
Open Modbus/TCP

Application Specific Function Block Manual

Part Number M.1302.1690

Version 1.0
Sheffield Automation, LLC

NOTE

Progress is an on-going commitment at Sheffield Automation. We continually strive to offer the most
advanced products in the industry; therefore, information in this document is subject to change without
notice. The illustrations and specifications are not binding in detail. Sheffield Automation shall not be
liable for any technical or editorial omissions occurring in this document, nor for any consequential or
incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any Sheffield Automation product until the use of such product is
completely understood. It is the responsibility of the user to make certain proper operation practices
are understood. Sheffield Automation products should be used only by qualified personnel and for the
express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service
Department, Sheffield Automation, 660 South Military Road, P.O. Box 1658, Fond du Lac, WI 54936-
1658. Sheffield Automation can be reached by telephone at (920) 921–7100.

DISCLAIMER: All programs in this release (application demos, application specific function
blocks (ASFB's), etc.), are provided "AS IS, WHERE IS", WITHOUT ANY WARRANTIES,
EXPRESS OR IMPLIED. There may be technical or editorial omissions in the programs and
their specifications. These programs are provided solely for user application development and
user assumes all responsibility for their use. Programs and their content are subject to change
without notice.

M.1302.1690

Release 2302

© 2002 Sheffield Automation, LLC
Modbus is a registered trademark of the Modicon Company.
IBM is a registered trademark of International Business Machines Corporation.
Windows 95, 98, NT, Microsoft, and MS-DOS are registered trademarks of Microsoft Corporation.
Pentium and PentiumPro are trademarks of Intel Corporation.
ARCNET is a registered trademark of Datapoint.
PiC900, PiCPro, MMC, PiCServoPro, PiCTune, PiCProfile, LDO Merge, PiCMicroTerm and PiC Programming Pendant are
trademarks of Sheffiedl Automation, LLC.

Table of Contents:
Open Modbus/TCP AFSB Manual

CHAPTER 1- Application Specific Function Block Guidelines 1-1

Installation .. 1-1

Revisions ... 1-1

Network 1 .. 1-1
Network 2 .. 1-1
Network 3 .. 1-2

ASFB Input/Output Descriptions ... 1-2

Network 4 .. 1-2

Using ASFBs ... 1-2

CHAPTER 2- Configuration and Software Installation............................ 2-1

Introduction.. 2-1

Modbus/TCP Description .. 2-1
Data Input/Output Descriptions ... 2-2

Hardware Configuration... 2-2

G&L Client - Open Modbus/TCP Client Design .. 2-3

G&L Server - Multithreaded Open Modbus/TCP Server Design 2-4

Software Requirements ... 2-4

Software Compatibility ... 2-5

Message Addressing .. 2-6

Software Installation.. 2-7

CHAPTER 3- Open Modbus/TCP ASFBs .. 3-1

E_MODCL... 3-2
Modbus/TCP Client .. 3-8
Modbus/TCP Client example LDO ... 3-9
E_MODCL function block setup ... 3-9

E_MODSVR.. 3-10
Modbus/TCP Server .. 3-16
Modbus/TCP Server example LDO ... 3-16
E_MODSVR function block setup .. 3-17

E_MODPRC .. 3-18
E_MODRD .. 3-19
E_MODUNP.. 3-19
E_MODMOV .. 3-20
E_MODPAK.. 3-20

Index .. IND-1
TOC-1

NOTES
TOC-2

CHAPTER 1 Application Specific Function Block
Guidelines

Installation

The following guidelines are recommended ways of working with Application
Specific Function Blocks (i.e. ASFBs) from Giddings & Lewis.

The Applications CD includes the ASFB package as follows:

• .LIB file(s) containing the ASFB(s)

• source .LDO(s) from which the ASFB(s) was made

• example LDO(s) with the ASFB(s) incorporated into the ladder
which you can then use to begin programming from or merge with
an existing application ladder

When you install the Applications CD, the ASFB paths default to:

C:\Program Files\Giddings & Lewis\Open Modbus TCP ASFB Vx.x\ASFB

and

C:\Program Files\Giddings & Lewis\Open Modbus TCP ASFB Vx.x\Examples

The .LIB files and source .LDO files are put in the ASFB subdirectory. The exam-
ple .LDO files are put in the Examples subdirectory.

Revisions

The first four networks of each ASFB source ladder provide the following
information:

Network 1

The first network just informs you that the ASFB is provided to assist your
application development.

Network 2

The second network is used to keep a revision history of the ASFB. Revisions can
be made by Giddings & Lewis personnel or by you.

The network identifies the ASFB, lists the requirements for using this ASFB, the
name of the library the ASFB is stored in, and the revision history.

The revision history includes the date, ASFB version (see below), the version of
PiCPro used while making the ASFB, and comments about what the revision
involved.
 1-1

When an ASFB is revised, the number of the first input (EN_ _ or
RQ_ _) to the function block is changed in the software declarations table. The
range of numbers available for Giddings & Lewis personnel is 00 to 49. The range
of numbers available for you is 50 to 99. See chart below.

Network 3

The third network describes what you should do if you want to make a revision to
the ASFB.

ASFB Input/Output Descriptions

Network 4

The fourth network describes the ASFB and defines all the inputs and outputs to
the function block.

Using ASFBs

When you are ready to use the ASFB in your application, there are several
approaches you can take as shown below.

• Create a new application LDO starting with the example LDO for the
ASFB package. The advantage is that the software declarations table for
the ASFB has been entered for you.

• If you already have an application LDO, copy and paste the example LDO
into yours. The software declaration tables for both LDOs will also merge.

Revision Giddings & Lewis
revisions

User
revisions

1st EN00 EN50
2nd EN01 EN51

. . .

. . .

. . .
50th EN49 EN99
 1-2

CHAPTER 2 Configuration and Software
Installation

Introduction

The Open Modbus/TCP ASFB software package from Giddings & Lewis allows
the MMC, MMC for PC, or PiC900/90 to communicate with other Open Modbus
devices over Ethernet using the Open Modbus protocol. The Giddings & Lewis
control can be programmed as a Client, a Server or both.

