MMC[®] Smart Drive[™]and Digital MMC Control Hardware Manual

Version 4.1Catalog No. M.1301.5524 Part No. M.3000.0827

Keep all product manuals as a product component during the life span of the product. Pass all product manuals to future users/owners of the product.

KOLLMORGEN

Record of Revisions

Edition	Valid for	Description
03/2007	PiCPro V16.1	Major Update
10/2007	PiCPro V16.1 SP2	Added MMC-D8
05/2008	PiCPro V16.1 SP3	Added 4 analog drives, various manual updates
09/2008	PiCPro V17.0	Added S200-DLS Drives
12/2008	PiCPro V17.0	Rev 1 fixed various typos
01/2009	PiCPro V17.0	Rev 2 added CE/UL info to S200-DLS
03/2009	PiCPro V17.0	Rev 3 added Aux Feedback Connector to S200DLS
02/2010	PiCPro V18.0	Kollmorgen Branding & S200 BiSS

Third party brands and trademarks are the property of their respective owners

Technical changes to improve the performance of the equipment may be made without notice! Printed in USA

All rights reserved. No part of this work may be reproduced in any form (by printing, photocopying, microfilm or any other method) or processed, copied or distributed by electronic means without the written permission of Kollmorgen.

NOTE

These products are being manufactured and sold by G & L Motion Control, Inc., a Kollmorgen company.

Progress is an on-going commitment at Kollmorgen. We continually strive to offer the most advanced products in the industry; therefore, information in this document is subject to change without notice. The text and illustrations are not binding in detail. Kollmorgen shall not be liable for any technical or editorial omissions occurring in this document, nor for any consequential or incidental damages resulting from the use of this document.

Kollmorgen makes every attempt to ensure accuracy and reliability of the specifications in this publication. Specifications are subject to change without notice. Kollmorgen provides this information "AS IS" and disclaims all warranties, express or implied, including, but not limited to, implied warranties of merchantability and fitness for a particular purpose. It is the responsibility of the product user to determine the suitability of this product for a specific application.

DO NOT ATTEMPT to use any Kollmorgen product until the use of such product is completely understood. It is the responsibility of the user to make certain proper operation practices are understood. Kollmorgen products should be used only by qualified personnel and for the express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service Department, Kollmorgen, 672 South Military Road, P.O. Box 1960, Fond du Lac, WI 54936-1960. Kollmorgen can be reached by telephone at (920) 921-7100 or (800) 558-4808 in the United States or by e-mail at glmotion.support@kollmorgen.com.

Catalog No. (Order No.) M.1301.5524
Printed Version Part No. M.3000.0827
Electronic Version Part No. M.3000.0826
Release 04262010
©2010, Kollmorgen

Table of Contents

Table of Contents	3
1 Introduction to the MMC Smart Drive	q
1.1 Overview	
1.2 Contents of This Manual	
1.3 Software and Manuals	
1.3.1 Required Software and Manuals	
1.3.2 Suggested Manuals	
1.4 Kollmorgen Support Contact	
2 Safety Precautions	11
2.1 System Safety	11
2.1.1 User Responsibility	
2.1.2 Safety Instructions	
2.2 Safety Signs	12
2.3 Warning Labels	
2.4 Safety First	
2.5 Safety Inspection	13
2.5.1 Before Starting System	
2.6 After Shutdown	
2.7 Operating Safely	14
2.8 Electrical Service & Maintenance Safety	
2.9 Safe Cleaning Practices	15
3 Installing the MMC Smart Drive	17
3.1 Storing the Drive Before Installation	17
3.2 Unpacking the Drive	
3.3 Handling an MMC Smart Drive	
3.4 Inspecting the Drive Before Installation	
3.5 Complying with European Directives	
3.6 Conforming with UL and cUL Standards	
3.7 General Installation and Ventilation Requirements	
3.8 Controlling Heat Within the System	19
3.9 Bonding	20
3.9.1 Bonding a Subpanel Using a Stud	20
3.9.2 Bonding a Ground Bus Using a Stud	20
3.9.3 Bonding a Ground Bus or Chassis Using a Bolt	
3.9.4 Grounding Multiple Drive Cabinets	21
3.9.5 Bonding Multiple Subpanels	
3.10 Drive Mounting Guidelines	
3.11 Drive System Grounding Procedures	
3.11.2 Grounding Multiple Drives in the Same Cabinet	
3.12 System Wiring Guidelines	
3.12.1 Recommended Signal Separation	
3.12.2 Building Your Own Cables	
3.12.3 Routing Cables	
3.13 Wiring the Drive	
3.13.1 Sizing the 24V Power Supply	
3.13.2 System AC Power Wiring Guidelines	
3.13.3 Connecting Interface Cables	
3.13.4 Preparing Motor Connection Wires	

4 System Power Protection and Related Devices	. 35
4.1 AC Input Power Requirements	. 35
4.2 Protection	. 36
4.2.1 Motor Overload Protection	. 36
4.2.2 Motor Thermal Protection	. 36
4.2.3 230V Smart Drive Protection Requirements	. 36
4.2.4 460V Smart Drive Protection Requirements	
4.3 Line Reactors	
4.3.1 Specifications and Dimensions for Required Line Reactors	
4.4 Isolation Transformers	
4.5 External Shunts	
4.5.1 Choosing an External Shunt	
4.5.2 External Shunt Resistor Kits	
4.6 Line Filters.	
4.6.1 Line Filters and CE Compliance	
4.6.2 Dimensions for 230V Line Filters	
4.6.3 Dimensions for 460V Line Filters.	
5 230V Single Phase MMC Smart Drive	. 61
5.1 Control Section Connectors, Switches, LEDs	
5.1.1 LEDs	
5.1.2 PiCPro Port (Digital Interfaced Drives)	
5.1.3 PiCPro Port (Analog Drives)	
5.1.4 Node Address Rotary Switch (Digital Interfaced MMC-SD Only)	
5.1.5 Digital Link Ports (Digital Interfaced MMC-SD Only)	
5.1.6 Feedback Connectors (F1 & F2)	
5.1.6.1 Feedback Connectors (F1 and F2) Details	
5.1.6.2 Feedback Port (F1/F2) to Motor Cables	
5.1.7 Drive I/O Connector (IO)	
5.2 Power Section Connectors	
5.2.1 24 VDC IN/Brake Connector	
5.2.2 Motor Connector	
5.3 Specifications - 230V MMC Smart Drive	
5.3.1 General Data for all 230V Models	
5.3.2 Physical and Electrical Data for 230V Drives	102
5.4 Dimensions for 230V MMC Smart Drive	102
5.4 Difficultions for 250 V Minio Smart Drive	103
6 460V 3-Phase MMC Smart Drive	109
6.1 Control Section Connectors, Switches, LEDs	
6.2 Power Section Connectors.	
6.2.1 Size 1 Power Section Connectors	
6.2.1.1 Shunt/DC Bus Connector	
6.2.1.2 AC Power Connector	
6.2.1.3 Motor Connector	
6.2.1.4 24V Power Connector (J1)	
6.2.1.5 Motor Brake Connector (X101)	
6.2.2 Size 2 Power Section Connectors	
6.2.2.1 AC Power Connector	
6.2.2.2 Motor Connector	
6.2.2.3 24V Power Connector (J1)	
6.2.3 Size 3 Power Section Connectors	
6.2.3.1 AC Power Connector	
6.2.3.2 Motor Connector	
6.2.3.3 24V Power Connector (J1)	
0.2.0.0 2+v 1 0wor 00m100t01 (01)	120

6.2.3.4 Motor Brake Connector (X101)	124
6.2.4 Size 4 Power Section Connectors	124
6.2.4.1 AC Power Connector	
6.2.4.2 Motor Connector	
6.2.4.3 24V Power Connector (J1)	
6.2.4.4 Motor Brake Connector (X101)	
6.2.4.5 Fan Connector (X36)	
6.3 Typical 460V Drive Connection Layout	
6.4 Specifications - 460V MMC Smart Drive)	
6.4.1 Common Data for Size 1, 2, 3, 4 (All Models)	
6.4.2 Physical/Electrical Data for 460V Size 1 Smart Drives	
6.4.3 Physical/Electrical Data for 460V Size 2 Smart Drives	
6.4.4 Physical/Electrical Data for 460V Size 3 Smart Drives	
6.4.5 Physical/Electrical Data for 460V Size 4 Smart Drives	
6.5 Dimensions for the 460V Smart Drives	
6.5 Diffiensions for the 4007 Smart Drives	143
7 S200-DLS Drive	151
7.1 S200-DLS Option Card	153
7.1.1 LED Indicators	
7.1.2 Diagnostic Indicator Details	
7.1.3 Digital Link LEDs	
7.1.4 Node Address Rotary Switches	
7.1.5 Digital Link Ports	
7.1.6 Auxiliary Feedback Port	
7.1.7 Drive I/O and I/O Power Ports.	
7.1.8 Drive I/O Port Details	
7.1.8.1 Drive I/O Port Outputs	
7.1.8.2 Drive I/O Port Inputs	
7.1.8.3 Drive I/O Port Wiring Example	
7.1.0.3 Billy 1/0 Folt Willing Example	
8 Cables and Connections to External Devices	171
8.1 Flex Cable Installation Guidelines	171
8.1.1 Bending Radius	
8.1.2 Cable Tension	
8.2 Flex Cable Installation	
8.3 Motor Power/Fan/Brake Cable Pin Assignments	
8.4 Connecting Shunt Modules	
8.4.1 Connecting the 230V MMC Smart Drive to 300 W Shunt Module	
9 Maintenance and Troubleshooting	
9.1 Maintenance	
9.2 Troubleshooting	
9.2.1 General Troubleshooting	
9.2.2 Power-On Diagnostics	
9.2.2.1 Power LED	
9.2.2.2 Diagnostic LEDs	
9.2.3 Run-Time Diagnostics	
9.2.3.1 Troubleshooting with the Diagnostic LED (D1)	
9.2.3.2 Troubleshooting using the Status LED (STATUS)	192
10 Resolver Interface Option Module	407
10.1 Theory of Operation	
10.2 Installing the Resolver Module	
TV.4 Margilliu HE INGOUNEL MUUULE	197

11 Drive Resident Digital MMC Control	201
11.1 Introduction	201
11.1.1 Overview	201
11.1.2 Major Components	201
11.2 Installing the Drive Resident Digital MMC Control	
11.2.1 Installing into a 230V MMC-SD Drive	
11.2.2 Installing into a 460V MMC-SD Drive	
11.3 System Wiring Guidelines	
11.4 Starting an Operation	
11.4.1 Connecting the Drive Resident Digital MMC Control to the Appl	
11.4.2 Basic Setup and Maintenance Procedures	
11.4.3 Start-up Diagnostics	
11.4.3.1 Power LED	
11.4.3.2 Scan LED	
11.4.3.3 Drive Resident Digital MMC Control Start-Up Diagnostic	
11.4.4 MMC Run-Time Diagnostics	
11.5 Connectors & Operation	
11.5.1 PiCPro Port (P1)	
11.5.2 Block I/O Port (C1)	
11.5.3 User Port	
11.5.4 Ethernet Port	
11.5.5 General I/O Port (C5)	
11.5.5.1 DC Output Operation	
11.5.5.2 DC Input Operation	
11.6 Specifications	
12 Part Numbers	233
12.1 230V Smart Drives	233
12.2 460V Smart Drives	
12.3 S200-DLS Drives and Accessories	
12.4 Combination Fuses	
12.5 Option Modules	
12.5.1 Resolver Interface Option Module	
12.5.2 Drive Resident Digital MMC Control	
12.6 Direct Connect Cables	
12.6.1 Drive Programming Cable	
12.6.2 Standalone MMC to MMC Smart Drive I/O Cable	
12.7 Digital Link and Networking Cables	
12.8 Connector Kits	
12.9 Breakout Boards and Cables	
12.9.1 Drive Mounted Breakout Boards	
12.9.2 Panel Mounted Breakout Boards	
12.9.3 Breakout Board Kits	
12.9.4 Breakout Board Cables	
12.9.5 Flying Lead Cables	
12.10 Motor Cables (AKM/DDR Motors)	
12.10.1 Feedback Cables (AKM/DDR Motors)	
12.10.2 Motor Power Cables (AKM/DDR Motors)	
12.11 Motor Cables (LSM/MSM Motors)	
12.11.1 Feedback Cables (LSM/MSM Motors)	
12.11.2 Power Cables for Blower Fan (LSM/MSM Motors)	
12.11.3 Motor Power Cables (LSM/MSM Motors)	
12.12 Optional External Devices	
12.12.1 AC Line Filters	

12.12.2 AC Line Reactors		
12.12.3 External Shunt Resistor Kits	252	
12.13 Software	252	
13 Declarations of Conformity	253	
Appendix A - 460V MMC Smart Drive DC Bus Sharing	259	
A.1 Introduction	259	
A.2 DC Bus Sharing with AC Power to All Drives	259	
A.3 DC Bus Sharing with AC Power to One Drive	261	
Index	265	
Sales and Service	270	

MMC Smart Drive Hardware Manual - TABLE OF CONTENTS

1 Introduction to the MMC Smart Drive

1.1 Overview

This manual covers three distinct products:

- The Analog Interfaced MMC Smart Drive (MMC-SD) which receives motion commands via a ±10V analog input
- The Digital MMC Smart Drive (MMC-SD) which receives motion commands via a digital connection (Digital Link)
- The S200-DLS Digital Link Drive which receives motion commands via a digital connection (Digital Link)

Unless otherwise noted, all of the information in this manual applies to both the Analog Interfaced MMC Smart Drive and the Digital MMC Smart Drive, but not to the S200-DLS Drive. The S200-DLS Drive is detailed exclusively in Chapter 7 on page 151.

Features include:

- 230V, Single Phase drives available with power ratings of .5kW, 1kW, and 2 kW
- 460V, Three Phase drives available with power ratings of 1.3kW through 65kW
- Drive firmware in user upgradeable Flash memory
- Serial port for communications with PC-resident PiCPro
- Internal switch to control a mechanical brake
- Green Power LED and yellow Diagnostic LED
- Motor feedback types include incremental encoder, high resolution encoder, and resolver
- Eight General Purpose 24VDC Inputs
- Four General Purpose 24VDC outputs
- ±10V command input (Analog Interfaced MMC-SD only)
- Digital Link digital connections (Digital MMC-SD only)
- Optional MMC-SD Control (for Digital MMC-SD only)
- UL Listed and CE Marked.

1.2 Contents of This Manual

This manual includes the following major topics:

- Information to safely operate and maintain the equipment in a safe manner.
- User responsibilities for product acceptance and storage.
- Power and environmental information for general power, control cabinet, grounding, heat control and handling.
- Procedures for mounting, wiring, and connecting the MMC Smart Drive and standard Kollmorgen motors recommended for use with the MMC Smart Drive.
- Recommended drive system wiring guidelines for signal separation and differential devices. Methods to ensure ElectroMagnetic Compatibility.

- The location of connectors on the drive and descriptions of their functionality including I/O, encoder, serial interface and motor/brake connector locations and signal descriptions.
- Physical, electrical, environmental and functional specifications/dimensions.
- Description of the minimal maintenance necessary.
- A troubleshooting chart of potential problems and possible solutions.
- Part numbers and descriptions for the drive and related equipment.

1.3 Software and Manuals

1.3.1 Required Software and Manuals

PiCPro (one of the following)

- Professional Edition
- MMC Limited Edition
- Monitor Edition

1.3.2 Suggested Manuals

- Function/Function Block Reference Guide
- Motion Application Specific Function Block Manual
- Ethernet Application Specific Function Block Manual
- General Purpose Application Specific Function Block Manual

1.4 Kollmorgen Support Contact

Contact your local Kollmorgen representative for:

- Sales and order support
- Product technical training
- Warranty support
- Support service agreements

Kollmorgen Technical Support can be reached:

- In the United States, telephone (800) 558-4808
- Outside the United States, telephone (920) 921-7100
- E-mail address: glmotion.support@kollmorgen.com
- Web site: www.glcontrols.com

2 Safety Precautions

READ AND UNDERSTAND THIS SECTION IN ITS ENTIRETY
BEFORE UNDERTAKING INSTALLATION OR ADJUSTMENT OF
THE MMC SMART DRIVE AND ANY ASSOCIATED SYSTEMS OR
EQUIPMENT

The instructions contained in this section will help users to operate and maintain the equipment in a safe manner.

PLEASE REMEMBER THAT SAFETY IS EVERYONE'S RESPONSIBILITY

2.1 System Safety

The basic rules of safety set forth in this section are intended as a guide for the safe operation of equipment. This general safety information, along with explicit service, maintenance and operational materials, make up the complete instruction set. All personnel who operate, service or are involved with this equipment in any way should become totally familiar with this information prior to operating.

2.1.1 User Responsibility

It is the responsibility of the user to ensure that the procedures set forth here are followed and, should any major deviation or change in use from the original specifications be required, appropriate procedures should be established for the continued safe operation of the system. It is strongly recommended that you contact your OEM to ensure that the system can be safely converted for its new use and continue to operate in a safe manner.

2.1.2 Safety Instructions

- Do not operate your equipment with safety devices bypassed or covers removed.
- Only qualified personnel should operate the equipment.
- Never perform service or maintenance while automatic control sequences are in operation.
- To avoid shock or serious injury, only qualified personnel should perform maintenance on the system.

ATTENTION

Do not touch the main power supply fuses or any components internal to the power modules while the main power supply switch is ON. Note that when the main power switch is OFF, the incoming supply cable may be live.

GROUNDING (Protective Earth)

The equipment must be grounded (connected to the protective earth connection) according to OEM recommendations and to the latest local regulations for electrical safety. The grounding (protective earth) conductor must not be interrupted inside or outside the equipment enclosures. The wire used for equipment grounding (connection to protective earth) should be green with a yellow stripe.

2.2 Safety Signs

The purpose of a system of safety signs is to draw attention to objects and situations which could affect personal or plant safety. It should be noted that the use of safety signs does not replace the need for appropriate accident prevention measures. Always read and follow the instructions based upon the level of hazard or potential danger.

2.3 Warning Labels

Hazard warning

Danger Electric Shock Risk

When you see this safety sign on a system, it gives a warning of a hazard or possibility of a hazard existing. The type of warning is given by the pictorial representation on the sign plus text if used.

To ignore such a caution could lead to severe injury or death arising from an unsafe practice.

Danger, Warning, or Caution warning

Symbol plus DANGER, WARNING or CAUTION: These notices provide information intended to prevent potential sonal injury and equipment damage.

Hot Surface warning

Symbol plus HOT SURFACE: These notices provide information intended to prevent potential posonal injury.

2.4 Safety First

Kollmorgen equipment is designed and manufactured with consideration and care to generally accepted safety standards. However, the proper and safe performance of the equipment depends upon the use of sound and prudent operating, maintenance and servicing procedures by trained personnel under adequate supervision.

For your protection, and the protection of others, learn and always follow these safety rules. Observe warnings on machines and act accordingly. Form safe working habits by reading the rules and abiding by them. Keep these safety rules handy and review them from time to time to refresh your understanding of them.

2.5 Safety Inspection

2.5.1 Before Starting System

- Ensure that all guards and safety devices are installed and operative and all doors which carry warning labels are closed and locked.
- Ensure that all personnel are clear of those areas indicated as potentially hazardous.
- Remove (from the operating zone) any materials, tools or other objects that could cause injury to personnel or damage the system.
- Make sure that the control system is in an operational condition.
- Make certain that all indicating lights, horns, pressure gauges or other safety devices or indicators are in working order.

2.6 After Shutdown

Make certain all controlled equipment in the plant is safe and the associated electrical, pneumatic or hydraulic power is turned off. It is permissible for the control equipment contained in enclosures to remain energized provided this does not conflict with the safety instructions found in this section.

2.7 Operating Safely

- Do not operate the control system until you read and understand the operating instructions and become thoroughly familiar with the system and the controls.
- Never operate the control system while a safety device or guard is removed or disconnected
- Where access to the control system is permitted for manual operation, only those
 doors which provide that access should be unlocked. They should be locked
 immediately after the particular operation is completed.
- Never remove warnings that are displayed on the equipment. Torn or worn labels should be replaced.
- Do not start the control system until all personnel in the area have been warned.
- Never sit or stand on anything that might cause you to fall onto the control equipment or its peripheral equipment.
- Horseplay around the control system and its associated equipment is dangerous and should be prohibited.

Know the emergency stop procedures for the system.

- Never operate the equipment outside specification limits.
- Keep alert and observe indicator lights, system messages and warnings that are displayed on the system.
- Do not operate faulty or damaged equipment. Make certain proper service and maintenance procedures have been performed.

2.8 Electrical Service & Maintenance Safety

- ALL ELECTRICAL OR ELECTRONIC MAINTENANCE AND SERVICE SHOULD BE PERFORMED BY TRAINED AND AUTHORIZED PERSONNEL ONLY.
- It should be assumed at all times that the POWER is ON and all conditions treated as live. This practice assures a cautious approach which may prevent accident or injury.
- To remove power:

LOCK THE SUPPLY CIRCUIT DISCONNECTING MEANS IN THE OPEN POSITION.

APPLY LOCKOUT/TAGOUT DEVICES IN ACCORDANCE WITH A DOCU-MENTED AND ESTABLISHED POLICY. Make sure the circuit is safe by using the proper test equipment. Check test equipment regularly.

ATTENTION

Care should be taken if you are manually discharging the bus capacitors.

WARNING

Even after power to the drive is removed, it may take up to 10 minutes for bus capacitors to discharge to a level below 50 VDC. To be sure the capacitors are discharged, measure the voltage across the + and - terminals for the DC bus.

- There may be circumstances where troubleshooting on live equipment is required.
 Under such conditions, special precautions must be taken:
 - Make sure your tools and body are clear of the areas of equipment which may be live.
 - Extra safety measures should be taken in damp areas.
 - Be alert and avoid any outside distractions.
 - Make certain another qualified person is in attendance.
- Before applying power to any equipment, make certain that all personnel are clear of associated equipment.
- Control panel doors should be unlocked only when checking out electrical equipment or wiring. On completion, close and lock panel doors.
- All covers on junction panels should be fastened closed before leaving any job.
- Never operate any controls while others are performing maintenance on the system.
- Do not bypass a safety device.
- Always use the proper tool for the job.
- Replace the main supply fuses only when electrical power is OFF (locked out).

2.9 Safe Cleaning Practices

- Do not use toxic or flammable solvents to clean control system hardware.
- Turn off electrical power (lock out) before cleaning control system assemblies.
- Keep electrical panel covers closed and power off when cleaning an enclosure.

MMC Smart Drive Hardware Manual - SAFETY PRECAUTIONS

- Always clean up spills around the equipment immediately after they occur.
- Never attempt to clean a control system while it is operating.
- Never use water to clean control equipment unless you are certain that the equipment has been certified as sealed against water ingress. Water is a very good conductor of electricity and the single largest cause of death by electrocution.

3 Installing the MMC Smart Drive

NOTE

The National Electrical Code and any other governing regional or local codes overrule the information in this manual. Kollmorgen does not assume responsibility for the user's compliance or non-compliance with any code, national, local or otherwise, for the proper installation of this drive and associated systems or equipment. Failure to abide by applicable codes creates the hazard of personal injury and/or equipment damage.

3.1 Storing the Drive Before Installation

The drive should remain in the shipping container prior to installation. If the equipment is not to be used for a period of time, store it as follows:

- Use a clean, dry location
- Maintain the storage temperature and humidity as shown in the specifications section of this manual.
- Store it where it cannot be exposed to a corrosive atmosphere
- Store it in a non-construction area

3.2 Unpacking the Drive

Remove all packing material, wedges, and braces from within and around the components. After unpacking, check the name plate Material Number against the purchase order of the item(s) against the packing list. The model number, serial number and manufacturing date code are located on the side of the unit.

3.3 Handling an MMC Smart Drive

The case protects the MMC Smart Drive's internal circuitry against mechanical damage in shipping and handling.

However, like any electronic device, the circuitry can be destroyed by:

- Conditions exceeding those detailed in the specifications tables shown in the Specifications sections in this manual.
- moisture condensing inside the module
- static discharge
- exposure to a magnetic field strong enough to induce a current in the circuitry
- vibration, and other hazards

3.4 Inspecting the Drive Before Installation

Inspect the unit for any physical damage that may have been sustained during shipment.

If you find damage, either concealed or visible, contact your buyer to make a claim with the shipper. If degraded performance is detected when testing the unit, contact your distributor or Kollmorgen. Do this as soon as possible after receipt of the unit.

3.5 Complying with European Directives

For industrial products installed within the European Union or EEC regions, certain directives and standards apply. See "Conformity" in the Specifications sections of Chapters 5 and 6 for applicable directives.

Servo amplifiers are considered to be subsystems when incorporated into electrical plants and machines for industrial use. The Kollmorgen servo amplifiers have been designed and tested as such. They bear the CE mark and are provided with a Declaration of Conformance. However, it is the overall machine or system design that must meet European Directives and standards. To help the manufacturer of the machine or plant meet these directives and standards, specific guidelines are provided in this documentation. These include such things as shielding, grounding, filters, treatment of connectors and cable layout.

3.6 Conforming with UL and cUL Standards

Kollmorgen drives meet safety and fire hazard requirements as outlined in "Conformity" in the Specifications sections of Chapter 13, Declarations of Conformity.

3.7 General Installation and Ventilation Requirements

- The drive must be enclosed in a grounded NEMA12 enclosure offering protection to IP55 such that they are not accessible to an operator or unskilled person, in order to comply with UL[®] and CE requirements. A NEMA 4X enclosure exceeds these requirements providing protection to IP66.
- The environmental conditions must not exceed those detailed in the specifications tables shown in the Specifications sections in this manual.
- Install the panel on a properly bonded, flat, rigid, non-painted galvanized steel, vertical surface that won't be subjected to shock, vibration, moisture, oil mist, dust, or corrosive vapors.
- Maintain minimum clearances for proper airflow, easy module access, and proper cable bend radius.
- Plan the installation of your system so that you can perform all cutting, drilling, tapping, and welding with the drive removed from the enclosure. Because the drive is of the open type construction, be careful to keep any metal debris from falling into it. Metal debris or other foreign matter can become lodged in the circuitry, which can result in damage to components.

The MMC Smart Drive is suitable for operation in a pollution degree 2 environment (i.e., normally, only non-conductive pollution occurs). Install the drive away from all sources of strong electromagnetic noise. Such noise can interfere with MMC Smart Drive operation.

Protect the MMC Smart Drive system from all the following:

- conductive fluids and particles
- corrosive atmosphere
- explosive atmosphere

Diagrams included with this manual and recommendations may be modified if necessary so the wiring conforms to current NEC standards or government regulations.

Table 3-1: Cabinet Clearance Dimensions			
	Minimum Clearance		
Location	230V Drive	460V Drive	
Above Drive Body	2.0 in. (50.8 mm)	4.0 in. (100 mm)	
Below Drive Body	2.0 in. (50.8 mm)	4.0 in. (100 mm)	
Each Side of Drive	.50 in. (12.7 mm)	None	
In Front of Drive (for cabling)	3.0 in. (76.2 mm)	3.0 in. (76.2 mm)	

NOTE

Use filtered or conditioned air in ventilated cabinets. The air should be free of oil, corrosives, or electrically conductive contaminants.

3.8 Controlling Heat Within the System

The MMC Smart Drive hardware case is designed to promote air circulation and dissipate heat. Normally no fans or air conditioners are needed. However, if the environment outside the control cabinet is hot or humid, you may need to use a fan, heat exchanger, dehumidifier or air conditioner to provide the correct operating environment.

Make sure that the temperature and humidity within the drive cabinet does not exceed that which is shown in the specifications sections of this manual.

Make sure that components installed in the cabinet with the MMC Smart Drive do not raise the temperature above system limits and that any hot spots do not exceed specifications. For example, when heat-generating components such as transformers, other drives or motor controls are installed, separate them from the drive by doing one of the following:

- Place them near the top of the control cabinet so their heat output rises away from the MMC Smart Drive.
- Put them in another control cabinet above or to one side of the cabinet with the MMC Smart Drive. This protects the MMC Smart Drive from both heat and electrical noise.

The MMC Smart Drive itself is a source of heat, though in most installations its heat dissipates without harmful effects. System heat is generated from power dissipated by:

- the drive
- field side input/output components
- other drives in the cabinet
- the logic power supply

- external shunt resistors
- line reactors

CAUTION

If the MMC Smart Drive is operated outside the recommended environmental limits, it may be damaged. This will void the warranty.

3.9 Bonding

Connecting metal chassis, assemblies, frames, shields and enclosures to reduce the effects of electromagnetic interference (EMI) is the process of bonding.

Most paints act as insulators. To achieve a good bond between system components, surfaces need to be paint-free or metal plated. Bonding metal surfaces creates a low-impedance exit path for high-frequency energy. Improper bonding blocks this direct exit path and allows high-frequency energy to travel elsewhere in the cabinet. Excessive high-frequency energy can negatively affect the operation of the drive.

3.9.1 Bonding a Subpanel Using a Stud

- 1. Weld threaded mounting studs to the back of the enclosure.
- 2. Brush off any non-conductive materials (e.g. paint) from the studs.
- 3. Remove any non-conductive materials from the front of the subpanel.
- 4. Position the mounting holes on the subpanel over the mounting studs on the back of the enclosure and slide the subpanel onto the studs.
- 5. Attach the subpanel to the mounting stud by sliding a star washer over the stud and then turn and tighten a nut onto the stud.

3.9.2 Bonding a Ground Bus Using a Stud

- 1. Weld threaded mounting studs to the back of the subpanel.
- 2. Brush off any non-conductive materials (e.g. paint) from the studs.
- 3. Slide a flat washer over the studs.
- 4. Remove any non-conductive materials from around the mounting hole on the chassis mounting bracket or ground bus.
- 5. Position the mounting hole of the chassis or ground bus over the studs on the back of the subpanel and slide the mounting bracket or ground bus onto the stud.
- 6. Attach the subpanel to the subpanel stud by sliding a star washer and then a flat washer over the stud. Turn and tighten a nut onto the stud.

3.9.3 Bonding a Ground Bus or Chassis Using a Bolt

- 1. Brush off any non-conductive materials (e.g. paint) from the threaded bolt (s).
- 2. Slide a star washer over the threaded bolt (s).
- 3. Use a subpanel having tapped mounting holes. Remove any non-conductive materials from around the mounting holes on both sides of the subpanel.
- 4. Turn the threaded bolts into the subpanel mounting holes.

- 5. Slide a star washer onto the threaded end of the bolt.
- 6. Turn and tighten a nut onto the stud.
- 7. Slide a flat washer onto the threaded end of the bolt.
- 8. Position the mounting holes on the groundbus or mounting bracket over the threaded bolts and turn the bolts until they come through the grounding bus or mounting bracket.
- 9. Slide a star washer onto the threaded end of the bolt.
- 10. Slide a flat washer onto the threaded end of the bolt.
- 11. Turn and tighten a nut onto the bolt.

3.9.4 Grounding Multiple Drive Cabinets

- 1. Mount one bonded ground bus in each cabinet.
- 2. Designate the cabinet ground bus in one and only one of the cabinets as the common ground bus for all of the cabinets in the system.
- 3. Connect the ground wires from the ground bus in each individual cabinet ground bus to the designated common ground bus (mounted in only one of the cabinets).
- 4. Connect the common cabinet ground bus to an external ground system that is connected to a single point ground.

3.9.5 Bonding Multiple Subpanels

Kollmorgen recommends bonding both the top and bottom of subpanels sharing the same enclosure. Use a 25.4 mm (1.0 in.) \times 6.35 mm (0.25) wire braid. Be sure the area around each wire braid fastener is clear of any non-conductive materials. Bond the cabinet ground bus to at least one of the subpanels.

NOTE

Subpanels that are not bonded together may not share a common low impedance path. This difference in impedance may affect networks and other devices that span multiple panels.

3.10 Drive Mounting Guidelines

- A control cabinet for the MMC Smart Drive should have a NEMA-12 rating or better. A cabinet with this rating protects its contents from dust and mechanical damage.
- The cabinet must be large enough to provide adequate air circulation for the MMC Smart Drive and other components. Always allow for adequate air flow through the MMC Smart Drive vents.
- The cabinet must have a rigid non-painted galvanized metal surface to mount the MMC Smart Drive on.

The cabinet door should open fully for easy access.

IMPORTANT

Post warnings according to National, State, or local codes for the voltage present in the control cabinet. Diagrams included with this manual and recommendations may be modified if necessary so the wiring conforms to current NEC standards or government regulations.

NOTE

This drive contains parts and assemblies that are sensitive to ESD (Electrostatic Discharge). Follow static control precautions during installation, testing, service, or repair of this assembly. Parts and assemblies can be damaged if proper precautions are not taken.

- 1. Lay out the positions for the drive and accessories in the enclosure.
- 2. Attach the drive to the cabinet, first using the upper mounting slots of the drive and then the lower. The recommended mounting hardware is M5 metric(#10-32).
- 3. Tighten all mounting fasteners.

3.11 Drive System Grounding Procedures

The ground of the MMC Smart Drive power source must be connected directly to a **Single Point Ground (SPG)** tie block. The tie block should be made of brass or copper, bolted or brazed to the control cabinet. If the tie block is bolted rather than brazed, scrape away paint or grease at the point of contact. Put star washers between the tie block and the cabinet to ensure good electrical contact.

Metal enclosures of power supplies, drives, etc., should also have good electrical contact with the SPG.

Metal enclosures of power supplies, drives, etc., should also have good electrical contact with the SPG.

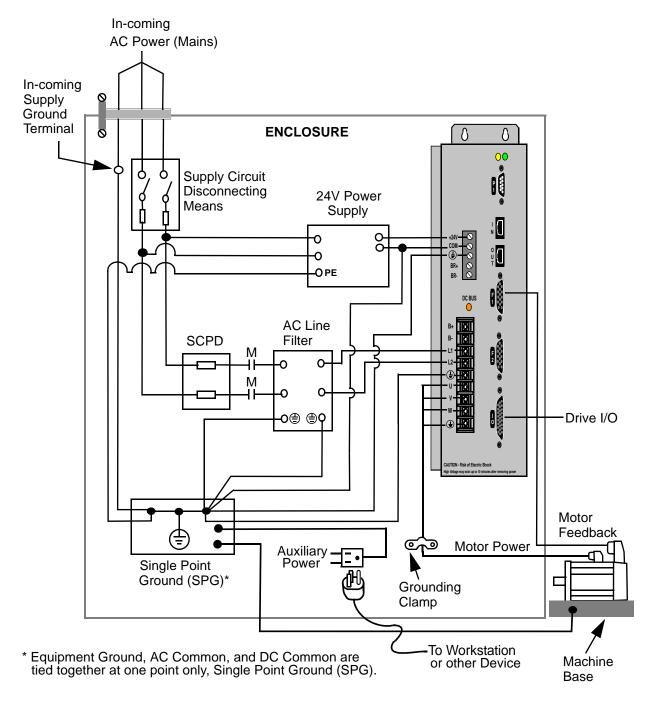
CAUTION

The Single Point Ground should be the only common point for all the ground lines. If not, ground loops may cause current flow among components of the system which can interfere with proper operation of the MMC Smart Drive.

Devices to be connected directly to the Single Point Ground include:

- Plant safety ground.
- Protective earth ground(s) from the MMC Smart Drive power terminals.
- The metal panel or cabinet on which the MMC Smart Drive is mounted.
- "Common" or "0 V" lines from power supplies that provide +24 power to devices and external power to the I/O modules and the devices to which they are connected.

- Protective grounds from the devices themselves, such as device drivers, machinery, and operator interface devices.
- Protective earth ground from line and load sides of any AC line filters.
- The ground of the power source of the computer workstation or laptop, if any, from which you monitor the system operation. An AC outlet in the control cabinet is recommended.
- Single point grounds from other control cabinets, if any, in the system.


IMPORTANT

You must ensure that the "0V" or "Common" of all devices connected to the MMC Smart Drive are connected to Single Point Ground (SPG). Failure to do so may result in erratic operation or damage to the MMC Smart Drive and devices connected to it. Examples of devices connected to the MMC Smart Drive include the power source that supplies power to the MMC Smart Drive and devices connected to the MMC Smart Drive PiCPro Port. Note that some devices (for example, a Personal Computer) may have their "0V" and "Protective Earth Ground" connected together internally, in which case only one connection has to be made to SPG for that device. Also note that the AC/DC converter for some portable PCs have chassis connected from the wall plug to the PC. The ground for the AC outlet must be connected to the SPG.

Also, you must ensure that the MMC Smart Drive "Protective Earth Ground" connection is connected to SPG, and that the MMC Smart Drive is mounted to a metal panel or enclosure that is connected to SPG.

3.11.1 Grounding Requirements

Figure 3-1: Example of Grounding Required for CE Compliant Single Phase 230V Drive System

 Mount the filter as close to the Drive as possible. If the distance exceeds 600 mm (2.0 ft), use shielded cable between the Drive and the filter, strapping the shield to chassis at each end of the cable. This is particularly important for attenuation of higher frequency emissions (5-30 MHz).

- Shield or separate the wires connecting the AC power to the filter from other
 power cables (e.g., connections between the Drive and the filter, motor power
 cable, etc.). If the connections are not separated from each other, the EMI on the
 Drive side of the filter can couple over to the source side of the filter, thereby
 reducing or eliminating the filter's effectiveness. The coupling mechanism can
 radiate or allow stray capacitance between the wires.
- Bond the filter and the Drive to a grounded conductive surface (the enclosure) to
 establish a high frequency (HF) connection. To achieve the HF ground, the contact surface interface between the filter, Drive, and the enclosure should be free
 from paint or any other type of insulator.
- Size the filter following manufacturer recommendations.
- Provide a large enough ground bar to connect all wires with no more than two wires per connection.
- Clamp motor power cable shield for EMC termination.

IMPORTANT

Filter AC power to the drives to be compliant to CE emission requirements.

WARNING

High voltage exists in AC line filters. The filter must be grounded properly before applying power. Filter capacitors retain high voltages after power removal. Before handling the equipment, voltages should be measured to determine safe levels. Failure to observe this precaution could result in personal injury.

3.11.2 Grounding Multiple Drives in the Same Cabinet

- 1. Mount a common bonded ground bus in the cabinet.
- Connect the ground wires for all drives to the common bonded cabinet ground bus.
- 3. Connect the common bonded cabinet ground bus to an external ground system that is connected to a single point ground.

3.12 System Wiring Guidelines

The MMC Smart Drive relies on electrical signals to report what is going on in the application and to send commands to it. In addition, signals are constantly being

exchanged within the system. The MMC Smart Drive is designed for use in industrial environments, but some guidelines should be followed.

This section contains common system wiring configurations, size, and practices that can be used in a majority of applications. National Electrical Code, local electrical codes, special operating temperatures, duty cycles, or system configurations take precedence over the values and methods provided.

Wherever possible, install wiring and related components in the following order:

- 1. main power line disconnecting means
- 2. transformer (optional)
- 3. fuses (SCPD)
- 4. motor control
- 5. line reactor (as required)
- 6. line filter (optional)
- 7. device protection fuses (as required)
- drive
- 9. shunt resistors (optional)

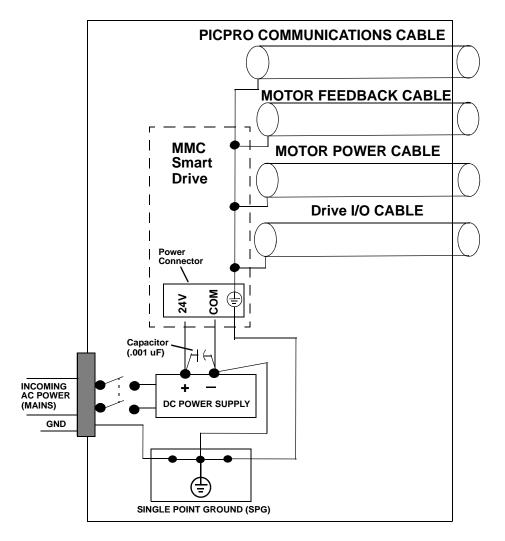
3.12.1 Recommended Signal Separation

Kollmorgen recommends separation of low level signals (encoder, analog, communications, fast DC inputs) from high voltage or high current lines. Maintain at least two inches of separation.

Inside a control cabinet, connect the shields of shielded cables at the MMC Smart Drive. It is recommended that factory cables (from Kollmorgen) are used between MMC drives, controls, and motors to ensure CE compliance.

WARNING

Use care when wiring I/O devices to the MMC Smart Drive and when plugging in cables. Wiring the wrong device to the connector or plugging a connector into the wrong location could cause intermittent or incorrect machine operation or damage to equipment.


WARNING: FEEDBACK DEVICE DAMAGE

Feedback Cable Installation and Removal

All power to the Smart Drive (24 Vdc and main AC power) must be removed before connecting/disconnecting feedback cable connectors at the Smart Drive (F1 and F2 connector) or at the motor feedback device. Also, all connections must be secure when power is applied. Failure to follow these precautions may result in damage to the feedback device or Smart Drive.

Figure 3-2: Recommended Signal Separation

To prevent excessive conducted emissions from a DC power source (typically 24V) used for digital I/O, a .001 micro farad capacitor should be used. Connect the capacitor from the +24V DC to COMMON at the distribution terminals.

3.12.2 Building Your Own Cables

- Connect the cable shield to the connector shells on <u>both</u> ends of the cable for a complete 360 degree connection.
- Use a twisted pair cable whenever possible, twisting differential signals with each other, and single-ended signals with the appropriate ground return.

NOTE

Kollmorgen cables are designed to minimize EMI and are recommended over hand-built cables.

3.12.3 Routing Cables

Guidelines for routing cables in a cabinet include the following:

- Always route power and control cables separately.
- Do not run high and low voltage wires/cable in the same wireway.
- Cross high and low voltage conductors at 90 degree angles.
- On parallel cable runs, maximize the distance between high and low voltage cables.
- Maintain the least amount of unshielded cable leads.

3.13 Wiring the Drive

These procedures assume you have bonded and mounted your MMC Smart Drive to the subpanel and that there is no power applied to the system.

3.13.1 Sizing the 24V Power Supply

When you size your power supply, you must ensure that the supply is large enough to handle the total load. Refer to the specification tables for the +24VDC input power requirements.

In most cases, one power supply can be used for an entire control system. However, depending upon the drives and external I/O used in the application, the power distribution may be split into two or more power supplies.

Use of switches in series with the 24VDC power input is not recommended. The drive contains energy storage capacitors at the inputs. While no harm is done to the drive, this much capacitance across the 24VDC source may cause voltage dips when the switch in series with the 24VDC power is closed.

