAX
1.4.1 SYMBOLS AND ABBREVIATIONS
This section describes the meaning of the symbols and abbreviations used throughout this manual
to define the syntactic structure(s) of the declarations and statements which comprise the PAM
programming language.
* Words in upper case bold letters are Keywords. Keywords have special significance to the
PAM programming language and may not be used identifiers, symbols, etc. in the
application.
* A vertical bar “|” separating two syntactic structures indicates a syntactic alternative.
* Square brackets “[]” are used to enclose an optional syntactic structure.
» Brace “{}" are used to enclose a repetitive syntactic structure:
-{} means 1 repetition.
-[{}] means O or 1 repetition.
-{}* means0,1,2,...,n repetitions.
-{}+ mean 1,2,3,...,n repetitions.
* Angle brackets “< > are used to enclose variable parts of syntactic structures.
1.4.2 APPLICATION COMMENTS
A comment is a sequence of text used to section and explain application code.
e The symbolg* and*/ denote the start and end of a comment. They can not be nested.
e [*This is a comment */
e [*Thisis a comment /* but this is illegal */ */
The characters “//” may be used to denote the start of a comment which terminates at the end of
the line.
IFV_OutFlag <- set ; /[This is a comment
Doc. No. 006.8007.B Page: 1-9

Rev. 10/15/95

Introduction
Socapel PAM Reference Manual 2.5

1.5 ARRANGEMENT OF APPLICATION PROGRAMS
The overall arrangement of an application program is as follows:
application information declaration
{node group declaratigh
{node declaratigr
{axes set declaratipn
{input-output peripheral declaratipn
dualport declaration
{variable declaratigr
{Boolean equation declaratidpn
actions declaratioh
task declaratiop+
1.5.1 APPLICATION INFORMATION DECLARATION
This section describes the structure and use of the Application Information declaration which is
at the beginning of every application program.
SYNTAX
APPLICATION
NAME = <identifier>V<version>;
BASIC_PAM_CYCLE = <basic PAM cycle> ;
[DEFAULT _TASK_WORKSPACE = <default task workspace> ;]
END
<identifier>: the name of the application (only the 11 first characters are used)
<version>: the version of the application. The format is ddd.dd , where d is a digit.
<basic PAM cycle>: the basic PAM period time in 1/3 of milliseconds. All the application timing
is based on this time.
<default task workspace> : the default workspace size (expressed in bytes) for all tasks of the
application.
Page: 1-10 Doc. No. 006.8007.B

Rev. 10/15/95

Introduction

Socapel PAM Reference Manual 2.5

DECLARATION EXAMPLE

APPLICATION

NAME =my_applicV 1.00;

BASIC_PAM _CYCLE =3; /' 1 ms cycle
END

1.6 APPLICATION SIZE
The application is saved in EEPROM after compression using a compression algorithm.

The maximum size for the application is limited to 256 Kbytes (262144 bytes). The size of the
EEPROM is 128 Kbytes.

Doc. No. 006.8007.B Page: 1-11
Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

2 PHYSICAL OBJECTS, DECLARATIONS AND USES

2.1 INTRODUCTION

Physical oljects are parts of theystem configuration which perfan specific input/output
functiors utilising dedicatel hardware/fimware. For most plysical oljects, this dedicated
hardware/fimware resides in peripherals connected on the PAN.Ril physical olects used
in an application must be declared usinthe appropriate pisical declaration stateent.
Similarly, peripherals connected on the PAM imust be declakin aring node declaration
(see pargraph 2.2). Table 21 lists the ypes of plysical olects ad their associated

peripheral(s).
PHYSICAL OBJECT TYPE ASSOCIATED PERIPHERAL
AXis ST1
binary input Smart IO or STI
digital input Smart 10
counter input Smart 10
key input Smart 10
binary output Smart IO or STI
digital output Smart 10
analog output Smart 10
LED output Smart 10
seven segment display output Smart 10
PAM analog output PAM
DC motor Smart IO
encoder STI

Table 21 Physical Object Types

2.1.1 PHYSICAL OBJECT DECLARATION SYNTAX

Ead physicd objed is defined by a type (i.e. binay input), an identifier (gmbolic nane), and a
sd of paranetess along with their initial values. The paraeter setvaries with the yipe of
physical object. The general syntax for a physical object declaration is as follows:

<type> <identifier>;
{<parameter>= <initial value>;}*

END

2.1.2 PHYsICAL OBJECT PARAMETERS ACCESS

Physical obect paraneters can be accessed the applicatia during its execution using a
specific yntax. Each paraeter has its own access/éd which is indicatedn the paraneter
description. The possible levels with their abbreviations are as follows:

 No Acces (NA)
e Read Only access (RO)

Doc. No. 006.8007.B Page: 2-1
Rev. 10/15/95

Physical Objects, Declarations and Uses
Socapel PAM Reference Manual 2.5

e Write Only access (WO)

* Read and Write access (RW)

PARAMETER INQUIRY SYNTAX
The syntax for parameter value inquiry is as follows:

<destination object><- <object><parameter> ;

EXAMPLE:

Read current TRAVEL_SPEED parameter value of AXI_X and write the value into
IWV_MyVariable:

IWV_MyVariable <- AXI_X:TRAVEL_SPEED ;

PARAMETER MODIFICATION SYNTAX
The syntax for parameter value modification is as follows:

<object=<parameter><- <expression> ;

EXAMPLE:
Modify the TRAVEL_SPEED parameter value of AXIl_X:

AXI_X:TRAVEL_SPEED <- 123.75 * (IWV_OIdSpeed - 100.0) ;

Page: 2-2 Doc. No. 006.8007.B
Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

2.2 RING NODE DECLARATIONS
Ring Node declarations make the logical connection between the physical address on the PAM
Ring assigned to a peripheral and it's identifier (symbolic name). All peripherals on the PAM
Ring must be identified in a ring node declaration.
2.2.1 DECLARATION SYNTAX
NODE <identifier> ;
{ [NUMBER =<number>] |
NODES_GROUP =<nodes group identifier> };
ADDRESS = <address> ;
TYPE = <type>;
END
<identifier>: name assigned to the node.
<number>: (NA), indicate whether the node is multiple or singlesdfBER declaration is
omitted or if <number> = 1, the node is single, otherwise the node is multiple.
<nodes group identifier>: (NA), name of the nodes group when the node is a member of a nodes
group.
i Refer to paragraph 3.2 for details on Nodes Groups.
<address>: (NA), the PAM Ring address, in hexadecimal, of the peripheral assigned to the node.
If the object is multiple, <address> is the first of <number> of consecutive addresses.
i The Node Address switches in the peripheral assigned to the node must match
ADDRESSIn the node declaration.
<type>: (NA), the peripheral type (ST1 or SMART_IO) assigned to the node.
2.2.2 NODE FUNCTIONS
The following functions are available for all nodes regardless of their type:
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
error INQUIRE - BOOLEAN
error_code INQUIRE - INTEGER
- error
Returns error status of the node.
— error_code
returns error code of the node. An error code 0 mean "no error”. The error codes
meaning depends of the node type.
Doc. No. 006.8007.B Page: 2-3

Rev. 10/15/95

Physical Objects, Declarations and Uses
Socapel PAM Reference Manual 2.5

EXAMPLES
IF NOD_Main ? error THEN

IF NOD_Main ? error_code = 12 THEN
END_IF
END_IF

2.2.3 NODE DECLARATION EXAMPLES

SINGLE SYSTEM

This example illustrates the declarations needed for describing the "single" system shown in

Figure 2-1.
Component1 Component 2 Component 3
Behaviour A Behaviour B Behaviour C
= Function: a Function: b Function: ¢
I
]
ol " gam " " gam "
PAM EEEEEE EEEEEE
) H
! Node K Node S Node V Node W
Figure 2-1 Single System
NODE NOD_K;
ADDRESS =1; [/l Address of the K node
TYPE =SMART_IO;
END
NODE NOD_S;
ADDRESS =17 ; [/l Address of the S node
TYPE =ST1;
END
NODE NOD_V;
ADDRESS =3; [/ Address of the V node
TYPE =SMART_IO;
END
NODE NOD_W,;
ADDRESS =33 ; // Address of the W node
Page: 2-4 Doc. No. 006.8007.B

Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

TYPE =ST1,;
END

MULTIPLE NODES

This example shows the declarations needed for describing the multiple system illustrated in

Figure 2-2.
Component1 Component 2 Component 3
Behaviour A Behaviour A Behaviour A
= Function: al Function: a2 Function: a3
I
ol LT " pgm " " pgm "
PAM EEEEEE EEEEEE EEEEEE
o
! Node K[1] Node S[1] Node K[2] Node S[2|] Node K [3] Node S[B]
Figure 2-2 Multiple System
NODE NOD _K;
NUMBER =3;
ADDRESS =1; [/l Address of the first K node
TYPE =SMART_IO;
END
NODE NOD_S;
NUMBER =3;
ADDRESS =17 ; [/l Address of the first S node
TYPE =ST1;
END
Doc. No. 006.8007.B Page: 2-5

Rev. 10/15/95

Physical Objects, Declarations and Uses
Socapel PAM Reference Manual 2.5

2.3 AXIS OBJECT
AXIS
The Axis object handles the motion control (as opposed to the IO part) of an ST1 digital motion
controller peripheral. There are four different ways to configure and control axis objects which
include:
» controlling individually each axis using parameters and functions
« controlling directly multiple axes using parameters and functions
» controlling directly an axis set using parameters and functions
» controlling an axis (or axes) using the flow of values from a pipe
The optimum configuration is generally dictated by the particulars of the application.
As illustrated in the Axis object functional diagram (Figure 2-3), the trapezoidal motion profile
generator responds to parameters and functions from the application, while the pipe interface
processes pipe flow data. The axis supports simultaneous output from both sources, producing an
axis motion profile which is the algebraic sum of the sources.
coMmands | Ty5nezoidal Motiorn
fanctions > Profile Generator | Trapezoidal
Motion Profile
2 >
Axis Motion Profile
w Arbitrary +
e e - - Pipe Data Motion Profile
ipe data
PRE.CEE Interface J
Figure 2-3 Axis Object Functional Diagram
Page: 2-6 Doc. No. 006.8007.B

Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

DECLARATION SYNTAX

AXIS <identifier> ;
NODE = < node identifier>;
PULSES PER_UNIT = <pulses per unit value> ;
TRAVEL _SPEED = <travel speed value> ;
ACCELERATION <acceleration value> ;
[DECELERATION <deceleration value> ;]
INITIAL _POSITION <initial position value> ;
{ POSITION_PERIOD = <position period value> |
POSITION_RANGE = <min. position value> <max. position value>} ;

END

A

<identifier> : name of the axis.

Only ST1 node types have axis objects.

< node identifier> : (NA), name of the STI node where the axis part is located.

<travel speed value> : (RW), travel speed value for trapezoidal motion profile expressed in user
length units per second. The travel speed value sets the constant speed part of the trapezoidal
motion profile. This value must be greater than zero.

<acceleration value> : (RW), acceleration value for trapezoidal motion profile expressed in user
length units per second squared. This value must be greater than zero.

<deceleration value> : (RW), deceleration value for trapezoidal motion profile expressed in user
length units per second squared. This value must be greater than ZBeGEIfERATION is
omitted, the <acceleration value> is used.

<initial position value > : (RW), initial logical position value expressed in user length units. The
axis is initialised to this value upon power-up or following a hardware reset of PAM. This
operation generates no axis motion.

<position period value> : (NA), position period for cyclic motion systems, expressed in user
length unit. This value must be greater than zero.

<min. position value>, <max. position value> : (NA), the position range for linear motion
systems, expressed in user length units. The max. value must be greater than the min. value.

@ The POSITION_RANGE parameter is not yet implemented. The position range of an
axis can be specified by using the PHIL1 and PHIL2 parameters of the ST1. But to
declare a non-periodic system, it must be specified in the axis declaration using
dummy values.

<pulses per unit value>: (NA), the number of resolver units (RU) per user length unit.
The number of resolver units per turn for a single-speed resolvériRQ.

For more information's see the "Motor Position" in the ST1 reference manual "Software for
Synchronisation of Axes, 024.8068")

Doc. No. 006.8007.B Page: 2-7
Rev. 10/15/95

Physical Objects, Declarations and Uses
Socapel PAM Reference Manual 2.5

For example, with an ST1 node driving a motor with a single-speed resoﬁ?ere(ﬁ)lver
units per revolution), if the user length unit is one degree (360 degrees per revolution) then
the "pulse per unit value" must b8 360 = 11,930,464.71111111

Pulses per unit may also be specified as a negative number. A negative value produces
rotation in the direction opposite from the motion produced with a positive value. This is the
easiest way to reverse the motor rotation direction.

A

AXIS SAMPLE DECLARATION
AXIS AXI_Leader ;

The precision of the motion control (especially for cyclic motion systems) directly
depends on the precision of this parameter. The maximum number of digits is 16.

NODE =NOD_Leader;

PULSES _PER_UNIT =11930464.7111 ; /* (2"32/360)*/
TRAVEL _SPEED = 3600.0; [* 10t/s */
ACCELERATION =36000.0; /*100t/s"2 */

DECELERATION = 36000.0;

INITIAL_POSITION = 0.0;

POSITION_PERIOD = 360.0; /* 1t */
END

FUNCTIONS

The following is a summary of the axis functions. Detailed descriptions of axis inquire functions
are found in Chapter 9. Details on axis executive functions are found in Chapter 7.

FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
absolute_move set - absolute position value -
position set - position value -
power_off set - -
power_on set - -
relative_move set - relative position value -
run set - speed value -
stop set - -
update status set - -
error inquire - boolean
error_code inquire error code boolean
error_code inquire - integer
generator position inquire - real
pipe_motionless inquire - boolean
position inquire - real
ready inquire - boolean
speed inquire - real
status inquire status code boolean
status inquire - integer

Page: 2-8

Doc. No. 006.8007.B
Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

231
23.1.1

2.3.1.2

PARAMETER MODIFICATION

TRAVEL_SPEED

Parameter access permits changes tam&EL SPEED parameter value specified in thgis
declaration. The following rules apply when the travel speed value is modified:

» If the new travel speed value is greater than the maximum travel speed value (according to
the ST1 axis CKV parameter), the maximum travel speed value is used.

» If atrapezoidal motion is in progress, the new travel speed value will be applied to
subsequent trapezoidal motions.

i Refer to document 024.8068 for details on the CKV parameter

SYNTAX

<object identifier>TRAVEL _SPEED <- (<travel_speed valug>

EXAMPLE
AXI_AnAxis:TRAVEL_SPEED <- (3.22) ;

AXI_Axes[i:-TRAVEL_SPEED <- (IRV_SpI[i]) ;
AXI_Axes[all:TRAVEL_SPEED <- (IRV_Sp*1.25-1);

ACCELERATION

Parameter access permits changes tAdTELERATION parameter value specified in thgis
declaration. The acceleration value is always used to generate the first part of the trapezoidal
motion profile.

The following rules apply when the acceleration value is modified:

» If the new acceleration value is less than or equal to zero, the current value is not replaced by
the new value.

» If the new acceleration value is greater than the maximum acceleration value (according to
the ST1 axis CKA parameter), the maximum acceleration value is used.

» If atrapezoidal motion is in progress, the new acceleration value will be used only for
subsequent trapezoidal motions.

i Refer to document 024.8068 for details on the CKA parameter

SYNTAX
<object identifier>ACCELERATION <- (<acceleration valug>

EXAMPLE

AXI_AnAxis:ACCELERATION <- (3.22) ;
AXI_Axes[i]:ACCELERATION <- (IRV_Acc]i]) ;
AXI_Axes[all;ACCELERATION <- (IRV_Acc *1.25-1) ;

Doc. No. 006.8007.B Page: 2-9

Rev. 10/15/95

Physical Objects, Declarations and Uses
Socapel PAM Reference Manual 2.5

2.3.1.3 DECELERATION

Parameter access permits changes t@HTELERATION parameter value specified in thgis
declaration. The deceleration value is always used to generate the last part of the trapezoidal
motion profile.

The following rules apply when the deceleration value is modified:

» If the new deceleration value is less than or equal to zero, the current value is not replaced by
the new value.

» If the new deceleration value is greater than the maximum deceleration value (according to
the ST1 axis CKA parameter), the maximum deceleration value is used.

» If a trapezoidal motion is in progress, the new deceleration value will be used only for
subsequent trapezoidal motions.

i Refer to document 024.8068 for details on the CKA parameter

SYNTAX

<object identifier>DECELERATION <- (<deceleration value>

EXAMPLE
AXI_AnAxis:DECELERATION <- (3.22) ;

AXI_Axes[i]:DECELERATION <- (IRV_Decell[i]) ;
AXI_Axes[all]:DECELERATION <- (IRV_Decel * 1.25 - 1) ;

Page: 2-10 Doc. No. 006.8007.B
Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

2.4

24.1

INPUT OBJECTS

Input objects are comprised of a physical part which resides within a peripheral (ST1 or
SMART _10) located within a ring node, and a logical part which resides within PAM. All inputs
have two common characteristics, an owner node and an address. If the owner node is multiple,
the peripheral is multiple; otherwise, if the owner node is single, the input is single.

DECLARATION SYNTAX

The general declaration syntax for an input is shown below. The specific declaration for each
input type is found subsequent paragraphs of this section.

<logical input type> <identifiers
NODE = <owner node identifiers
<logical characteristics> ;
[ON <physical peripheral typé>
ADDRESS = <address>
<physical characteristics>

END

<logical input type>: type of input object.

<identifier>: name of the input object.

<owner node identifier>: (NA), identifier of the node where the input object is located.
<logical characteristics>: (NA), logical characteristics of the input.

<physical peripheral type>: (NA), descriptor for physical type of input.

<address>: (NA), input’s address within the owner node. The nature of <address> depends on
the owner node type (Refer to appendix D for ST1 and to appendix E for SMART_IO).

<physical characteristics>: (NA), physical characteristics of the output.

The most frequent physical characteristics are:

ACTIVE = { HIGH |LOW };

PERIOD = <period value in ms> ;

DEBOUNCE = <samples number> ;

<HIGH |Low>: (NA), defines the input polarity.

With ACTIVE = HIGH, the boolean true (1) corresponds to a high level state. Néthve =
Low, the boolean true (1) corresponds to a low level state.

<period value> : (NA), defines the scanning period in [ms] applied to an input.

<samples number> : (NA), defines the number of consecutive identical samples of an input
required before the input assumes a new state.

Doc. No. 006.8007.B Page: 2-11

Rev. 10/15/95

Physical Objects, Declarations and Uses
Socapel PAM Reference Manual 2.5

2.4.2

BINARY INPUT

SYNTAX

BINARY _INPUT <identifier>;
NODE = <owner node identifiers
[ON BINARY _INPUT]
ADDRESS = <address>
ACTIVE ={ HIGH |LOW } ;
PERIOD = <period value in ms>
DEBOUNCE = <samples numbery

END
FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
<- (read value) INQUIRE - BOOLEAN
DECLARATION EXAMPLE
NODE NOD_XYZAxis ;
NUMBER =3;
ADDRESS =1,;
TYPE =ST1;
END
BINARY_INPUT SBI_InputA ;
NODE = NOD_XYZAXis ;
ADDRESS =210; /I O1O board 10th input.
ACTIVE =LOW;
PERIOD =20; 1/ 20 ms.
DEBOUNCE =1,;
END

Page: 2-12

Doc. No. 006.8007.B
Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

2.4.3 DIGITAL INPUT

DECLARATION SYNTAX

DIGITAL _INPUT <identifier>;
NODE = <owner node identifiers
BITS =< number of bits >
[ON DIGITAL _INPUT]
ADDRESS = <address>
ACTIVE ={ HIGH |LOW } ;
PERIOD = <period value in ms>
DEBOUNCE = <samples numbery
END

< number of bits > : (NA), size in bits of the digital input.

FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
<- (read value) INQUIRE - INTEGER
A Digital Inputs are not available for ST1 nodes.
EXAMPLE
NODE NOD_Toolslo;
NUMBER =3;
ADDRESS =41; Il #29
TYPE = SMART_IO;
END
DIGITAL_INPUT SDI_Digitallnputl ;
NODE = NOD_Toolslo;
BITS =5;
ADDRESS =208; /I module 2, use 8th to 12th inputs.
ACTIVE = HIGH ;
PERIOD =10; // 10 ms.
DEBOUNCE =2;
END

i Default implementation of digital inputs on a SMART _IO is as binary inputs.

Doc. No. 006.8007.B Page: 2-13
Rev. 10/15/95

Physical

Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

2.4.4 COUNTER INPUT
DECLARATION SYNTAX
COUNTER_INPUT <identifier> ;
NODE = <owner node identifier> ;
[ON COUNTER_INPUT]
ADDRESS = <address> ;
ACTIVE = { HIGH |LOW };
PERIOD = <period value in ms> ;
DEBOUNCE = <samples number> ;
END
FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
<- (read value) INQUIRE - INTEGER
A Counter Inputs are designed to be used only with a DC_motor output (see paragraph
2.6.1) on a Smart-10.
EXAMPLE
NODE NOD_Toolslo;
NUMBER =3;
ADDRESS =41; 1 #29
TYPE = SMART_IO;
END
COUNTER_INPUT CNT_DCmotorCounter ;
NODE = NOD_Toolslo;
ADDRESS =101; /I module 1, 1st input.
ACTIVE =HIGH ;
PERIOD =1 ; //1ms.
DEBOUNCE =1;
END
i Default implementation of counter inputs on a SMART_IO is as binary inputs.
Page: 2-14 Doc. No. 006.8007.B

Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

2.4.5 KEY INPUT

DECLARATION SYNTAX
The declaration syntax for a key (keyboard) input is as follows:

KEY _INPUT <identifier>;
NODE =<owner node identifier>
MODE = { ON_OFF | TOGGLE |AUTOREPEAT } ;
[ON KEY _INPUT]
ADDRESS = <address>
ACTIVE ={ HIGH |LOW } ;
PERIOD = <period value in ms>
END

The declaration syntax for a key (keyboard) input implemented using a binary input physical part
is as follows:

KEY _INPUT <identifier>;
NODE =<owner node identifier>
MODE ={ ON_OFF | TOGGLE |AUTOREPEAT } ;
ON BINARY _INPUT
ADDRESS = <address>
ACTIVE ={ HIGH |LOW };
PERIOD = <period value in ms>
DEBOUNCE = <samples numbery

END
FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE

invert SET - -

reset SET - -

set SET - -

<- (read value) INQUIRE - BOOLEAN

Key Inputs are not available for ST1 nodes.

