
PiCPro™

Function/Function Block Reference Guide

Version 17.0
G & L Motion Control Inc.

NOTE

Progress is an on going commitment at G & L Motion Control Inc. We continually strive to offer the
most advanced products in the industry; therefore, information in this document is subject to change
without notice. The illustrations and specifications are not binding in detail. G & L Motion Control
Inc. shall not be liable for any technical or editorial omissions occurring in this document, nor for any
consequential or incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any G & L Motion Control Inc. product until the use of such product is
completely understood. It is the responsibility of the user to make certain proper operation practices
are understood. G & L Motion Control Inc. products should be used only by qualified personnel and
for the express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service
Department, G & L Motion Control Inc., 672 South Military Road, P.O. Box 1960, Fond du Lac, WI
54936-1960. G & L Motion Control Inc. can be reached by telephone at (920) 921-7100 or (800) 558-
4808 in the United States or by e-mail at glmotion.support@danahermotion.com.

Release 200840

Catalog No. (Order No.) M.1300.7591

Printed Version Part Number M.3000.0687

Electronic Version Part Number M.3000.0686

© 1995-2008 G & L Motion Control Inc.
IBM is a registered trademark of International Business Machines Corp.
Microsoft® and MS-DOS® are registered trademarks of Microsoft Corporation.
ARCNET® is a registered trademanrk of Datapoint
PiC900, PiCPro, MMC, PiCServoPro, PiCTune, PiCProfile, LDOMerge, PiCMicroTerm, and PiC Programming Pendant are
registered trademarks of G & L Motion Control Inc.

Table of Contents:
Function/Function Block

Reference Guide

CHAPTER 1-
PiCPro Function/Blocks Overview.. 1-1

Introduction.. 1-1

Arithmetic Category ... 1-6

ARITH group ... 1-6
DATETIME group .. 1-7
TRIG group ... 1-8

Binary Category .. 1-9

Counters Category .. 1-10

Datatype Category .. 1-11

BOOL2BYT group ... 1-11
BYTECONV group ... 1-11
DINTCONV group ... 1-12
DWORDCNV group ... 1-12
D_TCONV group ... 1-13
INTCONV group .. 1-13
LINTCONV group .. 1-14
LREALCNV group ... 1-14
LWORDCNV group ... 1-14
NUM2STR group ... 1-15
REALCONV group .. 1-15
SINTCONV group .. 1-15
SIZEOF group ... 1-15
STRCONV group ... 1-16
UDINTCNV group ... 1-16
UINTCONV group ... 1-16
ULINTCNV group .. 1-17
USINTCNV group... 1-17
WORDCONV group ... 1-18

Evaluate Category .. 1-18

Fbinter Category.. 1-20

Filter Category ... 1-21

I/O Category ... 1-22

ANLGIN group ... 1-22
ANLGOUT group.. 1-22
BAT_OK? group.. 1-23
TOC-1

BIO_PERF group... 1-23
COMM group ... 1-24
JKTHERM group... 1-25
NETWORK group .. 1-26
PID group .. 1-27
READFDBK group ... 1-27
RTDTEMP group .. 1-27
SOCKETS group ... 1-28
STEPPER group ... 1-28

Motion Category ... 1-29

DATA group ... 1-30
ERRORS group ... 1-32
INIT group .. 1-34
MOVE group .. 1-35
MOVE_SUP group ... 1-36
QUE group .. 1-37
RATIOMOV group.. 1-38
REF group ... 1-39
SERC_SLV group ... 1-40
SERC_SYS group ... 1-41

String Category .. 1-42

PID Category ... 1-43

Timers Category ... 1-43

Xclock Category .. 1-43

CHAPTER 2-
Function/Block Descriptions ... 2-1

ABRTALL ... 2-2
ABRTMOVE ... 2-2
ABS.. 2-3
ACC_DEC ... 2-4
ACC_JERK.. 2-5
ACOS... 2-9
ADD... 2-9
AND... 2-10
ANLGINIT .. 2-11
ANLG_OUT .. 2-13
ARTDCHIT ... 2-17
ARTDCHRD ... 2-19
ARTDMDIT .. 2-21
ASIN .. 2-22
ASSIGN ... 2-23
ATAN .. 2-25
ATMPCHIT ... 2-26
ATMPCHRD ... 2-28
TOC-2

ATMPMDIT .. 2-30
A_DT_T... 2-31
A_IN_MMC... 2-32
A_INCHIT ... 2-33
A_INCHRD ... 2-36
A_INMDIT .. 2-40
A_TOD_T.. 2-41
BAT_OK?.. 2-42
BIO_PERF ... 2-43
BOOL2BYT... 2-46
BTMPCHIT ... 2-47
BTMPCHRD ... 2-48
BTMPMGR ... 2-50
BYT2BOOL... 2-51
BYTE2DW .. 2-52
BYTE2LW... 2-52
BYTE2SI ... 2-53
BYTE2USI... 2-53
BYTE2WO .. 2-54
CAM_OUT .. 2-55
CAPTINIT ... 2-60
CAPTSTAT ... 2-67
CLOCK.. 2-68
CLOSE... 2-69
CLOSLOOP... 2-70
CLSLOOP?.. 2-71
CONCAT ... 2-72
CONFIG... 2-73
COORD2RL .. 2-75
COS.. 2-79
CSTOPDEC ... 2-79
CTD ... 2-80
CTU ... 2-81
CTUD... 2-82
C_ERRORS ... 2-83
C_RESET... 2-85
C_STOP ... 2-85
C_STOP? ... 2-86
DATE2STR ... 2-87
DELETE .. 2-88
DELFIL.. 2-89
DINT2DW ... 2-90
DINT2INT ... 2-90
DINT2LI .. 2-91
DINT2RE... 2-91
DINT2SI .. 2-92
TOC-3

DINT2UDI... 2-92
DIRECT ... 2-93
DISTANCE.. 2-95
DIV .. 2-96
DLS_INIT.. 2-97
DLS_RECV ... 2-99
DLS_SEND ... 2-100
DLS_STAT.. 2-101
DPOSMODE ... 2-102
DRSETFLT.. 2-103
DSTRTSRV ... 2-104
DT2DATE ... 2-105
DT2STR... 2-105
DT2TOD.. 2-106
DTORQCMD... 2-107
DVELCMD.. 2-108
DWORD2BYT .. 2-109
DWOR2DI ... 2-110
DWOR2LW ... 2-110
DWOR2RE .. 2-111
DWOR2UDI .. 2-111
DWOR2WO... 2-112
D_TOD2DT ... 2-112
EQ .. 2-113
EXIST? .. 2-114
EXP.. 2-115
E_ERRORS ... 2-116
E_RESET... 2-118
E_STOP ... 2-118
E_STOP? ... 2-119
FAST_QUE ... 2-120
FAST_REF .. 2-123
FB_CLS ... 2-128
FB_OPN... 2-129
FB_RCV .. 2-130
FB_SND... 2-131
FB_STA ... 2-132
FIND .. 2-135
FRESPACE.. 2-136
FU2LU ... 2-137
GE .. 2-138
GETDAY ... 2-139
GR_END.. 2-140
GT .. 2-141
HOLD .. 2-141
HOLD_END .. 2-142
TOC-4

INSERT ... 2-143
INT2DINT ... 2-144
INT2LINT.. 2-144
INT2SINT.. 2-145
INT2UINT ... 2-145
INT2WORD... 2-146
IN_POS? .. 2-146
IO_CFG ... 2-147
IPACCEPT... 2-151
IPCLOSE ... 2-152
IPCONN... 2-153
IPHOSTID ... 2-154
IPIP2NAM ... 2-155
IPLISTEN .. 2-156
IPNAM2IP ... 2-157
IPREAD ... 2-158
IPRECV ... 2-159
IPSEND ... 2-161
IPSOCK ... 2-162
IPSTAT.. 2-163
IPWRITE ... 2-164

Overview for Using the Ethernet -TCP/IP Function Blocks 2-165
Ethernet-TCP/IP Errors.. 2-167

LAD_REF.. 2-170
LE... 2-173
LEFT.. 2-174
LEN.. 2-175
LIMIT .. 2-176
LINT2DI .. 2-177
LINT2INT.. 2-177
LINT2LR ... 2-178
LINT2LW .. 2-178
LINT2SI... 2-179
LINT2ULI.. 2-179
LN .. 2-180
LOG ... 2-180
LREA2LI ... 2-181
LREA2LW... 2-181
LREA2RE.. 2-182
LREA2ULI .. 2-182
LT... 2-183
LU2FU ... 2-184
LWOR2BYT.. 2-184
LWOR2DW ... 2-185
LWOR2LI.. 2-185
LWOR2LR... 2-186
TOC-5

LWOR2ULI ... 2-186
LWOR2WO ... 2-187
LWR_CASE .. 2-187
MAX .. 2-188
MEASURE .. 2-188
MID.. 2-189
MIN.. 2-190
MOD .. 2-190
MOVE.. 2-191
MUL... 2-192
MUX .. 2-193
NE .. 2-194
NEG ... 2-194
NETCLS .. 2-195
NETFRE .. 2-195
NETMON .. 2-196
NETOPN.. 2-197
NETRCV ... 2-199
NETSND.. 2-201
NETSTA .. 2-203
NEWRATIO .. 2-204
NEW_RATE.. 2-206
NOT ... 2-207
NO_OFFST.. 2-208
NUM2STR... 2-210
OK_ERROR .. 2-211
OPEN ... 2-212
OPENLOOP... 2-214
OR.. 2-215
PART_CLR ... 2-216
PART_REF.. 2-217
PID ... 2-218
PID2 ... 2-227
PLS... 2-232
PLS_EDIT ... 2-236
POSITION ... 2-237
P_ERRORS.. 2-238
P_RESET ... 2-241
PWDTY ... 2-242
Q_AVAIL? .. 2-243
Q_NUMBER ... 2-244
RAMP .. 2-245
RATIOCAM .. 2-246
RATIOSCL.. 2-257
RATIOSLP .. 2-261
RATIOSYN ... 2-273
TOC-6

RATIO_GR.. 2-283
RATIO_RL .. 2-286
READ... 2-295
READFDBK.. 2-297
READ_SV ... 2-309
READ_SVF ... 2-351
REAL2DI... 2-352
REAL2DW .. 2-352
REAL2LR.. 2-353
REAL2UDI.. 2-353
REF_DNE? .. 2-354
REF_END.. 2-354
REGIST ... 2-355
RENAME... 2-364
REPLACE.. 2-366
REP_END.. 2-367
RESMODE?... 2-368
RESUME ... 2-369
RIGHT ... 2-371
ROL ... 2-372
ROR ... 2-373
R_PERCEN ... 2-374
SC_INIT... 2-375
SCA_ACKR... 2-376
SCA_CLOS ... 2-377
SCA_CTRL ... 2-378
SCA_ERST.. 2-381
SCA_PBIT ... 2-382
SCA_RCYC... 2-384
SCA_RECV ... 2-386
SCA_REF .. 2-388
SCA_RFIT ... 2-390
SCA_SEND ... 2-393
SCA_STAT.. 2-395
SCA_WCYC.. 2-396
SCR_CONT ... 2-397
SCR_ERR .. 2-398
SCR_PHAS.. 2-401
SCS_ACKR ... 2-402
SCS_CTRL .. 2-403
SCS_RECV.. 2-405
SCS_REF ... 2-407
SCS_SEND.. 2-409
SCS_STAT .. 2-411
SCURVE.. 2-416
SEEK ... 2-421
TOC-7

SEL .. 2-423
SERVOCLK .. 2-424
SHL.. 2-425
SHR.. 2-426
SIN ... 2-427
SINT2BYT... 2-427
SINT2DI .. 2-428
SINT2INT.. 2-428
SINT2LI... 2-429
SINT2USI .. 2-429
SIZEOF.. 2-430
SQRT ... 2-432
STATUS .. 2-433
STATUSSV ... 2-434
STEPCNTL.. 2-436
STEPINIT .. 2-440
STEPSTAT .. 2-442
STEP_CMD ... 2-445
STEP_POS... 2-456
STR2D_T... 2-457
STR2NUM... 2-458
STR2USI.. 2-458
STRTSERV ... 2-459
SUB.. 2-462
SYN_END ... 2-463
S_DT_DT... 2-464
S_DT_T ... 2-465
S_D_D ... 2-466
S_TOD_T... 2-467
S_TOD_TO.. 2-468
TAN ... 2-469
TAUFFAC ... 2-469
TAUFILT... 2-470
TIM2UDIN .. 2-470
TIME2STR .. 2-471
TME_ERR? ... 2-472
TOD2STR.. 2-472
TOF.. 2-473
TON ... 2-474
TP... 2-475
TUNEREAD.. 2-476
TUNEWRIT... 2-477
UDIN2DI ... 2-480
UDIN2DW... 2-480
UDIN2RE .. 2-481
UDIN2TIM .. 2-481
TOC-8

UDIN2UI ... 2-482
UDIN2ULI... 2-482
UDIN2USI ... 2-483
UINT2INT ... 2-483
UINT2UDI... 2-484
UINT2ULI ... 2-484
UINT2USI ... 2-485
UINT2WO ... 2-485
ULIN2LI .. 2-486
ULIN2LR... 2-486
ULIN2LW.. 2-487
ULIN2UDI... 2-487
ULIN2UI.. 2-488
ULIN2USI ... 2-488
UPR_CASE ... 2-489
USIN2BYT .. 2-489
USIN2SI... 2-490
USIN2STR... 2-490
USIN2UDI ... 2-491
USIN2UI.. 2-491
USIN2ULI ... 2-492
VEL_END ... 2-492
VEL_STRT.. 2-493
VFASTIN... 2-494
WORD2BYT ... 2-495
WORD2DW... 2-495
WORD2INT... 2-496
WORD2LW ... 2-496
WORD2UI ... 2-497
WRITE... 2-498
WRITE_SV.. 2-499
WRIT_SVF.. 2-500
XOR ... 2-501

A.1 --Operator Interface ASFB... A.1 -1

OI_COMM... A.1 -2
OI_SER.. A.1 -4

B.1 --OPC Server ASFB.. B.1 -1

OPC_ENET ... B.1 -2
OPC_10.. B.1 -6

C.1 --Temperature Function Errors... C.1 - 1

-INDEX ... IND-1
TOC-9

NOTES
TOC-10

CHAPTER 1
PiCPro Function/Blocks Overview
Introduction

Function and function blocks are the programming tools used to perform opera-
tions on data in PiCPro ladder diagram programs. They are similar to the subrou-
tines of other programming languages.

The difference between functions and function blocks is that a function completes
an operation in one scan whereas a function block may take more than one scan to
complete an operation. Therefore, function blocks must have internal storage for
their variables from scan to scan until their operation is complete. You must
declare and assign a name to function blocks in the software declaration table so
that PiCPro can reserve memory for them.

Chapter 1 of this reference manual presents a summary of all the standard func-
tions and function blocks available within PiCPro. This summary will familiarize
you with what is available for programming.

Chapter 2 presents descriptions of all the function/function blocks in alphabetical
order.

NOTE

You must have a math coprocessor (NPX) installed in the control
to perform any functions involving logarithmic, exponential,
trigonometric, and floating point mathematical operations. The
PiC 904x series, PiC94x series, MMC, and MMC for PC CPUs
already have an integrated math coprocessor. To determine if
your control has a math coprocessor, start PiCPro and select
Online | Status. The CPU line contains an “NPX” if you have a
math coprocessor.
Chapter 1 Function/Function Block Description 1-1

All functions and function blocks for PiCPro are stored in libraries according to
the category of operations they perform.The list of the libraries appears under the
Ladder/Functions menu.

When you access a library one of two things happens.

…ÕÕÕÕÕÕÕÕÕÕª
∫ Arith ∫
∫ Binary ∫
∫ Counters ∫
∫ Datatype ∫
∫ Evaluate ∫
∫ Fbinter ∫
∫ Filter ∫
∫ Io ∫
∫ Motion ∫
∫ PID ∫
∫ String ∫
∫ Timers ∫
∫ Xclock ∫
»ÕÕÕÕÕÕÕÕÕÕº

NOTE

When you use the UDFB or TASK feature to create your own
function blocks, another category appears called USER as shown
below. This is not a library, but selecting it will bring up a list of
any library you have created to store UDFBs or TASKs.

…ÕÕÕÕÕÕÕÕÕÕª
∫ Arith ∫
∫ Binary ∫
∫ Counters ∫
∫ Datatype ∫
∫ Evaluate ∫
∫ Fbinter ∫
∫ Filter ∫
∫ Io ∫
∫ Motion ∫
∫ PID ∫
∫ String ∫
∫ Timers ∫
∫ USER ∫
∫ Xclock ∫
»ÕÕÕÕÕÕÕÕÕÕº

When you create a Servo or SERCOS setup file, you create a
library to store the setup function in. This library also shows up
in the above list.
1-2 Chapter 1 Function/Function Block Description

or

1. You are given a list of all the function/blocks available in that library. You select
the function/block you want to insert into a network of your module from this list.

2. You are given a list of groups into which all the function/blocks have been divided.
You select the group that holds the function/block you want. This brings up the list
of function/blocks in that group and now you can select the one you want to insert
into the network of your module.
Chapter 1 Function/Function Block Description 1-3

The table below shows all the lists that appear when a library is selected. Whether
the list represents groups or function/blocks is indicated.

Table 1-1. Library Lists

When you create SERCOS and/or Servo Setup files, a new library named by you is
added alphabetically to the list of libraries.

Arith
Groups

Binary
Functions

Counters
Function
blocks

Datatype
Groups

Evaluate
Functions

Fbinter

Function
Blocks

⁄ƒƒƒƒƒƒƒƒø
≥ARITH ≥
≥DATETIME≥
≥TRIG ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥AND ≥
≥NOT ≥
≥OR ≥
≥ROL ≥
≥ROR ≥
≥SHL ≥
≥SHR ≥
≥XOR ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥CTD ≥
≥CTU ≥
≥CTUD ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥BOOL2BYT≥
≥BYTECONV≥
≥DINTCONV≥
≥DWORDCNV≥
≥D_TCONV ≥
≥INTCONV ≥
≥LINTCONV≥
≥LREALCNV≥
≥LWORDCNV≥
≥NUM2STR ≥
≥REALCONV≥
≥SINTCONV≥
≥SIZEOF ≥
≥STRCONV ≥
≥UDINTCNV≥
≥UINTCONV≥
≥ULINTCNV≥
≥USINTCNV≥
≥WORDCONV≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥EQ ≥
≥GE ≥
≥GT ≥
≥LE ≥
≥LT ≥
≥NE ≥
≥OK_ERROR≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥FB_CLS ≥
≥FB_OPN ≥
≥FB_RCV ≥
≥FB_SND ≥
≥FB_STA ≥
¿ƒƒƒƒƒƒƒƒŸ

Filter
Functions

Io
Groups

Motion
Groups

PID
Function/
Blocks

String
Functions

Timers
Function
Blocks

⁄ƒƒƒƒƒƒƒƒø
≥LIMIT ≥
≥MAX ≥
≥MIN ≥
≥MOVE ≥
≥MUX ≥
≥SEL ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥ANLGIN ≥
≥ANLGOUT ≥
≥BAT_OK? ≥
≥BIO_PERF≥
≥COMM ≥
≥JKTHERM ≥
≥NETWORK ≥
≥PID ≥
≥READFDBK≥
≥RTDTEMP ≥
≥SOCKETS ≥
≥STEPPER ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥DATA ≥
≥ERRORS ≥
≥INIT ≥
≥MOVE ≥
≥MOVE_SUP≥
≥QUE ≥
≥RATIOMOV≥
≥REF ≥
≥SERC-SLV≥
≥SERC_SYS≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥PID2 ≥
≥PWDTY ≥
≥RAMP ≥
≥TAUFFAC ≥
≥TAUFILT ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥CONCAT ≥
≥DELETE ≥
≥FIND ≥
≥INSERT ≥
≥LEFT ≥
≥LEN ≥
≥LWR_CASE≥
≥MID ≥
≥REPLACE ≥
≥RIGHT ≥
≥UPR_CASE≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥TOF ≥
≥TON ≥
≥TP ≥
¿ƒƒƒƒƒƒƒƒŸ

(USER)
(Libraries)

Xclock
Functions

(Contains
library list
when you
use the
UDFB or
TASK fea-
tures.)

⁄ƒƒƒƒƒƒƒƒø
≥CLOCK ≥
≥GETDAY ≥
≥SERVOCLK≥
¿ƒƒƒƒƒƒƒƒŸ
1-4 Chapter 1 Function/Function Block Description

In Table 1- 2 the function/blocks found under the groups are shown. When there is
no list of function/blocks shown, there is only one function in that group. Access-
ing that name inserts the function in your network. One example is the
BOOL2BYT function in the datatype group.