CAUTION

A possible ignition hazard within the MMC Smart Drive exists if excessive current is drawn from the 24 VDC powering the MMC Smart Drive. To prevent this possibility (due to improper wiring or 24 VDC supply failure), a fuse should be used in series with the 24 VDC to the MMC Smart Drive. Specifically, a 4 A max. "UL248 Series" fuse should be used. In addition, the 24 VDC shall be supplied by an isolating source such that the maximum open circuit voltage available to the MMC Smart Drive is not more than 30 VDC.

The +24V power to the MMC Smart Drive is connected through a Phoenix 5-pin connector with a plug-in terminal block. The ground from the power source and the ground from the MMC Smart Drive must be connected to the Single-Point Ground (SPG). Devices connected to the Drive I/O Port may have their own power sources for input or output control signals provided that each one is:

- at the correct voltage and current levels for the module and the device.
- connected to the same Single-Point Ground that the MMC Smart Drive uses.

It is recommended that the same main disconnect switch be used for the MMC Smart Drive and for all devices in the application.

IMPORTANT

No matter how the system is installed, before you connect the MMC Smart Drive to the application, make sure that power is off to the system and to the devices that are wired to the MMC Smart Drive.

3.13.2 System AC Power Wiring Guidelines

NOTE

In addition to the guidelines listed below, follow all national and local electrical codes and regulations.

- Install a supply circuit disconnecting means.
- Install a Short Circuit Protective Device (SCPD).
- Due to high inrush current at power-up, use dual element time delay fuses for the SCPD.
- Install additional device protection fusing (460V models). Only high speed type fuses provide proper protection.
- Refer to the Specifications sections in Chapter 4 of this manual for device and conductor requirements.
- Clamp the motor power cable shield to the drive using the Kollmorgen supplied bracket. Maximum tightening torque for bracket screws is 10 lb-in.

- Use shielded cables and AC line filters (for CE Compliance). Make sure that wiring from the drive to the line filter is as short as possible. Locate common grounding bus bars as close as possible to the drive. The braid shield of the cable should be clamped at the drive or mounting panel.
- Power connections for each drive in a system should be separately connected directly to the AC power supply. Do not daisy chain drive power connections.
- Make sure the phase to neutral ground voltage does not exceed the input ratings of the drive when using an autotransformer.

3.13.3 Connecting Interface Cables

IMPORTANT

This drive contains ESD (Electrostatic Discharge) sensitive parts and assemblies. Follow static control precautions when installing, testing, servicing, or repairing components in a drive system.

- Plug PiCPro cable into the PiCPro port (9-pin D-shell for the Analog Interfaced MMC-SD, and 6-pin mini-din for the Digital Interfaced MMC-SD).
- Plug the one 15-pin D-shell, Feedback cable into the FBK1 connector.
- Plug the 26-pin D-shell, Drive I/O cable into the I/O connector.
- Tighten the attachment screws for all cables to the drive connectors.

WARNING

To avoid personal injury and/or equipment damage:

- Ensure installation complies with specifications regarding wire types, conductor sizes, branch circuit protection, and disconnect devices. The National Electrical Code (NEC) and local codes outline provisions for safely installing electrical equipment.
- •Ensure motor power connectors are used for connection purposes only. Do not use them to turn the unit on and off.
- •To avoid personal injury and/or equipment damage, ensure shielded power cables are grounded to prevent potentially high voltages on the shield.

WARNING: FEEDBACK DEVICE DAMAGE

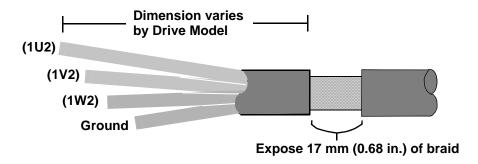
Feedback Cable Installation and Removal

All power to the Smart Drive (24 Vdc and main AC power) must be removed before connecting/disconnecting feedback cable connectors at the Smart Drive (F1 and F2 connector) or at the motor feedback device. Also, all connections must be secure when power is applied. Failure to follow these precautions may result in damage to the feedback device or Smart Drive.

3.13.4 Preparing Motor Connection Wires

NOTE

It is recommended that Kollmorgen cables be used. Kollmorgen cables are designed to minimize EMI and are recommended over hand-built cables.

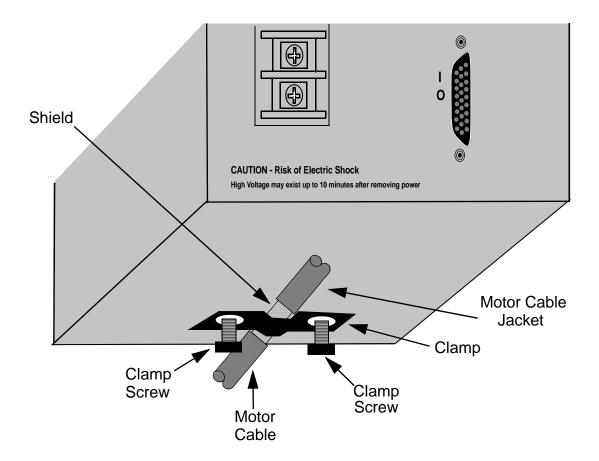

- 1. Strip back cable jacket approximately 152 mm (6.0 in.) from the end of the cable.
- 2. Strip approximately 12 mm (0.50 in.) of insulation from the end of each conductor. Do not tin ends after stripping.

IMPORTANT

Do not nick, cut or damage wire strands while removing wire insulation.

3. Strip the cable jacket away from the cable until the shield braid is visible. Expose 17 mm (0.68 in.) of cable shield braid.

Figure 3-3: : Motor Cable



- 4. Attach the individual wires from the motor cable to their assigned terminal. Refer to Chapters 5 and 6 for front panel connectors and terminal assignments.
- 5. Tighten each terminal screw.

- 6. Gently pull on each wire to make sure it does not come out of its terminal. Reinsert and tighten any loose wires.
- 7. Attach the plastic cover to terminal block

Factory supplied motor power cables for LSM, MSM, FSM, AKM, DDR, CDDR, and YSM Series motors are shielded, and the power cable is designed to be terminated at the drive during installation. A small portion of the cable jacket is removed which exposes the shield braid. The exposed shield braid must be clamped to the drive chassis using the provided clamp and clamp screws

Figure 3-4: Terminating Motor Power Cable for 230V Drive

FROM MAINS Cable Jacket Shield Clamp Screw Shield Clamped to Mounting Panel Clamp Screw Maximum 10 cm from Cable Jacket the Edge of the Drive MMC-SD 460 DRIVE Shield-Clamp Shield Clamped to Bottom of Drive Cable Jacket Clamp' Screw

TO MOTOR

Figure 3-5: Terminating Incoming AC Power (Mains) Cable for 460V Drive

MMC Smart Drive Hardware Manual - INSTALLING THE MMC SMART DRIVE

4 System Power Protection and Related Devices

4.1 AC Input Power Requirements

The MMC Smart Drive is powered from an external AC power source. The power required for each drive type is listed in Table 4-1.

Table 4-1: AC Input Power Requirements					
		Requirements			
Drive Model ^a	Input (ninal Current os _{RMS})		sformer VA) ^b	
230 Volt Drives ^a	Input Voltage = 120VAC	Input Voltage = 230VAC	Input Voltage = 120VAC	Input Voltage = 230VAC	
MMC-SD-0.5-230	5	5	.5	1	
MMC-SD-1.0-230	9	9	1	2	
MMC-SD-2.0-230	18	18	2	4	
460 Volt Drives ^a	Input Voltage = 230VAC	Input Voltage = 460VAC	Input Voltage = 230VAC	Input Voltage = 460VAC	
MMC-SD-1.3-460	2.8	2.44	1.2	3.0	
MMC-SD-2.4-460	4.8	4.18	2.0	5.0	
MMC-SD-4.0-460	8.1	7.0	3.4	8.5	
MMC-SD-6.0-460	12.4	10.8	5.2	12.8	
MMC-SD-8.0-460	17.0	14.8	7.0	17.6	
MMC-SD-12.0-460	19.2	16.7	8.0	19.5	
MMC-SD-16.0-460	24.2	21.1	10.0	25.0	
MMC-SD-24.0-460	38.0	33.1	16.0	39.5	
MMC-SD-30.0-460	53.0	46.0	22.0	55.0	
MMC-SD-42.0-460	70.0	70.0	29.0	73.0	
MMC-SD-51.0-460	84.0	73.0	35.0	87.0	
MMC-SD-65.0-460	105	91.0	44.0	110	

- a. Drive Model pertains to Analog (no dash suffix) and digital (-D & -DN)
- b. See section 4.4 on page 47 for calculating application transformer requirement

4.2 Protection

4.2.1 Motor Overload Protection

The MMC Smart Drive utilizes solid state motor overload protection in accordance with UL508C that operates:

- within 8 minutes at 200% overload
- within 20 seconds at 600% overload

4.2.2 Motor Thermal Protection

The motor may be supplied with one of the following thermal protectors:

- A thermostat (normally closed, contacts rated at 10ma or greater). The thermostat's contact will open when the motor's maximum operating temperature is exceeded. Connect the thermostat between 0V and pin 11 of the drive's Feedback Connector (F2).
- A thermistor (Phillips KTY84-130 PTC or equivalent recommended). The motor
 manufacturer will provide the motor's maximum operating temperature. This temperature may be entered into the Motor Temperature Parameters in PiCPro. Connect the thermistor output to pin 11 of the drive's Feedback Connector (F2).

4.2.3 230V Smart Drive Protection Requirements

Two types of Protection must be provided in case the Smart Drive malfunctions:

- Short Circuit Protection this protection helps minimize damage to the Smart Drive in the case of a Short Circuit condition. Short Circuit Protection is required to meet UL508C requirements.
- Branch Circuit Over Current Protection this protection helps minimize damage to the Smart Drive and helps protect the wiring between the Smart Drive and the Over Current Protection Device in the case of a sustained Over Current condition. Over Current Protection must be provided in accordance with NFPA 79 7.2.3 and 7.2.10. Supplemental UL1007 protectors shall not be used to provide Branch Circuit Protection.

When using the 230V Smart Drive, the fuse that provides Short Circuit Protection also provides Over Current Circuit Protection, therefore a separate Short Circuit Protection fuse is not required.

Two types of fuses are defined for use with the 230V Smart Drive:

Non-restricted - If the Branch Circuit supplying power to the drive is capable of delivering no more then 5,000 RMS symetrical short circuit amperes (240V maximum), the fuse type provided for Protection has no "Clearance I²t" restrictions, and must meet the following requirements:

- have a current rating no greater than the "Maximum Fuse Size" in Table 4-2
- have an interrupt capability no less than the short circuit rating (Prospective Shortcircuit Symetrical Amperes) of the Branch Circuit supplying the drive.

Restricted - If the Branch Circuit supplying power to the drive is capable of delivering between 5,000 and 100,000 RMS symetrical short circuit amperes (240V maximum), the fuse type provided for Protection has "Clearance I²t" restrictions, and must meet the following requirements:

- meet both of the requirements for a non-restricted fuse (above)
- be a Class RK1, J, or CC dual element current limiting fuse

Table 4-2: 230V Smart Drive Protection Devices				
2007 D : 14 1 13	Maximum Fuse Size ^b			
230V Drive Model ^a	V _{IN} = 120VAC	V _{IN} = 230VAC		
MMC-SD-0.5-230	12A	12A		
MMC-SD-1.0-230	15A	15A		
MMC-SD-2.0-230	30A	30A		

- a. Drive model pertains to Analog (no dash suffix) and Digital (-D & -DN) versions
- b. This is the maximum fuse size that can be used for Device Protection

4.2.4 460V Smart Drive Protection Requirements

Two types of Protection must be provided in case the Smart Drive malfunctions:

- Short Circuit Protection this protection helps minimize damage to the Smart
 Drive in the case of a Short Circuit condition. Short Circuit Protection is required to
 meet UL508C requirements.
- Branch Circuit Over Current Protection this protection helps minimize damage to
 the Smart Drive and helps protect the wiring between the Smart Drive and the
 Over Current Protection Device in the case of a sustained Over Current condition.
 Over Current Protection must be provided in accordance with NFPA 79 7.2.3 and
 7.2.10. Supplemental UL1007 protectors shall not be used to provide Branch Circuit Protection.

Two types of fuses are defined for use with the 460V Smart Drive:

Non-restricted - If the Branch Circuit supplying power to the drive is capable of delivering no more then 5,000 RMS symetrical short circuit amperes (480V maximum), the fuse type provided for Protection has no "Clearance I²t" restrictions, and must meet the following requirements:

- have a current rating no greater than the "Maximum Fuse Size" in Table 4-3
- have an interrupt capability no less than the short circuit rating (Prospective Shortcircuit Symetrical Amperes) of the Branch Circuit supplying the drive.

Restricted - If the Branch Circuit supplying power to the drive is capable of delivering between 5,000 and 100,000 RMS symetrical short circuit amperes (480V maximum), the fuse type provided for Protection has "Clearance I²t" restrictions, and must meet the following requirements:

meet both of the requirements for a non-restricted fuse (above)

have a "Clearance I²t" rating no greater than the ""Clearance I²t" rating in Table 4-3

The requirements for both restricted and non restricted fuses may be meet by using one of two methods:

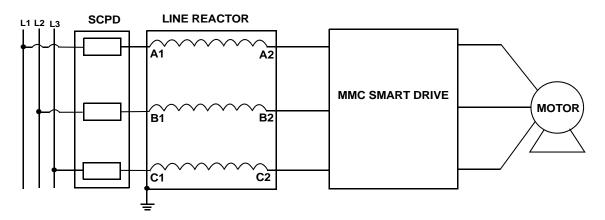
- Use a single fuse that meets all requirements. The easiest way to accomplish this
 is to use a "Combination Fuse" from Table 4-3. These fuses meet all of the
 requirements for both Short Circuit Protection and Over Current Protection, and
 may be used on Branch Circuits that supply up to 100,000 RMS symetrical short
 circuit amperes (480V maximum).
- Use two fuses connected in series, that, in combination, meet all of the requirements:
 - Use an Over Current Protection fuse that has a current rating not greater than
 the "Maximum Fuse Size" shown in Table 4-3, and an interrupt capability not
 less than the short circuit rating (Prospective Short-circuit Symetrical
 Amperes) of the Branch Circuit supplying the drive.
 - Use a Short circuit Protection fuse (typically a semiconductor fuse) that has a
 "Clearance I²t" rating not greater than that shown in Table 4-3, and a current
 rating greater than the Over Current Protection fuse (to avoid nuisance tripping).

Table 4-3: 460V Smart Drive Protection Devices					
460V Drive Model ^a	l ² t Rating ^b		ım Fuse ze ^c	•	ussmann) on Fuse ^{d,e}
460 Volt Drives ^a		V _{IN} = 230VAC	V _{IN} = 460VAC	V _{IN} = 230VAC	V _{IN} = 460VAC
MMC-SD-1.3-460	< 228A ² s	11A	9A	HSJ6(DFJ6)	HSJ6(DFJ6)
MMC-SD-2.4-460	≤ 228A ² s	19A	16A	HSJ15(DFJ15)	HSJ15(DFJ15)
MMC-SD-4.0-460	≤ 260A ² s	32A	27A	HSJ15(DFJ15)	HSJ15(DFJ15)
MMC-SD-6.0-460	≤ 340A ² s	49A	41A	HSJ20(DFJ20)	HSJ20(DFJ20)
MMC-SD-8.0-460	≤ 616A ² s	68A	56A	HSJ30(DFJ30)	HSJ25(DFJ25)
MMC-SD-12.0-460	≤ 1, 555A ² s	76A	64A	HSJ35(DFJ35)	HSJ30(DFJ30)
MMC-SD-16.0-460	≤ 1, 555A ² s	96A	80A	HSJ40(DFJ40)	HSJ35(DFJ35)
MMC-SD-24.0-460	≤ 1, 555A ² s	152A	126A	HSJ60(DFJ60)	HSJ45(DFJ45)
MMC-SD-30.0-460	≤ 15,000A ² s	212A	176A	N/A ^f (DFJ80)	N/A ^f (DFJ60)
MMC-SD-42.0-460	≤ 15,000A ² s	280A	233A	HSJ125(DFJ125)	HSJ100(DFJ100)
MMC-SD-51.0-460	≤ 83,700A ² s	336A	280A	HSJ150(DFJ150)	HSJ110(DFJ110)
MMC-SD-65.0-460	≤ 83,700A ² s	420A	350A	HSJ175(DFJ175)	HSJ125(DFJ125)

- a. Drive model pertains to analog (no dash suffix) and Digital (-D)
- b. This is the maximum "Clearance I²t Rating" of a fuse used for Device Protection. Use a fuse that falls in the operating point below the stated release integral (I²t). All of the listed "Combination Fuses" meet this requirement.
- c. This is the maximum fuse size that can be used for Device and Branch Circuit Protection
- d. Kollmorgen part numbers for these fuses can be found in Section 12.4
- e. Listed devices are UL Recognized. These fuses have an Interrupt current of 100,000A
- f. Combination fuse not available from Ferraz for this drive

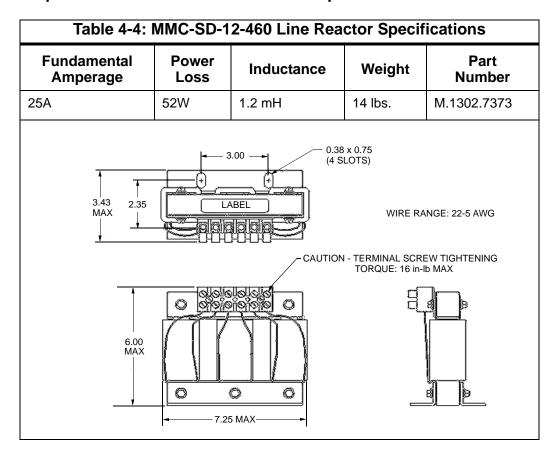
4.3 Line Reactors

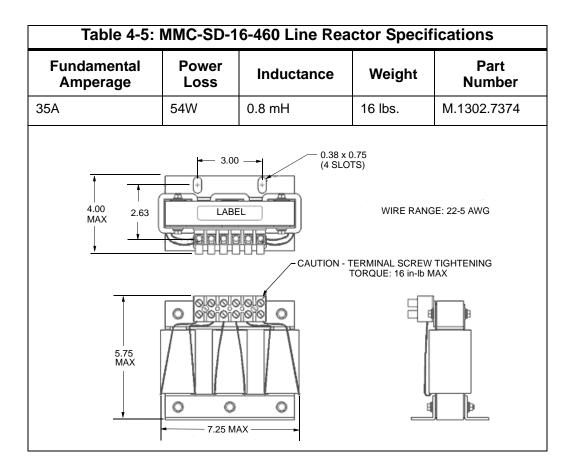
AC Line Reactors are required when using some models of the MMC Smart Drive. They protect the drive from impermissible rates of current change and reduce harmonic current distortions. When required, they are mounted between the drive and the mains input power source.

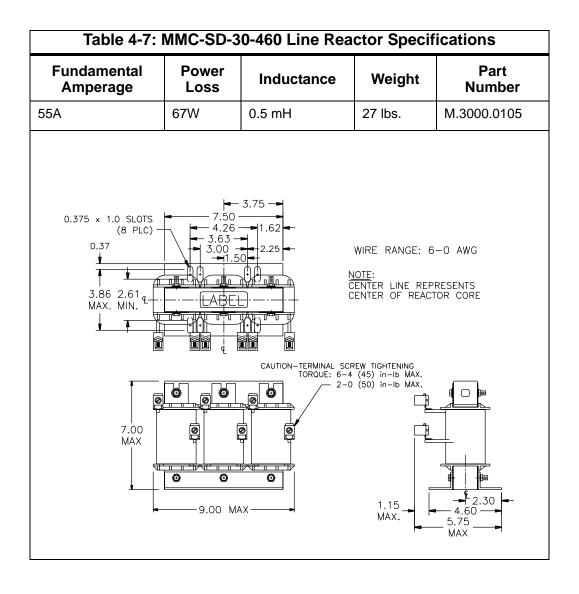

NOTE

Multiple drives or inverters on a common power line require one reactor per drive. Individual reactors provide filtering between each drive (and thereby reduce crosstalk) and also provide optimum surge protection for each unit. A single reactor serving several drives does not provide adequate protection, filtering or harmonic reduction when the system is partially loaded. Refer to Figure 4-1 for an example of one line reactor connected to one drive.

WARNING Danger Electric Shock Risk


The frame of line/load reactors must be grounded at one of the reactor mounting holes typically by using a star washer under the heads of the mounting bolts. INJURY OR DEATH MAY RESULT IF THESE SAFETY PRECAUTIONS ARE NOT OBSERVED.


Figure 4-1: Line Reactor Connection (Simplified)


Line reactors are not necessary for the 230V MMC Smart Drives or the 460V size 1 and 2 MMC Smart Drives. Line reactors are required for the 460V size 3 and size 4 MMC Smart Drives.

4.3.1 Specifications and Dimensions for Required Line Reactors

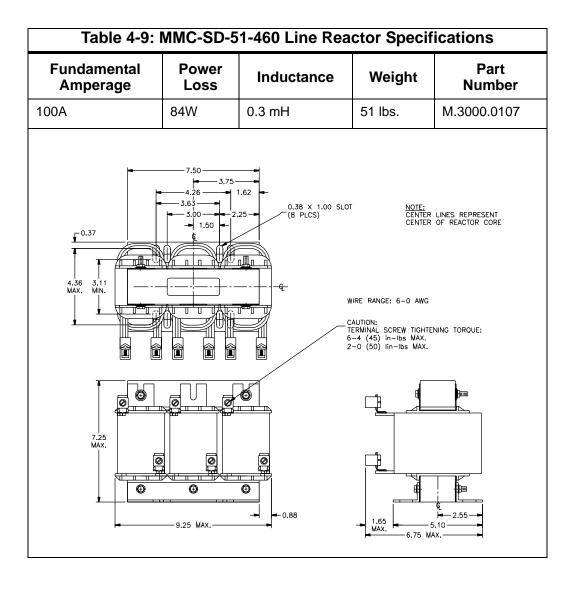


Table 4-6: MMC-SD-24-460 Line Reactor Specifications				
Fundamental Amperage	Power Loss	Inductance	Weight	Part Number
45A	62W	0.7 mH	28 lbs.	M.1302.7375
7.35 MAX	9.00 MA	CAUTION - TEI		GHTENING

Table 4-8: MMC-SD-42-460 Line Reactor Specifications				ications
Fundamental Amperage	Power Loss	Inductance	Weight	Part Number
80A	86W	0.4 mH	51 lbs.	M.3000.0106
7.13 MAX.	7.50 4.26 3.00 1.50 2.25 1.50 2.25 1.50 2.20 1.50	0.38 x 1.00 (8 SLOTS)	NOTE: CENTER LINE I CENTER OF RE	TIGHTENING 5) in—lb MAX. 10) in—lb MAX. REPRESENTS

Table 4-10: MMC-SD-65-460 Line Reactor Specifications				
Fundamental Amperage	Power Loss	Inductance	Weight	Part Number
130A	180W	0.2 mH	57 lbs.	M.3000.0108
7.13 MAX.	7.50 4.26 1.63 3.00 2.25 1.50 1.50 9.25 MAX	NC CE	WIRE RANGE: 2- ION: TERMINAL SCI TORQUE: 150 OTE: NTER LINE REPRES NTER OF REACTOR	REW TIGHTENING in-1b MAX. SENTS

4.4 Isolation Transformers

The MMC Smart Drive does not require the use of isolation transformers. However, a transformer may be required to match the voltage requirements of the controller to the available service. To size a transformer for the main AC power inputs, the power output (KVA) of each axis must be known. This can be derived by calculating the horsepower for each axis and converting that horsepower into units of watts. If power is being supplied to more than one motor and a drive, simply add the kW ratings together from each calculation to get a system kW total.

For an autotransformer, ensure that the phase to neutral/ground voltages do not exceed the input voltage ratings of the drive.

If you are using the Motions Solutions Sizing Software, the average speed and average torque data has already been calculated and can be used in the equation. If you are not sure of the exact speed and torque in your application, record the speed/torque curve for your drive/motor combination and use the resulting values as a worst case continuous speed and torque.

Calculations are multiplied by a factor to compensate for the power and loss elements within a power system. A factor of 2.0 is used with a single phase system and a factor of 1.5 is used with a three phase system. This factor should minimize the effects of the secondary line voltage sagging in the transformer during peak current periods.

The speed/torque curve information for 230V motors is based upon a drive input voltage of 230V AC. For a 115V AC input voltage, the maximum speed can be reduced up to one half.

Example 230V Formula:

$$KVA = \frac{Speed(RPM) \cdot Torque(lb-in)}{63,025} \cdot \frac{0.746 \cdot KVA}{HP} \cdot 2.0$$

Example 460V Formula:

$$KVA = \frac{Speed(RPM) \cdot Torque(lb - in)}{63,025} \cdot \frac{0.746 \cdot KVA}{HP} \cdot 1.5$$

NOTE

The 3-Phase source powering the drive has to be a center-grounded "Y" configuration. Do not exceed 304 Volts RMS from any phase to ground.

4.5 External Shunts

4.5.1 Choosing an External Shunt

Power from the motor is returned to the MMC Smart Drive during motor deceleration. Excessive power may have to be dissipated from the MMC Smart drive when large inertia loads are present. External shunts should be used to avoid excessive bus over voltage faults.

Kollmorgen recommends you use the Motion Solutions Sizing Software to determine the need for and type of external shunt. However, you may perform the following calculations to choose the external shunt for your application.

- 1. Obtain the Peak Generating Power for the drive in watts (W).
- 2. Perform the following calculation:

W x T = Watts/sec or Joules

where:

W is watts from Step 1 above,

T is decel time required by the application

- 3. Obtain the Absorption Energy in Joules for the drive from the Specifications section of the drive manual.
- 4. Determine the Peak Shunt Power from the drive that would be delivered to the shunt resistor for your application:

- (Number calculated in Step 2 above) (Absorption Energy from the drive Specifications table in either Chapter 5 or 6)
 - = Watt-seconds
- 5. Determine the Continuous Shunt Power that would be delivered to the shunt resistor for this application:
 - Duty Cycle of Peak or Peak x Decel Time) ♣ (Total Cycle Time) = Continuous Shunt Power in Watts
- 6. Choose an external shunt from Table 4-11.

4.5.2 External Shunt Resistor Kits

Table 4-11: Shunt Resistors				
For Drive ^a	Shunt Resistor Module	Part Number		
MMC-SD-0.5-230 MMC-SD-1.0-230 MMC-SD-2.0-230	100Ω, 300W, 600V, Dynamic	M.1015.7046		
MMC-SD-1.3-460 MMC-SD-2.4-460	145 Ω , 450W Cont. Power, 5.4kW Peak Power, 820 V, 240 sec. Time Constant, 121 mm x 93 mm x 605 mm	M.1302.7048		
MMC-SD-4.0-460	$95\Omega,700W$ Cont. Power, 8kW Peak Power, 820 V, 250 sec. Time Constant, 121 mm x 93 mm x 705 mm	M.1302.7049		
MMC-SD-6.0-460 MMC-SD-8.0-460	50Ω, 1400W Cont. Power, 17kW Peak Power, 850V, 250 sec. Time Constant, 130 mm x 182 mm x 710 mm	M.1302.7060		
MMC-SD-12.0-460 MMC-SD-16.0-460	$25\Omega,2800W$ Cont. Power, 32kW Peak Power, 850V, 60 sec. Time Constant, 171 mm x 430 mm x 550 mm	M.1302.7061		
MMC-SD-24.0-460 MMC-SD-30.0-460 MMC-SD-42.0-460 MMC-SD-51.0-460 MMC-SD-65.0-460	18Ω, 3900W Cont. Power, 70kW Peak Power, 850V, 70 sec. Time Constant, 180 mm x 445 mm x 490 mm	M.1302.7063		

a. Drive Model pertains to Analog (no dash suffix) and digital (-D)

4.5.3 Mounting Dimensions for External Shunts

Figure 4-2: Mounting Dimensions for 230V External Shunt (P/N M.1015.7046)

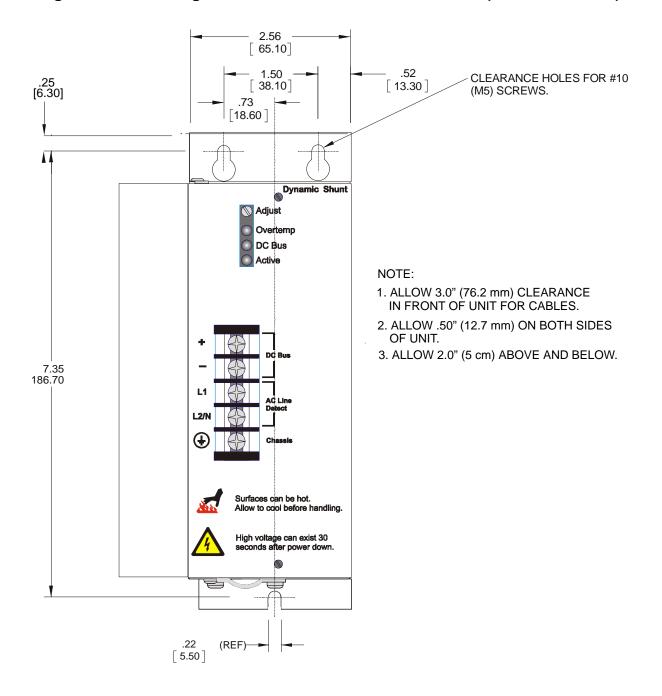


Figure 4-3: Mounting Dimensions for 460V External Shunt (P/N M.1302.7048)

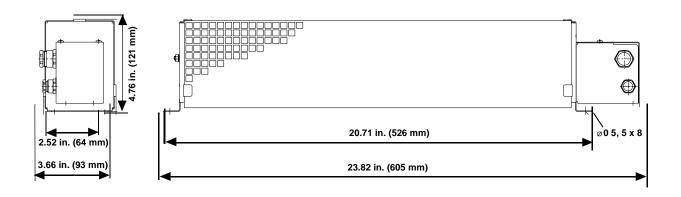


Figure 4-4: Mounting Dimensions for 460V External Shunt (P/N M.1302.7049)

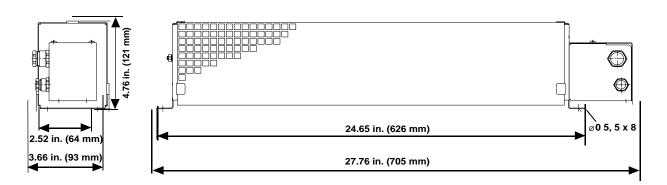


Figure 4-5: Mounting Dimensions for 460V External Shunt (P/N M.1302.7060)

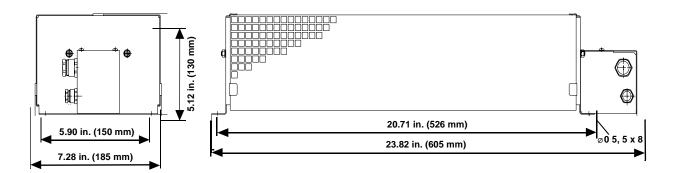
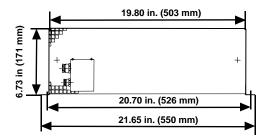



Figure 4-6: Mounting Dimensions for 460V External Shunt (P/N M.1302.7061)

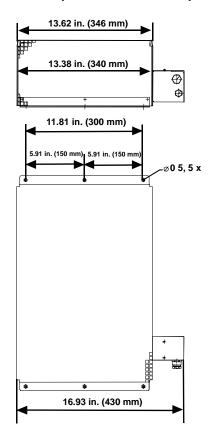
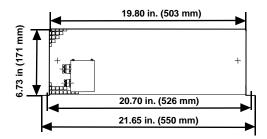
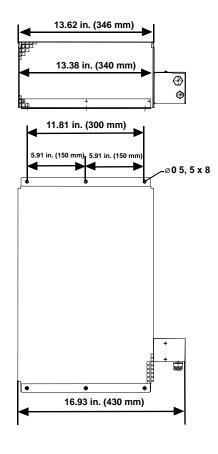




Figure 4-7: Mounting Dimensions for 460V External Shunt (P/N M.1302.7063)

4.6 Line Filters

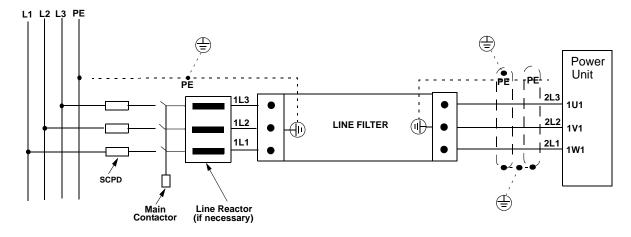
Line Filters consist of combinations of capacitors, reactors, resistors and voltage limiters that are intended to reduce the electromagnetic influence of the environment.

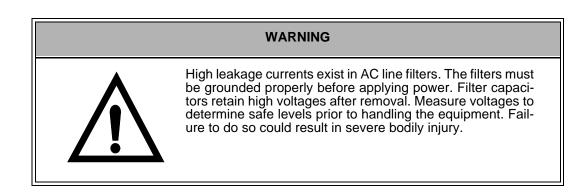
4.6.1 Line Filters and CE Compliance

The direction of influence is bi-directional, i.e. there is a reaction in the units of emission of conducted disturbances, and, at the same time, an improvement in the immunity of the drive to interference that occurs in the case of lightning strikes, tripped fuses, or simple switching activities.

- The filter should be mounted to a grounded conductive surface.
- The filter must be mounted close to the drive input terminals. If the distance exceeds 2 feet (600 mm), then a shielded cable should be used to connect the drive and filter, rather than a wire.
- The wires connecting the AC source to the filter should be shielded from, or at least separated from the wires (or strap) connecting the drive to the filter. If the connections are not segregated from each other, then the EMI on the drive side of the filter can couple over to the source side of the filter, thereby reducing, or eliminating the filter effectiveness. The coupling mechanism can be radiation, or stray capacitance between the wires.

L1 O 1U1


L2 O 1V1


L3 O 1W1

PEO- - O PE

Figure 4-8: Block Diagram Simplified for 3-Phase Line Filter

Figure 4-9: Connection Diagram for 3-Phase Line Filter

NOTE

To be able to route the interference currents at low impedance back to the interference sources, the filter, the power unit, and the contact area of the motor cable shield must have a junction with the common mounting plate over as wide a surface as possible that has good conductive properties. The best way to ensure this is to use unpainted zinc-coated mounting plates.

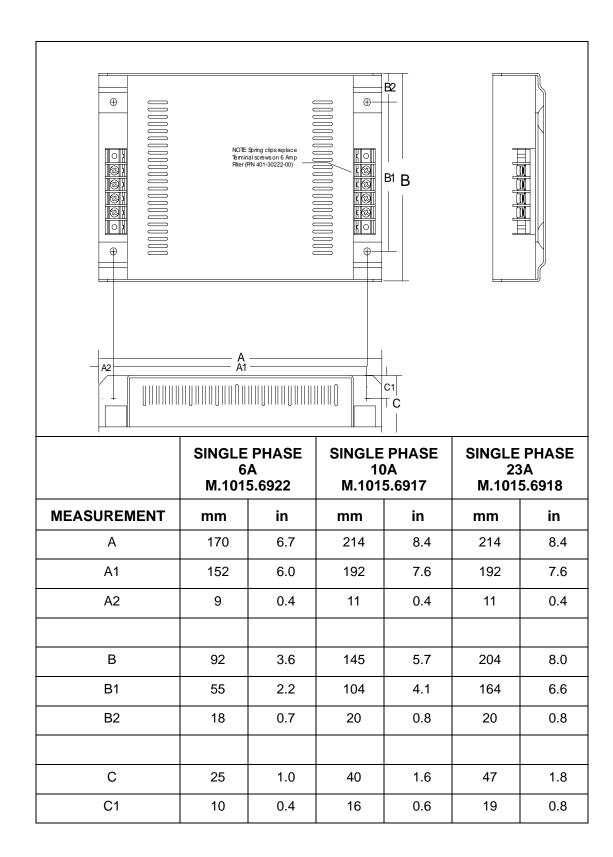

Table 4-12: Part Numbers for AC Line Filters				
Current	For Drive	Part Number		
6A, 250V, 1 Phase	MMC-SD-0.5-230 MMC-SD-1.0-230	M.1015.6922		
10A, 250V, 1 Phase	MMC-SD-2.0-230	M.1015.6917		
7A, 480V, 3 Phase	MMC-SD-1.3-460 MMC-SD-2.4-460	M.1302.5241		
16A, 480V, 3 Phase	MMC-SD-4.0-460 MMC-SD-6.0-460 MMC-SD-8.0-460	M.1302.5244		
30A, 480V, 3 Phase	MMC-SD-12.0-460 MMC-SD-16.0-460	M.1302.5245		
42A, 480V, 3 Phase	MMC-SD-24.0-460	M.1302.5246		
56A, 480V, 3 Phase	MMC-SD-30.0-460 MMC-SD-42.0-460	M.1302.5247		
75A, 480V, 3 Phase	MMC-SD-51.0-460	M.1302.5248		
100A, 480V, 3 Phase	MMC-SD-65.0-460	M.3000.0109		

Table 4-13: Technical Data for 230V Line Filters					
	M.1015.6922	M.1015.6917	M.1015.6918		
Voltage/Freq.	250VAC @ 50/50Hz	250VAC @ 50/50Hz	250VAC @ 50/50Hz		
Current	6A @ 50°C	10A @ 50°C	23A @ 50°C		
Overload Current	150% 1 minute 200% 1 second	150% 1 minute 200% 1 second	150% 1 minute 200% 1 second		
Temperature	-25 to 95°C	-25 to 95°C	-25 to 95°C		
Leakage Current	5mA @ 240V, 50 Hz	46mA @ 240V, 50 Hz	200mA @ 250V, 50Hz		
Electric Strength	2500VAC/1 minute	2500VAC/1 minute	2500VAC/1 minute		
Power Loss	3.5W (Full Load)	2.7W (Full Load)	10W (Full Load)		
Terminals	2mm sq. spring clamp	M4 screw cross/ sq. 2x 2.5mm	M4 screw cross/ sq. 2x 2.5mm		
Weight	0.3Kg (0.66 Lb.)	0.95Kg (2.0 Lb)	1.6Kg (2.5 Lb)		
Back Mounting ^a	4 x M4	4 x M4	4 x M4		
Side Mounting ^a	2 x M5	2 x M6	2 x M6		

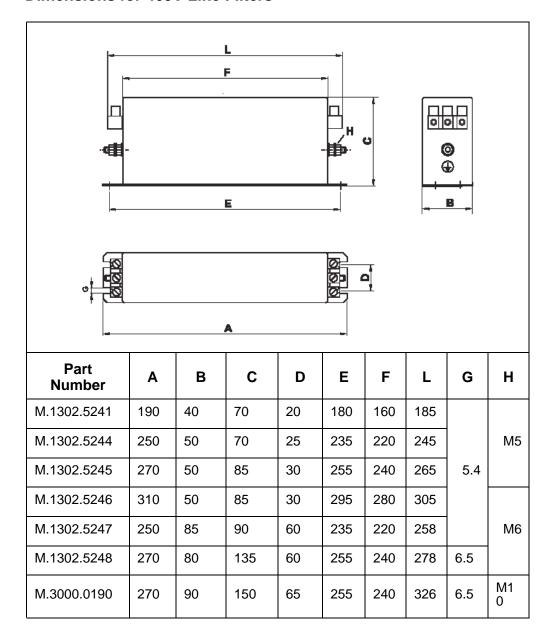

a. Line filters are manufactured to millimeter dimensions (inches are approximate conversions).

Table 4-14: Technical Data for 460V Line Filters							
			P	art Numbe	er		
Item	M.1302. 5241	M.1302. 5244	M.1302. 5245	M.1302. 5246	M.1302. 5247	M.1302. 5248	M.3000. 0109
Maximum Sup- ply Voltage			3 x 4	80VAC, 50	/60Hz		
Rated current (at 40°C)	7A	16A	30A	42A	56A	75A	100A
Peak current		1.5	x I _N for < 1	I min. per h	our at T _B =	: 40°	
Test Voltage Phase/Phase Phase/Ground				C for 2 sec C for 2 sec			
Maximum Con- nection Cross- section	4mm ²	4mm ²	10mm ²	10mm ²	4mm ²	25mm ²	50mm ²
Operational Environmental Temperature Range T _B	F	-25°C +55°C Reduction of rated current from 40°C onwards by 1.4% / °C			°C		
Power Loss (typical)	4W	8W	12W	15W	18W	24W	24W
Site Altitude	В	Below 2000 m above sea level (higher altitudes on request)			st)		
Storage Tem- perature Range	-25°C +85°C						
Type of Protection				IP20			
Weight	0.6kg	1.0kg	1.3kg	1.6kg	1.9kg	2.6kg	4.0kg

4.6.2 Dimensions for 230V Line Filters

4.6.3 Dimensions for 460V Line Filters

MMC Smart Drive Hardware Manual -	SYSTEM POWER PROTECTION AND REL	ATED DEVICES

5 230V Single Phase MMC Smart Drive

The 230V MMC Smart Drive is available in both analog and digital interfaced versions, with power ratings of .5kW, 1kW, and 2kW. This section describes these drives in detail.

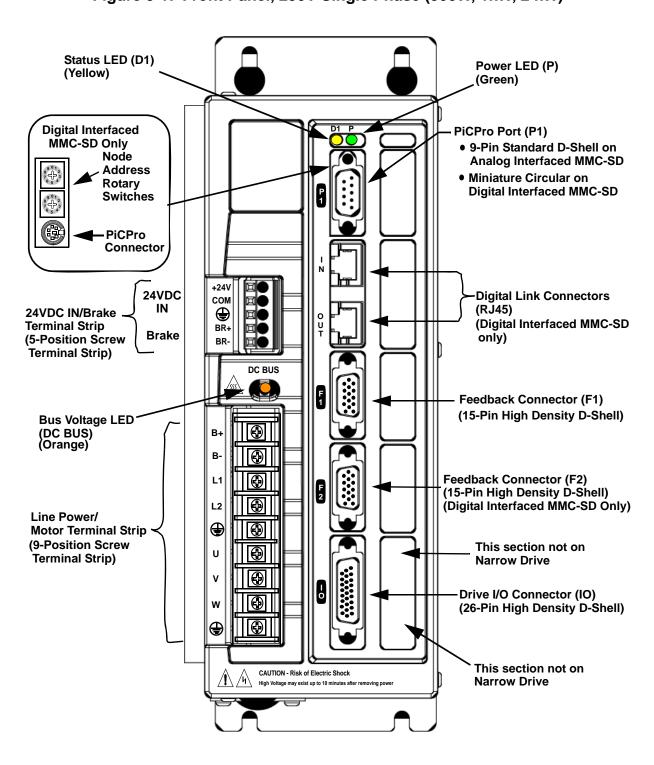


Figure 5-1: Front Panel, 230V Single Phase (500W, 1kW, 2 kW)

5.1 Control Section Connectors, Switches, LEDs

This section describes the connectors, switches, and LEDs located on the Control Section (right portion) of the drive.

