Modbus™

Application Specific Function Block Manual

GIDDINGS & LEWIS®

NOTE

Progress is an ongoing commitment at Giddings & Lewis. We continually strive to offer the most
advanced products in the industry; therefore, information in this document is subject to change
without notice. Theillustrations and specifications are not binding in detail. Giddings & Lewis shall
not be liable for any technical or editorial omissions occurring in this document, nor for any
consequential or incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any Giddings & Lewis product until the use of such product is
completely understood. It isthe responsibility of the user to make certain (ragper operation practices
are understood. Giddingsé& Lewis products should be used only by qualitied personnel and for the
express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service

Department, Giddingsé& Lewis, 666 South Military Road, P.O. Box 1658, Fond du Lac, WI 54936-
1658. Giddings & Lewis can be reached by telephone at (414) 921-7100.

401-55378-00
Version 2 - 1497

© 1993- 1997 Giddings & Lewis, Inc. DB2-3489

Modbus, 984, BM85, S985, 685 are trademarks of the Modicon Company. BA22-4489
IBM@ is aregistered trademark of International Business Machines Corporation

IBM AT is atrademark of International Business Machines Corporation

PiC900, PiC90, and PiCPro are registered trademarks of Giddings & Lewis, Inc.

Table of Contents

Application Specific Function Block Guidelines

INSEHTALTON .. 1
REVISIONS ...ttt ettt s e st e st e seeseeseeaeeseenesnennenneas 2
ASFB INput/OUtPUt DESCIIPLIONS ...t 3
USING ASEBS w..oooovvvemcvveseesisesssssess s sssess s sssssssssssssssssess s snssssessssssnsssens 4
Modbus ASFB Software Package
I 1 01 oo (1 e o o SRS SPTS 5
Background onModbus ProtoCol ..o 6
1.2 REQUITEMENES ...t bbb 8
HardwarereqUIreMeENtSoovrccininiiiisiss s 8
Cabl@ CONNECLIONS .veviveierieriesieeie ettt 8
SOftWArE TEQUITEMENES wevrererercrereieteieieie et 9
COMPELIDIILY «veverereiiieeee 9
1.3 INSLAIHBLION coovevereriiiieiiriete ettt e st s et b s e e 11
14 Modbus FUNCLON BIOCK eveereeriirieiiisieieisieiee sttt 12
C_MODMST .oooetreeseesseessse sttt sttt 13
THEASCIH MOUE ettt 17
THE RTU MOOE eerreerrereerreeiuesseessesseessesseessesseessessesssesssessesssessessssssessssssensssssessses 3.8
MOADUS M ASTEN ovvuiereieriiitie it s s s e s s s ra e s e s e ra s s rnsarneannns 21
Modbus master eXamPlELDO ciuevevcieeieieseeresssssee s seins 22
C_MODMST function block SEIUP -v-veeveecieiciicieiciccc e 25
C_MODSLY eeetvvtumarevismsssssssesssssse st sttt 26
THEASCH MOUE ettt 29
THE RTU MOGE eeeererieeeiesieenie ettt sttt ettt 30
MOADUS SIAVE 1ovueiiiereteieiie sttt se e s e e e s s s benenas 31
Modbus Save eXample LDOcccciiiirseeres e 32
C_MODSLYV function BlOCK SBIUP +eseereseeresserensinisinissississssses 34

. Index

Table of Contents

NOTES

Table of Contents

Application Specific Function Block Guidelines

Installation

The following guidelines are recommended ways of working with Application
Specific Function Blocks (ASFBs) from Giddings & Lewis.

1

2.

Make a back up copy of the ASFB disk you receive and store the original
in a safe place.

The disk you receive with the ASFB package will include the following:
1. ASFBS directory containing:

. .LIB file(s) containing the ASFB(s)
. source .LDO(s) from which the ASFB(s) was made
2. EXAMPLES directory containing:

. example LDO(s) with the ASFB(s) incorporated into the ladder
which you can then use to begin programming from or merge with
an existing application ladder

It is recommended that you copy the .L1B and the source LDO filesto

?/our hard drive on the PC in the following way. Remember that ASFB

Cil_braries (.LIB) files and source (.LDO) files must be kept in the same
irectory.

Create a directory that will hold all ASFB LIBs and source LDOs.
For example, you may have the Motion ASFB package and the
Communication ASFB package. Copy the appropriate files on the
disks to a directory on your PC called ASFB.

When you installed PiCPro, the PiCLib statement was automatically
entered in your autoexec.bat file as shown below:

SET PICLIB=C:\PICLIB

NOTE: If you chose to alter your PICLIB statement during
installation, it will look different than what appears above.

IBIOIW add the ASFB directory to your PICLIB = statement as shown
elow:

SET PICLIB=C:\PICLIB;C:\ASFB

Put the example file(s) in your working directory.

For example, if you always run PiCPro from the directory which holds

SI_I your LDO files, then copy all the ASFB example LDOs to the LDO
irectory.

Application Specific Function Block Guidelines

Revisions

The first three networks of each ASFB source ladder provide the following
information.

Network 1

The first network is used to keep a revision history of the ASFB. Revisions
can be made by Giddings & Lewis personnel or by you.

The network identifies the ASFB, lists the requirements for using this ASFB,
the name of the library the ASFB is stored in, and the revision history.

The revision history includes the date, ASFB version (see below), the
version of PiCPro used while making the ASFB, and comments about what
the revision involved.

When an ASFB is revised, the number of the first input (EN _ _orRQ_)
to the function block is changed in the software declarations table. The
range of numbers available for Giddings & Lewis personnel is 00 to 49.
The range of numbers available for you is 50 to 99. See chart below.

Revision | Giddings & Lewis User
revisions revisions

1st ENOO ENS50

2nd ENO1 EN51

50th EN49 EN99

Network 1

T R o _
X-Name ASFB Source Revision History

Located in Library X-LIB

Requirements: _
PICPro Ver 4.0 or higher

Date Version Using PiCPro Comments

MM-DD-YY ENOO 4.1 Origind

Application Specific Function Block Guidelines

Network 2

The second network describes what you should do if you want to make a
revision to the ASFB.

If you revise the ASFB, do the following:

1. Do a ‘M’odule, save ‘A’s in order to save the original ASFB before
you begin modifying.

2. Change the number on the first input to the ASFB in the software

declarations table to a 50 or greater (for example, ENOO would be
changed to EN50).

3. Update the revision history in network 1.

ASFB Input/Output Descriptions

Network 3

The third network describes the ASFB and defines all the inputs and
outputs to the function block.

ASFB Description

INPUTS:

l}lgn_le_ __D_agq'fypg Definition

ENCO BOOL enables execution
OUTPUTS:

Name Data Type Definition

0K BOOL execution complete

Application Specific Function Block Guidelines

Using ASFBs

4. When you are ready to use the ASFB in your application, there are several
approaches you can take as shown below.

Create a new application LDO starting with the example LDO for the
ASFB package. The advantage is that the software declarations table
for the ASFB has been entered for you.

NOTE: To keep the ori%inal example LDO, usethe ‘save As
command. This copies the example LDO to an LDO with the
application name you give it.

If you already have an application LDO, merge the example LDO with
the application LDO using the optional LDOMERGE software
package. The software declaration tables for both LDOs will aso
merge.