A

DECLARATION EXAMPLES

Keyboard input declarations with a SMART _IO node :
NODE NOD_Toolslo;

NUMBER =3;
ADDRESS =41; Il #29
TYPE = SMART_IO;

END
KEY_INPUT KEY_Start ;
NODE =NOD_Toolslo;
MODE = ON_OFF;

ADDRESS =12; // position 12 in key array.
ACTIVE =HIGH ;

Doc. No. 006.8007.B Page: 2-15

Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

PERIOD =50; 1 [ms]
END

KEY_INPUT KEY_Steps ;

NODE = NOD_Toolslo;
MODE = AUTOREPEAT ;
DELAY =1500; /I delay of 1500 ms before repeating.
REPEAT =500; // time interval between repeating.
ADDRESS =18; /I position 18 in key array.
ACTIVE =HIGH;
PERIOD =50; I [ms]
END

Declaration Example for keyboard input on a physical binary input:
KEY_INPUT KEY_Deportedl ;

NODE = NOD_Toolslo;
MODE = TOGGLE;

ON BINARY_INPUT
ADDRESS =103; /I module 1, 3rd input.
ACTIVE = HIGH ;
PERIOD =20; I [ms]
DEBOUNCE =2,

END

Page: 2-16 Doc. No. 006.8007.B

Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

2.5 OuTPUT OBJECTS
Output objects are comprised of a physical part which resides within PAM or within a peripheral
(ST1 or SMART _I0O), and a logical part which resides within PAM. All outputs except the PAM
Analog Output have two common characteristics, an owner node and an address. If the owner
node is multiple, the peripheral is multiple; otherwise, if the owner node is single, the output is
single.
2.5.1 DECLARATION SYNTAX
The general declaration syntax for an output is shown below. The specific declaration for each
output type is found subsequent paragraphs of this section.
<logical output type> <identifier>
NODE =<owner node identifier>
<logical characteristics>
[oN <physical peripheral typg>
ADDRESS = <address>
<physical characteristics>
END
<logical output type>: type of output object.
<identifier>: name of the output object.
<owner node identifier>: (NA), identifier of the node where the output object is located.
<logical characteristics>: (NA), logical characteristics of the output. The set of logical
characteristics varies with the output type.
<physical peripheral type>: (NA), descriptor for physical type of output.
<address>: (NA), the output’s address within the owner node. The nature of <address> depends
on the owner node type (Refer to appendix D for ST1 and to appendix E for SMART_IO).
<physical characteristics>: (NA), the physicals characteristics of the output. The set of physical
characteristics varies as a function of the output type.
Doc. No. 006.8007.B Page: 2-17

Rev. 10/15/95

Physical Objects, Declarations and Uses
Socapel PAM Reference Manual 2.5

25.2 BINARY OUTPUT

DECLARATION SYNTAX

BINARY _OUTPUT <identifier>;
NODE =<owner node identifiers
[ON BINARY _OUTPUT]
ADDRESS = <address>
ACTIVE ={ HIGH |LOW } ;
END

<HIGH | Low> : (NA), defines the output polarity.

With active high, the boolean true (1) corresponds to a high level state.
With active low, the boolean true (1) corresponds to a low level state.

FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
<- (assign value) SET - boolean expression -
invert SET - -
reset SET - -
set SET - -
<- (read value) INQUIRE - BOOLEAN
DECLARATION EXAMPLE
NODE NOD_XYZAxis ;
NUMBER =3;
ADDRESS =1;
TYPE =ST1,;
END
BINARY_OUTPUT SBO_OutputA ;
NODE = NOD_XYZAxis ;
ADDRESS =201; // OIO board 1st input.
ACTIVE = HIGH ;
END
Page: 2-18 Doc. No. 006.8007.B

Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

2.5.3 DiGITAL OUTPUT

DECLARATION SYNTAX

DIGITAL _OUTPUT <identifier>;
NODE = <owner node identifiers
BITS = <bits number>
[ON DIGITAL _OUTPUT]
ADDRESS = <address>
ACTIVE ={ HIGH |LOW } ;

END

<bits number> : (NA), size in bits of the digital output.
<HIGH | LOW>: (NA), defines the output polarity.

With active high, the boolean true (1) corresponds to a high level state.
With active low, the boolean true (1) corresponds to a low level state.

FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
<- (assign value) SET - humerical expression -
<- (read value) INQUIRE - BOOLEAN

Digital Outputs are not available for ST1 nodes.

A

DECLARATION EXAMPLE
NODE NOD_Toolslo;

NUMBER =3;
ADDRESS =41; 11 #29
TYPE = SMART_IO ;
END
DIGITAL_OUTPUT SDO_DigitalOutputl ;
NODE = NOD_Toolslo;
BITS =6;
ADDRESS =201; /I module 2, use 1st to 6th outputs.
ACTIVE = HIGH ;
END

i Default implementation of a digital outputs on a SMART _1O is as binary outputs.

Doc. No. 006.8007.B Page: 2-19
Rev. 10/15/95

Physical Objects, Declarations and Uses
Socapel PAM Reference Manual 2.5

25.4 ANALOG OUTPUT

DECLARATION SYNTAX

ANALOG _OUTPUT <identifier>;
NODE =<owner node identifiers
RANGE = <lower bound> <upper bound>
[ON ANALOG _OUTPUT]
ADDRESS = <address>
END

<lower bound> : (NA), lower bound in user units corresponding to the maximum negative
voltage of the analog output.

<upper bound> : (NA), upper bound in user units corresponding to the maximum positive
voltage of the analog output.

FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
<- (assign value) SET - humerical expression -
<- (read value) INQUIRE - INTEGER

Analog Outputs are not available for ST1 nodes.

A

DECLARATION EXAMPLE
NODE NOD_Toolslo;

NUMBER =3;
ADDRESS =41; Il #29
TYPE = SMART_IO;
END
ANALOG_OUTPUT SAO_AnalogOutputl ;
NODE = NOD_Toolslo;
RANGE =-10000 10000 ; // define user units.
ADDRESS =1; /I default address for the analog
output of a smart_io.
END

The output voltage delivered by the analog output of the SMART_IO ranges from - 10 [v] to +
10 [v]. In this example, by defininRANGE = -10000 10000, the user defines the scaling factor
for the analog output to be 1 millivolt/unit.

Page: 2-20 Doc. No. 006.8007.B
Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

25.5 LED OUTPUT

DECLARATION SYNTAX

LED_OUTPUT <identifier>;
NODE =<owner node identifiers
[ON LED_OUTPUT]
ADDRESS= <address>

END
FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
<- (assign value) SET - boolean expression -
invert SET - -
reset SET - -
set SET - -
blink SET - -

Led Outputs are not available for ST1 nodes.

A

DECLARATION EXAMPLE

NODE NOD_Toolslo;
NUMBER =3;
ADDRESS =41; I #29
TYPE = SMART_IO;
END
LED_OUTPUT LED_Outputl ;

NOD_Toolslo;
6; /I position 6 in led array.

NODE
ADDRESS
END

Doc. No. 006.8007.B Page: 2-21
Rev. 10/15/95

Physical

Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

2.5.6

A

DisPLAY OUTPUT (7 SEGMENTS)

DECLARATION SYNTAX

D7SEG_OUTPUT <identifier>;
NODE =<owner node identifiers
DIGITS = <digits number;
FONT =
[ON D7SEG_OUTPUT]
ADDRESS =<address>

END
FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
blink SET - -
display SET - characters string -
display SET - numerical expression -
- digits number
no_blink SET - -

Display Outputs are not available for ST1 nodes.

DECLARATION EXAMPLE
NODE NOD_Toolslo;

NUMBER =3;
ADDRESS =41, Il #29
TYPE = SMART_IO ;
END
D7SEG_OUTPUT D7S_LedOutputl ;
NODE = NOD_Toolslo;
DIGITS =1 /Il number of digits.
ADDRESS =1; /I default address for the 7 segments
/ display output of a smart_io.
END

Page: 2-22

Doc. No. 006.8007.B
Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

2.5.7 PAM ANALOG OUTPUT

Two analog outputs located on the PAM front panel are provided for monitoring purposes. They
utilise 8 bit DACs with an output amplitude range of 0 to 2.5 Volts.

DECLARATION SYNTAX

PAM_ANALOG _OUTPUT <identifier>;
UNITS_PER _VOLT = <input attenuation value> ;
OFFSET = <input offset value> ;
ADDRESS = <analog output address> ;

END

<identifier> : (NA), name of the PAM analog output.

<input attenuation> : (NA), sum of (<input value>+<input offset>) which is to produce 1 Volt
on the output. See output voltage equation below.

<input offset> : (NA), value added to the input value.

T~
<analog output address> : (NA), address of the 0
PAM analog output (O or 1). o
o)
o)
address 0| OO
address 1|[QO
IN @
Output voltage = (input value + input offsét)
input attenuation
FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
<- (assign value) SET - humerical expression -
<- (read value) INQUIRE - INTEGER
DECLARATION EXAMPLES:
Declarations and link with a pipe block
PAM_ANALOG_OUTPUT PAO_PambDac0 ;
UNITS_PER_VOLT =1000.0;
OFFSET =0.0;
ADDRESS =0;
END
PAM_ANALOG_OUTPUT PAO_PambDacl ;
UNITS_PER_VOLT =10000.0;
Doc. No. 006.8007.B Page: 2-23

Rev. 10/15/95

Physical

Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

OFFSET =12500.0;
ADDRESS =1;

END

CONVERTER CNV_PipeOutputProbe ;
DESTINATION = PAO_PamDac0 ;
MODE = VALUE ;

END

Monitoring of the output set point of a pipe:

'C'Z.NV_PipeOutputProbe << CAM_MyCam << TMP_Generator ;

Direct use of PAM analog outputs:

PAO_PambDac0 <- 1245.38 ; /1 1.24 Volt on output
PAO_PambDacl <- - 12500 ; /I 0 Volt on output (Vmin)
PAO_PambDacl <-0; /[1.25 Volt on output
PAO_PambDacl <- 12500 ; /[2.5 Volt on output (Vmax)

Page: 2-24

Doc. No. 006.8007.B
Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

2.6 SPECIAL OUTPUTS

2.6.1 DC MOTOR

DC_MOTOR

<

The DC motor output, which is integral to the Smart 10 peripheral, is a dedicated interface for
small DC motor.

DECLARATION SYNTAX

DC_MOTOR <identifier>;
INC = <binary output identifier>
DEC = <binary output identifierp
ZERO =<hinary input identifiers
ENCODER = <counter input identifiers
TIMEOUT = <timeout value>
BREAKING = <braking value>

END

<timeout value> : (NA), value in [ms] for the counting timeout when DC_motor rotation is
ordered.

<braking value> : (NA), braking distance of the DC_motor given in number of pulses.

FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE

absolute_move SET - final position value -

position SET - position -
relative_move SET - delta position value -

run SET - direction { INC | DEC } -

stop SET - -
zero_position SET - direction { INC | DEC } -

- polarity { HIGH | LOW }

stroke limits SET - limits { lower, upper } -
disable_stroke limits SET - -

position INQ - INTEGER
ready INQ - BOOLEAN

A

DC motors are only available on SMART _10O nodes.

Doc. No. 006.8007.B Page: 2-25
Rev. 10/15/95

Physical Objects, Declarations and Uses
Socapel PAM Reference Manual 2.5

DECLARATION EXAMPLE
NODE NOD_Toolslo;

NUMBER =3;
ADDRESS =41;
TYPE = SMART_IO;

END

BINARY_OUTPUT SBO_DCmotorinc ;
NODE =NOD _Toolslo ;
ADDRESS =201;
ACTIVE = HIGH ;

END
BINARY_OUTPUT SBO_DCmotorDec ;
NODE =NOD _Toolslo ;
ADDRESS =202;
ACTIVE = HIGH ;

END
BINARY_INPUT SBI_DCmotorZero ;
NODE = NOD_Toolslo;
ADDRESS =102;
ACTIVE = HIGH ;
PERIOD =1;//1ms
DEBOUNCE =1;

END

COUNTER_INPUT CNT_DCmotor ;
NODE =Toolslo;
ADDRESS =101;
ACTIVE = HIGH ;
PERIOD =1;//1ms
DEBOUNCE =1;

END

DC_MOTOR DCM_ToolsAdjust;
INC = SBO_DCmotorInc ;
DEC = SBO_DCmotorDec ;
ZERO = SBI_DCmotorZero ;
ENCODER = CNT_DCmotor ;
TIMEOUT =500; [/l counting timeout in [ms].
BREAKING =2; /I breaking distance in pulses.

END

Page: 2-26 Doc. No. 006.8007.B
Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

2.7 ENCODER OBJECT
2.7.1 INTRODUCTION
An encoder is a pfsical PAM olpect which enables an application to reagfdtlowing types of
information from an ST1:
* speed or position of a resolver or encoder connected to an ST1 peripheral
» value of an analog input (i.e. potentiometer) connected to an ST1 peripheral
e value of an ST1 parameter
» value of an ST1 variable
2.7.2 DECLARATION SYNTAX
ENCODER <identifier> ;
NODE = <node identifier> ;
ADDRESS = <address> ;
PULSES PER_UNIT = <pulses per unit value> ;
{POSITION_PERIOD = <position period value> |
POSITION RANGE = <min. position value > <max. position value >};
END
<identifier> : name of the encoder.
<node identifier> : (NA), name of a node.
<address> : (R\), address (in decimal) within the nodktlee variable/parameteto be encoded
(see paragraph 2.7.4).
<pulse per unit value>: (RW), the number of encoder (or other) units per user unit.
The number of encoder units per turn for a single-speed resolvéP RQ.
For more information see the "PHIC/PHIB" in the ST1 reference manual "Software for
Synchronisation of Axes, 024.8068")
For example with an STL node which is connected to a motor with a single-speed resolver
acting as an encoder {-@ encode units per revolution), if the user length must be one degree
(360 degrees per revolution), then the "pulses per unit value" mustl®e 360 =
182.0444444444444
Pulses pea unit may be specified as a negative number. A negative value reverses the
direction of positive encoder rotation compared to a positive value. This is the easiest way to
reverse the encoder positive rotation direction.
A The precision of the motion control (especially for cyclic motion systems) directly
depends on the precision of this parameter. The maximum number of digits is 16.
Doc. No. 006.8007.B Page: 2-27

Rev. 10/15/95

Physical Objects, Declarations and Uses
Socapel PAM Reference Manual 2.5

<position period value> : (RW), the position period for cyclic motion systems, expressed in
user’s units. This value must be greater than zero.

A Do not modify POSITION _PERIOD while a sampler pipe block is active with an encoder
as it's source object. Doing so may result in the sampler producing erroneous outputs.

<min. position value>, <max. position value> : (NA), the position range for linear motion
systems, expressed in user length units. The max. value must be greater than the min. value.

FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
value | position inquire binary
speed inquire binary
DECLARATION EXAMPLE
ENCODER ENC_Blanket;
NODE = NOD_Blanket;
ADDRESS =0;
PULSES_PER_UNIT =182.0444444444444; || 216 | 360
POSITION_PERIOD =10.0;
END
2.7.3 ENCODER USE AND BEHAVIOUR
GENERALITIES
The purpose of the encoder object is to acquire the desired parameter or variable value and
perform the manipulations necessary to convert its internal units to the specified application
units.
INTERNAL MECHANISM
When an encoder is used, it is important to understand some details about the internal mechanism
that provides the desired information. For the encoder, two different operating environments
must be distinguished:
* A sampler (pipe block) on the encoder output is currently active:
In this situation, the ST1 variable is periodically read and its current value recorded by PAM.
Thus when the application asks:
IRV_PosAxis1 <- ENC_Blanket ? position ;
PAM immediately returns it's most recently recorded resolver position.
* No sampler is currently active on the encoder output:
Page: 2-28 Doc. No. 006.8007.B

Rev. 10/15/95

Physical Objects, Declarations and Uses

Socapel PAM Reference Manual 2.5

2.7.4

In this situation PAM does not periodigallead and record the SMariable. Thus when the
application asks:
IWV_TempAxisl <- ENC_Blanket ? value ;

PAM mug perfom aread gcle on the ST1 which kas six to seenx BASIC_PAM_CYCLE to
complete During this interval the sequence is suspendege pargraph 3.10.7.1)When the
sequence beomes acte gain, IWV_TempAxisl contains th currert value of the ST1
variable/parameter.

REMARKS

Even thogh the sequencmay be suspended dugrexecution of an inquire function, & not a
sewvice statenert becaus it does not speciy when sme actionmust tke place but hovthis
actionmust be perfaned. For this reason it is classifies @ active statenent however, it can
require some time for execution).

A

The internd representatio of ST1variables is bounded. Witimachines that rotate alys in the

same direction, the positiomariable, for exaple, is alwgs increasig. Eventuall, the internal

representation of position “rollsver” from the lagest possible maber to the smalleg possible

number. This position rolbver point (position periodigf) does not always correspod to a

period of themachine or application. PAM autwtically take care of this periodigitmismatch

arnd it is“invisible” to the application. Howeer, it is_necesswgrthatyour applicatiorgenerates at
least_two encoder inquire functio(f3 value or other statment which inquires the SWariable)

within one period (between successive roll-overs) of the variable.

Never use an inquire function in an action.

For exanple, imagine a resoler with 16 bit resolution (2 couns per rotation) connected to the
resoler input of an ST1 and the periodjc(size) of the rgister within the ST1 keepirg resoler
position (PHRE) is 2. The applicatiormust guarantee that PIRE is read at leag two times
within 2*° rotations of the resolver. If not, the position value may be meaningless.

SPECIFYING ENCODER ADDRESS PARAMETER

Table 22 contains the infonation required to detsine the ADDRESS paraneter for an encoder
declaration. Colonn 2 lists the deaonal address (or r@e of addresses) agesed to ST1 ites
which may be connected to an encoder. Gotul lists the equalent hexadeonal address (or
range of addresses)Columns 3 defines the ite (or item type). Colunns 4 and 5 spegifthe
resolution and periodicity (where applicable) to be applied by the ST1.

Addresse 0 thru 4 are reseed for prmary STI outputs, and addresses 5 thru 1A (hex) are
reserved for future use.

Addresses x1B thru xFF (where x = 0, 1, 2 or 3) are fairigqito ST1 internaliariables, where
1B thru FF identifies th@ariable (see doecoent 024.80@ for internd variabke code numbers)
and “x” defines how the ST1 handle® thariabk internally (i.e. the resolution and periodicity
applied).

The situatian for paranetess is similar. Addressey1B thruyFF (wherey = 4, 5, 6 or 7) are for
linking to ST1 internal paraeeters, where 1B thru FF identifiesetbaranete (see document

Doc. No. 006.8007.B Page: 2-29

Rev. 10/15/95

Physical Objects, Declarations and Uses
Socapel PAM Reference Manual 2.5

024.8068 for internal parameter code numbers) and “y” defines the parameter’s numerical
characteristics.

ADDRESS <ADDRESS> ITEM LINKED TO SIZE/RE- PERIODICITY

EQUIVALENT

ng VAT DECIMAL ENCODER SOLUTION
VALUES

0 0 main resolver 32 bits 2%

1 1 second resolver 32 bits 2%

2 2 axis set point 32 bits 2%

3 3 incremental encoder 32 bits 2%

4 4 ST1 aux. analog output 16 bits 21°

5-1A 5-26 reserved - -

01B-0OFF 27-255 Variable 16 bits none

11B-1FF 282-511 Variable 16 bits 210

21B-2FF 538-767 Variable 32 bits none

31B-3FF 795-1023 Variable 32 bits 2%

41B-4FF 1051-1279 Parameter 16 bits none

51B-5FF 1307-1535 Parameter 16 bits 210

61B-6FF 1563-1791 Parameter 32 bits none

71B-7FF 1819-2047 Parameter 32 bits 2%

Table 2-2 Encoder Address Parameter Selection

2.7.5 EXAMPLE OF ENCODED ADDRESS DETERMINATION
ENCODER ENC_TempAXxis1;

NODE = NOD_Axis1;
ADDRESS =1273; /I DAP_TEMP #F9 + #400
PULSES_PER_UNIT =16.0; /I Degree
POSITION_RANGE = 0.0 60.0;
END
Page: 2-30 Doc. No. 006.8007.B

Rev. 10/15/95

Atlas Copco Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

APPLICATION OBJECTS DECLARATIONS AND USES

3.1 INTRODUCTION
Application oljects are the nephysical parts ban application configuration Declaratiors are
used to spegjfall application opects. Pipe glects(see chapter Sprm ther own category and
are not included in the application objects category. Application objects include:
nodes groups
axis sets
Zero positioners
variables
equations
actions
routines
tasks
sequences
3.1.1 APPLICATION OBJECT DECLARATION SYNTAX
Each application dect is defined ¥ a ype, a nene and same specific paraneters along with
their initial values Different syntax structures are used deperglion the opect. Refer to
subsequent sections of this chapter for the declaration syntax for each type of application object.
3.1.2 APPLICATION OBJECT PARAMETERS ACCESS
Application olject paraeter values (except certaidero Positioner paraeters) ca not be
accesse by the application during its execution. The accessvid which is indicated in the
parameter description is:
-No Acces (NA)
For those paraeters which are accessible for inquar modification, the gntax is tle same as
for physical objectésee paragraph 2.1.2).
Doc. No. 006.8007.B Page: 3-1

Rev. 10/15/95

Application Objects Declarations and Uses
Socapel PAM Reference Manual 2.5

3.2 NODES GROUPS
3.2.1 PURPOSE
In order to use the autmnfiguration or node fault toleraadeatures componens with identical
behaiour, (see pargraph 1.2)mug be specifiel via a NODES GROUP declaration. TheNODES
GROUP declaration infoms PAM about the maber of canponents(see pargraph 1.2 with an
identical behaiour and asgns an identifier (gmbolic name) to the conponentsgroup. Member
nodes are identified in individU8iODE declarations.
3.2.2 DECLARATION SYNTAX
NODES_GROUP <identifier>;
NUMBER = <components number>
END
<identifier>: name of the nodes group.
<components number>: (NA), number of identical components in the nodes group
3.2.3 DECLARATION EXAMPLE
This exanple shows the node declarations needed for ofytsters illustrated h Figure 3-1.
The NODES GROUP declaration infams PAM of the existence of three identicahqmnents
which are asgned the identifier NGR_COMPONENT. TwaODE declaratios logically
connect identical nodes K[] and nodes S[] to NGR_COMPONENT. PAMr&s$)DRESS = 1,
2 and 3 respectively to nodes K[] asbRESS = 63, 64 and 65 to nodes [].
Component 1 Component 2 Component 3
Behaviour A j Behaviour A 1 Behaviour A
=) Function: al : Function: a2 j Function: a3
E 5 5 £
ol = ogm ® g8 ® _| = G35 =
PAM pooEEo . pooEEo : OooEE@
@ == " EE==e =
Tﬂ Node K[1] Node S[1] Node K[2] Node S[2] Node K [3] Node S[3]
Figure 31 System with three Identical Components
NODES_GROUP NGR_Component ;
NUMBE R =3; /I Maximum components number
END
Page: 3-2 Doc. No. 006.8007.B

Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

NODE NOD K;
NODES_GROUP = NGR_Component ;
ADDRESS =1; // Address of the first K node
TYPE = SMART_IO;

END

NODE NOD_S;
NODES_GROUP = NGR_Component ;
ADDRESS =63 ; // Address of the first S node
TYPE =ST1;

END

Doc. No. 006.8007.B Page: 3-3
Rev. 10/15/95

Application Objects Declarations and Uses
Socapel PAM Reference Manual 2.5

3.3 AXES SET
3.3.1 PURPOSE
Several axes (axis objects) can be grouped into one logical entity called an axes set which may
then be referenced using a single identifier to simplify and reduce the size of an application.
Furthermore, functions can then be applied globally to an entire axes set in a more efficient
manner, thereby improving the application’s execution performance.
3.3.2 DECLARATION SYNTAX
AXES_SET <identifier>;
[OPTIMIZE ={YES|NO};]
{ AXIS = <axis identifier> [<axes range>SUBSET = < subset number]}+
END
<identifier>: name of the axes set.
<axis identifier>: (NA), name of the axis to be included in the axes set. This is the identifier
assigned to the axis in theis declaration.
<axes range>: (NA), If the axis is multiple, (member of a nodes group) indicates which axes to
include in the axes set.
[all] -> indicates that all axes are included
<subset number>: (NA), used to group the axes within a set into subsets for data updating
purposes. Subset number must be a positive integer numBgr If this option is not used,
the default subset number is 0.
i SHIFT, the previous syntax for SUBSET is recognised; however, do not use the SHIFT
syntax in new applications.
EXAMPLE
The following axes were already declared:
AXI_X, AXI_Y
An axes set representing an X-Y table looks like this:
AXES_SET AXS_Table ; /I X-Y table
AXIS = AXI_X;
AXIS =AXLY;
END
Powering-on the motor supplies can be programmed like this:
AXS_Table <- power_on
Page: 3-4 Doc. No. 006.8007.B

Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.3.3
3331

3.3.3.2

3.3.3.3

OPTIMIZE PARAMETER
OPTIMIZE = YES.