When programmed as a Client, the G&L Control issues read or write commands to
another Open Modbus/TCP device configured as a Server. Conversely, when pro-
grammed as a Server, the G&L control responds to read or write commands from
another Open Modbus/TCP Client device.

When programmed as both a Client and a Server, the G&L control can issue read
and write commands to Open Modbus/TCP Server devices as well as respond to
read and write commands from another Open Modbus/TCP device.

Throughout this document G&L is used as the generic description for the Giddings
& Lewis MMC, MMC for PC, or PiC900/90 control platforms. Also, the term
Modbus/TCP will be used interchangeably with Open Modbus/TCP.

Modbus/TCP Description

Open Modbus/TCP or Modbus/TCP is a variant of the Modbus family of serial
communication protocols intended for supervision and control of automation
equipment. Specifically, it covers the use of Modbus messaging in an Intranet or
Internet environment using the Ethernet TCP/IP protocol for connection to PLCs,
I/O modules, and other simple fieldbuses or I/O networks.

Modbus/TCP uses the Ethernet connection-oriented TCP protocol that maintains
an individual Modbus/TCP transaction by enclosing it in a connection that can be
identified, supervised and closed without requiring specific action on the part of
the client and server applications. This gives the mechanism a wide tolerance to
network performance changes, and allows security features such as firewalls and
proxies to be easily added.

A Modbus/TCP request and response body, from the function code to the end of
the data portion, have exactly the same layout and meaning as in other Modbus
variants, such as;

• Modbus serial port - ASCII encoding

• Modbus serial port - RTU (binary) encoding

• Modbus PLUS network - data path
2-1

Data Input/Output Descriptions

Modbus/TCP, like serial Modbus, bases its data model on a series of tables:

input descretes - single bit, provided by an I/O system, read only

output discretes - single bit, alterable by an application program, read-write

input registers - 16-bit quantitiy, provided by an I/O system, read only

output registers - 16 bit quantity, alterable by an application program, read-
write

For each of the primary tables, the protocol allows individual selection of 65536
data items, and the operations of read or write of those items are designed to span
multiple consecutive data items up to a date size limit that is dependent on the
transaction function code.

For example, a Modbus message requesting the read of a register at offset 0 would
return the value know to the application programmer as found in register 4:00001
(memory type 4 = output register, reference 00001).

Hardware Configuration

Refer to the MMC and PiC900 Hardware Manuals for detailed information on
configuring the hardware.

The G&L and Modbus/TCP Device modules can be connected directly together
using a 10baseT crossover cable.

If you are communicating over a plant network you can connect the G&L to an
Ethernet HUB using a 10baseT straight cable or a 10Base2 BNC cable. The Mod-
bus/TCP Device is then connected to an Ethernet HUB using a 10baseT straight
cable. Both of the Devices would then be connected to the plant network.

1.

2.

COM2

10 BaseT

REMOTE
PROGRAMMER

ACCESS

Disable

Enable

COM2

COM1

OUT IN

OUT IN

COL PREV

GDLNK EO EI

ETHERNET

COM1

DIAG

 Modbus/TCP
 Device

Ethernet-TCP/IP Module

10baseT Crossover Cable
2-2

G&L Client - Open Modbus/TCP Client Design

The following is a list of requirements for the G&L Client – Open Modbus Client
design.

1. Establish a TCP connection to port 502.

2. Submit the Modbus request, including its 6 -byte Modbus prefix, to the server.

3. Wait for a response from the server to appear on the same TCP connection.

4. Read the first 6 bytes of the response, indicating the actual length of the
response message.

5. Read the remaining bytes of the response.

6. If no further communications is expected to the server in the immediate future,
close down the TCP connection so that the resources at the server can be used
to serve other clients.

In the event of a timeout waiting for a response, issue a unilateral close of the con-
nection. If desired, it is up to the ladder application to re-establish a connection.

1.

2.

COM2

10 BaseT

REMOTE
PROGRAMMER

ACCESS

Disable

Enable

COM2

COM1

OUT IN

OUT IN

COL PREV

GDLNK EO EI

ETHERNET

COM1

DIAG

Hub

10BaseT Straight Cable

 10Base2 BNC Cable

Ethernet-TCP/IP Module

 OR

10BaseT Straight Cable

LAN
or

Internet

Ethernet
Hub

Ethernet

 Modbus/TCP
 Device
2-3

G&L Server - Multithreaded Open Modbus/TCP
Server Design

The following is a list of requirements for the G&L Server – Multithreaded Open
Modbus Server design.

1. Wait for incoming connections on TCP port 502.

2. When a new connection request is received, accept it and spawn a new thread
to handle the connection.

Within the new thread, do the following in an infinite loop:

3. Read the first 6 byte Modbus/TCP header from the client request.

4. Analyze the header. If if appears corrupt (e.g. the protocol field is non-zero or
the length of the message is larger than 256) then unilaterally close the connec-
tion.

5. Read the remaining bytes of the message, whose length is now known.

6. Process the incoming Modbus message based on the type of function code.

7. Generate the Modbus/TCP prefix for the response.

8. Send the response, including the Modbus/TCP prefix, as a single buffer for
transmission on the connection, using send().

9. Go back and wait for the next 6 byte prefix (go back to step 3 above).

In the event of a timeout waiting for a response, issue a thread close of the connec-
tion.

Software Requirements

• Giddings & Lewis Open Modbus/TCP ASFB software

• Giddings & Lewis PiCPro for Windows V13.0 or higher Programming Soft-
ware

• LDOMERGE software (Optional software that allows you to merge ladders)
2-4

Software Compatibility

When the G&L is used as a Modbus/TCP server, it responds to the following Mod-
bus commands;

The device the G&L is communicating with must support these commands. If the
G&L receives a command it does not support or recognize, it will return an error
response to the sender.

Function
Code

Command Description

01 Read Coil Status Obtains current status (ON/OFF) of a group of logic coils.

03 Read Holding
Registers

Obtain current binary value in one or more holding registers.

05 Force Single Coil Force logic state to a state of ON or OFF.

06 Preset Single
Register

Place a specific binary value into a holding register.