NOTE

The functionality and descriptions for the switches, connectors, and LEDs on the control section of the 460V MMC Smart Drives are the same as those on the 230V MMC Smart Drive.

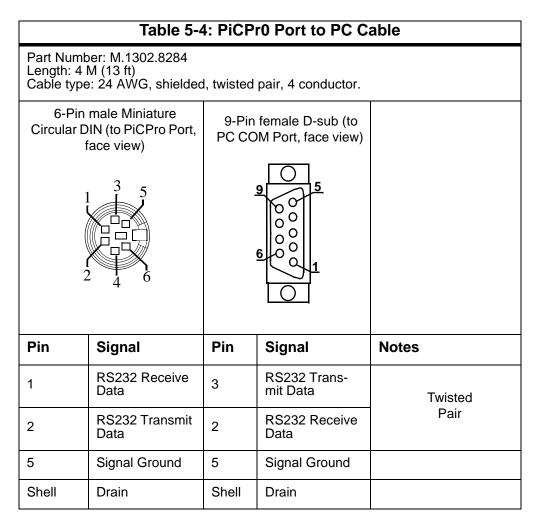
5.1.1 LEDs

Table 5-1: LEDs	Table 5-1: LEDs Description for 230V Single Phase MMC Smart Drive			
LED	Color	Description		
Р	Green	Power LED. Indicates when illuminated that power is being supplied to the 24V input terminal strip.		
D1	Yellow	Status LED. Drive status and fault information.		
DC BUS	Orange	Bus Voltage LED. Indicates when illuminated that the DC bus is at a hazardous voltage (not available on 460V Smart Drives). DANGER DC bus capacitors may retain hazardous voltages for up to ten minutes after input power has been removed. Always use a voltmeter to ensure that the DC bus voltage is below 50VDC before servicing the drive. Failure to observe this precaution could result in severe bodily injury or loss of life.		

5.1.2 PiCPro Port (Digital Interfaced Drives)

This section details the PiCPro Port connector on the Digital Interfaced Drives (-D and -DN). For information on the PiCPro Port connector on Analog Interfaced Drives, see section 5.1.3 on page 65.

The 6-pin circular DIN PiCPro Port connector (labeled "P1" on the front of the Drive) provides serial communication for the PiCPro programming interface.


- Pin descriptions for are provided in Table 5-2
- Pin assignments are provided in Table 5-3
- The available PiCPro Port to PC cable is described in Table 5-4

USB ADAPTER

A USB-to-RS232 Adapter is avalable (P/N M.3000.0879) that allows you to connect the PiCPro Port on the Control to a USB connector on your PC. One side of the Adapter contains a 6in cable that connects to your PC. The other side of the Adapter contains a male DB9 connector that allows connection to the Control using a PiCPro Cable M.1302.8250 (not provided, described in Table 5-7 on page 68).

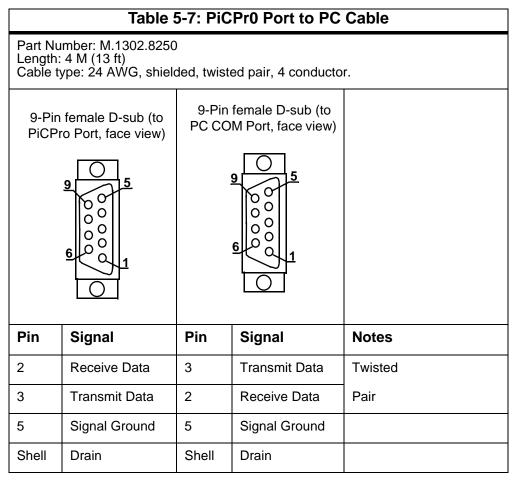
Table 5-2: PiCPro Port Pin Descriptions			
Function	Notes	Pin	
Receive Data	RS232-level signal that receives serial data from the connected PC running PiCPro.	1	
Transmit Data	RS232-level signal that transmits serial data to the connected PC running PiCPro.	2	
Signal Ground	Provides the return path for signals	3 and 5	
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Connector Shell	

Table 5-3: PiCPro Port Pin Assignments			
Pin	Signal	In/Out	Connector Pinout
1	RS232 Receive Data	In	
2	RS232 Transmit Data	Out	6-pin Female Miniature Circular DIN
3	Signal Ground	In/Out	2 4 6
4	NC	N/A	
5	Signal Ground	In/Out	
6	NC	N/A	1 3 5
Connector Shield	Shield	In	

5.1.3 PiCPro Port (Analog Drives)

This section details the PiCPro Port connector on the Analog Interfaced Drives (not -D or -DN). For information on the PiCPro Port connector on Digital Interfaced Drives, see section 5.1.2 on page 63.

The 9-pin male D-sub PiCPro Port connector (labeled "P1" on the front of the Drive) provides serial communication for the PiCPro programming interface.

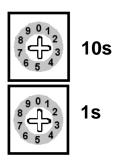

- Pin descriptions for are provided in Table 5-5
- Pin assignments are provided in Table 5-6
- The available PiCPro Port to PC cable is described in Table 5-7

USB ADAPTER

A USB-to-RS232 Adapter is avalable (P/N M.3000.0879) that allows you to connect the PiCPro Port on the Control to a USB connector on your PC. One side of the Adapter contains a 6in cable that connects to your PC. The other side of the Adapter contains a male DB9 connector that allows connection to the Control using a PiCPro Cable M.1302.8250 (not provided, described in Table 5-7 on page 68).

Table 5-5: PiCPro Port Pin Descriptions			
Function Notes		Pin	
Receive Data	RS232-level signal that receives serial data from the connected PC running PiCPro.	2	
Transmit Data	RS232-level signal that transmits serial data to the connected PC running PiCPro.	3	
Signal Ground	Provides the return path for signals	5	
Data Terminal Ready	Always high (tied to +12V through 1K resistor)	4	
Request-to-send	Always high (tied to +12V through 1K resistor)	7	
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Connector Shell	

Table 5-6: PiCPro Port Pin Assignments			
Pin	Signal	In/Out	Connector Pinout
1	NC	N/A	
2	RS232 Receive Data	In	
3	RS232 Transmit Data	Out	9-pin male D-sub
4	Data Terminal Ready	Out	
5	Signal Ground	In/Out	<u> </u>
6	NC	N/A	
7	Request-to-send	Out	9005
8	NC	N/A	
9	NC	N/A	
Connector Shield	Drain	In	



5.1.4 Node Address Rotary Switch (Digital Interfaced MMC-SD Only)

Two rotary switches are used to set the drive address. Rotate the switch to the desired address.

Addresses can be set to any number from 1 through 64. The top switch represents values of base ten. The bottom switch represents values of base 1.

As an example, rotating the switch to a setting of 2 on the top switch equals the value of 20 (2 x 10). Rotating the switch on the bottom switch to a setting of 5 equals the value of 5. The actual address setting is 25 (20 + 5).

5.1.5 Digital Link Ports (Digital Interfaced MMC-SD Only)

The two 8-pin RJ-45 Digital Link Port connectors (labeled "IN" and "OUT" on the front of the Drive) provide communications between Drives and between a Drive and a Standalone MMC Digital Control. Also provided are two green "Link" lights located between the RJ-45 connectors. The left light will be on if there is a Drive or Digital Control connected to the "IN" port, and the right light will be on if there is a Drive connected to the "OUT" port.

A "straight-through" shielded cable must be used when connecting the Drive to either the Standalone MMC Digital Control or another Drive. Connect the cable from the Drive's "OUT" port to the next Drives's "IN" port, or from the Standalone MMC Digital Control's "B" port to the Drive's "IN" port. Refer to the Standalone MMC Hardware Manual for Control information.

- Pin descriptions for are provided in Table 5-8
- Pin assignments are provided in Table 5-9
- The available Digital Link Port to Digital Drive cables are described in Table 5-10

Table 5-8: Digital Link Port Pin Description			
Digital Link Connector (IN/OUT) Signals		Pin	
Function	Notes	"In" Connector	"Out" Connector
Receive Data +	Receives data from connected drives.	1	3
Receive Data -	Receives data from connected drives.	2	6
Transmit Data +	Transmits data to connected drives.	3	1
Transmit Data -	Transmits data to connected drives.	6	2
Protective Ground	Provides a path for the ground signal to an external single point ground.	Connector Shell	Connector Shell

Table 5-9: Digital Link Port Pin Assignments			
Pin	Label	In/Out	Connector Pinout
IN Connec	tor		
1	Receive +	In	
2	Receive -	In	
3	Transmit +	Out	
4	Not Used	N/A	
5	Not Used	N/A	
6	Transmit -	Out	
7	Not Used	N/A	
8	Not Used	N/A	RJ-45 Connectors
Connector Shield	Provides a path for the ground signal to an external single point ground.	In	N 1 8
OUT Conn	ector		"IN" "OUT" LINK O C LINK LED LED
1	Transmit +	Out	│ <mark>┡</mark> ┸═┫┃ ¹
2	Transmit -	Out	Ŭ 1 1 1 1 1 1 1 1 1
3	Receive +	In	
4	Not Used	N/A	
5	Not Used	N/A	
6	Receive -	In	
7	Not Used	N/A	
8	Not Used	N/A	
Connector Shield	Provides a path for the ground signal to an external single point ground.	In	

Table 5-10: Digital Li	าk Port "IN" to	"OUT" Cables
------------------------	-----------------	--------------

Part Numbers:

Cable type: 28 AWG, shielded, twisted pair, 8 conductor.

	8-Pin RJ-45 Plug (to Digital Link Port "OUT", face view) 8-Pin RJ-45 Plug (to Digital Drive "IN", face view)			
	8	8		
Pin	Signal	Pin	Signal	Notes
1	Transmit Data +	1	Receive Data +	Twisted
2	Transmit Data -	2	Receive Data -	Pair
3	Receive Data +	3	Transmit Data +	Twisted
6	Receive Data -	6	Transmit Data -	Pair
4	None	4	None	Twisted
5	None	5	None	Pair
7	None	7	None	Twisted
8	None	8	None	Pair
Shell	Drain	Shell	Drain	

5.1.6 Feedback Connectors (F1 & F2)

The two 15-pin female Feedback connectors (labeled "F1" and "F2" on the front of the Drive) provide the interface between two feedback devices. A detailed description of the capabilities and limitations of connected devices can be found in section 5.1.6.1 on page 76.

- Pin descriptions for the F1 connector are provided in Table 5-11
- Pin assignments for the F1 connector are provided in Table 5-12
- Pin descriptions for the F2 connector are provided in Table 5-13
- Pin assignments for the F2 connector are provided in Table 5-14
- The available Flying Lead cable is described in Table 5-16.
- Available Breakout Boxes and Cables are described in Table 5-17.
- Breakout Box dimensions are shown in Figure 5-2
- Breakout Board dimensions are shown in Figure 5-3
- Feedback Port to Motor Cables are described in section 5.1.6.2 on page 80

Table 5-11: Pin Description for Feedback Connector (F1)				
F1 Feedback Signals				
Signal Type	Signal Name	Notes	Pin	
Incremental Encoder Inputs	A1, A1/, B1, B1/, I1, I1/	Differential A quad B encoder signals.	1, 2, 3, 4, 5, 10	
Sinewave Encoder Inputs	Sin, Sin/, Cos, Cos/	Sinewave Encoder signals	1, 2, 3, 4	
Sinewave Encoder Data Channel In/Out	RS-485 Data +, RS- 485 Data -, RS-485 Clock+, RS-485 Clock-	RS-485 signals for connecting the Sinewave Encoder Data Channel to the drive	5, 10, 12, 13	
Motor Commutation Hall Sensor Inputs	Commutation Track S1, S2, S3	Hall device input signals that are used to initialize the commutation angle. They consist of a 74HC14 input with 10µs filter and 1 K pull up to +5V. Shared with F2.	12, 13, 8	
Sinewave Encoder Commutation Inputs	Commutation Sin+, Commutation Sin-	Sinewave signals that are used to initialize the motor commutation angle when a Heidenhein Sincoder is used as the motor feedback device.	12, 13	
Resolver Inputs	Sin+, Sin-, Cos+, Cos-	Resolver rotor feedback signals used when optional Resolver Interface Board is installed.	1, 2, 3, 4	
Resolver Outputs	Carrier+, Carrier-	Resolver rotor excitation signals used when optional Resolver Interface Board is installed.	5, 10	
Temperature Input	Temperature	Thermostat (normally- closed) or Thermistor (Phillips KTY84-130 PTC or equivalent recommended) input for detecting over temperature conditions within the motor.	11	
+5V Encoder Power Outputs	+5V Source	Regulated +5VDC for powering the attached encoder (F1 pin 14 + F2 pin 14 = 500ma max).	14	
+9V Encoder Power Outputs	+9V Source	Regulated +9VDC for powering the attached encoder (F1 pin 7 + F2 pin 7 = 150ma max).	7	
Sinewave Encoder Reference Mark Input	Ref Mark, Ref Mark/	Reference Mark input used with some Sinewave Encoders used to indicate motor position within one revolution.	5, 10	
Signal and Power Com- mon	Common	Return path for feedback signals and power supplies (+5V and +9V).	6	

	Table 5-12: Pin Assignments for Feedback Connector (F1)						
	Encoder/Resolver Pin Assignments for Motor Feedback 15 Pin Connector (F1) 230V Single Phase (500W, 1kW, 2kW)						
		Fee	dback Dev	rice			
		Sin	ewave End	coder			
Pin	Digital Incremental Encoder	Stegmann Hiperface	Endat ^a BISS ^{a,b} SSI ^{a,c}	Heidenhain Sincoder	Resolver ^d	In/ Out	Connector Pinout
1	A1		Cos		Cos+		
2	A1/		Cos/		Cos-	In	
3	B1		Sine		Sin+		
4	B1/	Sine/		Sin-			
5	I1	RS-485 Data+ Ref Mark Carrier+		Note ^e			
6			Common			In/Out	15-pin Female
7	N/U	+9V Source	N/U	N/U	N/U	Out	HD D-Sub
8	Commutation Track S3	N/U	N/U	N/U	N/U	. In	
9		N/U		Commuta- tion Cos+	N/U	""	15 5 000 000 000 11 00 1
10	I1/	RS-485	5 Data-	Ref Mark/	Carrier-	Note ^e	
11		•	Temperature	Э		In	
12	Commutation Track S1	N/U	RS-485 Clock+	Commuta- tion Sin+	N/U	In ^f	11/00/1
13	Commutation Track S2	N/U	RS-485 Clock-	Commuta- tion Sin-	N/U	ın	
14	+5V Source	N/U	+5V Source	е	N/U	Out	
15		N/U Commuta- tion Cos-		N/U	In		
Shell	Shield			<u> </u>	N/A	1	

- a. Available on Digital Interfaced MMC-SD only
- b. Not on all Part Numbers. See Chapter 12 for details
- c. For future use
- d. Requires installation of optional resolver board.
- e. Pins 5 and 10 are In/Out for Stegmann Hiperface and Endat; Inputs for Digital Incremental, SSI, BiSS, Heidenhain Sincoder; and Outputs for Resolver
- f. Pins 12 and 13 are Outputs for ENDAT, SSI, and BiSS

Table 5-13: Pin Description for Feedback Connector (F2) (Digital Interfaced MMC-SD Only)			
F	F2 Feedback Signals		
Signal Type	Notes	Pins	
Incremental Encoder Input	Differential A quad B encoder signals.	1,2, 3, 4, 5, 10	
Motor Commutation Hall Sensor Inputs	Hall-device input signals that are used to initialize the motor commutation angle. They consist of a 74HC14 input with a 10µs filter and a 1K pull-up to +5V. Shared with F1.	8, 12, 13	
Temperature Input	Thermostat (normally-closed) or Thermistor (Phillips KTY84-130 PTC or equivalent recommended) input for detecting over temperature conditions within the motor. If a thermostat is used, connect one side to 0V, and the other side to the Temperature Input (pin 11).	11	
+5V Encoder Power Outputs	Regulated +5VDC for powering the attached encoder (F1 pin 14 + F2 pin 14 = 500ma max).	14	
+9V Encoder Power Outputs	Regulated +9VDC for powering the attached encoder (F1 pin 7 + F2 pin 7 = 150ma max).	7	
Signal and Power Common	Return path for feedback signals and power supplies (+5V and 9 V).	6	

Table 5-14: Pin Assignments for Feedback Connector (F2) (Digital Interfaced MMC-SD Only)

Pin Assignments F2 Feedback 15 Pin Connector 230V Single Phase (500W, 1kW, 2kW)

Pin	Label	In/Out	Connector Pinout
1	A2	In	
2	A2/	In	
3	B2	In	
4	B2/	In	
5	12	In	15-pin Female HD D-Sub
6	Common	In/Out	
7	+9V	Out	15 5
8	S3	In	
9	Do Not Connect	N/A	
10	12/	In	11,000
11	Temperature	In	
12	S1	In	
13	S2	In	
14	+5V	Out	
15	Do Not Connect	N/A	
Shell	Shield	In	

5.1.6.1 Feedback Connectors (F1 and F2) Details

The F1 and F2 Feedback connectors support a variety of devices and functions. This section helps clarify the capabilities and limitations of connected devices.

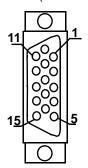

- All signals (other than the encoder inputs) are bussed internally between the two feedback connectors F1 and F2. The bussed signals include motor commutation inputs, temperature input, +5V power, +9V power, and encoder power outputs.
- F1 can interface with incremental encoders, sinewave encoders, and resolvers (using the optional resolver interface module). These signals are conditioned and routed to the Drive I/O connector.
- F2 can be designated (in PiCPro) as the motor feedback connector but only if F1 is not (either one or the other must be designated as such).
- F2 can interface with only incremental type encoders.
- The hall sensor inputs on F1 and F2 are connected together, allowing either F1 or F2 to accept the hall sensor signal, but NOT both. Only one feedback may be connected to motor hall sensor inputs.
- Refer to Table 5-15 for more information regarding the valid combinations of feedback on the F1 and F2 connectors.

Table 5-15: Supported Feedback Combinations		
Drive Feedback Configuration	1 and 4 (in PiCPro Drive Setup)	
F1 (Motor mounted feedback device for motor control)	F2 (Externally mounted feedback device for position feedback)	
 Incremental Encoder with commutation halls Resolver Sincoder with commutation halls Endat2.1 (single or multi-turn) Stegmann Hiperface (single or multi-turn) BiSS (single or multi-turn) 	Incremental Encoder without commutation halls	
Drive Feedback Configuration	2 and 3 (in PiCPro Drive Setup)	
F1 (Externally mounted feedback device for position feedback) F2 (Motor mounted feedback device for motor control)		
Sincoder without commutation hallsResolver	Incremental Encoder with commutation halls	

Table 5-16: Feedback Port (F1 and F2) to Flying Lead Cable

Part Number: M.1016.2519 Length: 3 M (10 ft) Cable type: 28 AWG, shielded, twisted pair, 16 conductor.

15-Pin HD male D-sub (to F1/F2 Port, face view)

Pin	Signal	Color	Notes
1	A1, Cos, Cos+	Blue	Twisted
2	A1/, Cos/, Cos-	Blue/White	Pair
3	B1, Sine, Sin+	Black	Twisted
4	B1/, Sine/, Sin-	Black/White	Pair
5	I1, RS-485 Data+, Ref Mark, Carrier+	Red	Twisted
10	I1/, RS-485 Data-, Ref Mark/, Carrier-	Red/White	Pair
8	Commutation Track S3	Green	Twisted
9	Commutation Cos+	Green/White	Pair
6	Common	Yellow	Twisted
7	+9V Source	Yellow/White	Pair
11	Temperature	Orange	Twisted
11	Temperature	Orange/White	Pair
12	Commutation Track S1, RS-485 Clock+, Commutation Sin+	Brown	Twisted
13	Commutation Track S2, RS-485 Clock-, Commutation Sin-	Brown/White	Pair
14	+5V source,	Violet	Twisted
15	Commutation Cos-	Violet/White	Pair
Shell	Drain	N/A	

Table 5-17: Feedback Ports (F1 and F2) Breakout Box and Cables			
Description	Length	Part Number	
MMC-SD F1/F2 Port Breakout Board ^a	N/A	M.1302.6970	
MMC-SD F1/F2 Port Breakout Box ^b	N/A	M.1302.6972	
	1 M (3.3 ft)	M.1302.6976	
MMC-SD F1/F2 Port to Breakout Box	3 M (9.8 ft)	M.1302.6977	
Cable	9 M (29.5 ft)	M.1302.6979	
	15 M (49.2 ft)	M.1302.6980	
	1 M (3.3 ft)	M.1302.7005	
MMC-SD F1/F2 Port Breakout Box and Cable Kits. These kits include an	3 M (9.8 ft)	M.1302.7006	
M.1302.6972 Breakout Box and an interconnect cable of the indicated length	9 M (29.5 ft)	M.1302.7007	
	15 M (49.2 ft)	M.1302.7008	

a. The Breakout Board (see Figure 5-3 on page 79) is mounted directly to the F1 and/or F2 connector, and provides screw terminals wire termination.

b. The Breakout Box (see Figure 5-2 on page 79) is DIN-rail mounted, and provides screw terminal wire termination. Use one of the cables listed in the table to connect between the F1 and/or F2 connector and the Breakout Box.

Figure 5-2: Feedback Port (F1 and F2) Breakout Box Dimensions

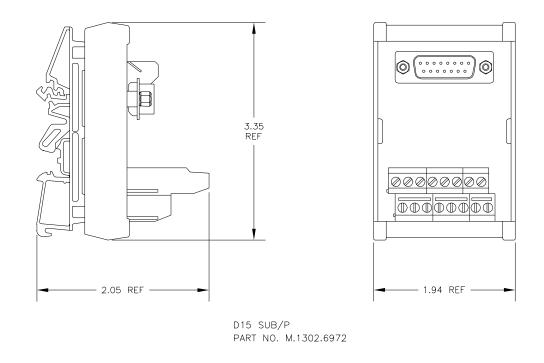
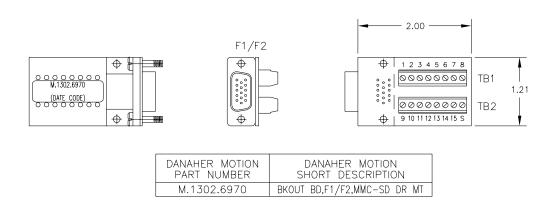



Figure 5-3: Feedback Port (F1 and F2) Breakout Board Dimensions

5.1.6.2 Feedback Port (F1/F2) to Motor Cables

Several cables are availabe that allow easy connection between the Feedback Port (F1/F2) and various Kollmorgen motors. These cables are detailed in the following tables. For information on Non-Flex versus Hi-Flex cables, refer to section 8.1 on page 171.

Table 5-18: F1/F2 Endat/BiSS to AKM/DDR Motor Cables				
For Connection Diagram, see Table 5-24: on page -83.				
Length	Non-Flex P/N	Hi-Flex P/N		
1 M (3.3 ft)	M.1302.8605	M.1302.8613		
3 M (9.8 ft)	M.1302.8437	M.1302.8438		
6 M (19.7 ft)	M.1302.8606	M.1302.8614		
9 M (29.5 ft)	M.1302.8607	M.1302.8615		
15 M (49.2 ft)	M.1302.8608	M.1302.8616		
30 M (98.4 ft)	M.1302.8609	M.1302.8617		

Table 5-19: F1/F2 Resolver to AKM/DDR Motor Cables				
For Connection Diagram, see Table 5-25: on page -84.				
Length	Non-Flex P/N	Hi-Flex P/N		
1 M (3.3 ft	M.1302.8618	M.1302.8630		
3 M (9.8 ft)	M.1302.8439	M.1302.8450		
6 M (19.7 ft)	M.1302.8619	M.1302.8631		
9 M (29.5 ft)	M.1302.8620	M.1302.8632		
15 M (49.2 ft)	M.1302.8621	M.1302.8633		
30 M (98.4 ft)	M.1302.8622	M.1302.8634		

Table 5-20: F1/F2 Encoder to AKM/DDR Motor Cables			
For Connection Diagram, see Table 5-26: on page -85.			
Length	Non-Flex P/N	Hi-Flex P/N	
1 M (3.3 ft)	M.1302.8590	M.1302.8600	
3 M (9.8 ft)	M.1302.8447	M.1302.8435	
6 M (19.7 ft)	M.1302.8591	M.1302.8601	
9 M (29.5 ft)	M.1302.8542	M.1302.8602	
15 M (49.2 ft)	M.1302.8594	M.1302.8603	
30 M (98.4 ft)	M.1302.8595	M.1302.8604	

Table 5-21: F1/F2 Encoder to LSM/MSM Motor Cables						
For Connection Diagram, see Table 5-27: on page -86.						
Length	Hi-Flex P/N					
1 M (3.3 ft)	M.1302.8590	M.1302.8600				
3 M (9.8 ft)	M.1302.8447	M.1302.8435				
6 M (19.7 ft)	M.1302.8591	M.1302.8601				
9 M (29.5 ft)	M.1302.8542	M.1302.8602				
15 M (49.2 ft)	M.1302.8594	M.1302.8603				
30 M (98.4 ft)	M.1302.8595	M.1302.8604				

Table 5-22: F1/F2 Encoder to FSM Motor Cables						
For Connection Diagram, see Table 5-28: on page -87.						
Length	Non-Flex P/N	Hi-Flex P/N				
1 M (3.3 ft)	M.1301.3927	N/A				
3 M (9.8 ft)	M.1301.4011	N/A				
9 M (29.5 ft)	M.1301.4012	N/A				
15 M (49.2 ft)	M.1301.4013	N/A				
30 M (98.4 ft)	M.1301.4014	N/A				

Table 5-23: F1/F2 Encoder to YSM Motor Cables						
For Connection Diagram, see Table 5-29: on page -88.						
Length	Non-Flex P/N	Hi-Flex P/N				
1 M (3.3 ft)	M.1301.3983	N/A				
2 M (6.6 ft)	M.1302.7675	N/A				
3 M (9.8 ft)	M.1301.3984	N/A				
9 M (29.5 ft)	M.1301.3985	N/A				
15 M (49.2 ft)	M.1301.3986	N/A				
30 M (98.4 ft)	M.1301.3987	N/A				

Table 5-24	1: Feedback	Port (F1/F2) E	NDAT/BiS	S to AKM/DDR N	Motor Cable
For Part Number	ers, see Table	5-18: on page -80.			
Twisted Pair 7 pair 28 AWG 1 pair 16 AWG 1 pair 22 AWG	15-Pin HD male D-sub Connector to MMC Smart Drive		Connector to Motor (2) (1) (1) (2) (12) (19) (3) (13) (17) (16) (9) (4) (15) (8) (5) (6) (7)		
Wire Color	Pin Number	Signal Type	Pin Number	Jumper Connections	Signal Type
Yellow	1	cos	9		B+
White/Yellow	2	COS/	1		B-
Blue	3	SIN	11		A+
White/Blue	4	SIN/	3		A-
Black	5	DATA+	5		DATA
White/Black	10	DATA-	13		DATA/
Violet	12	CLOCK+	8		CLOCK
White/Violet	13	CLOCK-	15		CLOCK/
Red	N/U	N/A	12		UnSENSE VCC
White/Red	N/U	N/A	10		UnSENSE COM
Green	11	TEMPERATUR	7		THERMAL
White/Green	N/U	N/A	14	•	THERMAL
Orange	N/U	N/A	N/U		N/A
White/Orange	N/U	N/A	N/U		N/A
Brown	7	9 VDC	N/U		N/A
White/Brown	N/U	N/A	N/U		N/A
Gray	14	+5 VDC	4		5VDC
White/Gray	6	СОМ	2		GMD
N/C	9	N/A	6		N/C
N/C	15	N/A	16		N/C
N/C	8	N/A	17		N/C

Table 5-25: Feedback Port (F1/F2) Resolver AKM/DDR Motor							
For Part Numbers, see Table 5-19: on page -80.							
Twisted Pair 4 pair 24 AWG	D-sub 15-Pin HD Male Connector to MMC Smart Drive			Connector to Motor			
Wire Color	Pin Number	Signal Type	Pin Number	Jumper Connections	Signal Type		
Black	1	COS+	7		COS+		
White/Black	2	COS-	3		COS-		
Red	3	SIN+	8		SIN+		
White/Red	4	SIN-	4		SIN-		
Green	5	REF+	9		REF+		
White/Green	10	REF-	5		REF-		
Orange	11	TEMP+	2		TEMP+		
White/Orange	6	СОМ	6		TEMP-		
N/C	7	9 VDC	9		9 VDC		
N/C	8	N/A	N/U		N/A		
N/C	9	+5 VDC	10		+5 VDC		
N/C	12	СОМ	1		N/C		
N/C	13	N/A	10		N/C		
N/C	14	N/A	11		N/C		
N/C	15	N/A	12		N/C		

Та	ble 5-26: Fe	eedback Port (F1	/F2) Encode	er to AKM/DDR I	Motor
For Part Number	ers, see Table	5-20: on page -81.			
Twisted Pair 8 pair 28 AWG 1 pair 16 AWG	D-sub 15-Pin HD Male Connector to MMC Smart Drive			tor	
Wire Color	Pin Number	Signal Type	Pin Number	Jumper Connections	Signal Type
Yellow	1	А	3		А
White/Yellow	2	A/	4		A/
Blue	3	В	1		В
White/Blue	4	B/	2		B/
Black	5	I	5		I
White/Black	10	I/	6		I/
Violet	12	S1	15		S1
White/Violet	13	S2	16		S2
Red	8	S3	17		S3
White/Red	N/U	N/A	N/U		N/A
Green	11	TEMPERATURE	8		TEMPERATURE+
White/Green	N/U	N/A	9	•	TEMPERATURE-
Orange	N/U	N/A	N/U		N/A
White/Orange	N/U	N/A	N/U		N/A
Brown	7	9 VDC	11]	N/A
White/Brown	N/U	N/A	N/U]	N/A
Gray	14	+5 VDC	10]	+5 VDC
White/Gray	6	СОМ	7		СОМ
N/C	9	N/A	12		N/C
N/C	15	N/A	13		N/C
			14		N/C

Table 5-27: Feedback Port (F1/F2) Encoder to LSM or MSM Motors								
For Part Numbers, see Table 5-21: on page -81.								
Twisted Pair 8 pair 28 AWG 1 pair 16 AWG	D-sub 15-Pin HD Male Connector to MMC Smart Drive			Connector to Mo 2 1 10 10 10 10 10 10 10 10 10 10 10 10 1				
Wire Color	Pin Number	Signal Type	Pin Number	Jumper Connections	Signal Type			
Yellow	1	А	1		А			
White/Yellow	2	A/	2		A/			
Blue	3	В	3		В			
White/Blue	4	B/	4		B/			
Black	5	I	5		I			
White/Black	10	I/	6		I/			
Violet	12	S1	15		S1			
White/Violet	13	S2	16		S2			
Red	8	S3	17		S3			
White/Red	N/U	N/A	N/U		N/A			
Green	11	TEMPERATURE	13		TEMPERATURE+			
White/Green	N/U	N/A	14	•	TEMPERATURE-			
Orange	N/U	N/A	N/U		N/A			
White/Orange	N/U	N/A	N/U		N/A			
Brown	7	9 VDC	9		9 VDC			
White/Brown	N/U	N/A	N/U		N/A			
Gray	14	+5 VDC	10		+5 VDC			
White/Gray	6	СОМ	11	•—	СОМ			
N/C	9	N/A	7		N/C			
N/C	15	N/A	8		N/C			
			12		N/C			

7	Table 5-28:	Feedback Port ((F1/F2) Enc	oder to FSM Mo	otors
For Part Numb	ers, see Table	e 5-22: on page -81.			
Twisted Pair, 28 AWG 16 AWG	D-sub 15-Pin HD Male Connector to MMC Smart Drive 11 00 15 00 5		Connector to Motor BAM CONN CONN CONN CONN CONN CONN CONN CON		
Wire Color	Pin Number	Signal Type	Pin Number	Jumper Connections	Signal Type
Black	1	Α	А		Α
White/Black	2	2 A/			A/
Red	3	В	С		В
White/Red	4	B/	D		B/
Green	5	1	Е		1
White/Green	10	I/	F		I/
Gray	14	+5V	J	•	+5VDC
			K		+5VDC
White/Gray	6	СОМ	L	•	СОМ
			M	•	СОМ
			S		TEMPERATURE-
Blue	13	S2	N		S2
White/Blue	12	S1	Т		S1
Brown	8	S3	Р		S3
White/Brown	11	TEMPERATURE	R		TEMPERATURE+
	7	N/C	N/U		N/A
	9	N/C	N/U		N/A
	15	N/C	G		N/C
White/Violet	N/U	N/A	Н		N/C

Table 5-29: Feedback Port (F1/F2) Encoder to YSM Motors							
For Part Numbers, see Table 5-23: on page -82.							
Twisted Pair, 28 AWG 16 AWG	D-sub 15-Pin HD Male Connector to MMC Smart Drive		Connector to Motor (3) (1) (8) (4) (14) (9) (25) (9) (25) (21) (28) (29)				
Wire Color	Pin Number	Signal Type	Pin Number	Jumper Connections	Signal Type		
Black	1	А	9		А		
White/Black	2	A/	10		A/		
Red	3	В	11		В		
White/Red	4	B/	12		B/		
Green	5	I	13		1		
White/Green	10	I/	14		I/		
Gray	14	+5V	22		+5VDC		
White/Gray	6	СОМ	23		COM		
Blue	13	S2	17		S2		
White/Blue	12	S1	15	NO JUMPERED	S1		
Brown	8	S3	19	PINS	S3		
White/Brown	N/A	N/C	24		N/C		
N/A	7	N/C	1		N/C		
N/A	9	N/C	2		N/C		
N/A	15	N/C	3		N/C		
N/A	11	N/C	4-8		N/C		
			16		N/C		
			18		N/C		
			20		N/C		
			21		N/C		
			25-28		N/C		

5.1.7 Drive I/O Connector (IO)

The 26-pin HD female D-sub Drive I/O Port connector (labeled "IO" on the front of the Drive) provides connection between various devices and the Drive. This port provides one Analog Command Input, two differential Fast Inputs, several General Purpose I/O points (wiring example shown in See Figure 5-6 on page 95), and buffered versions of the feedback device connected to the F1 port.

- Pin descriptions are provided in Table 5-30
- Pin assignments are provided in Table 5-31
- Available MMC Control cables are described in Table 5-32
- The available Flying Lead cable is described in Table 5-33.
- Available Breakout Boxes and Cables are described in Table 5-34.
- Breakout Box dimensions are shown in Figure 5-4
- Breakout Board dimensions are shown in Figure 5-5

Table 5-30: Pin Description for Drive I/O Connector (IO)						
Signal Type	Notes	Pins				
Analog Command Inputs (Analog In- terfaced MMC-SD only)	Analog velocity or torque commands of 0 to +/- 10V. Separate scale and offset parameters are used relative to the command signal being velocity or torque	14, 15				
Fast Inputs (Digital Interfaced MMC-SD only)	Used for latching encoder position.	8, 9, 11, 12				
General Purpose Software Assign- able Inputs	24VDC sourcing type. Default assignments: Pin 17 (GPIN1) = Drive Enable, Pin 18 (GPIN2) = Fault Reset	17, 18, 19, 20, 21, 22				
Buffered F1 Encoder Output	RS485 drivers are used and the signal that is output depends on the encoder or resolver type used. See specifications in Chapter 5 of this manual. These signals are generated after the feedback from the F1connector is filtered and processed.	1, 2, 3, 4, 5, 6				
General Purpose Software Assign- able Outputs	24VDC sourcing type. Default assignment: Pin 26 (GPOUT4) = Drive Ready	23, 24, 25, 26				
IO24V, IO24COM	24 VDC inputs for powering GPIN and GPOUT I/O.	10, 16				

	Table 5-31: Pin Assignment for Drive I/O Connector (IO)								
Pin	Wiring Label	PiCPro I/O Label	In/Out	Pin	Wiring Label	PiCPro I/O Label	In/Out	Connector Pinout	
1	FDBK1B A		Out	14	CMD +		In		
2	FDBK1B A/		Out	15	CMD -		In		
3	FDBK1B B		Out	16	IO24COM		In	26-pin Female HD	
4	FDBK1B B/		Out	17	GPIN1	Input1	In	D-Sub	
5	FDBK1B I		Out	18	GPIN2	Input2	In	26 O	
6	FDBK1B I/		Out	19	GPIN3	Input3	In	2000	
7	Shield		Out	20	GPIN4	Input4	In		
8	GPIN7 +	Input7	In	21	GPIN5	Input5	In	19001	
9	GPIN7 -	inputi	In	22	GPIN6	Input6	In		
10	IO24V		In	23	GPOUT1	Output1	Out		
11	GPIN8 +	Input8	In	24	GPOUT2	Output2	Out		
12	GPIN8 -	inputo	In	25	GPOUT3	Output3	Out		
13	Shield			26	GPOUT4	Output4	Out		

Table 5-32: Drive I/O Port to Analog MMC Control "An" Port Cable^a

Part Numbers:

.5 M (1.6 ft): M.1302.5990 1.5 M (4.9 ft): M.1302.5992 1 M (3.3 ft): M.1302.5991 3 M (16.4 ft): M.1302.5993

Cable type: 28 AWG (pins 10 & 16 20 AWG), shielded, twisted pair, 26 conductor.

D-sub 26-Pin HD Male D-sub 15-Pin HD Male Connector to MMC Connector to MMC Smart Controller Axis I/O Port Drive Drive I/O Port **Twisted** Pair 9 pair 28 AWG Wire Pin Signal Pin Jumper Signal Color Number Type Number Connection **Type Black** 1 Α 1 Α White/Black 2 A/ 2 A/ 3 В 3 В Red White/Red 4 4 B/ B/ Green 5 ı 5 Ι 1/ I/ White/Green 6 10 Orange 26 OUT4 6 DCIN+ N/U 7 White/ N/U DCIN-CMD+ 8 Blue 14 DA+ White/Blue 15 CMD-9 DA-Yellow 17 IN1 13 DCOUT1 White/Yellow 18 IN₂ 14 DCOUT2 Brown N/U N/U N/U N/A N/U White/Brown N/U 15 **DCOSS** N/U N/U N/U Violet N/A White/Violet N/U N/U N/U N/A Gray 10 IO24V 11 24VDCOUT White/Gray 16 **IOCOM** 12 COM N/A Shell Shield Shell Shield

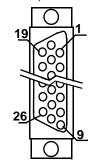

a. These cables are only used to interface between the Analog MMC-An control and the Analog MMC Smart Drive.

Table 5-33: Drive I/O Port to Flying Lead Cable

Part Numbers:

1 M (3.3 ft): M.1302.7032 15 M (49.2 ft): M.1302.7036 3 M (10 ft): M.1302.7034 30 M (98.4 ft): M.1302.7037 9 M (29.5 ft): M.1302.7035 Cable type: 28 AWG (pins 10 & 16 20 AWG), shielded, twisted pair, 26 conductor.

26-Pin HD male D-sub (to Drive I/O Port, face view)

Pin	Signal	Color	Notes	Pin	Signal	Color	Notes
1	А	Black	Twisted	17	GPIN1	Violet	Twisted
2	A/	Blk/Wht	Pair	18	GPIN2	Vio/Wht	Pair
3	В	Red	Twisted	19	GPIN3	Pink	Twisted
4	B/	Red/Wht	Pair	20	GPIN4	Pnk/Wht	Pair
5	1	Green	Twisted	21	GPIN5	Blk/Yel	Twisted
6	1/	Grn/Wht	Pair	22	GPIN6	Gry/Grn	Pair
7	Shield	Black	Twisted	23	GPOUT1	Grn/Red	Twisted
13	Shield	Blue	Pair	24	GPOUT2	Yel/Red	Pair
8	GPIN7 +	Blue	Twisted	25	GPOUT3	Gry/Blu	Twisted
9	GPIN7 -	Blu/Wht	Pair	26	GPOUT4	Yel/Blu	Pair
11	GPIN8 +	Yellow	Twisted	10	IO24V	Gray	Twisted
12	GPIN8 -	Yel/Wht	Pair	16	IO24C	Gry/Wht	Pair
14	CMD +	Brown	Twisted				
15	CMD -	Brn/Wht	Pair				

Table 5-34: Drive I/O Port Breakout Box and Cables			
Description	Length	Part Number	
Drive I/O Port Breakout Board ^a	N/A	M.1302.6971	
Drive I/O Breakout Box ^b	N/A	M.1302.6973	
	1 M (3.3 ft)	M.1302.6982	
Drive I/O Port to Breakout Box Cable	3 M (9.8 ft)	M.1302.6984	
	9 M (29.5 ft)	M.1302.6985	
Drive I/O Port Breakout Box and Cable	1 M (3.3 ft)	M.1302.7009	
Kits. These kits include an M.1302.6973 Breakout Box and an interconnect cable of	3 M (9.8 ft)	M.1302.7030	
the indicated length.	9 M (29.5 ft)	M.1302.7031	

- a. The Drive I/O Breakout Board (see Figure 5-5 on page 94) is mounted directly to the IO connector, and provides screw terminals wire termination.
- b. The Drive I/O Breakout Box (see Figure 5-4 on page 94) is DIN-rail mounted, and provides screw terminal wire termination. Use one of the cables listed in the table to connect between the IO connector and the Breakout Box.