PAM attempts to fom sulgroups of “identical” axes within an axis set usthe criteria listed
below. During execution, coomands and sqtoints are broadcast nailtaneoust (in the sane
PAM frame) to all axes in @iven sulgroup. This gjnificantly reduces executionnte for the
pipe netwok becaus the time needed to seice a subroup of identical axes is thersa as to
sewvice a sigle axis. This also reduces the PARIhg bandwidth (nmber of franeg usel to
trangnit setpoints and coimands. Furthenore, all axes in ajiven sulgroup receie the
information_at the same time.

When PAM foms multiple sulgroups of axes within an axis set, the galips are seiced
sequentially (in successive PAM frames).

i A maximum of 15 different subgroups of axes can coexist at the same time in one
PAM. Even if the necessary conditions exist to build a sixteenth subgroup, it will not be
built.

CRITERIA FOR DETERMINING IDENTICAL AXE S.

During boot-up, PAM analyses every axis with respect to the following ST1 parameters:
* CKV,

e CKA (amplitude and sign),

* CKR,

* CKH,

« EQUIP

as well as theeULSES PER _UNIT paraneter of eah AXIS declarationand notes their initial
values During run time, as long as an AXES_SET is connected to a\emter, PAM treats as
identical all axes of the AXES_SET whose above-listed parametprAaio are the same.

i The RATIOS applied to axes of an axes set connected to a converter may be individually
adjusted via the change_ratio Converter function (see paragraph 8.4).

The applicatiormust insure that the status (power_on, maye in processetc) of eat axisin
the axis set is the s® as all the others and, when necggssamove norconfoming axes from
the axis set

OPTIMIZE = NO (DEFAULT).

This selection infans PAM not to attenpt to fom sulgroups of identicd axes within an axis set
for the purpo® broadcastigp commands and da& to identical axes in a sije PAM frame.
OPTIMIZE = NO is usualy selected when the udanows in adance that the axes do noeet the
criteria for optmising. Even without optinisation there a benefis from grouping closely
related axes into an axes setmedy, PAM attampts togroup sequentiafl (in successie PAM
frames) setpoints and nomands resultig from statenents whose glect is an axes seAn axes
set can also siplify the expression of a pipe netwoendirg with severd axes which are
receiving the same pipe flow data.

Doc. No. 006.8007.B Page: 3-5

Rev. 10/15/95

Application Objects Declarations and Uses
Socapel PAM Reference Manual 2.5

3.3.4 SUBSET PARAMETER
3.3.4.1 WHEN SUBSETS SHOULD BE CREATED
When the number of non-identical axes in one axes-set is greater than or near the number of
frames in 8BASIC_PAM_CYCLE, loading of the PAM-Ring imposed by the axes-set becomes
severe. Creating subsets, permits PAM to distribute set-point computations and transmissions to
the axes-set over several PAM cycles, thereby reducing loading of the PAM ring.
i All non-indexed axes in an axes set receive their set-points independently which
requires one PAM-Ring frame per BASIC_PAM_CYCLE for each non-indexed axis in
the axes set
3.3.4.2 SERVICING SUBSETS
When asuUBSET parameters are used in aReS_SET declaration , PAM forms axes subsets
according to thesuBSET parameter value in eadixis parameter. Servicing of the axes then
proceeds as follows:
* The first subset (axes wisuUBSET = 1)only is processed in the first
BASIC_PAM_CYCLE . The second subset only is processed in the next
BASIC_PAM_CYCLE and so on until all subsets have been processed.
» All axes of the same subset receive their set-points in theBABK>_PAM_CYCLE,
while axes of other subsets do not receive set-points.
» All axes in the axes set with IBWBSET parameter receive set-points every
BASIC_PAM_CYCLE.
3.3.4.3 EXAMPLE
Lets imagine a system with 21 axes which must be synchronised, so they are linked to the same
pipe network. The first 20 axes belong to an axes set connected to the pipe network and the axis
21 is directly connected to the same pipe network.
The most critical axis is axis 21. It must be updated (receive new setpoint) every millisecond.
The other axes can be updated every 4 millisecondsBABC_PAM_CYCLE for this system
is one millisecond. The solution is to form 4 subsets, each with 5 axes.
The declaration is as follows:
AXES_SET AXS_Example ;
AXIS = AXI_Regularl SUBSET=1; /l group 1
AXIS = AXI_Regular2 SUBSET=1; {/l group 1
AXIS = AXI_Regular3 SUBSET=1; /l group 1
AXIS = AXI_Regular4 SUBSET=1; /I group 1
AXIS = AXI_Regular5 SUBSET=1; /l group 1
AXIS = AXI_Regular6 SUBSET=2; {/ group 2
AXIS = AXI_Regular7 SUBSET=2; /l group 2
AXIS = AXI_Regular8 SUBSET=2; /I group 2
AXIS = AXI_Regular9 SUBSET=2; /l group 2
AXIS = AXI_Regularl10 SUBSET= 2 /[group 2
AXIS = AXI_Regularll SUBSET=3; /I group 3
AXIS = AXI_Regularl2 SUBSET=3; /[group 3
AXIS = AXI_Regularl3 SUBSET=3; /[group 3
AXIS = AXI_Regularl4 SUBSET=3; /[group 3
AXIS = AXI_Regularl5 SUBSET=3 ; /[group 3
AXIS = AXI_Regularl6 SUBSET=4 ; /[group 4
AXIS = AXI_Regularl7 SUBSET=4 ; /[group 4
Page: 3-6 Doc. No. 006.8007.B

Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

AXIS = AXI_Regularl8 SUBSET=4 ; /[group 4

AXIS = AXI_Regularl9 SUBSET=4 ; /[group 4

AXIS = AXI_Regular20 SUBSET=4 ; /[group 4
END

The result is as follows:

PAM cycle 1 set-points for axis 21 and axes of subset 1
PAM cycle 2 set-points for axis 21 and axes of subset 2
PAM cycle 3 set-points for axis 21 and axes of subset 3
PAM cycle 4 set-points for axis 21 and axes of subset 4
PAM cycle 5 set-points for axis 21 and axes of subset 5

It occupies only 5 PAM-Ring frames each pipe period. Without subset distribution, the pipe
network would have requested 21 frames each pipe period, which is greater than the 20 free
frames per millisecond, so not possible in the same PAM cycle.

Doc. No. 006.8007.B Page: 3-7
Rev. 10/15/95

Application Objects Declarations and Uses
Socapel PAM Reference Manual 2.5

3.4 SINK

PURPOSE

The sink is a new object whose purpose is to receive values instead of an axis or a PAM Analog
Output. The values received are not transformed. A Sink can be used to simulate an axis which is
not present at the moment or to verify some pipe position or speed data without performing any
physical motion.

DECLARATION SYNTAX

SINK <identifier> ;
END

<identifier> : name of the sink

FUNCTIONS

No executive or inquire functions are defined for the Sink.

SAMPLE DECLARATION

SINK SNK_Dummy;
END

34.1 USE WITH A CONVERTER

The sink can be used as the destination object of a Converter pipe block. The modes TORQUE,
POSITION, SPEED & VALUE are defined.

Page: 3-8 Doc. No. 006.8007.B
Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.5 ZERO-POSITIONER

—
ZERO
POSITIONER

B

3.5.1 PURPOSE

The purpose of the zero-positioner is to position an axis at a user-definable absolute reference
position with the aid of a physical reference. This is accomplished by moving the axis while
looking at external sensors in order to determine with sufficient precision the “real” position of
the axis (or the object controlled by the axis). Although there are a number of ways to perform
this task, the Zero Positioner implements zero-positioning utilising the three phase sequence and
parameters described below.

3.5.2 DECLARATION SYNTAX
ZERO_POSITIONER <identifier> :

[{ NUMBER = <number> |
NODES_GROUP = <nodes group identifier>} ;]
OBJECT <axis object identifier> ;

[SENSOR
[COARSE_SPEED
COARSE_EDGE
COARSE_MOVE

<binary object identifier> ;]
<speed value> ;

<edge value> ;

<move value> ; |

[FINE_SPEED = <speed value> ;
FINE_EDGE = <edge value> ;

FINE_MOVE = <move value>;]
[RESOLVER_OFFSET = <resolver offset value> ; |

END

<identifier> : Name of the zero positioner.

<number>: (NA), indicates if the object is multiple or single. If M&dMBER declaration is
omitted or if <number> = 1, the object is single, otherwise the object is multiple.

<nodes group identifier>: (NA), name of a group of nodes
<axis object identifier > : (NA), name of the axis object to be zero-positioned.

<binary object identifier>: (NA), name of the binary input to be sensed in Phases 1 and 2. If no
sensor is declared, Phase 1 and 2 are omitted.

<speed value> : (RW), speed value used for the COARSE or FINE phase, if present.
If CURRENT s used for the speed value, the currexis_ TRAVEL_SPEED value is used.

<edge value> : (NA), active edge of the sensor used for the COARSE or FINE phase, if present.
The edge value can IBESING or FALLING .

Doc. No. 006.8007.B Page: 3-9
Rev. 10/15/95

Application Objects Declarations and Uses
Socapel PAM Reference Manual 2.5

<move value> : (RW), the distance to move relative to axis position after sensor detection for the
COARSE or FINE phase, if present. The move value cAIOINE if no move is requested.

<resolver offset value> : (RW), offset of the resolver given in user length units.

A The defined sequence (i.e. phases implemented via optional parameter specification)
cannot be modified dynamically. If different sequences are needed, multiple zero
positioners must be declared.

FUNCTIONS

— start

This function starts the Zero-Positioner. Phases are executed in the following order: coarse
phase, fine phase, resolver phase.

- stop

This function stops the zero-positioner and all other functions running on the corresponding axis.
This function is identical to "<axis object> <- stop ;".

DECLARATION EXAMPLES

Zero positioner with fine and resolver phases:

ZERO_POSITIONER ZEP_Main ;
OBJECT = AXI_Main;
SENSOR = SBI_MainZeroSensor ;
FINE_SPEED = 720.0;
FINE_EDGE = RISING ;
FINE_MOVE = 180.0;
RESOLVER_OFFSET = 240.0;
END

Zero positioner with coarse and fine phases:
ZERO_POSITIONER ZEP_Main ;

OBJECT = AXl_Main ;
SENSOR = SBI_MainZeroSensor ;
COARSE_SPEED = CURRENT ;
COARSE_EDGE = FALLING ;
COARSE_MOVE = NONE ;
FINE_SPEED = 720.0;
FINE_EDGE = RISING ;
FINE_MOVE = 180.0;
END
3.5.3 ZEROING SEQUENCE
3.5.3.1 GENERAL INFORMATION
The axis zeroing sequence is performed in the order phase 1, phase 2, phase 3. If the parameters
for a phase are omitted, the corresponding phase is not executed.
Any combination is allowed, even though some combinations are practically meaningless. At the
end of any chosen zeroing sequence, the axis absolute position is cleared to zero. If a non-zero
absolute position is needed, it can be initialised to any value using the "position" executive
function.
Page: 3-10 Doc. No. 006.8007.B

Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.5.3.2 PHASE 1 - COARSE PHASE WAITING FOR BOOLEAN SENSO R.

ZERO_POSITIONER ZERO_POSITIONERThe motor is ranped up toCOARSE_SPEBD in
the direction specifiedybthe sgn of this paraneter. Whether tgiven speel is reachd or not,
PAM is waiting for the nex COARSE_EDGE transition of the bingr input ohect defined by
SENSOR

ZERO_POSITIONERWhen the specified sensor transition is detected, avelaiove of
distance specifiedyb COARSE_MOVE is performed The position reference for the relatimove
is the axis position when the serisdransition is detected. Therefptarget position becanes
the axis position at sensor transition pDARSE_MOVE. The relative move part of the phase
may be omitted by settingOARSE_MOVE = NONE.

Note that if the distance of the relatimove is less than the displacenert necessar to stop the
motor, themotor will go "too far", then cme badk to the taget position. Note also #difference
betwe@& cOARSE_MOVE = 0.0 in which themotor ramps down thergoes bak to the position of
the sensor's transition addARSE_MOVE = NONE in which the motor simply stops.

By settirg COARSE_SPEED = CURRENT, the Zero Positioner uses axiRAVEL_SPEED, current
value, for it's coarse speeadlue.Current axiSACCELERATIO N and DECELERATION paraneter
values set the acceleration and deceleration rates used during the coarse move.

3.5.3.3 PHASE 2 - FINE PHASE WAITING FOR BOOLEAN SENSOR .

The fine phase wés in exacty the sane manner as the coarse phdsee paragraph 3.5.3.2)
using an equralent “HNE” phase panmaeter set. Howeer, the intended purpose for phase 2 is
different. The purpose of the first phase asdeted the senso position coarsey and quickly.
When the sens@rposition is reached, the fimabve of the first pha® places the objed nea the
sensor The seconl pha® is generaly perfomed at a slower speed andeo a shorter distance,
resulting in less uncertainty of final axis position upon completion of phase 2.

i To avoid all sensors in large machines, switching at the same time (generating delays
and then inaccuracies) the overall number of motors running in the Zero-Positioner fine
phase is limited automatically by PAM. Additional Zero-Positioners in this phase are
delayed until one of the currently running ones terminates its fine phase. The upper limit
is 6 zero-positioners in the fine phase at the same time.

3.5.3.4 PHASE 3 - RESOLVER POSITIONING

ZERO_POSITIONERThe resoler positionirg phase is used to place ttmetor shaft exacyl at
aspecific agular position. This phase perfos amove to an absolute gualar position specified
by RESOLVER_OFFSET. The current axiSRAVEL SPEED, ACCELERATION andDECELERATION
are used.

A

3.54 APPLICATION EXAMPLE

The following exanple defines the user lgth unit (ULU) for my_axisis 1 degree atmotor's
shaft:

AXIS AXI_Main;
NODE = NOD_Main;
PULSES_PER_UNT =11930464.71111111; // 2732/360->ULU=1degree
TRAVEL_SPEDB =3600.0 // 10 rev. per sec

The zero_positioner cannot be executed while a pipe is active on the same axis.

Doc. No. 006.8007.B Page: 3-11
Rev. 10/15/95

Application Objects Declarations and Uses
Socapel PAM Reference Manual 2.5

ACCELERATION

DECELERATIO

INITIAL_POSITION

POSITION_PERIOD
END

36000.0 // 100 rev. per sqr. sec.
72000.0 // 200 rev. per sqr. sec.
0.0

360.0 I/l 1 revolution

The zero positioner is defined a follows:

ZERO_POSITIONER ZEP_Main;
OBJECT = AXI_Main;
SENSOR = SBI_Mainreference;
/I Looks for the reference revolution (given by
SBI_Mainreference)

COARSE_SPEED = 3600.0; /1 10 rpsec, positive way
COARSE_EDE= RISING;
COARSE_M@/= 0.0; Il goes back to detection I/l Into
this turn goes the position 100 degree with respect t o the resolver
RESOLVER_OFFSET = 100.0;
END

The following part of a sequence executes the zero-positioning(eped-igure 3-2).

Change the default travel speed:
AXI_Main <- travel_speed(720.0); /12 rpsec

Now perform the specified job with the statement :
ZEP_Main <- start;

And wait the job's completion to set led_1
CONDITION ZEP_Main ? ready;
SBI_ledl <- set;

Page: 3-12 Doc. No. 006.8007.B
Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

A AXIMain speed
Coarsenhase

sod|™

+ac

+s|

F Resolk/er

| Dhas?

|
\ .
time
-ts T +dec‘
A AXI Main pos.
\
| -
\ ‘ o
AAXI Main ref. |
H | On
1 >
AsBiLed

Figure 3-2 Axis motion corresponding to Zero-Positioning Example

accis the current acceleration value;
decis the current deceleration value;
ts is the current travel speed value;
spdis the specified coarse speed,;

sens is the position of the rising edge of the sensor.

Doc. No. 006.8007.B
Rev. 10/15/95

Page: 3-13

Application Objects Declarations and Uses
Socapel PAM Reference Manual 2.5

3.6 VARIABLES
3.6.1 INTRODUCTION
Variables are application objects which define the specific application-related information that
PAM must manage. Three categories of variables are defined:
DUALPORT VARIABLES
Dual-port variables are directly accessible to an external main controller (industrial computer,
programmable controller etc.) for system level control and monitoring.
i Dualport variables are discussed in chapters 13, 14 and 15} in this manual.
I
INTERNAL VARIABLES
Internal variables are similar to the variables of classical programming languages. They are used
to hold data such as state of the machine process variables, etc. or to improve the structure of the
program. Variables can be named, modified and used anywhere in the program (in sequences,
Boolean equations, etc.). Changes in internal variable’s value/state can be events (i.e. trigger
actions, conditions, exceptions etc.). They reside in PAM memory.
COMMON VARIABLES
Common variables are similar to internal variables, but do not produce event. Common variables
can be used, for instance, as loop counter or for local computations.
3.6.2 GENERAL SYNTAX
The general declaration syntax for all common and internal variables is as follows:
<location> <type> <identifiers
[{ NUMBER = <number> |
NODES_GROUP = <nodes group identifier>} ;
<characteristics>
END]
<location>: location of the variable ((DUALPORT _IN ; DUALPORT_OUT | COMMON
INTERNAL }).
<type>: type of the variable (FLAG_VAR | WORD_VAR | REAL_VARY}).
<identifier>: name of the variable.
<number>: (NA), indicates if the object is multiple or single. If M&éMBER declaration is
omitted or if <number> = 1, the variable is single, otherwise the variable is multiple.
<nodes group identifier>: (NA), name of the nodes group. Tbo®BER parameter from the
specified nodes group declaration is usediasiBER in the variable declaration.
<characteristics>: (NA), characteristics of the variable, depends of location and type.
Page: 3-14 Doc. No. 006.8007.B

Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.6.3 INTERNAL VARIABLES

GENERAL SYNTAX

INTERNAL { FLAG_VAR |WORD_VAR |REAL_VAR } <identifier> ;
[{NUMBER = <number> |

NODES_GROUP= <nodes group identifier> }] ;

END]

EXAMPLES
INTERNAL FLAG_VAR IFV_SystemInOperation ; // State of the machine

INTERNAL REAL_VAR IRV_Area ;
NUMBER =8 ;
END

INTERNAL WORD_VAR IWV_HeadPosition ;
NODES_GROUP = NGR_Heads ;
END ;

Doc. No. 006.8007.B Page: 3-15
Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.6.3.1 INTERNAL FLAG VARIABLE

SYNTAX

INTERNAL FLAG_VAR <identifier>;

[{ NUMBER = <number> |
NODES_GROUP= <nodes group identifier> } ;

END]

SIZE
Boolean (1bit)

FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE

<- (assign value) SET - boolean expression -

invert SET - -

reset SET - -

set SET - -

<- (read value) INQUIRE - BOOLEAN

Page: 3-16

Doc. No. 006.8007.B
Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.6.3.2 INTERNAL WORD VARIABLE

SYNTAX

INTERNAL WORD_VAR <identifier>;
[{ NUMBER = <number> |
NODES_GROUP= <nodes group identifier> } ;
END]

SIZE
Long Word (signed 32 bits)

FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
<- (assign value) SET - numerical expression -
<- (read value) INQUIRE - INTEGER

Doc. No. 006.8007.B Page: 3-17
Rev. 10/15/95

Application Objects Declarations and Uses
Socapel PAM Reference Manual 2.5

3.6.3.3 INTERNAL REAL VARIABLE

SYNTAX

INTERNAL REAL_VAR <identifier>;
[{ NUMBER = <number> |
NODES_GROUP= <nodes group identifier> } ;
END]

SIZE
Real (64 bits, floating point, as IEEE 754-1985)

FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
<- (assign value) SET - numerical expression -
<- (read value) INQUIRE - REAL

Page: 3-18 Doc. No. 006.8007.B
Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.6.4 COMMON VARIABLES

SYNTAX

COMMON { FLAG_VAR |WORD_VAR |REAL_VAR } <identifier> ;
[{ NUMBER = <number> |

NODES_GROUP= <nodes group identifier> } ;
END]

DECLARATION EXAMPLE

COMMON FLAG_VAR CFV_MyFlag; /*NUMBER =1*

COMMON REAL_VAR CRV_AXxisOffset ;
NUMBER = 8 ;
END

COMMON WORD_VAR CWV_LoopCounter ;
NODES_GROUP = NGR_Heads ;
END ;

Doc. No. 006.8007.B Page: 3-19
Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.6.4.1 COMMON FLAG VARIABLE

SYNTAX

COMMON FLAG_VAR <identifier>;

[{ NUMBER = <number> |
NODES_ GROUP= <group identifier>} ;

END]

SIZE
Boolean (1bit)

FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE

<- (assign value) SET - boolean expression -

invert SET - -

reset SET - -

set SET - -

<- (read value) INQUIRE - BOOLEAN

Page: 3-20

Doc. No. 006.8007.B
Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.6.4.2 CoMMON WORD VARIABLE

SYNTAX

COMMON WORD_VAR <identifier>;
[{ NUMBER = <number> |
NODES_GROUP= <group identifier> } ;
END]

SIZE
Long Word (signed 32 bits)

FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
<- (assign value) SET - humerical expression -
<- (read value) INQUIRE - INTEGER

Doc. No. 006.8007.B Page: 3-21
Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.6.4.3

COMMON REAL VARIABLE

SYNTAX

COMMON REAL_VAR <identifier>;

[{ NUMBER = <number> |
NODES_GROUP= <group identifier> } ;

END]

SIZE

Real (64 bits, floating point, as IEEE 754-1985)

FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
<- (assign value) SET - numerical expression -
<- (read value) INQUIRE - REAL

Page: 3-22

Doc. No. 006.8007.B
Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.7 BOOLEAN EQUATIONS
3.7.1 INTRODUCTION
Boolean equations perform logical combinations of binary (or Boolean) variables and may
include the result of a comparison of numerical variables.
The general properties of Boolean equations are:
* As for other variables, the result of a Boolean equation can be invoked in other parts of a
program simply by using its name.
» A Boolean equation is a read only variable.
* A binary output can be linked to a Boolean equation. This means that any change of Boolean
equation value is reported automatically to the linked binary output.
* A boolean equation can have only two possible results, true or false.
* Boolean equations can be considered as a class of variables.
3.7.2 DECLARATION SYNTAX
BOOLEAN <identifier> [<multiple tag>]
[LINKED_OUTPUT = <output object identifier>]
EQUATION = <boolean expression>
END_BOOLEAN
<identifier>: name of the boolean equation.
<multiple tag> : if the equation is multiple, tlig tag must follow the identifier.
<output object identifier>: (NA), the identifier of an output object. The output object must be one
of the following:
- a binary output.
- a led output.
- a dualport flag output.
<boolean expression>: (NA), an expression composed of boolean objects, boolean operators,
boolean inquire functions and comparison expressions.
FUNCTIONS
FUNCTION NAME SET/ PARAMETERS RETURN
INQUIRE VALUE
<- (read value) INQUIRE - BOOLEAN
Doc. No. 006.8007.B Page: 3-23

Rev. 10/15/95

Applicati
Socapel P

on Objects Declarations and Uses
AM Reference Manual 2.5

3.7.3

3.7.4

3.7.5

3.7.6

3.7.6.1

OBJECTS THAT CAN BE USED IN BOOLEAN EQUATIONS
All of the following Boolean objects can be used in Boolean expressions:

- Binary input.

- Keyboard input.

- Dualport flag input variable.
- Internal flag variable.

- Common flag variable.

- Boolean equation.

- Binary output.

- Dualport flag output variable.

BOOLEAN OPERATORS

The Boolean operators are as follows:

+ the OR operator.

* the AND operator.

! the NOT operator.

all+ the multiple operator.
[all+] h Itiple OR

[all*] the multiple AND operator.

Thelall+] operator means "do the Boolean OR of all items of the multiple object or expression".
The result is a single object.

The [all*] operator means "do the Boolean AND of all items of the multiple object or
expression”. The result is a single object.