Enter the ASFB into your application LDO.

NOTE: This method is not recommended if the software declarations
table is lengthy. It requires that you manually enter all the inputs and
outputs to the ASFB in the table. With some packages, this is time-
consuming. Any structure, array, array of structures, or strings must be
entered exactly as it appears in the origina table. Thisis critical to the
correct functioning of the ASFB.

4 Application Specific Function Block Guidelines

Modbus ASFB Software Package

1 .1 Introduction

The Modbus ASFB software package from Giddings & Lewis alows the PiC900 to
communicate as aModbus master or slave using the Modbus protocol. The Modbus
protocol determines how each controller on a network will know its device address,
recognize a message addressed to it, determine the kind of action to be taken, and
extract any data or other information contained in the message. If areply isrequired,
the PiC900 will construct the reply message and send it using Modbus protocol.

Communications is done using a master/slave mode. Only one device, the master,
can initiate atransaction called aquery. The other devices, the slaves, respond with
the data requested by the master or by taking the action specified in the query.

ThePiC900 is used as amaster or slave device. Communication takes place through
the PiC900 serial ports. The serial portsinclude the USER PORT 2 on the CPU or
the ports on aPiC900 serial communications module (2 or 4 port models available).

The master istypically ahost processor, an operator interface, or aPiC900. The
master can addressindividual slaves or caninitiate a broadcast messageto all slaves.
Slaves respond to queries that are addressed to them individually. Responses are not
returned to broadcast queries from the master. Some possible Modbus configurations
are shown in the block diagrams below.

Figure 1. Configurations for using Modbus communications

Basic connection Other possible connections
PiC900 used as a slave 984-685 Modbus PIC900
(To MB Pius) (used as a slave)
Slave Master
Modbus (or smart
PiC900 —> e device) Modbus Plus
RS-232
GD10-0593
PiC900 used as a master AT/MC-984 984A/B
and and BM85
Master Slave Host/MMI 5985 i
Modbus
EiGo00 Modbus PC (or smart Modbus l |
RS-232 interface device) Up to four PiC900s
[PiC900 or other Modbus
GD10-4093 (used as a slave) | devices/networks
GD11-0593

The interface devices shown in the diagram are described below.

Modbus 5

984-685 Modicon controller
AT/MC-984 IBM AT™/Modicon controller

MMI Man MachineInterface

984 A/B Modicon controller

S985 Remote 1/0 bus

BM85 Bridge Multiplexer - Modbus Plus to Modbus bridge

Background on Modbus protocol

As shown bel ow, the Modbus protocol establishes the format for the master query by
placing into the query message adevice or broadcast address, afunction code
defining the requested action, any data bytesto be sent, and an error-checking field.

The slave response message contains fields confirming the action taken, any datato
be returned, and an error-checking field.

If an error occurred in receipt of the message, or if the slave is unable to perform the
requested action, the slave will construct an error message and send it asits response.

The Master/Slave Query/Response Cycle

Query
message
from the +
master
Device Address Device Address
Function Code Function Code
— Eight-Bit I~ Eight-Bit —
[~ Data Bytes™ | — Data Bytes ™|
Error Check Error Check
Response
* message
from the
slave

GD12-0793

6 Modbus

Query

Response

The code in the query tells the addressed slave device what kind of action to
perform. The data bytes contain any additional information that the slave will
need to execute the command.

For example, code 03 will query the slaveto read holding registers and respond
with their contents. The data field must contain the information telling the slave
which register to start at and how many registersto read. The error check field
provides amethod for the dave to validate the query message.

If the slave makes a normal response, the code in the response is an echo of the
code in the query. The data bytes contain the data collected by the slave, such as
register values or status.

If an error occurs, the codeis modified to indicate that the response is an error
response, and the data bytes contain a code that describes the error. The error
check field allows the master to confirm that the response message contents are
valid.

The Modbus software that allows the PiC900 to communicate using the Modbus
protocol includes the following ASFBs that you install in PiCPro and use in your
application ladder.

C_MODMST I-C_MODMST_ C_MODSLV C_MODSLV
Communications- TEN 0K Communications- rEN - OKp
Modbus master IPORT FAIL Modbus slave JADDR FAILA
Function block function block
) {CFG ERA) LPORT ERR}

AllowsthePiC900to Allows the PiC900 to
be used as a master " BOOL COMP beused asasavewith ~ {CFG ROYDr
with theModbus 18517 TERR theModbus protocol. JB00L
protocol. 1DATA CODE 1BSIZ

{Ds1zZ DATA

{EXPT DSIZ

1ASCI JEXPT

LSEND R

1 ADDR {ASCI

JFUNG

CNT

JLNDX

1 RNDX

1 BROD

Modbus

1.2 Requirements

The hardware and software requirements when using the Modbus interface to
communicate with a compatible device are covered in this section.

Hardware requirements

. APiC900 programmableindustrial computer with approximately 1.3K of data
bytesfree and approximately 11.5K of ladder code bytesfree.

NOTE: The number of free bytes can be

checked in the Download complete box in Download complete:
PiCPro. The box appears after you * M U "
download aladder. An example is shown 69 O?mg&y d astggebits

on the right. 2465 of 32k data bytes
220 ladder code bytes
27392 total code bytes

: Press any key to continue

. A serid port (either USER PORT 2 on the PiC900 CPU or one of four serial
portson aserial communications module.)

. A serial cableto connect the PiC900 to the remote device.
Cable connections

The pinouts for the various Modbus communi cations connections are shown below.
Choose the onefor your system.

PiC900to an operator interface

PiC800CPU to an operator interface

(1 O-pin screw terminal) (25-pin female)
GND 8 7 GND

RECV 9 2 TRANS

TRANS 10 3 RECV

PiC900 to a PC

PiC900 CPU toa PC

(1 O-pin screw terminal) (9-pin female)
GND 8 5 GND

RECV 9 3 TRANS

TRANS 10 2 RECV

8 Modbus

Software requirements

Modbus ASFB software
PiCPro Version 4.1 or higher
L DOMERGE software (Optional softwarethat allowsyouto mergeladders.)
Compatibility
When the PiC900 is used as a Modbus slave, it responds to the following Modbus
commands:
Function Command Description
Code
01 Read Coil Status Obtains current status (ON/OFF) of a group of logic cails.
03 Read Holding Registers Obtain current binary value in one or more holding registers.
05 Force Single Coil Force logic cail to a state of ON or OFF.

06 Preset Single Register Place a specific binary value into a holding register.

07 ‘Read Exception Status ~ Obtain the status (ON/OFF) of the eight internal coils whose
addresses are controller dependent. Y ou can program these
coilsto indicate lave status. Short message length allows
rapid reading of status.

15 Force Multiple Coils Forces a series of consecutive logic coils to defined ON or
OFF states.
16 Preset Multiple Places specific binary values into a series of consecutive
Registers holding registers.

The device the PiC900 is communicating with must also support these commands. I
the PiC900 receives acommand it does not support or recognize, it will return an
error response to the sender.

Modbus 9

Function
Code

01
02

03
04

05
06
07

15

16

When the PiC900 is used as aModbus master, it responds to the following

commands.

Command

Read Coil Status
Read Input Status

Read Holding Registers
Read Input Registers

Force Single Coil
Preset Single Register
Read Exception Status

Force Multiple Coils

Preset Multiple
Registers

Description

Obtains current status (ON/OFF) of agroup of logic coils.