07 Read Exception
Status

Obtain the status of the eight internal coils whose addresses are
controller dependent. You can program these coils to indicate
slave status. Short message lenght allows rapid reading of status.

15 Force Multiple
Coils

Forces a series of consecutive logic coils to defined ON or OFF
status.

16 Preset Multiple
Registers

Places specific binary values into a series of consecutive holding
registers.
2-5

When the G&L is used as a Modbus/TCP CLIENT, it responds to the following
commands.

The device the G&L is communicating with must support the commands. If the
G&L sends a command the other device does not recognize, it will respond with an
error response.

Message Addressing

The addressing between the G&L and Modbus/TCP is as follows:

Function
Code

Command Description

01 Read Coil Status Obtains current status (ON/OFF) of a group of
logic coils.

02 Read Input Status Obtain current status of the physical inputs (Inputs 10000
to 19999).

03 Read Holding
Registers

Obtain current binary value in one or more holding
registers.

04 Read Input Registers Obtain current value in one or more physical input
registers (Inputs 20000 to 29999).

05 Force Single Coil Force logic coil to a state of ON or OFF.

06 Preset Single Register Place a specific binary value into a holding register.

07 Read Exception Status Obtain the status (ON/OFF) of the eight internal coils
whose addresses are controller dependent. You can
program these coils to indicate slave status. Short
message length allows rapid reading of status.

15 Force Multiple Coils Forces a series of consecutive logic coils to defined ON
or OFF states.

16 Preset Multiple
Registers

Places specific binary values into a series of consecutive
holding registers.

BOOLEANS INTEGERS
Modbus PiC900 Modbus PiC900
00001 BOOL(0) 40001 DAT(0)
00002 BOOL(1) 40002 DAT(1)

. . . .

. . . .
00999 BOOL(998) 40999 DAT(998)
2-6

Software Installation

Insert the Giddings & Lewis Open Modbus/TCP ASFB software CD. If the CD
doesn’t auto run go to Start-Run-Setup.exe to install the software. The files will be
copied to the default folder c:\Program Files\Giddings & Lewis\Open Modbus
TCP ASFB Vx.x\Examples. During installation you can change the destination
folder.
2-7

NOTES
2-8

CHAPTER 3 Open Modbus/TCP ASFBs
The following table lists the files for the Open Modbus/TCP application specific function
blocks.

NOTE: Every .LDO file on the CD has a corresponding .REM file. The REM
files contain all the comments found in the LDO files. If you move an
.LDO file to a different location, be sure to move its REM file to the same
directory.

G&L Server ASFBs
E_MODSEX.LDO Example MODBUS/TCP ladder with

the G&L as the Server.
E_MODSVR.LDO MODBUS/TCP Server source ladder.

G&L Client ASFBs
E_MODCEX.LDO Example MODBUS/TCP ladder with

the G&L as the Client.
E_MODCL.LDO MODBUS/TCP Client source ladder.

PiCPro LIB ASFBs
E_MODTCP.LIB Library containing the compiled MOD-

BUS/TCP ASFBs.
E_MODTCP.CHM Online function block help file.

MODBUS/TCP Support ASFBS
E_MODPRC.LDO This function block handles all incom-

ing requests from a MODBUS/TCP
Client.

E_MODRD.LDO This function block reads an incoming
TCP message.

E_MODMOV.LDO This function block moves integer data
from the TCP message buffer to local
Integer data or local Integer data to the
TCP message buffer.

E_MODPAK.LDO This function block packs local Bool-
ean data into the TCP message buffer.

E_MODUNP.LDO This function block unpacks the mes-
sage buffer into local Boolean data.
3-1

E_MODCL
Communicates as a Client USER/E_MODTCP

⁄ƒƒ NAME ƒø
≥ E_MODCL ≥
≥ ≥
¥EN00 CNOK√ƒ
≥ ≥
¥HOST CNFL√ƒ
≥ ≥
¥SLOT CERR√ƒ
≥ ≥
¥BOOL COMP√ƒ
≥ ≥
¥BSIZ TERR√ƒ
≥ ≥
¥DATA CODE√ƒ
≥ ≥
¥DSIZ ≥
≥ ≥
¥EXPT ≥
≥ ≥
¥SEND ≥
≥ ≥
¥FUNC ≥
≥ ≥
¥CNT ≥
≥ ≥
¥LNDX ≥
≥ ≥
¥RNDX ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

HOST (STRING) - IP address of MODBUS/TCP
Server

SLOT (USINT) - slot number of Ethernet module

BOOL (ARRAY OF BOOL) - boolean data area

BSIZ (UINT) - size of the BOOL data area

DATA (ARRAY OF INT) - variable data area

DSIZ (UINT) - size of the DATA area

EXPT (ARRAY OF BOOL) - booleans read by the
read exception status code (07)

SEND (BOOL) - energize to send a message to a
Modbus slave

FUNC (USINT) - function code number to send to
the Modbus slave device

CNT (UINT) - number of items to transfer over
Modbus

LNDX (UINT) - local index where data received
from a slave is stored

RNDX (UINT) - remote index where data will be
sent/retrieved in the slave device

Outputs: CNOK (BOOL) - execution completed without error

CNFL (BOOL) - initialization failed

CERR (INT) - 0 if initialization failed; not equal to 0
if initialization is unsuccessful

COMP (BOOL) - energized when a transfer is
complete

TERR (BOOL) - an error occurred in the transaction

CODE (INT) - number of error code,
code number < 100 = error returned from a slave
device via an exception response,
code number > 99 = local error
3-2

<<INSTANCE NAME>>:E_MODCL(EN99 := <<BOOL>>, HOST :=
<<STRING>>, SLOT := <<USINT>>, BOOL := <<ARRAY OF BOOL>>,
BSIZ := <<USINT>>, DATA := <<ARRAY OF INT>>, DSIZ := <<UINT>>,
EXPT := <<ARRAY OF BOOL>>, SEND := <<BOOL>>, FUNC :=
<<USINT>>, CNT := <<UINT>>, LNDX := <<UINT>>, RNDX :=
<<UINT>>, CNOK => <<BOOL>>, CNFL => <<BOOL>>, CERR =>
<<INT>>, COMP => <<BOOL>>, TERR => <<BOOL>>, CODE =>
<<INT>>);

The E_MODCL ASFB is a Modbus/TCP Client and provides data exchange over
Ethernet between a PiC, MMC, MMC for PC or another device acting as a Mod-
bus/TCP Server.