Table 1-2.
Arith groups

Datatype groups

Io groups

ARITH DATETIME TRIG
⁄ƒƒƒƒƒƒƒƒø
≥ABS ≥
≥ADD ≥
≥DIV ≥
≥MOD ≥
≥MUL ≥
≥NEG ≥
≥SQRT ≥
≥SUB ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥A_DT_T ≥
≥A_TOD_T ≥
≥S_DT_DT ≥
≥S_DT_T ≥
≥S_D_D ≥
≥S_TOD_T ≥
≥S_TOD_TO≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥ACOS ≥
≥ASIN ≥
≥ATAN ≥
≥COS ≥
≥EXP ≥
≥LN ≥
≥LOG ≥
≥SIN ≥
≥TAN ≥
¿ƒƒƒƒƒƒƒƒŸ

BOOL2BYT BYTECONV DINTCONV DWORD-
CNV

D_TCONV INTCONV LINTCONV LREALCNV LWORD-
CNV

⁄ƒƒƒƒƒƒƒƒø
≥BYT2BOOL≥
≥BYTE2DW ≥
≥BYTE2LW ≥
≥BYTE2SI ≥
≥BYTE2USI≥
≥BYTE2WO ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥DINT2DW ≥
≥DINT2INT≥
≥DINT2LI ≥
≥DINT2RE ≥
≥DINT2SI ≥
≥DINT2UDI≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥DWOR2BYT≥
≥DWOR2DI ≥
≥DWOR2LW ≥
≥DWOR2RE ≥
≥DWOR2UDI≥
≥DWOR2WO ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥DATE2STR≥
≥DT2DATE ≥
≥DT2STR ≥
≥DT2TOD ≥
≥D_TOD2DT≥
≥TIM2UDIN≥
≥TIME2STR≥
≥TOD2STR ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥INT2DINT≥
≥INT2LINT≥
≥INT2SINT≥
≥INT2UINT≥
≥INT2WORD≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥LINT2DI ≥
≥LINT2INT≥
≥LINT2LR ≥
≥LINT2LW ≥
≥LINT2SI ≥
≥LINT2ULI≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥LREA2LI ≥
≥LREA2LW ≥
≥LREA2RE ≥
≥LREA2ULI≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥LWOR2BYT≥
≥LWOR2DW ≥
≥LWOR2LI ≥
≥LWOR2LR ≥
≥LWOR2ULI≥
≥LWOR2WO ≥
¿ƒƒƒƒƒƒƒƒŸ

NUM2S
TR

SIZEOF REALCONV SINTCONV STRCONV UDINTCNV UINTCONV ULINTCNV USINTCNV WORD-
CONV

⁄ƒƒƒƒƒƒƒƒø
≥REAL2DI ≥
≥REAL2DW ≥
≥REAL2LR ≥
≥REAL2UDI≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥SINT2BYT≥
≥SINT2DI ≥
≥SINT2INT≥
≥SINT2LI ≥
≥SINT2USI≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥STR2D_T ≥
≥STR2NUM ≥
≥STR2USI ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥UDIN2DI ≥
≥UDIN2DW ≥
≥UDIN2RE ≥
≥UDIN2TIM≥
≥UDIN2UI ≥
≥UDIN2ULI≥
≥UDIN2USI≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥UINT2INT≥
≥UINT2UDI≥
≥UINT2ULI≥
≥UINT2USI≥
≥UINT2WO ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥ULIN2LI ≥
≥ULIN2LR ≥
≥ULIN2LW ≥
≥ULIN2UDI≥
≥ULIN2UI ≥
≥ULIN2USI≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥USIN2BYT≥
≥USIN2SI ≥
≥USIN2STR≥
≥USIN2UDI≥
≥USIN2UI ≥
≥USIN2ULI≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥WORD2BYT≥
≥WORD2DW ≥
≥WORD2INT≥
≥WORD2LW ≥
≥WORD2UI ≥
¿ƒƒƒƒƒƒƒƒŸ

ANLGIN ANLGOUT BAT_
OK?

BIO_PERF COMM JKTHE
RM

NET-
WORK

P
I
D

R
E
A
D
F
D
B
K

RTDTE
MP

SOCKETS STEPPER

⁄ƒƒƒƒƒƒƒƒø
≥A_INCHIT≥
≥A_INCHRD≥
≥A_INMDIT≥
≥A_IN_MMC≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥ANLGINIT≥
≥ANLG_OUT≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥BIO_PERF≥
≥IO_CFG ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥ASSIGN ≥
≥CLOSE ≥
≥CONFIG ≥
≥DELFIL ≥
≥DIRECT ≥
≥FRESPACE≥
≥OPEN ≥
≥READ ≥
≥RENAME ≥
≥SEEK ≥
≥STATUS ≥
≥WRITE ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥ATMPCHIT≥
≥ATMPCHRD≥
≥ATMPMDIT≥
≥BTMPCHIT≥
≥BTMPCHRD≥
≥BTMPMGR ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥NETCLS ≥
≥NETFRE ≥
≥NETMON ≥
≥NETOPN ≥
≥NETRCV ≥
≥NETSND ≥
≥NETSTA ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥ARTDCHIT≥
≥ARTDCHRD≥
≥ARTDMDIT≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥IPACCEPT≥
≥IPCLOSE ≥
≥IIPCONN ≥
≥IPHOSTID≥
≥IPIP2NAM≥
≥IPLISTEN≥
≥IPNAM2IP≥
≥IPREAD ≥
≥IPRECV ≥
≥IPSEND ≥
≥IPSOCK ≥
≥IPSTAT ≥
≥IPWRITE ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥STEPCNTL≥
≥STEPINIT≥
≥STEPSTAT≥
≥STEP_CMD≥
≥STEP_POS≥
¿ƒƒƒƒƒƒƒƒŸ
Chapter 1 Function/Function Block Description 1-5

Motion groups

Arithmetic Category

ARITH group

The functions in the ARITH group perform the familiar operations of addition,
subtraction, multiplication, division, modulo (remainder), absolute value, square
root, and negate (opposite) value.

DATA ERRORS INIT MOVE MOVE_
SUP

QUE RATIO-
MOV

REF SERC_SLV SERC_SYS

⁄ƒƒƒƒƒƒƒƒø
≥CAPTINIT≥
≥CAPTSTAT≥
≥COORD2RL≥
≥DLS_INIT≥
≥DLS_RECV≥
≥DLS_SEND≥
≥DLS_STAT≥
≥FU2LU ≥
≥LU2FU ≥
≥READ_SV ≥
≥READ_SVF≥
≥SCA_CTRL≥
≥SCA_RCYC≥
≥SCA_RECV≥
≥SCA_SEND≥
≥SCA_STAT≥
≥SCA_WCYC≥
≥STATUSSV≥
≥TUNEREAD≥
≥TUNEWRIT≥
≥WRITE_SV≥
≥WRIT_SVF≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥C_ERRORS≥
≥C_RESET ≥
≥C_STOP ≥
≥C_STOP? ≥
≥E_ERRORS≥
≥E_RESET ≥
≥E_STOP ≥
≥E_STOP? ≥
≥P_ERRORS≥
≥P_RESET ≥
≥RESMODE?≥
≥RESUME ≥
≥SCA_ERST≥
≥TME_ERR?≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥CLOSLOOP≥
≥CLSLOOP?≥
≥DRSETFLT≥
≥DSTRTSRV≥
≥EXIST? ≥
≥OPENLOOP≥
≥SCA_CLOS≥
≥STRTSERV≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥DISTANCE≥
≥DPOSMODE≥
≥DTORQCMD≥
≥DVELCMD ≥
≥POSITION≥
≥VEL_END ≥
≥VEL_STRT≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥ACC_DEC ≥
≥ACC_JERK≥
≥CAM_OUT ≥
≥HOLD ≥
≥HOLD_END≥
≥IN_POS? ≥
≥MEASURE ≥
≥NEWRATIO≥
≥NEW_RATE≥
≥NO_OFFST≥
≥PLS ≥
≥PLS_EDIT≥
≥RATIOSCL≥
≥REGIST ≥
≥R_PERCEN≥
≥SCA_PBIT≥
≥SCURVE ≥
≥VFASTIN ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥ABRTALL ≥
≥ABRTMOVE≥
≥FAST_QUE≥
≥Q_AVAIL?≥
≥Q_NUMBER≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥GR_END ≥
≥RATIOCAM≥
≥RATIOSLP≥
≥RATIOSYN≥
≥RATIO_GR≥
≥RATIO_RL≥
≥REP_END ≥
≥SYN_END ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥FAST_REF≥
≥LAD_REF ≥
≥PART_CLR≥
≥PART_REF≥
≥REF_DNE?≥
≥REF_END ≥
≥SCA_ACKR≥
≥SCA_RFIT≥
≥SCA_REF ≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥SCS_ACKR≥
≥SCS_CTRL≥
≥SCS_RECV≥
≥SCS_REF ≥
≥SCS_SEND≥
≥SCS_STAT≥
¿ƒƒƒƒƒƒƒƒŸ

⁄ƒƒƒƒƒƒƒƒø
≥SCR_CONT≥
≥SCR_ERR ≥
≥SCR_PHAS≥
≥SC_INIT ≥
¿ƒƒƒƒƒƒƒƒŸ

CAUTION

If an underflow or overflow error occurs when one of these arithmetic
functions executes, the output at OK will not energize. The value at
OUT will be unpredictable.

Function Description Page
ABS Gives the absolute value of a number. 2-3
ADD Adds from 2 to 17 numbers. 2-9
DIV Performs the division operation and returns the quotient. 2-96
MOD Performs the division operation and returns the remainder. 2-190
MUL Multiplies from 2 to 17 numbers. 2-192
NEG Returns the opposite value of a number. 2-194
SQRT Determines the square root of a number. 2-432
SUB Performs the subtraction operation on 2 numbers. 2-462
1-6 Chapter 1 Function/Function Block Description

DATETIME group

The functions in the DATETIME group are used to add or subtract TIME duration
and/or TIME_OF_DAY type variables or constants. The D#, T#, TOD#, and DT#
characters are part of the result in the output variables, except for STRINGS.

When one of these functions executes, if an error occurs, the output at OK does not
energize, and the value of the variable at OUT will be:

TIME duration: T#0 TIME_OF_DAY: TOD#0:0:0 DATE: D#1988-01-01
DATE_AND_TIME: DT#1988-01-01-00:00:00STRING: null (length 0)

For every output variable, its value cannot exceed the largest value allowed for the
largest time increment, and it cannot be less than zero for the smallest time incre-
ment. Other values “roll over”.

For example, if the largest increment is days, the output value must not exceed 49. If the
smallest increment is seconds, the output value must not be less than 0 seconds. However,
24 hours becomes 1 day for a DATE_AND_TIME variable (whose largest increment is
years).

Function Description Page
A_DT_T Adds DATE_AND_TIME to TIME and outputs a

DATE_AND_TIME sum.
2-31

A_TOD_T Adds TIME_OF_DAY to TIME and outputs a
TIME_OF_DAY sum.

2-41

S_DT_DT Subtracts a DATE_AND_TIME from a DATE_AND_TIME
and outputs a TIME duration value.

2-464

S_DT_T Subtracts TIME from a DATE_AND_TIME and outputs a
DATE_AND_TIME.

2-465

S_D_D Subtracts a DATE from a DATE and outputs a TIME duration
value.

2-466

S_TOD_T Subtracts TIME from TIME_OF_DAY and outputs
TIME_OF_DAY.

2-467

S_TOD_TO Subtracts TIME_OF_DAY from TIME_OF_DAY and outputs
a TIME duration value.

2-468
Chapter 1 Function/Function Block Description 1-7

TRIG group

The functions in the TRIG group perform trigonometric or transcendental func-
tions.

Function Description Page
ACOS Calculates the arc cosine. 2-9
ASIN Calculates the arc sine. 2-22
ATAN Calculates the arc tangent. 2-25
COS Calculates the cosine. 2-79
EXP Calculates the exponent. 2-115
LN Calculates the natural log. 2-180
LOG Calculates the log. 2-180
SIN Calculates the sine. 2-427
TAN Calculates the tangent. 2-469
1-8 Chapter 1 Function/Function Block Description

Binary Category

The functions in the Binary library perform two types of operations:

Logic functions

The logic functions evaluate the input values on a bit by bit basis, and place results
for each bit into the corresponding bit of the output variable. In general, bit x of
every input variable is evaluated and a result is put into bit x of the output variable.

Bit shifting and rotating functions

The bit shifting and rotating functions “move” the values of bits. The values are
shifted or rotated to the left or right.

1. Logical or Boolean operations
2. Bit shifting and rotating operations

Function Description Page
AND Performs the boolean AND operation on from 2 to 17

numbers.
2-10

NOT Complements the bits of a number. 2-207
OR Performs the boolean inclusive OR operation on from 2 to

17 numbers.
2-215

ROL Rotates n bits from left to right (most significant to least
significant positions).

2-372

ROR Rotates n bits from right to left (least significant to most
significant positions).

2-373

SHL Shifts all bits of a number n positions to the left, discard-
ing n bits on the left (most significant), and inserting n 0s
on the right (least significant).

2-425

SHR Shifts all bits of a number n positions to the right, discard-
ing n bits on the right (least significant), and inserting n 0s
on the left (most significant).

2-426

XOR Performs the boolean exclusive OR operation on from 2 to
17 numbers.

2-501
Chapter 1 Function/Function Block Description 1-9

Counters Category

The function blocks in the Counter library serve as counters.

Function
Block

Description Page

CTD Counts down from a specified value and then energizes
an output.

2-80

CTU Counts up to a specified value and then energizes an out-
put.

2-81

CTUD Counts up or down from a specified value and then ener-
gizes the appropriate output.

2-82
1-10 Chapter 1 Function/Function Block Description

Datatype Category

The Datatype library contains all the functions that convert one data type to
another.

BOOL2BYT group

The BOOL2BYT group converts a boolean data type.

BYTECONV group

The BYTECONV group converts byte data types.

Function Description Page
BOOL2BYT Changes the data type from boolean to byte. 2-46

Function Description Page
BYT2BOOL Changes the data type from byte to boolean 2-51
BYTE2DW Changes the data type from byte to double word. 2-52
BYTE2LW Changes the data type from byte to long word. 2-52
BYTE2SI Changes the data type from byte to short integer. 2-53
BYTE2USI Changes the data type from byte to unsigned short integer. 2-53
BYTE2WO Changes the data type from byte to word. 2-54
Chapter 1 Function/Function Block Description 1-11

DINTCONV group

The DINTCONV group converts double integer data types.

DWORDCNV group

The DWORDCNV group converts double word data types.

Function Description Page

DINT2DW Changes the data type from double integer to double
word.

2-90

DINT2INT Changes the data type from double integer to inte-
ger.

2-90

DINT2LI Changes the data type from double integer to long
integer.

2-91

DINT2RE Changes the data type from double integer to real. 2-91

DINT2SI Changes the data type from double integer to short
integer.

2-92

DINT2UDI Changes the data type from double integer to
unsigned double integer.

2-92

Function Description Page
DWOR2BYT Changes the data type from double word to byte. 2-109
DWOR2DI Changes the data type from double word to double integer. 2-110
DWOR2LW Changes the data type from double word to long word. 2-110
DWOR2RE Changes the data type from double word to real. 2-111
DWOR2UDI Changes the data type from double word to unsigned double

integer.
2-111

DWOR2WO Changes the data type from double word to word. 2-112
1-12 Chapter 1 Function/Function Block Description

D_TCONV group

The D_TCONV group converts date and time data types.

INTCONV group

The INTCONV group converts integer data types.

Function Description Page
DATE2STR Changes the DATE value to a STRING value. 2-87
DT2DATE Outputs the DATE from a DATE_AND_TIME value. 2-105
DT2STR Changes the DATE_AND_TIME value to a STRING

value.
2-105

DT2TOD Outputs the TIME_OF_DAY from a DATE_AND_TIME
value.

2-106

D_TOD2DT Concatenates DATE and TIME_OF_DAY values and out-
puts a DATE_AND_TIME value.

2-106

TIM2UDIN Changes the data type from TIME to unsigned double
integer.

2-470

TIME2STR Changes a TIME duration value to a STRING value. 2-471
TOD2STR Changes a TIME_OF_DAY value to a STRING value. 2-472

Function Description Page
INT2DINT Changes the data type from integer to double integer. 2-144
INT2LINT Changes the data type from integer to long integer. 2-144
INT2SINT Changes the data type from integer to short integer. 2-145
INT2UINT Changes the data type from integer to unsigned integer. 2-145
INT2WORD Changes the data type from integer to word. 2-146
Chapter 1 Function/Function Block Description 1-13

LINTCONV group

The LINTCONV group converts long integer data types.

LREALCNV group

The LREALCNV group converts long real data types.

LWORDCNV group

The LWORDCNV group converts long word data types.

Function Description Page
LINT2DI Changes the data type from long integer to double integer. 2-177
LINT2INT Changes the data type from long integer to integer. 2-177
LINT2LR Changes the data type from long integer to long real. 2-178
LINT2LW Changes the data type from long integer to long word. 2-178
LINT2SI Changes the data type from long integer to short integer. 2-179
LINT2ULI Changes the data type from long integer to unsigned long

integer.
2-179

Function Description Page
LREA2LI Changes the data type from long real to long integer. 2-181
LREA2LW Changes the data type from long real to long word. 2-181
LREA2RE Changes the data type from long real to real. 2-182
LREA2ULI Changes the data type from long real to unsigned long

integer.
2-182

Function Description Page
LWOR2BYT Changes the data type from long word to byte. 2-184
LWOR2DW Changes the data type from long word to double word. 2-185
LWOR2LI Changes the data type from long word to long integer. 2-185
LWOR2LR Changes the data type from long word to long real. 2-186
LWOR2ULI Changes the data type from long word to unsigned long

integer.
2-186

LWOR2WO Changes the data type from long word to word. 2-187
1-14 Chapter 1 Function/Function Block Description

NUM2STR group

The NUM2STR group converts a numeric data type.

REALCONV group

The REALCONV group converts real data types.

SINTCONV group

The SINTCONV group converts short integer data types.

SIZEOF group

The SIZEOF group contains one function.

Function Description Page
NUM2STR Changes the data type from numeric to STRING. 2-210

Function Description Page
REAL2DI Changes the data type from real to double integer. 2-352
REAL2DW Changes the data type from real to double word. 2-352
REAL2LR Changes the data type from real to long real. 2-353
REAL2UDI Changes the data type from real to unsigned double integer. 2-353

Function Description Page
SINT2BYT Changes the data type from short integer to byte. 2-427
SINT2DI Changes the data type from short integer to double integer. 2-428
SINT2INT Changes the data type from short integer to integer. 2-428
SINT2LI Changes the data type from short integer to long integer. 2-429
SINT2USI Changes the data type from short integer to unsigned short

integer.
2-429

Function Description Page
SIZEOF Reports the size in bytes of the variable name listed at the IN

input.
2-430
Chapter 1 Function/Function Block Description 1-15

STRCONV group

The STRCONV group converts string data types.

UDINTCNV group

The UDINTCNV group converts unsigned double integer data types.

UINTCONV group

The UINTCONV group converts unsigned integer data types.

Function Description Page
STR2D_T Changes the data type from STRING to date and time. 2-457
STR2NUM Changes the data type from STRING to numeric. 2-458
STR2USI Changes the first character of STRING to unsigned short

integer (ASCII code).
2-458

Function Description Page
UDIN2DI Changes the data type from unsigned double integer to double

integer.
2-480

UDIN2DW Changes the data type from unsigned double integer to double
word.

2-480

UDIN2RE Changes the data type from unsigned double integer to real. 2-481
UDIN2TIM Changes the data type from unsigned double integer to time. 2-481
UDIN2UI Changes the data type from unsigned double integer to

unsigned integer.
2-482

UDIN2ULI Changes the data type from unsigned double integer to
unsigned long integer.

2-482

UDIN2USI Changes the data type from unsigned double integer to
unsigned short integer.

2-483

Function Description Page
UINT2INT Changes the data type from unsigned integer to integer. 2-483
UINT2UDI Changes the data type from unsigned integer to unsigned

double integer.
2-484

UINT2ULI Changes the data type from unsigned integer to unsigned
long integer.

2-484

UINT2USI Changes the data type from unsigned integer to unsigned
short integer.

2-485

UINT2WO Changes the data type from unsigned integer to word. 2-485
1-16 Chapter 1 Function/Function Block Description

ULINTCNV group

The ULINTCONV group converts unsigned long integer data types.

USINTCNV group

The USINTCNV group converts unsigned short integer data types.

Function Description Page
ULIN2LI Changes the data type from unsigned long integer to long

integer.
2-486

ULIN2LR Changes the data type from unsigned long integer to long
real.

2-486

ULIN2LW Changes the data type from unsigned long integer to long
word.

2-487

ULIN2UDI Changes the data type from unsigned long integer to
unsigned double integer

2-487

ULIN2UI Changes the data type from unsigned long integer to
unsigned integer

2-488

ULIN2USI Changes the data type from unsigned long integer to
unsigned short integer

2-488

Function Description Page
USIN2BYT Changes the data type from unsigned short integer to byte. 2-489
USIN2SI Changes the data type from unsigned short integer to short

integer.
2-490

USIN2STR Changes the data type from unsigned short integer (ASCII
code) to the first character in STRING.

2-490

USIN2UDI Changes the data type from unsigned short integer to unsigned
double integer.

2-491

USIN2UI Changes the data type from unsigned short integer to unsigned
integer.

2-491

USIN2ULI Changes the data type from unsigned short integer to unsigned
long integer.

2-492
Chapter 1 Function/Function Block Description 1-17

WORDCONV group

The WORDCONV group converts word data types.

Evaluate Category

The functions in the Evaluate library compare numbers. The comparisons are:

Function Description Page
WORD2BYT Changes the data type from word to byte. 2-495
WORD2DW Changes the data type from word to double word. 2-495
WORD2INT Changes the data type from word to integer. 2-496
WORD2LW Changes the data type from word to long word. 2-496
WORD2UI Changes the data type from word to unsigned integer. 2-497

equal to = greater than > greater than or equal to ≥
not equal to ≠ less than < less than or equal to ≤

Function Description Page
EQ Compares from 2 to 17 numbers and energizes an output if all

numbers are equal to each other.
2-113

GE Compares from 2 to 17 numbers and energizes an output if all
numbers are greater than or equal to successive numbers.

2-138

GT Compares from 2 to 17 numbers and energizes an output if all
numbers are greater than successive numbers.

2-141

LE Compares from 2 to 17 numbers and energizes an output if all
numbers are less than or equal to successive numbers.

2-173

LT Compares from 2 to 17 numbers and energizes an output if all
numbers are less than successive numbers.

2-183

NE Compares 2 numbers and energizes an output if they are not
equal to each other.

2-194

OK_ERROR Evaluates the condition of the OK outputs of all functions
from the beginning of the network to this function.

2-211
1-18 Chapter 1 Function/Function Block Description

NOTES ON STRING EVALUATIONS

If String 1 = 1 2 9
and String 2 = 1 2 3 4

then String 1 > String 2

If two strings have different lengths and the characters in the shorter
string match the characters in the longer string, then the shorter string
is less than the longer one.

If String 1 = 1 2 3
and String 2 = 1 2 3 4

then String 1 < String 2

Another example is shown below. String 1 is less than String 2 be-
cause the ASCII value of upper case letters is less than the value of
lower case letters.
If String 1 = TIME
and String 2 = Time

then String 1 < String 2
Chapter 1 Function/Function Block Description 1-19

Fbinter Category

The function/function blocks in the Fbinter library allow you to interface with field
bus communications via the DeviceNet hardware module.

Function Description Page
FB_CLS Closes communications with the field bus. 2-128
FB_OPN Opens communications with the field bus placing the

DeviceNet module in the RUN mode.
2-129

FB_RCV Receives all data from the configurator file indicated by Tag
names.

2-130

FB_SND Sends data indicated by Tag names in the configurator file. 2-131
FB_STA Allows you to check if the DeviceNet module is communicating

with the nodes and to check field bus information.
2-132
1-20 Chapter 1 Function/Function Block Description

Filter Category

The functions in the Filter library act as filters or sorters. They move the value of
one of the inputs into an output variable.