Obtain current status of the physical inputs (Inputs 10000 to
19999).

Obtain current binary valuein one or more holding registers.

Obtain current value in one or more physical input registers
(Inputs 20000 to 29999).

Forcelogic coil to astate of ON or OFF.
Place aspecific binary valueinto aholding register.

Obtain the status (ON/OFF) of the eight internal coilswhose
addresses are controller dependent. Y ou can program these
coils to indicate slave status. Short message length allows
rapid reading of status.

Forces a series of consecutive logic coilsto defined ON or
OFF dtates.

Places specific binary valuesinto aseries of consecutive
holding registers.

The device thePiC900 is communi cating with must support the commands the

PiC900isgoingto ?

not recognize, it wi

Message Addressing

enerate. If the PiC900 sends a command the other device does
| respond with an error response.

The addressing between the PiC900 and Modbus isasfollows:

BOOLEANS INTEGERS
Nodbus PiC900 Modbus PiC900
00001 BOOIL(0) | 40001 DAT(0)
00002 BOOL(1) | 40002 DAT(1)

00999 BOOL(998) | 40999 DAT)(998

10

Modbus

1.3 Installation

The Modbus software disk contains the files listed below. The Main grouE includes
the ASFB library (LIB), source ladders for the ASFBs (LDOs), and remark files
containing the comments in the source ladders (REMs). The Example group
includesthe example LDO and REM files. The Auxiliary group containsthe LIB,
LDOs, and REMs for the UDFBs used in the source laddersfor the ASFBs.

NOTE: It should never be necessary for you to access any of thefilesin the
Auxiliarygroup. TheLIB isrequired in order for the ASFB to work and the LDOs
allow you to view the source |adders when troubl eshooting if necessary.

Follow the guidelines found at the beginning of the manual. Always make aback up
copy of the disk and store the original in a safe place. The recommended destination’
directory for each fileislisted in the last column.

Group File Description Directory
Main C_MOD.LIB The library containing the application specific | ASFB
function block used to perform Modbus
communications.
C_MODSLV.LDO 'kl)'lhe Ii,ource ladder for the transceiver function | ASFB
ock.
C_MODSLV.REM | Theremark filefor the source ladder ASFB
C_MODMST.LDO | The sourceladder for theC_MODMST ASFB
function block.
C_MODMST.REM | Theremark filefor the source ladder ASFB
zxample | C_MASTEX.LDO |Theexamplefor Modbus master LDOfrom | Working
C_MASTEX.REM | whichyou can build anew application LDO or
to which you can merge an existing one.
C_MODEX.LDO The example for Modbus slave LDO from Working
C_MODEX.REM which you can build anew application LDO or
to which you can merge an existing one.
Auxiliary | C_MODAUXLIB |The library that holds al the function blocks ~ ASFB
used in the source ladder for the ASFB. |
C_MODCRC.LDO | Sourceladder ASFB
C_MODCRC.REM | Remarkfile ASFB
C_MODMEM.LDO | Sourceladder ASFB
C_MODMEM.REM | Remarkfile ASFB
C_MODMOQV.LDO | Sourceladder ASFB
C_MODMOV.REM | Remark file ASFB
C_MODPAK.LDO | Sourceladder ASFB
C_MODPAK.REM | Remarkfile ASFB
C_MODUNP.LDO | Sourceladder ASFB
C_MODUNP.REM | Remark file ASFB

NOTE: The libraries containing the ASFBs and their source ladders must always be in
the same directory. If they are not in the same directory, PiCPro will not be able to find

the source ladder module when the View User function option is selected.

Modbus

11

1.4 Modbus Function Blocks

The function block for the Modbus interface is described in this section. When
PiCPro isrunning, you can find the Modbus function blocks by choosing the
Function menu, then USER, then C-MOD as shown in Figure 2.

Figure 2. Location of ASFBs in PiCPro

""" Arith [c-voowsT- |
Binary
Counters W EN 0K
Datatype . ’
Evaluate The C-MOD library +PORT FAIL
Filter contains the ASFB
10 ; . {CFG ERF
Motion you will use in your C_MODMST
Page ladder. C_MODSLV 4 BOOL COMF
Strin -
Finers - |10 C_MODSLV | 1BSIZ TERF
USER "~
Xolock C_HODAUX &JEN ok lpaTa cone
Zlaxset
JADDRFAIL |
Note: The cyomuk\ C_MODCRC DSiz
library contains auxiliary g_ng%g {PORT ERF | JEXPT
function blocks that you C_MODPAK 1cFG RoMt | Jascr
do not need to access. C_MODUNP
J BOOL SEND
BSIZ 4 ADDR
DATA {FUNC
DSIZ JCONT
EXPT {LNDX
R 4RNDX
ASCI BROD
GD0o-4593

12 Modbus

C_MODMST

USER/C-MOD |

Communi-
cations_
Modbus
master

[c_MoovsT |
LEN O
PORT FAIL
{CFG ERF
{BOOL COMF
{BSIZ TERF
{DATA CODE
{osiz

EXPT
JASCI
{SEND
{ADDR
{FuNc

JONT

4 LNDX

J RnDx
{BROD

Inputs:

EN (BOOL) - enables execution

PORT (STRING) - identifies the communication serial
port

CFG (STRING) - configuration string for the port
BOOL (ARRAY OF BOOL) - boolean dataarea
BSIZ (UINT) - size of the BOOL dataarea
DATA (ARRAY OF INT) - variable data area
DSIZ (UINT) - size of the DATA area

EXPT (ARRAY OF BOOL) - booleans read by the read
exception status code (07)

ASCI (BOOL) - selects ASCII modeif set; selectsRTU
mode if not set

SEND (BOOL) - energize to send amessage to aModbus
slave

ADDR (USINT) - address of the slave device to which
messages will be sent (range from 1-255)

FUNC (USINT) - function code number to send to the
Modbus slave device

CNT (UINT) - number of itemsto transfer over Modbus

LNDX (UINT) - local index where data received from a
dave is stored

RNDX (UINT) - remote index where data will be
sent/retrieved in the dave device

BROD (BOOL) - set to send a broadcast frame

IMPORTANT

The C_MODMST function block cannot be used with the PiC911/912 or PiC90 CPUs. The serial
port on the EC186 processor in these CPUs is not compatible with the modbus protocol for a
master. These CPUs will work as slaves with the C_MODSLV function block.

Modbus

13

Outputs: OK (BOOL) - execution completed without error
FAIL (BOOL) - initidization failed
ERR (INT)- Oif initialization is successful; = 0
if initialization is unsuccessful
RCMD (BOOL) - energized if amessageisreceived
COMP(BOOL) - energized when atransfer is complete
TERR (BOOL) - an error occurred in the transaction
CODE (INT) - number of error code

code number <100 = error returned from aslave device
viaan exception response
code number > 99 = local error

NOTE: C_MODMST function block cannot be used with theC_MODSLYV function
block on the same serial port.

TheC_MODMST function block providesPiC900 communication capabilitieson a
Modbus network with the PiC900 acting as aModbus master. The link to the
network must be made through one of the PiC900 serial ports.