When the EN00 enable input is energized, the function block will open a TCP
socket and connect to the device specified at the HOST input. If a connection is
established, the CNOK output will be energized and the system will be ready to
generate Client requests. If the attempt to establish a connection fails, the CNFL
output will be energized and an associated error number will be displayed at the
CERR output. To maintain a connection, the function block must remain enabled.
In the event of a connection failure, disable and re-enable the function block.

A Client data request is issued with a positive transition at the SEND input. Upon a
successful completion of the request, the COMP output will be energized. If the
request was unsuccessful due to invalid input data, the TERR transaction error out-
put will be energized and the associated error number will be dispalyed at the
CODE output. If the request failed due to a connection problem, the CNFL output
will be energized and an associated error number will be displayed at the CERR
output.

The Client has a watchdog timeout condition that will end a Client/Server commu-
nication session. If a Client data request was initiated and the request was not sent
to the Server within 5 seconds, the session will be terminated. The CNFL and
TERR outputs will be energized and the associated error number will be displayed
at the CODE output.
3-3

INPUTS:

EN00 The EN input is energized every scan to initiate a query over the Ethernet net-
work. In a typical system, this input will be wired to the vertical or power bus
rail.

NOTE: De-energizing this input will cause communication to stop.
HOST The HOST input specifies the IP address of MODBUS/TCP Server.
SLOT Slot number of Ethernet module.
BOOL The BOOL input is an array that specifies the boolean (bit) data area that is used

for any boolean (bit) transfers. Queries to a slave device for data items 00001
to 09999 are placed here.

For example, if the array of boolean variables is called BOOL and a write
request is made from register 00222, the PiC900 would send the data in
BOOL(221).

The array size can range from 2 (0..1)to 999 (0..998) booleans.

IMPORTANT

Do not use a positive or negative transistional contact in your LDO with the BOOL array.

If it is necessary to set up a transistional contact with a BOOL array, use the BOOL
array to energize another boolean coil. Then use this boolean for the transistional con-
tact as shown in the example below.

3-4

BSIZ* Enter the number of booleans (up to 999).

*It is very important that the value in BSIZ and the size of the array in BOOL
are the same. The size is user adjustable from 2 to 999 elements.

DATA The DATA input is used to specify the name of the main data area. Queries to a
slave device for data items 40001 to 49999 are placed here.

For example, if the array of integer variables is called DAT and a read request is
made for register 40005, the PiC900 would place the data it received in
response in DAT(4).

This data area is an array of integers.
DSIZ* Enter the number of integers (up to 999).

*It is very important that the value in DSIZ and the size of the array in DATA
are the same. The size is user adjustable from 2 to 999 elements.

EXPT The EXPT input is an array of eight booleans. If the PiC900 asks a remote sta-
tion for the exception status (function 7), its response will be placed in this
array. The bits in this array have no special meaning in the PiC900. But they
have special meaning in a Modicon Control and are provided here to allow the
PiC900 to read them.

SEND The SEND input must be energized each time a message is sent to one of the
Modbus slaves.
3-5

FUNC The FUNC input holds the Modbus function code. The function code number
shown in the table below is sent to the Modbus slave device.
Function

Code Name of function Description
01 Read Coil Status Reads the ON/OFF status of discrete out-

puts in the slave.
02 Read Input Status Reads the status of the physical inputs

(Inputs 10000 to 19999).
03 Read Holding Registers Reads the binary contents of holding

registers in the slave.
04 Read Input Registers Reads one or more physical input registers

(Inputs 20000 to 29999).
05 Force Single Coil Forces a single coil to either ON or OFF.

When broadcast, the command forces the
same coil reference in all attached slaves.

06 Preset Single Register Presets a value into a single holding
register. When broadcast, the command
presets the same register reference in all
attached slaves.

07 Read Exception Status Reads the contents of eight Exception Sta-
tus coils within the slave. These eight
coils are user-defined.

15 Force Multiple Coils Forces each coil in a sequence of coils to
either ON or OFF. When broadcast, the
function forces the same coil references in
all attached slaves.

16 Preset Multiple Registers Presets values into a sequence of holding
registers. When broadcast, the function
presets the same register references in all
attached slaves.

CNT The CNT input is the number of items to transfer over the Modbus.
LNDX The LNDX input is the local index. It is the location in this control where data

received/sent from a slave device will be stored/retrieved.
RNDX The RNDX input is the remote index. It is the location in the slave device where

data will be sent/retrieved.
3-6

OUTPUTS:

The table below contains error codes returned from a Modbus/TCP Client and
reported at the CODE output in the form of exception responses. For a complete
explanation of these errors, see the Open Modbus/TCP specification, Section 6:
Exception Codes.

CNOK The OK output when energized indicates that a connection has been estab-
lished and is ready for communication. If this output does not energize,
check the FAIL output and the ERR output to identify the problem.

CNFL The CNFL output when energized indicates that the transceiver initializa-
tion failed. When this output is energized, the OK will not be energized
and an error code will appear at the ERR output to identify the problem.

CERR The CERR output is 0 if initialization is successful and is _ 0 if initializa-
tion is unsuccessful. The error codes that appear at this output are system
errors. See Appendix B in the PiC900 Software Manual for a description
of each error.

COMP The COMP output energizes when a transfer is complete.
TERR The TERR output energizes when an error in the transaction has occurred.
CODE The CODE output gives the number of the transaction error that has

occurred. If the number is less than 100, the error code has been returned
from a slave station via an exception response. If the number is greater
than 99, the error code is local. See the tables that follow.

TERR
Code Name Description

1 Illegal function The function code received in the query is not an allow-
able action for the slave.

2 Illegal data address The data address received in the query is not an allow-
able value for the slave.

3 Illegal data value A value contained in the Boolean Data query data field
is not an allowable value for the slave.
3-7

The table below contains the error codes that are detected locally by the G&L and
reported at the CODE output.