Func-
tion

Description Page

LIMIT Evaluates a number and outputs the number if it is within specified
limits, or outputs the upper or lower limit if the number is greater
than or less than the limit, respectively.

2-176

MAX Compares from 2 to 17 numbers and outputs the largest number. 2-188
MIN Compares from 2 to 17 numbers and outputs the smallest number. 2-190
MOVE Places from 1 to 17 numbers into output variables of the same

type(s).
2-191

MUX Evaluates from 2 to 17 numbers and outputs one of the numbers
based on the value of an independent number.

2-193

SEL Evaluates 2 numbers and outputs one of them based on the state of
a boolean input.

2-423
Chapter 1 Function/Function Block Description 1-21

I/O Category

The functions in the I/O library initialize and send/receive data to/from:

• Analog input module

• Analog and 4-20mA output modules

• Controls, ports, files, devices, serial communications module

• J-K thermocouple module

• PID loops

• Encoder module (background read)

• RTD module

• Sockets

• Stepper module

ANLGIN group

The ANLGIN group contains functions that work with the analog input module.

ANLGOUT group

The ANLGOUT group contains functions that work with the analog or 4-20mA
output module.

Function Description Page
A_INCHIT Initializes a channel on an analog input module. 2-33
A_INCHRD Reads or samples the voltage or current occurring at a channel

on an analog input module.
2-36

A_INMDIT Initializes an analog input module. 2-40
A_IN_MMC Outputs the digital value of an analog input for the MMC. 2-32

Function Description Page
ANLGINIT Initializes an analog or 4-20mA output module. 2-11
ANLG_OUT Sends a value (to be converted to voltage or current) to a chan-

nel on an analog or 4-20mA output module.
2-13
1-22 Chapter 1 Function/Function Block Description

BAT_OK? group

The BAT_OK? group has one function that allows you to check the battery of the
control from the ladder.

BIO_PERF group

The BIO_PERF group has two function/function blocks: one that allows you to
check the performance of the block I/O modules in your system and one that ini-
tializes the configuration of the block system.

Function Description Page
BAT_OK? Checks the battery from the ladder. 2-42

Function Description Page
BIO_PERF Checks the performance of block I/O modules. 2-43
IO_CFG Initializes the block I/O configuration, checks the status, and

inhibits the block system when blocks are added or removed.
2-147
Chapter 1 Function/Function Block Description 1-23

COMM group

The function blocks in the COMM group are used to transfer (read/write) data
between any of the following:

User Port on the PiC900
PiC RAMDISK Files

Strings, Arrays, StructuresPiC FLASHDISK Files
DOS Workstation Files
Serial Communications Module

Function
Block

Description Page

ASSIGN Sets up the channels on the serial communications module to
work like the User Port for communications.

2-23

CLOSE Closes the communication channel between the LDO and a DOS
file, RAMDISK file, FLASHDISK file, User Port, or a serial
communications channel.

2-69

CONFIG Establishes protocol between the LDO and User Port or a serial
communications channel. Must execute after OPEN and before
READ, WRITE, or STATUS.

2-73

DELFIL Deletes files from the PiC900 RAMDISK or PiCPro. 2-89
DIRECT Reads PiC RAMDISK or FLASHDISK directory information. 2-93
FRESPACE Checks amount of available disk space there is on the PiC RAM-

DISK or FLASHDISK.
2-136

OPEN Opens the communication channel between the LDO and a DOS
file, RAMDISK file, FLASHDISK file, User Port, or a serial
communications channel. Must execute before CONFIGURE,
READ, WRITE, STATUS, or SEEK.

2-212

READ Reads data from a DOS, RAMDISK, or FLASHDISK file, User
Port, or a serial communications channel and places it into a
STRING, Array, Structure, Array Element, or Structure member.

2-295

RENAME Renames a file on the PiC RAMDISK or PiCPro. 2-364
SEEK Positions a pointer in a RAMDISK or FLASHDISK file before a

read/write is performed.
2-421

STATUS Outputs the number of bytes in the input buffer of User Port or a
serial communications channel.

2-433

WRITE Writes data from a memory area to a DOS file, RAMDISK file,
User Port, or a serial communications channel.

2-498
1-24 Chapter 1 Function/Function Block Description

JKTHERM group

The JKTHERM group contains functions that work with the JK thermocouple
module.

Function Description Page
ATMPCHIT Initializes a channel on a J-K thermocouple module. 2-26
ATMPCHRD Reads or senses the temperature or voltage occurring at a

channel on a J-K thermocouple module.
2-28

ATMPMDIT Initializes Block I/O thermocouple or A/D channel. 2-30
BTMPCHIT Initializes Block I/O thermocouple or A/D initialization. 2-47
BTMPCHRD Reads or senses the temperature or A/D value. 2-48
BTMPMGR Communicates with a J-K thermocouple Block I/O module. 2-50

OPEN

USER
PORT 2?

yes CONFIG

STATUS

SEEKRAMDISK?
yes

no

READ/WRITE

CLOSE
Chapter 1 Function/Function Block Description 1-25

NETWORK group

The function blocks in the NETWORK group are used to perform communication
operations among NEXNET networked PiC900s.

Function Description Page
NETCLS Closes the communication channel between the PiC900 in

which it is executed and all other networked PiC900s.
2-195

NETFRE Used after data from a transaction has been received (NETRCV)
to clear the input buffer.

2-195

NETMON Monitors network activity for diagnostic purposes. 2-196
NETOPN Opens the communication channel between the PiC900 in

which it is executed and all other networked PiC900s.
2-197

NETRCV Receives or reads data that was sent by another PiC900. 2-199
NETSND Sends data to another PiC900 or all PiC900s in the network. 2-201
NETSTA Tells how many bytes are in the input buffer to be received by

one or more NETRCVs.
2-203

PiC1 added to network
NETOPN

PiC1

PiC1 looks for
received data

NETSTA

PiC1 reads data
NETRCV

PiC1gets ready to
accept more data

NETFRE

Scan LDO & use
received data

PiC2 added to network
NETOPN

PiC2 sends data

NETSND

Scan LDO

PiC2

data sent

data accepted
1-26 Chapter 1 Function/Function Block Description

PID group

The PID group has one function block that performs PID control.

READFDBK group

The READFDBK group has one function that reads an encoder or 12 channel
resolver module on a scan time basis (background).

RTDTEMP group

The RTDTEMP group contains functions that work with the RTD module.

Function Description Page
PID Performs proportional, integral, and derivative control. 2-218

Function Description Page
READFDBK Performs background read on encoder or 12 channel resolver

module.
2-297

Function Description Page

ARTDCHIT Initializes a channel on a RTD module. 2-17

ARTDCHRD Reads or senses the temperature occurring at a channel
on a RTD module.

2-19

ARTDMDIT Initializes a RTD module. 2-21
Chapter 1 Function/Function Block Description 1-27

SOCKETS group

The socket function blocks are used to communicate from application to applica-
tion using Danaher Motion’s implementation of the BSD socket interface.

STEPPER group

The STEPPER group contains functions that work with the stepper module.

Function Description Page
IPACCEPT Used by the TCP server to accept incoming connect requests. 2-151
IPCLOSE Used by an application to terminate a communication session

for the socket specified at HNDL.
2-152

IPCONN Used by a client application to connect to a remote server by
specifying the remote endpoint address for a socket.

2-153

IPHOSTID Optional and not required to be used. 2-154
IPIP2NAM Allows the application to obtain the host name when you supply

the IP address.
2-155

IPLISTEN Used to make a socket passive. 2-156
IPNAM2IP Allows the application to obtain an IP address when you supply

the host name.
2-157

IPREAD Allows you to read input data sent between a client function and
a remote server.

2-158

IPRECV Used to get a packet of data sent between a client function and a
remote server.

2-159

IPSEND Used to send data between client function and remote servers. 2-161
IPSOCK Used to obtain a data structure and assign it to a specific com-

munication resource.
2-162

IPSTAT Called on a periodic basis with the RES input not energized
whenever it is desired to know the status of the resources pro-
vided by the Windows NT operating system.

2-163

IPWRITE Used to send data between client function and remote servers. 2-164

Function Description Page
STEPCNTL Sends a control word to the stepper motion control module

(SMCM).
2-436

STEPINIT Initializes an axis as a stepper axis. 2-440
STEPSTAT Reads the data on the status of the stepper axis. 2-442
STEP_CMD Sends a profile command and its related data to the command

queue of the SMCM to run a step profile.
2-445

STEP_POS Reads the position of a stepper axis. 2-456
1-28 Chapter 1 Function/Function Block Description

Motion Category

The motion functions are available with PiCServoPro. They allow you to perform
motion control tasks.

In addition to the standard motion functions, there are two servo functions made by
you with the Servo setup program and the PiC Profile program. Refer to those
chapters for additional information.

IMPORTANT

For parameters in these functions such as feedrates, accelerations, de-
celerations, position, distance, etc., you must enter ladder units (LU).
Ladder units were defined by you for your application in the scaling
data section of setup.
When you have ladder units equal to feedback units (FU) in setup,
then you are entering feedback units in the ladder.
Often a range of values in FU is listed with function inputs. (See in-
dividual functions in Chapter 2.) If ladder units ≠ to feedback units,
be sure to convert LU to FU to check that you are in range.
Chapter 1 Function/Function Block Description 1-29

DATA group

The data functions allow you to read, write, or check the status of certain variables
and characteristics.

Function Description Page
CAPTINIT Initializes what data is to be captured each servo interrupt and

where it is to be stored.
2-60

CAPTSTAT Provides the ability to start and stop the capturing of data from
the ladder.

2-67

COORD2RL Calculates profile segments used for circular/linear interpola-
tion. Used with the RATIO_RL function.

2-75

FU2LU Converts feedback units to ladder units. 2-137
LU2FU Converts ladder units to feedback units. 2-184
DLS_INIT Starts and monitors DLS communications 2-97
DLS_RECV Reads most recent send data from MMC for PC 2-99
DLS_SEND Indicates value of DATA 2-100
DLS_STAT Indicates bit array and communication errors 2-101
READ_SV
(read servo)

Allows you to read variables in your ladder. See the READ_SV
function description for a list of variables.

2-309

READ_SVF
(read servo
fast)

Allows you to read any of the READ_SV variables faster. All
values that involve velocity or distance are in feedback units
and updates rather than ladder units and minutes.

2-351

SCA_CTRL Writes control bits to the MDT for a servo axis. 2-378
SCA_RCYC Reads cyclic data from the AT for a servo axis. 2-384
SCA_RECV Allows you to receive information from the service channel

section of SERCOS communication for a servo axis.
2-386

SCA_SEND Allows you to send information to the service channel section
of SERCOS communication for a servo axis.

2-393

SCA_STAT Monitors the ready-to-operate drive mode, diagnostic trouble-
shooting, or two real-time status bits returned from the drive.

2-395

SCA_WCYC Writes cyclic data to the MDT for a servo axis. 2-396
STATUSSV
 (status servo)

Allows you to check the status of the following characteristics
from the word output of the STATUSSV function:

move started
fast input occurred
fast input on
good mark detected
bad mark detected
DIST + TOLR exceeded
fast input rising

2-434

TUNEREAD Provides the ability to read tuning parameters from the ladder.
(See TUNEWRIT for list of parameters.)

2-476
1-30 Chapter 1 Function/Function Block Description

TUNEWRIT Provides the ability to write the following tuning parameters
from the ladder.

Proportional Gain
Integral Gain
Derivative Gain
Offset
Slow Speed Filter
Feed Forward Percent

2-477

WRITE_SV
(write servo)

Allows you to write variables from your ladder. See the
READ_SV function description for a list of variables.

2-499

WRIT_SVF
(write servo
fast)

Allows you to write any of the WRITE_SV variables faster.
All values that involve velocity or distance are in feedback
units and updates rather than ladder units and minutes.

2-500
Chapter 1 Function/Function Block Description 1-31

ERRORS group

There are three types of errors that affect an axis as described below.

There is a fourth type of error connected to the entire system called a timing error. It is moni-
tored by the TME_ERR? function.

1. C-stop (controlled-stop) errors

When a C-stop occurs, the following happens:

• The axis remains in servo lock and the axis is brought to a con-
trolled stop at the rate specified by the controlled stop ramp in
setup.

• The active and next queues are cleared.

• The FAST_QUE mode is canceled when the C-stop is reset.
2. E-stop (Emergency-stop) errors

When an E-stop occurs, the following happens:

• The system is out of servo lock.

• zero voltage is sent to the analog outputs.

• The active and next queues are cleared.

• The FAST_QUE mode is canceled when the E-stop is reset.

• If it is a loss of feedback E-stop error, then the machine reference
must be redone.

In most respects, you are in a condition immediately following initialization
with the exception of the queue number. The queue number does not start over
but continues from where it left off when the E-stop occurred.

Remember that the queue number is assigned by the software from 1 to 255.
When 255 is reached, it rolls over to 1.

3. Programming errors

These errors occur during master/slave moves or a FAST_QUE call. They may
prevent the move from being placed in the queue (or if the move is in the queue,
abort the move) or they may prevent the OK on the function from being set.

4. Timing error

All the servo calculations for one interrupt must be completed in the time frame
selected by you in setup before the next interrupt can perform its calculations. If
they are not, this timing error occurs and the ERR output of the TME_ERR?
function is set.
1-32 Chapter 1 Function/Function Block Description

IMPORTANT

Always set an E-stop on all axes when a timing error occurs.

NOTE

The C-stop, E-stop, and Programming errors can all be viewed in the
tune section of the Servo setup program. See Appendix C in the
PiCPro Online Help for more information.

Function Description Page
C_STOP
(controlled stop)

Sets a controlled stop on the axis. 2-85

C_ERRORS
 (controlled stop errors)

Indicates what C-errors have occurred at the
word output.

2-83

C_RESET
(controlled stop reset)

Resets a C-stop error. 2-85

C_STOP?
 (controlled stop?)

Asks if there is a C-stop in effect for designated
axis.

2-86

E_STOP
 (emergency stop)

Sets an emergency stop on the axis. 2-118

E_ERRORS
(emergency stop errors)

Indicates what E_errors have occurred at the
word output.

2-116

E_RESET
 (emergency stop reset)

Resets an E-stop error. 2-118

E_STOP?
 (emergency stop?)

Asks if there is an E-stop in effect for designated
axis.

2-119

P_ERRORS
 (programming errors)

Indicates what programming errors have
occurred at the word output.

2-238

P_RESET
 (programming error
reset)

Resets a programming error. 2-241

RESMODE?
(axis in resume mode?)

Asks if the axis is in Resume Mode. 2-368

RESUME (resume to
normal interpolator
path)

Commands the axis to move back to the Normal
Interpolator’s command position at velocity
specified by RATE after Resumable E-Stop.

2-369

SCA_ERST Resets internal E-errors for a SERCOS system. 2-381
TME_ERR?
 (timing error)

Asks if the time required to carry out the servo
calculations exceeds the allotted interrupt time.

2-472
Chapter 1 Function/Function Block Description 1-33

INIT group

The functions in the INIT group allow you to initialize the servos and be ready for
motion commands from the ladder.

Function Description Page

CLOSLOOP (close loop) Closes the position loop for the designated
axis.

2-70

CLSLOOP? (close loop?) Asks if the position loop for the desig-
nated axis is closed.

2-71

DRSETFLT Commands the digital drive, specified by
the AXIS input, to reset the drive faults.
Only applicable to an MMCD system.

2-103

DSTRTSRV Initializes the axes of an MMCD system. 2-104

EXIST? Asks if this axis number has been success-
fully initialized.

2-114

OPENLOOP (open loop) Opens the position loop for the designated
axis.

2-214

SCA_CLOS Closes the position loop in a SERCOS
system.

2-377

STRTSERV (start servo) Used with the user-defined setup function
to initialize setup data.

2-459
1-34 Chapter 1 Function/Function Block Description

MOVE group

The functions in the MOVE group cause motion to begin or end. The moves are
not master/slave moves.

The other functions that can cause motion are found in the RATIOMOV and REF
groups. They are the master/slave moves and the fast input (FAST_REF) and lad-
der (LAD_REF) reference functions used to perform a machine reference.

Function Description Page

DISTANCE
(distance)

Moves an axis a specified distance at a specified feedrate. 2-95

DPOSMODE
(digital drive
position mode)

Switches the digital drive to Position Mode. 2-102

DTORQCMD
(digital drive
torque mode
command)

Issues a command current to a digital drive in Torque
Mode.

2-107

DVELCMD
(digital drive
velocity mode
command)

Issues a command velocity to a digital drive in Velocity
Mode.

2-108

POSITION
(position)

Moves an axis at a specified feedrate to an endpoint. 2-237

VEL_STRT
(velocity start)

Moves an axis at a specified feedrate and direction. 2-493

VEL_END
(velocity end)

Ends a velocity start move. 2-492
Chapter 1 Function/Function Block Description 1-35

MOVE_SUP group

The functions in the MOVE_SUP group allow you to make adjustments to the
moves.

Function Description Page
ACC_DEC
(acceleration/
deceleration)

Allows you to change the acc/dec rates entered in setup
from the ladder.

2-4

CAM_OUT
 (cam output)

Allows you to turn on discrete I/O points for a specified
distance during the rollover on position cycle.

2-55

HOLD
(feedhold)

Stops the iteration of the current move. 2-141

HOLD_END
(feedhold end)

Resumes the move that was halted with the HOLD func-
tion.

2-142

IN_POS?
(in position?)

Asks the question “Is the active move in position?” 2-146

MEASURE
(measure)

Enables the fast input response when not using registra-
tion or referencing.

2-188

NEWRATIO Allows you to change the ratio of a RATIO_GR or
RATIOSYN move or the default ratio of the RATIOSLP
move.

2-204

NEW_RATE
(new feedrate)

Allows you to change the feedrate of the moves in the
active queue.

2-206

NO_OFFST Allows you to define a zone in which no master or slave
offsets will be applied.

2-208

PLS Used to turn on a discrete output for specified ranges of
axis positions.

2-232

PLS_EDIT Used to edit an ON/OFF pair of values used by a PLS
function while PLS is active.

2-236

RATIOSCL Allows you to scale the slave and/or master axis in
RATIOCAM, RATIOSLP, and the master axis in
RATIO_RL moves.

2-257

REGIST
(registration)

Sets the axis position to a defined value when a fast input
occurs.

2-355

R_PERCEN
(feedrate percent)

Allows you to change the feedrate by a percentage for all
moves connected to an axis.

2-374

SCA_PBIT Initializes the SERCOS fast input. 2-382
SCURVE Allows a master time axis to follow an s-curve velocity

profile minimizing the amount of jerk that can occur in a
trapezoidal velocity profile.

2-416
1-36 Chapter 1 Function/Function Block Description

QUE group

There are two queues used by the servo software to manage moves for an axis. One
is the active queue which holds the move that is currently active. The other is the
next queue which is the move that is ready and waiting to proceed when the active
queue move is completed. The functions in this group affect the moves in the
queues.

The servo software assigns a queue number to any motion function which has a
QUE output. The numbers are assigned sequentially from 1 to 255. When 255 is
reached, the number rolls over to 1.

VFASTIN
(virtual fast
input)

Allows you to generate a virtual fast input for a virtual
axis.

2-494

Function Description Page
ABRTMOVE
(abort move)

Aborts the move identified by the number entered in its
QUE input.

2-2

ABRTALL
(abort all)

Aborts the moves in both queues. 2-2

FAST_QUE
(fast input queue)

Manages the queues based on the occurrence of a fast
input.

2-120

Q_NUMBER
(queue number)

Gives the number of the move that is in the active queue. 2-244

Q_AVAIL?
 (queue available?)

Asks the question “Is a queue available for the specified
axis?”

2-243
Chapter 1 Function/Function Block Description 1-37

RATIOMOV group

The functions in this group cause motion to begin or end. They involve master/
slave ratio moves. The RATIOPRO function requires another function (or func-
tions) made by you with the PiC Profile program that defines the ratio profile you
want to use.

NOTE: The RATIOPRO function can be used in PiCPro but it can only be edited
in PiCPro for DOS. The profile editor is not included in PiCPro.

The other functions that can cause motion are found in the MOVE and REF group.

Function Description Page
GR_END
(gear end)

Ends a ratio gear (or ratio syn) move. 2-140

RATIOCAM
 (ratio cam profile)

A master/slave move where each segment of the
profile has a constant ratio.

2-246

RATIOSLP
 (ratio slope)

A master/slave move where the ratio in each
segment of the profile can vary linearly.

2-261

RATIOSYN
(ratio synchronization)

A master/slave move where the slave axis will
follow the master axis at a constant ratio and a
positional relationship between the master and
slave axes is established.

2-273

RATIO_GR
(ratio gear)

A master/slave move where the slave axis will
follow the master axis at a constant ratio.

2-283

RATIO_RL
 (ratio real)

A master/slave move where the slave axis will
follow the master axis in a profile that can be a
trigonometric function or a polynomial using
floating point variables.

2-286

REP_END
 (repeat end)

Ends repeating RATIOCAM, RATIOSLP, or
RATIO_RL profiles.

2-367

SYN_END
 (synchronization end)

Ends a ratio syn (or ratio gear) move by specify-
ing a drop point for the slave axis.

2-463
1-38 Chapter 1 Function/Function Block Description

REF group

The functions in the reference group allow you to do machine or part referencing.
A machine reference provides position information to the PiC900 with respect to
the machine. It is a fixed dimensional reference used to establish a repeatable point
of reference between servo initializations. The PiC900 bases its position calcula-
tions on this position information. Motion may occur when performing a machine
reference.

A part reference is a floating dimensional reference. It establishes a position based
on the location of a part, not the machine. No motion occurs when performing a
part reference. The axis has been moved into position before the reference occurs.

Function Description Page
FAST_REF
(fast input reference)

Performs a machine reference based on a fast input. 2-123

LAD_REF
(ladder reference)

Performs a machine reference from the ladder. 2-170

PART_CLR
 (part reference clear)

Cancels the part reference dimension supplied by the
PART_REF function.

2-216

PART_REF
(part reference)

Performs a part reference on the designated axis. 2-217

REF_DNE?
 (reference done?)

Asks the question “Is the machine reference cycle
complete?”

2-354

REF_END
(ladder reference end)

Ends the ladder machine reference. 2-354

SCA_ACKR Acknowledges the reference cycle for a servo SER-
COS axis.