When thisfunction is enabled, it will open the PiC900 serial port specified at the
PORT input. This port will be configured based on the information specified at the
CFG input. If the port configures properly, the OK output will energize and the
system will be ready to generate requests as the Modbus master. If a problem occurs
in the open or configuration process, the FAIL output will be energized and the OK
will not be set. See Appendix B in the PiC900 software manual for the error codes
a the ERR output.

To establish communications on the Modbus network, this function block is needed
only once and should be enabled every scan.

14

Modbus

Inputs

EN

PORT

CFG

The EN input is energized every scan to respond to aquery over theModbus
network. In atypical system, this input will be wired to the vertical or power bus
rail.

NOTE: De-energizing thisinput will cause communication to stop.

The PORT input specifies which serial port this function block will use to
communicate over. Place astring t)épe variable at thisinput that has been initialized
with the name of the port that is to be used.

For example, if the PiC900 User port 2 isbeing used, initialize astring as:
USER:$00

If one of the channels on the serial communications module is being used, the
variableyou enter at the NAMZ input of the ASSIGN function block isthe variable
you enter at the PORT input of theC_MODMST function block.

— NAME
ASSIGN

{EN OK}
{COMN FAIL
{NAMZ ERRt
1RACK
1SLOT

{CHAN
AA1044-3991

Th”e string variable at the CFG input holds the initialized configuration string you
will use.

If the RTU mode is chosen (see ASCI input), then the configuration string would
typically be:

9600, E, 8, 1, N, $00

The port will be set up at 9600 baud, even parity, 8 data bits, no handshaking. See
the OPEN function block description in thePiC900 Software Manual for more
information about this configuration string.

If the ASCII modeischosen (see ASCI input), then the configuration string would
typically be:

9600, E, 7, 2,N, $00

Modbus

15

BOOL The BOOL input isan array that specifies the boolean (bit) data areathat is used for

any boolean (bit) transfers. Queriesto aslave device for dataitems 00001 to 09999
are placed here.

For example, if the array of boolean variablesis called BOOL and awriterequest is
made from register 00222, the PiC900 would send the datain BOOL(221).

The array size can range from 2 (O..I)to 999 (0..998) bool eans.
IMPORTANT
Do not use a positive or negative transistional contact in your LDO with the BOOL array.

If itis necessary to set up atransistional contact with aBOOL array, use the BOOL array to

energize another boolean coil. Then use this boolean for the transistional contact as shown in the
example below.

BOOL(X) BOOL-X

(-

BOOL-X

BOOL-X
N

BSIZ* Enter the number of booleans (up to 999).

*Itisvery important that the value in BSIZ and the size of the array in BOOL are the
same. The sizeis user adjustable from 2 to 999 elements.

DATA The DATA input is used to specify the name of the main dataarea. Queriesto a
dave device for data items 40001 to 49999 are placed here.

For example, if the array of integer variablesiscalled DAT and aread request is
made for register 40005, the PiC900 would place the datait received in responsein
DAT(4).
Thisdataareaisan array of integers.

DsIzZ* Enter the number of integers (up to 999).

*Itisvery important that the valuein DSIZ and the size of the array in DATA are the
same. The sizeis user adjustable from 2 to 999 elements.

EXPT The EXPT input is an array of eight booleans. If the PiC900 asks a remote station
for the exception status (function 7), its response will be placed in this array. The
bitsin this array have no special meaning in the PiC900. But they have special

meaning in aModicon Control and are provided here to allow the PiC900 to read
them.

16 Modbus

ASCI

Controllers can be setup to communicate on Modbus networks using either of two
transmission modes: ASCII or RTU. Y ou select the desired mode at this ASCI
input. If ASCI input is set, then the ASCII modeisin effect. If it is not set, then the
RTU modeisin effect. More information on these two modes can be found in your
Modbus manual.

NOTE: The mode and seria parameters must be the same for al devices on the
network. The modes define the bit contents of message fields transmitted serially on
the network. They determine how information will be packed into the message
fields and decoded.

The ASCII Mode

Start

1 character

When controllers are setup to communicate on anetwork using ASCI1 mode, each 8-
bit bytein amessageis sent astwo ASCII characters.

Theformat for each bytein the ASCIl modeis:

Coding System Hexadecimal, ASCI| charactersO-9, A-F
One hexadecimal character contained in each
ASCII character of the message

Bits per Byte 1 start bit o _ _
7 databits, least significant bit sent first
1 bit for even/odd parity; no hit for no parity
1 stop hit if parity Is used; 2 hits if no parity

Error Check Field Longitudina Redundancy Check (LRC)

Inthe ASCII mode, the message frame startswith a*“colon’ (;) character (ASCII 3A
hex) and ends with a ‘carriage return - line feed” (CRLF) pair (ASCII OD and OA).

The dlowable characters transmitted for all other fields are hexadecimal O-9, A-F.
Networked devices monitor the network bus continuously for the ‘colon’ character.
When one is received, each device decodes the next field (the address field) to find
out if it is the addressed device.

Intervals of up to one second can €l apse between characters within the message. If a
greater interval occurs, the receiving device assumes an error has occurred. A typical
message frame is shown below.

Address Function Data LRC check End
2 characters
2 characters 2 characters n characters 2 characters CRLF

Modbus 17

The RTU Mode

Start
T1-T2-T3-T4

When controllers are setup to communicate on a network using RTU mode, each 8-
bit byte in a message contains two 4-bit hexadecimal characters. The main advantage
of thismodeisthat its greater character density allows better data throughput than
ASCII for the same baud rate. Each message must be transmitted in a continuous
stream.

Theformat for each bytein RTU modeis:

Coding System: Hexadecimal, ASCI| charactersO-9, A-F
One hexadecimal character containedin each
ASCII character of the message

Bits per Byte: 1 start bit o _ _
8 data hits, |least significant bit sent first
1 bit for even/odd parity; no bit for no parity
1 stop bit if parity Isused; 2 bitsif no parity

Error Check Field: Cyclica Redundancy Check (CR.C-16)

In the RTU mode, the message frame startswith a silent interval of at least 3.5
character times. Thefirst field then transmitted is the device address.

Theallowable characterstransmitted for all fields are hexadecimal O-9, A-F.
Networked devices monitor the network bus continuously including during the silent
intervals. When the first field is received, each device decodesit to find out if it is
the addressed device.

Following the last transmitted character, asimilar interval of at least 3.5 character
times marks the end of the message. A new message can begin after thisinterval.

Theentirem e frame must be transmitted as a continuous stream. If a silent
interval of morethan 1.5 character times occurs before compl etion of the frame, the
receiving device flushes the incompl ete message and assumes that the next byte will
be the address field of a new message.

Similarly, if anew message begins earlier that 3.5 character timesfollowing a
previous message, the receiving device will consider it acontinuation of the previous
message. Thiswill set an error, as the value in the final CRC field will not be valid
for the combined messages. A typical message frame is shown below.

Address Function Data LRC check End
8 hits 8 hits n* 8 bits 16 hits T1-T2-T3-T4

18

Modbus

SEND

ADDR

FUNC

CNT
LNDX

RNDX

BROD

The SEND input must be energized each time a message is sent to one of the

Modbus slaves.

The ADDR input specifies the address of the slave device to which messages will be
sent.

The range of numbers that this input will accept is 1 to 255 (decimal).