Figure 5-4: Drive I/O Port Breakout Box Dimensions

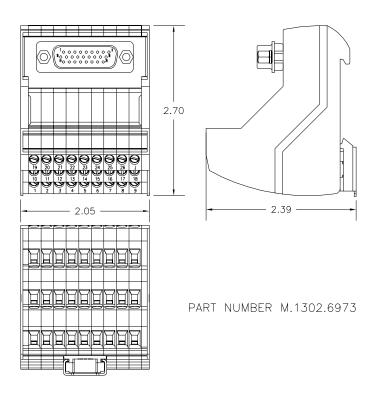
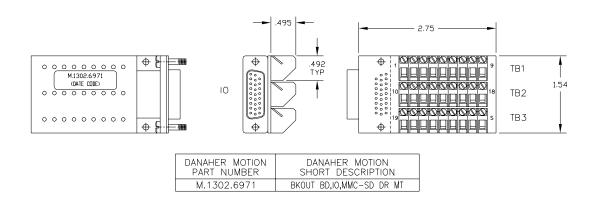



Figure 5-5: Drive I/O Port Breakout Board Dimensions

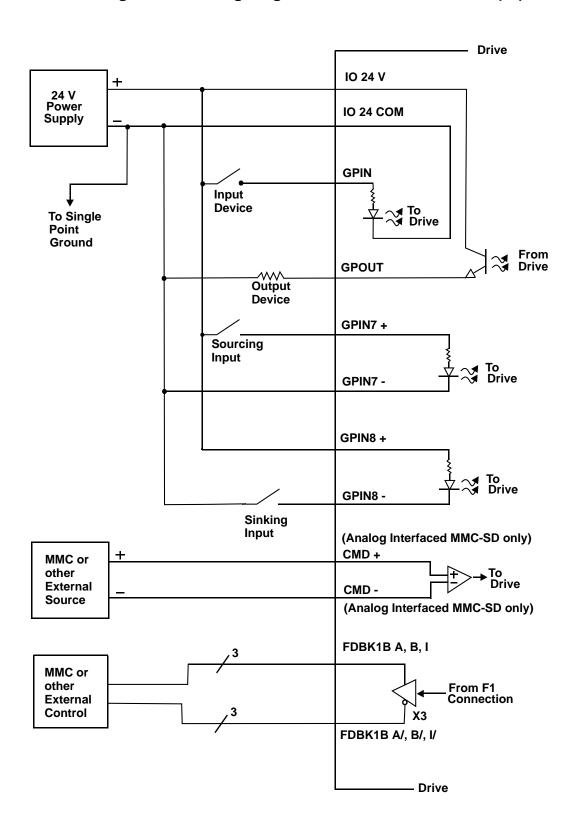
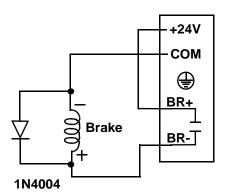


Figure 5-6: Wiring Diagram for Drive I/O Connector (IO)

5.2 Power Section Connectors

This section describes the connectors located on the Power Section (left portion) of the drive.

5.2.1 24 VDC IN/Brake Connector


Table 5-35: Pin Assignment for 24 VDC IN/Brake Connector					
Terminal Label	Signal Type	Signal Description	PiCPro I/O Label	In/ Out	Connector Pinout
+24V	Logic Power	+24V user supplied pow- er signal termi- nal.	N/A	In	5-pin Plugable Screw Terminal
СОМ	Common	+24V Common	N/A	In	+24V COM
(1)	Protective Ground	Must be con- nected to Pro- tective Earth Ground (SPG)	N/A	In	COM BR+ BR-
BR+	Brake Relay +	Refer to Figure	Output5	Out	5.1
BR-	Brake Relay -	Figure 5-7.	/Relay	Out	

NOTE

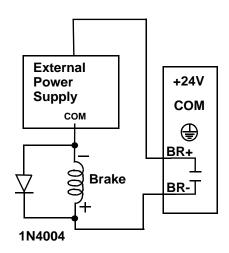

Use of a diode (as shown) or an external RC type snubber is highly recommended for use with inductive loads, especially DC inductive loads.

Figure 5-7: BR+ and BR- Wiring Examples

Using 24V Power Source

Using External Power Source

5.2.2 Motor Connector

Table 5-36: Pin Assignment for Motor Connector				
Terminal Label	Signal Type	Signal Description	In/Out	Pin Sequence
B+	DC Bus	Power from drive to active	Out	
B-		shunt		
L1		100-240VAC single phase		9-pin non-plugable
L2	AC Power	power in to drive.	ln ln	Screw Terminal
⊕	Protective Ground	Must be connected to Protective Earth Ground (SPG).	In	B+
U	Motor Power	Power U-phase from the drive to the motor.	Out	
V		Power V-phase from the drive to the motor.	Out	v ⊕ w ⊕ ⊕ □
W		Power W- Phase from the drive to the mo- tor.	Out	
\equiv 	Protective Ground	Connection for motor ground.	In	

5.3 Specifications - 230V MMC Smart Drive

5.3.1 General Data for all 230V Models

General Drive Data			
Minimum wire size for input power wires	1.5mm2 (16 AWG) 75° C copper.		
Maximum tightening torque for power wire terminals	1.17 Nm (10.4 in-lbs.)		
Commutation	Three Phase Sinusoidal		
Current Regulator	Digital PI 125 µsec. update rate		
Velocity Regulator	Digital PID - 250 µsec. update rate		
Eı	nvironmental Data		
Operating Temperature Range	7° C to 55° C (45° F to 131° F)		
Storage Temperature Range	-30° C to 70° C (-22° F to 158° F)		
Humidity	5% to 95% non-condensing		
Altitude	1500 m (5000 ft) Derate 3% for each 300 m above 1500m		
Vibration Limits (per IEC 68-2-6) Operating/Non-operating	10-57 Hz (constant amplitude.15 mm) 57 - 2000 Hz (acceleration 2 g)		
Shock (per IEC 68-2-27) Non-operating	Four shocks per axis (15g/11 msec)		
F1 an	d F2 Feedback Inputs		
Input receiver type	Maxim 3098 A quad B differential RS422 receiver		
Encoder signals	Differential quadrature		
Input threshold	±200 mV		
Input termination	150 Ω , provided internally		
Maximum input voltage	5V peak to peak differential -10 to +13.2V common mode		
Maximum input signal frequency	720 K Hz (2.88 M feedback counts per second)		
+5V regulated output	500ma max between F1 and F2		
+9V regulated output	150ma max between F1 and F2		

General Purpose Inputs			
Configuration	 8 optically isolated 24V DC inputs Active high 6 are current sourcing only (current flow into input) 2 are sink or source 		
Guaranteed On	15 VDC		
Guaranteed Off	5 VDC		
Time delay on	1 ms max.		
Time delay off	1 ms max.		
Input voltage	Nominal 24 VDC, maximum 30 VDC		
General Purpose Outputs			
Configuration	 4 optically isolated 24V DC outputs Active high Current sourcing only (current into load) Short circuit and overload protected 		
Maximum current	50mA per output		
Voltage range	24VDC +15%-10%		
Time delay on for resistive loads	50 μsec. max		
Time delay off for resistive loads	50 µsec. max		
Leakage current in off state	0.5 mA max		
Command Input (Analog Interfaced MMC-SD only)			
Command Input	Analog velocity or torque, 0 to <u>+</u> 10V 14 bit effective resolution		

Digital Link In/Out Ports (Digital Interfaced MMC-SD only)			
"In" port	Sends and receives high speed data to and from connected MMC-SD's "Out" port.		
"Out" port	Sends and receives high speed data to and from connected MMC-SD's "In" port.		
Cable Type	Shielded, Straight Pinned, CAT5 or better (CAT5e, CAT6, etc.)		
Maximum Cable Length	30 m (98.4 ft)		

Drive I/O Connector Encoder Emulation Output			
F1 Motor Feedback Type	Input Limit Encoder Emulation Output (A quad B Differential Output)		
Incremental Encoder	720 KHz 2.88 M counts/sec. The motor encoder A/B/I inputs are electrically buffered and retransmitted via the Drive I/O connector.		
High Resolution Encoder	100 KHz 400 K counts/sec. The encoder SIN/COS signals are electrically squared and retransmitted as A/B. The index mark "I" is synthesized by the drive control DSP. Absolute position information is not available via the Encoder Emulation Output.		
Resolver	500 RPS 2.00 M counts/sec. The field-installable resolver interface module converts the motor resolver to 1024 lines/4096 counts per revolution of A/B encoder output. The module synthesizes the index mark "I" once per revolution of the resolver. Absolute position information is not available via the Encoder Emulation Output.		
Conformity			
CE Marked	Conforms to Low Voltage Directive 73/23/EEC (amended by 93/68/EEC) and EMC Directive 89/336/EEC (amended by 92/31/EEC and 93/68/EEC). Conformance is in accordance with the following standards: EN 50178 and EN61800-3		
UL and C/UL Listed	E233454		

5.3.2 Physical and Electrical Data for 230V Drives

	Model			
	MMC-SD-0.5- 230 (-D, -DN)	MMC-SD-1.0- 230 (-D, -DN)	MMC-SD-2.0- 230 (-D, -DN)	
Part Numbers Analog, standard width Digital	M.1302.5090	M.1302.5091	M.1302.5092	
Standard width, no BiSS Standard width, Biss Narrow width, no BiSS Narrow width, Biss	M.1302.8130 M.3000.0461 M.1302.8908 M.3000.0458	M.1302.8131 M.3000.0462 M.1302.8910 M.3000.0459	M.1302.8132 M.3000.0463 M.1302.8911 M.3000.0460	
	Physica	I		
Weight	4.9 lbs. (2.23 kg)	5.6 lbs. (2.55 kg)	5.7 lbs. (2.59 kg)	
	Electrical Speci	fications		
AC Input Specifications				
Nominal Input Power	1.0 kVA	2.0 kVA	4.0 kVA	
Input Voltage	100-240 VAC (nominal), Single Phase, 88-265 VAC (absolute limits)			
Input Frequency		47 - 63 Hz		
Nominal Input Current	5A RMS	9A RMS	18A RMS	
Maximum Inrush Current (0-Peak)	70A	70A	70A	
Power Loss	22W	37W	70W	
AC Output Specification	AC Output Specifications			
Continuous Output Current RMS (0-Peak)	1.8A (2.5A)	3.5A (5A)	7.1A (10A)	
Continuous Output Power				
Input = 115 VAC	250W	500W	1kW	
Input = 230 VAC	500W	1kW	2kW	
Peak Output Current (0-Peak)	7.5A	15A	30A	
Output Frequency	0-266 Hz			

DC Input Power Specifications (24VDC)				
Input Voltage Range	24 VDC +15% -10%			
Typical Input Current	375 mA			
Typical Input Wattage	9 W			
Inrush Current	1.5 A for 10 ms			
Relay Contact for Motor	Mechanical Brake	,		
Rating (resistive load)	Rating (resistive load)			
Nominal switching capacity	24 VDC			
Maximum switching power	831 VA			
Maximum switching voltage	250 VAC / 100 VDC			
Maximum switching current	5 A (AC) / 2.5 A (DC)			
Energy Absorbtion Spec	Energy Absorbtion Specifications			
DC Bus Capacitance (Internal)	1410 μF	1880 μF		
Bus overvoltage threshold	420 VDC			
Joules available for energy absorption				
230V motor w/115V line input	94 joules	126 joules		
230V motor w/230V line input	38 joules	51 joules		

5.4 Dimensions for 230V MMC Smart Drive

This section contains dimensional information on the narrow width (-DN) Digital MMC-SD drive, the standard width (-D) Digital MMC-SD drive, and the Analog Interfaced drive (no letter suffix). Use this information to determine mounting hole locations on the drive panel.

When locating the drive on the panel, observe the clearance requirements found in **Table 3-1 on page 19**. Mount the drive to the panel with #10 bolts and #10 star washers (to ensure proper ground connection).

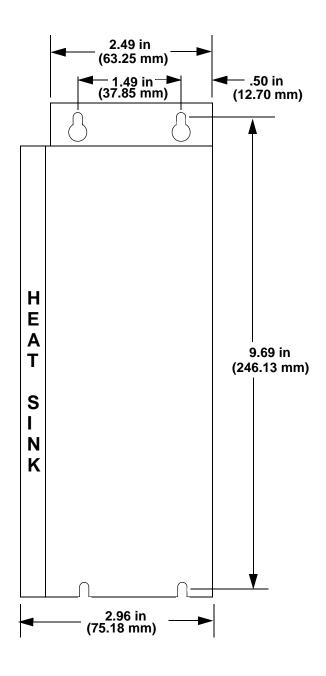
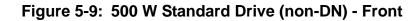
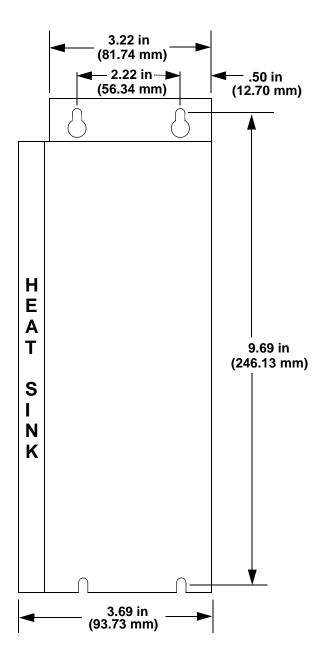
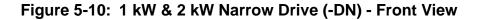





Figure 5-8: 500 W Narrow Drive (-DN) - Front View

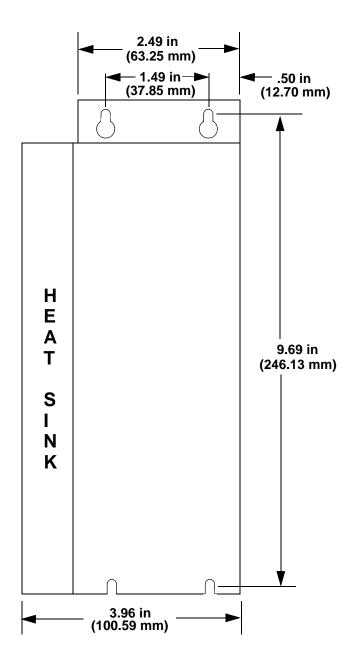
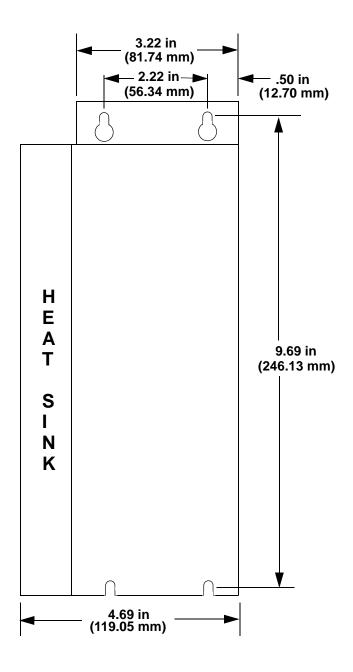
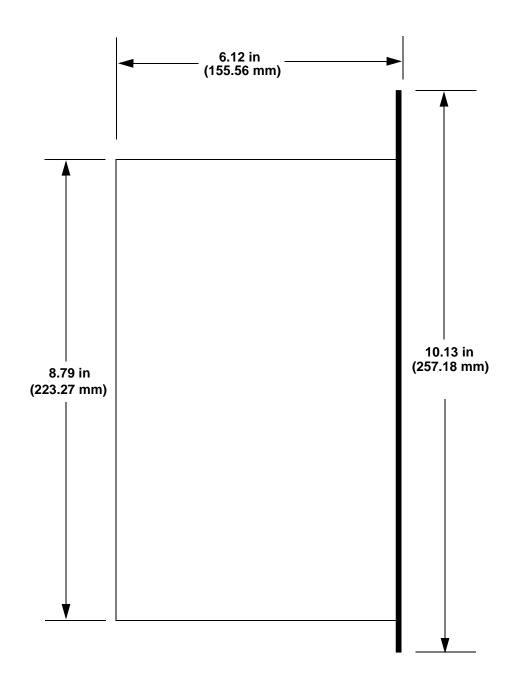




Figure 5-11: 1 kW & 2 kW Standard Drive (non-DN) - Front View

6 460V 3-Phase MMC Smart Drive

The 460V MMC Smart Drive is available in both analog and digital interfaced versions, with power ratings from 1.3kW through 65kW. This section describes these drives in detail.

6.1 Control Section Connectors, Switches, LEDs

The Control Section is located on the right side of the drive, and is identical to the Control Section on the 230V Smart Drive. Refer to **section 5.1 on page 63** for Information on the connectors, switches, and LEDs located on the Control Section of the drive.

6.2 Power Section Connectors

The 460V Smart Drive is available in four frame sizes (size 1 through 4). The Power Section connectors location and function are different among the four frame sizes. Each frame size is described in detail in the following sections.

6.2.1 Size 1 Power Section Connectors

This section describes in detail the connectors located on the Power Section of the Size 1 drives.

The functionality and descriptions for the switches and connectors on the Control Section of the 460V MMC Smart Drives are the same as those on the 230V MMC Smart Drive. Refer to **section 5.1 on page 63** for more information.

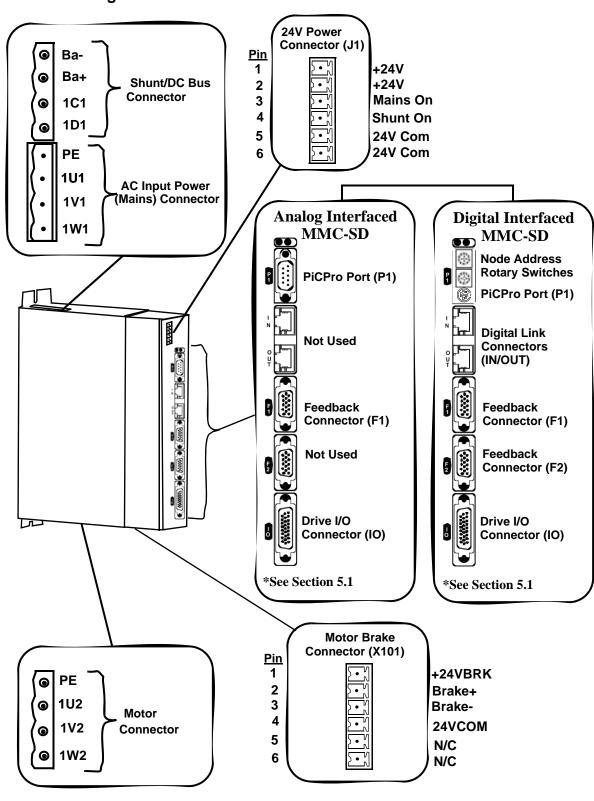


Figure 6-1: Connectors on the Size 1 460V Smart Drive

6.2.1.1 Shunt/DC Bus Connector

Tab	Table 6-1: 460V Size 1 Shunt/DC Bus Connector				
Signal Type	Signal Description	Connector Label	In/Out	Connector	
D	External Shunt Resistor. Used to dissipate	Ва-	0.1	/al	
Power	energy returned to the drive by the motor.	Ва+	Out	(⊚ Ba- (⊚ Ba+ (⊚ 1C1 (⊚ 1D1	
	D DO. !	1C1 (ZK+)			
DC Bus Pow- er	Direct DC bus con- nection	1D1 (ZK-)	N/A		

NOTE

The shunt resistor (if installed) across Ba+ and Ba- will be connected across the DC bus when the DC bus reaches the "shunt switch threshold" as shown in the specification table; or when the "Shunt On" input on the J1 connector is active.

NOTE

If a 460V drive is connected to 220V to run a 220V motor, enable the "220V Shunt on 440V Drive" feature using PiCPro, connect GPOUT3 on the Drive I/O (IO) connector to the "Shunt On" input on the J1 connector, and install the appropriate shunt resistor across the Ba+ and Ba- terminals. The shunt resistor will be applied across the DC bus when the DC bus voltage rises above 415 volts, and will be removed when the DC bus voltage falls below 400 volts.

6.2.1.2 AC Power Connector

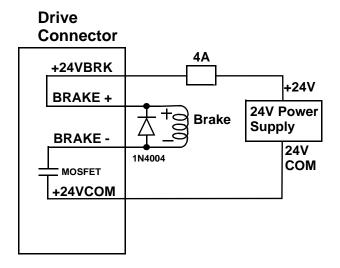
Table 6-2: 460V Size 1 AC Power Connector				
Signal Type	Signal Description	Connector Label	In/Out	Connector
Protective Ground	Protective Earth Ground	PE	Out	PE
Power	3 phase input power AC source must be center	1U1	In] . 1U1
		1V1		1V1
grounded Y system.		1W1		[·] 1W1

6.2.1.3 Motor Connector

Table 6-3: 460V Size 1 Motor Connector				
Signal Type	Signal Description	Connector Label	In/Out	Connector
Protective Ground	Protective Earth Ground	PE	Out	(⊚ PE
Power	Drive output	1U2	Out	0 1U2
		1V2		(◎ 1V2
	power to motor.	1W2		(⊚ 1W2

6.2.1.4 24V Power Connector (J1)

Ta	Table 6-4: 460V Size 1 24V Power Connector (J1)					
Signal Type	Signal Description	Pin	Connector Label	In/Out	Connector	
Power	24 VDC input	1	+24V	In		
1 Ower	power	2	+24V	""		
24V Logic Output	Reserved for future use, do not use!	3	Mains On	Out	Тор	
24V Logic Input	When this input is active, the shunt resistor (if installed) between Barand Baris connected across the DC bus.	4	Shunt On	In	1 +24V 2 +24V 3 Mains On 5 Shunt On 24 Com 6 24 Com	
Power	24 VDC input common to the	5	24V Com	In		
1 OWOI	common to the drive.	6	24V Com	111		


CAUTION

A possible ignition hazard within the MMC 460V Smart Drives exists if excessive current is drawn from the 24 VDC powering the MMC Smart Drive. To prevent this possibility (due to improper wiring or 24 VDC supply failure), a fuse should be used in series with the 24 VDC to the MMC Smart Drive (4 A max). In addition, the 24 VDC shall be supplied by an isolating source such that the maximum open circuit voltage available to the MMC Smart Drive is not more than 30 VDC.

6.2.1.5 Motor Brake Connector (X101)

Table 6-5: 460V Size 1 Motor Brake Connector (X101)					
Signal Type	Signal Description	Pin	Connector Label	In/Out	Connector
Power	24 VDC brake input power	1	+24VBRK	In	Тор
Brake con-		2	Brake +	Out	1 1 +24VBRK
trol		3	Brake -	In	2 Brake + 3 Prake -
Power	24 VDC com- mon	4	24VCOM	Out	4 24VCOM 5 N/C
Not Used.		5	N/C	Not	6 <u>⊡</u> N/C
1400	000u.	6	14/0	Used	

Figure 6-2: Wiring Example for X101 Connector

6.2.2 Size 2 Power Section Connectors

This section describes in detail the connectors located on the Power Section of the Size 2 drives.

The functionality and descriptions for the switches and connectors on the Control Section of the 460V MMC Smart Drives are the same as those on the 230V MMC Smart Drive. Refer to **section 5.1 on page 63** for more information.

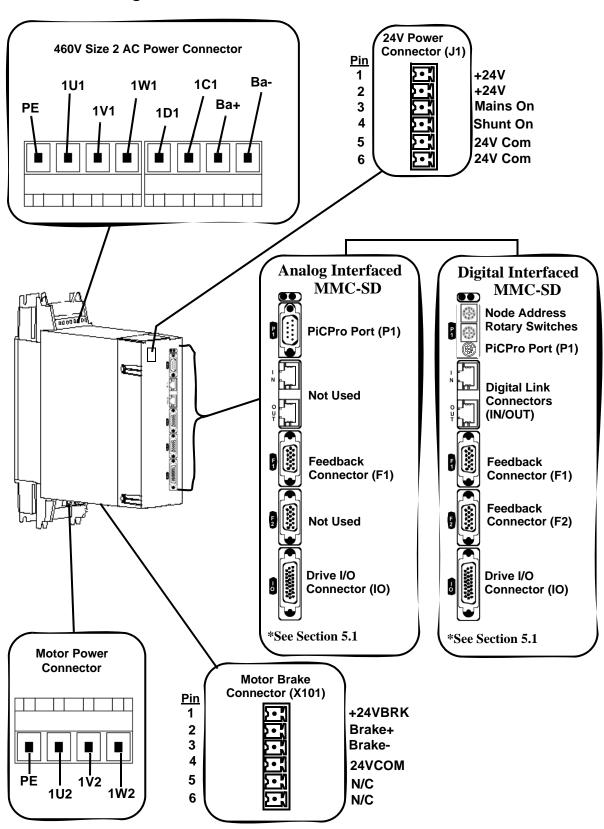
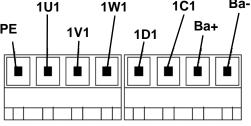



Figure 6-3: Connectors on the Size 2 460V Drive

6.2.2.1 AC Power Connector

Signal Type	Signal Description	Connector Label	In/Out	
Ground	Protective Ground (Earth)	PE	Out	
		1U1		
Power	Three phase AC input power in to drive	1V1	In	
		1W1		
DC Bus Power	Direct DC bus connec-	1D1 (ZK-)	Out	
DC Bus i ower	tion	1C1 (ZK+)	Out	
	External Shunt Resistor used to dissipate	Ва+		
Power	energy returned to the drive from motor	Ва-	Out	

NOTE

The shunt resistor (if installed) across Ba+ and Ba- will be connected across the DC bus when the DC bus reaches the "shunt switch threshold" as shown in the specification table; or when the "Shunt On" input on the J1 connector is active.

NOTE

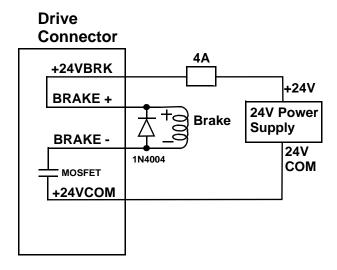
If a 460V drive is connected to 220V to run a 220V motor, enable the "220V Shunt on 440V Drive" feature using PiCPro, connect GPOUT3 on the Drive I/O (IO) connector to the "Shunt On" input on the J1 connector, and install the appropriate shunt resistor across the Ba+ and Ba- terminals. The shunt resistor will be applied across the DC bus when the DC bus voltage rises above 415 volts, and will be removed when the DC bus voltage falls below 400 volts.

6.2.2.2 Motor Connector

Table 6-7: 460V Size 2 Motor Connector						
Signal Type	Signal Description	Connector Label	In/Out	Connector		
Ground	Protective Ground (Earth)	PE	Out			
	Power U-phase from the drive to the motor	1U2	Out			
Motor	Power V-phase from the drive to the motor	1V2	Out	PE 1V2 1U2 1W2		
	Power W-phase from the drive to the motor	1W2	Out			

6.2.2.3 24V Power Connector (J1)

Table 6-8: 460V Size 2 24V Power Connector (J1)					
Signal Type	Signal Description	Pin	Connector Label	In/Out	Connector
Power	24 VDC input	1	+24V	In	
1 OWCI	power	2	+24V	111	
24V Logic Output	Reserved for future use, do not use!	3	Mains On	Out	Top 1 [5-∏+24V
24V Logic Input	When this input is active, the shunt resistor (if installed) between Bahand Bahar is connected across the DC bus.	4	Shunt On	In	2 +24V 3 Mains On 4 2 Shunt On 5 24 Com 6 24 Com
Power	24 VDC input common to the drive.	5	24V Com	In	
Power		6	24V Com		


CAUTION

A possible ignition hazard within the MMC 460V Smart Drives exists if excessive current is drawn from the 24 VDC powering the MMC Smart Drive. To prevent this possibility (due to improper wiring or 24 VDC supply failure), a fuse should be used in series with the 24 VDC to the MMC Smart Drive. Specifically, a 4 A max. "UL248 Series" fuse should be used. In addition, the 24 VDC shall be supplied by an isolating source such that the maximum open circuit voltage available to the MMC Smart Drive is not more than 30 VDC.

6.2.2.4 Motor Brake Connector (X101)

Table 6-9: 460V Size 2 Motor Brake Connector (X101)					
Signal Type	Signal Description	Pin	Connector Label	In/Out	Connector
Power	24 VDC brake input power	1	+24VBRK	In	Ton
Brake control	Brake connections	2	Brake +	Out	Top
		3	Brake -	In	1 - +24VBRK 2 - Brake +
Power	24 VDC common (supply and mag- net)	4	24VCOM	Out	3
Not Used		5	N/C	Not	6 <u>≻√</u> N/C
	Not Used.		14/0	Used	

Figure 6-4: Wiring Example for X101 Connector

6.2.3 Size 3 Power Section Connectors

This section describes in detail the connectors located on the Power Section of the Size 3 drives.

The functionality and descriptions for the switches and connectors on the Control Section of the 460V MMC Smart Drives are the same as those on the 230V MMC Smart Drive. Refer to **section 5.1 on page 63** for more information.

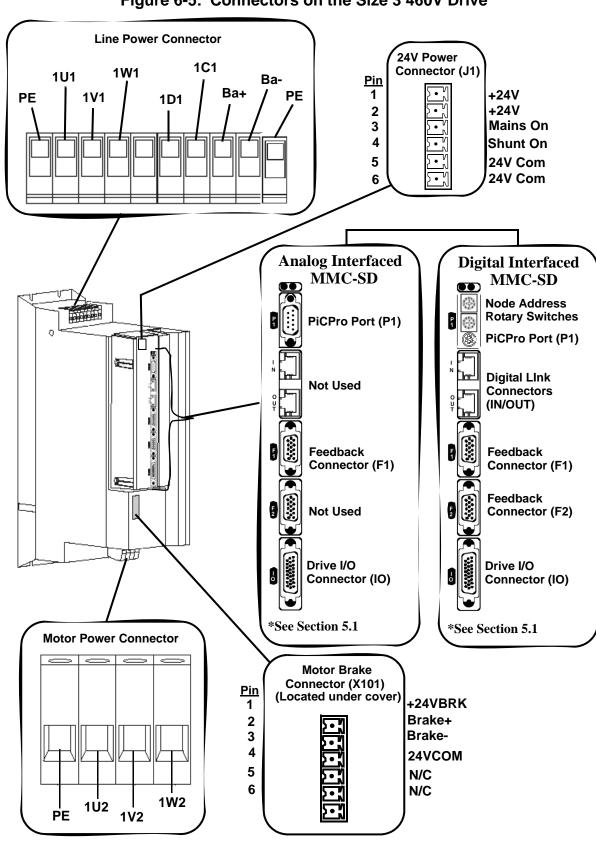
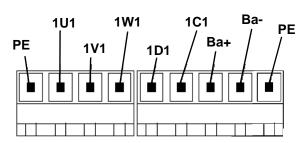



Figure 6-5: Connectors on the Size 3 460V Drive

6.2.3.1 AC Power Connector

Table 6-10: 460V Size 3 AC Power Connector

Signal Type	Signal Description	Connector Label	In/Out	
Ground	Protective Ground (Earth)	PE	Out	
		1U1		
Power	Three phase AC input power in to drive	1V1	In	
		1W1		
DC Bus Power	Direct DC bus connec-	1D1 (ZK-)	Out	
DC Bus Fower	tion	1C1 (ZK+)	Out	
External Shunt Resistor used to dissipate		Ва+		
	energy returned to the drive from motor	Ва-	Out	

NOTE

The shunt resistor (if installed) across Ba+ and Ba- will be connected across the DC bus when the DC bus reaches the "shunt switch threshold" as shown in the specification table; or when the "Shunt On" input on the J1 connector is active.

NOTE

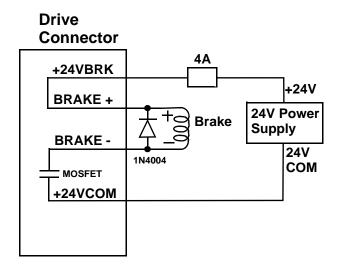
If a 460V drive is connected to 220V to run a 220V motor, enable the "220V Shunt on 440V Drive" feature using PiCPro, connect GPOUT3 on the Drive I/O (IO) connector to the "Shunt On" input on the J1 connector, and install the appropriate shunt resistor across the Ba+ and Ba- terminals. The shunt resistor will be applied across the DC bus when the DC bus voltage rises above 415 volts, and will be removed when the DC bus voltage falls below 400 volts.

6.2.3.2 Motor Connector

	Table 6-11: 460V Size 3 Motor Connector					
Signal Type	Signal Description	Connector Label	In/Out	Connector		
Ground	Protective Ground (Earth)	PE	Out	0000		
	Power U-phase from the drive to the motor	1U2	Out			
Motor	Power V-phase from the drive to the motor	1V2	Out			
	Power W-phase from the drive to the motor	1W2	Out	PE 1V2		

6.2.3.3 24V Power Connector (J1)

Та	Table 6-12: 460V Size 3 24V Power Connector (J1)					
Signal Type	Signal Description	Pin	Connector Label	In/Out	Connector	
Power	24 VDC input	1	+24V	. In		
1 OWCI	power	2	+24V] "'		
24V Logic Output	Reserved for future use, do not use!	3	Mains On	Out	Top 1 [∵] +24V	
24V Logic Input	When this input is active, the shunt resistor (if installed) between Bahand Baris connected across the DC bus.	4	Shunt On	In	+24V 3 Mains On 4 Shunt On 5 24 Com 6 24 Com	
Power	24 VDC input	5	24V Com	In		
. 551	drive.	6	24V Com			


CAUTION

A possible ignition hazard within the MMC 460V Smart Drives exists if excessive current is drawn from the 24 VDC powering the MMC Smart Drive. To prevent this possibility (due to improper wiring or 24 VDC supply failure), a fuse should be used in series with the 24 VDC to the MMC Smart Drive. Specifically, a 4 A max. "UL248 Series" fuse should be used. In addition, the 24 VDC shall be supplied by an isolating source such that the maximum open circuit voltage available to the MMC Smart Drive is not more than 30 VDC.

6.2.3.4 Motor Brake Connector (X101)

Tabl	Table 6-13: 460V Size 3 Motor Brake Connector (X101)					
Signal Type	Signal Description	Pin	Connector Label	In/Out	Connector	
Power	24 VDC brake input power	1	+24VBRK	In	Ton	
Brake control	Brake connections	2	Brake +	Out	Top	
Diake Control		3	Brake -	In	1 +24VBRK 2 Brake +	
Power	24 VDC common (supply and mag- net)	4	24VCOM	Out	3	
Not Used.		5	N/C	Not	6 <u> N/C</u>	
140	Not Used.] ""	Used		

Figure 6-6: Wiring Example for X101 Connector

6.2.4 Size 4 Power Section Connectors

This section describes in detail the connectors located on the Power Section of the Size 4 drives.

The functionality and descriptions for the switches and connectors on the Control Section of the 460V MMC Smart Drives are the same as those on the 230V MMC Smart Drive. Refer to **section 5.1 on page 63** for more information.

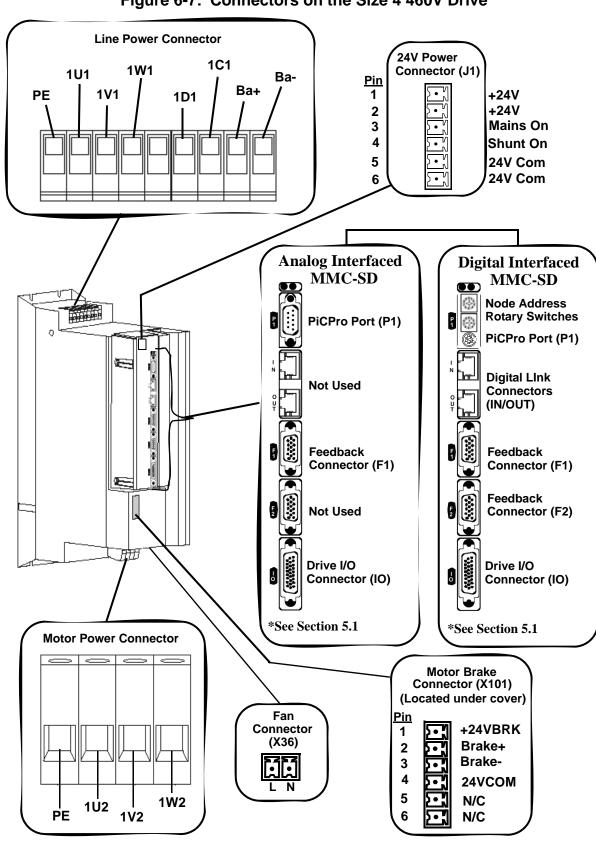


Figure 6-7: Connectors on the Size 4 460V Drive

6.2.4.1 AC Power Connector

Table 6-14: 460V Size 4 AC Power Connector 1U1 1W1 1C1 Ba PE 1V1 1D1 Ba+

Signal Type	Signal Description	Connector Label	In/Out
Ground	Protective Ground (Earth)	PE	Out
		1U1	
Power Three phase AC input power in to drive		1V1	In
		1W1	
DC Bus Power	Direct DC bus connec-	1D1 (ZK-)	Out
Do bus i owei	tion		Out
	External Shunt Resistor used to dissipate	Ва+	
	energy returned to the drive from motor	Ва-	Out

NOTE

The shunt resistor (if installed) across Ba+ and Ba- will be connected across the DC bus when the DC bus reaches the "shunt switch threshold" as shown in the specification table; or when the "Shunt On" input on the J1 connector is active.

NOTE

If a 460V drive is connected to 220V to run a 220V motor, enable the "220V Shunt on 440V Drive" feature using PiCPro, connect GPOUT3 on the Drive I/O (IO) connector to the "Shunt On" input on the J1 connector, and install the appropriate shunt resistor across the Ba+ and Ba- terminals. The shunt resistor will be applied across the DC bus when the DC bus voltage rises above 415 volts, and will be removed when the DC bus voltage falls below 400 volts.

6.2.4.2 Motor Connector

	Table 6-15: 460V Size 4 Motor Connector					
Signal Type	Signal Description	Connector Label	In/Out	Connector		
Ground	Protective Ground (Earth)	PE	Out			
Motor	Power U-phase from the drive to the motor	1U2	Out			
	Power V-phase from the drive to the motor	1V2	Out			
	Power W-phase from the drive to the motor	1W2	Out	1 ¹ 1 ¹ W2 PE		

6.2.4.3 24V Power Connector (J1)

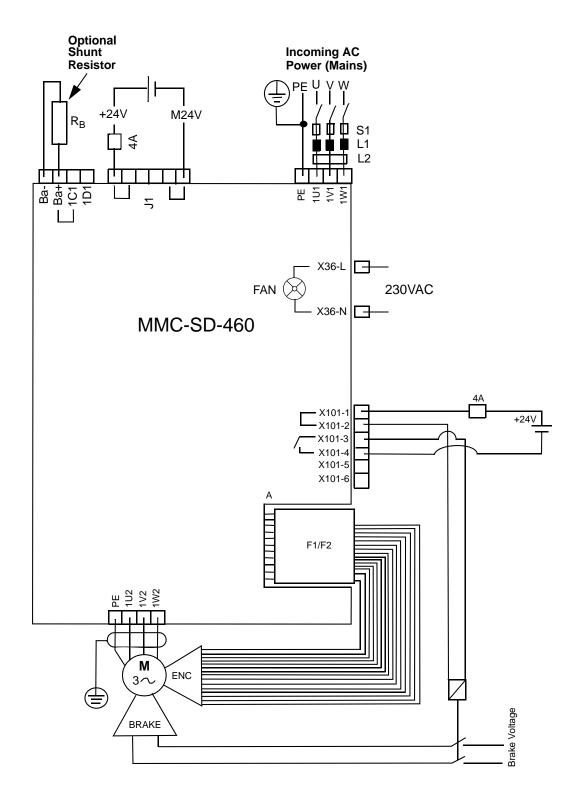
Ta	Table 6-16: 460V Size 4 24V Power Connector (J1)					
Signal Type	Signal Description	Pin	Connector Label	In/Out	Connector	
Power	24 VDC input	1	+24V	. In		
1 Ower	power	2	+24V] ""		
24V Logic Output	Reserved for future use, do not use!	3	Mains On	Out	Top 1 [∵] +24V	
24V Logic Input	When this input is active, the shunt resistor (if installed) between Bahand Bahar is connected across the DC bus.	4	Shunt On	In	2 +24V 3 Mains On 4 Shunt On 24 Com 6 24 Com	
Power	24 VDC input	5	24V Com	In		
. 551	drive.	6	24V Com			

CAUTION

A possible ignition hazard within the MMC 460V Smart Drives exists if excessive current is drawn from the 24 VDC powering the MMC Smart Drive. To prevent this possibility (due to improper wiring or 24 VDC supply failure), a fuse should be used in series with the 24 VDC to the MMC Smart Drive. Specifically, a 4 A max. "UL248 Series" fuse should be used. In addition, the 24 VDC shall be supplied by an isolating source such that the maximum open circuit voltage available to the MMC Smart Drive is not more than 30 VDC.