2-376

SCA_REF Runs a reference cycle on a servo SERCOS axis. 2-388
SCA_RFIT Initializes the fast input on a SERCOS drive and

monitors the reference switch or index mark position.
2-390
Chapter 1 Function/Function Block Description 1-39

SERC_SLV group

The functions in the SERCOS slave group allow you to work with the SERCOS
slave function/function blocks.

Function Description Page

SCS_ACKR
(SERCOS
slave
acknowledge
reference)

Acknowledges the SERCOS reference cycle. 2-407

SCS_CTRL
(SERCOS
slave control)

Controls the bits in the MDT control word. 2-403

SCS_RECV
(SERCOS
slave receive)

Receives information from the service channel sec-
tion of the SERCOS communication.

2-405

SCS_REF
(SERCOS
slave refer-
ence)

Runs a reference cycle on the SERCOS slave axis. 2-407

SCS_SEND
(SERCOS
slave send)

Sends information to the service channel section of
the SERCOS communication.

2-409

SCS_STAT
(SERCOS
slave status)

Monitors the ready-to-operate drive mode, diagnostic
troubleshooting, or two real-time data bits returned
from the drive.

2-411
1-40 Chapter 1 Function/Function Block Description

SERC_SYS group

The functions in the SERCOS system group allow you to work with SERCOS
rings and to start the SERCOS system.

Function Description Page
SCR_CONT
(SERCOS
ring continue)

Allows you to continue through SERCOS phases if you have
halted after phase 2 to send additional IDNs.

2-397

SCR_ERR
(SERCOS
ring error)

Identifies ring errors that can occur during the transfer of
IDNs.

2-398

SCR_PHAS
 (SERCOS
ring phase)

Identifies the current SERCOS phase. 2-401

SC_INIT
(SERCOS
start)

Copies the initialization data into all interface boards. 2-375
Chapter 1 Function/Function Block Description 1-41

String Category

The functions in this group operate on variables which have a STRING data type.
Most of these functions return a STRING as an output. The variable assigned to
receive this output STRING must be specified as an input variable - on the left
side. Assigning the variable on the right side is optional, but if used, it must be the
same variable as the input variable. This characteristic is unique to all functions
which have a STRING as an output, including functions not in this group.

The output at OK will not energize and the output STRING will be null (have
length zero) if an error occurs. A list of errors is in Appendix B of the PiCPro
Online Help.

Function Description Page
CONCAT Concatenates 2 STRINGs. 2-72
DELETE Deletes characters from a STRING. 2-88
FIND Searches for a STRING within another STRING and if

found, outputs its location.
2-135

INSERT Inserts a STRING into another STRING. 2-143
LEFT Places a specified number of characters from the left side

of a STRING into a variable.
2-174

LEN Returns the length of a STRING. 2-175
LWR_CASE Converts all the characters in a string to lower case charac-

ters.
2-187

MID Places a specified number of characters from the middle of
a STRING into a variable.

2-189

REPLACE Places a STRING within another STRING, replacing one
or more characters.

2-366

RIGHT Places a specified number of characters from the right side
of a STRING into a variable.

2-371

UPR_CASE Converts all the characters in a string to upper case charac-
ters.

2-489
1-42 Chapter 1 Function/Function Block Description

PID Category

Timers Category

The function blocks in the Timer library are used to energize and de-energize out-
puts (coils and control relays) after a duration of time. The time, as it elapses, can
be viewed on the monitor with real time animation. The elapsed time value can be
used (elsewhere) in the module but its value cannot be reset.

Xclock Category

The two functions in the Xclock library are used for clock or calendar functions.

Function Description Page
PID2 Simplified version of the PID function block. 2-227
PWDTY Accepts input value and converts to duty cycle percentage. 2-242
RAMP Generates ramp outputs from step inputs. 2-245
TAUFFAC Calculates a first order filter for TAUFILT. 2-469
TAUFILT Provides a first order filter response. 2-470

Function Block Description Page
TOF De-energizes an output after a duration of time. 2-473
TON Energizes an output after a duration of time. 2-474
TP Energizes an output for a duration of time. 2-475

Function Description Page
CLOCK Outputs from the PiC900 the current time and date, or sets the

PiC900s time and date.
2-68

GETDAY Outputs the number of the day of the week or day of the year. 2-139
SERVO-
CLK

Allows a task to run on the servo clock when no servos are run-
ning.

2-424
Chapter 1 Function/Function Block Description 1-43

NOTES
1-44 Chapter 1 Function/Function Block Description

CHAPTER 2

Function/Block Descriptions
Chapter 2 describes all the functions available with PiCPro/PiCServoPro in alpha-
betical order. Each heading contains:

• The name of the function as it appears in PiCPro

• The title of the function (underneath the name)

• The name of the function menu group (in right-hand corner) to which each
function belongs.

Below the heading is an illustration of each function. To the right are listed the
inputs and outputs for the function with data types in parentheses. The description
of each function is beneath this information.

PROGRAMMING NOTE

Functions with an EN input are usually enabled either by a transitional
(one-shot) contact if the function should execute one time or by logic
that will hold the function on if it should execute every scan.
Typically, one-shot any function in the Motion library that affects or
causes motion.
Also, one-shot any function that has a request (REQ) instead of an en-
able (EN) input. REQ inputs are found on function blocks. A function
block may not complete its operation in one scan.
The EN or REQ inputs that are typically transitioned are labeled “Typ-
ically one-shot” and those that should always be transitioned are la-
beled “One-shot” in the descriptions that follow.

NOTE

You must have a math coprocessor installed on your PiC900//90 CPU
module to perform any functions involving any 64 bit registers, loga-
rithmic, exponential, trigonometric, and floating point mathematical
operations.

NOTE ON ALPHABETICAL ORDER

When an underscore character (_) occurs within the name of a func-
tion, that function is placed after those without an underscore. For ex-
ample, RATIO_GR will be found after RATIOSYN.
Chapter 2 Function/Function Block Description 2-1

ABRTALL
ABRTALL
Abort All Motion/QUE

ABRTALL(AXIS := <<USINT>>, OK => <<BOOL>>)

The ABRTALL function aborts the moves in both queues for the specified axis.

It is also used to ensure that no move can begin unexpectedly when a programming
error occurs with the FAST_QUE function. See also the FAST_QUE entry.

ABRTMOVE
Abort Move Motion/QUE

ABRTMOVE(AXIS := <<USINT>>, QUE := <<USINT>>, OK => <<BOOL>>)

The ABRTMOVE function aborts the move identified by the number at QUE.

If the move to be aborted is in the active queue, it will be removed freeing that
queue for another move. If there is a move in the next queue, it will begin execut-
ing immediately. If there is no move in the next queue, the axis will decel to a stop
at the rate specified in servo setup. If the move to be aborted is in the next queue,
it will be removed freeing that queue for another move. If the move is not in either
queue, it cannot be aborted.

⁄ƒƒƒƒƒƒƒƒƒø
≥ ABRTALL ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error

⁄ƒƒƒƒƒƒƒƒƒø
≥ABRTMOVE ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥QUE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo)

QUE (USINT) - number of move to abort from queue

Outputs: OK (BOOL) - execution completed without error

IMPORTANT

When aborting a move, it is important to note that the aborted move is abandoned
at the point it is at and the next move is entered immediately. This is different
than ending a move such as velocity start (VEL_STRT) with a velocity end
(VEL_END) as illustrated in Comparing velocity end and abort move functions
2-2 Chapter 2 Function/Function Block Description

ABS
Figure 2-1. Comparing velocity end and abort move functions

ABS
Absolute Value Arith/ARITH

ABS(IN := <<NUMERIC>>, OK => <<BOOL>>, OUT => <<NUMERIC>>)

The ABS function places the absolute value (non-negative value) of the variable or
constant at IN into the variable at OUT. For example,

If IN = -5, then OUT = 5

If IN = 10, then OUT = 10

The absolute value |x| of a number, x, is:

|x| = x if x ≥ 0
|x| = -x if x < 0

⁄ƒƒƒƒƒƒƒƒƒø
≥ ABS ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (NUMERIC) - number to find absolute value of

Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN) - absolute value of number

A = A velocity start move in the active queue.

B = A position move in the next queue.

BA

Time

A B

Velocity end
function active

Time

Abort move
function active

In example 1, a velocity start move
(A) is in the active queue. When the
velocity end function is called in the
ladder, move A will decel at the
specified rate. The position move
(B) waiting in the next queue begins.

In example 2, a velocity start move
(A) is again in the active queue.
When the abort move function is
called in the ladder, move A will be
aborted. The position move (B)
waiting in the next queue begins
immediately.

Example 1 - Sequencing moves with a
velocity end function

Example 2 - Sequencing moves with an
abort function
Chapter 2 Function/Function Block Description 2-3

ACC_DEC
ACC_DEC
Acceleration/Deceleration Motion/MOVE_SUP

ACC_DEC(AXIS := <<USINT>>, ACCL := <<UDINT>>, DECL :=
<<UDINT>>, OK => <<BOOL>>)

The ACC_DEC function allows the acc/dec rates for the specified axis to be
changed. When used in your ladder program, the acc/dec values in this function
override those entered in setup. If the STRTSERV function is called again reini-
tializing the servo data, then the system will default to the setup values.

This function does not affect the move in progress. It only applies to moves that
have not been queued.

There are some limits on setting the acc/dec rates so that invalid data is not
entered.

• The acc/dec rate is limited to 536,870,911 FU/iteration/iteration. If a larger
number is entered, the default is 536,870,911 FU/iteration/iteration.

• The acc/dec rate cannot be set to 0. If a 0 is entered, the default is to 1 FU/
iteration/iteration.

• The acc rate cannot be more than 10 times the dec rate. If this is attempted,
the dec rate is increased to 1/10 the acc rate.

• The resolution of the internal conversion of LU/MIN/SEC is 1 FU/ITER/
ITER. This resolution is adequate for most applications. However, if your
application requires long accel or decel rates, you may notice some inaccu-
racies in the rates due to this resolution.

⁄ƒƒƒƒƒƒƒƒƒø
≥ ACC_DEC ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥ACCL ≥
≥ ≥
¥DECL ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo)

ACCL (UDINT) - acceleration rate for axis (entered in
LU/MIN/SEC)

DECL (UDINT) - deceleration rate for axis (entered in
LU/MIN/SEC)

Outputs: OK (BOOL) - execution complete

IMPORTANT

If you are only changing one of the rates (acceleration or deceleration)
and want to maintain the setup rate for the other, you must enter the
setup value for the rate you do not want to change at the ACCL or
DECL input of the function.
2-4 Chapter 2 Function/Function Block Description

ACC_JERK
ACC_JERK
Acceleration/Jerk Motion/MOVE_SUP

ACC_JERK(AXIS := <<USINT>>, ACC := <<LREAL>>, JERK :=
<<LREAL>>, OK => <<BOOL>>)

NOTE: A math coprocessor is required to use the ACC_JERK function.

The ACC_JERK function can be used with both Servo and Time axes. When used
with Time axes, the function behaves the same as the SCURVE function, with the
exception that the units for acceleration and jerk are different. See the SCURVE
function for use of ACC_JERK with time axes. The remainder of the information
on ACC_JERK refers to its use on a servo axis.

⁄ƒƒƒƒƒƒƒƒƒø
≥ ACC_JERK≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥ACC ≥
≥ ≥
¥JERK ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - the axis (servo or time axis)

ACC (LREAL) - the maximum acceleration rate in
ladder units/min/sec for servo axis or feedback units/
min/sec for time axis

JERK(LREAL) - the constant jerk in ladder units/

min/sec2 for servo axis or feedback units/min/sec2 for

time axis

Outputs: OK (BOOL) - execution complete without errors

Jerk Jerk

Time
Jerk Jerk

S-Curve Profile

V
el

oc
it

y

Trapezoidal ProfileV
el

oc
it

y

Chapter 2 Function/Function Block Description 2-5

ACC_JERK
The ACC_JERK function when used with Servo axes is used to modify the maxi-
mum acceleration and jerk values for that axis, from the values specified in Servo
Setup. The ACC_JERK function does not enable the “SCURVE” mode of acceler-
ation and deceleration. There are separate rates of acceleration and jerk for accel-
eration/deceleration while performing programmed moves, and rates of
acceleration and jerk for C-Stop deceleration. The ACC_JERK function can only
modify the rates for programmed moves.

The enabling of the “SCURVE” or “RAMP” mode of operation is performed in
Servo Setup, or by writing to servo variable 60 with WRITE_SV. Unless specified
in Servo Setup, ‘RAMP’ acceleration/deceleration is the default mode of opera-
tion. The mode of operation may be changed with the WRITE_SV function while
an axis is in motion, but the change will not take affect until the next move in the
queue is performed. C-Stop and Abort deceleration is always performed using the
currently programmed mode of operation.

Once the ‘SCURVE” mode of operation has been enabled, the DISTANCE, POSI-
TION, and VEL_STR/VEL_END functions are used to move an axis utilizing the
“SCURVE” acceleration/deceleration.

Notes on Determining ACC and JERK Inputs

The following guidelines may help you determine the maximum acceleration
[ACC input (Am)] and the constant jerk [JERK input (J)] for your application.
The two examples below present two ways to approach this.

Example 1

In the first example, assume that when going from 0 to maximum velocity (Vm)
the first third of the velocity change is spent in constant jerk, the second third is
spent in constant acceleration, and the final third is spent in constant jerk as shown
below.

Vm

Constant jerk

Constant
Acceleration

Constant jerk

Time
2-6 Chapter 2 Function/Function Block Description

ACC_JERK
When this 1/3 relationship is true, the relationship between acceleration, jerk,
velocity and time can be expressed as follows:

If you select an approximate time for acceleration from 0 to Vm (left column) and
a value for the maximum velocity (top row), then the table provides the value for
constant jerk (first line) and maximum acceleration (second line) in each row.
Typically, you set the ACC and JERK inputs once based on the maximum your
application can handle.

and

Time
(sec)

Velocity
(FU/min)

1x103

Velocity
(FU/min)

1x10
4

Velocity
(FU/min)

1x105

Velocity
(FU/min)

1x106

Velocity
(FU/min)

1x107

0.01 4.2x107

1.7x105

4.2x108

1.7x106

4.2x109

1.7x107

4.2x1010

1.7x108

4.2x1011

1.7x109

JERK (LU/min/

sec2) ACC (LU/min/
sec)

0.1 4.2x105

1.7x104

4.2x106

1.7x105

4.2x107

1.7x106

4.2x108

1.7x107

4.2x109

1.7x108

JERK (LU/min/

sec2) ACC (LU/min/
sec)

1 4.2x103

1.7x103

4.2x104

1.7x104

4.2x105

1.7x105

4.2x106

1.7x106

4.2x107

1.7x107

JERK (LU/min/

sec2) ACC (LU/min/
sec)

10 4.2x101

1.7x102

4.2x102

1.7x103

4.2x103

1.7x104

4.2x104

1.7x105

4.2x105

1.7x106

JERK (LU/min/

sec2) ACC (LU/min/
sec)

100 4.2x10-1

1.7x101

4.2x100

1.7x102

4.2x101

1.7x103

4.2x102

1.7x104

4.2x103

1.7x105

JERK (LU/min/

sec2) ACC (LU/min/
sec)

�
�

�
---�

��
�

��
---------- ��

�

�
---�

��

����

Chapter 2 Function/Function Block Description 2-7

ACC_JERK
Example 2:

Vm = Maximum velocity

tm =The total time to reach velocity Vm if the axis starts at 0

tj = The total constant jerk time

ta = The total constant acceleration time

s= The fraction of time spent in constant jerk calculated by:

If you know Vm, tm, and s, then you can calculate jerk and acceleration using the
following formulas.

The units for JERK are ladder units per minute/second2; therefore, Vm is in ladder
units per minute and tm is in seconds. The units for ACCL are ladder units per

second2.

0

ta 0.5 tj0.5 tj

tm

V
el

oc
it

y
Vm

Time
��������������
�������������� = constant jerk

= constant acceleration

�
�	

��
-----�

�
��
� ��×

� ��
�× � ���� �×()

--�

��
��

�� � ���� �×()
-----------------------------------�
2-8 Chapter 2 Function/Function Block Description

ADD
ACOS
Arc Cosine Arith/TRIG

ACOS(COS := <<REAL/LREAL>>, OK => <<BOOL>>, ANGL => <<REAL/
LREAL>>)

The ACOS function calculates the arc cosine of the cosine entered at COS. The
result is the angle at ANGL.

ADD
Addition Arith/ARITH

ADD(IN1 := <<NUMERIC/TIME>>, IN2 := <<NUMERIC/TIME>>, OK =>
<<BOOL>>, SUM => <<NUMERIC/TIME)>>)

The ADD function adds the value of the variable or constant at IN2 to the value of
the variable or constant at IN1, and places the result in the variable at SUM. This
is an extensible function that can add up to 17 numbers.

⁄ƒƒƒƒƒƒƒƒƒø
≥ ACOS ≥
≥ ≥
¥EN OK√
≥ ≥
¥COS ANGL√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

COS (REAL/LREAL) - cosine value

Outputs: OK (BOOL) - execution completed without error

ANGL (REAL/LREAL) - angle calculated (in radians)

NOTE: The data types entered at COS and ANGL
must match, i.e. if COS is REAL, then ANGL must be
REAL.

⁄ƒƒƒƒƒƒƒƒƒø
≥ ADD ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 SUM√
≥ ≥
¥IN2 ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

IN1 (NUMERIC or TIME duration) - addend

IN2 (same type as IN1) - addend

Outputs: OK (BOOL) - execution completed without error

SUM (same type as IN1) - sum of addends

X IN1
+ Y + IN2

Z SUM
Chapter 2 Function/Function Block Description 2-9

AND
AND
And Binary/AND

ADD(IN1 := <<BITWISE>>, IN2 := <<BITWISE>>, OK => <<BOOL>>, OUT
=> <<BITWISE>>)

The AND function ands the variable or constant at IN1 with the variable or con-
stant at IN2, and places the results in the variable at OUT. This is an extensible
function which can AND up to 17 inputs.

The AND function places a one in bit x of the output variable when bit x of all
input variables (first variable and second variable and, etc.) equals 1. In all other
cases (bit x of one or more operands equals 0), a 0 is placed in bit x of the output
variable.

 Example of AND function (on three inputs)

⁄ƒƒƒƒƒƒƒƒƒø
≥ AND ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

IN1 (BITWISE) - number to be ANDed

IN2 (same type as IN1) - number to be ANDed

Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN1) - ANDed number

11000011 value at IN1
 11111111 value at IN2
10001111 value at IN3
10000011 value at OUT
2-10 Chapter 2 Function/Function Block Description

ANLGINIT
ANLGINIT
Analog Output Initialization Io/ANLGOUT

ANLGINIT(RACK := <<USINT>>, SLOT := <<USINT>>, OK => <<BOOL>>,
ERR => <<USINT>>)

The ANLGINIT function is used to initialize either a ±10 VDC output module, a
4-20 mA output module, a block 4-20 mA output module, or a block ±10 VDC
output module.

The input value at RACK specifies the rack in which the module resides. For a
standard analog output module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For a block analog output module, RACK must be set to 100.

For an MMC, MMC-D64, or MMC-DSA, RACK must be set to 0.

For an MMC for PC analog output, RACK must be set to 200.

For the standard analog output module, the input value at SLOT (3 up to 13) spec-
ifies in which slot the module resides. Slots are numbered left to right when facing
the PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the
CPU or I/O driver module.

For block analog output modules, the input value at SLOT (1 - 77) is set to 1 for
the module connected to the PiC CPU, 2 for the module connected to module #1, 3
for the module connected to module #2, etc.

For the MMC, SLOT must be set to 1.

For the MMC-Plus, SLOT may be set to 1, 3, 4, 5, or 6.

For an MMC-D64 or MMC-DSA, SLOT may be set to 3, 4, 5, or 6.

For an MMC for PC ASIU, the slot must be the ASIU number. The valid range is
(1 - 8).

⁄ƒƒƒƒƒƒƒƒƒø
≥ ANLGINIT≥
≥ ≥
¥EN OK√
≥ ≥
¥RACK ERR√
≥ ≥
¥SLOT ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

RACK (USINT) - identifies rack where the module resides

SLOT (USINT) - identifies slot where the module resides
or identifies the MMC for PC ASIU number

Outputs: OK (BOOL) - execution completed without error

ERR (USINT) - ≠ 0 if and only if error occurs
Chapter 2 Function/Function Block Description 2-11

ANLGINIT
If an error occurs the output at OK is not energized; output at ERR equals 1 - 4:

Output ±10 VDC Module

If the channels on the output ±10 VDC module will be used for open loop control
only, then it is necessary to initialize the module with the ANLGINIT function. It
is not necessary to enter a user-defined setup function containing all the setup data
needed for closed loop control or input only axes.

If some of the channels are used for closed loop control or input only and some for
output only, then the servo initialization procedure is followed and the ANLGINIT
function is not used.

Output 4-20 mA Module

The ANLGINIT function must always be called to initialize the 4-20mA module
and the block 4-20 mA output module.

ERR Description
1 The input at RACK is out of range
2 The input at SLOT is out of range
3 Not used
4 The module at the location specified is not an analog output module or

the MMC for PC ASIU does not exist
2-12 Chapter 2 Function/Function Block Description

ANLG_OUT
ANLG_OUT
Analog Output Io/ANLGOUT

ANLG_OUT(RACK := <<USINT>>, SLOT := <<USINT>>, CHAN :=
<<USINT>>, VALU := <<INT>>, OK => <<BOOL>>, OPEN => <<BOOL>>)

The ANLG_OUT function identifies the rack and slot locations of the ±10 VDC
output module and the channel (1 - 8), the 4-20 mA output module and the channel
(1 - 6), the block 4-20 mA output module and the channel (1 - 4), or the ±10 VDC
output block module to be used.

The input value at RACK specifies the rack in which the module resides. For a
standard analog output module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For block analog output modules, RACK must be set to 100.

For an MMC, MMC-D64, or MMC-DSA analog output, RACK must be set to 0.

For an MMC for PC analog output, RACK must be set to 200.

For the standard analog output module, the input value at SLOT (3 up to 13) spec-
ifies in which slot the module resides. Slots are numbered left to right when facing
the PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the
CPU or I/O driver module.