INQUIRE FUNCTIONS IN BOOLEAN EQUATIONS

Some inquire functions can be used in Boolean expressions if they return a Boolean value. They
are as follows:

error ask if object is in error.

ready ask if object is ready.
error_code (<value>) ask if the error "value" occurs
status (<value>) ask if the status "value" is active
triggered ask if object has triggered

COMPARISON EXPRESSIONS IN BOOLEAN EQUATIONS

Comparison expressions (expressions composed of numerical expressions and comparison
operators) may be included in Boolean equations.

COMPARISON OPERATORS

The following comparison operators may be used in comparison expressions:

> the "greater than" operator.

< the "less than" operator

>= the "greater than or equal” operator
<= the "less than or equal” operator

= the "equal" operator"

<> the "non equal" operator

Page: 3-24

Doc. No. 006.8007.B
Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.7.7 WRITING BOOLEAN EXPRESSIONS

Parenthesis must be used to specify the order of precedence in evaluating Boolean expressions.
Parenthesis may also be used to improve readability.

3.7.8 BOOLEAN EQUATION DECLARATION EXAMPLES

BOOLEAN BOL_equationZ;
EQUATION
SBl_a*IFV_b*(SBI__c+ CFV_d);

END_BOOLEAN

BOOLEAN BOL_equation2 [i];

EQUATION

IFV_e[i] * CFV_{[i] * (CFV_d[i] + IFV_h[i]) ;
END_BOOLEAN

BOOLEAN BOL_equation3;

EQUATION

(IFV_e[i] * CFV_f[iD)[all+] * (SBI_c + CFV_d) ;
END_BOOLEAN

BOOLEAN BOL_equation4;

EQUATION

IFV_e[all+] * CFV_f[all*] * |(SBI_c + CFV_d) ;
END_BOOLEAN

BOOLEAN BOL_equation5;

EQUATION

(AXI_axes[i] ? ready)[all*] * (DCM_motor ? error) ;
END_BOOLEAN

BOOLEAN BOL_equation_6[i];

LINKED_OUTPUT = SBI_GreenLed ;

EQUATION

(AXI_axes[i] ? speed >=123.5) * I(AXI_axes[i] ? error) ;
END_BOOLEAN

BOOLEAN BOL_equation_7[i];
LINKED_OUTPUT = SBI_outl;
EQUATION
IFV_e[i] +!SBI_c ;

END_BOOLEAN

Doc. No. 006.8007.B Page: 3-25
Rev. 10/15/95

Application Objects Declarations and Uses
Socapel PAM Reference Manual 2.5

3.8 ACTIONS GROUP

3.8.1 INTRODUCTION

Actions represent one type of object belonging to the executive part of the PAM application
language.). Actions exist outside the Task/Sequence structure. They are intended to perform
operations which must be executed without regard to the state of tasks or sequences. Actions are
intended to perform operations which execute quickly (assignment statements or elementary
actions); therefore, Service statements E@&NDITION , WAIT-TIME , EXCEPTION and

CASE are not allowed i\CTIONS objects.

3.8.2 DECLARATION SYNTAX
ACTIONS <identifier> ;

SPECS
[{ NUMBER = <number> |
NODES_GROUP = <nodes group identifier>} ;]
CYCLES = <cycles number> ;

END_SPECS

{{ ON_EVENT|ON_STATE} <boolean expressionACTION
{<action statement>}+
END_ACTION
H
[POWERON;
{<action statement>}+
END_POWERON

]
END_ACTIONS

<identifier>: name of the actions group.

<number>: (NA), indicates if the object is multiple or single NWUMBER is omitted or if
<number> = 1, the object is single, otherwise the object is multiple.

<nodes group identifier>: (NA), the name of a group of nodes

<cycles number> : (NA), the servicing interval for the actions group expressskic PAM
CYCLES.

<Boolean expression>: an expression composed of Boolean objects, Boolean operators,
Boolean inquire functions and comparison expressions.

<action statement> : any assignment statement

3.8.3 FUNCTIONS

No functions are available for the Actions group.

Page: 3-26 Doc. No. 006.8007.B
Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.8.4

3.8.5

3.8.6

CYCLES SPECIFICATIONS

The CYCLES specification definethe number of BASIC_PAM_CYCLEs between successive
executions of the actions group. For actions specified foON_‘STATE” activation, the cycles
parameter permits regulation of the frequency of execution of the action. For actions with an
“ON_EVENT” specification, the cycles parameter establishes the maximum delay (number of
PAM basic cycles) between an event’'s detection and execution of the corresponding action.

ACTIONS

Two types of action may be specified. Whan EVENT is specified in amCTION declaration,

the specified action statement is executed once each time the associated boolean expression
becomes true. WhepN_STATE is specified, the specified action statement is executed cyclically

as for as long as the associated boolean expression is true.

POWERON ACTIONS

POWERON actions are a special type of Action statement which are executed only once after a

power on or a reset of PAM. They are used for system initialisation purposes and for establishing
starting/restarting conditions. Normal Task/Action execution is started only when all
POWERON Actions andPOWERON Sequences within TASKs have finished executing.

Doc. No. 006.8007.B Page: 3-27

Rev. 10/15/95

Application Objects Declarations and Uses
Socapel PAM Reference Manual 2.5

3.9 ROUTINES GROUP
The Routines Group which is similar to an Actionsgroup at the leel of their statment pes,
represents ongpe of the execute part of the PAM application lgnage. The are intended to
perform operations which execute quickly. (i.e. assignment statements or elementary actions).
A ROUTINE object can hee up to 4 pamaeters. Each paneeter is fomally defined in the
ROUTINE declaration { a paraneter identifier. The paraeter identifiers can be usedyavhere
within the routine itself. Actud paraneters (included as guments of the routine calling
statenent) are substituted for the parter identifiers when the routine is executed. Theans
no parameters values can be return by the routine.
Routine execution is started in one of twoyaaly connectig it to a COMPARATOR or
MULTI_COM PARATOR pipe blok (see pargraph 3.9.4),or by calling it from within a
SEQUENCE, ACTION or anotheROUTINE (see paragraph 3.9.3).
Sevwice statenents lke CONDITION , WAIT-TIME , EXCEPTION andCASE are not allowed
in ROUTINES.
3.9.1 DECLARATION SYNTAX
ROUTINES <routines group identifier;
{ ROUTINE <routine identifier> WITH <param identp<param ident3...];
{ <routine statement> }+
END_ROUTINE
H
[POWERON
{ <routine statement> }+
END_POWERON
]
END_ROUTINES
<routines group identifier> : name of the group of subsequent routines ebfsiting of
characters).
<routine identifier> : name of the routine object (string of characters).
<param ident> : formal parameter identifiers (string of characters). The number of formal
parameters must be between 0 and 4..
<routine statement> : any assignment statement.
3.9.2 FUNCTIONS
No functions are available for routines.
3.9.3 ROUTINE CALL
Routine execution can be startegdalling it from any SEQUENCE, ACTION or ROUTINE
(excepted itself) usma cALL statement. When a routine is called, it is necegdar speciy in
Page: 3-28 Doc. No. 006.8007.B

Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

the routine call statement the same number of parameters as specified in the routine declaration.
Actual parameters are linked to parameter identifiers by the order in which they are listed in the
CALL statement.

Parameter expressions are evaluated just before starting routine execution, and the actual
parameter current values substituted for the parameter identifiers specified in the routine

declaration. When routine execution is completed, the application continues with the statement
immediately following theCALL statement. No parameters values are returned.

A A routine must be declared before it can be called in a CALL statement.

i No parameters values are returned by a routine

3.9.3.1 CALL STATEMENT SYNTAX
CALL <routine identifier> WITH <param expression=param expression=..];
<routine identifier> : name of a routine object (string of characters).
<param expression> : actual parameter expression. It can be any type of expression. The
number of parameters expressions can be between 0 and 4. The number of parameter
expressions must match the number of parameters declared in the Routine declaration.
3.94 ROUTINE CONNECTED TO A COMPARATOR
When a routine is connected t€C®MPARATOR or aMULTI_COMPARATOR pipe block,
its execution is automatically started by PAM firmware immediately upon occurrence of the
related event, therefore providing a very short reaction time. Routine execution takes place
immediately after the pipes & ring processing in the current PAM cycle prior to continuing
execution of the application sequences and actions.
If PAM is overloaded at this time, routine execution is deferred until next sequence or action
execution interruption. This type of interruption occurs at each condition transition, wait time,
end of a loop, end of a sequence, end of an action, exceptions and at some internal firmware
conditions.
i In most cases, routine execution will occur within the current PAM cycle; however, it
may be necessary to add some transition conditions in long sequences without
execution interruption to insure that reaction time does become too long.
3.9.5 ROUTINE EXAMPLE
ROUTINES RGR_SetOfRoutines ;
ROUTINE RTN_SendValue WITH IRV_Amplitude, IWV_Mode ;
IFV_ValueModified <- set ;
SAO_AnalogOut <- IRV_Amplitude * IRV_MyRatio ;
IWV_ModeOut <- IWV_Mode ;
IFV_UpdateValue <- set ;
END_ROUTINE
Doc. No. 006.8007.B Page: 3-29

Rev. 10/15/95

Application Objects Declarations and Uses
Socapel PAM Reference Manual 2.5

END_ROUTINES

SEQUENCE SEQ_Example ;
CALL RTN_SendValue WITH IRV_AmplitudeObjectOne/10, IWV_ModeObjectOne

END_SEQUENCE

Page: 3-30 Doc. No. 006.8007.B
Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.10 TASKS
3.10.1 INTRODUCTION
Tasks represent the main type of object used in the executive part of the PAM application
language. A task describes the runtime behaviour of a component in an application program.
Tasks are intended to execute operations (active statements), sequenced by service statements
and grouped in SEQUENCEs. Sequences are started when a pre-defined event occurs
(ON_EVENT).
3.10.2 DECLARATION SYNTAX
TASK <identifier> ;
SPECS
[{ NUMBER = <number> |
NODES_GROUP = <nodes group identifier>} ;]
[DUPL = <duplication number> ;]
CYCLES = <cycles number> ;
[DEFAULT_SEQUENCE_WORKSPACE = <default sequ. workspace>;]
END_SPECS
[EVENTS
{ON_EVENT <boolean expression*EQ SEQUENCE
<sequence identifier> <multiple tag> ; }+
END_EVENTS]
{ SEQUENCE <sequence identifier> <multiple tag> ;
{<sequence statement>}+
END_SEQUENCE}*
[POWERON <multiple tag> ;
{<sequence statement>}+
END_POWERON]
END_TASK
<identifier>: name of the task.
<number>: (NA), indicates whether the object is multiple or single. INO&BER declaration
is omitted or if <number> = 1, the object is single, otherwise the object is multiple.
<nodes group identifier>: (NA), name of a group of nodes
<duplication number>: (NA), maximum number of copies of the same task allowed to be active
at the same time.
<cycles number>: (NA), period of the task expressed in basic PAM cycles.
Doc. No. 006.8007.B Page: 3-31

Rev. 10/15/95

Application Objects Declarations and Uses
Socapel PAM Reference Manual 2.5

<default sequ. workspace>: (NA), workspace size (expressed in bytes) for all sequences of the
task. If not specified, the general default value is used.

<Boolean expression>: an expression composed of Boolean objects, Boolean operators,
Boolean inquire functions and comparison expression.

<sequence identifier>: name of the sequence.
<multiple tag>: if the equation is multiple, tg tag must follow the identifier.

<sequence statement>: any active or service statement.

3.10.3 FUNCTIONS
No functions are available for tasks.

3.10.4 TASKS STATES AND RULES
Tasks (under control of the PAM executive software) may be in one of several states. Definitions
of the task states and rules for changing states are as follows:
» Atask is active when one of its sequences is active.
* Atask is suspended when one of its sequences is suspended.
* Atask is alive when one of its sequences is active or suspended.
* Atask is dead when none of its sequences are alive or suspended.
* Only one sequence of a task can be alive at the same time. this means that the sequences

within a task are mutually exclusive.

* Several tasks can be alive at the same time.

3.10.5 TASK SPECIFICATIONS

3.10.5.1 DUPL
If a task is multiple h times), virtually m copies (1,2,3,m) of the task may be actives
simultaneously. Th®UPL declaration is used, if necessary (ex. available power limitation) to
control the maximum number of copies alive simultaneously. When the maximum number of
active copies is reached, each new copy waits for the completion of a running copy.
This feature is activated by the service stater@®DNDITION DUPL_START which can be
placed anywhere in a sequence.

3.10.5.2 CYCLES
The CYCLES declaration is used to indicate the typical reaction time (time between event
detection and start of task execution), expressed in PAM basic cycles, for activation of a task
when it is in the suspended or dead states.

Page: 3-32 Doc. No. 006.8007.B

Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

3.10.6 EVENTS
The EVENTS section of the task declaration defines the enabling event for each sequence within
the task.
The following declaration establishes a link between an event (described by <boolean
expression>) and a sequence of the task identified by a <sequence identifier>.
ON_EVENT <boolean expressionsEQ_SEQUENCE
<sequence identifier> ;
When the event occurs, if no other sequence of the task is running, the corresponding sequence is
started, otherwise the event is not handled and lost.
If the boolean expression is multiple, the corresponding sequence must also be multiple, with the
same number of items.
Doc. No. 006.8007.B Page: 3-33

Rev. 10/15/95

Application Objects Declarations and Uses
Socapel PAM Reference Manual 2.5

3.10.7

3.10.7.1

3.10.7.2

3.10.8

SEQUENCES

A sequence is a set of active or service statements which are processed one after another.

DECLARATION SYNTAX

SEQUENCE <identifier> <multiple tag>;
[SPECS
WORKSPACE = <workspace> ;
END_SPECS

END_SEQUENCE

<identifier>: name of the sequence.
<multiple tag>: if the sequence is multiple, tfiletag must follow the identifier.

<workspace> : (NA), workspace size (expressed in bytes) of the sequence. If not specified, the
default sequence workspace is used.

SEQUENCE STATES AND RULES

A sequence can be in the following states:

* A sequence is active when one of its active statements is being processed.

* A sequence is suspended when it is waiting on a transition condition (service statements)

* A sequence is dead once its end has been reached, or it has been aborted, or if it has not been
activated.

* A sequence is alive if is active or suspended.
Two different sequences located in two different tasks can have the same name.

If a sequence is multiple, all other sequences of the task (except the "power on" sequence) must
also be multiple, with the same number of items.

POWERON SEQUENCE

A POWERON sequencds executed only once after a power on or a reset of PXAMPOWERON
sequences of all tasks are intend for system initialisation purposes and for establishing
starting/restarting conditions. Normal Task/Action execution is started only when all
POWERON Actions andPOWERON Sequences within TASKs have completed execution.

TASK EXAMPLES

Declaration of a single task:
TASK TSK_First ;

SPECS
PERIOD = 10 ;
END_SPECS
EVENTS
ON_EVENT IFV_Eventl XEQ_SEQUENCE SEQ_First ;
ON_EVENT IFV_Event2 XEQ_SEQUENCE SEQ_Second ;

Page: 3-34 Doc. No. 006.8007.B

Rev. 10/15/95

Application Objects Declarations and Uses

Socapel PAM Reference Manual 2.5

END_EVENTS
SEQUENCE SEQ _First ;

END_SEQUENCE

SEQUENCE SEQ_Second ;

END_SEQUENCE

POWERON

END_POWERON
END_TASK

Declaration of a multiple task:
TASK TSK_Second ;
SPECS

PERIOD = 10 ;
END_SPECS

EVENTS
ON_EVENT IFV_Event_3[i] XEQ_SEQUENCE SEQ_First[i] :
ON_EVENT IFV_Event_4[i] XEQ_SEQUENCE SEQ_Second[i] ;
END_EVENTS
SEQUENCE SEQ _First[i] ;
END_SEQUENCE
SEQUENCE SEQ_Second]i] ;
END_SEQUENCE
POWERON
END_POWERON

END_TASK

Doc. No. 006.8007.B Page: 3-35
Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

4 STATEMENTS

4.1 INTRODUCTION
Statements are the basic building blocks of the executive part of an application. Two types of
statements are defined: active statements and service statements. Active statements define how a
component functions. Service statements determine when a component functions.
Active statements can be further classified as Object Access or flow control statements. Service
statements are categorised as Transition Condition or Exception statements.

4.2 GENERAL DEFINITIONS
Statements are composed of combinations of expressions and keywortte following
statement:

WAIT_TIME IWV_VarDuration / 10 ;

"WAIT _TIME " is a keyword and "IWV_VarDuration / 10" is an expression.
EXPRESSION
An expression is generally composed of operands and operators. Expressions are evaluated by
applying operators to operands in a defined order, generally from left to right.
FUNCTION
Functions are a set of PAM key words which prescribe specific operations to be performed on
objects.
KEYWORD
A keyword is a pre-defined, reserved word within the PAM programming language. A keyword
cannot be used for user definitions such as objects names. A listing of keywords is provided in
appendix A.
OPERAND
Operands can be constants, variables or functions.
OPERATOR
Operators can be any mathematical function (i.e. addition, cosine, square root) or boolean
function (i.e. AND, OR).

Doc. No. 006.8007.B Page: 4-1

Rev. 10/15/95

Statements
Socapel PAM Reference Manual 2.5

4.3 OBJECT ACCESS STATEMENT
An Object access statent is aype of actve statenent consistig of aleft patt which desgnates
adestinatim or sour@ object and aright part which describes the action to be paried on this
object.
4.3.1 GENERAL SYNTAX
The general syntax to access any field of an object is as follows:
<object> operator <function name>[(parameters)]
i Object parameters are accessed using Parameter Access statements (see paragraph
4.3.4).
4.3.2 FUNCTIONS
Functions are used to control,nemand andmonitor oljects. Two ypes of functionsExecutive
Functiors ard Inquire Functions, are defined. ExegatiFunctions send ocamands and data to
objects, while inquire functions inteigate oljects resultig in the olpect returniig stats or data.
Most objecs have an associated set of functions which are listed in thecbblescription.
Detailed descriptions of threore camplex functions and those functi®oommon to a number of
objects are prnaded in subsequent chapters of timanual. Table 4L provides chapte references
to function details fovarious catgories of olpects. A thid type of functions mathematical
functions are described in chapter 6.
OBJECT CATEGORY FUNCTION REFERENCE INFORMATION CHAPTER
physical objects I/O functions 11
(except axis object) error functions 12
axis object executive functions 7
inquire functions 9
pipe blocks executive functions 8
inquire functions 10
Table 41 Functions Reference Information Locations
SYNTAX
The general syntax for executive function is as follows:
<object> <- <function name>[(parameters)]
The syntax for inquire function is as follows:
<object> ? <function name>[(parameters)]
EXAMPLES:
AXI_X <- relative_move (158) ;
AXI_X ? error_code ;
Page: 4-2 Doc. No. 006.8007.B

Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

4321 OBJECT VALUE ACCESS FUNCTIONS
Objectvalue can be accessed two specific functionsgetvalueandsetvalue To simplify use
of these stat@ents, the nmes of these functionsiay be amitted. In that case, the staent
syntax where the target object is a destination (information is going to the object) is as follows:
<target object><- <expressionz
The following combinations of object class/ variable class are valid:
<boolean object><- <boolean expression>
<integer object><- <{integer expression|real expression}>
<real object><- <{integer expression|real expression}>
<boolean|integer|real object> <- <object>
EXAMPLE
BWV_MylnputA <- SBI_InputA ;
i In integer object — real expression operations, the fractional portion of the expression is
truncated. In real object — integer expression operations, zeros are inserted to the right
of the decimal point.
The statement yntax where the tget ohect is a source (infamation is caning from the olpect)
is as follows:
<target object>? <expression3
This g/ntactic structure is used as amgwonent of arinquireSet Value cobination statment
(see paragraph 4.3.3which transfers an inquiredhlue (with or withoutmodification) to a final
destination object.
4.3.3 INQUIRE-SET VALUE COMBINATION STATEMENT
An inquire function can be odbined with a sewalue operationn a single statenert which
pemits transfe of the value returnel by an inquire function to a final destination jebt
(Boolean, integer or real).
SYNTAX
<boolean]integer|real objeck- <object>? <function name>[(parameters)]
EXAMPLE:
IWV__CurrentError <- AXl_X ? error_code ;
4.3.4 PARAMETER ACCESS STATEMENTS
Same ohect paraneters, principall physical and pipe glect paraneters can be accesse by an
application during its execution usig a specific panameter access statent gntax. Bvery
Doc. No. 006.8007.B Page: 4-3

Rev. 10/15/95

Statements
Socapel PAM Reference Manual 2.5

parameter has its own access level which is indicated in the parameter description. The possible
levels with their abbreviations are as follows:

- No Access (NA)

- Read Only access (RO)
- Write Only access (WO)
- Read and Write access (RwW)

Only those parameters with the necessary access level can be accessed using the parameter
access statement. Where specific rules or special considerations apply to parameter access for a
particular object, they are included with the object description.

4.3.4.1 PARAMETER INQUIRY SYNTAX
The syntax for parameter value inquiry is as follows:

<destination object><- <object<parameter> ;

EXAMPLE:

Read current TRAVEL_SPEED parameter value of AXI_X and write the value into
IWV_MyVariable:
IWV_MyVariable <- AXI_X:TRAVEL_SPEED ;
4.3.4.2 PARAMETER MODIFICATION SYNTAX
The syntax for parameter value modification is as follows:

<object<parameter><- <expression> ;

EXAMPLE:

Modify the TRAVEL_SPEED parameter value of AXI_X:
AX|_X:TRAVEL_SPEED <- 123.75 * (IWV_OldSpeed - 100.0) ;

Page: 4-4 Doc. No. 006.8007.B
Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

4.4 FLOW-CONTROL STATEMENTS

44.1 INTRODUCTION

Flow-control statements are a type of active statement. They provide the capability to modify
program flow under defined circumstances. There are four types of flow-control statements
which include:

- IF THEN ELSE ENDIF statement structure
- LOOP END_LOOP statement structure
- XEQ_TASK statement

- XEQ_SEQUENCE statement

4.42 IF ... THEN ... ELSE ... ENDIF

This statement structure is used to select one program path or another based upon some
condition.

SYNTAX

IF <boolean expressionrHEN
[ELSE]

END_IF

<boolean expression> : an expression composed of Boolean objects, Boolean operators,
Boolean inquire functions and comparison expressions.

EXAMPLE

If Stoplnput is true processing 1 is executed, otherwise processing 2.
SEQUENCE SEQ_Examplelf

IF SBI_Stoplnput THEN

IFV_StopMachine <- set ; Il processing 1
ELSE
...IFV_StopMachine <- reset ; // processing 2
END_IF

END_SEQUENCE

Doc. No. 006.8007.B Page: 4-5
Rev. 10/15/95

Statements
Socapel PAM Reference Manual 2.5

443 LooP... ENDLOOP
This statement structure is used to repeat several times a part of a sequence.

All functions between LOOP and END_LOOP keywords are executed repeatedly until the
condition which stops loop execution becomes true.

SYNTAX
LOOP

END_LOOP <boolean expression>;

<boolean expression> : an expression composed of Boolean objects, Boolean operators,
Boolean inquire functions and comparison expressions.

EXAMPLE

The statements betweenoP andEND_LOOP are executed repeatedly until StopLoop become
true.

SEQUENCE SEQ_ExampleLoop

LOOP
CFV_OutputSquare <- set; // processing
WAIT_TIME 1000 ;
CFV_OutputSquare <- reset ;
END_LOOP StopLoop;

END_SEQUENCE

Page: 4-6 Doc. No. 006.8007.B
Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

4.4.4

XEQ SEQUENCE

The XEQ_SEQUENCE statement is used to abort the sequence in which the statement is located
and to start an alternate sequence specified in the statement. The alternate sequence must reside
within the same task.

SYNTAX

XEQ_SEQUENCE <sequence identifier>;

<sequence identifier> : the name of an alternate sequence in the same task.

EXAMPLE

If Stoplnput is true, the sequence SeqOne is stopped and the sequence SeqTwo is started
Otherwise, (Stoplnput is false) execution of SeqOne continues.