6.2.4.4 Motor Brake Connector (X101)

Table 6-17: 460V Size 4 Motor Brake Connector (X101)					
Signal Type	Signal Description	Pin	Connector Label	In/Out	Connector
Power	24 VDC brake in- put power	1	+24VBRK	In	Ton
Brake control	Brake connections	2	Brake +	Out	Top
		3	Brake -	In	1 +24VBRK 2 Brake +
Power	24 VDC common (supply and mag- net)	4	24VCOM	Out	3
Not Used.		5	N/C	Not	6 <u>≻∜</u> N/C
Tiol Ood.		6	14/0	Used	


Figure 6-8: Wiring Example for X101 Connector

6.2.4.5 Fan Connector (X36)

	Table 6-18: 460V Size 4 Fan Connector (X36)					
Signal Type	Signal Description	Pin	Connector Label	In/Out	Connector	
Power	230VAC Line for powering the fan	1	L	In	230VAC	
Power	230VAC Neutral for powering the fan	2	N	In	L N	

6.3 Typical 460V Drive Connection Layout

6.4 Specifications - 460V MMC Smart Drive)

6.4.1 Common Data for Size 1, 2, 3, 4 (All Models)

	General Drive Data
Minimum wire size for input power wires	1.5mm2 (16 AWG) 75° C copper
Maximum tightening torque for power wire terminals	1.25Nm (11 in-lbs.)
Commutation	3 Phase Sinusoidal, Space Vector Modulated (SVM)
Current Regulator	Digital PI 125 µsec update rate
Velocity Regulator	Digital PID - 250 µsec update rate
G	eneral Operating Data
Operating Temperature Range (MMC-SD-1.3, -2.4, -4.0, -6.0, -8.0, -12.0, -16.0, -24.0)	7° C to 50° C (45° F to 122° F)
Operating Temperature Range (MMC-SD-30.0, -42.0, -51.0, -65.0)	7° C to 55° C (45° F to 131° F). Derate 3% per° C above 40°C.
Storage Temperature Range	-30° C to 70° C (-22° F to 158° F)
Humidity	5% to 95% non-condensing
Altitude	1500m (5000ft) Derate 3% for each 300 m above 1500m
Vibration Limits (per IEC 68-2-6) Operating/Non-operating	10-57Hz (constant amplitude .15mm) 57 - 2000Hz (acceleration 2g)
Shock (per IEC 68-2-27) Non-operating	15g/11msec per axis
F1	and F2 Feedback Inputs
Input receiver type	Maxim 3098 A quad B differential RS422 receiver
Encoder signals	Differential quadrature
Input threshold	±200mV
Input termination	150 $Ω$, provided internal
Maximum input voltage	5Vpp differential -10 to +13.2V common mode
Maximum input signal frequency	720KHz (2.88 M feedback unit count rate)

G	eneral Purpose Inputs					
Configuration	 8 optically isolated 24V DC inputs Active high 6 are current sourcing only (current flow into input) 2 are sink or source 					
Guaranteed On	15VDC					
Guaranteed Off	5VDC					
Time delay on	1ms max.					
Time delay off	1ms max.					
Input voltage	Nominal 24VDC, maximum 30VDC					
Ge	General Purpose Outputs					
Configuration	 4 optically isolated 24VDC outputs Active high Current sourcing only (current into load) Short circuit and overload protected 					
Maximum current	50mA per output					
Voltage range	24VDC +15%-10%					
Time delay on for resistive loads	50μsec. max					
Time delay off for resistive loads	50μsec. max					
Leakage current in off state	0.5mA max					
С	command Input/Output					
Command Input	Analog velocity or torque, 0 to ± 10V 14 bit effective resolution					
Digital Link In/Out	Ports (Digital Interfaced MMC-SD only)					
"In" port	Sends and receives high speed data to and from connected MMC-SD's "Out" port.					
"Out" port	Sends and receives high speed data to and from connected MMC-SD's "In" port.					
Cable Type	Shielded, Straight Pinned, CAT5 or better (CAT5e, CAT6, etc.)					
Maximum Cable Length	30m (98.4 ft)					

Drive I/O Connector Encoder Emulation Output						
F1 Motor Feedback Type	Input Limit	Encoder Emulation Output (A quad B Differential Output)				
Incremental Encoder	720KHz 2.88 M counts/sec.	The motor encoder A/B/I inputs are electrically buffered and retransmitted via the Drive I/O connector.				
High Resolution Encoder	100KHz 400K counts/sec.	The encoder SIN/COS signals are electrically squared and retransmitted as Å/B. The index mark "I" is synthesized by the drive control DSP. Absolute position information is not available via the Encoder Emulation Output.				
Resolver	500RPS 2.00M counts/sec.	The field-installable resolver interface module converts the motor resolver to 1024 lines/4096 counts per revolution of A/B encoder output. The module synthesizes the index mark "I" once per revolution of the resolver. Absolute position information is not available via the Encoder Emulation Output.				
	Conformity					
CE Marked	Conforms to Low Voltage Directive 73/23/EEC (amended by 93/68/EEC) and EMC Directive 89/336 EEC (amended by 92/31/EEC and 93/68/EEC). Conformance is in accordance with the following star dards: EN 50178 and EN61800-3					
UL and C/UL Listed	E233454					

6.4.2 Physical/Electrical Data for 460V Size 1 Smart Drives

	Model				
	MMC-SD-1.3-460 (-D)	MMC-SD-2.4-460 (-D)			
Part Numbers Analog Digital, no BiSS Digital, BiSS	M.1302.5093 M.1302.8133 M.3000.0464	M.1302.5094 M.1302.8134 M.3000.0465			
	Physical				
Weight	10 lbs.				
	Electrical Specifications				
AC Input Specifications	S				
Nominal Input Power	1.94kVA	3.33kVA			
Input Voltage	207-460 VAC (nominal), Three Phase, 187-528				
Input Frequency	47-63Hz				
Nominal Input	2.44A RMS	4.18A RMS			
NOTE: Nominal Input (Current is specified for nominal	input voltage of 460 VAC.			
Maximum Inrush	4.56A RMS	7.81A RMS			
Power Loss	34W	60W			
AC Output Specificatio	ns				
Continuous Output Current RMS (0- Peak)	2.1A (3.0A)	3.9A (5.5A)			
Continuous Output P	ower				
Input = 230 VAC	.65kW	1.2kW			
Input = 460 VAC	1.3kW	2.4kW			
Peak Output Current (0-Peak)	6.0A	11.0A			
Output Frequency	0-450Hz				
DC Input Power Specific	DC Input Power Specifications (24VDC)				
Input Voltage Range	24VDC +15% -10%				
Typical Input Current	700mA				
Typical Input Wattage	17W				
Inrush Current	4A fo	r 10ms			

Internal Holding Brake Driver						
Maximum Current	0.	5A				
Energy Absorbtion Spe	ecifications					
DC Bus Capacitance (Internal)	110μF 240μF					
Shunt Switch Threshold	780	VDC				
Joules available for e	Joules available for energy absorption					
230V motor w/ 230V line input	3 joules	7 joules				
460V motor w/ 230V line input	28 joules	60 joules				
460V motor w/ 460V line input	10 joules 22 joules					
External Shunt						
Maximum shunt resistor current	5.9A (AC)					
Minimum shunt resistor	130Ω					
Maximum shunt resistor power at minimum shunt resistor	4.5kW	5kW				

6.4.3 Physical/Electrical Data for 460V Size 2 Smart Drives

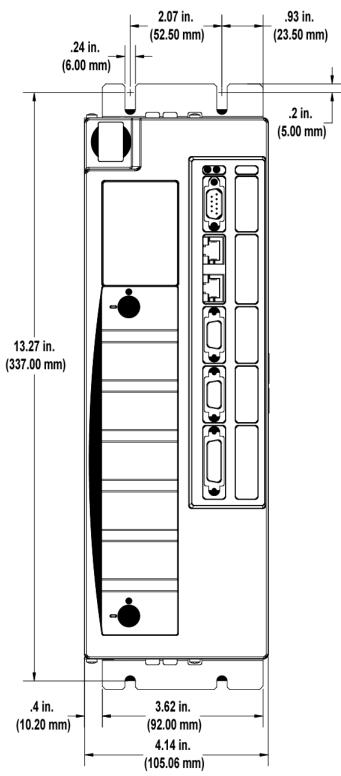
	Model				
	MMC-SD-4.0-460 (-D)	MMC-SD-6.0-460 (-D)	MMC-SD-8.0-460 (-D)		
Part Numbers Analog Digital, no BiSS Digital, BiSS	M.1302.5095 M.1302.8135 M.3000.0466	M.1302.5096 M.1302.8136 M.3000.0467	M.1302.5097 M.1302.8137 M.3000.0468		
	Phys	sical			
Weight	16 lbs.				
	Electrical Sp	ecifications			
AC Input Specification	IS				
Nominal Input Power	5.6kVA	8.6kVA	11.8kVA		
Input Voltage	207-460 VAC (nomin	nal), Three Phase, 187-52	28 VAC (absolute limits)		
Input Frequency		47-63Hz			
Nominal Input Current	7A RMS	10.8A RMS	14.8A RMS		
		nominal input voltage of 4 30 VAC = (listed current)			
Maximum Inrush Current	13.2A RMS	20.2A RMS	27.7A RMS		
Power Loss	102W	150W	204W		
AC Output Specification	ons				
Continuous Output Current RMS (0- Peak)	6.4A (9.0A)	9.6A (13.5A)	12.7A (18.0A)		
Continuous Output I	Power				
Input = 230 VAC	2.0kW	3.0kW	4.0kW		
Input = 460 VAC	4.0kW	6.0kW	8.0kW		
Peak Output Current (0-peak)	18.0A 27.0A 36.0A		36.0A		
Output Frequency	0Hz to 450Hz				

Internal Holding Brake	e Driver			
Maximum Current	0.5A			
DC Input Power Speci	fications (24VDC)			
Input Voltage Range		24VDC +15% -10%		
Typical Input Current		1050mA		
Typical Input Wattage	25W			
Inrush Current	4A for 10ms			
Energy Absorbtion Sp	ecifications			
DC Bus Capacitance (Internal)	470μF		705μF	
Shunt Switch Threshold	780VDC			
Joules available for er	nergy absorption			
230V motor w/230V line input	13 joules		19 joules	
460V motor w/230V line input	188 joules		177 joules	
460V motor w/460V line input	44 joules		66 joules	
External Shunt				
Maximum shunt resistor current	9A (AC) 9A (AC)		9A (AC)	
Minimum shunt resistor	86Ω 60Ω		44Ω	
Maximum shunt resistor power at minimum shunt resistor	7kW	10kW	14kW	

6.4.4 Physical/Electrical Data for 460V Size 3 Smart Drives

	Model				
	MMC-SD- 12.0-460 (-D)	MMC-SD- 16.0-460 (-D)	MMC-SD- 24.0-460 (-D)	MMC-SD- 30.0-460-D	
Part Numbers Analog Digital, no BiSS Digital, BiSS	M.1302.5098 M.1302.8138 M.3000.0469	M.1302.5099 M.1302.8139 M.3000.0470	M.1302.5100 M.1302.8140 M.3000.0471	M.3000.0545 N/A M.3000.0021	
	Р	hysical			
Weight	35 lbs.				
	Electrical	Specification	ıs		
AC Input Specifications	AC Input Specifications				
Nominal Input Power	13.3kVA	16.8kVA	26.3 kVA	36.7 kVA	
Input Voltage	207-460VAC (nominal), Three Phase, 187-528VAC (absolute limits)				
Input Frequency	47-63Hz				
Nominal Input Current	16.7A RMS	21.1A RMS	33.1A RMS	44.0A RMS	
NOTE: Nominal Input (Approximate Current for 460/input voltage					
Maximum Inrush Current	32.2A RMS	39.2A RMS	61.8A RMS	tbdA RMS	
Power Loss	300W	390W	600W	840W	
AC Output Specification	AC Output Specifications				
Continuous Output Current RMS (0- Peak)	19.5A (27.5A)	25.8A (36.5A)	38.9A (55.0A)	(49.0A (69.3A)	
Continuous Output P	ower	l	l	l	
Input = 230 VAC	6.0kW	8.0kW	12.0kW	15.0kW	
Input = 460 VAC	12.0kW	16.0kW	24.0kW	30.0kW	
Peak Output Current (0-peak)	55.0A	73.0A	110.0A	110.0A	
Output Frequency	0Hz to 450Hz				

Internal Holding Brake Driver				
Maximum Current	0.5A		1.0A	
DC Input Power Specific	ications (24VI	DC)	<u> </u>	
Input Voltage Range	24VDC +15% -10%			
Typical Input Current	1750mA			
Typical Input Wattage	42W			
Inrush Current	4A for 10ms			
Energy Absorbtion Spe	ecifications			
DC Bus Capacitance (Internal)	820μF	1230μF	1640μF	2000μF
Shunt Switch Threshold	780VDC			
Joules available for e	nergy absorpti	on		
230V motor w/ 230V line input	22 joules	33 joules	45 joules	553 joules
460V motor w/ 230V line input	206 joules	309 joules	412 joules	502 joules
460V motor w/ 460V line input	76 joules	114 joules	152 joules	185 joules
External Shunt	l	l	l	I
Maximum shunt resistor current	36A (AC)		50A (AC)	
Minimum shunt resistor	22Ω		16Ω	
Maximum shunt resistor power at minimum shunt resistor	29kW		40kW	


6.4.5 Physical/Electrical Data for 460V Size 4 Smart Drives

	Model			
	MMC-SD- 42.0-460-D	MMC-SD- 51.0-460-D	MMC-SD- 65.0-460-D	
Part Numbers Analog Digital, BiSS	M.3000.0546 M.3000.0022	M.3000.0547 M.3000.0023	M.3000.0548 M.3000.0024	
	Physical			
Weight	59 lbs.			
E	Electrical Specifi	cations		
AC Input Specifications				
Nominal Input Power	48.5kVA	58.2kVA	72.1kVA	
Input Voltage	207-460VAC (nominal), Three Phase, 187-528VAC (absolute limits)			
Input Frequency	47-63Hz			
Nominal Input Current	58A RMS	72A RMS	95A RMS	
NOTE: Nominal Input C VAC. Approximate Curr (listed current) x 460/inp	ent for input voltage			
Maximum Inrush Current	tbdA RMS	tbdA RMS	tbdA RMS	
Power Loss	1080W	1350W	1740W	
AC Output Specification	าร	1		
Continuous Output Current RMS (0-Peak)	66.0A (93.3A)	83.2A (117.4A)	108.0A (152.7A)	
Continuous Output Po	ower	1		
Input = 230 VAC	21.0kW	25.1kW	32.5kW	
Input = 460 VAC	42.0kW	51.0kW	65.0kW	
Peak Output Current (0-peak)	147A	189A	209A	
Output Frequency	0Hz to 450Hz			
Internal Holding Brake I	Driver			
Maximum Current	4.0A			

Input Voltage Range	24VDC +15% -10%		
Typical Input Current	3.2A		
Typical Input Wattage	77W		
Inrush Current	tbdA for tbdms		
Energy Absorbtion Spe	ecifications		
DC Bus Capacitance (Internal)	1880μF	2350μF	3055μF
Shunt Switch Threshold	780VDC		
Joules available for e	nergy absorptio	n	
230V motor w/ 230V line input	50.4joules	63.1joules	82joules
460V motor w/ 230V line input	472joules	591joules	768joules
460V motor w/ 460V line input	173joules	218joules	284joules
External Shunt	1		
Maximum shunt resistor current	67A (AC)	100A (AC)	100A (AC)
Minimum shunt resistor	12Ω	8Ω	8W
Maximum shunt resistor power at minimum shunt resistor	53kW	80	80kW
an (X36 Connector)		•	1
Input Voltage	230VAC (nominal), 207VAC to 253VAC, 50/60HZ		
Input Current	1A Max		
Power Loss	87W		

6.5 Dimensions for the 460V Smart Drives

Figure 6-9: Size 1 460V Smart Drive - Front View

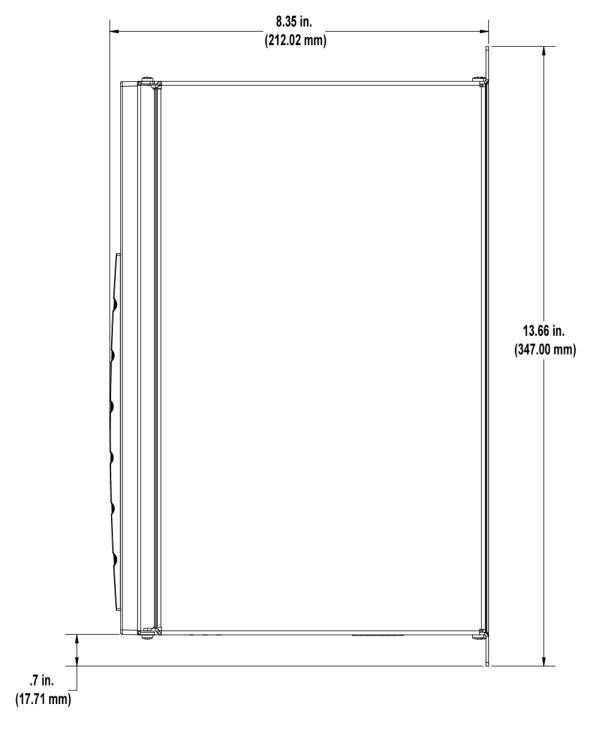


Figure 6-10: Size 1 460V Smart Drive - Side View

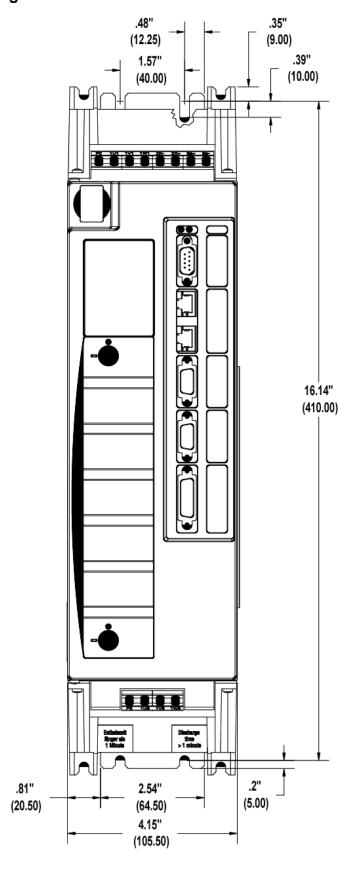


Figure 6-11: Size 2 460V Smart Drive - Front View

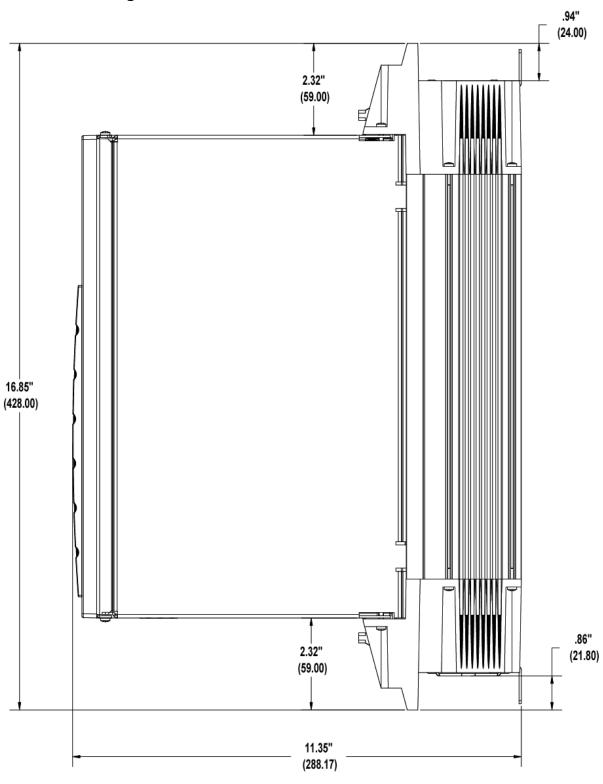


Figure 6-12: Size 2 460V Smart Drive - Side View

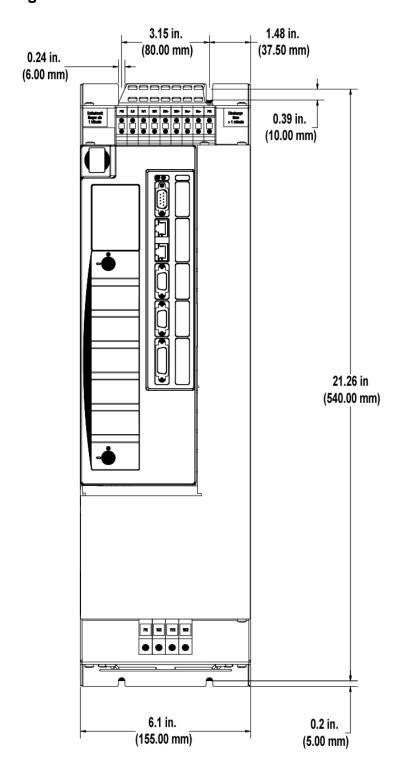


Figure 6-13: Size 3 460V Smart Drive - Front View

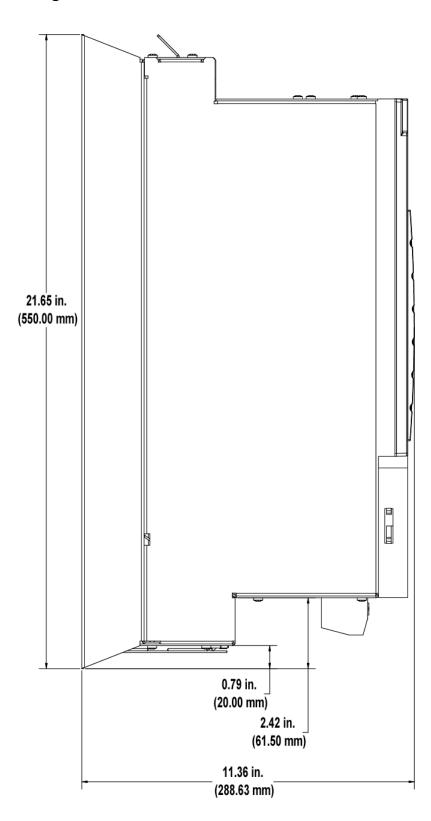


Figure 6-14: Size 3 460V Smart Drive - Side View

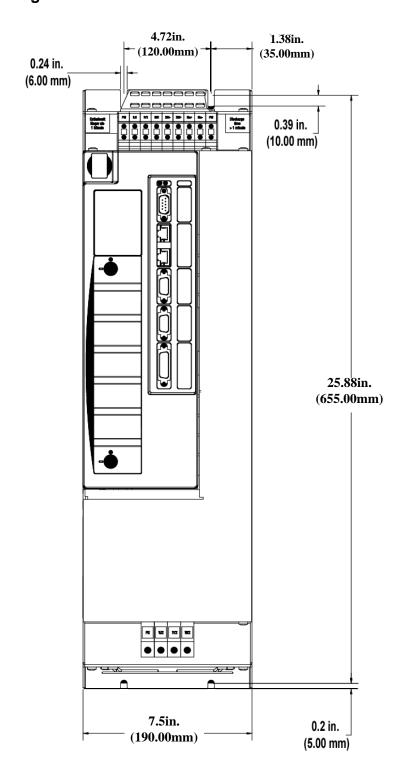


Figure 6-15: Size 4 460V Smart Drive - Front View

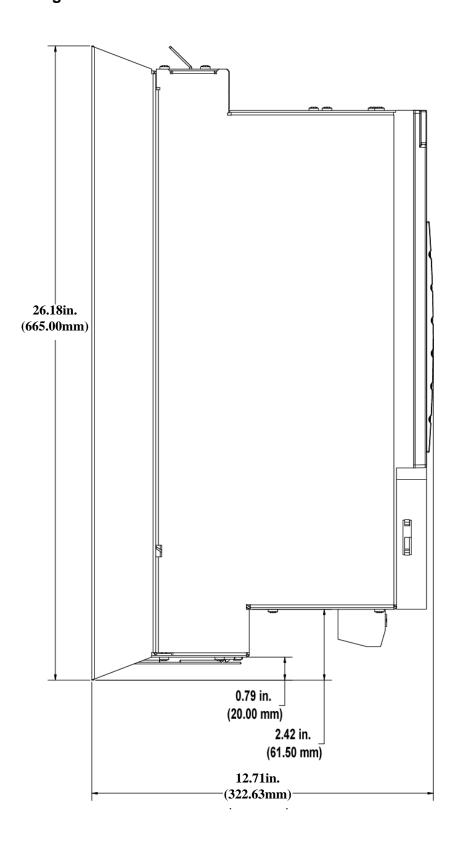


Figure 6-16: Size 4 460V Smart Drive - Side View

7 S200-DLS Drive

This chapter only pertains to the S200-DLS Drive, not to the MMC Smart Drive.

The S200-DLS consists of a Base Unit with an S200 Digital Link Option Card installed. The combination of the two components is the S200-DLS Drive. The Base Unit is described in detail in Kollmorgen's S200 Base Unit Reference Manual, P/N M-SM-200-01, which can be found at http://www.kollmorgen.com/website/com/eng/products/drives/ac_servo_drives/s200_manuals.php. Please refer to the S200 Base Unit Reference Manual for Base Unit Specifications, Mounting information, Wiring information, etc. The Base Unit has the same Part Number as the Digital Link version, except that the -DLS is replaced with -VTS. For example, a S20360-DLS consists of an S20360-VTS Base Unit and an S200 Digital Link Option Card.

Any data or specification contained in this manual takes precedence over conflicting data or specifications found in the Base Unit manual.

CE ENCLOSURE REQUIREMENTS

In order to meet the requirements of the CE Directives, the S200-DLS drive(s) must be mounted within a grounded metal enclosure. Additional actions may also be required, as described in the S200 Base Unit Reference Manual, mentioned above.

BISS ENCODER SUPPORT

In order to use a BiSS encoder with the S200-DLS drive, the drive must be Rev 3 or later (as found on the drive label), and the firmware within the drive must be Version 2.03 or later.

Figure 7-1:

7.1 S200-DLS Option Card

The S200 Option Card is located on the right side of the S200-DLS Drive. This section explains in detail the various indicators and connectors located on the S200 Option Card.

7.1.1 LED Indicators

There are three LED Indicators on the front of the Option Card, as described in Table 7-1.

Table 7-1: LED Description for S200-DLS Option Card			
LED Color Description		Description	
Diagnostic	Yellow	The Diagnostic LED (labeled "D1" on the front of the Drive), located in the top of the Option Card, serves as the Option Card Status indicator, and provides Option Card status and fault information.	
Digital Link LEDs	Green	These LEDs, located between the "DLINK IN" and "DLINK OUT" connectors, provide Digital Link status information.	

7.1.2 Diagnostic Indicator Details

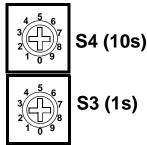
The Diagnostic Indicator LED (labeled "D1" on the front of the Drive) performs various functions:

- When Control Power is applied to the Drive, the Diagnostic LED turns on briefly as the Option Card runs internal power-on diagnostics. If the diagnostics pass, the Diagnostic LED goes off.
- If the Diagnostic LED is flashing after the power-on diagnostics are complete, there is a problem with the Drive. See section 9.2.3.1 on page 185 for blink code details
- While the Drive is operating, the Option Card is constantly monitoring Drive operation and performance. If a Warning or Fault condition is detected, the Diagnostic LED will blink. See section 9.2.3.1 on page 185 for blink code details.

7.1.3 Digital Link LEDs

There are two green LED indicators located between the "DLINK IN" and "DLINK OUT" connectors.

- The right-most LED is associated with the "DLINK IN" connector, and indicates
 that the Drive is that another "upstream" device (either another Digital Link drive
 or a Digital Control) is connected and successfully communicating with the Drive.
- The left-most LED is associated with the "DLINK OUT" connector, and indicates that the Drive is connected and successfully communicating with the another "downstream" Drive.


7.1.4 Node Address Rotary Switches

Two rotary switches are used to set the drive address. Rotate the switch to the desired address.

Addresses can be set to any number from 1 through 64. The top switch represents values of base ten. The bottom switch represents values of base 1.

As an example, rotating the top switch (S3) to a setting of 2 equals the value of 20 (2 \times 10). Rotating the bottom switch (S4) to a setting of 5 equals the value of 5. The actual address setting is 25 (20 + 5).

Figure 7-2: Node Address Switches

7.1.5 Digital Link Ports

The two 8-pin RJ-45 Digital Link Port connectors (labeled "J10 DLINK IN" and "J9 DLINK OUT" on the front of the Drive) provide communications between the S200-DLS and:

- another S200-DLS Drive
- an MMC Smart Drive (including a Drive that contains a Drive Resident MMC Control)
- an MMC-DSA Control (MMC-DSA2, -DSA4, -DSA8, -DSA16)
- a Digital Standalone MMC Control (MMC-D32, -D64)

Also provided are two green "Link" lights located between the RJ-45 connectors. The right light will be on if there is a Drive or Digital Control connected to the "IN" port, and the left light will be on if there is a Drive connected to the "OUT" port.

A "straight-through" shielded cable must be used when connecting to another device. Connect the cable from the Drive's "DLINK OUT" port to the next Drives's "DLINK IN" port, or from the MMC Digital Control's Digital Link port to the Drive's "DLINK IN" port. Refer to the Standalone MMC Hardware Manual for Standalone Digital Control information.

- Pin descriptions for are provided in Table 7-2
- Pin assignments are provided in Table 7-3
- The available Digital Link Port to Digital Drive cables are described in Table 7-4

Table 7-2: Digital Link Port Pin Description			
Digital Link Connector (IN/OUT) Signals		Pin	
Function	Notes	"In" Connector	"Out" Connector
Receive Data+/-	Receives data from connected drives.	1,2	3,6
Transmit Data +/-	Transmits data to con- nected drives.	3,6	1,2
Protective Ground	Shield connection. Provides a path for the ground signal to an external single point ground.	Connector Shell	Connector Shell

Table 7-3: Digital Link Port Pin Assignments			
Pin	Label	In/Out	Connector Pinout
IN Connec	tor		
1	Receive +	In	
2	Receive -	In	
3	Transmit +	Out	
4	Not Used	N/A	
5	Not Used	N/A	
6	Transmit -	Out	
7	Not Used	N/A	
8	Not Used	N/A	RJ-45 Connectors
Connector Shield	Provides a path for the ground signal to an external single point ground.	In	J10 DLINK IN
OUT Conn	ector		"OUT" "IN" "IN" LINK
1	Transmit +	Out	LED 8
2	Transmit -	Out	1 E DLINK OUT
3	Receive +	In	
4	Not Used	N/A	
5	Not Used	N/A	
6	Receive -	In	
7	Not Used	N/A	
8	Not Used	N/A	
Connector Shield	Provides a path for the ground signal to an external single point ground.	In	

	Table 7-4: Digital Link Port "IN" to "OUT" Cables			
.3 M (1.0 1 M (3.3 3 M (9.8 10 M (3.3 30 M (9.8	Part Numbers: .3 M (1.0 ft): M.1302.8285 .6 M (2.0 ft): M.1302.8286 1 M (3.3 ft): M.1302.8287 2 M (6.6 ft): M.1302.8288 3 M (9.8 ft): M.1302.8289 5 M (16.4 ft): M.1302.8300 10 M (32.8 ft): M.1302.8301 15 M (49.2 ft): M.1302.8302 30 M (98.4 ft): M.1302.8303 Cable type: CAT-5 (or better), 28 AWG, shielded, twisted pair, 8 conductor.			
	8-Pin RJ-45 Plug (to Digital Link Port "OUT", face view) 8-Pin RJ-45 Plug (to Digital Drive "IN", face view) 8-Pin RJ-45 Plug (to Digital Drive "IN", face view)			
Pin	Signal	Pin	Signal	Notes
1	Transmit Data +	1	Receive Data +	Twisted
2	Transmit Data -	2	Receive Data -	Pair
3	Receive Data +	3	Transmit Data +	Twisted
6	Receive Data -	6	Transmit Data -	Pair
4	None	4	None	Twisted
5	None	5	None	Pair
7	None	7	None	Twisted
8	None	8	None	Pair
Shell	Drain	Shell	Drain	

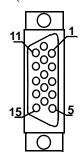
7.1.6 Auxiliary Feedback Port

The 15-pin female Auxiliary Feedback connector (labeled "J8 AUX FEEDBACK" on the front of the Drive) provides the interface between the S200-DLS Drive and a feedback device.

- Pin descriptions are provided in Table 7-5
- Pin assignments are provided in Table 7-6
- The available Flying Lead cable is described in Table 7-7.
- Available Breakout Boxes and Cables are described in Table 7-8.
- Breakout Box dimensions are shown in Figure 7-3
- Breakout Board dimensions are shown in Table 7-4

Table 7-5: Aux Feedback Port Pin Description			
	Aux Feedb	ack Signals	
Signal Type	Signal Name	Notes	Pin
Incremental Encoder Inputs	A1, A1/, B1, B1/, I1, I1/	Differential A quad B encoder signals.	1, 2, 3, 4, 5, 10
BiSS Encoder Data Channel In/Out ^a	RS-485 Data +, RS- 485 Data -, RS-485 Clock+, RS-485 Clock-	RS-485 signals for connecting a BiSS Encoder Data Channel to the drive	5, 10, 12, 13
Motor Commutation Hall Sensor Inputs	Commutation Track S1, S2, S3	Hall device input signals that are used to initialize the commutation angle. They consist of a 74HC14 input with 10µs filter and 1 K pull up to +5V. Shared with F2.	12, 13, 8
Temperature Input	Temperature	Thermostat (normally- closed) or Thermistor (Phillips KTY84-130 PTC or equivalent recommended) input for detecting over temperature conditions within the motor.	11
+5V Encoder Power Outputs	+5V Source	Regulated +5VDC for powering the attached encoder (250ma max).	14
Signal and Power Common	Common	Return path for feedback signals and +5V power supply.	6

a. In order to use a BiSS encoder with the S200-DLS drive, the drive must be Rev 3 or later (as found on the drive label), and the firmware within the drive must be Version 2.03 or later.


	Table 7-6: Aux Feedback Port Pin Assignments			
Er	ncoder Pin Assig	nments for Aux Fee	dback 15 Pir	Connector
	Feed	dback Device		
Pin	Digital Incremental Encoder	Endat ^a BISS ^b SSI ^a	In/Out	Connector Pinout
1	A1	N/U		
2	A1/	N/U	In	
3	B1	N/U		
4	B1/	N/U		
5	l1	RS-485 Data+	Note ^c	15-pin Female
6		Common	In/Out	HD D-Sub
7		N/U	N/A	
8	Commutation Track S3	N/U	In	1 0 11
9		N/U	N/A	
10	I1/	RS-485 Data-	Note ^c	
11	-	Temperature	In	5 00 15
12	Commutation Track S1	RS-485 Clock+	In ^d	0
13	Commutation Track S2	RS-485 Clock-		
14		+5V Source		
15		N/U		
Shell		Shield	N/A	

- a. For future use
- b. In order to use a BiSS encoder with the S200-DLS drive, the drive must be Rev 3 or later (as found on the drive label), and the firmware within the drive must be Version 2.03 or later
- c. Pins 5 and 10 are In/Out for Endat, and Inputs for Digital Incremental, SSI, and BiSS
- d. Pins 12 and 13 are Outputs for ENDAT, SSI, and BiSS

Table 7-7: Aux Feedback Port to Flying Lead Cable

Part Numbers: 1 M (3.3 ft): M.3000.8005 3 M (9.8 ft): M.3000.8006 6 M (19.7 ft): M.3000.8007 9 M (19.5 ft): M.3000.8008 Cable type: 28 AWG (pins 6 & 14 16 AWG), shielded, twisted pair, 16 conductor.

15-Pin HD male D-sub (to Aux Feedback Port, face view)

Pin	Signal	Color	Notes
1	A1	White	Twisted
2	A1/	White/Yellow	Pair
3	B1	Blue	Twisted
4	B1/	White/Blue	Pair
5	I1, RS-485 Data+	Black	Twisted
10	I1/, RS-485 Data-	White/Black	Pair
8	Commutation Track S3	Red	Twisted
	Not Connected	White/Red	Pair
14	+5V source	Gray	Twisted
6	Common	White/Gray	Pair
11	Temperature	Green	Twisted
	Not Connected	White/Green	Pair
12	Commutation Track S1, RS-485 Clock+	Violet	Twisted
13	Commutation Track S2, RS-485 Clock-	White/Violet	Pair
	Not Connected	Orange	Twisted
	Not Connected	White/Orange	Pair
7	Not Used	Brown	Twisted
	Not Connected	White/Brown	Pair
Shell	Drain	N/A	

Table 7-8: Aux Feedback Port Breakout Box and Cables			
Description	Length	Part Number	
Aux Feedback Port Breakout Board ^a	N/A	M.1302.6970	
Aux Feedback Port Breakout Box ^b	N/A	M.1302.6972	
	1 M (3.3 ft)	M.3000.8001	
Aux Feedback Port to Breakout Box Ca-	3 M (9.8 ft)	M.3000.8002	
ble	6 M (19.7 ft)	M.3000.8003	
	9 M (29.7ft)	M.3000.8004	

a. The Breakout Board (see Figure 7-3 on page 162) is mounted directly to the Aux Feedback connector, and provides screw terminals wire termination.

b. The Breakout Box (see Figure 7-4 on page 162) is DIN-rail mounted, and provides screw terminal wire termination. Use one of the cables listed in the table to connect between the Aux Feedback connector and the Breakout Box.

Figure 7-3: Aux Feedback Port Breakout Box Dimensions

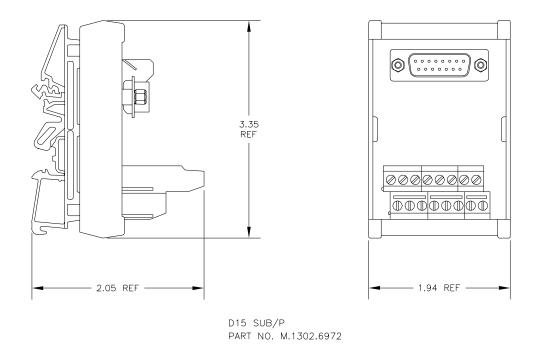
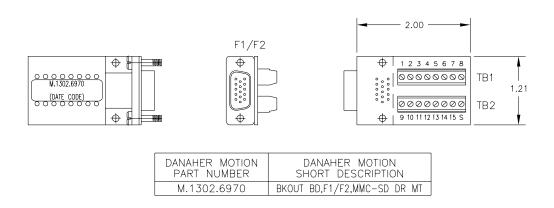



Figure 7-4: Aux Feedback Port Breakout Board Dimensions

Table 7-9: Aux Feedback Port ENDAT/BiSS to AKM/DDR Motor Cable Part Numbers: 1 M (3.3 ft): M.1302.0809 3 M (9.8 ft): M.1302.0810 6 M (19.7 ft): M.1302.0811 9 M (29.5 ft): M.1302.0812 15 M (49.2 ft): M.1302.0813 30 M (98.4 ft): M.1302.0814 15-Pin HD male D-sub Connector to MMC Smart Connector to Motor Drive Twisted Pair 7 pair 26 1000 **AWG** 1 pair 16 **AWG** 1 pair 22 AWG Wire Pin Pin Jumper Signal Type Signal Type Color Number Number **Connections** Yellow 1 COS 9 B+ White/Yellow 2 COS/ 1 B-3 SIN Blue 11 A+ White/Blue A-4 SIN/ 3 Black 5 DATA+ 5 DATA White/Black DATA-DATA/ 10 13 Violet 12 CLOCK+ 8 **CLOCK** White/Violet 13 CLOCK-15 CLOCK/ N/U N/A 12 **UnSENSE VCC** Red White/Red N/U N/A **UnSENSE COM** 10 **TEMPERATUR THERMAL** Green 11 7 White/Green N/U N/A 14 **THERMAL** Orange N/U N/A N/U N/A N/U N/U N/A White/Orange N/A 7 9 VDC N/U N/A Brown White/Brown N/U N/A N/U N/A Gray 14 +5 VDC 4 5VDC White/Gray 6 COM 2 **GMD** N/C N/C 9 N/A 6 N/C N/C N/A 15 16 N/C N/A N/C 8 17

7.1.7 Drive I/O and I/O Power Ports

The 8-pin plugable spring-terminal Drive I/O Port connector (labeled "J7 DRIVE I/O" on the front of the Drive) in combination with the 6-pin plugable spring-terminal I/O Power Port connector (labeled "J6 I/O POWER" on the front of the Drive) provide connection between user I/O devices and the Drive. The Drive I/O port provides 4 source-only, 50ma, short-circuit and over-current protected outputs (described in detail in section 7.1.8 on page 167), and 4 sink or source (selectable in two groups of two) inputs (described in detail in section 7.1.8 on page 167). The I/O Power Port supplies power to the Drive I/O Port.

- Pin descriptions for are the Drive I/O Port are provided in Table 7-10, and for the I/O Power Port in Table 7-11.
- Pin assignments for the Drive I/O Port are provided in Table 7-12, and for the I/O Power Port in Table 7-13.
- The available Drive I/O Port and I/O Power Port Accessories are described in Table 7-14.
- The Drive I/O is discussed in more detail in section 7.1.8 on page 167.

Table 7-10: Drive I/O Port Pin Descriptions			
Function Notes Pin			
DC Outputs 1-4 Nominal 24 Vdc Outputs capable of sourcing up to 50 ma.		5,6,7,8	
DC Inputs 5-8	Nominal 24 Vdc sourcing/sinking Inputs	1,2,3,4	

	Table 7-11: Drive I/O Port Pin Assignments				
Pin	Signal	In/Out	Connector Pinout		
1	DC Input 8	In			
2	DC Input 7 (Data Capture input for J8 Aux Feedback connector)	In	8-Pin plugable Screw Terminal Connector		
3	DC Input 6	In	8 •		
4	DC Input 5 (Data Capture input for J3 SFD Feedback connector)	In	• J7 DRIVE I/O		
5	DC Output 4	Out	1 •		
6	DC Output 3	Out			
7	DC Output 2	Out			
8	DC Output 1	Out			

Table 7-12: I/O Power Port Pin Descriptions			
Function	Function Notes		
I/O 24V Power	Nominal 24 Vdc to power Drive I/O	3	
I/O 24V Common	I/O 24V common	2	
DC Inputs 5 and 6 Sink/source	This pin determines whether Drive I/O inputs 5 & 6 are sourcing (this pin connected to 24 Vdc Common) or sinking (this pin connected to 24 Vdc)	6	
DC Inputs 7 and 8 Sink/source	This pin determines whether Drive I/O inputs 7 & 8 are sourcing (this pin connected to 24 Vdc Common) or sinking (this pin connected to 24 Vdc)	5	
Chassis Ground	This pin should be connected to Chassis Ground	1	

Table 7-13: I/O Power Port Pin Assignments			
Pin	Signal	In/Out	Connector Pinout
1	Chassis Ground	In	6-Pin plugable Screw
2	Drive I/O 24 Vdc Common	In	Terminal Connector
3	Drive I/O 24 Vdc	In	• J6
4	N/C	N/A	• I/O • POWER
5	Input 7&8 Sink/Source	In	1 •
6	Input 5&6 Sink/Source	In	

Table 7-14: Drive I/O and I/O Power Port Accessories			
Description Part Number			
6-pin spring-contact pluggable mating connector for the I/O Power Port (J6)	M.1302.7662		
8-pin spring-contact pluggable mating for connector for the Drive I/O Port (J7)	M.1302.7627		

7.1.8 Drive I/O Port Details

There are four DC Inputs and four DC Outputs available for interfacing to various devices. This section explains these Inputs/Outputs in detail.

7.1.8.1 Drive I/O Port Outputs

The Drive I/O Port provides 4 source-only 24 Vdc outputs. For sourcing outputs, one side of the load is connected to the Output pin on the Drive I/O connector, and the other side of the load is connected to 24 Vdc Common.

These outputs get their power from Pin 3 of the I/O Power connector. Each of the 4 outputs on the Drive I/O connector is a solid state switch rated at 50 ma, and is short-circuit and over-current protected. In addition, each output is protected with internal clamping diodes. Without clamping, high voltage transients (kickback) from inductive loads might damage the module. For safety reasons, all outputs turn off (no current flow) when a the user program (Ladder) is not running (Scan Loss), or communications to the Drive is lost.

7.1.8.2 Drive I/O Port Inputs

The Drive I/O Port also provides 4 sink/source 24 Vdc inputs.

To configure an Input as Sinking, the Sink/Source select pin (pin 6 for Inputs 5 and 6, pin 5 for inputs 7 and 8), must be connected to 24 Vdc. When configured as Sinking, one side of the input device is connected to the Input pin on the Drive I/O Port connector, and the other side of the input device must be connected to 24 Vdc Common.

To configure an Input as Sourcing, the Sink/Source select pin (pin 6 for Inputs 5 and 6, pin 5 for inputs 7 and 8), must be connected to 24 Vdc Common. When configured as Sourcing, one side of the input device is connected to the Input pin on the Drive I/O Port connector, and the other side of the input device must be connected to 24 Vdc.