⁄ƒƒƒƒƒƒƒƒƒø
≥ ANLG_OUT≥
≥ ≥
¥EN OK√
≥ ≥
¥RACK OPEN√
≥ ≥
¥SLOT ≥
≥ ≥
¥CHAN ≥
≥ ≥
¥VALU ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

RACK (USINT) - identifies rack where the module
resides

 SLOT (USINT) - identifies slot where the module
resides or identifies the MMC for PC number

CHAN (USINT) - identifies channel

VALU (INT) - output value (entered in output units as
defined below)

Outputs: OK (BOOL) - execution completed without error

OPEN (BOOL) - set if the current loop is opened
(applies to 4-20mA module only)
Chapter 2 Function/Function Block Description 2-13

ANLG_OUT
For block analog output modules, the input value at SLOT (1 - 77) is set to 1 for
the module connected to the PiC CPU, 2 for the module connected to module #1, 3
for the module connected to module #2, etc.

For an MMC analog output, SLOT must be set to 1.

For the MMC-Plus, SLOT may be set to 1, 3, 4, 5, or 6.

For an MMC-D64 or MMC-DSA, SLOT may be set to 3, 4, 5, or 6.

For the MMC for PC ASIU, the SLOT must be the ASIU number. Valid range is
(1-8).

The input value at CHAN (1 - 8 for the output ±10 VDC module, 1 - 6 for the 4-20
mA module, and 1 - 4 for the block 4-20 mA module, the block input/output ana-
log module, the MMC, the MMCD64, and the MMC for PC ASIU) specifies the
number of the channel to write.

PiC900/PiC90 Output ±10V DC Module

The analog output value at VALU is entered in ±10V DC output units according to
the chart below:

There are 2979 output units per volt. Use this number to calculate the number of
analog output units you need for any voltage not listed above between ±11 volts.

The OPEN output is never set with an analog output module.

Enter ±10VDC output units to get Output volts
+32767 +11V

+29790 +10V

+14894 +5V

0 0V

-14894 -5V

-29790 -10V

-32767 -11V
2-14 Chapter 2 Function/Function Block Description

ANLG_OUT
MMC, MMC-D64, MMC-DSA, MMC for PC ASIU, Block Output ±10 VDC Module, and
Block Input/Output Analog Module

The analog output value at VALU is entered in ±10 VDC output units according to
the chart below:

There are 3276.7 output units per volt. Use this number to calculate the number of
analog output units you need for any voltage not listed above between ±10 volts.

The OPEN output is never set with an analog output module.

Output 4-20 mA Module

The analog output value at VALU is entered in 4-20mA output units according to
the chart below:

There are 2048 output units per mA. Use this number to calculate the number of
output units you need for any current not listed above between 4 and 20 mA.

Enter ±10VDC output units to get Output volts
+32767 +10V

+16384 +5V

0 +0V

-16384 -5V

-32767 -10V

Enter 4-20ma output units to get Output mA
+32767 +20mA

+22527 +15mA

+12288 +10mA

0 to -32768 4mA
Chapter 2 Function/Function Block Description 2-15

ANLG_OUT
The OPEN output is set with a 4-20mA module whenever the current loop is
opened. This will occur when the load impedance exceeds the resistance calcu-
lated as follows:

For the Block 4-20 mA Output Module:

 For the 4-20 mA Module:

�
�� �����

����
----------------------------- ������

�
�� ��	��

����
----------------------------- ������
2-16 Chapter 2 Function/Function Block Description

ARTDCHIT
ARTDCHIT
Analog RTD Channel Initialization Io/RTDTEMP

ARTDCHIT(RACK := <<USINT>>, SLOT := <<USINT>>, CHAN :=
<<USINT>>, RNGE := <<USINT>>, OK => <<BOOL>>, ERR =>
<<USINT>>)

The ARTDCHIT function initializes a channel on the analog input RTD (resistance
temperature detector) module. It establishes the sensitivity of the channel.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 - 6) specifies the number of the channel to read.

The input at RNGE (1 - 3) specifies the temperature range at this channel.

⁄ƒƒƒƒƒƒƒƒƒø
≥ ARTDCHIT≥
≥ ≥
¥EN OK√
≥ ≥
¥RACK ERR√
≥ ≥
¥SLOT ≥
≥ ≥
¥CHAN ≥
≥ ≥
¥RNGE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

RACK (USINT) - rack where module resides

SLOT (USINT) - slot where module resides

CHAN (USINT) - channel to initialize

RNGE (USINT) - temperature range

Outputs:OK (BOOL) - energized if and only if ERR = 0

ERR (USINT) - ≠ 0 if and only if error occurs

Value to enter
at RNGE

50 Ohm RTD 100 Ohm RTD

1 N/A -200°C to 50°C
(-328°F to1562°F)

2 -200°C to 850°C
(-328°to1562°F)

-200°C to 266°C
(-328°F to 510.85°F)

3 -200 to 266°C
(-328°F to 510.8°F)

-200°C to 0°C
(-328°F to 32°F)
Chapter 2 Function/Function Block Description 2-17

ARTDCHIT
If an error occurs, the OK output will not be energized and the ERR output will
return the error code. See Appendix C Temperature Function Errors for the list of
error codes.

NOTE: This function works in conjunction with the ARTDMDIT and ARTD-
CHRD functions.

The ARTDCHIT function must be executed once (the input at EN should be a one-
shot) after the ARTDMDIT function is executed, and before the ARTDCHRD
function is executed.
2-18 Chapter 2 Function/Function Block Description

ARTDCHRD
ARTDCHRD
Analog RTD Channel Read Io/RTDTEMP

<<INSTANCE NAME>>:ARTDCHRD(EN := <<BOOL>>, RACK :=
<<USINT>>, SLOT := <<USINT>>, CHAN := <<USINT>>, FAHR :=
<<BOOL>>, TYPE := <<USINT>>, OK => <<BOOL>>, VALU => <<INT>>,
ERR => <<USINT>>);

The ARTDCHRD function block must be declared in the software declaration
table. You assign a name (NAME) to it at that time. This function block outputs
the temperature sensed at a channel of the RTD module.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 - 6) specifies the number of the channel to read.

The input at FAHR specifies degrees Fahrenheit if it is enabled. If it is not enabled
then the output will be in degrees Celsius. (F = 1.8C + 32)

The input at TYPE (0 - 1) specifies the type of RTD you are using.

0 = 50 Ohm RTD

1 = 100 Ohm RTD

The output at VALU holds the temperature in the degrees * 10 specified.

⁄ƒNAME ƒƒƒø
≥ ARTDCHRD≥
≥ ≥
¥EN OK√
≥ ≥
¥RACK VALU√
≥ ≥
¥SLOT ERR√
≥ ≥
¥CHAN ≥
≥ ≥
¥FAHR ≥
≥ ≥
¥TYPE ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

RACK (USINT) - rack where module resides

SLOT (USINT) - slot where module resides

CHAN (USINT) - channel to read

FAHR (BOOL) - Fahrenheit or Celsius

TYPE (USINT) - 50 Ohm or 100 Ohm RTD

Outputs:OK (BOOL) -energized if and only if ERR = 0

VALU (INT) - temperature

ERR (USINT) - ≠ 0 if and only if error occurs
Chapter 2 Function/Function Block Description 2-19

ARTDCHRD
If an error occurs, the OK output will not be energized and the ERR output will
return the error code. See Appendix C Temperature Function Errors for the list of
error codes.

NOTE: Values outside the temperature limits (defined by ARTDCHIT) may be
read but should not be used for control purposes.

NOTE: This function works in conjunction with the ARTDCHIT and ARTDM-
DIT functions.

The ARTDCHIT function must be executed once after the ARTDMDIT function is
executed, and before the ARTDCHRD function block is executed.
2-20 Chapter 2 Function/Function Block Description

ARTDMDIT
ARTDMDIT
Analog RTD Module Initialization Io/RTDTEMP

ARTDMDIT(RACK := <<USINT>>, SLOT := <<USINT>>, µSEC :=
<<UINT>>, OK => <<BOOL>>, ERR => <<USINT>>)

The ARTDMDIT function initializes an RTD module. It establishes the frequency
at which the module reads its inputs.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input at µSEC (2000 - 65535) specifies in microseconds how frequently the
module samples the input (the sample frequency in hertz equals 106/µSEC).

If an error occurs, the OK output will not be energized and the ERR output will
return the error code. See Appendix C Temperature Function Errors for the list of
error codes.

NOTE: This function works in conjunction with the ARTDCHIT and ARTD-
CHRD functions.

The ARTDCHIT function must be executed once after the ARTDMDIT function is
executed, and before the ARTDCHRD function block is executed.

⁄ƒƒƒƒƒƒƒƒƒø
≥ ARTDMDIT≥
≥ ≥
¥EN OK√
≥ ≥
¥RACK ERR√
≥ ≥
¥SLOT ≥
≥ ≥
¥uSEC ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

RACK (USINT) - rack where module resides

SLOT (USINT) - slot where module resides

µSEC (UINT) - frequency of read

Outputs: OK (BOOL) - energized if and only if ERR = 0

ERR (USINT) - ≠ 0 if and only if an error occurs
Chapter 2 Function/Function Block Description 2-21

ASIN
ASIN
Arc Sine Arith/TRIG

ASIN(SIN := <<REAL/REAL>>, OK => <<BOOL>>, ANGL => <<REAL/
LREAL>>)

The ASIN function calculates the arc sine of the sine entered at SIN. The result is
the angle at ANGL.

⁄ƒƒƒƒƒƒƒƒƒø
≥ ASIN ≥
≥ ≥
¥EN OK√
≥ ≥
¥SIN ANGL√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

SIN (REAL/LREAL) - sine value

Outputs: OK (BOOL) - execution completed without error

ANGL (REAL/LREAL) - angle calculated (in radians)

NOTE: The data types entered at SIN and ANGL must
match, i.e. if SIN is REAL, then ANGL must be
REAL.
2-22 Chapter 2 Function/Function Block Description

ASSIGN
ASSIGN
Assignment Io/COMM

<<INSTANCE NAME>>:ASSIGN(EN := <<BOOL>>, COMN := <<MEMORY
AREA>>, NAMZ := <<STRING>>, RACK := <<USINT>>, SLOT :=
<<USINT>>, CHAN := <<USINT>>, OK => <<BOOL>>, FAIL =>
<<BOOL>>, ERR => <<INT>>);

The ASSIGN function block is designed to work with the two or four channel
serial communications module. It assigns the name at the NAMZ input to a serial
communication device at the location designated at RACK, SLOT, and CHAN.

The name you place in the string at NAMZ can have up to eight characters and is
entered in the following format. For the example, the device is called Channel1.

CHANNEL1:$00

This name is then used at the NAMZ input of the OPEN function block to assign a
handle to the device. The remaining I/O communication function blocks use this
handle to identify the device.

⁄ƒƒ NAMEƒƒø
≥ ASSIGN ≥
≥ ≥
¥EN OK√
≥ ≥
¥COMN FAIL√
≥ ≥
¥NAMZ ERR√
≥ ≥
¥RACK ≥
≥ ≥
¥SLOT ≥
≥ ≥
¥CHAN ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

COMN (STRUCT) - common to the ASSIGN function
blocks. Used by the software to count the number of
assignments made by the function block. The structure
has one member with data type INT (the default).

NAMZ (STRING) - name of device

RACK (USINT) - master rack where serial communi-
cation module resides (0)

SLOT (USINT) - slot where module resides (3-13)

CHAN (USINT) - channel on the module (1-4)

Outputs: OK (BOOL) - execution complete

FAIL (BOOL) - energized if ERR= 1-7; deenergized if
ERR = 0

ERR (INT) - 0 if no errors occur; 1-7 if an error occurs
Chapter 2 Function/Function Block Description 2-23

ASSIGN
The important note below provides a list of names that cannot be used at NAMZ
input.

The input value at RACK (0) specifies the rack in which the module resides. The
master or CPU rack is #0. The serial communications module is always located in
the master rack.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 - 4) specifies the number of the channel on the mod-
ule to read.

After the ASSIGN function block is called, each channel on the serial communica-
tions module functions like the USER port on the CPU module.

The COMN input is a structure declared in the software declarations table with one
member (INT data type). This is used by the software to count the occurrences of
the ASSIGN function block. If you exceed the number allowed by the serial com-
munications module, an error will occur.

The errors that can occur at the ERR output are listed below.

IMPORTANT

The following device names are reserved and may not be used in the
ASSIGN function block at the NAMZ input.

USER, RAMDISK, ERR, AUXCOM, CO, PRN, PICPRO,
FMDISK, AUX, MONCON, CI

ERR Description
0 No error
1 Attempted to assign more than four devices
2 Name length either equals zero characters or has more than

10 characters including the two characters ":" and "$00"
3 Device creation error, operating system could not create

this device
4 Vector not initialized;

the system EPROM does not support the ASSIGN func-
tion.

5 Hardware already assigned
6 Not enough channels;

attempted to assign channel 3 or 4 to a two channel mod-
ule.

7 No module at assigned location
2-24 Chapter 2 Function/Function Block Description

ATAN
ATAN
Arc Tangent Arith/TRIG

ATAN(TAN := <<REAL/LREAL>>, OK => <<BOOL>>, ANGL => <<REAL/
LREAL>>)

The ATAN function calculates the arc tangent of the tangent entered at TAN. The
result is the angle at ANGL. The range of ANGL is:

⁄ƒƒƒƒƒƒƒƒƒø
≥ ATAN ≥
≥ ≥
¥EN OK√
≥ ≥
¥TAN ANGL√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

TAN (REAL/LREAL) - tangent value

Outputs: OK (BOOL) - execution completed without error

ANGL (REAL/LREAL) - angle calculated (in radians)

NOTE: The data types entered at TAN and ANGL
must match, i.e. if TAN is REAL, then ANGL must be
REAL.

π
�
---� ����

π
�
---≤ ≤
Chapter 2 Function/Function Block Description 2-25

ATMPCHIT
ATMPCHIT
Analog Temperature Channel Initialization Io/JKTHERM

ATMPCHIT(RACK := <<USINT>>, SLOT := <<USINT>>, CHAN :=
<<USINT>>, RNGE := <<USINT>>, OK => <<BOOL>>, ERR =>
<<USINT>>)

The ATMPCHIT function initializes a channel on a J-K Thermocouple module. It
establishes the sensitivity for the channel.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 -12) specifies the number of the channel to read.

The input at RNGE (1 - 4) specifies the temperature or voltage range that can be
read (the following table also applies to the BTMPCHIT function block) where:

⁄ƒƒƒƒƒƒƒƒƒø
≥ ATMPCHIT≥
≥ ≥
¥EN OK√
≥ ≥
¥RACK ERR√
≥ ≥
¥SLOT ≥
≥ ≥
¥CHAN ≥
≥ ≥
¥RNGE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

RACK (USINT) - rack where module resides

SLOT (USINT) - slot where module resides

CHAN (USINT) - channel on the module

RNGE (USINT) - range of temperatures or channel sensi-
tivity

Outputs: OK (BOOL) - energized if and only if ERR = 0

ERR (USINT) - ≠ 0 if and only if an error occurs

Value to
enter

Range of values for J
type thermocouple*

Range of values for K
type thermocouple*

1 -10° C to 280° C

14° F to 536° F

-35° C to 415° C

-31° F to 779° F
2 -35° C to 620° C

-31° F to 1148° F

-80° C to 820° C

-112° F to 1508° F
3 -150° C to 1200° C

-238° F to 2192° F

-200° C to 1300° C

-328° F to 2372° F
4 ± 100 mV
2-26 Chapter 2 Function/Function Block Description

ATMPCHIT
*The temperature ranges apply over the temperature rating of the module. Tem-
perature values outside the specified range should not be used for control purposes.

If an error occurs, the OK output will not be energized and the ERR output will
return the error code. See Appendix C Temperature Function Errors for the list of
ERR errors.

NOTE: This function works in conjunction with the ATMPMDIT and
ATMPCHRD functions.

The ATMPCHIT function must be executed once (the input at EN should be a one-
shot) after the ATMPMDIT function is executed, and before the ATMPCHRD
function block is executed.
Chapter 2 Function/Function Block Description 2-27

ATMPCHRD
ATMPCHRD
Analog Temperature Channel Read Io/JKTHERM

<<INSTANCE NAME>>:ATMPCHRD(EN := <<BOOL>>, RACK :=
<<USINT>>, SLOT := <<USINT>>, CHAN := <<USINT>>, FAHR :=
<<BOOL>>, TYPE := <<USINT>>, OK => <<BOOL>>, VALU => <<INT>>,
ERR => <<USINT>>);

The ATMPCHRD function block must be declared in the software declaration
table. You assign a name (NAME) to it at that time. This function block outputs the
temperature or the voltage range sensed at a channel of the J-K Thermocouple
module.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input value at CHAN (1 - 12) specifies the channel to be sampled or read.

The input at FAHR specifies degrees Fahrenheit if it is enabled. If it is not enabled
then the output will be in degrees Celsius. (F = 1.8C + 32)

The input at TYPE (0 - 2) specifies the type of thermocouple or specifies milli-
volts.

0 = J type

1 = K type

2 = mV

⁄ƒ NAME ƒø
≥ ATMPCHRD≥
≥ ≥
¥EN OK√
≥ ≥
¥RACK VALU√
≥ ≥
¥SLOT ERR√
≥ ≥
¥CHAN ≥
≥ ≥
¥FAHR ≥
≥ ≥
¥TYPE ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

RACK (USINT) - rack where module resides

SLOT (USINT) - slot where module resides

CHAN (USINT) - channel on the module

FAHR (BOOL) - Fahrenheit or Celsius

TYPE (USINT) - type of thermocouple or mV

Outputs: OK (BOOL) - energized if and only if ERR = 0

VALU (INT) - temperature or digital value of
mV

ERR (USINT) - ≠ 0 if and only if an error
occurs
2-28 Chapter 2 Function/Function Block Description

ATMPCHRD
If J or K type has been selected, then the VALU output holds the temperature (in
tenth of degrees) in either F or C.

If mV is selected, the VALU output holds the interpolated digital value (-2048 to
2047) of the analog signal (-100 to +100mV).

If an error occurs, the OK output will not be energized, the VALU output will be
undefined and the ERR output will return the error code. See Appendix C Temper-
ature Function Errors for the list of ERR errors.

NOTE: Values outside the temperature limits (defined by ATMPCHIT) can be
read but should not be used for control purposes.

NOTE: This function works with the ATMPCHIT and ATMPMDIT functions.

The ATMPCHIT function must be executed once after the ATMPMDIT function is
executed, and before the ATMPCHRD function block is executed.

Counts
at
VALU

mV The following formula can be used to calculate the
mV (n) value from the counts at the VALU output.

For example, if the value at VALU was 1023 counts, then the
mV are calculated as follows:

or

n = +49.98 mV

-2048

.

.

.

.

.

+2047

-100

.

.

n

.

.

+100

� ���� ��
��()�[] ��� ����()�[]
��
� ��
��()�
--------------------------------------× ����()�

� ���� ��
�[] ���

���
------------× �����
Chapter 2 Function/Function Block Description 2-29

ATMPMDIT
ATMPMDIT
Analog Temperature Module Initialization Io/JKTHERM

ATMPMDIT(RACK := <<USINT>>, SLOT := <<USINT>>, uSEC :=
<<(UINT)>>, OK => <<BOOL>>, ERR => <<USINT>>)

The ATMPDIT function initializes a J-K Thermocouple module. It establishes the
frequency at which the module reads its inputs.

The input value at RACK specifies the rack in which the module resides. The mas-
ter or CPU rack is #0. Expansion racks are numbered consecutively from one
where # 1 is the rack connected to the master, # 2 is the rack connected to # 1, etc.

The input value at SLOT (3 up to 13) specifies in which slot the module resides.
Slots are numbered left to right when facing the PiC. Slot 1 is reserved for the
CSM module. Slot 2 is reserved for either the CPU or I/O driver module.

The input at uSEC (5000 - 65535) specifies in microseconds how frequently the
module samples the input. (The sample frequency in hertz equals 106

/uSEC).

If an error occurs, the OK output will not be energized and the ERR output will
return the error code. See Appendix C Temperature Function Errors for the list of
ERR errors.

NOTE: This function works in conjunction with the ATMPCHIT and
ATMPCHRD functions.

The ATMPCHIT function must be executed once after the ATMPMDIT function is
executed, and before the ATMPCHRD function block is executed.

⁄ƒƒƒƒƒƒƒƒƒø
≥ ATMPMDIT≥
≥ ≥
¥EN OK√
≥ ≥
¥RACK ERR√
≥ ≥
¥SLOT ≥
≥ ≥
¥uSEC ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

RACK (USINT) - rack where module resides

SLOT (USINT) - slot where module resides

uSEC (UINT) - frequency of read

Outputs: OK (BOOL) - energized if and only if ERR = 0

ERR (USINT) - ≠ 0 if and only if an error occurs
2-30 Chapter 2 Function/Function Block Description

A_DT_T
A_DT_T
Add date and time to time Arith/DATETIME

A_DT_T(IN1 := <<DATE_AND_TIME>>, IN2 := <<TIME>>, OK =>
<<BOOL>>, OUT => <<DATE_AND_TIME>>)

The A_DT_T function adds the value of the constant or variable at IN1 to the
value of the constant or variable at IN2. The result is a DATE_AND_TIME value
that is put in the variable at OUT.

Table 2-1. Examples of Add DATE_and_TIME to TIME

⁄ƒƒƒƒƒƒƒƒƒø
≥ A_DT_T ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN1 (DATE_AND_TIME) - addend

IN2 (TIME duration) - addend

Outputs: OK (BOOL) - execution completed without error

OUT (DATE_AND_TIME) - result of add

Value at IN1 Value at IN2 Value at OUT
DT#1990-09-25-00:00:00 T#239s DT#1990-09-25-00:03:59
DT#1991-07-04-14:14:23 T#23d10h22m DT#1991-07-28-00:36:23
Chapter 2 Function/Function Block Description 2-31

A_IN_MMC
A_IN_MMC
Analog input for the MMC Io/ANLGIN

A_IN_MMC(OK => <<BOOL>>, VALU => <<INT>>)

NOTE: This function can only be used with the MMC, not a PiC CPU. The OK will
not be set if a PiC CPU is selected.

The A_IN_MMC function outputs the digital value of an analog input for the
MMC. The VALU output contains the counts of the analog input. You can convert
these counts to a voltage value using the formula shown below.