The FUNC input holds the Modbus function code. The function code number
shown in the table below is sent to the Modbus Slave device.

Function
Code Name of function Description
01 Read Coil Status Reads the ON/OFF status of discrete outputs
in the dave.
02 Read Input Status Reads the status of the physical inputs (Inputs

10000 to 19999).

03 Read Holding Registers Reads the binary contents of holding registers
in the dave.

04 Read Input Registers Reads one or more physical input registers
(Inputs 20000 to 29999).

05 Force Single Caoll Forcesasingle coil to either ON or OFF.
When broadcast, the command forces the
same coil referencein all attached daves.

06 Preset Single Register Presets a value into a single holding register.
When broadcast, the command presets the
sameregister referencein al attached slaves.

07 Read Exception Status Reads the contents of eight Exception Status
coilswithin the slave. These eight coils are
user-defined.

15 Force Multiple Coils Forces each coil in a sequence of coils to
either ON or OFF. When broadcast, the
function forces the same coil referencesin all

attached daves.
16 Preset Multiple Presets values into a sequence of holding
Registers registers. When broadcast, the function
presetsthe sameregister referencesin al
attached daves.

The CNT input isthe number of itemsto transfer over the Modbus.

The LNDX input isthelocal index. It isthe location in this control where data
received/sent from a dave device will be stored/retrieved.

The RNDX input is the remote index. It is the location in the slave device where
data will be sent/retrieved.

The BROD input is set by you when a broadcast type frame is sent.

Modbus

19

outputs

OK

FAIL

ERR

RCMD

COMP
TERR
CODE

TERW
Code

The OK output when energized indicates that the transceiver portion has been
started and is ready for communication. If this output does not energize, check the
FAIL output and the ERR output to identify the problem.

The FAIL output when energized indicates that the transceiver initialization failed.
When this output is energized, the OK will not be energized and an error code will
appear a the ERR output to identify the problem.

The ERR output is O if initialization is successful and is= O if initialization is
unsuccessful. The error codes that appear at this output are system errors. See
Appendix B in the PiC900 Software Manual for a description of each error.

The RCMD output is a one-shot output that energizes when the PiC900 has received
aquery from the master. The information describing the nature of the response will
be placed in the data structure placed at the R input of this function block.

The COMP output energizes when a transfer is complete.
The TERR output energizes when an error in the transaction has occurred.

The CODE output gives the number of the transaction error that has occurred. If the
number islessthan 100, the error code has been returned from a slave station viaan
exception response. If the number is greater than 99, the error code islocal. See the
tables that follow.

The table below contains error codes returned from aModbus Slave and reported at
the CODE output in the form of exception responses. For a complete explanation of
these errors, see your Modicon Modbus Protocol Reference Guide, Appendix A:
Exception Responses.

Name
[llegal function

Illegal dataaddress
Illegal datavalue
Slavedevicefailure

Acknowledge

Slave device busy

NA
Memory parity error

Description

The function code received in the query is not an alowable
action for the dave.

The data address received in the query is not an allowable
valuefor thedave.

A value contained in the query datafield is not an allowable
valuefor thedave.

An unrecoverable error occurred while the dave was
attempting to perform the requested action.

The dlave has accepted the request and is processing it, but a
long duration of time will be required to do so. This
response isreturned to prevent atimeout error from
occurring in the master.

The dlaveisengaged in processing along-duration program
command. The master should retransmit the message later
when thedaveisfree.

The slave attempted to read extended memory, but detected a
Barlty error in the memory. The master can retry the request,
ut service may be required on the slave device.

20

Modbus

The table below contains the error codes that are detected locally the PiC900 and
reported at the CODE output.

TERR
Code Name

100 CRCerror
101 Addresserror

102 Function error

103 Time-out error

104 Invaidfunction

105 Invalid function

106 Broadcast error

107 Boolean array sizeerror
108 Integer array size error

109 LNDX vaueerror

110 LNDX vaue error

Modbus Master

Description
Themessage from the slave device hasfailed CRC.

The message from the slave device has an unexpected value
inthe addressfield.

The message from the slave device has an unexpected value
in the function field.

No response message has been received for the slave device
with 350 ms.

The value at the FUNC input isinvalid. No functions above
function 16 are currently supported.

The value at the FUNC input isinvalid. The function
number is not supported.

The function requested will not support broadcast mode as
defined by Modbus.

The amount of datarequested would overflow the boolean
dataarray defined by the user.

The amount of datarequested would overflow the integer
dataarray defined by the user.

The offset of datarequested would overflow the boolean
data array defined by the user. In other words, the location
of the dataistoo close to the end of the array, given the
amount of databeing transferred.

The amount of datarequested would overflow the integer
dataarray defined by the user.

As aModbus master, the PiC900 will query aremote device for integer and boolean
data TheC_MODMST function block described aboveisentered in your
application program onetime. It is res[)onsi blefor al communicationsto and from
the PiC900 for Modbus support. Enable it every scan. Each input must have the
appropriate variable attached to it.

All databeing sent to or retrieved from the PiC900 will have a function code number
associated with it. Although this number has no direct equivalent in the PiC900, it is
used to determine where to place or retrieve data.

All functions that read registors from aremote device will have their response data
placed in the integer arrﬁl specified at the DATA input. All functions that read

booleans from aremote

evice will have their response data placed in the boolean

array specified at the BOOL input.

Modbus

21

Modbus master example LDO

The example LDO called C_MASTEX.LDO isincluded with the software files you
received. If you are creating a new application ladder, open the C_MASTEX.LDO
and use the save AS command to name it whatever your application will be calTed.

If you want to add the C_MASTEX.LDO to an existing application ladder, you can
use the optional LDOMERGE software to combine them.

Both of these methods produce an application ladder with the software declarations
for the CMODMST function block already entered. Y ou can modify thisto fit your
application.

You can also insert theC_MODMST function block into an existing ladder and enter
the software declarations yourself.

Workstation Processor Module Declarations Network Element View
AU D

this function enables the PiC300 to be a Modbus Master over an RS232
connect ion, _

It is configured as. Station 1

RTU mode at 9600 baud, Even Parity, 8 data bits, 1 stop bit
100 booleans have been defined (USER ADJUSTABLEg
100 integers have been defined (USER ADJUSTABLE

This function will OPEN and CONFIGURE the serial port specified at the PORT
input on the I‘ISIH? edge of the ENOO input. This input should be enabled all
the time, or as Tong as communication is required (typically all the time).

22

Modbus

HOW TO START A TRANSACTION WITH A SLAVE STATION:

Each time the SENDMSG contact transition from off to on the C_MODMST function
will use the data at the function’s inputs to build a frame to be sent to a
dave station. Once sent it will wait up to 350 milliseconds for a response.
During this time period, no additional requests will be processed. Once the
response data has been received and decoded the COMP output will be energized
to indicate that the transaction is complete. If a problem occurs during the
transaction, and the transfer fails, the FAIL output will be energized and
an error code will appear at the ERR output to indicate what the problem is.

NOTE: If this Modbus Master ASFB is (%oing to be used over the USER port on the
CPU module and the port needs to be configured for any setup other than
8 data hits, No parity, 1 Stop bit, it will be necessary to have version
w 11 or higher system eproms in the CPU. If the Serial Communications
Module
is being used this is not necessary.