7.1.8.3 Drive I/O Port Wiring Example

An example of wiring the Drive I/O is shown in See Figure 7-5 on page 168.

- Since the Outputs are sourcing, one side of the output device is connected to the Output pin on the Drive I/O Port connector, and the other side is connected to 24 Vdc Common.
- The Sink/Source select pin for Inputs 5 and 6 on the I/O Power Port connector is connected to 24 Vdc, making Drive Inputs 5 and 6 Sinking. In this configuration, one side of the input device is connected to the Input pin on the Drive I/O Port connector, and the other side of the input device is connected to 24 Vdc Common.
- The Sink/Source select pin for inputs 7 and 8 on the I/O Power Port connector is connected to 24 Vdc Common, making Drive Inputs 7 and 8 Sourcing. In this configuration, one side of the input device is connected to the Input pin on the Drive I/ O Port connector, and the other side of the input device is connected to 24 Vdc.

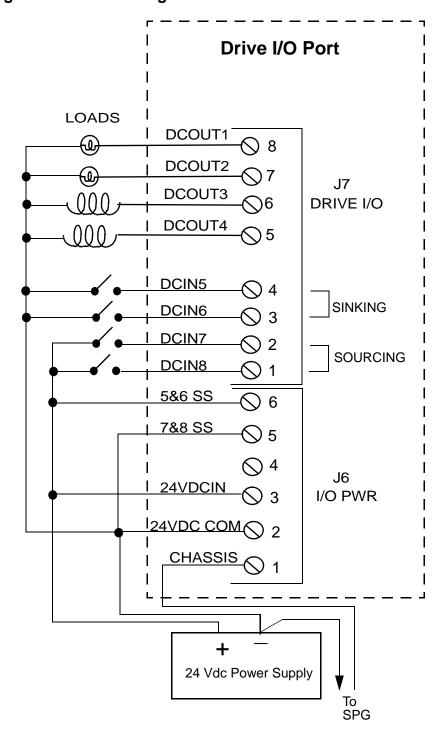


Figure 7-5: Connecting Devices to the Drive I/O Port

7.2 Specifications - S200-DLS Drive

The S200-DLS consists of a Base Unit with an S200 Digital Link Option Card installed. The combination of the two components is the S200-DLS Drive. The Base Unit is described in detail in Kollmorgen's S200 Base Unit Reverence Manual, P/N M-SM-200-01, which can be found at http://www.kollmorgen.com/website/com/eng/products/drives/ac_servo_drives/s200_manuals.php. Please refer to the S200 Base Unit Reference Manual for Base Unit Specifications, Mounting information, Wiring information, etc. The Base Unit has the same Part Number as the Digital Link version, except that the -DLS is replaced with -VTS. For example, a S20360-DLS consists of an S20360-VTS Base Unit and an S200 Digital Link Option Card.

Any data contained in this manual takes precedence over conflicting data found in the Base Unit manual.

Part Numbers			
S20360-DLS	Output Current = 3A RMS continuous		
S20660-DLS	Output Current = 6A RMS continuous		
S21260-DLS	Output Current = 12A RMS continuous		
S22460-DLS	Output Current = 24A RMS continuous		
Drive I/O Port DC Inputs			
Configuration	4 optically isolated 24V DC inputsActive highSink or source		
Guaranteed On	15 VDC		
Guaranteed Off	5 VDC		
Time delay on	1 ms max.		
Time delay off	1 ms max.		
Input voltage	Nominal 24 VDC, maximum 30 VDC		

Drive I/O Port DC Outputs				
Configuration	 4 optically isolated 24V DC outputs Active high Current sourcing only (current into load) Short circuit and overload protected 			
Maximum current	50mA per output			
Voltage range	24VDC +15%-10%			
Time delay on for resistive loads	50 μsec. max			
Time delay off for resistive loads	50 μsec. max			
Leakage current in off state	0.5 mA max			
	Digital Link In/Out Ports			
"In" port	Sends and receives high speed data to and from connected MMC-SD's "Out" port.			
"Out" port	Sends and receives high speed data to and from connected MMC-SD's "In" port.			
Cable Type	Shielded, Straight Pinned, CAT5 or better (CAT5e, CAT6, etc.)			
Maximum Cable Length	30 m (98.4 ft)			
Conformity				
CE Marked Note: Only units Rev 1 or higher are CE Marked.	Conforms to Low Voltage Directive 73/23/EEC (amended by 93/68/EEC) and EMC Directive 89/336/EEC (amended by 92/31/EEC and 93/68/EEC). Conformance is in accordance with the following standards: EN 50178 and EN61800-3			
UL and C/UL Recog- nized	E233454			
RoHs	The S200-DLS Drives are not RoHs compliant			

8 Cables and Connections to External Devices

8.1 Flex Cable Installation Guidelines

Follow these guidelines for any flexing cable application:

- Cable should be hung suspended for 48 hours to develop its most natural "set" and lay" prior to installation
- A cable should be installed with, not against, its natural set
- Using strain relief fittings at both ends of the cable will reduce conductor breakage at the flex points
- If there is any kink in a cable after installation, it will always remain and eventually cause a cable failure
- After installation, the most critical factors in the cable are the minimum bend radius and the reel tension
- * Note: The natural set occurs during the manufacturing of the cable. The cable is cured in one direction on the reel with a notable difference in its ability to be flexed one way versus the other.

When using specially designed flex cables, the following five criteria must be considered:

- Bending Radius
- Cable Tension
- Operating Speed
- Temperature
- Ampacity

Bending Radius and Cable Tension are discussed in the following sections.

8.1.1 Bending Radius

The following guidelines recommended by the ICEA standards are intended to optimize cable life:

- Minimum Bend Radius (Shielded Feedback Cables) = 12 times the Cable Diameter
- Minimum Bend Radius (Shielded Power Cables) = 12 times the Cable Diameter

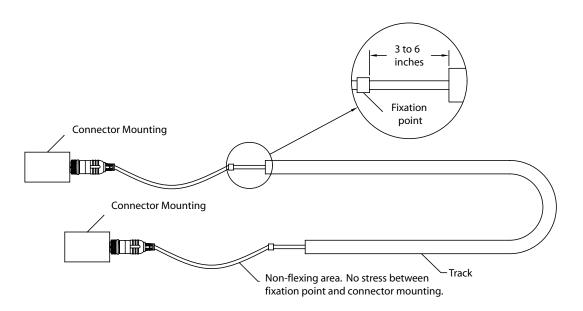
Reduced bending radii result in reduced cable life due to increased stress on the copper conductors and overall distortion of the cable. Therefore, reduced radii should only be considered for applications in which other factors, such as reduced cable tension, lower operating speed, and ambient temperature are more favorable to cable life, or where the mechanical limitations of the installation do not allow the optimum radius.

Doubling the minimum bending radius for reeling applications can triple cable life at the maximum recommended tension. Therefore, the largest possible bending radius should be used to increase cable life.

8.1.2 Cable Tension

Cable tension plays an extremely important role in determining cable life in reeling. The copper conductors are the principle strength member in flexible cable constructions. Even if strain relief fittings are used on the cable ends, most of the tension will still be supported by the copper conductors.

The effects of tension on a cable are dependent upon the pounds per cross-sectional area of the copper conductors. Larger AWG wires and/or more conductors can handle more tension than smaller AWG wires and/or fewer conductors.


8.2 Flex Cable Installation

Cables should be fixed on both ends to relieve them of tensile loads and prevent any loads from being applied to the molded connectors. At a minimum, the cables have to be fixed on the moving end of the track. A distance of 3 to 6 inches from the track to the fixation point is recommended (See Figure 8-1).

WARNING: CABLE DAMAGE

Failure to properly isolate Flex, Pull, and Torsional forces from the connector ends will result in electrical and mechanical breakdown. Over clamping at the fixation point can result in cable damage.

Figure 8-1: Flex Cable Installation

Observe the following precautions when installing flex cables:

- The cable must be able to move freely in the track
- The cable must be able to move in the radius section of the track. This must be checked in the track's fully extended position.

MMC Smart Drive Hardware Manual - CABLES AND CONNECTIONS TO EXTERNAL DEVICES

- When cables of different diameters are installed, the use of vertical separators or horizontal shelving is recommended. Cables of similar diameters can be put in the same compartment.
- Cables should never be put on top of one another in high velocity or high cycle applications.
- The cable's weight should be distributed symmetrically over the chain width.

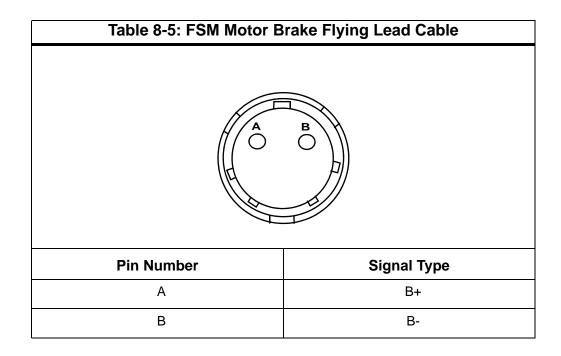

8.3 Motor Power/Fan/Brake Cable Pin Assignments

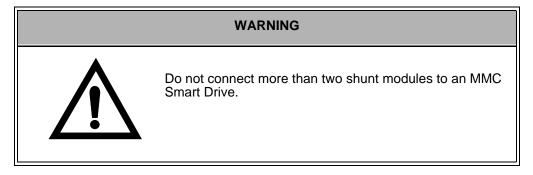
Table 8-1: LSM/MSM Motor Power Connector Flying Lead Cables					
		Connector Pinout			
Wire Color	Wire Number	Signal Type	Size 1 Power Connector (Kit No. M.1302.0479)	Size 1.5.1 Power Connector (Kit No. M.1302.1998)	Size 1.5.2 Power Connector (Kit No. M.1302.2354)
Black (1)	1U2	Out	1		U
Black (2)	1V2	Out	3		V
Black (3)	1W2	Out	4		W
Green/ Yellow	PE	Ground	2		(4)
Black (5)	Brake+	Out	А		+
Black (6)	Brake-	Out	В		-

Table 8-2: LSM/MSM Fan Motor Flying Lead Cable				
			Connector Pinout	
Wire Color	Wire Number	Signal Type	Pin	
Brown	U	Out	1	
Black	N	Out	2	
Green/Yellow	PE	Ground	3	

Table 8-3: AKM/DDR Motor Power Flying Lead Cables					
		Connector Pinout			
Wire Color	Wire Number	Signal Type	Size 1 Power Connector (Kit No. M.1302.0479)	Size 1.5.1 Power Connector (Kit No. M.1302.1998)	Size 1.5.2 Power Connector (Kit No. M.1302.2354)
Black (1)	U	Out	1		U
Black (2)	V	Out	4		V
Black (3)	W	Out	3		W
Green/ Yellow	PE	Ground	2	(€
Black (5)	Brake+	Out	А		+
White (6)	Brake-	Out	В		-

Tak	ole 8-4: FSM N	Motor Power	Flying Lead C	able
			AO BO	DO 00
	Drive Low Term		Connector E	End to Motor
Wire Color	Terminal	Signal Type	Pin Number	Signal Type
Brown	U	Out	А	Out
Black	V	Out	В	Out
Blue	W	Out	С	Out
Green/Yellow	=	Ground	D	Ground

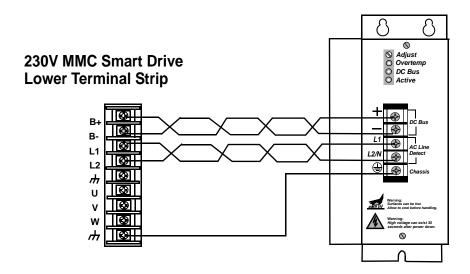
Table 8-6: YSM Motor Power and Brake Flying Lead Cable				
			3 (3) (6) (9) (4)	(a) (b)
	Drive Lower Screw Terminal		Connector E	End to Motor
Wire Color	Terminal	Signal Type	Pin Number	Signal Type
Brown	U	Out	1	Out
Black	V	Out	2	Out
Blue	W	Out	3	Out
N/A	N/U	N/A	4 (N/U)	N/A
Green/Yellow	\equiv 	Ground	5	Ground
N/A	N/U	N/A	6 (N/U)	N/A
N/A	N/U	N/A	8 (N/U)	N/A
			7	B+
			9	B-


Table 8-7: YSM Motor Brake Flying Lead Cable		
Pin Number Signal Type		
7	B+	
9 B-		

8.4 Connecting Shunt Modules

Use shielded, high temperature 75° C (167° F), 600V, 2.5-4.0 mm² (12-14 AWG), 3.05 m (10 ft) maximum, copper wire. Follow one of the methods given below to reduce the effects of EMI noise:

- Install wires using twisted pairs (two turns per foot minimum), as shown in the figure above. Keep unshielded wires as short as possible.
- Use shielded, twisted cable (ground shield at shunt and drive).
- Use shielded metal conduit (ground conduit at shunt and drive).


When two shunt modules are connected in parallel, the shunt capacity is doubled.

300W Active Shunt Module

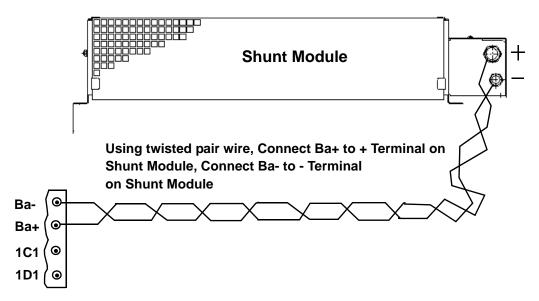

8.4.1 Connecting the 230V MMC Smart Drive to 300 W Shunt Module

Figure 8-2: Wiring 230V MMC Smart Drive to 300W Active Shunt Module

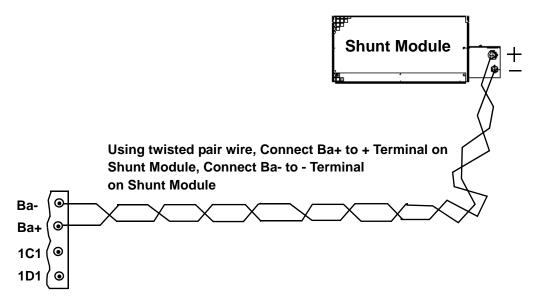

8.4.2 Connecting the 460V MMC Smart Drive to Kollmorgen Shunt Modules

Figure 8-3: Wiring 460V MMC Smart Drive to 450 Watt, 130 Ω Shunt Module / 700 Watt, 95 Ω Shunt Module / 1400 Watt, 50 Ω Shunt Module

460V MMC Smart Drive Shunt/DC Bus Terminal Strip

Figure 8-4: Wiring 460V MMC Smart Drive to 2800 Watt, 25 Ω Shunt Module / 3900 Watt, 18 Ω Shunt Module

460V MMC Smart Drive Shunt/DC Bus Terminal Strip

MMC Smart Drive Hardware Manual - CABLES AND CONNECTIONS TO EXTERNAL DEVICE

9 Maintenance and Troubleshooting

9.1 Maintenance

WARNING

Disconnect input power before touching cables or connections.

DC bus capacitors may retain hazardous voltages after input power has been removed.

Before working on the drive, measure the DC bus voltage to verify it has reached a safe level.

Failure to observe this precaution could result in severe bodily injury or loss of life.

- Remove superficial dust and dirt from the drive.
- Check cable insulation and connections.
- Clean exterior surfaces and airflow vents using an OSHA approved nozzle that provides compressed air under low pressure of less than 20 kPa (30 psi).
- Visually check for cable damage. Replace all damaged cables.
- Inspect D-shell connectors for proper seating and signal continuity end-to-end.

9.2 Troubleshooting

9.2.1 General Troubleshooting

Refer to Table 9-1 for general troubleshooting information.

Table 9-1: General Troubleshooting Symptoms, Causes, Remedies			
Symptom Possible Cause		Remedy	
Power (P) in-	No 24VDC input power.	Verify 24 VDC power is applied to the drive.	
ON ON	Internal power supply malfunction.	Contact your Kollmorgen representative.	
Motor jumps when first en- abled	Motor wiring error.	Check motor feedback and power wiring.	
	Incorrect motor chosen.	Verify the proper motor is selected.	
	Incorrect or faulty encoder	Replace the encoder with correct and/or functional encoder.	
I/O not work- ing correctly	I/O power supply disconnected.	Verify connections and I/O power source.	

9.2.2 Power-On Diagnostics

When the drive is powered up, it tests itself and reports the results of the tests in the form of LED signals.

9.2.2.1 Power LED

If the Power (P) LED does not go on, or goes off during operation of the system, check that 24 VDC power is still connected to the drive. Please note that the Power (P) LED is not available on the S200-DLS Drive.

9.2.2.2 Diagnostic LEDs

The Diagnostic LED (D1) lights up briefly while diagnostic tests are running and then goes off. If the Diagnostic LED (D1) remains on, the drive has failed one of its diagnostic tests. Follow these steps:

- 1. Turn off power to the drive system and to the application.
- 2. Perform any necessary maintenance to the drive.
- 3. Check the I/O wiring and the devices the system is connected to. There may be a short or other problem other than the drive. Correct these problems.

4. Turn on power to check diagnostics again.

NOTE

Power-On diagnostics are run only when the system is powered up. If a drive fails during power-up, the Diagnostic LED (D1) light remains on. If you suspect that a drive is defective, cycle power to run diagnostics again.

9.2.3 Run-Time Diagnostics

While the MMC Smart Drive is running, other tests are performed on a regular basis with their results reported through the Diagnostic LED (D1) and the Status LED (labeled "STATUS", only available on the S200-DLS Drive). The Diagnostic LED is covered in detail in Section 9.2.3.1. The Status LED is covered in detail in section 9.2.3.1 on page 185.

9.2.3.1 Troubleshooting with the Diagnostic LED (D1)

This section pertains to the Diagnostic LED labeled "D1" located on the front of the 230V Smart Drive, the 460V Smart Drive, and the S200-DLS Drive. The S200-DLS Drive also has a Status LED, labeled "STATUS", which is covered in section 9.2.3.2 on page 192.

When a Warning or Fault is detected, the Diagnostic LED (D1) located on the face of the drive will flash a one-digit Warning Code or a two-digit Fault Code. The LED will continue to flash the Code until the Warning or Fault is eliminated.

For example, if there is a long pause-flash-pause-flash-long pause, the Code is 12.

Warning conditions give the user an indication of a potential problem, but do not disable the drive. Whenever a Warning condition is detected, the drive generates a single-digit Warning Code. The user can detect a Warning condition in three ways:

- by visually observing the "D1" LED on the front of the Drive
- by examining the Drive Maintenance page in PiCPro under "Faults and Warnings"
- by reading the Warning Code using READ_SV variable 69 from within the user's Ladder.

Fault conditions give the user an indication of a more serious problem, and disable the Drive. Whenever a Fault condition is detected, the drive generates a two-digit Fault Code.

The Drive Diagnostic Codes are described in Table 9-2.

Table 9-2: Drive Diagnostic LED Codes			
Code	Description	Possible Causes	Possible Remedies
	Codes 01 through 0	6 are Warning Codes, and d	o not disable the Drive
01	Drive Heatsink Temp. Warning	Drive heatsink tempera- ture exceeds warning limit	Lower the ambient
02	Drive Ambient Temp. Warning	Acceptable ambient tem- perature limit has been exceeded warning limit	temperature around the drive.
03	Motor Temp. Warning (available only when the motor contains a thermistor)	Thermistor temperature has exceeded user defined acceptable limit.	 Reduce acceleration rates. Reduce duty cycle (ON/OFF) of commanded motion.
04	Motor Calculated Temp. Warning (available only when the motor does not contain a thermistor).	Calculated motor temper- ature has exceeded ac- ceptable limit	 Increase time permitted for motion. Use larger drive and motor. Check tuning.
05	Overtravel Plus Warning	The Overtravel Plus Fault input is low because the axis has reached the Plus Travel Limit.	Move the axis off the Plus Limit Switch in the negative direction.
06	Overtravel Minus Warning	The Overtravel Minus Fault input is low because the axis has reached the Minus Travel Limit.	Move the axis off the Minus Limit Switch in the positive direction.
Codes 11 and higher are Fault Codes, and disable the Drive			
11	Drive Memory Fault	The drive's non-volatile memory is not functioning properly	Upgrade firmware. Contact Kollmorgen.

	Table 9-2: Drive Diagnostic LED Codes (Continued)			
Code	Description	Possible Causes	Possible Remedies	
		Excessive regeneration of power. The motor may regenerate too much peak energy through the drive's power supply. A fault is generated to prevent overload.	Change the deceleration or motion profile. Check shunt connections and where necessary, properly make connectons. Reduce the reflected inertia of your mechanical system. Use a larger motor and/or drive.	
		Excessive AC input voltage.	Verify input AC voltage is within specifications. Adjust accordingly.	
12	Drive Bus Over Voltage Fault	Output short circuit.	Remove all power and motor connections, and perform a continuity check from the DC bus to the U, V, and W motor outputs. If a continuity exists, check for wire fibers between terminals, contact Kollmorgen	
		Motor cabling wires shorted together.	Disconnect motor power cables from the drive. Test the cables for short circuits. Replace cable if necessary.	
		Internal motor winding short circuit.	Disconnect motor power cables from the motor. If the motor is difficult to turn by hand, it may need to be replaced. Test winding resistance to confirm short circuit.	
		230V motor used with a 460V drive and drive powered at 460V.	Set the drive for operation at 230V and apply 230V power to the drive.	
13	Drive PM1 Over Current Fault	Current feedback ex- ceeds the drive over cur- rent fault limit.	Adjust the over current fault limit.	
		Output short circuit.	Remove all power and motor connections, and perform a continuity check from the DC bus to the U, V, and W motor outputs. If a short exists, check for wire fibers between terminals, contact Kollmorgen	
		Motor cabling wires shorted together.	Disconnect motor power cables from the drive. If faults stop, replace cable.	
		Internal motor winding short circuit.	Disconnect motor power cables from the motor. If the motor is difficult to turn by hand, it may need to be replaced.	

	Table 9-2: Drive Diagnostic LED Codes (Continued)			
Code	Description	Possible Causes	Possible Remedies	
14	Drive Over Power Fault	Drive current and voltage output, in combination with the heatsink temperature indicate that the power output required by the drive would damage the power section.	Verify ambient temperature is not too high. Operate within the continuous power rating. Reduce acceleration rates. Check for mechanical load problems and adjust as necessary. Resize the application and apply components accordingly.	
		Motor thermostat trips due to high motor ambient temperature	Operate within (not above) the continuous torque rating for the ambient temperature (40°C maximum). Lower ambient temperature, increase motor cooling. Check that motor is properly sized for the application. If necessary, resize the motor.	
15	Motor Tempera- ture Fault	Motor thermostat trips due to excessive current	Reduce acceleration rates. Increase time permitted for motion. Use larger drive and motor. Reduce duty cycle (ON/OFF) of commanded motion. Check tuning.	
		Motor thermostat trips due to motor wiring error.	Check motor wiring.	
		Motor thermostat trips due to incorrect motor selection.	Verify the proper motor has been selected.	
16	Continuous Cur- rent Fault	Current exceeds the continuous motor current rating for an extended period of time.	Change motor and or drive to be compatible with load requirements. Check tuning.	
17	Drive Heatsink Temperature Fault	Drive heatsink tempera- ture exceeds drive heat- sink fault limit	Let the drive cool down and/or reduce the load.	
22	Drive F1 Feedback Fault	Error is detected in the motor feedback	Verify motor selection is correct. Check to be sure the correct encoder is attached. Verify encoder wiring is correct. Use shielded cables with twisted pair wires. Route the encoder feedback cable away from potential noise sources. Check ground connections.	

	Table 9-2: Drive Diagnostic LED Codes (Continued)			
Code	Description	Possible Causes	Possible Remedies	
23	Drive Ambient Temp. Fault	Drive ambient tempera- ture exceeds the drive ambient temperature fault limit	Operate within (not above) the continuous rating for the ambient temperature. Lower ambient temperature, increase cabinet cooling.	
24	Motor Calculated Temp. Fault	Motor calculated temperature exceeds the motor calculated temperature fault limit.	Check the machine for excessive loads. Motor may be undersized for the application.	
25	Drive Timing Fault	Timing error is detected in the execution of the control algorithms performed by the drive's digital signal processor. Contact Kollmorgen.		
26	Drive Interface Fault	Communication error is detected in the transmission of information between the drive's digital signal processor and the drive's power section.	Contact Kollmorgen.	
27	User Set Fault	PiCPro Set User Fault command selected.	The PiCPro Set User Fault command was selected or the Control Panel mode was activated or deactivated while the drive was enabled.	
31	Drive F1 Communication error is detected in the transmission of information between the drive and a hig resolution or multi-turn al solute feedback device.		Check encoder line and make sure the correct encoder is attached. Verify encoder wiring is correct. Use shielded cables with twisted pair wires. Route the encoder feedback cable away from potential noise sources. Check ground connections. Verify motor selection is correct.	
		Bad encoder.	Replace motor and encoder.	
32	Over Speed Fault	User specified motor speed has been exceeded.	Check cables for noise. Check tuning.	
33	Over Current Fault	User-Specified average current level has been exceeded.	Change to a less restrictive setting. Reduce the load.	
34	Drive Communica- tion Fault	Communication error occurs while drive control is being performed using the PiCPro Control Panel tools.	Do not disconnect the PiCPro cable while operating in Control Panel Mode.	

Table 9-2: Drive Diagnostic LED Codes (Continued)			
Code	Description	Possible Causes	Possible Remedies
35	Drive Power Mod- ule Fault	The drive's power section detects a fault condition.	Verify AC power is applied to drive. Contact Kollmorgen.
36	Drive Setup Data Fault	The configuration data has been corrupted.	Re-download Drive Setup Data.
41	Drive Relay Fault The drive's power section relay did not function properly during power-up.		Check the drive system conncetions. Adjust as necessary. Contact Kollmorgen.
	Drive PM2 Over Current Fault	Current feedback exceeds the drive over current fault limit.	Adjust the over current fault limit.
42		Output short circuit.	Remove all power and motor connections, and perform a continuity check from the DC bus to the U, V, and W motor outputs. If a continuity exists, check for wire fibers between terminals, contact Kollmorgen.
		Motor cabling wires shorted together.	Disconnect motor power cables from the drive. If faults stop, replace cable.
		Internal motor winding short circuit.	Disconnect motor power cables from the motor. If the motor is difficult to turn by hand, it may need to be replaced.
43	Drive PM Over Temperature Fault	Drive power module tem- perature exceeds the drive power module tem- perature fault limit	Check to be sure that the drive is being operated within the continuous power rating. Check for adequate enclosure ventilation. Ensure cooling air flow is adequate in space around the drive. Check for clogged vents or defective fan. Contact Kollmorgen.
44	Motor Ground Fault	Ground fault has occurred.	Make sure motor ground con- nections are correct. Replace defective motor ground wires. Check for internal motor winding short circuits.
45	Drive AC Input Over Voltage Fault	Incoming AC voltage is too high.	Verify input VAC is within specificaitons.

	Table 9-2: Drive Diagnostic LED Codes (Continued)			
Code	Description Possible Causes		Possible Remedies	
46	Overtravel Plus Fault	Overtravel Plus Fault input is off and Drive Ignore Plus Travel Limit is off.	Overtravel Plus Fault status can be monitored using READ_SV variable 68 AND (16#400 0000). Fault input write a 0 to WRITE_SV variable 86. Use DRSETFLT to reset fault indications. To override the Overtravel Plus Fault input write a 1 to WRITE_SV variable 86, Ignore Plus Travel Limit. To reactivate checking of the Overtravel Plus input write a 1 to WRITE_SV variable 86, Ignore Plus Travel Limit. To reactivate checking of the Overtravel Plus Fault input write a 0 to WRITE_SV variable 86.	
47	Overtravel Minus Fault	This fault is set when the Overtravel Minus Fault in- put is off and Drive Ignore Minus Travel Limit is off.	Overtravel Minus Fault status can be monitored using READ_SV variable 68 AND (16#800 0000). Use DRSETFLT to reset fault indications. To override the Overtravel Minus Fault input write a 1 to WRITE_SV variable 87, Ignore Minus Travel Limit. To reactivate checking of the Overtravel Minus Fault input write a 0 to WRITE_SV variable 87.	
51	Digital Link Communication Error	This fault is set when two consecutive corrupt Digital Link messages are detected or no Digital Link messages are received within 250 microseconds.	Digital Link Communication Error status can be monitored using READ_SV variable 68 AND (16#1000 0000). This fault requires that the user servo setup function and DSTRTSRV be executed prior to executing DRSETFLT to reset the fault indication.	
52	Invalid Switch Setting Fault	This fault is set when the drive address switch setting is set to 0 or greater than 64 or its setting is changed while the Digital Link is operating in cyclic communications mode.	Invalid Switch Setting Fault status can be monitored using READ_SV variable 68 AND (16#2000 0000). Use DRSET-FLT to reset fault indications. Note: Digital Link initialization must be performed before this fault can be reset.	
53	Cannot Determine Drive Type	 Regulator board was initialized when installed on a different Power Board. Flash Data Invalid or Not Readable, 	Re-initialize Drive Drive damaged - consult factory	

Table 9-2: Drive Diagnostic LED Codes (Continued)			
Code Description Possible Causes Possible Remedies			
77	Drive Not Ready	Power applied to an uninitialized drive.	Initialize and configure the drive using PiCPro.

9.2.3.2 Troubleshooting using the Status LED (STATUS)

This section pertains to the Status LED labeled "STATUS" located on the front of the S200-DLS Drive. The 230V Smart Drive, the 460V Smart Drive, and the S200-DLS Drive also have a Diagnostic LED, labeled "D1", which is covered in section 9.2.3.1 on page 185.

Fault codes for the S200-DLS Drive are described in Table 9-3.

	Table 9-3: Drive Status LED Fault Codes			
Fault Code	Fault	Possible Causes		
ON	No faults and power stage Enabled	Normal Operation		
OFF	control power not applied insufficient control power applied	Loose or open circuit wiring of control power input. Low input voltage to control power supply.		
Fast Blink	No faults and power stage Disabled	Hardware or Software Enable inactive. To enable the Drive, apply hardware enable and set software enable.		
2	Motor Over Temp motor temperature exceeds allowed limit	High ambient temperature at motor. Insufficient motor heat sinking from motor mounting. Operating above the motor's continuous current rating. Motor temperature sensor failure or not connected.		
3	Temperature of drive heatsink/chassis is outside of allowed limits	 High or low drive ambient temperature. Restriction of cooling air due to insufficient space around unit. Operating above the drive's continuous current rating. 		

Table 9-3: Drive Status LED Fault Codes (Continued)			
Fault Code	Fault	Possible Causes	
4	Prive I*t Too High The product of the drives output current multiplied by time has exceeded allowed limits. If current foldback is enabled the drive peak output current automatically reduces to 0.67% of DIpeak. If foldback is not enabled, the drive will fault.	 Mechanically-jammed motor. Motion profile acceleration requires peak current for too long of a time duration. Machine load on the motor increased by friction. Wiring problem between drive and motor yielding improper motion. Motor commutation error. Drive under-sized for application, friction or load. 	
5	Motor I*I*t Too High • Motor current amplitude squared multiplied by time has exceed allowed limits	 Mechanically-jammed motor. Motion profile acceleration requires peak current for too long of a time duration. Machine load on the motor increased by friction. Motor commutation error. Motor under-sized for application, friction or load. 	
6	Optional Battery low Optional fault used to indicate SFD battery supply voltage is low	 Battery low fault enabled and battery is not installed. SFD Battery backup voltage is low. 	
7	Bus Over Voltage - Self Resetting The BUS voltage has exceed the upper threshold limit	 AC Line voltage is too high. Regenative energy during deceleration is causing the BUS to rise (possible remedy: add regen resistor). 	
9	Motor I-I or I-n Short Line-to-Line, Line-to-Neutral or Line-to-PE short on the motor output causing an instantaneous over current.	 Motor power wiring short circuit - lineto-ground /neutral. Motor cable short line-to-line. Motor power cable length exceeds the data sheet specification causing excessive motor line-to-earth ground/neutral capacitance. Internal motor winding short circuit. Motor L too small. KIP set too large. 	

Table 9-3: Drive Status LED Fault Codes (Continued)			
Fault Code	Fault	Possible Causes	
10	Output Over Current	Insufficient motor inductance KIP or KII improperly set causing excessive output current overshoots.	
11	Valid only when drive is set for 6 Step (Hall feedback) operation.	 Invalid configuration. Motor overspeed. Invalid hall state. Invalid hall transition. 	
12	SFD Configuration Error	 SFD UART error during SFD initialization. Bad motor data check sum. The drive will attempt to initialize the SFD up to 4 times. If it fails this error is reported. 	
13	J3 FB +5V Short • Excessive current drain on SFD +5 supply output.	 Excessive loading on SFD +5 supply. Short in the feedback cable on SFD +5 (J3-1) to ground. 	
14	Motor Data Error Motor data in SFD is outside drive limits or is inconsistent	 Motor and Drive are not compatible. Auto setup calculation yielded a desired parameter value outside valid range. Incorrect/inconsistent motor data loaded into the SFD. 	
15	SFD Sensor Failure Internal SFD failure.	Excessive electrical noise in the drive environment causing communications interference.	
16	SFD UART Error	Internal SFD failure.	
17	SFD Communication Error	 Feedback cable not connected at the drive or at the motor. Feedback cable shield not connected. Defective feedback cable Internal SFD failure. Excessive electrical noise in the drive environment causing communications interference. 	
18	Option Card Watch Dog Time out	Communication error between option card and main board.	

Table 9-3: Drive Status LED Fault Codes (Continued)			
Fault Code	Fault	Possible Causes	
19	Position Error Too Large	 If ExtFaults = Step size over flow then GearOut/GearIn is too large. If ExtFaults = Position error over flow then the following error (PosErr), has exceeded ±128 revs. Check if the motor is stalling or if the commanded speed is higher than the motor can achieve at the present bus voltage. 	
20	Option Card Fault	 If ExtFaults is AuxFBFault, then the AuxFB device is in error. Check the AuxFB faults: AuxFBEnDatFlt, AuxFBPTCFlt or AuxFBSCDFlt. Check to make sure that the drive is set up for the correct feedback device and that the device is functioning correctly. If ExtFaults is "No ExtendedFault," then this was a fault induced by the controller, such as SynqLost. 	

10 Resolver Interface Option Module

The Resolver Interface Option module can be installed in the 230V or 460V Smart Drive. It cannot be installed in an S200-DLS Drive. This section describes the Resolver Interface Option Module in detail.

10.1 Theory of Operation

The Resolver Interface Option Module provides the interface between the resolver and the drive's DSP. It is a tracking system where the rotor is excited with a sine wave. The outputs of the resolver are amplitude modulated by the sine and cosine of the rotor shaft angle. The tracking converter converts the sine and cosine amplitude ratio into a 12 bit number.

The module provides a 4 Vrms 5 kHz sine wave to excite the resolver rotor. The resolver transformer ratio is .5:1 so the stator outputs are 2V RMS with the shaft rotated to the angle of maximum coupling. The sine and cosine rotor outputs are returned to the resolver module's twin instrumentation amplifier inputs to produce a high common mode noise rejection and a high input impedance (220K Ω). The sine and cosine signals are then fed to a resolver to digital converter chip that performs the tracking conversion. The converter has both a serial output and an encoder emulator output. The serial output is read when the drive is powered up to obtain the absolute commutation angle for the motor. Thereafter, it is used as an encoder emulator.

The module is able to detect a loss of feedback by monitoring the sine and cosine signals. If both are near zero at the same time, a loss of feedback error is generated.

10.2 Installing the Resolver Module

- If the Resolver Module is being installed in a 230V drive, remove the five screws at the corners of the cover and remove the cover. If the Resolver Module is being installed in a 460V drive, turn the 2 locking screws on the front of the drive clockwise and remove the MMC Smart Drive board from the drive chassis.
- Remove the shunt from the 24-pin DIP socket located on the MMC Smart Drive board (See Figure 10-1 on page 198).
- 3. If there are not two standoffs already installed on either side of the 24-pin DIP socket on the MMC Smart Drive board, proceed to step 10.
- 4. If there are nylon standoffs snapped into the Resolver Module, remove and discard them. If there are nylon standoffs included with the Resolver Module, discard them
- 5. Remove and save the two nylon screws that are threaded into the standoffs mounted to the MMC Smart Drive board.
- 6. Position the Resolver Module so the mounting holes align with the standoffs, and the header is aligned with the socket (See Figure 110-2 on page 199).
- 7. Using even pressure, press the option module into place.
- 8. Screw the Resolver Module to the standoffs using the screws removed in step 5.
- 9. Verify that the module is fully seated into the socket and proceed to step 15.
- 10. If there are standoffs installed in the Resolver Module, proceed to step 12.
- 11. Install the snap-in standoffs that were included with the Resolver Module into the Resolver Module. From the back of the Resolver Module (the side that has the 24pin header on it), insert the short (slotted) end of the standoffs into the mounting holes.

- 12. Position the Resolver Module so the long (locking tab) end of the standoffs line up with the mounting holes on the Drive board, and the header is aligned with the socket (See Figure 110-2 on page 199).
- 13. Using even pressure, press the option module into place.
- 14. Verify that the module is fully seated into the socket and the locking tabs on the standoffs are in the locked position.
- 15. If the Resolver Module was installed in a 230V drive, re-install the cover and five screws removed in step 1. If the Resolver Module was installed in a 460V drive, re-install the MMC Smart Drive board into the chassis and turn the 2 locking screws on the front of the drive counter-clockwise to secure the front panel to the chassis.

Figure 10-1: : Before Shunt Removed and Resolver Module Installed

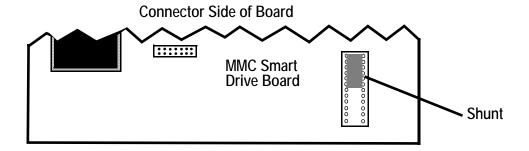
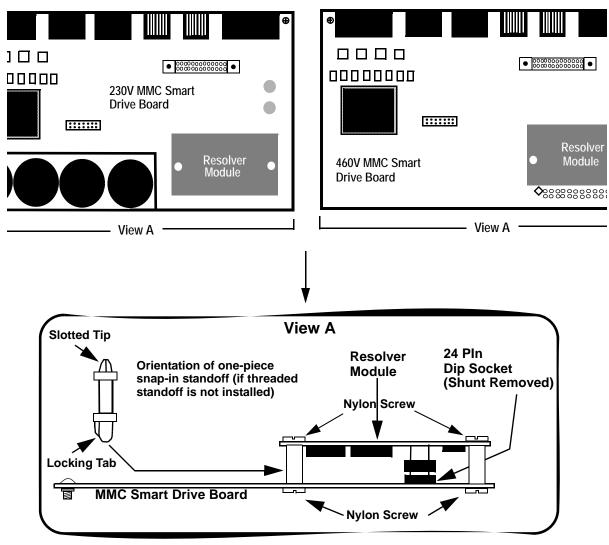



Figure 10-2: : Shunt Removed and Resolver Module Installed

Connector side of Board

10.3 Specifications

Characteristics	Resolver Interface Option Module Specifications
Part Number	M.1302.4523
Function	Resolver to encoder converter
Part Number	M.1302.4523
Field Side Connector	F1 Feedback Connector
Excitation Frequency	5 kHz
Output Voltage	4 V _{RMS}
Current per Output Channel, max.	28 mA _{RMS}
Resolver Transformer Ratio	0.5:1.0
Resolver Resolution	4096 Feedback Units (FUs) per electrical revolution
Accuracy Over Temperature Range	+ 15 minutes
Electrical Velocity, max.	500 RPS
Cable Length, max.	30 M
Power	Powered from MMC Smart Drive

11 Drive Resident Digital MMC Control

The Drive Resident Digital MMC Control can be installed in the 230V or 460V Smart Drive. It cannot be installed in an S200-DLS Drive. This section describes the Drive Resident Digital MMC Control in detail.

11.1 Introduction

This section contains information for the Drive Resident Digital MMC Control (Digital MMC-Dx). Block I/O information can be found in the Block I/O Modules Manual. Software information can be found in the PiCPro Online Help, the Function/Function Block Reference Guide, ASFB Manuals or on-line.

11.1.1 Overview

The Drive Resident Digital MMC Control offers a complete solution to both machine and motion control in a module that is installed into any Digital Interfaced Smart Drive (MMC-SD-D) except the 230V Narrow Drive (-DN). One Drive Resident Digital MMC Control can control from 1 to 16 drives as follows:

- Digital MMC-D1 (controls one MMC-SD-D)
- Digital MMC- D2 (controls two MMC-SD-D)
- Digital MMC- D4 (controls four MMC-SD-D)
- Digital MMC- D8 (controls eight MMC-SD-D)
- Digital MMC- D16 (controls 16 MMC-SD-D)

PiCPro is used to program the Drive Resident Digital MMC Control. The built-in I/O (eight 24VDC inputs and eight 24VDC outputs) can be expanded using Kollmorgen serially distributed block I/O (not included on the Digital MMC-D1).

11.1.2 Major Components

The Drive Resident Digital MMC Control contains the CPU, a User Serial port, a Block I/O port, an Ethernet port, and a General I/O port consisting of 8 DC inputs and 8 DC outputs.

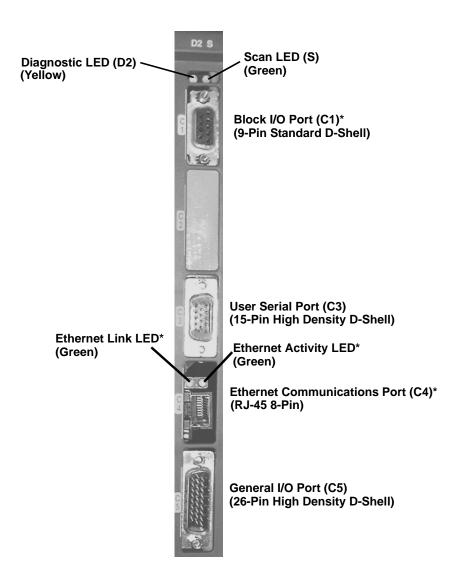


Figure 11-1: The Drive Resident Digital MMC Control

^{*} The Block I/O Port connector (C1), Ethernet Communications Port connector (C4), Ethernet Link LED, and Ethernet Activity LED are present on the Digital MMC-D1 Control, but are not functional.