Modbus/TCP Client

As a Modbus/TCP Client, the G&L will query a remote device for integer and
boolean data. The E_MODCL function block described above is entered in your
application program one time. It is responsible for all communications to and from
the G&L for Modbus/TCP support. Enable it every scan. Each input must have the
appropriate variable attached to it.

All data being sent to or retrieved from the G&L will have a function code number
associated with it. Although this number has no direct equivalent in the G&L, it is
used to determine where to place or retrieve data.

All functions that read registors from a remote device will have their response data
placed in the integer array specified at the DATA input. All functions that read
booleans from a remote device will have their response data placed in the boolean
array specified at the BOOL input.

TERR
Code Name Description
103 Time-out error A data request was initiated and the request was

not sent within 5 seconds.
104 Invalid function The value at the FUNC input is invalid. No func-

tions above function 21 are currently supported.
105 Invalid function The value at the FUNC input is invalid. The func-

tion number is not supported.
107 Boolean array size error The amount of data requested would overflow the

boolean data array defined by the user.
108 Integer array size error The amount of data requested would overflow the

integer data array defined by the user.
109 LNDX value error The offset of data requested would overflow the

boolean data array defined by the user. In other
words, the location of the data is too close to the
end of the array, given the amount of data being
transferred.

110 LNDX value error The amount of data requested would overflow the
integer data array defined by the user.

111 Function not supported The amount of data requested would overflow the
integer data array defined by the user.
3-8

Modbus/TCP Client example LDO

The example LDO called E_MODCEX.LDO is included with the software files
you received. If you are creating a new application ladder, open the
E_MODCEX.LDO and use the save AS command to name it whatever your appli-
cation will be called.

If you want to add the E_MODCEX.LDO to an existing application ladder, copy
and paste or drag and drop the application ladder contents into your ladder.

Both of these methods produce an application ladder with the software declara-
tions for the E_MODCL function block already entered. You can modify this to fit
your application.

You can also insert the E_MODCL function block into an existing ladder and enter
the software declarations yourself.

Please review the example ladders provided with this package.

E_MODCL function block setup

The steps for setting up the E_MODCL function block allowing the G&L to func-
tion as a Modbus client follows.

1. Determine the IP address for the Modbus/TCP Server and enter it at the HOST
input.

2. Determine how many booleans (bit type) will be needed for your application.

3. Modify the size of the BOOLS array in the software declaration table by set-
ting it to the size determined in step 4. In the software declarations table, place
the cursor on the data item named BOOLS and press <Alt> A to enter the array
length. The acceptable range is from 2 to 999.

4. The size of the boolean array (BOOLS) must be entered in BSIZ(boolean size).

5. Determine how many integers will be needed for your application. The accept-
able range is from 1 to 999.

6. Modify the size of the INTEGER array in the software declaration table by set-
ting it to the size determined in step 7. In the software declarations table, place
the cursor on the data item named INTEGER and press <Alt> A to enter the
array length.

7. The size of the integer array (INTEGER) must be entered in DSIZ (data size).
3-9

E_MODSVR
Communicates as a Server USER/E_MODTCP

⁄ƒƒ NAME ƒø
≥ E_MODSVR≥
≥ ≥
¥EN00 CNOK√ƒ
≥ ≥
¥SLOT CNFL√ƒ
≥ ≥
¥BOOL CERR√ƒ
≥ ≥
¥BSIZ RCV1√ƒ
≥ ≥
¥DATA EER1√ƒ
≥ ≥
¥DSIZ TER1√ƒ
≥ ≥
¥EXPT COD1√ƒ
≥ ≥
¥R RCV2√ƒ
≥ ≥
≥ EER2√ƒ
≥ ≥
≥ TER1√ƒ
≥ ≥
≥ COD1√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

SLOT (USINT) - slot where the Ethernet module
resides

BOOL (Array of BOOL) - boolean data area

BSIZ (UINT) - size of the BOOL data area

DATA (Array of INTEGERS) - integer data area

DSIZ (UINT) - size of the DATA area

EXPT (Array of BOOL) - booleans read by
exception status function code 07

R (STRUCT) - message information including
 address and function code

Outputs: CNOK (BOOL) - Ethernet connection without error

CNFL (BOOL) - Ethernet connection failed

CERR (INT) - 0 if connection is successful; non 0
if connection failed

RCV1 (BOOL) - energized if a client request was
successfully processed on communication session 1

EER1 (INT) - 0 if a client request was processed
without error on communication session 1, non 0 if
request failed

TER1 (BOOL) - energized if an error occurred in the
client message transaction on communication session 1

COD1 (INT) - 0 if client message message
transaction was successful on communication session
1, non 0 if transaction was aborted

RCV2 (BOOL) - energized if a client request was
successfully processed on communication session 2

EER2 (INT) - 0 if a client request was processed
without error on communication session 2, non 0 if
request failed

TER2 (BOOL) - energized if an error occurred in the
client message transaction on communication session 2

COD2 (INT) - 0 if client message message
transaction was successful on communication session
2, non 0 if transaction was aborted
3-10

<<INSTANCE NAME>>:E_MODSVR(EN00:= <<BOOL>>, SLOT :=
<<USINT>>, BOOL := <<ARRAY OF BOOL>>, BSIZ := <<USINT>>, DATA
:= <<ARRAY OF INT>>, DSIZ := <<UINT>>, EXPT := <<ARRAY OF
BOOL>>, R := <<STRUCT>>, CNOK => <<BOOL>>, CNFL => <<BOOL>>,
CERR => <<INT>>, RCV1 => <<BOOL>>, EER1 => <<INT>>, TER1 =>
<<BOOL>>, COD1 => <<INT>>, RCV2 => <<BOOL>>, EER2 => <<INT>>,
TER2 => <<BOOL>>, COD2 => <<INT>>;

The E_MODSVR ASFB is a Modbus/TCP multi-communication Server and pro-
vides data exchange over Ethernet between a PiC, MMC, MMC for PC or other
device acting as Modbus/TCP Client. The Server supports simultaneous connec-
tions allowing two Client/Server communication sessions.