MASTER1—,

C_MODMST

ENOO OK MO?'S‘%——{
| MOD_FAIL

PORTADDR— PORT FAIL b—(S)——
PORTCFG—CFG ~ ERR| MOD-ERR
TRANCOMP
BOOLS(0)—BOOL COMP | —(S)
TRANSERR
100—BSIZ TERR | —(S)—
INTEGER(»— DATA CODE | ERRCODE
10(-DSIZ
EXCEPT (O»— EXPT
ASCIMODE
—| | ASCI
SENDMSG TRANSERR ~ TRANCOMP
—IP] (R)- (R) SEND
DESTADDR— ADDR
FUNCTION— FUNC
COUNT— CNT
LOCALNDX— LNDX
REMOTNDX— RNDX
BROADCAS

—I | BROD

<End of Module>

Modbus 23

The software declarations table for the example is shown below. Y ou can modify it
to fit your application.

Name Type [/10Pt.=1ni t. Val.=long NanmTeeo p

MASTER1 <tb>C_MODMST Modbus\Master\Driver

BOOLS BOOL (0. .99) Booleans: \0n Modbus\00001 to 00999
INTEGER INT(0..99) Integers: \On Modbus\40001 to 40999
PORTADDR STRING[15] USER: $00 Serial\Port\Name\

PORTCFG STRING[15] 9600,E, 8, 1» Serial\Port\Configure\String

MOD-OK BOOL Function\Initialize\OK

MOD_FAIL BOOL Function\Init\Failure

MOD ERR INT Function\Init\Error\Code

EXCEPT BOOL({0..7) User\Definable\Exception\Status
SENDMSG BOOL Start\a Modus\Transaction)
DESTADDR USINT Destination\Address\of Slave\Device
FUNCTION USINT Modbus\Function\Number

COUNT UINT Number of\Words or\Bools to\ transfe:
LOCALNDX UINT Local\lndex into\data area
REMOTNDX UINT Remote\(slave)\index Into data area
BROADCAS BOOL Set to\enable \BROADCAST type mess
ASCIMODE BOOL Set to\Enable\ASCII mode

TRANCOMP BOOL Energizes\When a\transfer completes
TRANSERR BOOL Energizes\When a\transfer fails
ERRCODE INT Failed\Transfer\Error\Code
end-table void

I=Al t-M modifi es attribute=Press F10 to exit==A1t-E enters field=Bottom

24 Modbus

C_MODMST function block setup

The steps for setting up theC_MODMST function block allowing the PiC900 to
function as aModbus master follows.

1.
2.

10.

Determine the addressfor the slave device and enter it at the ADDR input.

Determine which serial port isgoing to be used for the Modbus _
communications. |If the USER port isgoing to be used, initialize a string type
variableasfollows:

PORTADDR STRING(I0) “USER:$00”

Determine the proper communications configuration for the seria port. Then
assign astring type variable an Initial Value that when placed at the
PORTCFG input will configure the communications channel. See the CFGZ
input on the CONFIG function in thePiC900 Software Manual for more
information on the configuration string.

ASCII Example: For 9600 baud, Even parity, 7 data bits, 1 stop hit,
CONFIG STRING(15) “9600,E,7,2,N,$00”

RTU Example: For 19200 baud, Even parity, 8 data bits, 2 stop bit
CONFIG STRING(15) “19200,E,8,1,N,$00”

Determine how many booleans (bit type) will be needed for your application.

Modify the size of the BOOL S array in the software declaration table by
setting it to the size determined in step 4. In the software declarations table,
place the cursor on the dataitem named BOOL S and press<Alt> A to enter
the array length. The acceptable range isfrom 2 to 999.

T_he) size of the boolean array (BOOLS) must be entered in BSIZ(boolean
Sze).

Determine how many integers will be needed for your application. The
acceptable range is from 1 to 999.

Modify the size of the INTEGER array in the software declaration table b
setting it to the size determined in step 7. In the software declarations table,
place the cursor on the dataitem named INTEGER and press<Alt> A to enter
the array length.

The size of theinteger array (INTEGER) must be entered in DSIZ (data size).

Determine whether ASCII or RTU mode will be used and set the ASCI input
accordingly.

Modbus 25

C_MODSLV

USER/C_MOD
Communi- levopsLy- | Inputs: EN (BOOL) - enables execution
ﬁgggﬁi len ok ADDR (USINT) - address for the PiC900 (range from
[-255)
slave {ADDR FAIL e — ,
PORT (STRING) - identifies the communication serial
{PORT ERR} port
1676 ROD; CFG (STRING) - configuration string for the port
' BB;’f; BOOL (ARRAY OF BOOL)- boolean dataarea
'DATA BSIZ (UINT) - size of the BOOL data area
' iz DATA (ARRAY OF INT)- variable data area
DSIZ (UINT) - size of the DATA area
Ig EXPT (ARRAY OF BOOL) - booleans read by the read
exception status code (07)
e R (STRUCT) - message information including address
and function code
ASCI (BOOL) - selects ASCII mode if set; selectsRTU
mode if not set
outputs. OK (BOOL) - execution completed without error
FAIL (BOOL) - initialization failed
ERR (INT) - Oif initialization is successful; = 0
if initialization is unsuccessful
RCMD (BOOL) - energized if amessageisreceived
TheC_MODSLYV function block provides PiC900 communication capabilitieson a
Modbus network. The link to the network must be made through one of the PiC900
seria ports.
When thisfunction is enabled, it will open the PiC900 serial port specified at the
PORT input. This port will be configured based on the information specified at the
CFG input. If the port configures properly, the OK output will energize and the
system will be ready to respond to queries from the Modbus master. If aproblem
occursin the open or configuration process, the FAIL output will be energized and
the OK will not be set. See Appendix B in the PiC900 software manual for the error
codes at the ERR output.
To establish communications on the Modbus network, this function block is needed
only once and should be enabled every scan.
26 Modbus

Inputs

EN

ADDR

PORT

CFG

The EN input is energized every scan to respond to aquery over theModbus
network. Inatypical system, thisinput will be wired to the vertical or power bus
rail.

NOTE: De-energizing thisinput will cause communication to stop.

The ADDR input specifies the address thisPiC900 will be on the network. This
input must have a unique number which represents thePiC900 address.

The range of numbers that this input will accept is 1 to 255 (decimal).

-The PORT input specifies which serial port this function block will use to _
communicate over. Place astring type variable at thisinput that has been initialized
with the name of the port that is to be used.

For example, if the PiC900 User port 2 isbeing used, initialize astring as:
USER: $00

If one of the channels on the seria communications module is being used, the
variable you enter at the NAMZ input of the ASSIGN function block isthe variable
you enter at the PORT input of theC_MODSLYV function block.

— NAME —
ASSIGN

{EN OKF
{COMN FAIL}
N BERR}
{RACK
1SL0T

{CHAN
AA1044-3951

Thltla string variable at the CFG input holds the initialized configuration string you
will use.

If the ASCII mode is chosen (see ASCI input), then the configuration string would
typically be :

9600, E, 7, 2, N, $00

If the RTU modeis chosen (see ASCI input), then the configuration string would
typically be:

9600, E, 8, 1, N, $00

Modbus 27

BOOL

The BOOL ingut isan array that specifies the boolean (bit) dataareathat is used for
any boolean (bit) transfers. Queries from the master device for dataitems 00001 to
00999 are found here.