11.2 Installing the Drive Resident Digital MMC Control

11.2.1 Installing into a 230V MMC-SD Drive

- Remove the three screws from the right side of the cover and one screw from the top and bottom of the drive near the front. Remove the cover.
- 2. Place the cover removed in step 1 on a flat surface, with the blue plastic faceplate down, and the large side cover to the left pointing up.
- 3. Remove the two screws that hold the .6" by 8" blue filler plate to the back of the faceplate and remove the plate.
- 4. Locate the 4 screws that secure the top-most printed circuit board into the drive. Remove one of the screws and the associated lock washer, and install one of the four threaded standoffs that were included with the Drive Resident Digital MMC Control (do not use the lock washer). Repeat this process for the other 3 screws, one at a time.
- 5. Place the Drive Resident Digital MMC Control into the drive, with the connectors facing towards the front of the unit. Align the 20-pin connector on the Drive Resident Digital MMC Control with the 20-pin connector on the drive. Press the Drive Resident Digital MMC Control onto the drive until the 20-pin connector is completely seated and the Drive Resident Digital MMC Control is seated against the threaded standoffs installed in step 4.
- 6. Fasten the Drive Resident Digital MMC Control onto the threaded standoffs using the lockwashers and screws removed in step 4.
- 7. Replace the cover using the 4 screws removed in step 1.

11.2.2 Installing into a 460V MMC-SD Drive

- 1. Turn the two locking screws on the front of the drive clockwise ¼ turn and pull the drive control board unit out of the drive.
- 2. Place the drive control board unit removed in step 1 on a flat surface, with the blue plastic faceplate down, and the drive control board to the left.
- 3. Remove the two screws that hold the .6" by 8" blue filler plate and remove the plate.
- 4. Place the drive control board unit on a flat surface so that the control board is facing up, and the blue plastic faceplate is facing away from you.
- 5. Locate the 4 screws that secure the top-most printed circuit board into the drive. Remove one of the screws and the associated lock washer, and install one of the four threaded standoffs that were included with the Drive Resident Digital MMC Control (do not use the lock washer). Repeat this process for the other 3 screws, one at a time.
- 6. Place the control board unit on a flat surface, with the blue plastic faceplate down, and the drive control board to the left.
- 7. Loosen (but do not remove....about 2 turns) the 5 screws that hold the drive control board mounting plate to the front cover plate.
- 8. Place the Drive Resident Digital MMC Control into the drive, inserting the connectors on the Drive Resident Digital MMC Control through the front plate.
- 9. Align the 20-pin connector on the Drive Resident Digital MMC Control with the 20-pin connector on the drive. Press the Drive Resident Digital MMC Control onto the

drive until the 20-pin connector is completely seated and the Drive Resident Digital MMC Control is seated against the threaded standoffs installed in step 5.

- 10. Tighten the 5 screws loosened in step 7
- 11. Fasten the Drive Resident Digital MMC Control onto the threaded standoffs using the lockwashers and screws removed in step 5.
- 12. Replace the control board unit back into the drive, and turn the locking screws ¼ turn counter-clockwise to secure the unit in place.

11.3 System Wiring Guidelines

The Drive Resident Digital MMC Control relies on electrical signals to report what is going on in the application and to send commands to it. In addition, signals are constantly being exchanged within the system. The Drive Resident Digital MMC Control is designed for use in industrial environments, but some guidelines should be followed.

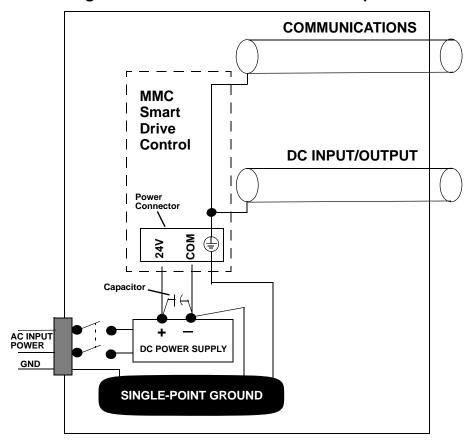


Figure 11-2: Recommended EMC Compliant Connections

Inside a control cabinet, connect the shields of shielded cables. The two different methods of terminating shields are used to accommodate two different immunity requirements. Immunity required inside an enclosure is considered lower because cables are typically less than three meters in length and/or can be separated from each other and from noise sources.

Immunity required external to an enclosure is considered higher because the user may have less control over the noise environment. Low level signal cables that can be external to an enclosure are tested at a 2 KV level for electrical fast transients (EFTs).

Low level signals that can be less than three meters in length or can be separated from noise sources are tested at a 1 KV level. Under the stated conditions, there will be no disturbance of digital I/O, encoder, or encoder operation. For analog signals, there may be momentary disturbances but there will be self-recovery when the noise subsides.

Do not operate transmitters, arc welding equipment, or other high noise radiators within one meter of an enclosure that has the door open. Continue to equip inductive devices, if they are in series with a mechanical contact or switch, with arc suppression circuits. These devices include contactors, solenoids and motors. Shield all cables that carry heavy current near the system, using continuous foil wrap or conduit grounded at both ends. Such cables include power leads for high-frequency welders and for pulse-width-modulated motor drives.

WARNING

Use care when wiring I/O devices to the Drive Resident Digital MMC Control and when plugging in cables. Wiring the wrong device to the connector or plugging a connector into the wrong location could cause intermittent or incorrect machine operation.

11.4 Starting an Operation

Good procedure suggests that the system should be tested each time a new application is powered up. The Diagnostic LED (D2) on the Drive Resident Digital MMC Control should be off indicating that the diagnostic tests were passed.

Turn off the main disconnect switch and plug the DC connector into the power connector on the MMC-SD. Turn on input power. The D2 LED turns on and then turns off when the Drive Resident Digital MMC Control passes its diagnostic tests.

11.4.1 Connecting the Drive Resident Digital MMC Control to the Application

- 1. Turn off the main disconnect switch in the control cabinet. If some devices are not powered from the control cabinet, turn them off also.
- 2. Connect the connectors according to your diagrams.
- 3. Turn on power to the system. The PWR light on the MMC-SD goes on and stays on.

The D2 light goes on, then goes off in turn.

The SCAN (S) light goes on.

The application starts to work under control of the system.

4. If an application program is not in system memory, use the download command in the PiCPro software to place it there.

11.4.2 Basic Setup and Maintenance Procedures

Table 11-1 below summarizes how to proceed when performing certain maintenance and/or setup functions.

Table 11-1: Troubleshooting Summary		
In order to:	Do the following:	
Turn off the entire application.	Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the MMC-SD.	
Wire the I/O to the application.	Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the MMC-SD.	
Change the battery.	Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the MMC-SD.	
Connect/disconnect the MMC with the computer workstation through the PiCPro port.	Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the MMC-SD.	
Connect/disconnect the MMC with an operator interface through the User port.	Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the MMC-SD.	
Download an application program into the memory.	Make sure power is on (check the P LED) on the MMC-SD.	
Stop the scan.	From the workstation - use the Stop Scan commands in the PiCPro software.	

11.4.3 Start-up Diagnostics

When the system is powered up, it tests itself and reports the results in the form of LED signals.

11.4.3.1 Power LED

If the Power LED (P) on MMC-SD does not go on, or goes off during operation of the system, check that power is still connected to the MMC-SD. If the power LED on the MMC-SD is on, turn off the main disconnect switch and replace the Drive Resident Digital MMC Control.

11.4.3.2 Scan LED

If the SCAN (S) LED does not go on:

- 1. Check that the power (P) light is ON.
- 2. Check that the diagnostic (D2) light is OFF.

11.4.3.3 Drive Resident Digital MMC Control Start-Up Diagnostic LEDs

The LED D2 light on the Drive Resident Digital MMC Control lights up briefly while its diagnostic tests are running and then goes off. If D2 remains on, the Drive Resident Digital MMC Control has failed one of its tests. Follow these steps:

- 1. Turn off power to the system and to the application.
- 2. If the I/O wiring is connected, remove the connector.
- 3. Remove the defective Drive Resident Digital MMC Control from the drive.
- 4. Replace with a new Drive Resident Digital MMC Control. Connect the I/O wiring.
- 5. Turn on power to check diagnostics again.

NOTE

Diagnostics are run only when the system is powered up. It is possible that a failure might occur during operation. If so, D2 remains off. If you suspect that a module might be defective, cycle power to run diagnostics again.

11.4.4 MMC Run-Time Diagnostics

While the Drive Resident Digital MMC Control is running, other tests are performed on a regular basis with their results also reported by D2.

While the Drive Resident Digital MMC Control is running, the D2 will flash a three digit code signal if there is an error. For example, if there is a long pause-flash-pause-flash-flash-flash-long pause, the code is 123.

Table 11-2: MMC Error Codes			
Code	Error	Description	
123	Scan too long	A ladder scan loss has occurred because the CPU takes more than 200 ms to scan the application program. Whenever the scan light is out, the discrete outputs go to the OFF state and the analog outputs are zeroed.	
124	Excessive over- head	The system overhead update time is excessive.	
125	Insufficient memo- ry	There is insufficient memory on the CPU to run the current program.	
126	No hardware bit memory	There is no bit memory installed on the CPU and the program requires it.	
127	No software bit memory	There is no bit memory capability via software and the program requires it.	
222	Driver error	No driver support on the CPU for the I/O module. Update your system EPROMs.	
22_	Master rack error	The I/O modules in the master rack do not match what was declared in the hardware master declaration table. The number of flashes in the third digit (_) identifies the slot number that is in error.	
232	Communications error	A failure has occurred in remote I/O communications.	
3	Expansion rack error	The I/O modules in the block I/O modules do not match what was declared in the expansion hardware declaration table. For block I/O modules: The number of flashes in the second and third digits indicates the block I/O module (01 through 77). The second digit will flash a 1 - 7, 10 for 0. The third digit will flash a 1 - 9, 10 for 0. For example, if the second digit flashes 3 times and the third digit flashes 10 times, the module is 30.	
621	Low Battery	The battery on the Control is near its end of life, and needs to be replaced.	

11.5 Connectors & Operation

Kollmorgen provides many optional accessories that simplify wiring the Drive Resident Digital MMC Control to external devices.

These accessories include cables to connect MMC-SD drives together and breakout boxes that provide screw-terminal connections to the Drive Resident Digital MMC Control. Contact Kollmorgen for further information.

11.5.1 **PiCPro Port (P1)**

The PiCPro Port (P1) connector provides serial communication for the PiCPro programming interface. PiCPro Port (P1) is physically located on the MMC-SD faceplate. Refer to Chapter 5 for information on the PiCPro (P1) Port.

Note: PiCPro can also be run over from the Ethernet (C4) connector.

11.5.2 Block I/O Port (C1)

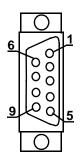
The 9-pin female D-sub PiCPro Port connector (labeled "C1" on the front of the Control) provides serial communication between 1 to 77 Block I/O modules and the Control. Cables connecting the Control to the first Block I/O Module and between Block I/O modules can be up to 200 feet in length.

Note: The Block I/O Port (C1) is not included on the Digital MMC-D1.

- Pin descriptions for are provided in Table 11-3.
- Pin assignments are provided in Table 11-4.
- The available Flying Lead cable is described in Table 11-5.
- Connections to the Block I/O Module are described in Table 11-6.
- Available Breakout Boxes and Cables are described in Table 11-7.
- Breakout Box dimensions are shown in Figure 11-3

Table 11-3: Block I/O Port Pin Descriptions				
Function	Notes	Pin		
Transmit Data +	Transmits data to Block I/O Modules.	3		
Transmit Data -	Transmits data to Block I/O Modules.	4		
Receive Data +	Receives data from Block I/O Modules.	5		
Receive Data -	Receives data from Block I/O Modules.	6		
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	7 & Shell		

Table 11-4: Block I/O Port Pin Assignment				
Pin	Signal	In/Out	Connector Pinout	
1	NC	N/A		
2	N/C	N/A	9-pin female D-sub	
3	Transmit Data +	Out		
4	Transmit Data -	Out	9 5	
5	Receive Data +	In		
6	Receive Data -	In		
7	Shield	In	6 0 1	
8	NC	N/A		
9	NC	N/A		
Connector Shell	Drain	In		


NOTE

Pin 7 of the Block I/O port connector is connected to the connector shell within the MMC. Therefore, the shield may be connected to either pin 7 or the connector shell.

Table 11-5: Block I/O Port to Flying Lead Cable

Part Number: M.1016.2568 Length: 3 M (10 ft) Cable type: 24 AWG, twisted pair (individually shielded), 4 conductor.

9-Pin male D-sub (to Block I/O Port, face view)

Pin	Signal	Color	Notes
3	Transmit Data +	White	Twisted
4	Transmit Data -	Black	Pair
7	Shield	N/A	with Shield
5	Receive Data +	Red	Twisted
6	Receive Data -	Black	Pair
7	Shield	N/A	with Shield

Table 11-6: Block I/O Port to Block I/O Module Wiring					
Use this table to wire from the Block I/O Port to the first Block I/O Module.					
9-Pin male D-sub (to Block I/O Port, face view)		5-Pin Pluggable Screw Terminal (to Block I/O Module, face view)			
6 0 1 0 1 0 1 2 0 3 4 0 5 5		0 1 2 3 4 5 5			
Pin	Signal	Pin	Signal	Notes	
3	Transmit Data +	1	Receive Data +	Twisted Pair	
4	Transmit Data -	2	Received Data -	i wisieu raii	
5	Receive Data +	4	Transmit Data +	Twisted Pair	
6	Received Data -	5	Transmit Data -	i wisieu raii	
7	Shield Ground	3	Shield Ground		
Shell	Drain	Shell	Drain		

Table 11-7: Block I/O Port Breakout Box and Cables ^a			
Description	Length	Part Number	
MMC Block I/O Breakout Box	N/A	M.1016.2533	
MMC Block I/O Connector to Breakout Box Cable	.3 M (1 ft)	M.1016.2543	
MMC Block I/O Connector to Breakout Box Cable	.6 M (2 ft)	M.1016.2544	
MMC Block I/O Connector to Breakout Box Cable	.9 M (3 ft)	M.1016.2545	

a. The Breakout Box (see Figure 11-3 on page 213) is DIN-rail mounted, and provides screw terminal wire termination. It can be attached to the "C1" port on the Control. The pinouts on the terminal strip interface provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block. The connector pins marked with the "ground" symbol on the screw connector are connected to the "D" connector shell for shield grounding purposes.

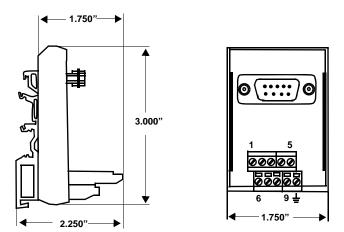


Figure 11-3: Block I/O Breakout Box Dimensions

11.5.3 User Port

The 15-pin HD male D-sub User Port connector (labeled "C3" on the front of the Control) provides RS232 and RS485 serial communication between a serial device and the Control. The User Port provides RS232/RS485 communications at Baud rates to 115.2 K with Multidrop capability.

- Pin descriptions are provided in Table 11-8
- Pin assignments are provided in Table 11-9
- The available Flying Lead cable is described in Table 11-10.
- The available RS-232 Exter HMI cable is described in Table 11-11.
- The available RS-485 Exter HMI cable is described in Table 11-12.
- Available Breakout Boxes and Cables are described in Table 11-13.
- Breakout Box dimensions are shown in Figure 11-4

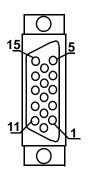
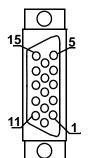

Table 11-8: User Port Pin Descriptions			
Function	Notes	Pin	
RS232 Receive Data	RS232-level signal that receives serial data from the connected serial device.	9	
RS232 Transmit Data	RS232-level signal that sends serial data to the connected serial device.	10	
RS232 Request-to-send	RS232-level signal that indicates to the connected serial device that it can transmit data to the Control.	5	
RS232 Clear-to-send	RS232-level signal that indicates to the Control that it can transmit data to the connected serial device.	7	
RS-232 Data-terminal- ready	This output from the Control is always high (12 Vdc).	4	
RS-485 Receive Data +	RS485-level signal that receives serial data from the connected serial device(s).	12	
RS-485 Receive Data -	RS485-level signal that receives serial data from the connected serial device(s).	13	
RS-485 Transmit Data +	RS485-level signal that transmits serial data to the connected serial device(s).	14	
RS-485 Transmit Data -	RS485-level signal that transmits serial data to the connected serial device(s).	15	
Signal Ground	Provides the return path for signals	8	
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell	

Table 11-9: User Port Pin Assignments						
Pin	Signal	In/Out	Connector Pinout			
1	NC	N/A				
2	N/C	N/A				
3	N/C	N/A				
4	RS232 Data-terminal-ready (12 Vdc)	Out				
5	RS232 Request-to-Send	Out	15-pin HD male D-sub			
6	N/C	N/A				
7	RS232 Clear- to-Send	In	11/01/1			
8	Signal Ground	In/Out				
9	RS232 Receive Data	In				
10	RS232 Transmit Data	Out	15 0 5			
11	N/C	N/A				
12	RS485 Receive Data +	In				
13	RS485 Receive Data -	In				
14	RS485 Transmit Data +	Out				
15	RS485 Transmit Data -	Out				
Connector Shell	Drain	In				

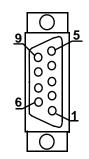
Table 11-10: User Port to Flying Lead Cable

Part Number: M.1016.2565 Length: 3 M (10 ft) Cable type: 28 AWG, shielded, twisted pair, 16 conductor.

15-Pin HD female D-sub (to User Port, face view)



Pin	Signal	Color	Notes
3	N/C	Blue	Twisted
8	Signal Ground	Blue/Black	Pair
12	RS485 Receive Data +	Brown	Twisted
13	RS485 Receive Data -	Brown/Black	Pair
14	RS485 Transmit Data +	Violet	Twisted
15	RS485 Transmit Data -	Violet/Black	Pair
4	RS232 Data-terminal Ready	White	
5	RS232 Request-to-send	Red	
7	RS232 Clear-to-send	Green	
9	RS232 Receive Data	Yellow	
10	RS232 Transmit Data	Orange	
Shell	Drain	N/A	


Table 11-11: User Port to RS-232 Exter HMI Cable

Part Number: M.1302.8453 Length: 4 M (13 ft) Cable type: 24 AWG, shielded, twisted pair, 4 conductor.

15-Pin HD female D-sub (to User Port, face view)

9-Pin female D-sub (to Exter HMI COM2 Port, face view)

Pin	Signal	Pin	Signal	Notes
9	Receive Data	3	Transmit Data	Twisted
10	Transmit Data	2	Receive Data	Pair
8	Signal Ground	5	Signal Ground	
Shell	Drain	Shell	Drain	

Table 11-12: User Port to RS-485 Exter HMI Cable Part Number: M.1302.8454 Length: 4 M (13 ft) Cable type: 24 AWG, shielded, twisted pair, 6 conductor. 25-Pin male D-sub (to 15-Pin HD female D-sub Exter HMI COM1 Port. (to User Port, face view) face view) Pin Pin Signal Signal Notes 2 12 Receive Data+ Transmit Data+ Twisted 13 Receive Data-15 Transmit Data-Pair 14 Transmit Data+ 3 Receive Data+ Twisted 15 Transmit Data-16 Receive Data-Pair 8 Signal Ground 7 Signal Ground Shell Drain Shell Drain

Table 11-13: User Port Breakout Box and Cables ^a					
Description	Length	Part Number			
MMC User Port Breakout Box	N/A	M.1016.2530			
MMC User Port to Breakout Box Cable	.3 M (1 ft)	M.1016.2715			
MMC User Port to Breakout Box Cable	.6 M (2 ft)	M.1016.2716			
MMC User Port to Breakout Box Cable	.9 M (3 ft)	M.1016.2717			

a. The Breakout Box (see Figure 11-4 on page 219) is DIN-rail mounted, and provides screw terminal wire termination. It can be attached to the "C3" connector on the Control. The pinouts on the terminal strip interface provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block. The connector pins marked with the "ground" symbol on the screw connector are connected to the "D" connector shell for shield grounding purposes.

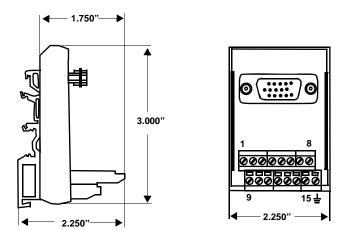


Figure 11-4: User Port Breakout Box Dimensions

11.5.4 Ethernet Port

The 8-pin RJ-45 Ethernet Port connector (labeled "C4" on the front of the Control) provides IEEE 802.3/802.3u-100Base-TX/10Base T, half duplex connectivity between an Ethernet device and the Control. Also provided on near the RJ-45 connector is a green "Link" light (which will be on if there is either a 100Base-T or 10Base-T Link) and a green "Activity" light (which will be on whenever a send or receive packet has occurred on the network).

Communication using the Ethernet Port can be between the Control and a PC, User Interface, or other Ethernet device or network. For example, PiCPro running on a PC can communicate to the Control through this Ethernet connector.

Typically, a "straight-through" shielded cable should be used when connecting the Control to another Ethernet device.

- Pin descriptions for are provided in Table 11-14
- Pin assignments are provided in Table 11-15
- The available Ethernet Port to Ethernet Device cables are described in Table 11-16

Table 11-14: Ethernet Port Pin Descriptions					
Function	Notes	Pin			
Receive Data +	Receives data from connected device.	3			
Receive Data -	Receives data from connected device.	6			
Transmit Data +	Transmits data to connected device.	1			
Transmit Data -	Transmits data to connected device.	2			

Table 11-14: Ethernet Port Pin Descriptions					
Function	Notes	Pin			
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell			

Table 11-15: Ethernet Port Pin Assignments					
Pin	Signal	In/Out	Connector Pinout		
1	Transmit Data +	Out			
2	Transmit Data -	Out	D 1.45		
3	Receive Data +	In	- RJ-45		
4	Termination Resistors ^a	In			
5	Termination Resistors ^(a)	In			
6	Receive Data -	In	-		
7	Termination Resistors ^(a)	In			
8	Termination Resistors ^(a)	In			
Connector Shell	Shield	In			

a. Pins 4, 5, 7, and 8 are tied to termination resistors on the Control. Standard Ethernet cables contain 8 wires. The Control only uses 4 of these wires as shown. Connecting the 4 unused wires to pins 4, 5, 7, and 8, (as will be done in a standard Ethernet cable) reduces noise that can be induced from the unused wires to the Transmit and Receive wires.

	Table 11-16: Ethernet Port to Ethernet Device Cables					
.3 M (1 1 M (3. 3 M (9. 10 M (3. 30 M (9.	Part Numbers: .3 M (1.0 ft): M.1302.8285 .6 M (2.0 ft): M.1302.8286 1 M (3.3 ft): M.1302.8287 2 M (6.6 ft): M.1302.8288 3 M (9.8 ft): M.1302.8289 5 M (16.4 ft): M.1302.8300 10 M (32.8 ft): M.1302.8301 15 M (49.2 ft): M.1302.8302 30 M (98.4 ft): M.1302.8303 Cable type: 28 AWG, shielded, twisted pair, 8 conductor.					
	in RJ-45 Plug (to net Port, face view)		rin RJ-45 Plug (to et Device, face view)			
	■ 1 ■ 8	1 8				
Pin	Signal	Pin	Signal	Notes		
1	Transmit Data +	1	Receive Data +	Twisted		
2	Transmit Data -	2	Receive Data -	Pair		
3	Receive Data +	3	Transmit Data +	Twisted		
6	Receive Data -	6	Transmit Data -	Pair		
4	None	4	None	Twisted		
5	None	5	None	Pair		
7	None	7 None Twisted				
8	None	8	None	Pair		
Shell	Drain	Shell	Drain			

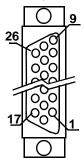
11.5.5 **General I/O Port (C5)**

The 26-pin HD male D-sub General I/O Port connector (labeled "C5" on the front of the Control) provides connection between user I/O devices and the Control. This port provides 8 source-only, 250ma, short-circuit protected outputs (described in detail in section 11.5.5.1 on page 226), and 8 source-only inputs (described in detail in section 11.5.5.2 on page 228).

- Pin descriptions are provided in Table 11-17
- Pin assignments are provided in Table 11-18
- The available Flying Lead cable is described in Table 11-19.
- Available Breakout Boxes and Cables are described in Table 11-20.
- Breakout Box dimensions are shown in Figure 11-5

Table 11-17: General I/O Port Pin Descriptions					
Function	Notes	Pin			
DC Outputs 1-8	Nominal 24 Vdc Outputs capable of sourcing up to 250 ma.	1-8			
DC Inputs 1-8	Nominal 24 Vdc sourcing Inputs	19-26			
DC Output Power	This is the 24 Vdc supplied by the user to power the DC Outputs	9			
I/O 24 Volts	These pins are only connected to each other within the Control. If used, connect one pin to 24 Vdc, and the other pins to one side of input devices.	10-13			
24 Vdc Common	These pins are only connected to each other within the Control. Connect pin 14 to 24V Common. This provides the return path for the 24 Vdc Inputs. Connect pins 15-18 to one side of output devices if desired.	14-18			
Shield Ground	Provides a path for shield current through the chassis to an external single point ground.	Shell			

	Table 11-18: General I/O Port Pin Assignments					
Pin	Signal	In/Out	Connector Pinout			
1	DCOUT1	Out				
2	DCOUT2	Out				
3	DCOUT3	Out				
4	DCOUT4	Out				
5	DCOUT5	Out				
6	DCOUT6	Out				
7	DCOUT7	Out	26-pin HD male D-sub			
8	DCOUT8	Out				
9	24VDCIN	In	19 000			
10-13	IO24V	In/Out	1001			
14-18	IO24C	In/Out				
19	DCIN1	IN	26 000			
20	DCIN2	IN				
21	DCIN3	IN				
22	DCIN4	IN				
23	DCIN5	IN				
24	DCIN6	IN				
25	DCIN7	IN				
26	DCIN8	IN				
Shell	Drain	In				


Table 11-19: General I/O Port to Flying Lead Cable

Part Numbers:

9 M (29.5 ft): M.1302.8259

Cable type: 28 AWG (pins 9 & 10 are 20 AWG), shielded, twisted pair, 26 conductor.

26-Pin HD female D-sub (to Gen I/O Port, face view)

Pin	Signal	Color	Notes	Pin	Signal	Color	Notes
1	DCOUT1	Blk	Twisted	15	IO24C	Brn	Twisted
2	DCOUT2	Wht/Blk	Pair	16	IO24C	Wht/Brn	Pair
3	DCOUT3	Red	Twisted	17	IO24C	Vio	Twisted
4	DCOUT4	Wht/Red	Pair	18	IO24C	Wht/Vio	Pair
5	DCOUT5	Grn	Twisted	19	DCIN1	Pnk	Twisted
6	DCOUT6	Wht/Grn	Pair	20	DCIN2	Wht/Pnk	Pair
7	DCOUT7	Org	Twisted	21	DCIN3	Blk/Yel	Twisted
8	DCOUT8	Wht/Org	Pair	22	DCIN4	Gry/Grn	Pair
9	24VDCIN	Gry	Twisted	23	DCIN5	Grn/Red	Twisted
10	IO24V	Wht/Gry	Pair	24	DCIN6	Yel/Red	Pair
11	IO24V	Blu	Twisted	25	DCIN7	Gry/Blu	Twisted
12	IO24V	Wht/Blu	Pair	26	DCIN8	Yel/Blu	Pair
13	IO24V	Yel	Twisted				
14	IO24C	Wht/Yel	Pair				
Shell	Drain	N/A					

Table 11-20: General I/O Port Breakout Box and Cables ^a						
Description	Length	Part Number				
DR Control Gen I/O Breakout Board ^b	N/A	M.1302.8480				
DR Control Gen I/O Breakout Box ^c	N/A	M.1302.8253				
	1 M (3.3 ft)	M.1302.8254				
DR Control Gen I/O & Aux I/O Connector to Breakout Box Cable	3 M (9.8 ft)	M.1302.8255				
	9 M (29.5 ft)	M.1302.8256				

- a. The connector pins marked with the "ground" symbol on the screw connector are connected to the "D" connector shell for shield grounding purposes.
- b. The Breakout Board is mounted directly to the General I/O connector, and provides screw terminals wire termination.
- c. The Breakout Box (see Figure 11-5 on page 225) is DIN-rail mounted, and provides screw terminal wire termination. Use one of the cables listed in the table to connect between the General I/O connector and the Breakout Box.

Figure 11-5: General I/O Port Breakout Box Dimensions

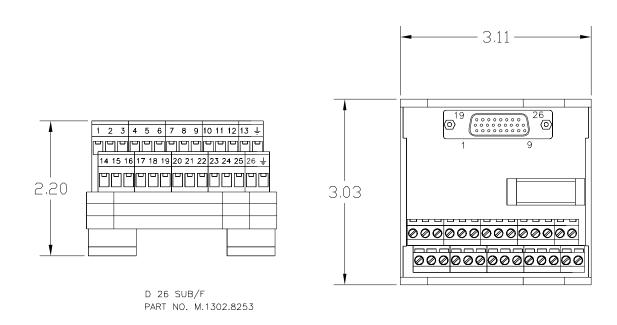
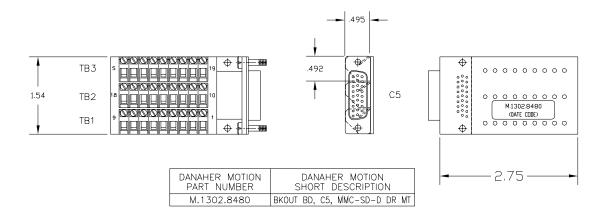



Figure 11-6: General I/O Port Breakout Board Dimensions

11.5.5.1 DC Output Operation

The General I/O Port provides 8 source-only 24 Vdc outputs. These outputs get their power from Pin 9 of the General I/O connector. Each of the 8 outputs on the general I/O connector is a solid state switch rated at 250 ma. An example of connecting the DC Outputs to loads is shown in Figure 11-7.

When a short circuit condition is sensed, all outputs in the group are turned off and remain off for approximately 100 ms regardless of ladder activity. After 100 ms, the ladder again controls the outputs. In addition, each output is protected with internal clamping diodes. Without clamping, high voltage transients (kickback) from inductive loads might damage the module.

For safety reasons, all outputs turn off (no current flow) when a scan loss condition occurs.

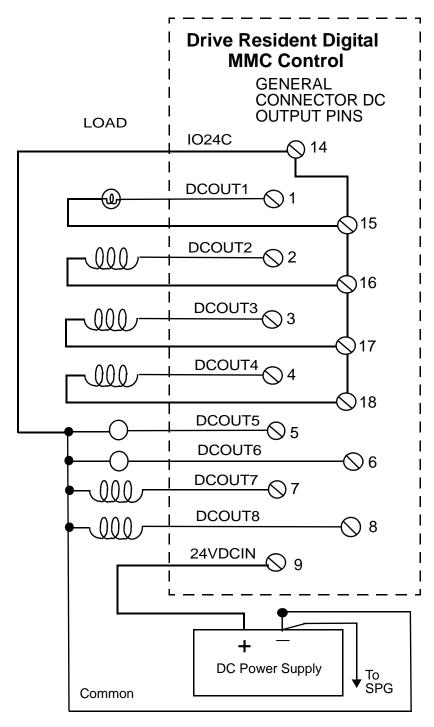


Figure 11-7: Connecting Output Devices to the General I/O Port (C5)

11.5.5.2 DC Input Operation

The General I/O Port provides eight 24 Vdc sourcing inputs.

An example of connecting the DC Inputs to the Control is shown in Figure 11-8.

Figure 11-8: Connecting Input Devices to the General I/O Port (C5)

11.6 Specifications

	General										
Characte	Characteristic MMC Specifications										
					Number of servo axes available at six update rates ^a			le			
Model	Part No.	Speed	App Mem	RAM Mem	User Mem	8 ms	4 ms	2 ms	1 ms	.5 ms	.25 ms
Digital MMC-D1	M.3000 .0164	Std.	1.3M	256K	64K	1	1	1	1	1	1
Digital MMC-D2	M.3000 .0165	Std.	1.3M	256K	64K	2	2	2	2	2	1
Digital MMC-D4	M.3000 .0166	Std.	1.3M	256K	64K	4	4	4	4	2	1
Digital MMC-D8	M.3000 .0518	X1.5	1.3M	256K	64K	8	8	8	4-8	2-4	1-2
Digital MMC-D16	M.3000 .0167	X1.5	1.3M	256K	64K	16	16	8-16	4-8	2-4	1-2

a. Using features such as servo tasks, S-curve, RATIO_RL, M_LINCIR, M_SCRVLC, PLS, and CAM_OUT places a heavier burden on available CPU time. Consult Kollmorgen for assistance if you want to exceed the number of axes in this chart.

CPU	32 bit RISC processor with numeric coprocessor		
Battery	3V Coin Cell, BR2032 lithium battery		
Battery Life	2 power-off years (typical)		
	rectly replaced. Replace only with the same or equivalent type Dispose of used batteries according to the manufacturer's in-		
Flash Disk	2 Megabytes		
Memory	1 Megabyte max.		
PiCPro Port (to workstation)	RS232 serial port, secured protocol Software selectable baud rate to 115.2K		
User Port (to serial interface device)	RS232/RS485 serial port Supports RTS/CTS hardware handshaking Software selectable baud rate to 115.2K		
Ethernet Port (to Ethernet Device)	IEEE 802.3/802.3u-100Base-TX/10Base T Half duplex Cable type: Shielded, Straight Pinned, CAT5 or better (CAT5e, CAT6, etc.) Maximum cable length: 82.5 ft (25 m)		

Input voltage from MMC-SD Drive	20 VDC to 30 VDC
Input power from MMC-SD Drive	250 mA
Time-of-day clock Clock tolerance	Access via PiCPro 10.2 and above or your application program At 25°C (77°F),±1 second per day Over temperature, voltage and aging variation, +2/-12 seconds per day
General DC Inputs	
Configuration	Sourcing only. Operates with IEC Type 1 inputs (per IEC 1131-2)
Input voltage	Nominal 24 VDC, maximum 30 VDC
Guaranteed on voltage	15 VDC
Guaranteed off voltage	5 VDC
Turn on/off time	1 ms
General DC Outputs	
Number of outputs	8 outputs
Input voltage	Nominal 24 VDC, 30 VDC maximum
Configuration	Eight solid-state switches.
Protection of logic circuits	Optical isolation between the logic and field side, transient suppression on the 24V external supply
Maximum current	.25 A per output
Voltage range	24 VDC nominal, 5 to 30 VDC
Switch characteristics	Solid-state switches
Time delay on for resistive loads	50 μsec max
Time delay off for resistive loads	50 μsec max
Leakage current in off state	0.5 mA max
Switch voltage, maximum ON	1 VDC max
Short circuit protection for each group	15 A (max) pulses for about 130 µsec every 100 msec until short is removed
Scan loss response	Outputs turn off

MMC Smart Drive Hardware Manual - DRIVE RESIDENT DIGITAL MMC CONTROL

12 Part Numbers

12.1 230V Smart Drives

DESCRIPTION	MODEL NUMBER	PART NUMBER
2.5A Cont. / 7.5A Max./ .5kW		
Analog, standard width	MMC-SD-0.5-230	M.1302.5090
Digital, standard width without BiSS	MMC-SD-0.5-230-D	M.1302.8130
Digital, standard width with BiSS	MMC-SD-0.5-230-D	M.3000.0461
Digital, narrow width without BiSS	MMC-SD-0.5-230-DN	M.1302.8908
Digital, narrow width with Biss	MMC-SD-0.5-230-DN	M.3000.0458
5A Cont. / 15A Max./ 1kW		
Analog, standard width	MMC-SD- 1.0-230	M.1302.5091
Digital, standard width without BiSS	MMC-SD-1.0-230-D	M.1302.8131
Digital, standard width with BiSS	MMC-SD-1.0-230-D	M.3000.0462
Digital, narrow width without BiSS	MMC-SD-1.0-230-DN	M.1302.8910
Digital, narrow width with Biss	MMC-SD-1.0-230-DN	M.3000.0459
10A Cont. / 30A Max / 2kW		
Analog, standard width	MMC-SD-2.0-230	M.1302.5092
Digital, standard width without BiSS	MMC-SD-2.0-230-D	M.1302.8132
Digital, standard width with BiSS	MMC-SD-2.0-230-D	M.3000.0463
Digital, narrow width without BiSS	MMC-SD-2.0-230-DN	M.1302.8911
Digital, narrow width with Biss	MMC-SD-2.0-230-DN	M.3000.0460

12.2 460V Smart Drives

DESCRIPTION	MODEL NUMBER	PART NUMBER
3.0A Cont. / 6.0A Max. / 1.3 kW		
Analog	MMC-SD-1.3-460	M.1302.5093
Digital, without BiSS	MMC-SD-1.3-460-D	M.1302.8133
Digital, with BiSS	MMC-SD-0.5-230-D	M.3000.0464
5.5A Cont. / 11.0A Max. / 2.4 kW		,
Analog	MMC-SD-2.4-460	M.1302.5094
Digital, without BiSS	MMC-SD-2.4-460-D	M.1302.8134
Digital, with BiSS	MMC-SD-2.4-460-D	M.3000.0465
9.0A Cont. / 18.0A Max. / 4.0 kW		
Analog	MMC-SD-4.0-460	M.1302.5095
Digital, without BiSS	MMC-SD-4.0-460-D	M.1302.8135
Digital, with BiSS	MMC-SD-4.0-460-D	M.3000.0466
13.5A Cont. / 27.0A Max. / 6.0 kW		
Analog	MMC-SD-6.0-460	M.1302.5096
Digital, without BiSS	MMC-SD-6.0-460-D	M.1302.8136
Digital, with BiSS	MMC-SD-6.0-460-D	M.3000.0467
18.0A Cont. / 36.0A Max. / 8.0 kW		
Analog	MMC-SD-8.0-460	M.1302.5097
Digital, without BiSS	MMC-SD-8.0-460-D	M.1302.8137
Digital, with BiSS	MMC-SD-8.0-460-D	M.3000.0468
27.5A Cont. / 55.0A Max. / 12.0 kW		
Analog	MMC-SD-12.0-460	M.1302.5098
Digital, without BiSS	MMC-SD-12.0-460-D	M.1302.8138
Digital, with BiSS	MMC-SD-12.0-460-D	M.3000.0469

DESCRIPTION	MODEL NUMBER	PART NUMBER
36.5A Cont. / 73.0A Max. / 16.0 kW		
Analog	MMC-SD-16.0-460	M.1302.5099
Digital, without BiSS	MMC-SD-16.0-460-D	M.1302.8139
Digital, with BiSS	MMC-SD-16.0-460-D	M.3000.0470
55.0A Cont. / 110.0A Max. / 24.0 kW		
Analog	MMC-SD-24.0-460	M.1302.5100
Digital, without BiSS	MMC-SD-24.0-460-D	M.1302.8140
Digital, with BiSS	MMC-SD-24.0-460-D	M.3000.0471
69.3A Cont. / 110.0A Max. / 30.0 kW		
Analog	MMC-SD-30.0-460	M.3000.0545
Digital, with BiSS	MMC-SD-30.0-460-D	M.3000.0021
93.3A Cont. / 147.0A Max. / 42.0 kW		
Analog	MMC-SD-42.0-460	M.3000.0546
Digital, with BiSS	MMC-SD-42.0-460-D	M.3000.0022
117.4A Cont. / 189.0A Max. / 51.0 kW		
Analog	MMC-SD-51.0-460	M.3000.0547
Digital, with BiSS	MMC-SD-51.0-460-D	M.3000.0023
152.7A Cont. /209.0A Max. / 65.0 kW		
Analog	MMC-SD-65.0-460	M.3000.0548
Digital, with BiSS	MMC-SD-65.0-460-D	M.3000.0024

12.3 S200-DLS Drives and Accessories

DESCRIPTION ^a	MODEL NUMBER	PART NUMBER
3.0A Continuous @ 40 degrees C	S20360-DLS	S20360-DLS
6.0A Continuous @ 40 degrees C	S20660-DLS	S20660-DLS
12.0A Continuous @ 40 degrees C	S21260-DLS	S21260-DLS
24.0A Continuous @ 40 degrees C	S22460-DLS	S22460-DLS
Aux Feedback Port ENDAT/BiSS to AKM/DDR Motor Cable 1 M (3.3 ft)	N/A	M.1302.0809
Aux Feedback Port ENDAT/BiSS to AKM/DDR Motor Cable 3 M (9.8 ft)	N/A	M.1302.0810
Aux Feedback Port ENDAT/BiSS to AKM/DDR Motor Cable 6 M (19.7 ft)	N/A	M.1302.0811
Aux Feedback Port ENDAT/BiSS to AKM/DDR Motor Cable 9 M (29.5 ft)	N/A	M.1302.0812
Aux Feedback Port ENDAT/BiSS to AKM/DDR Motor Cable 15 M (49.2 ft)	N/A	M.1302.0813
Aux Feedback Port ENDAT/BiSS to AKM/DDR Motor Cable 30 M (98.4 ft)	N/A	M.1302.0814
6-pin spring-contact pluggable mating connector for the I/O Power Port (J6)	N/A	M.1302.7662
8-pin spring-contact pluggable mating for connector for the Drive I/O Port (J7)	N/A	M.1302.7627

a. For S200 Base Unit cables and connectors, please refer to the S200 Base Unit Reference Manual, P/N M-SM-200-01, which can be found at http://www.koll-morgen.com/website/com/eng/products/drives/ac_servo_drives/s200_manuals.php.