When the EN00 enable input is energized the ASFB will open a TCP socket. If a
socket is established, the CNOK output will be energized and the system will be
ready respond to Client requests. When a request to connect is received by the
Server, the socket will bind the Client to one of two possible communication ses-
sions. If the attempt to establish a socket fails, the CNFL output will be energized
and an associtated error number will be displayed at the CERR output. To maintain
a socket or communication session, the function block must be enabled. In the
event of a CNFL connection failure, disable and re-enable the ASFB.

When a Client request is received the Server will process it and respond. If the
response is successful, the RCVx* output will be energized. If the response was
unsuccessful, various outputs will display the error. If the failure was due to
invalid request data, the TERx* transaction error output will be energized and the
associated error number will be dispalyed at the ERRx* output only. In this case, it
is important to realize that the failure occurred on one of two sessions. Because the
other connection is still valid, the CNFL output is not energized.

The Server has two watchdog timeout conditions that will end a Client/Server
communication session. The first is a session timeout where if the session exceed
30 seconds without any data transfer activity, the session will be terminated. The
second is a response timeout. The response timeout results if a request from the
Clent was received and a Server response was not returned within 5 seconds. If this
occurs the session will be terminated. In either case, the TERx* transaction error
output will be energized and the associated error number will be displayed at the
CODx* output.

* "x" denotes Client/Server communication session 1 or 2.
3-11

INPUTS:

EN00 The EN input is energized every scan to respond to a query over the Ethernet
network. In a typical system, this input will be wired to the vertical or power
bus rail.

NOTE: De-energizing this input will cause communication to stop.
SLOT Slot number of Ethernet module.
BOOL The BOOL input is an array that specifies the boolean (bit) data area that is used

for any boolean (bit) transfers. Queries from the master device for data items
00001 to 00999 are found here.

For example, if the array of booleans variable is called BOOL and a query is
made for register 00222, the PiC900 would respond with the data in
BOOL(221).

The array size can range from 2 (0..1)to 999 (0..998) booleans.

IMPORTANT

Do not use a positive or negative transistional contact in your LDO with the BOOL array.

If it is necessary to set up a transistional contact with a BOOL array, use the BOOL array to
energize another boolean coil. Then use this boolean for the transistional contact as shown in
the example below.

BSIZ* Enter the number of booleans (up to 999).

*It is very important that the value in size in BSIZ and the size of the array in
BOOL are the same. The size is user adjustable from 2 to 999 elements.

DATA The DATA input is used to specify the name of the main data area. Queries
from the master device for data items 40001 to 40999 are found here.

For example, if the array of integers variable is called DAT and a query is made
for register 40005, the G&L would respond with the data in DAT(4).

This data area is an array of integers.
DSIZ* Enter the number of integers (up to 999).

*It is very important that the value in size in DSIZ and the size of the array in
DATA are the same. The size is user adjustable from 2 to 999 elements.
3-12

The function codes for the Modbus/TCP functions are as follows:

EXPT When the read exception status command is issued by the master device, the
values in this boolean array are returned. The booleans are user-defined.

R The R structure specifies a data area that information about the last query is
placed. When a query is received, Modbus/TCP function data is placed in the
data area specified by this input. The structure placed at this input must have
the format shown below.

Declared array of structures for R input

Function
Code ����������	
���	
��
������	

01 Read Coil Status Reads the ON/OFF status of discrete outputs
in the slave.

03 Read Holding Registers Reads the binary contents of holding
registers in the slave.

05 Force Single Coil Forces a single coil to either ON or OFF.
When broadcast, the command forces the
same coil reference in all attached slaves.

06 Preset Single Register Presets a value into a single holding
register. When broadcast, the command pre-
sets the same register reference in all
attached slaves.

07 Read Exception Status Reads the contents of eight Exception Status
coils within the slave. These eight coils are
user-defined.

15 Force Multiple Coils Forces each coil in a sequence of coils to
either ON or OFF. When broadcast, the
function forces the same coil references in
all attached slaves.

16 Preset Multiple Registers Presets values into a sequence of holding
registers. When broadcast, the function pre-
sets the same register references in all
attached slaves.
3-13

OUTPUTS:

The table below contains error codes returned from a Modbus/TCP Server and
reported at the CODE output in the form of exception responses. For a complete
explanation of these errors, see the Open Modbus/TCP specification, Section 6:
Exception Codes.

CNOK When energized, the CNOK output indicates that a socket has been estab-
lished and is ready for communication. If this output does not energize,
check the CNFL output and the CERR output to identify the problem.

CNFL When energized, the CNFL output indicates that the transceiver initializa-
tion failed. When this output is energized, the OK will not be energized
and an error code will appear at the CERR output to identify the problem.

CERR The CERR output is 0 if initialization is successful and is _ 0 if initializa-
tion is unsuccessful. The error codes that appear at this output are system
errors.

RCV1 The RCV1 output energizes when a transfer on communication session 1 is
complete.

EER1 The EER1 output energizes when an error in the transaction has occurred
on communication session 1.

TERR1 The TERR1 output energizes when an error in the transaction has occurred
on communication session 1.

COD1 The COD1 output gives the number of the transaction error that has
occurred on communication session 1. If the number is less than 100, the
error code has been returned from a Client via an exception response. If the
number is greater than 99, the error code is local. See the tables that follow.

RCV2 The RCV2 output energizes when a transfer on communication session 2 is
complete.

EER2 The EER2 output energizes when an error in the transaction has occurred
on communication session 2.

TERR2 The TERR2 output energizes when an error in the transaction has occurred
on communication session 2.

COD2 The COD2 output gives the number of the transaction error that has
occurred on communication session 2. If the number is less than 100, the
error code has been returned from a Client via an exception response. If the
number is greater than 99, the error code is local. See the tables that follow.

TERR
Code Name Description

1 Illegal function The function code received in the query is not an allow-
able action for the slave.

2 Illegal data address The data address received in the query is not an allow-
able value for the slave.

3 Illegal data value A value contained in the Boolean Data query data field
is not an allowable value for the slave.
3-14

The table below contains the error codes that are detected locally by the G&L and
reported at the CODE output.