For example, if the array of booleans variableis called BOOL and aquery is made
for register 00222, the PiC900 would respond with the datain BOOL(221).

The array size can range from 2 (0..1)to 999 (0..998) booleans.

IMPORTANT

Do not use a positive or negative transistional contact in your LDO with the BOOL array.

If it is necessary to set up atransistional contact with aBOOL array, use the BOOL array to
energize another boolean coil. Then use this boolean for the transistional contact as shown in the

example below.
BOOL(X) BOOL-X
{
On
BOOL-X
P —_—— — -
BOOL-X
— N
BSiz* Enter the number of booleans (up to 999).

*Itisvery important that the valuein sizein BSIZ and the size of the array in BOOL
arethe same. The sizeis user adjustable from 2 to 999 elements.

DATA The DATA input is used to specify the name of the main dataarea. Queries from
the master device for dataitems 40001 to 40999 are found here.

For example, if the array of integersvariableis called DAT and aquery is made for
register 40005, the PiC900 would respond with the datain DAT(4).
Thisdataareaisan array of integers.

DsIZ* Enter the number of integers (up to 999).

*|tisvery important that the value in sizein DSIZ and the size of thearray in DATA
arethe same. The sizeis user adjustable from 2 to 999 elements.

EXPT When the read exception status command isissued by the master device, the values
in this boolean array are returned. The booleans are user-defined.

R The R structure specifies a data area that information about the last query is placed.
When aquery isreceived, Modbus function datais placed in the data area specified
by thisinput. The structure placed at this input must have the format shown below.

28 Modbus

ASCI

Declared array of structures for R input

. ADDRESS USINT
.FUNCTION USINT
END-STRUCT

R STRUCT ‘

The function codes for theModbus functions are as foll ows.

Function
Code Name of function Description
01 Read Coil Status Reads the ON/OFF status of discrete outputs
in the dave.
03 Read Holding Registers Reads the binary contents of holding registers
in the dave.
05 Force Single Cail Forces a single coil to either ON or OFF.

When broadcast, the command forces the same
coil reference in al attached daves.

06 Preset Single Register Presets a value into a single holding register.
When broadcast, the command presets the
sameregister referencein al attached slaves.

07 Read Exception Status ~ Reads the contents of eight Exception Status
coilswithin the slave. These eight coils are
user-defined.

15 Force Multiple Coils Forces each coil in a sequence of coils to
either ON or OFF. When broadcast, the
function forces the same coil references in al

attached daves.
16 Preset Multiple Presets values into a sequence of holding
Registers registers. When broadcast, the function
presets the same register referencesin all
attached daves.

Controllers can be setup to communicate on Modbus networks using either of two
transmission modes: ASCII or RTU. Y ou select the desired mode at this ASCI
input. If ASCI input is set, then the ASCII modeisin effect. If it is not set, then the
RTU mode is in effect. Moreinformation on these two modes can be found in your
Modbus manual.

NOTE: The mode and serial parameters must be the same for all devices on the
network. The modes define the bit contents of message fields transmitted serialy on
the network. They determine how information will be packed into the message
fields and decoded.

The ASCIl Mode

When controllers are setup to communicate on a network using ASCII mode, each 8-
bit bytein amessageis sent astwo ASCII characters.

Theformat for each byteinthe ASCII modeis:

Modbus 29

Start

1 character

Coding System Hexadecimal, ASCII charactersO-9, A-F
One hexadecima character contained in each
ASCII character of the message

Bits per Byte 1 dart hit o . _
7 data bits, least significant bit sent first
1 bit for even/odd parity; no bit for no parity
1 stop bit if parity 1sused; 2 bitsif no parity

Error Check Field Longitudinal Redundancy Check (LRC)

Inthe ASCII mode, the message frame startswith a‘colon’ (:) character (ASCII 3A
hex) and ends with a‘ carriage return - line feed’ (CRLF) pair (ASCII OD and OA).

The allowable characters transmitted for al other fields are hexadecima O-9, A-F.
Networked devices monitor the network bus continuously for the ‘colon’ character.
When one is received, each device decodes the next field (the address field) to find
out if it is the addressed device.

Intervals of up to one second can elapse between characters within the message. If a
greater interval occurs, the receiving device assumes an error has occurred. A typical
message frame is shown below.

Address Function Data LRC check End
2 characters
2 characters 2 characters n characters 2 characters CRLF

NOTE: The datafield cannot exceed 128 bytesin length.

The RTU Mode

When controllers are setup to communicate on a network using RTU mode, each8-
bit byte in a message contains two 4-bit hexadecimal characters. The main advantage
of thismodeisthat its greater character density allows better datathroughput than

ASCII for the same baud rate. Each message must be transmitted in a continuous
stream.

The format for each byte in RTU mode is:

Coding System: Hexadecimal, ASCI| charactersO-9, A-F
One hexadecima character contained in each
ASCII character of the message

Bits per Byte: 1 dart hit o . _
8 data bits, least significant bit sent first
1 bit for even/odd parity; no bit for no parity
1 stop bit if parity 1sused; 2 bitsif no parity

Error Check Field: Cyclical Redundancy Check (CRC-16)

Inthe RTU mode, the message frame startswith asilent interval of at least 3.5
character times. The first field then transmitted is the device address.

The alowable characters transmitted for al fields are hexadecima O-9, A-F.
Networked devices monitor the network bus continuoudly including during the silent
intervals. When thefirst field is received, each device decodesit to find out if itis
the addressed device.

30

Modbus

Following the last transmitted character, asimilar interval of at least 3.5 character
times marksthe end of the message. anew message can begin after thisinterval.

Theentirem e frame must be transmitted as a continuous stream. If a silent
interval of morethan 1.5 character times occurs before compl etion of the frame, the
receiving device flushes the incompl ete message and assumes that the next byte will
be the address field of anew message.

Similarly, if anew message begins earlier that 3.5 character timesfollowing a
previous message, the receiving device will consider it a continuation of the previous
message. Thiswill set an error, asthe valuein the final CRC field will not be valid
for the combined messages. Atypical message frameis shown below.

Start Address Function Data LRC check End

T1-T2-T3-T4 8 hits 8 hits n* 8 bits 16 bits T1-T2-T3-T4

NOTE: The datafield cannot exceed 128 bytesin length.

outputs

OK The OK output when energized indicates that the transceiver portion has been
started and is ready for communication. If this output does not energize, check the
FAIL output and the ERR output to identify the problem.

FAIL The FAIL output when energized indicates that the transceiver initialization failed.
When this output is energized, the OK will not be energized and an error code will
appear at the ERR output to identify the problem.

ERR The ERR output is O if initialization is successful and is = O if initidlization is
unsuccessful. The error codes that appear at this output are system errors. See
Appendix B in thePiC900 Software Manual for adescription of each error.

RCMD The RCMD output is a one-shot output that energizes when the PiC900 has received
aquery from the master. The information describing the nature of the query will be
placed in the data structure placed at the R input of this function block.

Modbus Slave

AsaModbus slave, the PiC900 will receive and respond to Modbus functions from
other devices but will not initiate any transfers. The C_MODSLYV function block
described aboveis entered in your application program onetime. It is responsible for
all communications to and from the PiC900 for Modbus support. Enable it every
scan. Each input must have the appropriate variable attached to it.