⁄ƒƒƒƒƒƒƒƒƒø
≥ A_IN_MMC≥
≥ ≥
¥EN OK√
≥ ≥
≥ VALU√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

Outputs: OK (BOOL) - execution completed

VALU (INT) - digital value of analog input

Counts at
VALU

V

+2047

.

+1024

.

0

.

-1024

.

-2048

+10

.

+5

.

0

.

+5

.

-10

The following formula can be used to calcu-
late the voltage value from the counts at the
VALU output.

������� ����
���

��
������

 �
2-32 Chapter 2 Function/Function Block Description

A_INCHIT
A_INCHIT
Analog Input Channel Initialize Io/ANLGIN

A_INCHIT(RACK := <<USINT>>, SLOT := <<USINT>>, CHAN :=
<<USINT>>, RNGE := <<USINT>>, BIPO := <<BOOL>>, 4mA O := BOOL,
10ms := <<BOOL>>, 100ms := <<BOOL>>, 100ms := <<BOOL>>, OK =>
<<BOOL>>, ERR => <<USINT>>)

The A_INCHIT function initializes a channel on an analog input module. It estab-
lishes the range of voltage or current to be sampled and the amount of hardware
filter to be applied.

This function is not required when using the MMC analog input, an MMC for PC
ASIU analog input, an MMCD64 analog input, or an analog input on a Block
Input/Output Analog Module.

The input value at RACK specifies the rack in which the module resides. For a
standard analog input module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For a block analog input module, RACK must be set to 100.

For a standard analog input module, the input value at SLOT (3 up to 13) specifies
in which slot the module resides. Slots are numbered left to right when facing the
PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the CPU
or I/O driver module.

For block analog input modules, the input value at SLOT (1 - 77) is set to 1 for the
module connected to the PiC CPU, 2 for the module connected to module #1, 3 for
the module connected to module #2, etc.

⁄ƒƒƒƒƒƒƒƒƒø
≥ A_INCHIT≥
≥ ≥
¥EN OK√
≥ ≥
¥RACK ERR√
≥ ≥
¥SLOT ≥
≥ ≥
¥CHAN ≥
≥ ≥
¥RNGE ≥
≥ ≥
¥BIPO ≥
≥ ≥
¥4mAO ≥
≥ ≥
¥10ms ≥
≥ ≥
¥100ms ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

RACK (USINT) - rack where module resides

SLOT (USINT) - slot where module resides

CHAN (USINT) - channel to initialize

RNGE (USINT) - voltage range

BIPO (BOOL) - bipolar or unipolar

4mAO (BOOL) - 4/20 mA offset

10ms (BOOL) - noise filter

100ms (BOOL) - noise filter

Outputs: OK (BOOL) - energized if and only if ERR = 0

ERR (USINT) - ≠ 0 if and only if error occurs
Chapter 2 Function/Function Block Description 2-33

A_INCHIT
The input value at CHAN (1 - 8 for the standard analog input module and 1 - 4 for
the block analog input module) specifies the number of the channel to read.

The input at RNGE (1 - 8 for the standard analog input module and 1 - 2 for the
block analog input module) specifies the input voltage range at this channel as
shown below.

The input at BIPO specifies bipolar if enabled. It specifies unipolar if it is not
enabled.

The input at 4mAO specifies that current is to be sampled. To read current (instead
of voltage) it is required that:

The input at 4mAO should have a wire or short connected to it for 4 to 20mA. The
input at 4mAO should not be enabled for 0 to 20 mA. These inputs are pictured
below.

 The inputs at 10ms and 100ms specify the amount of noise filter. If neither input
is enabled then the default filter of 1 millisecond is applied. If the input at 10ms is
enabled then a 10ms filter is applied. If the input at 100ms is enabled then a 100ms
filter is applied. If both inputs are enabled then a 110ms filter is applied.

Enter Unipolar Range Bipolar Range
1 0 - 10V -10 - 10V
2 0 - 5V -5 - 5V
3 0 - 2.5V -2.5 - 2.5V
4 0 - 1.25V -1.25 - 1.25V
5 0 - 1V -1 - 1V
6 0 - .5V -.5 - .5V
7 0 - .25V -.25 -.25V
8 0 - .125V -.125 - .125V

1. A jumper be connected from the (-) input to the 250 ohm resistor input, as
described in the Hardware Manual.

2. The input at RNGE equal 2 and the input at BIPO be a normally open con-
tact that is never set.

4 - 20 mA 0 - 20 mA
2-34 Chapter 2 Function/Function Block Description

A_INCHIT
Note: The 10, 100, and 110 ms filters are not available for the block analog input
modules.

If an error occurs the output at OK is not energized and the output at ERR equals 1
- 7:

Note: This function works in conjunction with the A_INMDIT (module initial-
ize) and A_INCHRD (channel read) functions.

The A_INMDIT and the A_INCHIT functions must execute one time
(the input at EN should be a one-shot), in either order, before the
A_INCHRD function block executes.

ERR Description
1 The input at RACK is out of range.
2 A rack hardware fault occurred.
3 The input at SLOT is out of range.
4 The module at the location specified is not an analog input module.
5 The input at CHAN is out of range.
6 There is a channel hardware fault.
7 The input at RANG is out of range.
Chapter 2 Function/Function Block Description 2-35

A_INCHRD

A_INCHRD
Analog Input Channel Read Io/ANLGIN

<<INSTANCE NAME>>:A_INCHRD(EN := <<BOOL>>, RACK :=
<<USINT>>, SLOT := <<USINT>>, CHAN := <<USINT>>, OK =>
<<BOOL>>, VALU => <<INT>>, ERR => <<USINT>>);

The A_INCHRD function block outputs the digital value of an analog input to a
channel on the analog input module.

The input value at RACK specifies the rack in which the module resides. For a
standard analog input module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For block analog input modules, RACK must be set to 100.

For an MMC or MMCD64 analog input, RACK must be set to 0.

For an MMC for PC ASIU analog input, RACK must be set to 200.

For a standard analog input module, the input value at SLOT (3 up to 13) specifies
in which slot the module resides. Slots are numbered left to right when facing the
PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the CPU
or I/O driver module.

For block analog input modules, the input value at SLOT (1 - 77) is set to 1 for the
module connected to the PiC CPU, 2 for the module connected to module #1, 3 for
the module connected to module #2, etc.

For the MMC analog input, SLOT must be set to 1.

For an MMC-Plus analog input, SLOT may be set to 1, 3, 4, 5, or 6.

For an MMCD64 analog input, SLOT may be set to 3, 4, 5, or 6.

For the MMC for PC ASIU, SLOT must be the ASIU number. The valid range is
(1 - 8).

⁄ƒNAME ƒƒƒø
≥ A_INCHRD≥
≥ ≥
¥EN OK√
≥ ≥
¥RACK VALU√
≥ ≥
¥SLOT ERR√
≥ ≥
¥CHAN ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

RACK (USINT) - rack where module resides

SLOT (USINT) - slot where module resides or the MMC
for PC ASIU number

CHAN (USINT) - channel to read

Outputs: OK (BOOL) -energized if and only if ERR = 0

VALU (INT) - digital value of analog input

ERR (USINT) - ≠ 0 if and only if error occurs
2-36 Chapter 2 Function/Function Block Description

A_INCHRD
The input value at CHAN (1 - 8 for a standard analog input module, 1 - 4 for block
analog input modules, 1 for an MMC, 1 for an MMCD64, and 1 for the MMC for
PC ASIU) specifies the number of the channel to read.

The output at VALU holds the digital value of the signal occurring when this func-
tion block is enabled. The range of values is shown below:

This value is interpolated for the voltage or current range specified by the
A_INCHIT function.

Note: Analog inputs on the MMC and the MMC-Plus are -10V to +10V, 12-bit
resolution, bipolar inputs. The MMC has 1 analog input. The MMC-Plus
and the MMCD64 have 1 analog input per servo interface board.

Note: The analog input on the MMC for PC ASIU is a -10V to +10V, 12-bit reso-
lution, bipolar input. There is 1 analog input per ASIU.

Note: Analog inputs on a Block Input/Output Analog Module are -10V to +10V,
14-bit resolution, bipolar inputs.

If an error occurs the output at OK is not energized and the output at ERR = 1 - 7.

NOTE: This function works in conjunction with the A_INMDIT (module initial-
ize) and A_INCHIT (channel initialize) functions.

The A_INMDIT and A_INCHIT functions must execute one time, in either order,
before the A_INCHRD function block executes (see the descriptions for
A_INMDIT and A_INCHIT for cases in which these functions are not required).

Analog Input Module Unipolar Bipolar
12-bit resolution 0 to 4095 -2048 to 2047
14-bit resolution 0 to 16383 -8192 to 8191

ERR Description
1 The input at RACK is out of range.
2 A rack hardware fault occurred.
3 The input at SLOT is out of range.
4 The module at the location specified is not an analog input module.
5 The input at CHAN is out of range.
6 Either there is a channel hardware problem, the module was not initial-

ized, or the module is being continually initialized.
7 Initialization is not complete.
Chapter 2 Function/Function Block Description 2-37

A_INCHRD
Examples

The information below will help you to calculate the device signal if you know the
value at VALU or to calculate the VALU if you know the device signal.

*The voltage ranges for unipolar and bipolar inputs are listed below.

Input Range Resolution Device Signal VALU=
4-20mA 12 bits I = 16mA (VALU/4095) + 4mA (I - 4mA) 4095/16mA
4-20mA 14 bits I = 16mA (VALU/16383) + 4mA (I - 4mA) 16383/16mA
0-20mA 12 bits I = 20mA (VALU/4095) I (4095/20mA)
0-20mA 14 bits I = 20mA (VALU/16383) I (16383/20mA)

Any voltage 12 bits V = Range* (VALU/4095) V (4095/Range*)
range* 14 bits V = Range* (VALU/16383) V (16383/Range*)

Unipolar Input Range Bipolar Input Range
0 to 10 V 10 V -10 to 10 V 20V
0 to 5 V 5 V -5 to 5 V 10 V

0 to 2.5 V 2.5 V -2.5 to 2.5 V 5V
0 to 1.25 V 1.25 V -1.25 to 1.25 V 2.5 V

0 to 1 V 1 V -1 to 1 V 2 V
0 to 0.5 V 0.5 V -0.5 to 0.5 V 1 V

0 to 0.25 V 0.25 V -0.25 to 0.25 0.5 V
0 to 0.125 V 0.125 V -0.125 to 0.125 V 0.25 V
2-38 Chapter 2 Function/Function Block Description

A_INCHRD
For a 12-bit unipolar example, if the value at VALU was 2948 counts and the range is .125 (0
to .125), then the voltage is calculated as follows:

For a 14-bit unipolar example, if the value at VALU was 11796 counts and the range is .125 (0
to .125), then the voltage is calculated as follows:

For the 12-bit bipolar example, if the value at VALU was -1228 counts and the range is 10 (-5
to +5), then the voltage is calculated as follows:

For the 14-bit bipolar example, if the value at VALU was -4915 counts and the range is 10 (-5
to +5), then the voltage is calculated as follows:

For a 4-20 mA example, if the value at VALU was 2047 counts, then the current is calculated
as follows:

�
����� ��
�×

���
------------------------------- �������

�
����� ����	×

�	���
---------------------------------- �������

�
�� �����×

���
--------------------------- �����

�
��
����×
�	���

--------------------------- �����

� �	�� ��
�
���÷()
�� ������
Chapter 2 Function/Function Block Description 2-39

A_INMDIT
A_INMDIT
Analog Input Module Initialization Io/ANLGIN

A_INMDIT(RACK := <<USINT>>, SLOT := <<USINT>>, uSEC :=
<<UINT>>, OK => <<BOOL>>, ERR => <<USINT>>)

The A_INMDIT function initializes an analog input module when using a PiC
CPU. It establishes how frequently the module samples or reads voltage or current
input.

Note: This function is not required when using the MMC analog input, an
MMC for PC ASIU analog input, an MMCD64 analog input, or an ana-
log input on a Block Input/Output Analog Module.

The input value at RACK specifies the rack in which the module resides. For a
standard analog input module, the master or CPU rack is #0. Expansion racks are
numbered consecutively from one where # 1 is the rack connected to the master,
#2 is the rack connected to # 1, etc.

For a block analog input module, RACK must be set to 100.

For a standard analog input module, the input value at SLOT (3 up to 13) specifies
in which slot the module resides. Slots are numbered left to right when facing the
PiC. Slot 1 is reserved for the CSM module. Slot 2 is reserved for either the CPU
or I/O driver module.

For block analog input modules, the input value at SLOT (1 - 77) is set to 1 for the
module connected to the PiC CPU, 2 for the module connected to module #1, 3 for
the module connected to module #2, etc.

The input at uSEC (800 - 65535) specifies in microseconds how frequently the
module reads or samples the input. The sample frequency in hertz equals 106/
uSEC.

Note: When using the Servo Module Encoder with Analog Input or the block
analog input module the range is 800 - 32767.

⁄ƒƒƒƒƒƒƒƒƒø
≥ A_INMDIT≥
≥ ≥
¥EN OK√
≥ ≥
¥RACK ERR√
≥ ≥
¥SLOT ≥
≥ ≥
¥uSEC ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

RACK (USINT) - rack where module resides

SLOT (USINT) - slot where module resides

uSEC (UINT) - frequency of read

Outputs: OK (BOOL) -energized if and only if ERR = 0

ERR (USINT) - ≠ 0 if and only if an error occurs
2-40 Chapter 2 Function/Function Block Description

A_TOD_T
If an error occurs the output at OK is not energized and the value at
ERR equals 1 - 5:

NOTE: This function works in conjunction with the A_INCHIT (channel initial-
ize) and A_INCHRD (channel read) functions.

A_INMDIT and A_INCHIT must execute one time (the input at EN should be a
one-shot), in either order, before A_INCHRD executes.

A_TOD_T
Add time of day to time Arith/DATETIME

A_TOD_T(IN1 := <<TIME_OF_DAY>>, IN2 := <<TIME>>, OK =>
<<BOOL>>, OUT => <<TIME_OF_DAY>>)

The A_TOD_T function adds the value of the constant or variable at IN1 to the
value of the constant or variable at IN2. The result is a TIME_OF_DAY value that
is put in the variable at OUT. The number of days in the TIME value at IN2 must
equal 0 or an error occurs. Any value for milliseconds is truncated.

ERR Description
1 The input at RACK is out of range.
2 A rack hardware fault occurred.
3 The input at SLOT is out of range.
4 The module at the location specified is not an analog input module.
5 The input at uSEC is out of range.

⁄ƒƒƒƒƒƒƒƒƒø
≥ A_TOD_T ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN1 (TIME_OF_DAY) - addend

IN2 (TIME duration) - addend

Outputs: OK (BOOL) - execution complete

OUT (TIME_OF_DAY) - result of add

Examples of add TIME_OF_DAY to TIME
Value at IN1 Value at IN2 Value at OUT

TOD#11:43:12 T#0d4h10m36ms TOD#15:53:12
TOD#23:59:54 T#3s TOD#23:59:57
Chapter 2 Function/Function Block Description 2-41

BAT_OK?
BAT_OK?
Battery OK? Io/BAT_OK?

BAT_OK(OK => <<BOOL>>)

The BAT_OK? function tests the voltage level of the battery. While the battery
voltage level is normal, the OK output will be set. If the battery voltage level is
low, the OK output will be reset and will remain reset until power is cycled on the
control.

⁄ƒƒƒƒƒƒƒƒƒø
≥ BAT_OK? ≥
≥ ≥
¥EN OK√
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

Outputs: OK (BOOL) - set, if the battery voltage remains normal

reset, if the battery voltage is ever low
2-42 Chapter 2 Function/Function Block Description

BIO_PERF
BIO_PERF
Block I/O Performance Io/BIO_PERF

<<INSTANCE NAME>>:BIO_PERF(EN := <<BOOL>>, STRT := <<BOOL>>,
STOP := <<BOOL>>, PTR := <<ARRAY OF STRUCTURES>>, RETR :=
<<BOOL>>, QTY := <<USINT>>, OK => <<BOOL>>);

The BIO_PERF function block assists you in troubleshooting a block I/O system.
The function block monitors the number of good read/writes versus the number of
bad read/writes to the block modules. It also allows you to change the default num-
ber of four times that the system attempts to read/write a given block module
before a failure occurs.

As an example of troubleshooting, if one block module in your system has several
more retries than the others, check to see if the module is wired correctly or is
located near a source of excessive noise.

NOTE: You can decrease the effect of transient noise by increasing the retry
count. However, remember that excessive retries can result in system degradation.

⁄ƒƒNAME ƒƒø
≥BIO_PERF ≥
≥ ≥
¥EN OK√
≥ ≥
¥STRT ≥
≥ ≥
¥STOP ≥
≥ ≥
¥PTR ≥
≥ ≥
¥RETR ≥
≥ ≥
¥QTY ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STRT (BOOL) -starts the capture of performance
information

STOP (BOOL) -stops the capture of performance
information

PTR - a pointer to an array of structures holding per-
formance information for up to 77 block modules

RETR (BOOL) - enables the retry quantity

QTY (USINT) - number of retries for the system to use
when attempting to communicate with each block

Outputs:

OK (BOOL) - execution completed
Chapter 2 Function/Function Block Description 2-43

BIO_PERF
Data Structure Members

The members of the structure required for the array of structures at the PTR
input are described below.

The following ladder example illustrates how the BIO_PERF function block can
be incorporated into your ladder. Note that the retry quantity (QTY) is enabled
after the performance monitor has been enabled and consequently will take effect
during the second scan of the ladder.

IMPORTANT

The structure entered in the software declarations table for the PTR
input must have the members entered in the order listed in the table
that follows. The data type entered in the Type column for each mem-
ber of the structure must be as shown in order for the software to rec-
ognize the information.

Member Type Description
TOTREAD
(Total Reads)

UDINT The number of reads attempted for this block module

BADREAD
(Bad Reads)

UDINT The number of retries made while reading from this
block module

TOTWRITE
(Total Writes)

UDINT The number of writes attempted for this block module

BADWRITE
(Bad Writes)

UDINT The number of retries made while writing to this block
module
2-44 Chapter 2 Function/Function Block Description

BIO_PERF
Figure 2-2. Network Example using BIO_PERF Function Block

.

Chapter 2 Function/Function Block Description 2-45

BOOL2BYT
BOOL2BYT
Boolean to Byte Datatype/BOOL2BYT

BOOL2BYT(IN0 to IN7 := <<BOOL>>, OK => <<BOOL>>, OUT =>
<<BYTE>>)

The BOOL2BYT function transfers the values of the 8 bits at IN0 through IN7 into
the byte variable at OUT. The value at IN0 becomes the least significant (right-
most) bit of the output variable.

Example

⁄ƒƒƒƒƒƒƒƒƒø
≥ BOOL2BYT≥
≥ ≥
¥EN OK√
≥ ≥
¥IN0 OUT√
≥ ≥
¥IN1 ≥
≥ ≥
¥IN2 ≥
≥ ≥
¥IN3 ≥
≥ ≥
¥IN4 ≥
≥ ≥
¥IN5 ≥
≥ ≥
¥IN6 ≥
≥ ≥
¥IN7 ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN0 to IN7 (BOOL) - bits to convert

Outputs:OK (BOOL) - execution completed without error

OUT (BYTE) - converted value

IN7 IN6 IN5 IN4 IN3 IN2 IN1 IN0 OUT
0 0 0 0 1 1 1 1 00001111
2-46 Chapter 2 Function/Function Block Description

BTMPCHIT
BTMPCHIT
Block I/O Thermocouple or A/D Initialization Io/JKTHERM

BTMPCHIT(HNDL := <<USINT>>, SLOT := <<USINT>>, CHAN :=
<<USINT>>, RNGE := <<USINT>>, OK => <<BOOL>>, ERR =>
<<USINT>>)

This function initializes a Block I/O J-K Thermocouple or A/D channel. It will set
up the range for the channel. This function should only be called to setup the range
of the thermocouple channel. The range may be changed anytime after a handle
has been obtained from the BTMPMGR function block.

The HNDL input specifies the block. Use the value obtained from the HNDL out-
put of BTMPMGR. The CHAN input specifies the number (1 to 8) of the channel.
The RNGE input specifies the temperature or voltage range (1 to 4) that can be
read, where:

If an error occurs, the OK output will not be energized and the ERR output will
return the error code.See Appendix C Temperature Function Errors for the list of
ERR errors.

⁄ƒƒƒƒƒƒƒƒƒø
≥ BTMPCHIT≥
≥ ≥
¥EN OK√
≥ ≥
¥HNDL ERR√
≥ ≥
¥CHAN ≥
≥ ≥
¥RNGE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

HNDL (DWORD) -handle to the block, obtained from
BTMPMGR

CHAN (USINT) - channel (1-8)

RNGE (USINT) - range (1-4)

Outputs: OK (BOOL) - OK

ERR (USINT) - error number

RNGE Range of values for J type
thermocouple*

Range of values for K type
thermocouple*

1 -10º C to 280º C
14º F to 536º F

-35º C to 415º C
-31º F to 779º F

2 -35º C to 620º C
-31º F to 1148º F

-80º C to 820º C
-112º F to 1508º F

3 -150º C to 1200º C
-238º F to 2192º F

-200º C to 1300º C
-328º F to 2372º F

4 ±100mV n/a

* The temperature ranges apply over the temperature rating of the module. Temperature
values outside the specified range should not be used for control purposes.
Chapter 2 Function/Function Block Description 2-47

BTMPCHRD
BTMPCHRD
Read temperature or A/D value from hardware Io/JKTHERM

<<INSTANCE NAME>>BTMPCHRD(EN := <<BOOL>>, HNDL :=
<<DWORD>>, CHAN := <<USINT>>, FAHR := <<BOOL>>, TYPE :=
<<USINT>>, OK => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<USINT>>, VALU => <<INT>>);

Use this function block to read the temperature or A/D value from the hardware.
This function block will read the A/D and correct for offset and gain errors. If the
channel requested is set to range 1, 2, or 3 (refer to the BTMPCHIT function), the
corrected A/D value will be converted to a temperature and also compensated for
the cold junction temperature. If the requested channel is in range 4, the corrected
A/D value will be returned.

The HNDL input specifies the block. Use the value obtained from the HNDL out-
put of BTMPMGR. The CHAN input specifies the channel (1 to 8) to be read. The
FAHR input specifies if the temperature value returned in VALU is Fahrenheit or
Celsius. Energized = Fahrenheit, de-energized = Celsius. (Fahrenheit = 1.8 x Cel-
sius + 32). The type input specifies the type of thermocouple: 0 = J type, 1 = K
type. If temperature was selected by BTMPCHIT (RNGE = 1, 2, or 3), then the
VALU output returns the temperature in tenths of a degree.