TASK TSK_XeqSeqExample ;
SPECS

END_SPECS
SEQUENCE SEQ_One ;

IF SBI_Stoplnput THEN

XEQ_SEQUENCE SEQ_Two

END_IF

statement_1 1; Il processing 1

;s't.atement_l_n ;
END_SEQUENCE

SEQUENCE SEQ_Two ;
statement 2 1; Il processing 2

éfatement_Z_n ;
END_SEQUENCE

END_TASK

Doc. No. 006.8007.B Page: 4-7

Rev. 10/15/95

Statements
Socapel PAM Reference Manual 2.5

445 XEQ_TASK
The XEQ_TASK statenert is useal to start another sequence located in a differerk. thkree
dispositions of the sequence in whick #EQ_TASK is placed are possible:
* The sequence may continue its execution simultaneously with the started sequence. That's
thedefault behaviour.
* The sequence may wait in suspended state until the started sequence has finished execution,
then continue its execution (WAIT mode).
* The sequence may be aborted (ABORT mode).
SYNTAX
XEQ_TASK <task identifier SEQUENCE <sequence identifierspJAIT JABORT];
<sequence identifier> : name of the sequence to be started.
<task identifier> : name of a task which contains the sequence to be started.
A User must avoid situation where XEQ_TASK statements attempt to start a second
sequence in a given task while another sequence is alive. Since task rules allow only
one sequence to be alive within a task at a time, the task executing the second
XEQ_TASK will be stopped with an error (see paragraphs 4.4.5.1 and 4.4.5.2.
EXAMPLE
In this example, processing 1 and processing 2 are executed simultaneously.
TASK TSK_XeqTaskExample ;
SPECS
END_SPECS
SEQUENCE SEQ_NormalProcessing ;
XEQ_TASK TSK_Exception SEQUENCE SEQ_StartedByXeqSeq ;
statement 1 1; I/ processing 1
éfatement_l_n ;
END_SEQUENCE
END_TASK
TASK TSK_Exception ;
SPECS
END_SPECS
SEQUENCE SEQ_StartedByXeqSeq ;
statement_2_1; Il processing 2
gfatement_Z_n ;
END_SEQUENCE
Page: 4-8 Doc. No. 006.8007.B

Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

END_TASK

4451 CORRECT USAGE OF XEQ_TASK...

The following exanple shows a correct use ¥EQ_TASK (see Fjure 41). Note that for each
tak, containiiy a XEQ_TASK statenent, there is separate tasvhere the sequence which is
started withkeEQ_TASK is located.

TASK TSK_1;
SPECS

END_SPECS

SEQUENCE SEQ _1,;
XEQ _TASK TSK_XEQ_1 SEQUENCE SEQ_a;
statement_1;

.s.t.atement_n i
END_SEQUENCE

END_TASK

TASK TSK_2;
SPECS

END_SPECS

SEQUENCE SEQ 1;
XEQ_TASK TSK_XEQ 2 SEQUENCE SEQ_b WAIT;
statement_1;

éfatement_n;
END_SEQUENCE

END_TASK

TASK TSK_XEQ_1;
SPECS

END_SPECS

SEQUENCE SEQ _a;
exception_statements;
END_SEQUENCE

END_TASK

TASK TSK_XEQ_2;
SPECS

END_SPECS

SEQUENCE SEQ_b;
exception_statements;
END_SEQUENCE

END_TASK

Doc. No. 006.8007.B Page: 4-9
Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

tsk_xeq_1
seq_1 seq_a
xeq_task /\
i sequence ...
sequence_n

tsk_2 tsk_xeq_2
seq_1 seq_b
xeq_task /\
sequence ... §
sequence_n

Figure 4-1 Proper use of XEQ_TASK statements

Page: 4-10

Doc. No. 006.8007.B
Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

4.45.2 INCORRECT USAGE OF XEQ_TASK

The following example shows incorrect useEQ_TASK (see Fgure 42). The sequences started
with XEQ_TASK statements are in the ga tak. If the XEQ_TASKk of seq_1 in #s 2 executes
"XEQ_TASK seq_b" while seq_a (in thensata) is runnirg, seqb can not be runand t&_2
will stop on error.

TASK TSK_1;
SPECS

END_SPECS

SEQUENCE SEQ _1;
XEQ_TASK TSK_xeq SEQUENCE SEQ_a;
statement_1;

;s't.atement_n;
END_SEQUENCE

END_TASK

TASK TSK_2;
SPECS

END_SPECS

SEQUENCE SEQ _1;
XEQ_TASK TSK_xeq SEQUENCE SEQ b;
statement_1;

;s:fatement_n;
END_SEQUENCE
END_TASK

TASK TSK_xeq;
SPECS

END_SPECS

SEQUENCE SEQ_a;
statement_1;

éfatement_n;
END_SEQUENCE

SEQUENCE SEQ_b;
statement_1,;

statement_n;
END_SEQUENCE

END_TASK

Doc. No. 006.8007.B Page: 4-11
Rev. 10/15/95

Statements
Socapel PAM Reference Manual 2.5

tsk_1

seq_1

/

exception

sequence ...

sequence_n

tsk_exception

seq_a

seq_b

Figure 4-2 Incorrect use of XEQ_Task statement

tsk_2

seq_1

/ exception

sequence

sequence_n

Page: 4-12

Doc. No. 006.8007.B
Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

4.5 TRANSITION CONDITION STATEMENTS
Transition condition statements are a type of service statements which are used to wait until an
event occurs. There is four types of transition condition which offer the following control
possibilities:
CONDITION wait for a single Boolean event
CASE wait for one of several Boolean events
WAIT _TIME wait a specified time
CONDITION DUPL_START wait and limit maximum number of parallel sequences.
45.1 CONDITION STATEMENT
The CONDITION statement is used in a sequence to wait for an event to occur. It is always
associated with a transition condition defined by a Boolean expression, and can be also
associated with an optional time-out which specifies the maximum time allowed waiting for the
transition condition to become true.
The transition condition is evaluated upoDNDITION statement execution, If the transition
condition is true, execution of the sequence continues without delay. If the transition condition is
false, the sequence is suspended until the transition condition becomesTiEOIT occurs,
where-upon sequence execution resumes. The application can determine if time-out occurred by
testing the pre-defined status indicator, TIMEOUT.
SYNTAX
CONDITION <boolean expression¥IMEOUT <time expression>];
<boolean expression> : expression composed of Boolean objects, Boolean operators, Boolean
inquire functions and comparison expressions.
<time expression> : expression composed of constants and variables which specify the time-out
duration in milliseconds.
A A sequence will wait forever and remain indefinitely in the suspended state if its
transition condition declared without time-out never occurs.
EXAMPLES
This sequence waits indefinitely until the condition WaitForStart becomes true.
SEQUENCE SEQ_ConditionExamplel ;
SBO_MachineStart <- reset ;
CONDITION BOL_WaitForStart ;
SBO_MachineStart <- set ;
SBO_LedMachineRun <- set ;
END_SEQUENCE
This sequence is suspended until the ready condition becomes true or the time-out of 5000 msec
is reached, then execution of the sequence resumes withstiement which tests if the time-
out occurred.
Doc. No. 006.8007.B Page: 4-13

Rev. 10/15/95

Statements
Socapel PAM Reference Manual 2.5

SEQUENCE SEQ_ConditionExample2 ;
ZEP_MyAxisToZero <- start ;
CONDITION ZEP_MyAxisToZero ? ready TIMEOUT 5000 ;
IF TIMEOUT THEN
ZEP_MyAxisToZero <- stop ;
IFV_MachinelnError <- set ;
ELSE
IFV_MachineReady <- set ;
END_IF
END_SEQUENCE

Page: 4-14 Doc. No. 006.8007.B
Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

4.5.2 CONDITION DUPL_START
A system composed of multiple nodes or groups of nodes, with static or dynamic configuration,
may have multiple tasks containing identical sequences.
By default, it is feasible that all instances of a sequence (within a multiple task structure) may be
executing simultaneously. Sometimes it is necessary to limit the number of identical sequences
which can be executed simultaneously (due to power limitation, for example). The number of
simultaneous instances allowed is specified bybtbre parameter in the task declaration, and
this limitation is imposed using tF@ONDITION DUPL _START statement anywhere in a sequence.
Execution of a sequence beyond @¢@N\DITION DUPL _START statement is permitted whenever
the number of identical alive sequences is less tham.. If the number of currently alive
identical sequences is equal to (or greater tbaw)., the subject sequence is suspended at the
CONDITION DUPL _START statement until the transition condition (i.e. number of currently alive
identical sequences isBUPL) becomes true.
SYNTAX
CONDITION DUPL _START;
EXAMPLE
When the sequence HowToUseDuplStart is started, and unticdhN®ITION DUPL _START
statement is reached, all sequence instances (20 in this example) can run together. Beyond the
CONDITION DUPL _START statement, only 10 instances can run together. However, the
EXCEPTION statement (prior to theONDITION DUPL START) remains active for all instances,
allowing the subject sequence to generate an exception even if it is suspended waiting for
DUPL_START become true.
TASK TSK_DuplExample ;
SPECS
NUMBER = 20;
DUPL =10;
CYCLES =10;
END_SPECS
SEQUENCE SEQ_HowToUseDuplStart[i] ;
EXCEPTION IFV_SequenceStop[il ABORT_SEQUENCE ;
CONDITION DUPL_START ;
END_SEQUENCE
END_TASK
Doc. No. 006.8007.B Page: 4-15

Rev. 10/15/95

Statements
Socapel PAM Reference Manual 2.5

453 WAIT_TIME

The WAIT _TIME statement is used to force a sequence into the suspended state for a period of
time specified by the parameter. After the specified wait interval expires, the sequence returns to
the active state and its execution continues.

SYNTAX

WAIT _TIME <time expression>;

<time expression> : an expression composed of constants and variables which specify the
waiting time expressed in millisecond.

EXAMPLE

At the waIT_TIME 100 statement, the sequence waits in the suspended state for 100
milliseconds.

SEQUENCE SEQ_WaitTimeExample ;
WAIT_TIME 100 ;
END_SEQUENCE

Page: 4-16 Doc. No. 006.8007.B
Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

454 CASE

Selection and activation of one sequence among several sequences as a function of conditions if
sometimes necessary. This is possible usingaise statement which allows the user to specify
a list of sequences with their corresponding transition conditions.

When only one condition in th@AsE statement is true, the corresponding sequence is activated.
If several conditions become true at the same time, the first true condition in the list will be
recognised and activate the corresponding sequence. The other conditions will have no effect.

When acONDITION within aCASE statement is activated, the initial calling sequence containing
the CASE statement is aborted.

To avoid an_infinite waiting time in the situation where no condition is true, an optional
TIMEOUT statement may be included to activate a corresponding sequence if the specified wait
time is reached.

SYNTAX
CASE
CONDITION <boolean expression XEQ SEQUENCE <sequence identifier 1>;

[CONDITION <boolean expression XEQ_ SEQUENCE <sequence identifier 2>;

CONDITION <boolean expression EQ_SEQUENCE <sequence identifier n>;]
[TIMEOUT <time expressionXEQ SEQUENCE <sequence identifier timer>];

END_CASE

<boolean expression> : an expression composed of Boolean objects, Boolean operators,
Boolean inquire functions and comparison expressions.

<sequence identifier> : name of a sequence.

<time expression> : an expression composed of constants and variables which specify the time-
out duration expressed in millisecond.

EXAMPLE

depending on which event occurs first, SEQ_1, SEQ_2 or SEQ_3 will be executed. If neither
Eventl, Event2 nor Event3 occurs within 500 milliseconds after execution otabe
STATEMENT, SEQ_Timeout is executed. The Dummy Statement will never be executed.

SEQUENCE SEQ_CaseExample ;

CASE
CONDITION IFV_Eventl XEQ_SEQUENCE SEQ 1;
CONDITION IFV_Event2 XEQ_SEQUENCE SEQ 2 ;
CONDITION IFV_Event3 XEQ_SEQUENCE SEQ _3;
TIMEOUT 500 XEQ_SEQUENCE SEQ_Timeout ;

END_CASE

DummyStatement ; // this statment will never be reached !

END_SEQUENCE

Doc. No. 006.8007.B Page: 4-17
Rev. 10/15/95

Statements
Socapel PAM Reference Manual 2.5

SEQUENCE SEQ_1;

END_SEQUENCE
SEQUENCE SEQ_2:

END_SEQUENCE
SEQUENCE SEQ_3;

END_SEQUENCE
SEQUENCE SEQ_Timeout;

END_SEQUENCE

Page: 4-18 Doc. No. 006.8007.B
Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

4.6 EXCEPTION STATEMENTS

Normal machine behdour, which is tota}y deteministic, is generaly described ¥ a set of

related sequences. TIEXCEPTION statemernt provides a corvenient means for describing

system behaiour when abnanal events occur and can initiate special procasairary timein a

sequence. An Exceptiorvent can be anBoolean expressiorEad form of the EXCEPTION

statenent has an optionalIMEOUT paranete (ses paragraph 4.6.5)which, if specified,

functions as an additiond exceptiom event when thenaximum time allowed for execution of a

sequence is exceeded. Exception statds are aype of sevice statenent. There are seral

processing alternatives which include the following:

EXCEPTION ... SEQUENCE stop execution of the current sequence and
execute another sequence in the same task.

EXCEPTION ... ENTRY jump to an entry point anywhere in the same
task.

EXCEPTION ... XEQ_TASK start a sequence in another task and abort,
suspend or continue the current sequence.

EXCEPTION ... ABORT_SEQUENCE abort the current sequence.

The following rules apply to execution BXCEPTION statements:

* An exception statement can be placed anywhere in a sequence. Once the exception statement
is executed, processing of the exception is started as soon as the exception condition
(Boolean expression) becomes true,

* An exception is active only while the sequence in which it resides is alive.

* An Exception may be cancelled by tReMOVE _EXCEPTION statement.

« Only one exception can be ON at the same time in a sequence. If a new exception is defined,
it replaces the current exception and only the new exception has effect.

» If the exception event is already true when the exception statement is executed, the exception
is immediately implemented.

» In the situation where a condition event and an exception event within the same sequence
occur simultaneously, only the exception will be executed.

* When an exception is executed, the sequence is aborted first (if specified), then the exception
is executed.

» The exception treatment acts only on alive tasks.

» If, following execution of an exception statement, the sequence is suspended, and the
exception event occurs while the sequence is suspended, the event will be recognized and
remembered (even if the exception event subsequently becomes not true). The exception will
be executed when the sequence becomes active again.

» If an exception event becomes true while the sequence is active (during execution of a
statement) PAM completes executing the current statement, then executes the exception.

Doc. No. 006.8007.B Page: 4-19

Rev. 10/15/95

Stateme

nts

Socapel PAM Reference Manual 2.5

46.1 EXCEPTION ... SEQUENCE
The Exception with sequene form is used when it is necesgahat the'nomal sequenceauns
from start to finish if no exception occurs; but if the exception does occunadineal sequence’
is aborted and thexception sequentces started. Procesgjrof the 'nomal sequenceand the
'exception sequenceare caonpletely separate. The optionalMEOUT ,if specified, becmes a
second exception evef#ee paragraph 4.6.5).
SYNTAX
EXCEPTION <boolean expression$TIMEOUT [<time expression}] SEQUENCE <sequence
identifier>;
<boolean expression> : an expression compbst Boolean objects Booleax operators,
Boolean inquire functions and comparison expressions.
<time expression> : an expression composed of constants and variables which thedoiie-
out duration expressed in milliseconds
<sequence identifier> : name of a sequence.
EXAMPLE
If the exception does not occur, the sequence runs dtatenent_ 1 1 to stateent 1 n, buif
the exception occurs gime durirg its execution, the sequenidormalProcessigis abortal and
the sequence ExceptionProcegsis started. Siilarly, if SEQ_NomalProcessig is alive for
more than 1000 milliseconds, the exception occurs due to timeout.
TASK TSK_ExceptionSequenceExample ;
SPECS
" END_SPECS
SEQUENCE SEQ_NormalProcessing ;
EXCEPTION SBI_Stop TIMEOUT 1000 SEQUENCE SEQ_ExceptionProcessing ;
statement_1_1;
éfatement_l_n ;
END_SEQUENCE
SEQUENCE SEQ_ExceptionProcessing;
statement_2_1;
éfatement_Z_n;
END_SEQUENCE
END_TASK
Page: 4-20 Doc. No. 006.8007.B

Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

46.2 EXCEPTION ... ENTRY

The exceptio with entry is used when it is necesgéhat the sequence runs rindeginning to
end, even through the 'exception pdrthe exception does not occur.

If the exception occurs, the sequence is aboate®l restartel at the EXCEPTION_ENTRY
statenent (see pargraph 4.6.6)naned n the ENTRY paraneter to execute thexception paft
The optionalfiIMEOUT (see paragraph 4.6.f)nctions as a second exception event.

SYNTAX:

EXCEPTION <boolean expressiof¥IMEOUT [<time expression>]] ENTRY <entry
identifier>;

<boolean expression> : an expression compbst Boolean objects Booleax operators,
Boolean inquire functions and comparison expressions.

<time expression> : an expression composed of constants and variables which thedoiie-
out in milliseconds.

<entry identifier> : name of a labeMhen the exceptiooccurs the sequene is stoppe and
restart at the entry identifier (label).

A If an exception occurs, the sequence is aborted and restarted at the
EXCEPTION _ENTRY statement even if sequence execution is past the
EXCEPTION _ENTRY statement.

EXAMPLE

If no exceptio occurs the sequence runs frostatenent_1 to stat@ent_n throgh statenent_x
and statment_x+1. If an exception occurs, ¢hsequene is abortel and restartel at
EXCEPTION_ENTRY exit statment, e/en if sequence execution is betwetatenent_x+1 and
statement_n.

If it is necessarthat the sequence not be interrupted betweemsatex+1 and stameent_n, a
REMOVE_EXCEPTION statement must be inserted before the exception entry point.

SEQUENCE SEQ_ExceptionEntryExample ;
EXCEPTION SBI_Stop ENTRY exit;
statement_1;

;s't.atement_x;
EXCEPTION_ENTRY exit;
statement_x+1;

;s't.atement_n;
END_SEQUENCE

If statenents_x4 through statenent_n are not to be executed inmal operation, the exception
with entry label structure cannot be uséiis necessgrto implement two sequences and use the
EXCEPTION...SEQUENCE structure.

Doc. No. 006.8007.B Page: 4-21
Rev. 10/15/95

Statements
Socapel PAM Reference Manual 2.5

4.6.3 EXCEPTION ...XEQ_TASK

The exception with t&sform is used whentiis necessar tha the 'normal sequenceruns from

beginning to end when no exception occurs, andnileaceptia occuss the 'exception sequence’

is started. The'nomal sequencecan continue to run reultaneoust with the 'exception
sequencgby default), can wait until thiexception sequentis canpleted (WAT mode) or can
be aborted (ABORTnode). The optionaliMEOUT (see pargraph 4.6.5)functions as a second
exception condition.

SYNTAX

EXCEPTION <boolean expression¥FIMEOUT [<time expression>]]

XEQ_TASK <task identifier SEQUENCE <sequence identifierspJAIT JABORT];
<boolean expression> : an expression compbst Boolean objects Booleax operators,
Boolean inquire functions and comparison expressions.

<time expression> : an expression composed of constants and variables which thedoiie-

out duration in milliseconds.

<sequence identifier> : name of a sequence.

<task identifier> : name of a task.

A User must avoid situation where Exception ... XEQ_TASK statements attempt to start a
second sequence in a given task while another sequence is alive. Since task rules allow
only one sequence to be alive within a task at a time, the task executing the second
XEQ_TASK will be stopped with an error (see paragraphs 4.6.3.1 and 4.6.3.2.)

EXAMPLE

If no exception occurs, the sequence milProcessig runs fran statenent 1 1 to

statenent_1 nlf exception SB_Stop occurs, execution of NoalProcessig is not affected and

the sequence SEQ_ExceptionProcessing in task TSK_Exception starts execution simultaneously.

TASK TSK_Normal ;

SPECS
END_SPECS
SEQUENCE SEQ_NormalProcessing ;
EXCEPTION SBI_Stop TIMEOUT 1000
XEQ_TASK TSK_Exception SEQUENCE SEQ_ExceptionProcessing ;
statement_1 1,
;s't.atement_l_n;
END_SEQUENCE
END_TASK
TASK TSK_Exception ;
SEQUENCE SEQ_ExceptionProcessing;
statement_2_1;
Page: 4-22 Doc. No. 006.8007.B

Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

statement_2_n;
END_SEQUENCE

END_TASK

4.6.3.1 CORRECT UsSAGE oF EXCEPTION...XEQ_TASK...

For eat tak (see Fyure 43) there is an exception tasThe exception for sequence_1 inktak
can occur at the same time as the exception for the sequence_1 in task 2.

TASK TSK_1;
SPECS

" END_SPECS

SEQUENCE SEQ _1;
EXCEPTION SBI_Stop XEQ_TASK TSK_Exceptionl SEQUENCE SEQ _a;
statement_1 ;

;s't.atement_n)
END_SEQUENCE

END_TASK

TASK TSK_2 ;
SPECS

END_SPECS

SEQUENCE SEQ _1;
EXCEPTION SBI_Stop XEQ_TASK TSK_Exception2 SEQUENCE SEQ b ;
statement_1 ;

;s:fatement_n)
END_SEQUENCE
END_TASK

TASK TSK_Exceptionl ;
SPECS

END_SPECS

SEQUENCE SEQ_a ;
exception_statements ;
END_SEQUENCE

END_TASK

TASK TSK_Exception2 ;
SPECS

END_SPECS

SEQUENCE SEQ_b;
exception_statements ;
END_SEQUENCE

END_TASK

Doc. No. 006.8007.B Page: 4-23
Rev. 10/15/95

Statements
Socapel PAM Reference Manual 2.5

tsk_1 tsk_xeq_1 tsk_2 tsk_xeq_2
seq_1 , Seq.a seq_1 ' seq_b
xeq_task xeq_task
sequence ... i sequence ...
sequence_n sequence_n

Figure 43 Correct usage of Exception ... Xeq_task

4.6.3.2 INCORRECT USAGE OoF EXCEPTION...XEQ_TASK...

The exception sequences are in theestak (see Fgure 4-4). If the exceptio for seqlintsk 2
occurs while seq_a is running, sequencarbnot run and tsk_2 will be stopped on error.

TASK TSK_1;
SPECS

END_SPECS

SEQUENCE SEQ _1;
EXCEPTION SBI_Stop XEQ_TASK TSK_Exception SEQUENCE SEQ _a ;

Page: 4-24 Doc. No. 006.8007.B
Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

statement_1 ;
gfatement_n ;
END_SEQUENCE
END_TASK

TASK TSK_2 ;
SPECS

END_SPECS

SEQUENCE SEQ _1;
EXCEPTION SBI_Stop XEQ_TASK TSK_Exception SEQUENCE SEQ b ;
statement_1 ;

gfatem e nt_n X
END_SEQUENCE

END_TASK

TASK TSK_Exception ;
SPECS

END_SPECS

SEQUENCE SEQ _a;
statement_1 ;

;s.t.atem ent_n;
END_SEQUENCE

SEQUENCE SEQ b ;
statement_1 ;

éfatement_n ;
END_SEQUENCE

END_TASK

Doc. No. 006.8007.B Page: 4-25
Rev. 10/15/95

Statements
Socapel PAM Reference Manual 2.5

tsk_1

seq_1

/

exception

sequence ...

sequence_n

Figure 4-4 Incorrect usage of Exception ... Xeq_Task

tsk_exception

seq_a

seq_b

tsk_2

seq_1

/ exception

sequence

sequence_n

Page: 4-26

Doc. No. 006.8007.B
Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

4.6.4 EXCEPTION ... ABORT _SEQUENCE

The Exception with abort faris used when there is rexceptim sequenceto perform ard it is
necessaronly to abort thénomal sequencavhen an exceptiom occurs The optional TIMEOUT
(see paragraph 4.6.5¢rves as a second exception condition.