12.4 Combination Fuses

Combination Fuse	Fuse Part Number	Fuse Holder Type 3P	Fuse Holder Part Number
DFJ6	M.3000.0190	30 Amp	M.1016.1046
DFJ15	M.3000.0191	30 Amp	M.1016.1046
DFJ20	M.3000.0192	30 Amp	M.1016.1046
DFJ25	M.3000.0193	30 Amp	M.1016.1046
DFJ30	M.3000.0194	30 Amp	M.1016.1046
DFJ35	M.3000.0195	60 Amp	M.1016.0612
DFJ40	M.3000.0196	60 Amp	M.1016.0612
DFJ45	M.3000.0197	60 Amp	M.1016.0612
DFJ60	M.3000.0198	60 Amp	M.1016.0612
DFJ80	M.3000.0199	100 Amp	M.1016.0613
DFJ100	M.3000.0200	100 Amp	M.1016.0613
DFJ110	M.3000.0201	200 Amp	M.1016.0614
DFJ125	M.3000.0202	200 Amp	M.1016.0614
DFJ150	M.3000.0203	200 Amp	M.1016.0614
DFJ175	M.3000.0204	200 Amp	M.1016.0614

12.5 Option Modules

12.5.1 Resolver Interface Option Module

Module	Model Number	Part Number	
Resolver Interface Option Module		M.1302.4523	

12.5.2 Drive Resident Digital MMC Control

Drive Resident Digital MMC Control	Model Number	Part Number
1 Axis Controller	Digital MMC-D1	M.3000.0164
2 Axis Controller	Digital MMC-D2	M.3000.0165
4 Axis Controller	Digital MMC-D4	M.3000.0166
8 Axis Controller	Digital MMC-D8	M.3000.0518
16 Axis Controller	Digital MMC-D16	M.3000.0167

12.6 Direct Connect Cables

12.6.1 Drive Programming Cable

Description	Drive Connector	Part Number
PiCPro Port to PC Connector (Analog)	P1	M.1302.8250
PiCPro Port to PC Connector (Digital)		M.1302.8284

12.6.2 Standalone MMC to MMC Smart Drive I/O Cable

Description	Drive Connector	Part Number
MMC A'n' to MMC Smart Drive I/O 0.5M		M.1302.5990
MMC A'n' to MMC Smart Drive I/O 1.0M	IO	M.1302.5991
MMC A'n' to MMC Smart Drive I/O 1.5M		M.1302.5992
MMC A'n' to MMC Smart Drive I/O 3.0M		M.1302.5993

12.7 Digital Link and Networking Cables

Description	Drive Connector	MMC-SD Control Connector	Part Number
CAT5e Patch Cord 0.3M			M.1302.8285
CAT5e Patch Cord 0.6M			M.1302.8286
CAT5e Patch Cord 1.0M			M.1302.8287
CAT5e Patch Cord 2.0M			M.1302.8288
CAT5e Patch Cord 3.0M	IN, OUT	C4	M.1302.8289
CAT5e Patch Cord 5.0M			M.1302.8300
CAT5e Patch Cord 10M			M.1302.8301
CAT5e Patch Cord 15M			M.1302.8302
CAT5e Patch Cord 30M			M.1302.8303

12.8 Connector Kits

Description	Part Number
CONN-FBK-12POS-16-28AWG	M.1302.0500
CONN-FBK-17POS-16-28AWG	M.1302.0510
CONN-PWR-BRK-8POS-14-16AWG-SIZE 1	M.1302.0479
CONN-PWR-BRK-8POS-12AWG-SIZE 1	M.1302.8755
CONN-PWR-BRK-8POS-12-14AWG-SIZE 1.5	M.1302.1998
CONN-PWR-BRK-8POS-8-10AWG-SIZE 1.5	M.1302.2354
CONN-PWR-BRK-8POS-6AWG-SIZE 3	M.1302.7492
CONN-PWR-BRK-8POS-4AWG-SIZE 3	M.1302.7493
CONN-PWR-FAN-6POS-16AWG	M.1302.6219
CONN-X100-X101	M.1302.7099
CONN-4TERM-MAINS	M.1302.7158
CONN-4TERM-MOTOR	M.1302.7159

12.9 Breakout Boards and Cables

12.9.1 Drive Mounted Breakout Boards

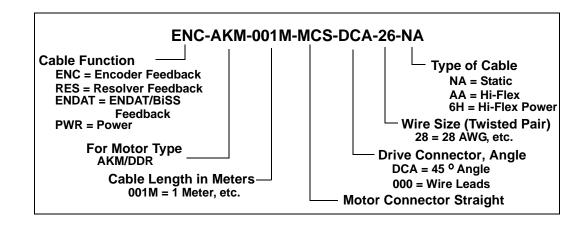
Description	Drive Connector	Part Number
BKOUT BD, F1/F2 MMC-SD, DR MT	F1, F2	M.1302.6970
BKOUT BD, I/O MMC-SD, DR MT	Ю	M.1302.6971
BKOUT BD, C5 MMC-SD, DR MT	C5	M.1302.8480

12.9.2 Panel Mounted Breakout Boards

Description	Drive Connector	MMC-SD Control Connector	Part Number
BKOUT BD, F1/F2 MMC-SD, PNL MT	F1, F2		M.1302.6972
BKOUT BD, DRIVE I/O MMC-SD, PNL MT	0		M.1302.6973
BKOUT BD, GEN I/O MMC-SD CONTROL, PNL MT		C5	M.1302.8253
BKOUT BD, BLOCK I/O MMC-SD CONTROL, PNL MT		C1	M.1016.2533
BKOUT BD, USER SERIAL MMC- SD CONTROL, PNL MT		C3	M.1016.2530

12.9.3 Breakout Board Kits

Description	Drive Connector	Part Number
KIT, BKOUT BD, F1/F2 MMC-SD 1.0M		M.1302.7005
KIT, BKOUT BD, F1/F2 MMC-SD 3.0M	F1, F2	M.1302.7006
KIT, BKOUT BD, F1/F2 MMC-SD 9.0M		M.1302.7007
KIT, BKOUT BD, F1/F2 MMC-SD 15.0M		M.1302.7008
KIT, BKOUT BD, I/O MMC-SD 1.0M	Ю	M.1302.7009
KIT, BKOUT BD, I/O MMC-SD 3.0M		M.1302.7030
KIT, BKOUT BD, I/O MMC-SD 9.0M		M.1302.7031


12.9.4 Breakout Board Cables

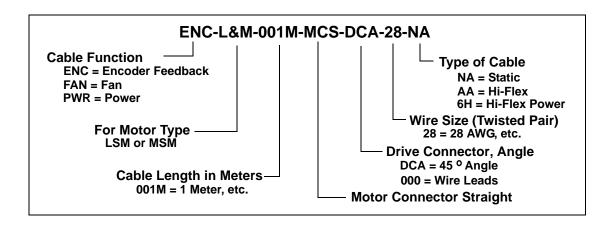
Description	Drive Connector	MMC-SD Control Connector	Part Number
CABLE, MMC-SD Feedback Port to Breakout Board, 1 Meter			M.1302.6976
CABLE, MMC-SD Feedback Port to Breakout Board, 3 Meter	F1, F2		M.1302.6977
CABLE, MMC-SD Feedback Port to Breakout Board, 9 Meter	11,12		M.1302.6979
CABLE, MMC-SD Feedback Port to Breakout Board, 15 Meter			M.1302.6980
CABLE, MMC-SD Drive I/O Port to Breakout Board, 1 Meter			M.1302.6982
CABLE, MMC-SD Drive I/O Port to Breakout Board, 3 Meter	Ю		M.1302.6984
CABLE, MMC-SD Drive I/O Port to Breakout Board, 9 Meter			M.1302.6985
CABLE, MMC Control General I/O Port to Breakout Board, 1 Meter			M.1302.8254
CABLE, MMC Control General I/O Port to Breakout Board, 3 Meter		C5	M.1302.8255
CABLE, MMC Control General I/O Port to Breakout Board, 9 Meter			M.1302.8256
CABLE, MMC Control User Serial Port to Breakout Board, 1 Foot			M.1016.2715
CABLE, MMC Control User Serial Port to Breakout Board, 2 Foot		C3	M.1016.2716
CABLE, MMC Control User Serial Port to Breakout Board, 3 Foot			M.1016.2717
CABLE, MMC Control Block I/O Port to Breakout Board, 1 Foot			M.1016.2543
CABLE, MMC Control Block I/O Port to Breakout Board, 2 Foot		C1	M.1016.2544
CABLE, MMC Control Block I/O Port to Breakout Board, 3 Foot			M.1016.2545

12.9.5 Flying Lead Cables

Description	Drive Connector	MMC-SD Control Connector	Part Number
CABLE, MMC-SD Drive Feedback Port to Flying Lead, 10 Feet	F1, F2		M.1016.2519
CABLE, MMC-SD Drive I/O Port to Flying Lead, 1 Meter			M.1302.7032
CABLE, MMC-SD Drive I/O Port to Flying Lead, 3 Meter			M.1302.7034
CABLE, MMC-SD Drive I/O Port to Flying Lead, 9 Meter	Ю		M.1302.7035
CABLE, MMC-SD Drive I/O Port to Flying Lead, 15 Meter			M.1302.7036
CABLE, MMC-SD Drive I/O Port to Flying Lead, 30 Meter			M.1302.7037
CABLE, MMC-SD Control General I/ O Port to Flying Lead, 1 Meter			M.1302.8257
CABLE, MMC-SD Control General I/ O Port to Flying Lead, 3 Meter			M.1302.8258
CABLE, MMC-SD Control General I/ O Port to Flying Lead, 9 Meter		C5	M.1302.8259
CABLE, MMC-SD Control General I/ O Port to Flying Lead, 15 Meter			M.1302.8290
CABLE, MMC-SD Control General I/ O Port to Flying Lead, 30 Meter			M.1302.8291
CABLE, MMC-SD Control User Serial Port to Flying Lead, 10 Feet		С3	M.1016.2565
CABLE, MMC-SD Control Block I/O Port to Flying Lead, 10 Feet		C1	M.1016.2568

12.10 Motor Cables (AKM/DDR Motors)

12.10.1 Feedback Cables (AKM/DDR Motors)


Feedback Cable	Part Number
Static Type	
ENC-AKM-001M-MCS-DCA-28-NA	M.1302.8590
ENC-AKM-003M-MCS-DCA-28-NA	M.1302.8447
ENC-AKM-006M-MCS-DCA-28-NA	M.1302.8591
ENC-AKM-009M-MCS-DCA-28-NA	M.1302.8542
ENC-AKM-015M-MCS-DCA-28-NA	M.1302.8594
ENC-AKM-030M-MCS-DCA-28-NA	M.1302.8595
RES-AKM-001M-MCS-DCA-28-NA	M.1302.8618
RES-AKM-003M-MCS-DCA-28-NA	M.1302.8439
RES-AKM-006M-MCS-DCA-28-NA	M.1302.8619
RES-AKM-009M-MCS-DCA-28-NA	M.1302.8620
RES-AKM-015M-MCS-DCA-28-NA	M.1302.8621
RES-AKM-030M-MCS-DCA-28-NA	M.1302.8622
ENDAT-AKM-001M-MCS-DCA-28-NA	M.1302.8605
ENDAT-AKM-003M-MCS-DCA-28-NA	M.1302.8437
ENDAT-AKM-006M-MCS-DCA-28-NA	M.1302.8606
ENDAT-AKM-009M-MCS-DCA-28-NA	M.1302.8607
ENDAT-AKM-015M-MCS-DCA-28-NA	M.1302.8608
ENDAT-AKM-030M-MCS-DCA-28-NA	M.1302.8609

Flexing Type (12 X O.D. Min Bend Radius)	
ENC-AKM-001M-MCS-DCA-28-AA	M.1302.8600
ENC-AKM-003M-MCS-DCA-28-AA	M.1302.8435
ENC-AKM-006M-MCS-DCA-28-AA	M.1302.8601
ENC-AKM-009M-MCS-DCA-28-AA	M.1302.8602
ENC-AKM-015M-MCS-DCA-28-NA	M.1302.8603
ENC-AKM-030M-MCS-DCA-28-NA	M.1302.8604
RES-AKM-001M-MCS-DCA-28-NA	M.1302.8630
RES-AKM-003M-MCS-DCA-28-NA	M.1302.8450
RES-AKM-006M-MCS-DCA-28-NA	M.1302.8631
RES-AKM-009M-MCS-DCA-28-NA	M.1302.8632
RES-AKM-015M-MCS-DCA-28-NA	M.1302.8633
RES-AKM-030M-MCS-DCA-28-NA	M.1302.8634
ENDAT-AKM-001M-MCS-DCA-28-NA	M.1302.8613
ENDAT-AKM-003M-MCS-DCA-28-NA	M.1302.8438
ENDAT-AKM-006M-MCS-DCA-28-NA	M.1302.8614
ENDAT-AKM-009M-MCS-DCA-28-NA	M.1302.8615
ENDAT-AKM-015M-MCS-DCA-28-NA	M.1302.8616
ENDAT-AKM-030M-MCS-DCA-28-NA	M.1302.8617

12.10.2 Motor Power Cables (AKM/DDR Motors)

Power Cable (Flexing Type, 12 X O.D. Min Bend Radius)	Part Number
PWR-AKM-001M-MCS-000-14-6H	M.1302.8585
PWR-AKM-003M-MCS-000-14-6H	M.1302.8549
PWR-AKM-006M-MCS-000-14-6H	M.1302.8586
PWR-AKM-009M-MCS-000-14-6H	M.1302.8554
PWR-AKM-015M-MCS-000-14-6H	M.1302.8588
PWR-AKM-030M-MCS-000-14-6H	M.1302.8589

12.11 Motor Cables (LSM/MSM Motors)

12.11.1 Feedback Cables (LSM/MSM Motors)

Feedback Cable	Part Number
Static Type	
ENC-L&M-001M-MCS-DCA-28-NA	M.1302.0944
ENC-L&M-003M-MCS-DCA-28-NA	M.1302.0945
ENC-L&M-009M-MCS-DCA-28-NA	M.1302.0946
ENC-L&M-015M-MCS-DCA-28-NA	M.1302.0947
ENC-L&M-030M-MCS-DCA-28-NA	M.1302.0948
Flexing Type (12 X O.D. Min Bend Radius)	
ENC-L&M-001M-MCS-DCA-28-AA	M.1302.5834
ENC-L&M-003M-MCS-DCA-28-AA	M.1302.5835
ENC-L&M-009M-MCS-DCA-28-AA	M.1302.5836
ENC-L&M-015M-MCS-DCA-28-AA	M.1302.5837
ENC-L&M-030M-MCS-DCA-28-AA	M.1302.5838

12.11.2 Power Cables for Blower Fan (LSM/MSM Motors)

Power Cable	Part Number
FAN-L&M-001M-MCS-000-16	M.1302.6310
FAN-L&M-003M-MCS-000-16	M.1302.6311
FAN-L&M-009M-MCS-000-16	M.1302.6312
FAN-L&M-015M-MCS-000-16	M.1302.6313
FAN-L&M-030M-MCS-000-16	M.1302.6314

12.11.3 Motor Power Cables (LSM/MSM Motors)

Power Cable (Flexing Type, 12 X O.D. Min Bend Radius)	Part Number
PWR-L&M-001M-MCS-000-16-6H	M.1302.1114
PWR-L&M-003M-MCS-000-16-6H	M.1302.1115
PWR-L&M-009M-MCS-000-16-6H	M.1302.1116
PWR-L&M-015M-MCS-000-16-6H	M.1302.1117
PWR-L&M-030M-MCS-000-16-6H	M.1302.1118
PWR-L&M-001M-MCS-000-14-6H	M.1302.1119
PWR-L&M-003M-MCS-000-14-6H	M.1302.1130
PWR-L&M-009-MCS-000-14-6H	M.1302.1131
PWR-L&M-015M-MCS-000-14-6H	M.1302.1132
PWR-L&M-030M-MCS-000-14-6H	M.1302.1133
PWR-L&M-001M-MCS-000-12-6H	M.1302.1134
PWR-L&M-003M-MCS-000-12-6H	M.1302.1135
PWR-L&M-009M-MCS-000-12-6H	M.1302.1136
PWR-L&M-015M-MCS-000-12-6H	M.1302.1137
PWR-L&M-030M-MCS-000-12-6H	M.1302.1139
PWR-L&M-001M-MCS-000-10-6H	M.1302.1140
PWR-L&M-003M-MCS-000-10-6H	M.1302.1142
PWR-L&M-009M-MCS-000-10-6H	M.1302.1143
PWR-L&M-015M-MCS-000-10-6H	M.1302.1144
PWR-L&M-030M-MCS-000-10-6H	M.1302.1145

PWR-L&M-001M-MCS-000-08-6H	M.1302.1146
PWR-L&M-003M-MCS-000-08-6H	M.1302.1147
PWR-L&M-009M-MCS-000-08-6H	M.1302.1148
PWR-L&M-015M-MCS-000-08-6H	M.1302.1149
PWR-L&M-030M-MCS-000-08-6H	M.1302.1150
PWR-L&M-001M-MCS-000-06-6H	M.3000.tbd
PWR-L&M-003M-MCS-000-06-6H	M.3000.tbd
PWR-L&M-009M-MCS-000-06-6H	M.3000.tbd
PWR-L&M-015M-MCS-000-06-6H	M.3000.tbd
PWR-L&M-030M-MCS-000-06-6H	M.3000.tbd
PWR-L&M-001M-MCS-000-04-6H	M.3000.tbd
PWR-L&M-003M-MCS-000-04-6H	M.3000.tbd
PWR-L&M-009M-MCS-000-04-6H	M.3000.tbd
PWR-L&M-015M-MCS-000-04-6H	M.3000.tbd
PWR-L&M-030M-MCS-000-04-6H	M.3000.tbd
PWR-L&M-001M-MCS-000-02-6H	M.3000.tbd
PWR-L&M-003M-MCS-000-02-6H	M.3000.tbd
PWR-L&M-009M-MCS-000-02-6H	M.3000.tbd
PWR-L&M-015M-MCS-000-02-6H	M.3000.tbd
PWR-L&M-030M-MCS-000-02-6H	M.3000.tbd

12.12 Optional External Devices

12.12.1 AC Line Filters

For Drive Model	AC Line Filter Description	Part Number
MMC-SD-0.5-230(-D) MMC-SD-1.0-230(-D)	6A, 250V, Single phase	M.1015.6922
MMC-SD-2.0-230(-D)	10A, 250V, Single phase,	M.1015.6917
MMC-SD-1.3-460(-D) MMC-SD-2.4-460(-D)	7A, 480V, Three phase	M.1302.5241
MMC-SD- 4.0-460(-D) MMC-SD-6.0-460(-D) MMC-SD- 8.0-460(-D)	16A, 480V, Three phase	M.1302.5244
MMC-SD-12.0-460(-D) MMC-SD-16.0-460(-D)	30A, 480V, Three phase	M.1302.5245
MMC-SD-24.0-460(-D)	42A, 480V, Three phase	M.1302.5246
MMC-SD-30.0-460-D MMC-SD-42.0-460-D	56A, 480V, Three phase	M.1302.5247
MMC-SD-51.0-460-D	75A, 480V, Three phase	M.1302.5248
MMC-SD-65.0-460-D	100A, 480V, Three phase	M.3000.0019

12.12.2 AC Line Reactors

Drive Model	Required Line Reactor (Amps)	Power Loss (Watts)	Induc- tance (mH)	Weight (Pounds)	Part Number
MMC-SD-12.0- 460 (-D)	25	52	1.2	14	M.1302.7373
MMC-SD-16.0- 460 (-D)	35	54	0.8	16	M.1302.7374
MMC-SD-24.0- 460 (-D)	45	62	0.7	28	M.1302.7375
MMC-SD-30.0- 460 -D	55	67	0.5	27	M.3000.0105
MMC-SD-42.0- 460 -D	80	86	0.4	51	M.3000.0106
MMC-SD-51.0- 460-D	100	84	0.3	51	M.3000.0107
MMC-SD-65.0- 460-D	130	180	0.2	57	M.3000.0108

12.12.3 External Shunt Resistor Kits

For Drive	Shunt Resistor Module	Part Number
MMC-SD-0.5-230(-D) MMC-SD-1.0-230(-D) MMC-SD-2.0-230(-D)	100Ω, 300W, 600V, Dynamic	M.1015.7046
MMC-SD-1.3-460(-D) MMC-SD-2.4-460(-D)	130Ω, 450W Cont. Power, 5.4kW Peak Power, 820V, 240 sec. Time Constant, 121 mm x 93 mm x 605 mm	M.1302.7048
MMC-SD-4.0-460(-D)	95Ω, 700W Cont. Power, 8kW Peak Power, 820V, 250 sec. Time Constant, 121 mm x 93 mm x 705 mm	M.1302.7049
MMC-SD-6.0-460(-D) MMC-SD-8.0-460(-D)	50Ω, 1400W Cont. Power, 17kW Peak Power, 850V, 250 sec. Time Constant, 130 mm x 182 mm x 710 mm	M.1302.7060
MMC-SD-12.0-460(-D) MMC-SD-16.0-460(-D)	25Ω, 2800 W Cont. Power, 32kW Peak Power, 850V, 60 sec. Time Constant, 71 mm x 430 mm x 550 mm	M.1302.7061
MMC-SD-24.0-460(-D) MMC-SD-30.0-460-D MMC-SD-42.0-460-D MMC-SD-51.0-460-D MMC-SD-65.0-460-D	18Ω, 3900W Cont. Power, 70kW Peak Power, 850V, 70 sec. Time Constant, 180 mm x 445 mm x 490 mm	M.1302.7063

12.13 Software

Description	Part Number
PiCPro Professional Edition	M.1300.7213
PiCPro MMC Limited Edition	M.1300.7214
PiCPro Monitor Edition	M.1300.7215

13 Declarations of Conformity

EC DECLARATION OF CONFORMITY

The undersigned, representing the supplier

G & L Motion Control Inc. 672 South Military Road Fond du Lac, Wisconsin 54936-1960

herewith declares that all **three-phase current synchronous motors**, **type LSM** are in conformity with the provisions of the following EC Directive when installed in accordance with the installation instructions contained in the product documentation:

Low Voltage Directive 73/23 EWG

Conformity of the specified product with the guidelines of this directive will be proved by the total compliance with the following harmonic European standards:

EN 60034-1: September 2000

Rotating Electrical Machines

+A11 May 2002

EN 60034-5: December 2001 EN 60034-9: June 1998

Signature	Robert & Kollmeyen
Full Name	Robert J. Kollmeyer
Position	Director of Engineering
Place	G & L Motion Control Inc.
Date	05-APR-05

EC DECLARATION OF CONFORMITY

The undersigned, representing the supplier

G & L Motion Control Inc. 672 South Military Road Fond du Lac, Wisconsin 54936-1960

herewith declares that all **three-phase current synchronous motors**, **type MSM** are in conformity with the provisions of the following EC Directive when installed in accordance with the installation instructions contained in the product documentation:

Low Voltage Directive 73/23 EWG

Conformity of the specified product with the guidelines of this directive will be proved by the total compliance with the following harmonic European standards:

EN 60034-1: November 1995

Rotating Electrical Machines

EN 60034-5: April 1998 EN 60034-9: May 1996

Signature	Robert V Kellin
Full Name	Robert J. Kollmeyer
Position	Director of Engineering
Place	G & L Motion Control Inc.
Date	05-APR-05

The undersigned, representing the supplier

G & L Motion Control Inc. 672 South Military Road Fond du Lac, Wisconsin 54936-1960

herewith declares that all PiC900TM/PiC90TM/PiC9TM/MMC and Block I/O modules, labeled with the CE mark, are in conformity with the provisions of the following EC Directives when installed in accordance with the installation instructions contained in the product documentation:

Low Voltage Directive 73/23/EEC as amended by 93/68/EEC EMC Directive 89/336/EEC as amended by 92/31/EEC and 93/68/EEC

Conformity of the specified product is based upon application of the following standards and/or technical specifications referenced below:

EN 50081-2:1993 EMC Generic Industrial Emissions EN 50082-2:1995 EMC Generic Industrial Immunity

EN 61131-2:1994/A11:1996 Low voltage requirements for programmable controllers EN61326:1997 Electrical Equipment for measurement, control and

Laboratory use - EMC requirements

Signature	Robert D Kallen
Full Name	Robert J. Kollmeyer
Position	Director of Engineering
Place	G & L Motion Control Inc.
Date	05-APR-05

EC DECLARATION OF CONFORMITY

The undersigned, representing the supplier

G & L Motion Control Inc. 672 South Military Road Fond du Lac, Wisconsin 54936-1960

herewith declares that all **servo drives and accessories** (see attached list of catalogue numbers) are in conformity with the provisions of the following EC Directive(s) when installed in accordance with the installation instructions contained in the product documentation:

Low Voltage Directive as amended by 93/68/EEC

EMC Directive as amended by 92/31/EEC and 93/68/EEC

and that the standards and/or technical specifications referenced below have been applied:

EN 60034-1:1998 + Rotating Electrical Machines
A1:1998 and A2:1999 Part 1: Rating and Performance

EN 60204-1:1997 Safety of machinery – Electrical equipment of machines

Part 1: Specifications for general requirements

EN 61800-3:1996 Adjustable Speed Electrical Power Drive Systems – EMC

Product Standard Including Specific Test Methods

Signature	Robert Y Kollmeyon
Full Name	Robert J. Kollmeyer
Position	Director of Engineering
Place	G & L Motion Control Inc.
Date	05-APR-05

EC DECLARATION OF CONFORMITY

The undersigned, representing the supplier

G & L Motion Control Inc. 672 South Military Road Fond du Lac, Wisconsin 54936-1960

herewith declares that all MMC Smart Drives (MMC-SD-XXX-XXX) and accessories, and all S200-DLS Drives, labeled with the CE mark, are in conformity with the provisions of the following EC Directive(s) when installed in accordance with the installation instructions contained in the product documentation:

73/23/EEC

Low Voltage Directive as amended by 93/68/EEC

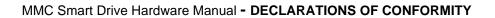
89/336/EEC

EMC Directive as amended by 92/31/EEC and 93/68/EEC

and that the standards and/or technical specifications referenced below have been applied:

EN 50178:1998

Electronic equipment for use in power installations


EN 61800-3:1996

Adjustable speed electrical power drive systems - EMC

/A11:2000

Product standard including specific test methods

Signature OSD Jumill		
Full Name	Peter Winkelmann	
Position	Business Unit Manager	
Place	G & L Motion Control Inc.	
Date /	\$ MAR \$9	

Appendix A - 460V MMC Smart Drive DC Bus Sharing

A.1 Introduction

This section discusses DC bus sharing among 2 or more 460V Smart Drives.

DC bus sharing accomplishes 4 things:

- It pools the capacitance of all of the drives.
- It lowers electricity cost.
- It allows multiple dries to share one shunt resistor.
- It allows the shunt energy to be shared among multiple shunt resistors.

Pooling the capacitance increases the Joule energy absorption capability to the sum of the drives connected (Table A-2 on page 264). This lowers energy cost slightly because energy that can be absorbed is not wasted in the shunt resistors. In some applications, this can eliminate the need for a shunt resistor altogether.

Many applications will have one drive motoring while the other is regenerating. This energy is transferred from one drive to the other through the DC bus rather than being dissipated in a shunt. This saves energy cost.

If it is desired to share one shunt resistor instead of using one per drive, the energy flows through the DC bus to the drive controlling the shunt resistor. Its internal circuitry will turn the shunt on when the bus voltage reaches an upper limit.

If it is desired to distribute the shunt load among multiple drives, each having a smaller resistor, then it is important to interconnect the "Shunt On" signals for all drives sharing the DC bus. This ensures that all of the shunt resistors will properly share the load. If this connection is not made, it is likely that only one shunt resistor will dissipate all of the shunt power, overheating it.

A.2 DC Bus Sharing with AC Power to All Drives

When sharing DC power among several drives with AC power supplying all of the drives (Figure A-1), all drives must be the same size (for example, all drives must be MMC-SD-4.0-460). When two drives are connected to a shared DC bus in this manner, the combined energy absorption of all drives is available.

3% line reactors are required for all sizes using this configuration to ensure rectifier balance. However, shunt resistors are optional (see below). Refer to Chapter 4 in this manual for information related to fusing, line reactors and shunts. Refer to Chapter 6 for connector information.

When more than one shunt is used with the MMC Smart Drives, it is important to tie the "Shunt On" circuits together so that all shunts get turned on at the same time. For example, in Figure A-1, if the shunt connected to Drive 1 turns on, the "Shunt On" signal will turn on the shunt for Drive 2. The second shunt resistor is optional as long as the "Shunt On" signal is connected as shown. The "Shunt On" signal acts as both an input and an output for each Drive.

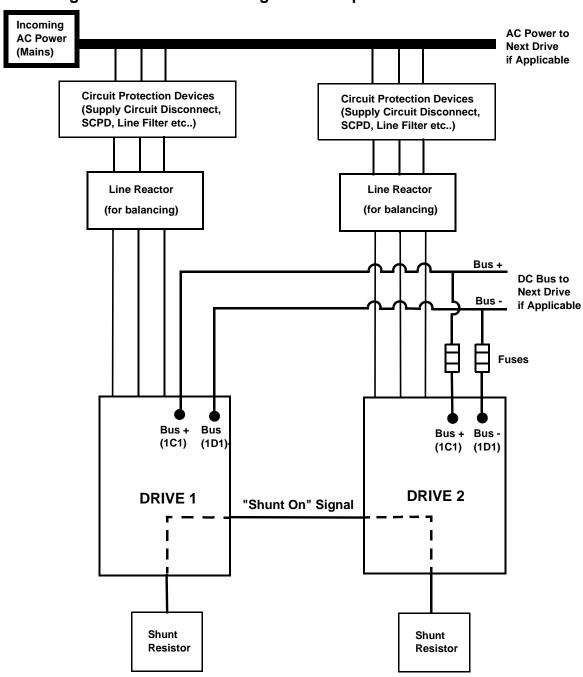


Figure A-1: DC Bus Sharing with AC Input Power to All Drives

A.3 DC Bus Sharing with AC Power to One Drive

When sharing DC power among several drives with AC power supplying just one of the drives (Figure A-2), all drives need not be the same size (for example, one drive may be a MMC-SD-8.0-460, and another drive may be a MMC-SD-1.3-

460). When two or more drives are connected to a shared DC bus in this manner, there are two limits that must be considered:

- The drives not powered by AC must not consume more power than the "Bus power available for linking to other drives" as listed in Table A-1.
- The total power consumed by all drives cannot exceed the greater of "Bus power available for linking to other drives" and the kW rating of the AC powered drive as listed in Table A-1.

For example, assume that the AC powered drive is a MMC-SD-24.0-460 and consumes 14kW, and supplies DC power to two more drives that consume 4kW each (8kW total). From Table A-1, the total DC power available to the non-AC powered drives is 10kW, meeting the first criteria. The total power consumed is 22kW, and since the AC powered drive is a 24kW drive, meets the second criteria.

The continuous current available from the drive would be reduced by the same percentage as the kW. In the example given, the available kW was reduced from 24 to 16kW. Therefore 16/24 = 67%. The drive's continuous current is reduced by 1/3 from 45 Amps to 30 Amps.

If peak current is to be used at the same time on more than one drive, the total peak current used by all drives must not exceed that of the main drive. If both the main and auxiliary drives will accelerate at the same time, the peak current used by auxiliary drives is subtracted from the available peak current of the main drive. Connection of a shunt to the main drive is optional depending on the results found in sizing the system. The system will have the combined DC Bus capacitance of all drives connected.

Table A-2 on page 264 shows the MMC Smart Drive bus capacitance and energy absorption capability.

:

Table A-1: kW Ratings for Powered Drive			
Drive Model	Bus power available for linking to other drives	Continuous Current (Amps)	Peak Current (Amps)
MMC-SD-1.3-460	2.0kW	3	6
MMC-SD-2.4-460	2.0kW	5.5	11
MMC-SD-4.0-460	5.0kW	9	18
MMC-SD-6.0-460	5.0kW	13.5	27
MMC-SD-8.0-460	5.0kW	18	36
MMC-SD-12.0-460	10.0kW	27.5	55
MMC-SD-16.0-460	10.0kW	36.5	73
MMC-SD-24.0-460	10.0kW	55	110
MMC-SD-30.0-460	10.0kW	69.3	110
MMC-SD-42.0-460	36.0kW	93.3	147
MMC-SD-51.0-460	45.0kW	117.4	184
MMC-SD-65.0-460	58.0kW	152.7	209

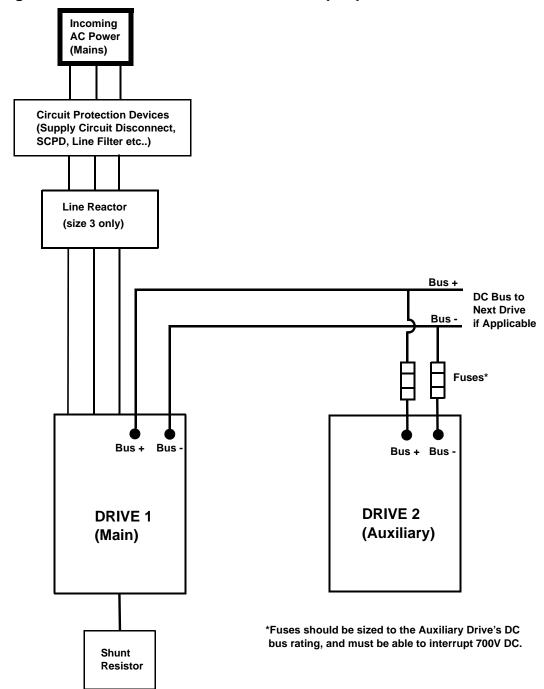


Figure A-2: Two or more drives with AC input power to one drive

Table A-2: Drive Bus Capacitance and energy Absorption Capability			
MMC Smart Drive Bus Capaci- tance (μFarad)	Energy Absorption at 230V Line Input and 230V Motor (Joules)	Energy Absorption at 230V Line Input and 460V Motor (Joules)	Energy Absorption at 460V Line Input and 460V Motor (Joules)
110	3	28	10
240	7	60	22
470	13	118	44
470	13	118	44
705	19	177	66
820	22	206	76
1230	33	309	114
1640	45	412	152
2000	55	502	185
1880	50.4	472	173
2350	63.1	591	218
3055	82	768	284
1410	38		
1880	51		
1880	51		
	MMC Smart Drive Bus Capacitance (μFarad) 110 240 470 470 705 820 1230 1640 2000 1880 2350 3055	MMC Smart Drive Bus Capacitance (μFarad) Energy Absorption at 230V Line Input and 230V Motor (Joules) 110 3 240 7 470 13 470 13 705 19 820 22 1230 33 1640 45 2000 55 1880 50.4 2350 63.1 3055 82 1410 38 1880 51	MMC Smart Drive Bus Capacitance (μFarad) Energy Absorption at 230V Line Input and 230V Motor (Joules) Energy Absorption at 230V Line Input and 460V Motor (Joules) 110 3 28 240 7 60 470 13 118 470 13 118 705 19 177 820 22 206 1230 33 309 1640 45 412 2000 55 502 1880 50.4 472 2350 63.1 591 3055 82 768 1410 38 1880 1880 51

a. add suffix (-D) for Digital Drive

b. add suffix (-D) for Digital Drives and (-DN) for Digital Narrow Drives

Index size 3 122 size 4 127 part numbers 234 **Numerics** PiCPro port (analog drive) 65 PiCPro port (digital drive) 63 230V Smart Drive shunt/DC bus connector 24VDC IN/Brake connector 96 size 1 111 address switches 68, 69 specifications 132 dimensions 103 drive I/O connector 89 Α F1/F2 feedback connectors 71 LEDs 63 AC line filters motor connector 98 part numbers 251 PiCPro port (analog drive) 65 AC line reactors PiCPro port (digital drive) 63 part numbers 251 specifications 99 AC power connector 24V power connector 460V Smart Drive 460V Smart Drive size 1 112 size 1 113 size 2 116 size 2 118 size 3 121 size 3 123 size 4 126 size 4 128 address switches 24VDC IN/Brake connector 230V Smart Drive 68, 69 230V Smart Drive 96 460V Smart Drive 68, 69 460V Smart Drive S200-DLS Drive 153 24V power connector AKM/DDR motor cables size 1 113 part numbers 244 size 2 118 application size 3 123 wiring 25 size 4 128 Auxiliary Feedback Port AC power connector S200-DLS Drive 157 size 1 112 В size 2 116 size 3 121 block I/O port size 4 126 Drive Resident MMC Control 209 address switches 68, 69 bonding connectors mounting 20 size 1 109 breakout boards & cables size 2 114 part numbers 241 size 3 119 C size 4 124 dimensions 143 cables drive connection layout 131 pin assignments drive I/O connector 89 LSM and MSM motors 174 F1/F2 feedback connectors 71 CE fan connector filter requirements 24 size 4 130 combination fuse motor brake connector part numbers 237 size 1 114 conformity size 2 119 european directives 18 size 3 124 UL and cUL standards 18 size 4 129 connectina motor connector Drive Resident MMC Control 205 size 1 112 connections size 2 117

Drive Resident MMC Control 209	DC output operation 226
connector kits	diagnostics 206
part numbers 240	error codes 208
connectors	ethernet port 219
460V Smart Drive	front view 202
size 1 109	general I/O port 221
size 2 114	overview 201
size 3 119	part numbers 238
size 4 124	PiCPro port 209
contents of the manual 9	power LED 206
control cabinet	run-time diagnostics 208
requirements 21	scan LED 206
roganomento 21	setup and maintenance 205
D	specifications 230
DC input aparation	starting an operation 205
DC input operation	startup diagnostic LED 207
Drive Resident MMC Control 228	system wiring guidelines 204
DC output operation	troubleshooting 206
Drive Resident MMC Control 226	user port 213
diagnostic	user port 213
error codes 185, 192	E
Diagnostic Indicator	
S200-DLS Drive 153	electrical service & maintenance safety 14
diagnostics	EMI (ElectroMagnetic Interference)
Drive Resident MMC Control 206	bonding 20
power on 184	error codes
runtime 185	diagnostic 185, 192
Digital Link	drive fault 186, 192
LEDs 153	Drive Resident MMC Control 208
digital link cables	ethernet port
part numbers 239	Drive Resident MMC Control 219
digital link option card	F
S200-DLS Drive 153	Г
Digital Link Ports	F1/F2 feedback connectors
S200-DLS Drive 155	230V Smart Drive 71
dimensions	460V Smart Drive 71
230V Smart Drive 103	fan connector
460V Smart Drive 143	460V Smart Drive
cabinet clearance 19	size 4 130
motor cable 31	faults
shunts 50	diagnostic 185, 192
distribution	filter, AC power 24
power 28	front view
drive connection layout	Drive Resident MMC Control 202
460V Smart Drive 131	Dive Resident Willo Gonto 202
drive I/O connector	G
230V Smart Drive 89	
460V Smart Drive 89	general I/O port
Drive I/O Port details	Drive Resident MMC Control 221
S200-DLS Drive 164	grounding
Drive Resident MMC Control	CE single phase 230V drive system 24
block I/O port 209	multiple drives 25
connecting 205	protective earth 12
connections 209	system 22
DC input operation 228	

Н	size 4 127
handling the MMC Smart Drive 17	mounting 21
heat	bonding 20
controlling 19	N
I	noise
I/O Power Port	see bonding 20
S200-DLS Drive 164	0
inspection	•
safety 13	operation
installation 18	safety 14
installing 17	overview
resolver option module 197	Drive Resident MMC Control 201
isolation transformers	Р
230V formula 48	•
460V formula 48	part numbers
	230V Smart Drive 233
L	460V Smart Drive 234
LEDs	AC line filters 251
230V Smart Drive 63	AC line reactors 251
Digital Link on S200-DLS Drive 153	AKM/DDR motor cables 244
error codes 185, 192	breakout boards & cables 241
S200-DLS drive option card 153	combination fuse 237
line filters	connector kits 240
block diagram for 3-phase 54	digital link cables 239 drive connect cables 239
CE compliance 53	Drive Resident MMC Control 238
connection diagram for 3-phase 54	LSM/MSM motor cables 248
technical data	optional external devices 251
230V 56	Resolver option module 238
460V 57	resolver option modules 238
LSM/MSM motor cables	S200-DLS Drive 236
part numbers 248	PicPro port
M	Drive Resident MMC Control 209
	PiCPro port (analog drive)
maintenance 183	230V Smart Drive 65
manual cleaning procedure 15	460V Smart Drive 65
MMC Control	PiCPro port (digital drive)
see Drive Resident MMC Control 201 MMC Smart Drive	230V Smart Drive 63
introduction 9	460V Smart Drive 63
power 29	power
motor brake connector	distribution in MMC 28
460V Smart Drive	MMC Smart Drive 29
size 1 114	power LED
size 2 119	Drive Resident MMC Control 206
size 3 124	procedure
size 4 129	manual cleaning 15
motor connector	protective earth
230V Smart Drive 98	grounding 12
460V Smart Drive	R
size 1 112	Paguiromento
size 2 117	Requirements Transformer 35
size 3 122	Hansionniel 33

resolver option module	460V Smart Drive 132
installing 197	Drive Resident MMC Control 230
part numbers 238	optional resolver module 200
theory of operation 197	S200-DLS Drive 169
resolver option modules	starting an operation
part numbers 238	Drive Resident MMC Control 205
run-time diagnostics	startup diagnostic LED
Drive Resident MMC Control 208	Drive Resident MMC Control 207
0	storage
S	before installation 17
S200-DLS Drive	storing the drive 17
address switches 153	system mounting requirements
Auxiliary Feedback Port 157	ventilation 18
Diagnostic Indicator 153	system wiring guidelines
Digital Link Option Card 153	Drive Resident MMC Control 204
Digital Link Ports 155	_
Drive I/O Port details 164	Т
I/O Power Port details 164	technical support contacts 10
introduction 151	theory of operation
LEDs 153	resolver option module 197
part numbers 236	Transformer
specifications 169	Size 35
safety	troubleshooting
after shutdown 13	drive error codes 186, 192
cleaning 15	Drive Resident MMC Control 206
electrical service & maintenance 14	general 184
inspection 13	hardware wiring 184
operating safely 14	
operation 14	U
signs 12	Unpacking 17
system 11	user port
warning labels 12	Drive Resident MMC Control 213
Sales and Service 270	
scan LED	V
Drive Resident MMC Control 206	ventilation 18
Service 270	ventuation to
setup and maintenance	W
Drive Resident MMC Control 205	and a lab at
shields 26	warning label
shunt/DC bus connector	danger, warning, caution 13
460V Smart Drive	hazard 12
size 1 111	Web Address 270
shunts	wiring
choosing 48	application 25
dimensions 50	connecting shunt modules 179
signs	connections for 3-phase line filter 54
safety 12	EMC compliant 25
single point ground (SPG)	interface cables 30
checklist 22	preparing motor connection wires 31
software	routing high/low voltage cables 30
required 10	terminating 230V motor power cable 32
specifications	terminating 460V power cable 33
230V MMC Smart Drive 99	

Sales and Service

We are committed to quality customer service. In order to serve in the most effective way, please contact your local sales representative for assistance.

If you are unaware of your local sales representative, please contact us.

North America

Kollmorgen Customer Support North America

E-mail: glmotion.support@kollmorgen.com

Phone: In the United States, telephone (800) 558-4808

Outside the United States, telephone (920) 921-7100

Fax: (920) 906-7669

Web site: www.glcontrols.com

Europe

Kollmorgen Customer Support Europe

E-mail: glmotion.support@kollmorgen.com

Phone: +44 (0)1525 243-243

Fax: +44 (0)1525 243-244

Web site: www.glcontrols.com

KOLLMORGEN