If ± 100mV was selected by BTMPCHIT (RNGE = 4), the VALU output will
return a value in the range [-8192,8191] to represent an analog signal in the range
[-100mV, ± 100mV].

⁄ƒƒNAME ƒƒø
≥BTMPCHRD ≥
≥ ≥
¥EN OK√
≥ ≥
¥HNDL FAIL√
≥ ≥
¥CHAN ERR√
≥ ≥
¥FAHR VALU√
≥ ≥
¥TYPE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

HNDL (DWORD) -handle to the block, obtained from
BTMPMGR

CHAN (USINT) - channel (1-8)

FAHR (BOOL) - fahrenheit/Celsius (true = fahrenheit)

TYPE (USINT) - J or K thermocouple (0 = J, 1 = K)

Outputs: OK (BOOL) - OK

FAIL (BOOL) - fail

ERR (USINT) - error number

VALU (INT) - Temperature or A/D value
2-48 Chapter 2 Function/Function Block Description

BTMPCHRD

If an error occurs, the FAIL output will be energized, the VALU output will be
undefined, and the ERR output will return the error code. See Appendix C Tem-
perature Function Errors for the list of error codes.

Counts at
VALU

mV The following formula can be used to
calculate the mV (n) value from the counts
at the VALU output.

n = (VALU + 8192) ∗ 200 / 16383 − 100

For example, if the value at VALU was
4095 counts, then the mV are calculated as
follows:
n = (4095 + 8192) ∗ 200 /16383 − 100
n = 50.00 mV

- 8192

.

.

.

.

.

+ 8191

- 100

.

.

.

.

.

+100
Chapter 2 Function/Function Block Description 2-49

BTMPMGR
BTMPMGR
Communicate with J-K Thermocouple Block I/O Module Io/JKTHERM

<<INSTANCE NAME>>BTMPMGR(EN := <<BOOL>>, BLCK :=
<<USINT>>, OK => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<USINT>>, HNDL => <<DWORD>>);

This function block performs periodic communication with the J-K thermocouple
Block I/O module. Additionally, it performs periodic calculation of temperature
compensations and scale factors. This is done to reduce the ladder execution time.

This function block must be enabled every scan, with the exception of any ladder
scans where block I/O is not configured or is in the process of re-configuring. This
function block also performs basic block initialization. When enabled for the first
time, the HNDL output will contain a handle to the block. This handle is used by
BTMPCHIT and BTMPCHRD to identify the block.

The BLCK input specifies the block (1 to 77).

If an error occurs, the FAIL output will be set, the HNDL output will be undefined,
and the ERR output will return the error code. See Appendix C Temperature Func-
tion Errors for the list of error codes.

⁄ƒƒNAME ƒƒø
≥ BTMPMGR ≥
≥ ≥
¥EN OK√
≥ ≥
¥BLCK FAIL√
≥ ≥
≥ ERR√
≥ ≥
≥ HNDL√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

BLCK (USINT) - block number

Outputs: OK (BOOL) - ok

FAIL (BOOL) - fail

ERR (USINT) - error number

HNDL (DWORD) - handle
2-50 Chapter 2 Function/Function Block Description

BYT2BOOL
BYT2BOOL
Byte to Boolean Datatype/BYTECONV

BYT2BOOL(IN := <<BYTE>>, OK => <<BOOL>>, OUT0 to OUT7 =>
<<BOOL>>)

The BYT2BOOL function transfers the 8-bit value of the input at IN into the 8
boolean variables specified at OUT0 through OUT7. The least significant (right-
most) bit becomes OUT0.

Example

⁄ƒƒƒƒƒƒƒƒƒø
≥ BYT2BOOL≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT0√
≥ ≥
≥ OUT1√
≥ ≥
≥ OUT2√
≥ ≥
≥ OUT3√
≥ ≥
≥ OUT4√
≥ ≥
≥ OUT5√
≥ ≥
≥ OUT6√
≥ ≥
≥ OUT7√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (BYTE) - byte to convert

Outputs: OK (BOOL) - execution completed without error

OUT0 to OUT7 (BOOL) - converted values

IN OUT7 OUT6 OUT5 OUT4 OUT3 OUT2 OUT1 OUT0
11110000 1 1 1 1 0 0 0 0
Chapter 2 Function/Function Block Description 2-51

BYTE2DW
BYTE2DW
Byte to Double Word Datatype/BYTECONV

BYTE2DW(IN := <<BYTE>>, OK => <<BOOL>>, OUT => <<DWORD>>)

The BYTE2DW function changes the data type of the value at IN from a byte to a
double word. The leftmost 24 bits of the double word are filled with zeros. The
result is placed in the variable at OUT.

BYTE2LW
Byte to Long Word Datatype/BYTECONV

BYTE2LW(IN := <<BYTE>>, OK => <<BOOL>>, OUT => <<LWORD>>)

The BYTE2LW function converts a byte into a long word. The leftmost 56 bits of
the long word are filled with zeros. The result is placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ BYTE2DW ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (BYTE) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (DWORD) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ BYTE2LW ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (BYTE) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LWORD) - converted value
2-52 Chapter 2 Function/Function Block Description

BYTE2USI
BYTE2SI
Byte to Short Integer Datatype/BYTECONV

BYTE2SI(IN := <<BYTE>>, OK => <<BOOL>>, OUT => <<SINT>>)

The BYTE2SI function changes the data type of the value at IN from a byte to a
short integer. The result is placed in the variable at OUT.

BYTE2USI
Byte to Unsigned Short Integer Datatype/BYTECONV

BYTE2USI(IN := <<BYTE>>, OK => <<BOOL>>, OUT => <<USINT>>)

The BYTE2USI function changes the data type of the value at IN from a byte to an
unsigned short integer. The result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ BYTE2SI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (BYTE) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (SINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ BYTE2USI≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (BYTE) - value to convert

Outputs: OK (BOOL) - execution complete

OUT (USINT) - converted value
Chapter 2 Function/Function Block Description 2-53

BYTE2WO
BYTE2WO
Byte to Word Datatype/BYTECONV

BYTE2WO(IN := <<BYTE>>, OK => <<BOOL>>, OUT => <<WORD>>)

The BYTE2WO function changes the data type of the value at IN from a byte to a
word. The leftmost eight bits of the word are filled with zeros. The result is
placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ BYTE2WO ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (BYTE) - value to convert

Outputs: OK (BOOL) - execution complete

OUT (WORD) - converted value
2-54 Chapter 2 Function/Function Block Description

CAM_OUT
CAM_OUT
Cam Output (Programmable Logic Switch) Motion/MOVE_SUP

CAM_OUT(AXIS := <<USINT>>, ON := <<DINT>>, OFF := <<DINT>>,
SLOT := <<USINT>>, DABL := <<BOOL>>, OK => <<BOOL>>, OUT =>
<<BOOL>>)

The CAM_OUT function is used to turn on a discrete output point for a specified
distance during the rollover cycle of an axis. It performs like a programmable
logic switch (PLS). The controlled outputs are updated every servo interrupt.

• If you have a PiC CPU with firmware prior to version 10.2, the outputs on
these modules can be used for cam outputs only. Choose “Empty” as the
output module used with the CAM_OUT function in the hardware declara-
tions table. This ensures that the outputs will not be turned off at the end of
each scan.

• Do not declare the CAM_OUT output point (specified by SLOT and PNT)
in the software declarations.

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ CAM_OUT ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥AXIS OUT√
 ≥ ≥
 ¥ON ≥
 ≥ ≥
 ¥OFF ≥
 ≥ ≥
 ¥SLOT ≥
 ≥ ≥
 ¥PNT ≥
 ≥ ≥
 ¥DABL ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo, digitizing, or
time)

ON (DINT) - value the output is to turn on at (entered
in LU)
If ON is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

OFF (DINT) - value the output is to turn off at (entered
in LU)
If OFF is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

SLOT (USINT) - identifies output module

PNT (USINT) - identifies output point
NOTE: When calling CAM_OUT more than once for
the same slot, be sure the point number is unique.
Never enter a point number more than once for the
same slot.

DABL (BOOL) - disables the cam output when set

Outputs: OK (BOOL) - execution completed without error

OUT (BOOL) - gives the logic status of the output
Chapter 2 Function/Function Block Description 2-55

CAM_OUT
• Valid SLOT values are dependent on the type of control:

Control Valid SLOT values
PiC900/PiC90 3 through 13, specifying the slot number in the main rack

(must be an output module, not an input/output module)
MMC 2, specifying the CPU board

4 through 7, specifying an expansion module
MMC-for-PC 1 through 8, specifying the ASIU number
MMC-D 2, specifying the CPU board

100, specifying a digital drive output (AXIS indicates
which digital drive)

101 through 232, specifying a digital drive output.
101 indicates the digital drive of axis 1.
102 indicates the digital drive of axis 2.
 :
 :
232 indicates the digital drive of axis 132.
Only servo or digitizing axes can be specified.

MMC-D64 /
MMC-D32

4 through 7, specifying an expansion module

100, specifying a digital drive output (AXIS indicates
which digital drive)

101 through 232, specifying a digital drive output.
101 indicates the digital drive of axis 1.
102 indicates the digital drive of axis 2.
 :
 :
232 indicates the digital drive of axis 132.
Only servo or digitizing axes can be specified.

MMC-DSA 2, specifying the CPU board
4 through 7, specifying an expansion module

100, specifying a digital drive output (AXIS indicates
which digital drive)

101 through 232, specifying a digital drive output.
101 indicates the digital drive of axis 1.
102 indicates the digital drive of axis 2.
:
:
232 indicates the digital drive of axis 132.
Only servo or digitizing axes can be specified.

All Controls 0 is a valid SLOT value for any control. SLOT = 0 indi-
cates no physical output will be controlled; only the
function output, OUT, will be controlled.
2-56 Chapter 2 Function/Function Block Description

CAM_OUT
• If SLOT = 100, only servo or digitizing axes are allowed at AXIS.

• No more than two different SLOT values may be specified by multiple calls
to CAM_OUT. Slot values 100 through 232 are considered one slot.

• Valid values for PNT are 1 through the number of outputs available on the
module specified by SLOT.

• Rollover must be on for the axis identified in AXIS.

• The ON and OFF values must be less than the rollover value. ON must not
equal OFF.

• The CAM_OUT function does not support controlling PiC expansion rack
outputs, block outputs, DeviceNet outputs, or SERCOS drive outputs.

• Do not declare the CAM_OUT output point (specified by SLOT and PNT)
in the software declarations.

When using 32 points with the CAM_OUT, the table below shows the values to
enter at PNT.

You can use less than 32 or 16 points on any module.

Three possible combinations for the CAM_OUT function inputs are shown in the
table that follows. The first combination is what is required to turn both the func-
tion and module output on.

The second combination will turn the function output on but not the module output
because SLOT = 0.

The third combination with DABL set to “1” disables the output from both the
function and the module and also removes it from any foreground calculations.
This is the recommended way to disable a cam output since it saves CPU time.
AXIS, SLOT, and PNT must have valid data entered before a cam output can be
disabled.

Each of these combinations assume that ON ≠ OFF. If ON = OFF, then there
would be no function or module output but CPU time would be used.

NOTE

Once a point is assigned to an axis it cannot be reassigned to a differ-
ent axis unless the servos are reinitialized.
Chapter 2 Function/Function Block Description 2-57

CAM_OUT
Table 2-2. Cam input combinations and results

An * means that any valid data may be entered at the designated input.

From 1 to 32 outputs (identified at PNT) can be turned on by calling the
CAM_OUT function once for each output desired. The distance during which
each output remains on can vary by changing the values in ON and OFF in each
function.

If these Cam function
inputs are:

Then the function OUT, module
output, and CPU time use are:

SLOT DABL
Function

OUT
Module
Output

Use
CPU time

SLOT ≠ 0 DABL = 0 YES YES YES
SLOT = 0 DABL = 0 YES NO YES

* DABL = 1 NO NO NO
2-58 Chapter 2 Function/Function Block Description

CAM_OUT
Examples of turning on an output for varying distances is illustrated in Cam ON/
OFF representation. If the rollover cycle equals 1,000 LU and the value entered in
ON is 100 and the value entered in OFF is 200, then the output will remain on dur-
ing 100 units of travel as shown on the left.

If the value entered in ON is 200 and the value entered in OFF is 100, then the out-
put will remain on for 900 units as shown on the right.

Figure 2-3. Cam ON/OFF representation

1000

0

Off
100

On
200

1000

0

Off
200

On
100

Enclosed area represents
distance the output is on

Chapter 2 Function/Function Block Description 2-59

CAPTINIT
CAPTINIT
Data Capture Initialization Motion/DATA

CAPTINIT(SRCE := <<MEMORY AREA>>, QTY := <<USINT>>, DEST :=
<<MEMORY AREA>>, SIZE := <<UINT>>, OK => <<BOOL>>, ERR =>
<<USINT>>)

This section contains information on how to capture data in the PiC ladder so that
it can be displayed on the workstation screen. If you are capturing data directly
from the ladder once per scan, then the variables can be put into an array of struc-
tures using the READ_SV function. If you are capturing data from servo inter-
rupts, then you use the two functions, CAPTINIT and CAPTSTAT, to get the
variables into an array of structures, as shown in Tasks for data capture

The communication function blocks are used to create a binary file that can be sent
to the PiC RAMDISK or the workstation.

⁄ƒƒƒƒƒƒƒƒƒø
≥CAPTINIT ≥
≥ ≥
¥EN OK√
≥ ≥
¥SRCE ERR√
≥ ≥
¥QTY ≥
≥ ≥
¥DEST ≥
≥ ≥
¥SIZE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

SRCE (ARRAY OF STRUCT) - an array of structures
to define what data is to be captured.

QTY (USINT) - the number of variables (from 1 to 8)
to be captured. (Same as the number of array elements
in SRCE or the number of structure members in
DEST.)

DEST (ARRAY OF STRUCT) - an array of structures
to store the captured data.

SIZE (UINT) - the number of array elements in DEST
which represents the number of data samples to take.

Outputs: OK (BOOL) - set if no errors in structure data

ERR (USINT) - no error if ERR = 0; error if ERR ≠ 0.
Errors are listed below.
2-60 Chapter 2 Function/Function Block Description

CAPTINIT
Figure 2-4. Tasks for data capture
Chapter 2 Function/Function Block Description 2-61

CAPTINIT
The CAPTINIT function defines the data you want to capture each servo interrupt
and where the data will be stored.

The SRCE input array of structures

An array of structures is used at the SRCE input of the CAPTINIT function. There
is one array element for each variable to capture. Each array element is a structure
with two members; AXIS which identifies the servo or digitizing axis the variable
applies to and VAR which identifies the variable you want to capture. A maximum
of eight variables can be captured within one array of structures. The variables are
described in the table below.

CAUTION

It is very important that the values entered at QTY and SIZE equal the
number of variables you are capturing and the number of samples you
are taking respectively. If not, the results are unpredictable.

ERR # Description
0 No error
1 The CAPTSTAT function has not stopped capturing data from a

previous data capture initialization.
2 An axis number in the structure is invalid.
3 The limit of eight variables in the array of structures has been

exceeded.
4 Parameter number in the structure is out of range.
5 The CAPTINIT function was called before the STRTSERV

function was called.
2-62 Chapter 2 Function/Function Block Description

CAPTINIT
Table 2-3. Data Capture

Var Name Type
1 Actual position

The actual position of the device with reference reset applied.
Units are feedback units.
(Variable 1 in READ_SV.)

DINT

2 Fast input occurred
On for one interrupt. Bit 00001000 of this byte.
(Same as bit 00000010 out of STATUSSV.)

BYTE

3 Commanded position
The commanded position sent to the servo upgrade. Units are
feedback units.
(Variable 3 in READ_SV.)
NOTE: This is the same as actual for a digitizing axis.

DINT

4 Position error
The error between the filtered output and the actual. Units are
feedback units.
(Variable 4 in READ_SV.)

NOTE: With a SERCOS axis, this value will differ from servo
variable 4 by the number of feedback units traveled in four servo
updates. For an exact reading of position error with a SERCOS
axis, read Following Distance IDN 189 from the drive.

DINT

5 Slow Velocity Filter error
The accumulated value in the slow velocity filter. Units are
feedback units.
(Variable 5 in READ_SV.)

DINT

6 Command change
The command delta for this interrupt after filter. Units are feed-
back units per upgrade.
(Variable 6 in READ_SV.)

INT

7 Position change
The change in actual position for this upgrade. Units are feed-
back units per upgrade. (Variable 7 in READ_SV.)

INT

8 Feedback position
The 24 bit counter from the hardware. Top byte is always 0.
Units are feedback units.
(Variable 8 in READ_SV.)

DINT

9 Prefilter commanded position
The commanded position prior to the filter. Units are feedback
units.
NOTE: This is the same as actual for a digitizing axis.

DINT

10 Prefilter command change
The command delta for this interrupt before filter. Units are
feedback units.

INT
Chapter 2 Function/Function Block Description 2-63

CAPTINIT
11 Remaining master offset
The accumulated master offset. Units are feedback units. DINT

12 Remaining slave offset
The accumulated slave offset. Units are feedback units. DINT

13 Command change
The command delta for this interrupt after filter. Units are feed-
back units per upgrade.
(Variable 6 in READ_SV.)

DINT

14 Position change
The change in actual position for this upgrade. Units are feed-
back units per upgrade. (Variable 7 in READ_SV.)

DINT

15 Prefilter command change
The command delta for this interrupt before filter. Units are
feedback units.

DINT

16 Digital Drive Analog Input

This value represents the voltage at the digital drive’s analog
input. The value is in the range [-8192, 8191] representing volt-
age in the range [-10V, 10V].

For example:

8191 = 10 volts

4096 = 5 volts

0 = 0 volts

-4096 = -5 volts

-8192 = -10 volts

The following formula can be used to calculate the voltage:

Voltage = value * 10V / 8192

INT
2-64 Chapter 2 Function/Function Block Description

CAPTINIT
In the example shown below, there are three variables to be read; the actual posi-
tion of Axis 1 (1), the position change of Axis 1 (7), and the actual position of Axis
49 (1).

17 Digital Drive Current

This value is returned as amps*128. The value is in the range
[-32640, 32640]. To convert this value to units of 0.01 amps,
use the following formula:

value * 100 / 128

This will generate a value in the range [-25500, 25500] where
25500 = 255.00 amps.

For example:

32640 * 100 / 128 = 25500 = 255.00 amps

211 * 100 / 128 = 165 = 1.65 amps

-18629 * 100 / 128 = -14554 = -145.54 amps

INT

IMPORTANT

The structure you enter in the software declarations table for the
SRCE input must have the members entered in the order shown be-
low. The data type for each member of the structure must be as shown
in the Type column in order for the software to recognize the infor-
mation.
Chapter 2 Function/Function Block Description 2-65

CAPTINIT
The DEST input array of structures

DEST is the array of structures which is the destination of the captured data. There
is one array element for each data sample. A data sample occurs each interrupt and
will capture as many variables as indicated at SRCE. Each structure contains one
member for each variable captured. In the above example, there are three vari-
ables and therefore there needs to be three structure members. Each structure
member must be the correct type to accommodate the variable captured. The type
of each variable is listed under the Type column in the variable table above.

In the example, the array of structures could look like this:

This array of structures accommodates 100 data samples. Captured data is stored
sequentially into the array until the end is reached (element 99 in the example).
Then the data will wrap around and begin to fill the array again unless ONCE has
been set in the CAPTSTAT function. Use the ELEM output of the CAPTSTAT
function to find out the next element in the array that will be written to.
2-66 Chapter 2 Function/Function Block Description

CAPTSTAT
CAPTSTAT
Data Capture Status Motion/DATA

CAPTSTAT(STRT := <<BOOL>>, ONCE := <<BOOL>>, OK => <<BOOL>>,
ELEM => <<UINT>>)

NOTE: If the CAPTINIT function is not called before this function, the OK will
not be set and ELEM will = 0.

The CAPTSTAT function provides the ability to start and stop the capturing of data
from the ladder.

⁄ƒƒƒƒƒƒƒƒƒø
≥CAPTSTAT ≥
≥ ≥
¥EN OK√
≥ ≥
¥STRT ELEM√
≥ ≥
¥ONCE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STRT (BOOL) - a positive transition will start the
data capture process. A zero will stop the data cap-
ture process.

ONCE (BOOL) - set to fill the array of structures
one time.

Outputs: OK (BOOL) - set if no errors in structure data

ELEM (UINT) - the number of the next array ele-
ment that will be written to. (0 is the first element
in an array.)
Chapter 2 Function/Function Block Description 2-67

CLOCK
CLOCK
Clock Xclock/CLOCK

CLOCK(IN := <<DATE_AND_TIME>>, SET := <<BOOL>>, OK =>
<<BOOL>>, OUT => <<DATE_AND_TIME>>)

The CLOCK function is used to get the current date and time from the PiC, or to
enter a date and time into the PiC. It is also used to apply a Date and Time stamp to
begin a control event (e.g. to energize a switch).

If power flow exists at SET, then the PiC clock is set with the value of the variable
at IN. The value at IN is also placed into the variable at OUT.

If power flow does not exist at SET, then the (current) PiC date and time are
extracted from the PiC clock and placed in the variable at OUT.

Typically, the CLOCK function is used in a read only mode. The example below
shows how to set this up. Put the same variable name on IN and OUT. Place a
Normally Open contact that is never set at the SET input.

Example

⁄ƒƒƒƒƒƒƒƒƒø
≥ CLOCK ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¥SET ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DATE_AND_TIME) - clock set value

SET (BOOL) - causes set or extract

Outputs: OK (BOOL) - execution completed without error

OUT (DATE_AND_TIME) - value extracted
2-68 Chapter 2 Function/Function Block Description

CLOSE
CLOSE
Close Io/COMM

<<INSTANCE NAME>>:CLOSE(REQ := <<BOOL>>, HNDL := <<INT>>,
DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>);

The CLOSE function block closes the communication channel between the LDO
and either a workstation file, a PiC RAMDISK file, a PiC FMSDISK file, or User
Port.

The device or file at HNDL is closed, terminating the transfer of data from/to the
file/device. Execution of this function block frees a mode (or 2 modes for read and
write or append). It also empties the read and write buffers.