SYNTAX

EXCEPTION <boolean expression¥IMEOUT [<time expression>]] ABORT_SEQUENCE;

<boolean expression> : an expression compb®® Booleax objects Booleax operators,
Boolean inquire functions and comparison expressions.

<time expression> : an expression composed of constants and variables which theduifie-
out in milliseconds.

EXAMPLE

The sequene runs from statenent_1 to statenent_n orny if no exception occurdf Stopnput
exception occurs, sequence execution is aborted.

SEQUENCE SEQ_AbortSequenceExample ;
EXCEPTION SBI_Stop ABORT_SEQUENCE ;
statement_1;

;s't.atement_n;
END_SEQUENCE

Doc. No. 006.8007.B Page: 4-27
Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5
4.6.5 TIMEOUT PARAMETER
Within any form of theeXCEPTION statement it is possible to specify a time-out by including an
optional TIMEOUT parameter in the statement. Time measurement for the optional timeout
exception event begins upon execution of HCEPTION statement. This is a true time
measurement which continues even if the sequence is suspended.
SYNTAX
EXCEPTION <boolean expression¥IMEOUT [<time expression>]]...
<boolean expression> : an expression composed of Boolean objects, Boolean operators,
Boolean inquire functions and comparison expressions.
<time expression> : an expression composed of constants and variables which specify the time-
out in millisecond.
The time-out exception occurs if the <time expression> becomes true. At the beginning of an
‘exception sequence’ it is possible to test if this exception resulted from a timeout usitfg an (
TIMEOUT THENEND_IF) statement structure.
When a newexcCePTION is defined in a sequence to replace the current one, the unexpired
portion of the timeout value from the supersedrdePTION is used whemMEOUT is specified
without a time value (i.e. if 80% of time is spent, the replacems®ouT value is the unused
20%).
EXAMPLE
The following are possible execution sequences for the example program as a function of when
and where exception events occur. The maximum time allowed to execute the whole sequence is
1000 ms.
SEQUENCE SEQ_ExceptionExample ;
L1 EXCEPTION SBI_Stop TIMEOUT 1000 ENTRY exit ;
L2 statement_1 ;
L3 EXCEPTION SBI_Emergency TIMEOUT ABORT_SEQUENCE ;
L4 statement_2 ;
L5 EXCEPTION_ENTRY exit ;
L6 IF TIMEOUT THEN
L7 statement_3 ;
L8 ELSE
L9 statement_4 ;
L10 END_IF
END_SEQUENCE
* If no exception occurs the sequence executes statement_1, statement_2 and statement_4.
» If SBI_Stop becomes true before line L3 is executed then statement_4 is the next executed.
» If SBI_Stop becomes true after line L3 is executed, it does not cause an exception.
» If time (1000 ms) is spent before line L3 is executed then statement_3 is the next statement
executed.
Page: 4-28 Doc. No. 006.8007.B

Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

* If time (1000 ms) is spent after line L3 is executed, the sequence is aborted.
» If SBI_Emergency becomes true before line L3 is executed nothing happens in the sequence.

* If SBI_Emergency becomes true after line L3 is executed, then the sequence is aborted.

Doc. No. 006.8007.B Page: 4-29
Rev. 10/15/95

Statements

Socapel P

AM Reference Manual 2.5

4.6.6

EXCEPTION_ENTRY

The EXCEPTION_ENTRY statenent with <ently identifier> marks the enty point for an
EXCEPTION ... ENTRY statemen{see paragraph 4.6.@hen an exception occurs.

SYNTAX

EXCEPTION _ENTRY <entry identifier>;
<entry identifier> :the name of the label.

EXAMPLE

If no exceptim occurs the sequence runs frostatenent_1 to stat@ent_n throgh statenent x
and statement_x+1.

SEQUENCE SEQ_ExceptionEntryExample ;
EXCEPTION SBI_Stop ENTRY Exit ;
statement_1,;

statement_x:
EXCEPTION_ENTRY Exit;
statement_x+1,;

.s.t.atement_n;
END_SEQUENCE

A

If an exception occurs, the sequence is stopped, even if the sequence is between
statement_x+1 and statement_n, and execution is restarted at statement_x+1.

If it is necessarthat the sequence not be interrupted betweemwmatex+1 and statgent n, a
REMOVE _EXCEPTION statement must be inserted before the exception entry point.

If statenents x4 through statenent_n are not to be executed inmal operation, the exception
with entry label structure cannot be usétlis necessarto implement two sequences and use the
EXCEPTION ...SEQUENCE structure.

Page: 4-30

Doc. No. 006.8007.B
Rev. 10/15/95

Statements

Socapel PAM Reference Manual 2.5

4.6.7 REMOVE_EXCEPTION STATEMENT

If an exception is defined within a sequence, it is possible to inhibit it's execution using a
REMOVE _EXCEPTION statement anywhere in the sequence.

SYNTAX
REMOVE _EXCEPTION
EXAMPLE

In the following example the exception is effective only between statement_1 and statement_x.

SEQUENCE SEQ_RemoveExceptionExample ;

EXCEPTION SBI_Stop ABORT_SEQUENCE ;
statement_1 ;

statement_x ;
REMOVE_EXCEPTION
statement_x+1 ;

;s't.atement_n)
END_SEQUENCE

Doc. No. 006.8007.B Page: 4-31
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.1

PIPES

INTRODUCTION

For g/nchronisimg axes, PAM proeides the capabiltto define channelsalled pipes between
source ofects and destination parts. A source gbct supplievalues, and a destinationjebt
consumes values A pipe handles the flow of discrete, mm@ammable, numerical values. The
main application of the pipe concept is to describenotion profiles and other positional
relationships.

Pipes are built using logical entities cdllgipe blocksThere are three kinds of pipe blocks:
e Input pipe blocks.

e OQutput pipe blocks.

e Transformer pipe blocks.

The genera structure of a pipe is quitengple, beirg comprised of an input pipe blacfollowed
by zero, one, or more transformer pipe blocks, followed by an output pipe(blxkigure 5-1).

OUTPUT
PIPE BLOCK

—————————————————

' TRANSFORMER ' | 'TRANSFORMER INPUT
. PIPE BLOCK | | . PIPEBLOCK | | PIPE BLOCK

Figure 51 General Pipe Structure

Figure 5-2 illustrates aypical pipe structure which includes argder pipe blog, followed by
zero, one omore transfomer pipe bloks, followed ly a corverter pipe blok. The sapler gets
values from a source object, the converter puts values into a destination object.

DESTINATION CONVERTER "TRANSFORMER | SAMPLER SOURCE
OBJECT | PIPEBLOCK 1 OBJECT

Pl

Figure 52 Typical Pipe Structure with Source and Destination Objects

Doc. No. 006.8007.B Page: 5-1

Rev. 10/15/95

Pipes
Socapel PAM Reference Manual 2.5

In the alternative structure shown in Figure 5-3, the sampler pipe block is replaced by a TMP

generator.
DESTINATION CONVERTER TTRANSFORMER | T™P
OBJECT " PIPEBLOCK , GENERATOR

T p A

Figure 5-3 Alternative Pipe Structure with TMP Generator

This powerful, modular approach provides a solution for almost any multi-axis requirement. It
opens the way to the addition of other functions as user may require. Pipes compute their values
periodically. This period is selected using tRERIOD parameter in the input pipe block
declaration. All pipe values are computed independently of events and sequences execution, as a
"protected" task of PAM's processor; thereby assuring they are serviced at the required interval.

Pipes and/or pipe blocks can be installed and removed by statements within sequences; thereby
permitting machine behaviour to be adjusted dynamically, depending on what happens on the
machine.

Page: 5-2 Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.2 CREATION, ACTIVATION AND DISACTIVATION

52.1 CREATION, ACTIVATION STATEMENTS

A pipe is created and activated when statements describing the pipe are processed during the
application execution.

STATEMENT SYNTAX

The syntax of the creation-activation statement is directly derived from the graphical
representation of a pipe. The general pipe creation statement syntax is as follows:
<Output block> { << <Transformer block> }* << <Input block>

Figure 5-4 shows a typical pipe and it's associated creation-activation statement. Activation of a
pipe is completed when the output pipe block of the pipe is ready.

AXIS CONVERTER AMPLIFIER SAMPLER ENCODER

MyConverter << MyAmplifier << MySampler

Figure 5-4 Pipe Creation-Activation Statement

EXAMPLE:
MyConverter << MyAmplifier << MySampler ; // Creation
CONDITIONMyConverter ?ready ; /I Wait for activation

i The destination object of the output pipe block (MyConverter) is stated in the converter
I
pipe block declaration.

52.2 PiPES ACTIVATION CAUTION

A Upon pipe activation, if the first set-point provided by the converter (pipe block) and the

current destination axis set-point are not equal, the axis will execute a jump to set-point
and the motor controlled by the axis will react by moving toward the new set point at the
maximum allowed torque specified in the axis parameters.

To avoid a jump of set-point, the following rules must be applied:

Converter in POSITION mode Converter and axis must have same position set-
point at connection time

Doc. No. 006.8007.B Page: 5-3
Rev. 10/15/95

Pipes
Socapel PAM Reference Manual 2.5

Converter in SPEED mode Converter and axis must have same speed set-
point at connection time but not necessarily same
position.

Converter in TORQUE mode Converter and axis must have same torque set-

point at connection time but not necessarily same
position and speed.

52.3 PiPE DISACTIVATION

The de-activation of a pipe is performed when digactivate function is applied to the output
pipe block of the pipe.

EXAMPLE

This statement disactivates the pipe shown in Figure 5-4.

MyConverter <- disactivate ; /l Disactivate pipe

Page: 5-4 Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.3 BUILD UP RULES
When usilg pipes, it is inportant to t&e into account pipe build up rules &void compilation
errors or unexpected run-time behaviour.
5.3.1 DEFINITIONS
LEADING SUBPIPE
The pipes bloks which are in front of a pipe blbd¢startirg from the input pipe bldg make up
the leading subpipeof this pipe blocKsee Figure 5-5).
SHARED PIPE BLOCK
A pipe block which is present in seral pipés creatioractivation statenents is calledh shared
pipe block (see Figure 5-5).
SAME DESTINATION
Two pipes hae thesamedestination if their output pipe bldks refer b the same destination
object(see Figure 5-6).
5.3.2 MUTUAL EXCLUSION RULE
When seeral pipes hae the sme destination, oglone can be aste at a tme. Every time a pipe
creationactivation statenent is encountered dugrexecution, the new pipe is substituted for the
current pipe with sae destination (if one existsn other wordsdestinatio objects may have
only one input.
5.3.3 BLOCK SHARING RULE
If a pipe blok is shared ¥ several pipes, the leadinsubpipe 6 this pipe block mug be
identical exceqp if all the sharirg pipes hae the sme destinationln other words, transforer
pipe blocks have only one input and only one output.
A A Graphical representation of pipes should be drawn before starting to write the
application.
i A graphical representation of pipes shows the static (compile time) connections
between pipe blocks and pipes of an application, but does not show the dynamic (run
time) connections between pipe blocks and pipes.
Doc. No. 006.8007.B Page: 5-5

Rev. 10/15/95

Pipes
Socapel PAM Reference Manual 2.5

Sharedpipe blocks
Fiiatededetedadededadededededeteddatedadedededededatededetedede b b)
AXIS CONVERTER AMPLIFIER TMP
GENERATOI
MyConverter << MyAmplifier << MyTmpGenerator
AXIS CONVERTER| CAM COMPARATOR CORRECTOR
|l

o<t S <H e

MyConverter_1<< MyCam_1 << MyComparator << MyCorrector << MyTmpGenerator

AXIS CONVERTER CcAM Leadirg sulpipe of MyCam_1
@<t < ®

MyConverter_2 << MyCam_2 << MyComparator << MyCorrector << MyTmpGenerator

Figure 5-5 lllustration of Pipe Definitions

CONVERTER| TMP
GENERATOR
MyConverter << MyTmpGenerator
AXIS CONVERTER CAM COMPARATOR CORRECTOR
@ M
©<t) | i <N i
MyConverter_1 < MyCam << MyComparator << MyCorrector<< MyTmpGenerator
CONVERTER CAM
MyConverter_2 << MyCam << MyTmpGenerator

Figure 5-6 Pipes with same Destination and Shared Blocks

Page: 5-6 Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

54 PIPE BLOCKS GENERAL INFORMATION
Pipe blocks are another type of object for use as building blocks in applications. The different
types of pipe blocks are listed in Table 5-1.
OUTPUT TRANSFORMER INPUT
CONVERTER AMPLIFIER SAMPLER
SINK DERIVATOR TMP_GENERATOR
MULTI-COMPARATOR PMP_GENERATOR
DISTRIBUTOR
PHASER
CAM
COMPARATOR
CORRECTOR
Table 5-1 Types of Pipe Blocks
541 LIFETIME
The life of a pipe block begins as soon as its pipe is activated. It ends at the time it is no longer
used in any activated pipes. The life begins means that all characteristics are reset to the
declaration values and the history of the block begins. Conversely, the life ends means that all
internal current values are lost and the block ceases to exist.
As illustrated in Figure 5-5, the same pipe block may be used in several pipe activation
statements; however, it can exist (live) only once. For example, MyComparitor and MyCorrector
appear in two pipe activation statements, but each of those pipe blocks exists only once.
5.4.2 PERIODICITY AND PHASE OF COMPUTATION

Periodicity (modulus or roll-over point) and phase of computation of each block is determined
with the following rules:

* The periodicity in the block declaration is used for pipe source blocks and periodic
transformer blocks (Phaser and Filter).

* The periodicity of the preceding block is used in all successive blocks.
* The phase is the same for every block of the same pipe.

* The phase is the same for every pipe sharing at least one block.

* The phase of a pipe is determined mainly by the time it is activated.

* The Phaser pipe block provides a convenient way to modify the phase of a pipe.

Doc. No. 006.8007.B Page: 5-7

Rev. 10/15/95

Pipes
Socapel PAM Reference Manual 2.5

5.4.3 PIPE BLOCKS PARAMETERS ACCESS
Pipe blocks paraneters are accesse by the application durm its execution usip paraneter
access statementsee paragraph 4.3.4).

EXAMPLES:

Read the curremdUTPUT_AMPLITUDE paranetervalue of CAM_Exaple and write thevalue
into CRV_Example:

CRV_Example <- CAM_Example:OUTPUT_AMPLITUDE ;
Modify the OUTPUT_AMPLITUDE parameter value of CAM_MyCam:

CAM_Example:OUTPUT_AMPLITUDE <- IRV_BasicAmplitude * 3 ;

5.44 PIPE BLOCK FUNCTIONS

Pipe block functions are aype of statments(see pargraph 4.3.2used to coomand, control and
monitor pipe blok oljects. Functions\ailable for eachype of pipe blok are listed in the pipe
block descriptions presented in this chapter. Detailed nmition on pipe blok functions and
their use are found in chapters 8 and 10 of this manual.

Page: 5-8 Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

2.5 AMPLIFIER

AMPLIFIER

<}

PURPOSE

The purpose of the Amplifier block is to amplify or attenuate the flow of values. It can be used as
a "gearing ratio" between a virtual master and destination axis. It can also be used as "gearing
ratio" between a physical master and a destination axis.

BLOCK INPUT

The amplifier input is the numerical entrance for the flow of values which represent the profile
generated by the previous blocks of the pipe. This input is connected to the previous pipe block.

BLOCK OUTPUT

The amplifier output is the numerical exit for the flow of amplified values. This output is
connected to the next pipe block.

DECLARATION SYNTAX
AMPLIFIER <identifier> ;
GAIN = <gain value> ;
OFFSET= <offset value> ;
GAIN_SLOPE = <slew rate> ;
OFFSET_SLOPE= <slew rate> ;

END
<identifier> : the name of the amplifier.
<gain value> : (RW), the gain value.
<offset value> : (RW), theaput offset value.
<slew rate> : (RW), sets the maximum rate of change at the pipe block output resulting from

changes inGAIN or OFFSET parameters. If slew rate ®AX., the slew rate is infinite. Units
are user units per second fOFFSET_SLOPE, and 1/seconds f@AIN_SLOPE.

i GAIN _SLOPE and OFFSET_SLOPE have no effect on amplifier response to dynamics in
the flow of amplifier input data.

FUNCTIONS
Inquire Functions

- value
Returns the current numerical value coming out of the pipe block.

Example: CRV_AmpOuput <- AMP_Example ? value ;

Doc. No. 006.8007.B Page: 5-9
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.5.1
55.1.1

55.1.2

- ready
Returns the current value of the ready variable.

PARAMETER MODIFICATIONS

GAIN

When GAIN is changed, the slew rate at the amplifier output is limitedGhyw SLOPE.
However, if the pipe block is not active, the change is immediate regardlessa#itheLoPE
setting.

If an amplifier pipe block is disactivated while the amplifier output is slewing to a new value
following aGAIN change, the remaining portion of the output change is made instantly.

The ready flag is false during the interval while the amplifier output is slewing to a new value
following aGAIN change.

i Note that the returned value when reading GAIN is the instantaneous value which is
changing at a rate determined by GAIN _SLOPE following modifications to GAIN .

OFFSET

When OFFSET is changed, the slew rate at the amplifier output is limite@®¥SSET_SLOPE.
However, if the pipe block is not active, the change is immediate regardless of the
OFFSET_SLOPE setting.

If an amplifier pipe block is disactivated while the amplifier output is slewing to a new value
following anOFFSET change, the remaining portion of the output change is made instantly.

The ready flag is false during the interval while the amplifier output is slewing to a new value
following anoFFSET change.

i Note that the returned value when reading OFFSET is the instantaneous value which is
changing at a rate determined by OFFSET_SLOPE following modifications to OFFSET.

Page: 5-10 Doc. No. 006.8007.B

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.6 CAM

PURPOSE

The cam block is used to generate profiles of any shEpe.profile generally represents the
position evolution of the system. The shape of the profile is represented by a table of numerical
values. These values can be generated using software tools such as spreadsheets or specialisel
cam software.

BLOCK INPUT

The cam input is the numerical entrance for the flow of values which are generated by the
previous blocks of the pipe. This input is connected to the previous pipe block. These values are
the X[i] values in the cam transfer function.

BLOCK OUTPUT

The cam output is the numerical values exit for the flow of values. These are the Y[i] values of
the cam transfer function. This exit is connected to the next pipe object.

56.1 DECLARATIONS

Separate cam and profile parameters declarations for the cam pipe block provides the capability
to declare and prepare several different cam profiles then apply one of these dynamically to the
cam pipe block. Profile switching may be done on the fly, without losing the synchronisation and
without dead time.

All cam profile amplitude and offset parameters can be modified dynamically by the application
and any parameter modification is immediately taken into account. The way to insure that
modifications to several parameters of one profile are applied at the same time is to use an off-
line profile and to switch it to the cam after the modification.

In addition, the periodicity of the cam output values can be specified when used with a periodic
system.

5.6.1.1 CAM DECLARATION SYNTAX

CAM <cam identifier> ;

PROFILE = <profile name> ;

{ VALUE _PERIOD = <period value> |

VALUE _RANGE = <min. value> <max. value>} ;
END

<cam identifier> : name of the cam (string of characters).

<profile name> : (WO), name of the current profile assigned to the cam. It must be a declared
profile object.

Doc. No. 006.8007.B Page: 5-11
Rev. 10/15/95

Pipes
Socapel PAM Reference Manual 2.5

<period value> : (RW), value of the period of the cam output values expressed in user units, for
a cyclic system.

<min. value>, <max. value> : (NA), the value range for linear systems expressed in user units.

The max. value must be greater than min. value.
5.6.1.2 PROFILE DECLARATION SYNTAX

PROFILE <profile identifier> ;
FILE = <cam file>;
INPUT_AMPLITUDE = <input amplitude value> ;
OUTPUT_AMPLITUDE = <output amplitude value> ;
INPUT_OFFSET = <input offset value> ;
OUTPUT_OFFSET = <output offset value> ;

END

<profile identifier> : name of the profile (string of characters).

<cam file> : (NA), name of a PAM cam file without path specification and extension. Only the
eight first characters are considered. The cam file must by a file generated by the PAMCAM
utility.

<input amplitude value> : (RW), jj, difference between the last position (where the cam is
finished) and the first position (where the cam start) of the previous pipe bloc values
expressed in the units of the previous pipe bloc.

<output amplitude value> : (RW), fy difference between the minimum position and the
maximum position of the output cam values expressed in the same units as the next pipe bloc.

<input offset value> : (RW), fg, position of the previous pipe bloc where the cam has to start
expressed in the units of the previous pipe block.

<output offset value> : (RW), & minimum position of the output cam values.

INQUIRE FUNCTIONS

- ready

This function asks if the cam is ready according to function under execution. In this
release, ready is always TRUE.

— status(Boolean) (not yet implemented)
This function tests if the cam status is corresponding to the specified status.

— status (not yet implemented)
This function returns the status of the cam.

- value
Return the current numerical value coming out of the pipe block.

Page: 5-12 Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

Example: CRV_CamOuput <- CAM_Example ? value ;

Normalised shape Cam profile

1.0 oI
=N o N
Oout

0.0 1.0

0.0

oin Ain

Cam offset and amplitude parameters

5.6.2 CHANGING PROFILE PARAMETERS

If one or several parameters of a profile object are changed when the profile object is used in an
active CAM pipe block, therROFILE parameter of the cam must be reinitialised to activate the
new profile parameters.

EXAMPLE

The cam profile parameter is re-initialised following changes to profile parameter values.

ROUTINES RGR_ProfilesControl ;

ROUTINE RTN_ApplyProfileNb1 ;
CAM_Example:PROFILE <- PRO_Nb1 ; /I active profile numberl
END_ROUTINE

ROUTINE RTN_ModifyProfileNb1 ;
PRO_Nb1:INPUT_AMPLITUDE <- 200 :
PRO_Nb1:INPUT_OFFSET <- 10 ;

CAM_Example:PROFILE <- PRO_NDb1 ; /I activate new profile
parameters
END_ROUTINE

END_ROUTINES

5.6.3 SHAPE SPECIFICATION

The shape of the cam profile must be processed by the CamMaker utility before it is usable by
any PAM application. This utility normalises the shape and all values are bounded between 0.0
and 1.0. Offset and amplitude values given by CamMaker utility have meaning only if the units
used to define the shape are the same as the units used in the target application.

Doc. No. 006.8007.B Page: 5-13
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.6.4

5.6.5

The main advantage of normalisation of the shape is that the same shape file can be used any
number of times in different cam pipe blocks and applications and scaled for the axis or
application in the cam pipe block declaration.

For more information, refer to the CamMaker manual.

A The more points used to define the profile shape, the higher their accuracy must be in
order to obtain noise-free motion. Attention must be paid to second and third derivatives
of the profile which must be very smooth (free of noise).

If motion results are not satisfactory and higher accuracy is not possible, it is better to
reduce the number of points in the given shape.

UNITS RULES

The cam pipe block is a non-linear transformer block. This has an importantefféoe axis

units and periodicity. In general, the output value units of the cam are related to the physical
units of the destination axis and the input value units are related to the logical units of the input
pipe block (TMP_generator for instance).

In the case where the cam block is not followed (in the pipe) by another cam or an amplifier, the
output units of the cam correspond to the physical units of the axis. That means these units,
including periodicity, are the units defined in thels declaration. If the cam is followed by
another cam or an amplifier, these units are only logical intermediate units with no particular
meaning.

In the case where the cam block is not preceded in the pipe by another cam or an amplifier, the
input value units of the cam correspond to the logical units of the generator or to the physical
units of the source object of the pipe. That means these units, including periodicity, are the units
used in the generator or defined in the source object. If the cam is preceded by an other cam or an
amplifier, these units are only logical intermediate units with no particular meaning.