TERR
Code Name Description
103 Time-out error The session exceeded 30 seconds without any data

transfer activity or a response was not returned
within 5 seconds.

104 Invalid function No functions above function 21 are currently sup-
ported.

105 Invalid function The function number is not supported.
107 Boolean array size error The amount of data requested would overflow the

boolean data array defined by the user.
108 Integer array size error The amount of data requested would overflow the

integer data array defined by the user.
109 LNDX value error The offset of data requested would overflow the

boolean data array defined by the user. In other
words, the location of the data is too close to the
end of the array, given the amount of data being
transferred.

110 LNDX value error The amount of data requested would overflow the
integer data array defined by the user.

111 Function not supported The amount of data requested would overflow the
integer data array defined by the user.
3-15

Modbus/TCP Server

As a Modbus/TCP Server, the G&L will receive and respond to Modbus functions
from other devices but will not initiate any transfers. The E_MODSVR function
block described above is entered in your application program one time. It is
responsible for all communications to and from the G&L for Modbus/TCP sup-
port. Enable it every scan. Each input must have the appropriate variable attached
to it.

All data being sent to or retrieved from the G&L will have a code number associ-
ated with it. Although this number has no direct equivalent in the G&L, it is used
to determine where to place or retrieve data.

The G&L will only respond to requests directed at one of the function codes it sup-
ports. Requests made to any other function codes will generate an error response
to the device that made the request.

Modbus/TCP Server example LDO

The example LDO called E_MODSEX.LDO is included with the software files
you received. If you are creating a new application ladder, open the
E_MODSEX.LDO and use the save AS command to name it whatever your appli-
cation will be called.

If you want to add the E_MODSEX.LDO to an existing application ladder, you
can use the optional LDOMERGE software to combine them.

Both of these methods produce an application ladder with the software declara-
tions for the E_MODSVR function block already entered. You can modify this to
fit your application.

You can also insert the E_MODSVR function block into an existing ladder and
enter the software declarations yourself.

Please refer to the example ladders included with this package.
3-16

E_MODSVR function block setup

The steps for setting up the E_MODSVR function block allowing the G&L to
function as a Modbus slave follows.

1. Determine the slot where the Ethernet module resides and enter it at SLOT.

2. Determine how many booleans (bit type) will be needed for your application.

3. Modify the size of the BOOLS array in the software declaration table by set-
ting it to the size determined in step 4. In the software declarations table, place
the cursor on the data item named BOOLS and press <Alt> A to enter the array
length. The acceptable range is from 2 to 999.

4. The size of the boolean array (BOOLS) must be entered in BSIZ(boolean size).

5. Determine how many integers will be needed for your application. The accept-
able range is from 1 to 999.

6. Modify the size of the INTEGER array in the software declaration table by set-
ting it to the size determined in step 7. In the software declarations table, place
the cursor on the data item named INTEGER and press <Alt> A to enter the
array length.

7. The size of the integer array (INTEGER) must be entered in DSIZ (data size).
3-17

E_MODPRC
Processes the Client request USER/E_MODTCP

<<INSTANCE NAME>>:E_MODPRC(EABL := <<BOOL>>, DABL :=
<<BOOL>>, HNDL := <<UINT>>, CTOT := <<TIME>>, RTOT :=
<<TIME>>, BOOL := <<ARRAY OF BOOL>>, BSIZ := <<UINT>>, DATA :=
<<ARRAY OF INTEGERS>>, DSIZ := <<UINT>>, EXPT := <<ARRAY OF
BOOL>>, R := <<STRUCT>>, OK => <<BOOL>>, FAIL => <<BOOL>>,
ERR => <<INT>>, TOUT => <<BOOL>>, RCMD => <<BOOL>>);

The E_MODPRC ASFB is nested in the E_MODSVR ASFB and is used to pro-
cess the Client request.

⁄ƒƒ NAME ƒø
≥ E_MODPRC≥
≥ ≥
¥EABL OK√ƒ
≥ ≥
¥DABL FAIL√ƒ
≥ ≥
¥HNDL ERR√ƒ
≥ ≥
¥CTOT TOUT√ƒ
≥ ≥
¥RTOT RCMD√ƒ
≥ ≥
¥BOOL ≥
≥ ≥
¥BSIZ ≥
≥ ≥
¥DATA ≥
≥ ≥
¥DSIZ ≥
≥ ≥
¥EXPT ≥
≥ ≥
¥R ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EABL (BOOL) - enables execution

DABL (BOOL) - disables execution

HNDL (UINT) - socket handle

CTOT (TIME) - connection timeout

RTOT (TIME) - response timeout

BOOL (ARRAY OF BOOL) - boolean data area

BSIZ (UINT) - size of the BOOL data area

DATA (ARRAY OF INTGERS) - integer data area

DSIZ (UINT) - size of the data area

EXPT (ARRAY OF BOOL) - booleans read by exception
status function code 07

R (STRUCT) - message information including address
and function code

Outputs: OK (BOOL) - execution completed without error

FAIL (BOOL) - Ethernet connection failed

ERR (INT) - 0 if connection is successful; non zero if
connection failed

TOUT (BOOL) - energized if a connection or response
timeout occurred

RCMD (BOOL) - energized if Client request was
processed without error
3-18

E_MODRD
Reads data on the TCP connection USER/E_MODTCP

<<INSTANCE NAME>>:E_MODRD(EN00 := <<BOOL>>, HNDL :=
<<UINT>>, HNDL := <<UINT>>, BUFR := <<ARRAY OF BYTE>>, CNT :=
<<UINT>>, OFST := <<UINT>>, ACTV => <<BOOL>>, DONE =>
<<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>, CURR => <<UINT>>);

The E_MODRD ASFB is nested in the both the E_MODCL and E_MODPRC
ASFBs and is used to read data on the TCP connection.