All data being sent to or retrieved from the PiC900 will have a code number o
associated with it. Although this number has no direct equivalent in the PiC900, it is
used to determine where to place or retrieve data.

ThePiC900 will only respond to requests directed at one of the function codes it
supports. Reguests made to any other function codes will generate an error response
to the device that made the request.

Modbus 31

Mgdbus slave example LDO

The example LDO called C_MODEX.LDO isincluded with the software filesyou
received. If you are creating a new application ladder, open theC_MODEX.LDO
and use the save AS command to name it whatever your application will be called.

If you want to add the C_MODEX.LDO to an existing application ladder, you can
use the optional LDOMERGE software to combine them.

Both of these methods produce an application ladder with the software declarations
for the CMODSLYV function block aready entered. Y ou can modify thisto fit your
application.

You can also insert theC_MODSLV function block into an existing ladder and enter
the software declarations yourself.

C_MODEX.LDO

Workstation ~ Processor Module Declarations Network Element View
Comment Editor: Insert Mode Line: 1 of 19 Col: 1

|
t his function enables the PiC900 to be a Modbus Slave over an RS232 connection.
It is configured as. Station 1 _ .)
RTU mode at 9600 baud, Even Parity, 8 data bits, 1 stop bit,
No hardware handshaking.
800 booleans have been defined EUSER ADJUSTABLE
400 integers have been defined (USER ADJUSTABL

Over Modbus the Integer array maps into register: 40001 to 40400 and the Boolean
array is accessed over Modbus with bit numbers: 00001 to 00800. Any requests
for ‘data to/from Ixxxx, 2xxxx, or 3xxxx will cause an error response to be
returned from the PiC900 Modbus Slave.

NOTE: If this Modbus Slave ASFB is going to be used over the USER port on the
CPU module and the port needs to be configured for any setup other than
8 data bits, No parltgg, 1 Stop bit, it will 'be necessary to have version
11 or later system EPROMs in the CPU. If the Serial Communications Module,
is being used this is not necessary.

32 Modbus

PORTADDR—
PORTCFG
BOOLS(0)—00L

~SLV1

ENOO

80(—BSIZ

INTEGER(»DATA

40(-PSIZ

EXCEPT(O»— EXPT

RCMD—R
{ASCI

C_MODSLV

OK—(S

1—{ADDR FAIL }+—{(5)—
PORT ERR|-MOD_FRR

MOD_MSG

CFG RCML |—()——|

End of Module>

The software declarations table for the example is shown below. Y ou can modify it
to fit your application.

=A1t-M modifies attribute=Press F10 to exit==Alt-E enters iield=Bottom

Name Type 1/0 Pt.==Init. Val.==Long Name==Top

SLV1 <fb>C_MODSLV Modbus\Slave\Driver

BOOLS BOOL (0. .799) Booleans: \0nModbus\00001 to 00999

INTEGER INT(0O..399) .. AFIRAY... Integers: \0nModbus\40001 to 40999

PORTADDR STRING[15] USER: $00 Serial\Port\Name

PORTCFG STRING[15] 9600,E,8,1,N, 800 Serial\Port\Configure\String

RCMD STRUCT Received\Commands\Information\Structure

. ADDRESS USINT Addressof\Incomming\Command\Frame

FUNCTION USINT Function\Number of Incoming\Command
END_STRUCT

MOD_OK BOOL

MOD_FAIL BOOL

MOD_ERR INT

MOD_MSG BOOL

EXCEPT BOOL(0..7) User\Definable\Exception\Status

end_table void

Modbus

33

C_MODSLYV function block setup The steps for setting up the C_MODSLV function block
allowing the PiC900 to function as aModbus Save follows.

1.
2.

10.

Determine the address for thePiC900 and enter it at the ADDR inpui.

Determine which serial port is going to be used for theModbus
communications. If the USER port isgoing to be used, initialize astring type
variableasfollows:

PORTADDR STRING(IO) “USER: $00”

Determine the proper communications configuration for the serial port. Then
assign astring type variable an Initial Valuethat when placed at the
PORTCFG input will configure the communications channel. See the CFGZ
input on the CONFIG function in thePiC900 Software Manual for more
information on the configuration string.

ASCII Example: For 9600 baud, Even parity, 7 data bits, 1 stop hit,

CONFIG STRING(15) “9600,E 7,2N,$00”
RTU Example: For 19200 baud, Even parity, 8 data bits, 2 stop bit
CONFIG STRING(15) “19200,E,8,1,N,$00”

Determine how many booleans (bit type) will be needed for your application.

Modify the size of the BOOL S array in the software declaration table by
setting it to the size determined in step 4. In the software declarations table,
place the cursor on the dataitem named BOOL S and press <Alt> A to enter
the array length. The acceptable range isfrom 2 to 999.

Thesize ij the boolean array (BOOL S) must be entered in BSIZ(boolean
size).

Determine how many integers will be needed for your application. The
acceptable range is from 1 to 999.

Modify the size of the INTEGER array in the software declaration table b
setting it to the size determined in step 7. In the software declarations table,
place the cursor on the dataitem named INTEGER and press <Alt> A to enter
the array length.

The size of theinteger array (INTEGER) must be entered in DSIZ (data size).

Determine whether ASCII or RTU mode will be used and set the ASCI input
accordingly.

34

Modbus

Index

A F
ADDR 18, 27 FAIL 19, 31
addressing 9 files 11
ASCI 15, 29 FUNC 18
ASCII mode 16, 29 function blocks
ASFBs 1 location 12
guidelines 1 function codes
revising 2, 3 Modbus 9
using 4 Modbus master 18, 20, 21
B Modbus dave 28
BOOL 15, 27 G
BROD 18 guidelines
BSZ* 15,27 ASFBs 1
C H
cables 8 hardware requirements 8
CFG 15, 27
CNT 18 |
SODE 19 installation 1, 11
Modbus function 9 interface devices 6
Modbus master function 18, 20, 21 L
Modbus slave function 28
COMP 19 ladder
compatibility 9 source 2
configurations5 LDO
CPUs 13 master example 22
C_MODMST function block 7, 13 slave example 32
inputs 14 LDO files 1
outputs 19 LIB files1
C_MODSLV function block 7, 26 LNDX 18
inputs 27 M
. outputs 31
D Modbus 5
function codes 9
DATA 15,28 master example 22
directories 11 master function codes18, 20, 21
directory 1 protocol 5, 6
DSIZ* 15, 28 dave example 32
slave function codes 28
E mode
EN 2, 14, 27 Al 25,29
EPROM setup 25
version 32 RTU 16, 30
ERR 19, 31 §we3f
example LDO <etup 34
master 22 P
dave 32 0
EXAMPLES
directory 1 0K 19, 31
EXPT 15, 28

Index

P

pinouts 8
PORT 14, 27
ports 5, 8

Q

Query 7
query response cycle 6

R

R 28

structure 28
RCMD 19, 31
Response 7
revising ASFBs 2, 3
RNDX 18
RQ2
RTU mode 16, 30

S

SEND 18

software declarations24, 33
software requirements 9
source ladder 2

T

TERR 19
transitionals16, 28

Vv

version numbers 2

W

wiring 8

Index