CAM'S INPUT-OUTPUT TRANSFER FUNCTION

The mathematical relationship of the cam output as a function of the input and the cam
parameters is as follows:

[On<X <Oyt A then ¥ =Qu+(fcK AQ”) Powd)

n

Within the stated limits the following functions apply:
It X <Q then Y = Qe +(fc(0.0)* Ay
It Xi>Qy+ Ay then Y = Q¢ +(fct(10)* Aw
with:
Xj: Inputvalue Y: Output value
Ojn : Input offset Q,t: Output offset
Ajn : Input amplitudeAy,t: Output amplitude

fct : the function defining the shape

Page: 5-14 Doc. No. 006.8007.B

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.6.6 INTERPOLATION BETWEEN DATA POINTS
Interpolation of third polynomial order is used to compute points between two given points of the
profile data. This means that the third derivative of the arc of curve binding two successive
points is constant.
The properties of the interpolation method are as follows:
- The curve goes exactly through the given points.
- The acceleration of both segments of the curve at a given point is the same (acceleration
continuity condition).
5.6.7 TYPICAL APPLICATIONS
Cams can be used similarly with periodic or no-periodic systems. A position cam for a non-
periodic system generally has its ending point equal to its starting point. On the other hand, a
cam for a cyclic system, which is running always in the same direction an infinite nhumber of
period, has its starting point equal to the first position of the period and its ending point equal to
the last point of the period.
Figure 5-7 shows a typical cam shape for a 1.0
repetitive motion executed on a non-periodic
system. Its ending point is equal to its starting
point and they must be equal_to avoid shifting.
When defining the shape table, the last table
line, which has a destination position equal to
the first one must be present. 0.0
0.0 1.0
Figure 5-7 Cam Profile for Non-
periodic system
Figure 5-8 shows a typical cam shape for a 1.0
repetitive motion executed on a periodic
system. The position is globally continuously
progressing and bounded to the position
period of the axis. The shape is defined for
one period of the system. When defining the
shape table, the last table line, which has a 0.0
destination position equal to the last period 0.0 1.0
sition_must be present. . .
posttion i € Figure 5-8 Cam Profile for
Periodic System
Doc. No. 006.8007.B Page: 5-15

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.7 COMPARATOR
PURPOSE
The purpose of the Comparator pipe block is to generate events when the pipe flow crosses
particular values called references. The Comparator block does not modify flow aatbighas
no effect on the axis and its periodicity.
To cover all applications two working modes are defined:
* normal mode.
* through zero reference mode.
BLOCK INPUT
The Comparator input is the numerical entrance for the flow of values which represent the profile
generated by the previous blocks of the pipe. This input is connected to the previous pipe block.
BLOCK OUTPUT
The Comparator output is the numerical exit for the flow of values through the block input. This
output is connected to the next pipe block. Since the compactor pipe block does not modify flow
values, output always equals input.
DECLARATION SYNTAX
COMPARATOR <block identifier> ;
{ REFERENCE = <reference value> ; |
THROUGH _ZERO_REFERENCE = < reference value> ; }
[ROUTINE = { <routine statementpNONE } ;]
[REVERSE_ROUTINE = { <routine statement>};]
END
<block identifier> : the name of the Comparator (string of characters).
<reference value> : (RW), the reference value. If the input value of the Comparator is greater or
equal than the reference value, the Comparator is ready.
<routine statement> : (WO), any routine statement including the name of a routine object (string
of characters) and its parameters (only constants).
SAMPLE DECLARATION
COMPARATOR CMP_Leader;
REFERENCE =0.0;
ROUTINE = RTN_LeaderRef;
Page: 5-16 Doc. No. 006.8007.B

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.7.1

5.7.2

REVERSE_ROUTINE = NONE ;
END

FUNCTIONS
Inquire functions:

- ready

This function asks if the Comparator is ready (if the reference value of the
Comparator is reached.

- value
Return the current numerical value coming out of the pipe block.

COMPARATOR MODES

In nommal mode which applies mainly to boundednotions, the Cmparator’s reay flag is false
as long as the flow value is less than the reference and bestrue as soon as the flealue is
greater than or equal to the reference.

The through zero referencemode is used to detect proper periodic threshold crosgirof
motions on periodic axis where the flalues ag always greate than or equa to zero but lower
than the position periodn thismode, the flonwaluesmust first cross one periodit and then,
as soon a value is greater than or equal to the reference, the ready flag becomes true.

Comparata mode as well as referencealue can be chged while an application is runrgrby
modifying theREFERENCE or THROUGH _ZERO_REFERENCE parameter.

A routine may be connected to the @parate pipe block through the optiond ROUTINE

paraneter. Every time the Comparators read flag becane true, a routine specified/ IROUTINE

is autamatically started, with avery short reaction the. The connected routine can redified
at ary time by the application. $milarly, the true to false transition of the rgéeithg invokes the
routine specified in thREVERSE_ROUTINE parameter.

EXAMPLES

In the followirg code portiorled_1lis set as soon as the pipe flow beesgreater than or equal
to 1000.

CMP_Example:REFERENCE <- 1000.0 ;
CONDITION CMP_Example ? ready;
SBO_Led1 <- set;

The following code portion setsd_1as soon as the pipe flow becomes less than 500.
CMP_Example:REFERENCE <- 500.0 ;

CONDITION [(CMP_Example ? ready) ;
SBO_Led1 <- set;

In the followirg code portionSBO_Ledlis set when the pipe flow crosses one peristo
crossing) and then as soon as it becomes greater than or equa(d¢ee3géragraph 5.7.3).

Doc. No. 006.8007.B Page: 5-17

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.7.3

5.7.4

5.7.5

CMP_Example:THROUGH_ZERO_REFERENCE <- 326.0 ;
CONDITION CMP_Example ? ready ;
SBO_Led1 <- set;

The following statement sets Compoutput = current value of the Comparator named
“MyComparitor”.

CRV_CompOuput <- CMP_Example ? value ;

USING THROUGH ZERO REFERENCE MODE

The necessity for using the through zero reference mode was illustrated in a previous example.
Assume that the system is a periodic system with a position period of 500. The system is running
in the positive direction (pipe flow values increases). Imagine that the position of the system is

now 400 and we want to wait for the system to reach 326 again. If we ask for the Comparator to
detect the 326 reference in normal mode, it will immediately set the ready flag at true (400 >

326) but this is not what we want. If we ask for the Comparator to detect the 326 value in through

zero reference mode, it will wait for the system to cross one zero reference (cross the position
value = 0) and then trigger the application on the correct condition.

COMPARATOR RESPONSE TIME CONSIDERATIONS

There is a big difference in response time when using a Boolean equation comparing a value with
a reference, verses using a Comparator pipe block do to the same processing. With the Boolean
equation, PAM periodically performs the comparison, ignoring any dynamics taking place
between successive comparisons, resulting in delays in triggering sequences and possible loss of
information when the pipe flow value crosses the reference momentarily between comparisons.

With a Comparator, the value of the ready flag is intrinsically updated each time a new pipe
flow value is computed. Therefore, is it impossible to loose any transitions.

CONNECTING A ROUTINE

Two ways are possible to connect a routine to the Comparator. It is possible to declare the
routine in the Comparator pipe block declaration. In this case only constants can be used as
routine parameters.

It is also possible for the application to initialise or modify Rl TINE parameter dynamically
at run time. In this case any expression can be used as routine parameters.

A

To connect a ROUTINE to the Comparator :

The routine must have been previously defined in the application.

<block identifier>ROUTINE <- <routine syntax> ;

EXAMPLE
CMP_Example:ROUTINE <- RTN_PainterStart ;

Page: 5-18

Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.8 CONVERTER
PURPOSE
The converter block is necessary to define the connection between a pipe and a destination
object. Incoming numerical values are converted to POSITION, SPEED or TORQUE set-points
depending on Converter mode.. This conversion has no effect on the axis units and its
periodicity. This block must be present at the end of a pipe.
BLOCK INPUT
The converter input is the numerical entrance for the flow of values which represents the profile
generated by the previous blocks of the pipe. This input is connected to the previous pipe block.
BLOCK OUTPUT
The converter output is the position, speed or torque set-points for the flow of values
representing the profile generated by the previous blocks of the pipe. This exit is connected to the
destination object of the pipe (AXIS object for instance).
DECLARATION SYNTAX
CONVERTER <identifier> ;
DESTINATION = <destination object> ;
MODE = <converter mode> ;
END
<identifier> : name of the converter.
<destination object> : (NA), destination object of the pipe.
<converter mode> : (NA), one of the following modes, POSITION, SPEED, TORQUE or
VALUE.
EXECUTIVE FUNCTIONS
Executive Functions:
- disactivate
This function deactivates the pipe ending with the converter.
Doc. No. 006.8007.B Page: 5-19

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

EXECUTIVE FUNCTIONS FOR AXES SET DESTINATION

For converters with an axes set destination, the following functions are available:

connect
Connects a specified axis of the axes set to the converter.

— connect_all
Connects all the axis of the axes set to the converter.

- disconnect
Disconnects a specified axis of the axes set from the converter.

— disconnect_all
Disconnects all the axis of the axes set from the converter.
- change_ratio
Changes the ratio used to control motion of the specified axis of the axes set through
the converter (through this converter only).
— change_all_ratios
Changes the ratio used to control the motion of all the axis of the axes set through the

converter (through this converter only).
INQUIRE FUNCTIONS

- ready
This function asks if the converter and all the pipe creation-activation is finished.

5.8.1 CONVERTER'S MODE AND DESTINATION
Theoretically any output object can be used as the destination of a converter in any mode.
Practically, some configurations don't have any physical meaning, some others are not
implemented. The possibilities are as follows:
MODE
DESTINATION POSITION |SPEED TORQUE |VALUE
AXES_SET yes yes no no
AXIS yes yes yes no
PAM_ANALOG _OUTPUT no no no yes
Page: 5-20 Doc. No. 006.8007.B

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.8.2 DESTINATION OBJECTS BEHAVIOUR
AXIS object,MODE = POSITION:
The values drive the position of the motor. At pipe activation, the current (axis) position is set to
the first value given by the pipe by moving the motor. Speed and acceleration are derivatives of
position. The torque is set according to the regulator needs. Units are the axis physical units.
AXIS object,MODE = SPEED!
The values drive the speed of the motor. At pipe activation, the current position is not affected.
Position is the integral of speed, and acceleration is the derivative of speed. The torque is set
according to the regulator needs. Units are the axis physical units per second.
AXIS object,MODE = TORQUE:
The values drive the limit torque of the motor. At pipe activation, the current position is not
affected. The torque is limited if the motor is not at the required position. Position, speed and
acceleration are set according to external forces.
Units are always Newton * meter [Nm].
PAM_ANALOG _OUTPUT oObject,MODE = VALUE :
The values drive the voltage of a PAM analogue output. Units are the PAM analogue output
units.

Doc. No. 006.8007.B Page: 5-21

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.9 CORRECTOR
CORRECTOR
-
PURPOSE
The purpose of the corrector block is to dynamically compute and add corrections to the flow of
values. A common application of a corrector is in implementing an automatic registration
function where corrections are applied to flow of values which represent the position dimension
and the correction magnitude is small in comparison to the base position, but the correction
magnitude is not limited. The following explanations are focused on position corrections. The
corrector block has no effect on the axis units and its periodicity.
BLOCK INPUT
The corrector input is the numerical entrance for the flow of values which represent the profile
generated by the previous blocks of the pipe. This input is connected to the previous pipe block.
BLOCK OUTPUT
The corrector output is the numerical exit for the flow of corrected values. This output is
connected to the next pipe block.
DECLARATION SYNTAX
CORRECTOR <identifier>;
CORRECTION MODE = <correction mode ;
CORRECTION REFERENCE =<correction reference> ;
CORRECTION _SLOPE = <correction slope value>
CORRECTION_LEVEL = <correction level valuep
TRIGGER _MODE = <trigger mode>
TRIGGER _INPUT = <trigger input object>
[VALUE _PERIOD = <period value> |
VALUE RANGE = <min. value> <max. valué=
DELAY _COMPENSATION = <sensor delay?
END
<identifier> : name of the corrector.
<correction mode> : (NA), for selection of eith&@EDIATE or ON_REQUESTmode of corrector
operation.
Page: 5-22 Doc. No. 006.8007.B

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

Selecting CORRECTION MODE = IMMEDIATE makes corrector operation compatible
with previous versions.

<correction reference : (NA), for selection of eithanPUT or OUTPUT pipe values as source of
reference position in correction computation.

Selecting CORRECTION REFERENCE = INPUT makes corrector operation compatible
with previous versions.

<correction slope value> : (R, rate of chang of correction allowed (see Figure 5-9), given in
user unit per square second. It correspond to the acceleratiol deceleration of the
trapezoidal correction profile generated by the correction generator when wgoikin
position mode.

<correction level value> : (RY), maximum level of correctiofsee Figure 5-9)given in user
units per second. It correspond to the travel speed of the trapezoidal correction profile
generated by the correction generator when working in position mode.

<trigger mode> : (NA), selection of the mode, ONCE or REPETITIVE.

<trigger input object> : (NA), identifier of a binary input object.

<period value> : (NA), value period for cyclic systems

<min. value>, <max value> : (NA), value range for linear systems. The max. value must be
greater than min. value.

i If no VALUE _PERIOD [WVALUE _RANGE value is specified, the default is infinite.

<sensor delay> : (R , reaction time of th senso addel with the delay introducal by the
capacitor of the binary input. The value must be given in seconds.

Doc. No. 006.8007.B Page: 5-23
Rev. 10/15/95

Pipes
Socapel PAM Reference Manual 2.5

CORRECTION_SLOPE Correction
parameter valu amplitude

speeddh

Correction
trigger

Correction
starting point

Corrected profile

CORRECTION_LEVEL
parameter value

Initial profile

time

Figure 5-9 Corrector Parameters Impact on Trajectory

CORRECTOR SAMPLE DECLARATION

CORRECTOR COR_Detect;
CORRECTION_SLOPE =3600.0;
CORRECTION_LEVEL =3600.0;
CORRECTION_REFERENCE = INPUT ;
CORRECTION_MODE
TRIGGER_MODE
TRIGGER_INPUT
VALUE_PERIOD
DELAY_ COMPENSATION

END

= ONCE;

=360.0;
=0.00;

CORRECTOR FUNCTIONS
Executive Functions

- trigger

= SBI_DetectHigh ;

= ON_REQUEST ;

This function sets the "must be" value of the corrector. If the TRIGGER MODE of
the corrector is ONCE, the trigger is rearmed.

- trigger_off

This function disables the corrector.

— start correction

This function commands the corrector to execute a correction (enable correction
generator) If no parameter is specified, the corrective value computed by the
corrector is used. When a parameter is included, the parameter value is used as
corrective value. This function is active only whe@wRRECTION MODE = ON

REQUEST.

Examples:
COR_Example <- start_correction ;

COR_Example <- start_correction (-180) ;

Page: 5-24

Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.9.1

INQUIRE FUNCTIONS

- ready
This function asks if the correction is done.

- triggered
This function asks if a correction is pending.

- latched_value
This function asks the "is" value, latched upon detection of the trigger event.

- latched_d_value
This function aks the dewnative of the "is"value, latched upon deteatiof the
trigger event.

- latched_dd_value
This function aks the second dexdtive of the "is"value, latched upodetection of
the trigger event.

- value
Return the current numerical value coming out of the pipe block.

Example CRV_CorrOuput <- COR_Example ? value ;

— correction

Returrs correctve value (includimg sign) currenty in use ly corrector. The returned
value must be interpreted differegtl dependig on the settig of
CORRECTION _REFERENCE. Note that if a correote value was last specifieda a
start_correction command, this corrective value is returned.

A

DETERMINING CORRECTION VALUES

At the moment a trgger input transition is detectddes Figure 5-10) the currert position value
(either input value or outpu value in the corrector bldc diagram) is extracted frm pipe flow,
delay compensation is applied, and the result ("igllue in as well sits first and second
derivatives are latched The selection of inputvalue/output value is controlled ¥ the
CORRECTION _REFERENCE parameter.

Correction is valid only after the corrector is triggered and before the correction is
started.

The difference (correate value) between the dgtaompensated positiovalue (“is” value) and
the position referene ("mug be" value) supplied as a panater of tke trigger function is
computed and passed to the correctgamerator. The correctiogenerato is then orderal to

perform a correction of magnitude equal to the correeé value. The correctiogeneratormay

begin implementing the correctionmmediatey or upon receipt foa start_correction function

dependig on the CORRECTION_MODE paraneter. If a correctve value is included in the
start_correction function, it replaces the corrective value computed by the corrector.

Finally, the corrective value is added to the flow of positioralues to produce a flow of
corrected positiorvalues (Outputvalue in. An application sequence cawnitor corrector
activity using it's ready and triggerefilinctions to determine status.

Doc. No. 006.8007.B Page: 5-25

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

start_corr. }
) Y
Lotch|/must be" value < corrective value Correction > ready
| + Generator)
CORR._MODE| | > ? corection
"is" value
trigger{-)} Trigger Hold-on Trigger Hold-on
T Hold-off (if REPETITIVE)
trigger_off} rigger Hold-0 Trigger Latch T ? latched_value
dx | ddx >
X gt dtzj 2 2 latched_d_value
? latched_dd_value
> triggered
Hold-on/off
DELAY_COMP | Delay
Compensation
o \L

Trigger Input © o \ o

Input Value © @ Output Value

CORR__REF. |
Figure 5-10 Corrector Block Diagram

5.9.2

CORRECTOR STATES DESCRIPTION.

Lets now examine the different states of the corrector in detail. The following discussion makes
reference to the Corrector State Transition Diagram shown in Figure 5-11.

The corrector is initialised at pipe installation and is started in "STANDBY" state. At this point,
it is not waiting for a trigger event, the position reference value is not yet initialised and no
correction is in progress. The flow input values is passing through the corrector pipe block
without modification.

Upon occurrence of thieigger function, the accompanying “must be” (position reference) value
is latched, and the corrector enters the "WAIT EVENT" state awaiting the trigger event
(EVENT). In this state, the ready flag is true, and the triggered flag is false (trigger is armed).

When the trigger event is detected, the current position (“is” value) is latched. Logical flow then
follows one of two main paths depending on tBeORRECTION MODE parameter. If
CORRECTION _MODE = IMMEDIATE , the corrector enters one of the "IN CORRECTION..." states
depending on theTRIGGER_MODE parameter. WhenTRIGGER MODE ONCE, IN
CORRECTION/TRIGGER HOLDOFF state is entered where-upon the triggered status becomes
true indicating the corrector has been triggered (and no further corrections may occur until the
trigger is re-armed), and the ready status becomes false indicating the correction generator is
active (a correction is in progress). When the correction is completed, the corrector returns to
STANDBY state where anotherigger function is required to initiate a new corrector cycle.
When TRIGGER _MODE REPETITIVE, IN CORRECTION/TRIGGER HOLDON state is
entered. Here, triggered status remains false (indicating the trigger remains armed) and ready
status is false

Page: 5-26

Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

event*ON_REQUEST*REPETITIVE

Wait Correction
Trigger Hold on

event*ON_REQUEST*ONCE

event*MMEDIATE*
REPETITIVE

start_correction

trigger_off

trigger

trigger_off

Wait Correction
Trigger Holdoff

trigger

correction
completed

event*
IMMEDIATE*
ONCE

In Correction
Trigger HoldOn

initialisation

correction
completed

trigger_off

In Correction start_correction

Trigger Holdoff

Figure 5-11 Corrector State Transition Diagram

while the correction generator is actildpon completion of the correction, WAIT EVENT state
is entered where the next occurrence of the trigger event initiates a new corrector cycle.

When CORRECTION MODE = ON_REQUEST, the corrector enters one of the WAIT
CORRECTION states until occurrence o$tart_correction command permits transition to the

Doc. No. 006.8007.B Page: 5-27
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.9.3

594

5.9.5

5.9.6

corresponding IN CORRECTION ... state where the function of the corrector is as described in
the previous paragraph.

All other state transitions possibilities are shown in the corrector state transition block diagram
for completeness.

DELAY COMPENSATION

Reaction time compensation for delays from the mechanical event to the comparison with the
reference value are performed automatically by the "delay compensation” module. This “global”
delay is composed of three parts:

. reaction time of the sensor including delay introduced by the binary input
. transmission time of the field bus
. reaction time of the corrector pipe block

The sensor delay may be specified by the application usingbEheY COMPENSATION
parameter. The transmission delay and the pipe block reaction time are automatically determined
by PAM and can not be accessed by the application.

To compensate for reaction time, the "delay compensation” module make a retrospective
computation of the actual input position value so that the position, speed and acceleration values
latched are axis conditions at the time the mechanical event occurred. This compensation
assumes that the acceleration is constant. The latched values are accessible by the application.

WORKING MODES

There are two operating modes for the trigger circuit. The mode is selected at the pipe block
declaration level.

In ONCE mode, the corrector performs one correction cycle upon the next transition of the
trigger.. In this mode it is necessary to have a sequence monitor pipe status and reactivate the
trigger when necessary.

In REPETITIVE mode, which is the mode most commonly used, a correction cycle is initiated
upon each transition of the trigger.

TYPICAL USES OF CORRECTORS

A system has slippage between the motor shaft and final mechanical parts but the final
mechanical parts must be positioned accurately. If the parts can be detected somewhere in their
motion by a sensor, the corrector can compensate for the slippage.

A system has a mechanical drive which is moving material with a non regular distribution. but
the material in motion must be accurately positioned. If some reference point on the material in
motion can be detected somewhere in it's motion by a sensor, the corrector can compensate the
distribution errors.

NUMERICAL EXAMPLES

The following examples illustrate implementation of a registration system utilising a corrector
where bottles on a conveyor belt must be synchronised with a bottle capping mechanism. Each
example illustrates the following three situations:

Page: 5-28

Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.9.6.1

e instant (t -€): at bottle detection, immediately before the correction (assume no detection
delay);

* instant (t +&): immediately after the correction (assumes correction is instantaneous);

e instant (T + t): at bottle detection, in the next machine cycle, (bottle has exactly the same
misalignment as last cycle so no correction is necessary).

OUTPUT REFERENCE

This exanple (see Fjure 512) shows (with sme simple numerical values) a situation where
correctiors are applied to the capgirmechanisn to achi&e g/nchronisationdn this exanple
reference positions areken fran the corrector output. y@chronisation is achied when
the capping mechanism is at position 13@dger) when bottle detection occurs.

Doc. No. 006.8007.B Page: 5-29

Rev. 10/15/95

Pipes
Socapel PAM Reference Manual 2.5

Before correction

?correction
?latched_value | trigger
+10 m

CONVERTER CORRECTOR ™P
170 | GENERATOR

170 170

170

CONVERTER
170

170 |

170 = &

180T
B
L

Q

After instantaneous correction

180

CONVERTER] CORRECTOR T™P
170 GENERATOR

180
M — Q
L n

180

CONVERTER]
170

(% 170 mlml

170__= &

180T

Q

Next cycle

?correction

?latched_value ?trigger

\ (150]
CONVERTER 180 commeeren 170 GENTEAIAQPATOR
Mnm — Va\

180

170

CONVERTER
170

() 170 hm_

170 = &

180T

Q

Figure 5-12 Corrector Operation with Output Reference

Page: 5-30 Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.9.7 INPUT REFERENCE
In this exanple (ses Figure 513) corrections are applied to the @eyor and reference positions
are t&en fram the corrector input. Oncegain, g/nchronisation is achwed when the capping
mechanism is at position 18@trigger) when bottle detection occurs.
5.9.8 ADJUSTING DELAY COMPENSATION TIME
The first step is to initialise 6hDELAY COMPENSATION paramete with the theoretical reaction
time of the sensor.
The secoml step is to run theystem very slowly (speed A) and execute one correctigole,
then measure the positioning error (error A) while the system is stopped.
The third step is to execute one correctigal€ runnirg the ystem at naninal speed (speed B),
then measure the positioning error (error B) while the system is stopped.
The delay compensation value is obtained using the following equation:
errorB—error A
sensodelay=
spee B —speel A
The value of the sensor delay must be expressed in seconds.
If the accurag is not sufficient, the procedure can be repeatedyubim resul of the first delay
compensation in the first step instead of the theoretical reaction time of the sensor.
Doc. No. 006.8007.B Page: 5-31

Rev. 10/15/95

Pipes
Socapel PAM Reference Manual 2.5

Before correction

?latched_value

T™MP
GENERATOR

VN

170 | ceneraTor

T™MP

170
l ?correction
?trigger
180 -10
ﬁ | 170 CONVERTER 170 CORRECTOR 190
5 &
> G i
170 CONVERTER 170
After instantaneous correction
170
| ﬁ] 160 CONVERTER| 160 CORRECTOR
> E O) =
—
170 CONVERTER| 170
Next cycle

CONVERTER

() 170 mm_

170 o= &S—r

180T

?correction

Ptrigger

CONVERTER

il

EE

L\

?latched_value

GENERATOR

0 /
CORRECTOR \ T™P
180

Figure 5-13 Corrector Operation with Input Reference

VN

Page: 5-32

Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.10 DERIVATOR

DERIVATOR
d/
dt

PURPOSE

The Derivator is a transformer pipe block whose purpose is to calculate the derivative of it's
input values with respect to time.