E_MODUNP
Unpacks data into discrete boolean data USER/E_MODTCP

<<INSTANCE NAME>>:E_MODUNP(EN00 := <<BOOL>>, NUMB :=
<<UINT>>, BOOL := <<ARRAY OF BOOL>>, DMEM := <<ARRAY OF
BYTE>>, OK => <<BOOL>>, BQTY => <<UINT>>);

The E_TCPRD ASFB is nested in the both the E_MODCL and E_MODPRC
ASFBs and is used to unpack data into discrete boolean data.

⁄ƒƒ NAME ƒø
≥ E_MODRD ≥
≥ ≥
¥EN00 ACTV√ƒ
≥ ≥
¥HNDL DONE√ƒ
≥ ≥
¥BUFR FAIL√ƒ
≥ ≥
¥CNT ERR√ƒ
≥ ≥
¥OFST CURR√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

HNDL (UINT) - socket handle from IPSOCK

BUFR (ARRAY OF BYTE) - byte data area

CNT (UINT) - number of bytes to read

OFST (UINT) - byte offset into data message to read

Outputs: ACTV (BOOL) - read active

DONE (BOOL) - read failed

FAIL (BOOL) - read failed

ERR (INT) - 0 if read is successful; non zero if
read failed

CURR (UINT) - number of bytes actually read

⁄ƒƒ NAME ƒø
≥ E_MODUNP≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥NUMB BQTY√ƒ
≥ ≥
¥BOOL ≥
≥ ≥
¥DMEM ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

NUMB (UINT) - number of bytes to unpack

BOOL (ARRAY OF BOOL) - booean data memory area

DMEM (ARRAY OF BYTE) - data memory area

Outputs: OK (BOOL) - execution completed without error

BQTY (UINT) - actual number of bytes unpacked
3-19

E_MODMOV
Moves data from one memory area to another USER/E_MODTCP

<<INSTANCE NAME>>:E_MODMOV(RQ00 := <<BOOL>>, ICNT :=
<<UINT>>, SRC := <<ARRAY OF USINT>>, DEST := <<ARRAY OF
USINT>>, DONE => <<BOOL>>, BQTY => <<UINT>>);

The E_MODMOV ASFB is nested in the both the E_MODCL and E_MODPRC
ASFBs and is used to move data from one memory area to another.

E_MODPAK
Packs discrete boolean data into byte data USER/E_MODTCP

<<INSTANCE NAME>>:E_MODPAK(EN00 := <<BOOL>>, NUMB :=
<<UINT>>, BOOL := <<ARRAY OF BOOL>>, DMEM := <<ARRAY OF
USINT>>, OK => <<BOOL>>, BQTY => <<UINT>>);

The E_MODPAK ASFB is nested in the both the E_MODCL and E_MODPRC
ASFBs and is used to pack discrete boolean data into byte data.

⁄ƒƒ NAME ƒø
≥ E_TCPRD ≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥ICNT BQTY√ƒ
≥ ≥
¥SRC ≥
≥ ≥
¥DEST ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - enables execution

ICNT (UINT) - number of data to move

SRC (ARRAY OF USINT) - source data memory area

DEST (ARRAY OF USINT) - destination data memory
area

Outputs: DONE (BOOL) - execution completed without error

BQTY (UINT) - actual number of data moved

⁄ƒƒ NAME ƒø
≥ E_MODPAK≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥NUMB BQTY√ƒ
≥ ≥
¥BOOL ≥
≥ ≥
¥DMEM ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - enables execution

NUMB (UINT) - number of bytes to pack

BOOL (ARRAY OF BOOL) - boolean data memory area

DMEM (ARRAY OF USINT) - data memory area

Outputs: OK (BOOL) - Ethernet connection made without error

BQTY (UINT) - actual number of data packed
3-20

Index
A

addressing 2-6
ASFBs

G&L Client 3-1
G&L Server 3-1
Modbus/TCP Support 3-1
PiCPro LIB 3-1
using 1-2

B

BOOL 3-4, 3-12
BSIZ 3-5, 3-12

C

CERR 3-7, 3-14
CNFL 3-7, 3-14
CNOK 3-7, 3-14
CODE 3-7, 3-14
codes

Modbus/TCP client function 3-7, 3-8
Modbus/TCP server function 3-13, 3-14,

3-15
COMP 3-7, 3-14
configuration

G&L Client 2-3
G&L Server 2-4
Hardware 2-2

D

DATA 3-5, 3-12
DSIZ 3-5, 3-12

E

E_MODCL 3-2
E_MODCL function block

outputs 3-7
E_MODMOV 3-20
E_MODPAK 3-20
E_MODPRC 3-18
E_MODRD 3-19
E_MODSVR 3-10

E_MODSVR function block
outputs 3-14

E_MODUNP 3-19
EN 3-4, 3-12
example LDO

client 3-9
server 3-16

EXPT 3-5, 3-13

F

function codes
Modbus/TCP client 3-7, 3-8
Modbus/TCP server 3-13, 3-14, 3-15

H

HOST 3-4

I

Installation of ASFB 1-1

L

LDO
client example 3-9
server example 3-16

M

Modbus/TCP
client example 3-9
client function codes 3-7, 3-8
server example 3-16
server function codes 3-13, 3-14, 3-15

mode
client 3-8

setup 3-9
server 3-16

setup 3-17

R

R 3-13
structure 3-13

revision
history 1-1
range 1-2
Index-1

S

SEND 3-5
SLOT 3-4, 3-12
software

compatibility 2-5

requirements 2-4

T

TERR 3-7, 3-14
Index-2

	Open Modbus/TCP
	Table of Contents: Open Modbus/TCP AFSB Manual
	CHAPTER 1 Application Specific Function Block Guidelines
	Installation
	Revisions
	ASFB Input/Output Descriptions
	Using ASFBs

	CHAPTER 2 Configuration and Software Installation
	Introduction
	Modbus/TCP Description
	Data Input/Output Descriptions

	Hardware Configuration
	G&L Client - Open Modbus/TCP Client Design
	G&L Server - Multithreaded Open Modbus/TCP Server Design
	Software Requirements
	Software Compatibility
	Software Installation

	CHAPTER 3 Open Modbus/TCP ASFBs
	E_MODCL
	E_MODSVR
	E_MODPRC
	E_MODRD
	E_MODUNP
	E_MODMOV
	E_MODPAK

	Index