Formally, the transfers function is:

y= % with: x = input values, y = output values

For example, assuming the input value increases each millisecond by one (degree), the output
value will be one thousand (degrees per second).

BLOCK INPUT

The Derivator input is the numerical entrance for the flow of values which represents the profile
generated by the previous blocks of the pipe. This input is connected to the previous pipe block.

BLOCK OUTPUT

The Derivator output is the numerical exit for the flow of values derived from the block input.
This output is connected to the next pipe block.

DECLARATION SYNTAX
DERIVATOR <identifier>;
{ VALUE _PERIOD = <period value> |
VALUE RANGE = <min value> <max_value> };

END

<identifier>: name of the Derivator.
<period value> (RW): value of the period of a cyclic systems expressed in user units.

<min value>, <max_value> (NA): value range for linear systems expressed in user units. The
max. value must be greater than the min value.

DECLARATION EXAMPLE

DERIVATOR DER_Example;
VALUE_PERIOD = 360.0;
END

Doc. No. 006.8007.B Page: 5-33
Rev. 10/15/95

Pipes
Socapel PAM Reference Manual 2.5

INQUIRE FUNCTIONS

- ?ready
This function asks if the Derivator is ready according to function under execution. In
this release the ready is always TRUE.

- ?value
This function returns the current output value of the Derivator.

EXAMPLE
IF (DER_Example ? value) > 1250 THEN ...

5.10.1 VALUE_PERIOD P ARAMETER

The parameterVALUE _PERIOD" is defined to manage correctly the periodicity (modulus) of the
input values. For example, if the input value increases each millisecond by one (degree) then the
output value will be thousand (degrees per second). Now lets imagine that the input value skips
suddenly from 359 to 0.

* If VALUE PERIOD = 360, the output will continue to indicate 1000 (degrees per second),
indicating that roll-over into the next period has been properly handled.

e If vALUE PERIOD = 1000, the output will then indicate -359,000 (degrees per second),
indicating that the input has incorrectly interpreted roll-over as a 359 degree change in input
in one millisecond.

5.10.2 INITIAL BEHAVIOUR

The first calculation of a Derivator pipe block just after the pipe installation indicates zero
regardless of the initial input value.

Page: 5-34 Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

511 DISTRIBUTOR
DISTRIBUTOR
PURPOSE
The distributor pipe block spreads the computations of all pipes of a pipes network over several
pipes network periods. It becomes necessary to use a Distributor when the pipes network
computation time is greater than the corresponding time availableAsi@ PAM_CYCLE. Use
of a Distributor results is less frequent sampling of those pipe blocks effected.
A If PAM cannot complete all required pipe computations in the available time, it will stop
in a fatal error condition.
BLOCK INPUT
The distributor input is the numerical entrance for the flow of values which represents the profile
generated by the previous blocks of the pipe. This input is connected to the previous pipe block.
BLOCK OUTPUT
The distributor output is the numerical exit for the flow of values which is incoming through the
block input. This output is connected to the next pipe block.
DECLARATION SYNTAX
DISTRIBUTOR <block identifier> ;
DIVISOR = <divisor value> ;
SHIFT = <shift value> ;
END
<block identifier>: name of the distributor block.
<divisor value>: (NA), number of time the pipes network sampling frequency is to be divided.
Divisor value must be a positive integer numized).
<shift value>: (NA), number of pipes network samples the pipe computing has to be shifted. Shift
value must be a positive integer numbke0) and must be lower than "divisor value".
INQUIRE FUNCTIONS
- value
Return the current numerical value coming out of the pipe block.
EXAMPLE:
CRV_DistOuput <- DIS_Example ? value ;
Doc. No. 006.8007.B Page: 5-35

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.11.1 DISTRIBUTOR RULES
The following rules apply to Distributors used in a network:
* The distributor pipe block must be placed at the beginning of a pipe.
* TheDIvISOR parameter values of all distributors used in the same pipes network should have
the same value.
5.11.2 DISTRIBUTION PRINCIPLE
» The pipes network sampling period is given by the input block (generator or sampler).
» The period of a pipe without distributor is equal to the pipes network period.
» The period of a pipe with a distributor is equal to the pipes network period multiplied by the
DIVISOR value.
» The computing point (in time) of a pipe with distributor is shifted a number of pipes network
periods equal to it'SHIFT value.
5.11.3 EXAMPLE
Lets magine a gstem controlled throgh a pipes netwdr composed of 4 pipes. The pipes
netwok sampling frequeny must be Imsec for pipe nober 1, and can berbsec for tle other
pipes (2, 3 and 4). The totalroputing time of the whole pipes netwoexceeds t available
time durirg oneBASIC_PAM_CYCLE, S0 it is not possible to do all pipe netwwocomputations
each millisecond.
The solution is to use Distributors for pipes 2, 3 and 4. Pipe 1 does not use a Distributor. The
BASIC_PAM_cCYCLE and the pipes network period are 1 millisecond.
The declaration is as follows:
DISTRIBUTOR DIS_Pipe2 ;
DIVISO R =5;
SHIF T=0; Il executed first
END
DISTRIBUTOR DIS_Pipe3;
DIVISO R =5;
SHIF T=1,; Il executed second
END
DISTRIBUTOR DIS_Pipe4 ;
DIVISO R =5;
SHIF T=2; /I executed third
END
/I pipes creation-activation
CNV_Pipel << CAM_Pipel << TMP_VirtualMaster ; // pipe 1
CNV_Pipe2 << CAM_Pipe2 << DIS_Pipe2 << TMP_VirtualMaster ; // pipe 2
CNV_Pipe3 << CAM_Pipe3 << DIS_Pipe3 << TMP_VirtualMaster ; // pipe 3
CNV_Pipe4 << CAM_Pipe4 << DIS_Pipe4 << TMP_VirtualMaster ; // pipe 4
The result is as follows:
- pipes network perio®@: set-points for pipe 1 and pipe 2 computed
Page: 5-36 Doc. No. 006.8007.B

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

- pipes network perio®: set-points for pipe 1 and pipe 3 computed
- pipes network perio®: set-points for pipe 1 and pipe 4 computed
- pipes network perio®: set-point for pipe 1 computed
— pipes network perio®: set-point for pipe 1 computed
- pipes network perio®: set-points for pipe 1 and pipe 2 computed

— aae

Doc. No. 006.8007.B Page: 5-37
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

512 MULTI-COMPARATOR
MULTI-
COMPARATOR
PURPOSE
The Multi-Comparator pipe block provides the capability for creating a fully auto-adaptive multi-
channel trigger with independent delay compensation which, when triggered, starts a related
ROUTINE with a very short reaction time. The Multi-Comparator block does not modify flow
values and it has no effect on the axis and its periodicity.
BLOCK INPUT
The Multi-Comparator input is the numerical entrance for the flow of values which represent the
profile generated by the previous blocks of the pipe. This input is connected to the previous pipe
block.
BLOCK OUTPUT
The Multi-Comparator output is the numerical exit for the flow of values which are incoming
through the block input. This output is connected to the next pipe block.
DECLARATION SYNTAX
MULTI _COMPARATOR <block identifier> ;
TIME _ORIGIN _SLOPE = <origin slope> ;
TIME _ORIGIN _COMPARE_MODE = <compare mode> ;
TIME _ORIGIN_REFERENCE = <origin value> ;
[TIME _ORIGIN _ROUTINE = { <routine statementpNONE } ;]
{ VALUE _PERIOD = <period value> |
VALUE RANGE = <min. value> <max. value>}
{TRACE <trace identifier> ;
ROUTINE = { <routine statementpNONE } ;
END}+
END
<block identifier> : (NA), the name of the Multi-Comparator object (string of characters).
<origin slope> : (WO), indicates the sign of the first derivative (slope) of the pipe data flow at
the origin position. The possibilities arePOSITIVE, NEGATIVE, ZERO MAXIMUM ,
ZERO_MINIMUM .
<compare mode> : (WO)IMMEDIATE asks for activating the comparison with the origin
reference immediately or in the current cycle for periodic syst®msT PERIOD asks for
activating the comparison only at the beginning of the next cycle for periodic systems.
<origin value> : (RW), the origin value of the Multi-Comparator expressed in user units.
Page: 5-38 Doc. No. 006.8007.B

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

<routine statement> : (WO), any routine statement including the name of a routine object (string
of characters) and its parameters (only constants).

<period value> : (RW), the value of the period of a cyclic system expressed in user units.

<min. value>, <max. value> : (WO), the value range for linear systems expressed in user units.
The max. value must be greater than min. value.

<trace identifier> : (NA), the name of the trace sub-object (string of characters).

FUNCTIONS

The following executive functions are available for the Multi-Comparator:

- learn
Puts the Multi-Comparator in Learn Mode.
Example: MUL_Example <- learn ;

- execute
Puts the multi Comparator in Execute Mode.
Example: MUL_Example <- execute ;

The inquire functions available for the Multi-Comparator are as follows:

- execute
Test if the Multi-Comparator is in Execute Mode.

- TRUE if the Multi-Comparator is in Execute Mode.

- FALSE if the Multi-Comparator is in Learn Mode.
Example: IF (MUL_Example ? execute) THEN

- value
Returns the current numerical value coming out of the pipe block.

Example: IRV_MultiExampleOuput <- MUL_Example ? value ;

5.12.1 OPERATING MODES
The Multi-Comparator works in two different modes:
* learn mode
» execute mode
Learn Mode, activates a self-calibration cycle during which the Multi-Comparator measures and
records elapsed times from the time origin (reference event which initiates a Multi-Comparator
cycle) to a set of references (trigger conditions) provided by the application and starts a series of
ROUTINES linked to the references.
In Execute Mode, the Multi-Comparator utilises the elapsed times measured and recorded in
Learn Mode to start the same serieROUTINES each cycle.
Multi-compactor mode is selected using barn andexecuteexecutive functions.
Doc. No. 006.8007.B Page: 5-39

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.12.1.1

5.12.1.2

5.12.1.3

LEARN MODE OPERATION

In Learn Mode the MukComparatormonitors pipe flowalues f@ concurrene of specifc sets
of pipe flow dat characteristis (trigger conditions) called a references. Refererises Fgure
5-15) are defined Y a position, a slope, and angparisonmode to localise exactly their position
in the pipe da@ flow. When a reference beaues true, the Multcompactor starts a relatgdb
(ROUTINE) with avery short reaction the and records the elapsethdi relatve to the Multi-
compactor time origin (for subsequent use in Execute Mode).

References are stored in softjects called “Traces”. Up toght differert reference (but only
one at a tne) can be installechia TRACE subobject usig the install_reference function. The
number of TRACE subobjects is ony limited by the PAM internaimemory. Only one reference
per TRACE may be active at a time. The Multicompactor smultaneous) monitors pipe flow data
for all active references and fires whemee ary of the actve references benwms true. Upon
firing, execution bthe ROUTINE connected to the trace thatggered the Multicompactor is
started.

References functions in _a gle-shotmode, so a refererds de-activated after it has fired .
References are reaatited ormodified by the application itself usgthe install_reference
function.

A trace is connected to gnbne ROUTINE at a time, but the connected routine cannbedified at
any time by the application.

The Mult-Comparator must be referenced to an gini which is definad in the pipe block
declaration The origin also functiors in single-shot mode, so the ogin comparison is
deactvatal as som it has been trggered and started the gin routine. The ogdin comparison
must be reactivated and eventually modified by the application itself.

ExeEcuTE MODE OPERATION

Execute Mode is miilar to Learn Mode operation with thmain difference beig tha elapsed
times (neasured in Learn Mode) instead of pipe flow data charactsritie” the Multi-
compactor, and staROUTINES connected to triggered Traces.

The actual tgger point (tme) may be aglusted to copensate for actuataeaction time using
the “delay compensation” panaeter of a referenceén this case the trigger time is adustel to
“elapsed time - delay compensatidste Figure 5-15).

In Execute Mode, it is also possible nwdify one or seeral paraeters of ay reference
dynamically. In this case, the MulComparator runs a partidearning cycle for the modified
reference, then continues in Execute Mode. Other refeseme@ct affectal during this partial
learning process.

TIME ORIGIN REFERENCE

Upon occurrence of the set of pipe flow data characteristics descryb#te 1IME_ORIGIN
paraneters, the Multcompactor is trggered, establishon the tme orgin for the Multi-
Comparata cycle (see Fgure 515) and initiatirg execution of te TIME_ORIGIN _ROUTINE. The
Multi-compacta also functions in sigie-shotmode andmust be reactivated ly the application
after each cycle using tihearn or executefunctions.

Figure 514 shows theglobal principle of the MultComparator and its ORSIN and TRACE
parameters.

Page: 5-40 Doc. No. 006.8007.B

Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

A position
ZERO_MAXIMUM
POSITIVE trace
reference
referencg— — — —— =17 - NEGATIVE
origin | | multi-comparator \
reference origin |

Yyl

origin time delay delay
compensation

time origin

ZERO_MINIMUM

time

Figure 5-14 Reference and Time Origin Parameters lIllustration

Figure 5-15 below shows comparison mode possibilities related to a periodic system.

Ny
7

position

next cycle

e — — —

current cycl

Ny,
B 7
time
Figure 5-15 Compare_Mode Parameter
Doc. No. 006.8007.B Page: 5-41

Rev. 10/15/95

Pipes
Socapel PAM Reference Manual 2.5

5.12.2 CONNECTING A ROUTINE

There are two ways to connecRaUTINE to a trace and to a Multi-Comparator. TR@UTINE
can be declared in the Multi-Comparator pipe block declaration. In this case only constants can
be used as routine parameters.

It is also possible for the application to initialise or modify H@®UTINE trace sub-object
parameter or th@IME _ORIGIN _ROUTINE MULTI-COMPARATOR parameter dynamically at run
time. In this case any expression can be used as routine parameters.

A

The routine must have been previously defined in the application

SYNTAX
To connect ®&OUTINE to the Multi-Comparator :

<block identifier>TIME _ORIGIN _ROUTINE <- <routine syntax> ;
To connect &OUTINE to a trace :

<trace identifier>ROUTINE <- <routine syntax> ;

EXAMPLES
MUL_Example:TIME_ORIGIN_ROUTINE <- RTN_PainterStart ;

TRC_Example3:ROUTINE <- RTN_OpenDoor WITH CRV_DoorAmplitude ;

5.12.3 INSTALLING A REFERENCE

References are installed at run time by the application. Generally the first installation of
references is done with the Multi-Comparator in Learn Mode to calibrate the time delay
associated with each reference. After this first installation, the installation command is performed
to reactivate the reference or to modify a reference parameter.

SYNTAX

<trace identifier> <install_reference kreference slope>, <compare mode>,
<reference position>, <delay compensatjon>

<trace identifier> : (WO) name of theRACE sub-object (string of characters).

<reference slope> : (WO) indicates the sign of the first derivative of the pipe data flow at the
reference position. The possibilities arePOSITIVE, NEGATIVE, ZERO _MAXIMUM ,
ZERO_MINIMUM .

Page: 5-42 Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel PAM Reference Manual 2.5

5.12.4

<compare mode> : (WOMMEDIATE activates the comparison immediately or in the current
cycle for periodic systemsEXT_PERIOD activates the comparison only at the beginning of
the next cycle for periodic systems.

<reference position> : (RW) the position of the reference in the pipe data flow expressed in user
units.

<delay compensation> : (RW) the delay compensation value expressed in seconds. (for example,
0.052 gives 52 millisecond.)

How A MULTI-COMPARATOR WORKS

This description references the Multi-Comparator programming example listed in paragraph
5.12.5

First, to initiate the processing cycle, it is necessary to start (or restart) a Multi-Comparator. In
sequence SystemEnable, the command:
MUL_Example <- learn

enables the Multi-compactor and places it in Learn Mode.

Now, the Multi-Comparator begins looking for the time origin reference. The traces are off and
no trace references are defined.

To define a reference, the "install_reference" command is used. The statements:

TRC_Examplel <- install_reference(POSITIVE, IMMEDIATE,0.2, 0.010);
TRC_Example2 <- install_reference(POSITIVE, NEXT_PERIOD, 0.2, 0.010);

in sequence SystemEnable install the initial references in traces TRC_Examplel and
TRC_Example2 and enable the references.

When the time origin is reached, the connected routine, RTN_ExampleOrigin, is executed, the
traces are switched on and the Multi-compactor begins looking for the active references in traces
TRC_Examplel and TRC_Example2.

Upon occurrence of a reference, the Multi-Comparator computes the origin time delay which is
equal to the elapsed time (referenced to the origin) minus the delay compensation, then executes
the ROUTINE connected to th@RACE where the next reference is installed and enabled. For
example, the statement:

TRC_Examplel<-install_reference(POSITIVE,IMMEDIATE, 0.4, 0.005);

installs and enables the next reference in trace TRC_Examplel.

When the application determines that the learning cycle is complete, it switches the Multi-
Comparator to Execute Mode and initiates a new Multi-compactor cycle. Now, the Multi-
Comparator utilises the time delays previously learned to fire the references.

When a reference is reached, H®UTINE connected to th&RACE is executed. To connect or
change &ROUTINE connected to a&rRACE, simply modify theROUTINE parameter of the trace.
For example:

TRC_Examplel:ROUTINE <- RTN_ExampleTracel WITH 1.0;

When each reference of all traces are fired, the Multi-Comparator goes into the de-activated
state. The application must re-activate the Multi-compactor and references for the next
processing cycle. In sequence SystemEnable, the statements:

Doc. No. 006.8007.B Page: 5-43

Rev. 10/15/95

Pipes
Socapel PAM Reference Manual 2.5

LOOP
/I wait that the last reference (second reference of Trace_2)
/I is reached
CONDITION (CFV_FirstRun = 1);

/l when the last reference is found,

/I restart the multicomparator

MUL_Example <- execute;

CFV_FirstRun <- 0;

TRC_Examplel<-install_reference(POSITIVE,
IMMEDIATE,0.2,0.010);

TRC_Example2<-install_reference(POSITIVE,
NEXT_PERIOD,0.2,0.010);

END_LOOP ICFV_EnableSystem;
perform this function.

5.12.5 EXAMPLE

// routine attached with the multicomparator. It will be executed when
/I the ORIGIN will be reached.

ROUTINES RGR_ExampleMain;
ROUTINE RTN_ExampleOrigin;

END_ROUTINE
END_ROUTINES

/l declaration of the multi comparator.

MULTI_COMPARATOR MUL_Example ;
TIME_ORIGIN_SLOPE = POSITIVE;
TIME_ORIGIN_COMPARE_MODE= NEXT_PERIOD;
TIME_ORIGIN_REFERENCE-= 0.05;
TIME_ORIGIN_ROUTINE = RTN_ExampleOrigin;

VALUE_PERIOD=1.0;
TRACE TRC_Examplel;

ROUTINE = NONE;
END

TRACE TRC_Example2;
ROUTINE = NONE;
END

END
/I ROUTINE that will be attached to Trace_1 and Trace_2.

ROUTINES RGR_ExampleTraces;
ROUTINE RTN_ExampleTracel;
IF CWV_CountTracel =1 THEN
/I part for the first reference of the Trace_1

.C.Z.WV_CountTracel <-2;

/I installation of the second reference the Traces_1.
TRC_Examplel<-install_reference(POSITIVE,
IMMEDIATE, 0.4, 0.005);
ELSE IF CWV_CountTracel = 2 THEN
/I part for the second reference of the Trace_1

é.WV_CountTracel <-1;
END_IF

Page: 5-44

Doc. No. 006.8007.B
Rev. 10/15/95

Pipes

Socapel

PAM Reference Manual 2.5

END_IF
END_ROUTINE

ROUTINE RTN_ExampleTrace2;
IF CWV_CountTrace2 =1 THEN
/I part for the first reference of the Trace_2

'C':.\'NV_CountTraceZ <-2;

/I installation of the second reference the Traces_2.

TRC_Example2<-install_reference(POSITIVE,

IMMEDIATE, 0.4, 0.005);

ELSE IF CWV_CountTrace2 = 2 THEN
/I part for the second reference of the Trace_2

CWV_CountTrace2 <-1;
CFV_FirstRun <- 1;
END_IF
END_IF
END_ROUTINE
END_ROUTINES

SEQUENCE SystemEnable ;
CFV_FirstRun <- 0;
CWV_CountTrace2 <- 1,
CWV_CountTracel <-1;
TRC_Examplel:ROUTINE <- RTN_ExampleTracel;
TRC_Example2:ROUTINE <- RTN_ExampleTrace2;

/I start the multicomparator in mode learn.
MUL_Example <- learn;

/l put the multicomparator in a pipe.
... << MUL_Example <<..,;

/I installation of the first reference for the traces 1 and 2.

TRC_Examplel <- install_reference(POSITIVE, IMMEDIATE,0.2, 0.010);

TRC_Example2 <- install_reference(POSITIVE, NEXT_PERIOD, 0.2, 0.010);

/[loop in mode execute
LOOP

/[wait that the last reference (second reference of Trace_2)

/l'is reached
CONDITION (CFV_FirstRun = 1);

/l when the last reference is found,

/I restart the multicomparator

MUL_Example <- execute;

CFV_FirstRun <- 0;

TRC_Examplel<-install_reference(POSITIVE,
IMMEDIATE,0.2,0.010);

TRC_Example2<-install_reference(POSITIVE,

NEXT_PERIOD,0.2,0.010);

END_LOOP !CFV_EnableSystem:
END_SEQUENCE

Doc. No. 006.8007.B
Rev. 10/15/95

Page: 5-45

Pipes

Socapel PAM Reference Manual 2.5

5.13 PHASER
PHASER
PURPOSE
The purpose of the phaser pipe block is to apply a phase shift to the values present at it's input.
Changes to phase may be implemented in one step or at a specified rate. A phaser may also be
started and stopped by command. When commanded to stop, the phaser assumes it's
STANDBY_VALUE .
The phaser has some similarities with the amplifier (pipe block), however it's intended use is
quite different. The typical application for a phaser pipe block is to drive a periodic system. That
is a machine where the axes are globally increasing (or decreasing) their position. For this reason
it has avALUE _PERIOD parameter and other functions designed for continuously increasing (or
decreasing) position. On the other hand, the amplifier pipe block, @AHSET and GAIN
parameters, is intended for bounded applications (applications where the integral of speed on a
complete cycle is zero). Using the wrong one at the wrong place will cause unnecessary
complications.
A Please respect this rule during the design of your application. You will thereby avoid a
number of problems while specifying the periodicity and other parameters specific to the
application.

BLOCK INPUT
The phaser input is the numerical