CLOSE is used in conjunction with the CONFIG, OPEN, READ, SEEK, STA-
TUS, and WRITE I/O function blocks.

⁄ƒƒNAME ƒƒø
≥ CLOSE ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥HNDL FAIL√
≥ ≥
≥ ERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (One-shot)

HNDL (INT) - output from OPEN function block

Outputs: DONE (BOOL) - energized if ERR = 0

not energized if ERR ≠ 0

FAIL (BOOL) - energized if ERR ≠ 0

not energized if ERR = 0

ERR (INT) - 0 if data transferred successfully;

≠ 0 if data transfer unsuccessful

See Appendix B in the PiCPro Online Help for ERR
codes.
Chapter 2 Function/Function Block Description 2-69

CLOSLOOP
CLOSLOOP
Close Loop Motion/INIT

CLOSLOOP(AXIS := <<USINT>>, OK => <<BOOL>>)

The position loop for the designated axis is closed when the CLOSLOOP function
is activated. The commanded position of the axis will be compared to the actual
position of the axis. The difference between the two is the following error. The
PID calculations will respond to the error by telling the analog output to send a
corrective voltage signal to the drive. The drive will move the axis toward the
commanded position. Any further disturbance in axis position will initiate a simi-
lar corrective response. This function must be included in any closed loop servo
application. See also OPENLOOP.

⁄ƒƒƒƒƒƒƒƒƒø
≥CLOSLOOP ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error

DIGITAL DRIVE NOTES

When calling CLOSLOOP with a digital drive axis, the digital drive’s
hardware enable line must be high for the loop to close.
If CLOSLOOP is called while the digital drive is in Velocity Mode,
the drive will be enabled, the velocity loop will be closed, and the axis
will be ready to accept velocity commands via DVELCMD. At the
time the loop is closed, the command velocity will be zero since it was
zeroed when the loop was opened and is held at zero while the loop is
open.
If CLOSLOOP is called while the digital drive is in Torque Mode, the
drive will be enabled, the torque loop will be closed, and the axis will
be ready to accept current commands via DTORQCMD. At the time
the loop is closed, the command current will be zero since it was ze-
roed w hen the loop was opened and is held at zero while the loop is
open.
2-70 Chapter 2 Function/Function Block Description

CLSLOOP?
CLSLOOP?
Close Loop? Motion/INIT

CLSLOOP?(AXIS := <<USINT>>, OK => <<BOOL>>, CLSD => <<BOOL>>)

The CLSLOOP? function allows you to inquire whether or not the loop for an axis
is closed. The axis you are inquiring about is identified at the AXIS input. The
CLSD output indicates whether the axis loop is closed or not.

The axis will be closed only if you have previously called the CLOSLOOP func-
tion for this axis. The axis will be open if you have called the OPENLOOP func-
tion or an E-stop error is in effect. This function may be called at any time and in
any task.

NOTE: If the axis is a SERCOS axis, the CLSD output will be set if both the SER-
COS drive and the motion.lib indicate the loop is closed. Otherwise, CLSD will be
reset.

⁄ƒƒƒƒƒƒƒƒƒø
≥CLSLOOP? ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS CLSD√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - set if axis is closed loop and initialized

CLSD (BOOL) - set if the axis loop is closed, cleared
if the axis loop is open or the OK is not set
Chapter 2 Function/Function Block Description 2-71

CONCAT
CONCAT
Concatenate String/CONCAT

CONCAT(OUT := <<STRING>>, IN1 := <<STRING>>, IN2 := <<STRING>>,
OK => <<BOOL>>, OUT => <<STRING>>);

The CONCAT function merges two STRING variables together. The variable at
IN2 is placed directly after the variable at IN1 and the resulting STRING is placed
in the variable at OUT.

This is an extensible function which can concatenate up to 17 STRINGs. The
STRING at IN17 is placed after the STRING at IN16, which is placed after the
STRING at IN15, etc. The variables at IN2 through IN17 must be unique from the
variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ CONCAT ≥
≥ ≥
¥EN OK√
≥ ≥
¥OUT---OUT√
≥ ≥
¥IN1 ≥
≥ ≥
¥IN2 ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

OUT (STRING) - concatenated STRING

IN1 (STRING) - STRING input

IN2 (STRING) - STRING input

Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

An error occurs:

If the length of IN1 > length of OUT
If the length of IN2 > length of OUT
If the length of IN1 + length of IN2 > length of
OUT
If IN2, or IN3, ... or IN17 = OUT

Example of Concatenate Function

Var at IN1 Value at IN2 Value at IN3 Var at OUT
string1 string2 string3 string1string2string3
2-72 Chapter 2 Function/Function Block Description

CONFIG
CONFIG
Configure Io/COMM

<<INSTANCE NAME>>:CONFIG(REQ := <<BOOL>>, HNDL := <<INT>>,
CFGZ := <<STRING>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR
=> <<INT>>);

The CONFIG function block establishes the communication parameters for the
PiC User Port (only) and the handle specified by the input at HNDL. To configure
User Port, create a STRING variable and connect it at the CFGZ input. Enter the
parameters in the order shown. Each parameter value must be separated by a com-
mand.

String = 9600,N,8,1,N$00

NOTE: To use all default values, create a string variable of length 0 with no initial
value. To use one or more (but not all default values), insert a comma for each
value that is omitted as shown below.

String = ,N,,,N$00

CONFIG is used in conjunction with the CLOSE, OPEN, READ, SEEK, STA-
TUS, and WRITE I/O function blocks.

⁄ƒƒNAME ƒƒø
≥ CONFIG ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥HNDL FAIL√
≥ ≥
¥CFGZ ERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (One-shot)

HNDL (INT) - output from OPEN function block

CFGZ (STRING) - configuration data

Outputs: DONE (BOOL) - energized if ERR = 0
not energized if ERR ≠ 0

FAIL (BOOL) - energized if ERR ≠ 0
not energized if ERR = 0

ERR (INT) - 0 if data transferred successfully;
≠ 0 if data transfer unsuccessful

Baud rate Parity Data bits Stop bits Synch mode Terminator
9600, N, 8, 1, N $00

Baud rate Parity Data bits Stop bits Synch mode Terminator
, N, , , N $00
Chapter 2 Function/Function Block Description 2-73

CONFIG
Table 2-4. Parameters for CONFIG string

Parame-
ter

Acceptable
values

Default
value

Description

Baud
Rate

110, 300, 600, 1200,
2400, 4800, 9600,
19200 (Contact
Danaher Motion for
acceptable MMC-D
baud rates.)

9600

Number of bits per second that are transferred -
a baud rate above 9600 requires hardware sync
mode

Parity
E - Even

O -Odd

N - None

N

E - if # of 1s in lower 7 bits is odd, then bit 8 is
set to 1

O - if # of 1s in lower 7 bits is even, then bit 8 is
set to 1

N - no parity checking
Data Bits 7 or 8 8 Number of bits that are to be interpreted as data
Stop Bits

1 or 2

2(for 110
baud)

1(for
other
bauds)

After the transmission of every byte, pause for
the time it takes to send 1 or 2 bits before trans-
mitting the next byte

Synch
Mode

N - None

S - Send

R - Receive

B - Both S & R

H - Hardware

 N

R - the PiC will stop sending if <CTRL-S> or
XOFF is received and resume sending when
<CTRL-Q> or XON is received.

S - the PiC will send a <CTRL-S> when input
needs to be suspended and a <CTRL-Q> when
input is to resume.

H - clear to send (CTS) and request to send
(RTS) are connected between the devices to
prevent overruns.

RS422/
485

Mode

T - Transmitter Dis-
abled

None

T -When using RS422/485 communications
and the 2- or 4-channel serial communications
module, including a "T" in the CFGZ string as
shown below disables the transmitter when
there are no characters to transmit.

String = 9600,N,8,1,N,T$00

This allows implementation of a two-wire
party line configuration with RS485 commu-
nication links.

Termina-
tor

$00 None
Characters that signal end of data.
2-74 Chapter 2 Function/Function Block Description

COORD2RL
COORD2RL
Coordinate to Real Motion/DATA

COORD2RL(CNFG := <<MEMORY AREA>>, MOVE := <<MEMORY
AREA>>, ACTV := <<WORD>>, SEG1 := <<MEMORY AREA>>, OK =>
<<BOOL>>, ERR => <<INT>>)

The COORD2RL function is a math conversion function requiring servo initializa-
tion and a math coprocessor on the PiC CPU. It is an extensible function that cal-
culates a profile segment (output SEG1 through SEG16) for up to 16 axes from the
information provided in the CNFG and MOVE inputs.

NOTE: Of the 32 servo axes available, only servo axes numbered 1 through 16
can be used with this function.

The CNFG input is a structure holding setup data. The MOVE input is a structure
containing part program information such as endpoints, velocities, move times,
circle centerpoints, etc.

The COORD2RL math conversion function is used with the RATIO_RL function.

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥COORD2RL ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥CNFG ERR√
 ≥ ≥
 ¥MOVE ≥
 ≥ ≥
 ¥ACTV ≥
 ≥ ≥
 ¥SEG1 ≥
 ≥ ≥
 ¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

CNFG (STRUCTURE) - provides setup data for move

MOVE (STRUCTURE) - provides part program data for
move

ACTV (WORD) - identifies axis for each segment output

SEG1 - (STRUCTURE) - provides segment output for
the first axis. Function can be extended for 15 additional
axes SEG outputs.

Outputs: OK (BOOL) - execution completed without error

ERR (INT) - ≠ 0 if and only if an error occurs.

IMPORTANT

The structures entered in the software declarations table for CNFG,
MOVE, and SEG1 must have the members entered in the order listed
in the tables that follow. The data type entered in the Type column
for each member of the structure must be as shown in order for the
software to recognize the information.
Chapter 2 Function/Function Block Description 2-75

COORD2RL
Table 2-5. COORD2RL structure members at the CNFG input

Table 2-6. COORD2RL structure members at the MOVE input

Member Type Description
TMAXRT

(time axis rate)
DINT Enter the time axis rate. 1000 units/sec is recom-

mended for most applications.
TOLR

(tolerance)
DINT Enter in ladder units the limit on the circle endpoint

your application will accept before an error is
reported.

FLAGS
(flags)

WORD Bit 0 is the only bit currently in use.

Member Type Description

LINEAR
(linear axes)

WORD Identify from 1 to 16 axes that will be used for linear
moves.

CIRCLE
(circular axes)

WORD Identify two axes that will be used for circular moves.

DEPART
(departure axes)

WORD Identify from 1 to 16 axes that will be used for third axis
departure moves.

NOTE: Third axis departure is accomplished by slaving
the third axis to the same time axis as the two axes doing
the circle.

RTTM
(rate or time)

BYTE Selects rate or time.

00 = rate 80 (hex) = time

DIR
(direction)

BYTE Selects the direction a circular move will take.

00 = CW 80 (hex) = CCW

VALUE
(rate or time value)

DINT Define the rate or time (based on what was selected at
RTTM above).
Rate is entered in LU/min.
Time is entered in msec.

AX1CP
(First axis center-

point)

DINT Enter the centerpoint for the first axis (lowest number)
entered in CIRCLE.

AX2CP
(Second axis center-

point)

DINT Enter the centerpoint for the second axis (highest number)
entered in CIRCLE.

ENDPTS
(1-16 endpoints)

DINT (0-15) Enter in an array the endpoints for all axes being used.

0 = no velocity check
1 = velocity check

All remaining bits (1-15) should
be set to zero.
2-76 Chapter 2 Function/Function Block Description

COORD2RL
Table 2-7. COORD2RL structure members at the SEG output

Member Type Description

MASTER
(master distance)

DINT The segment master distance

SLAVE
(slave distance)

DINT The segment slave distance

LEN
(cycle length/K1)

LREAL The length of the cycle

AMPL
(amplitude/K2)

LREAL The amplitude of the wave

STANGL
(starting angle/K3)

LREAL The starting angle of the wave

SPARE
(unused)

LREAL Declare this in your structure since it may be used in the
future for additional features.

FLAGS
(flags)

DWORD Bits 0 through 4 are currently being used.
(See explanation at the REAL input of RATIO_RL.)
Chapter 2 Function/Function Block Description 2-77

COORD2RL
The table below defines the outputs that can appear at the ERR output of the
COORD2RL function.

Table 2-8. COORD2RL ERRs

ERR Output
0 No error
1 No bits were set in the LINEAR, CIRCLE, or DEPART members of the

MOVE structure.
2 Bits were set in both the LINEAR and CIRCLE members of the MOVE struc-

ture. Bits can be set in only one of these members.
3 The same bit was set in the DEPART and CIRCLE members of the MOVE

structure. An axis cannot be departure and circular at the same time.
4 The same bit was set in the LINEAR and DEPART members of the MOVE

structure. An axis cannot be linear and departure at the same time.
5 Set if other than 0 or 2 bits were set in CIRCLE. Two bits must always be set

in order to do a circular move.
6 The ACTV input indicated a fewer number of axes than the number connected

to the inputs labeled at SEG.
7 A bit is set in LINEAR, CIRCLE, or DEPART that does not have a corre-

sponding bit in ACTV.
8 The time or rate value is negative. These must be positive numbers only.
9 The time or rate value is zero.
10 The rate was too high or the time was too low to calculate.
11 The rate was too low or the time was too high to calculate.
12 An axis that was selected was not initialized by the user function.
13 The STRTSERV function was not called. No axes have been initialized.
14 The circle endpoint limit you entered in the CNFG structure for TOLR has

been exceeded.
1xx Distance calculated using scaling was too positive to fit in the 32 bit value.

xx is the axis number.
2xx Distance calculated using scaling was too negative to fit in the 32 bit value.

xx is the axis number.
3xx Velocity exceeded the maximum feedrate defined in servo setup.

NOTE: Valid profile data is still produced if this error occurs.
2-78 Chapter 2 Function/Function Block Description

CSTOPDEC
COS
Cosine Arith/TRIG

COS(ANGL := <<REAL/LREAL>>, OK => <<BOOL>>, COS => <<REAL/
LREAL>>)

The COS function calculates the cosine of the angle entered at ANGL. The result
is placed at COS.

one-shot), in either order, before A_INCHRD executes.

CSTOPDEC
C-stop Deceleration Motion/MOVE_SUP

CSTOPDEC(AXIS:= <<USINT>>, DECL:= <<UDINT>>, OK => <<BOOL>>)

The CSTOPDEC function allows the program to change the C-stop deceleration
rate. The new rate will take effect immediately.

The deceleration rate is limited to 536,870,911 FU/iteration/iteration. This func-
tion converts the DECL input from LU/minute/second to FU/iteration/iteration. If
the result exceeds the limit, the C-stop deceleration rate will be set at the upper
limit of 536,870,911 FU/iteration/iteration. If the converted DECL value is less
than 1, the C-stop deceleration rate will be set at the lower limit of 1 FU/iteration/
iteration.

If STRTSERV or DSTRTSRV is called again, reinitializing the servo data, the C-
stop deceleration rate will revert to the value entered in Servo Setup.

⁄ƒƒƒƒƒƒƒƒƒø
≥ COS ≥
≥ ≥
¥EN OK√
≥ ≥
¥ANGL COS√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

ANGL (REAL/LREAL) - angle value (in radians)

Outputs: OK (BOOL) - execution completed without error

COS (REAL/LREAL) - cosine calculated

NOTE: The data types entered at ANGL and COS must
match, i.e. if ANGL is REAL, then COS must be REAL.

⁄ƒƒƒƒƒƒƒƒƒø
≥CSTOPDEC ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥DECL ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (typically
one-shot)

AXIS (USINT) - identifies axis (servo)

DECL (UDINT) - C-stop deceleration rate,
LU/min/sec

Outputs: OK (BOOL) - execution complete
Chapter 2 Function/Function Block Description 2-79

CTD
CTD
Count Down Counters/CTD

<<INSTANCE NAME>>:CTD(CD := <<BOOL>>, LD := <<BOOL>>, PV :=
<<INT>>, Q => <<BOOL>>, CV => <<INT>>);

The CTD function block counts down to -32768 from the preset value in the vari-
able or constant at PV. The count value at CV is decremented by one whenever a 0
to 1 transition occurs at CD.

Whenever the count is ≤ zero, the output at Q is energized.

The value at PV is loaded into the value at CV when power flow occurs at LD.

⁄ƒ NAME ƒø
≥ CTD ≥
≥ ≥
¥CD Q√
≥ ≥
¥LD CV√
≥ ≥
¥PV ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: CD (BOOL) - initiate count down

LD (BOOL) - load PV to CV

PV (INT) - preset value to count down from

Outputs: Q (BOOL) - execution completed for count down to 0

CV (INT) - count value
2-80 Chapter 2 Function/Function Block Description

CTU
CTU
Count Up Counters/CTU

<<INSTANCE NAME>>:CTU(CU := <<BOOL>>, R := <<BOOL>>, PV :=
<<INT>>, Q => <<BOOL>>, CV => <<INT>>);

The CTU function block counts up from zero to +32767. The count value at CV is
incremented by one whenever a 0 to 1 transition occurs at CU.

Whenever the count is ≥ the preset value at PV, the output at Q is energized.

The value at CV is reset to zero when power flow occurs at R

NOTE: If the preset value at PV is not in the range [0, 32767], the state of the Q
output is undefined.

⁄ƒ NAME ƒø
≥ CTU ≥
≥ ≥
¥CU Q√
≥ ≥
¥R CV√
≥ ≥
¥PV ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: CU (BOOL) - initiate count up

R (BOOL) - reset counter to zero

PV (INT) - preset value to count up to, range
is [0, 32767]

Outputs: Q (BOOL) - execution complete for count up to preset
value

CV (INT) - count value
Chapter 2 Function/Function Block Description 2-81

CTUD
CTUD
Count Up/Count Down Counters/CTUD

<<INSTANCE NAME>>:CTUD(CU := <<BOOL>>, CD := <<BOOL>>, R :=
<<BOOL>>, LD := <<BOOL>>, PV := <<INT>>, QU => <<BOOL>>, QD =>
<<BOOL>>, CV := <<INT>>);

The CTUD function block counts between +32767 and -32768.

The count value at CV increments by one whenever a transition occurs at CU. The
count value at CV decrements by one whenever a 0 to 1 transition occurs at CD.

Whenever CV is ≥ PV, QU is energized; whenever CV is ≤ 0, QD is energized.

When power flow occurs at R, the value at CV resets to zero and QD is energized.
When power flow occurs at LD, the value at PV is loaded into CV and QU is ener-
gized.

Note: Only one boolean input at a time should be energized.

⁄ƒ NAME ƒƒø
≥ CTUD ≥
≥ ≥
¥CU QU√
≥ ≥
¥CD QD√
≥ ≥
¥R CV√
≥ ≥
¥LD ≥
≥ ≥
¥PV ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: CU (BOOL) - initiate count up

CD (BOOL) - initiate count down

R (BOOL) - reset counter to zero

LD (BOOL) - load PV to CV

PV (INT) - preset value to count up to and down to

Outputs: QU (BOOL) - execution complete for count up

QD (BOOL) - execution complete for count down

CV (INT) - count value
2-82 Chapter 2 Function/Function Block Description

C_ERRORS
C_ERRORS
Controlled Stop Errors Motion/ERRORS

C_ERRORS(AXIS := <<USINT>>, OK => <<BOOL>>, ERRS => <<WORD>>)

The ERRS output on the C_ERRORS function is a word, or two bytes, as shown
below. The MSB bit (indicated by the “x”) in the high byte word indicates that
there is an error. The low byte of the word is where the individual errors are
located.

 x _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

High byte Low byte

The table that follows gives the C-stop errors and their locations.

NOTE: The C_ERRORS can also be viewed from the tune section of the Servo
setup program. The “E” is what appears on the tune screen in Servo setup.

The Bit Location column indicates which bit is set in the low or high byte of the
word connected to each error.

The Hex Value column represents the form the error is returned in while monitor-
ing the ERRS output of the function in your ladder program.

⁄ƒƒƒƒƒƒƒƒƒø
≥C_ERRORS ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ERRS√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution complete

ERRS (WORD) - indicates errors
Chapter 2 Function/Function Block Description 2-83

C_ERRORS
Table 2-9. Controlled stop errors

*When more than one error occurs, the hex values are OR’d. For example, if 8001
and 8004 occur, the result is 8005 hex (32773 decimal).

**This error can occur with feedrate override, new feedrate, position, distance,
velocity, or machine reference moves.

Error Description
Bit Location

(low byte)
Hex

Value

(Decimal)*

7 6 5 4 3 2 1 0 (in LDO)
Part reference
error

Move was in progress when a part
reference or a part clear function
was called.

E 8080
(32896)

Part reference
dimension
error

When the dimension for the part
reference was converted to feedback
units, it was too big to fit into 29
bits.

E 8040
(32832)

Distance or
position move
dimension
error

When the dimension for the move
was converted to feedback units, it
was too big to fit into 31 bits.

E 8020
(32800)

Feedrate
error**

When the feedrate for the move was
converted to feedback units per
servo up-grade, it was too big to fit
into 32 bits or it exceeds the veloc-
ity limit entered in setup.

E 8010
(32784)

Machine refer-
ence dimension
error

When the dimension for the
machine reference was converted to
feedback units, it was too big to fit
into 29 bits.

E 8008

(32776)

User-defined
C-stop

When this bit is set, a user-defined
C-stop has occurred.

E 8004
(32772)

Negative
software limit
exceeded

The command position exceeded
the user-defined negative software
end limit.

E 8002
(32770)

Positive
software limit
exceeded

The command position exceeded
the user defined positive software
end limit.

E 8001
(32769)
2-84 Chapter 2 Function/Function Block Description

C_STOP
C_RESET
Controlled Stop Reset Motion/ERRORS

C_RESET(AXIS := <<USINT>>, OK => <<BOOL>>)

The C_RESET function resets the controlled stop condition and the errors that
caused it. You must always reset any C-stop error that occurs.

C_STOP
Controlled Stop Motion/ERRORS

C_STOP(AXIS := <<USINT>>, OK => <<BOOL>>)

The C_STOP function will bring the specified axis to a controlled stop based on
the controlled stop ramp entered in setup. Any further movement by the axis will
be prevented until the C-stop condition is reset.

⁄ƒƒƒƒƒƒƒƒƒø
≥ C_RESET ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error

⁄ƒƒƒƒƒƒƒƒƒø
≥ C_STOP ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error
Chapter 2 Function/Function Block Description 2-85

C_STOP?
C_STOP?
Controlled Stop? Motion/ERRORS

C_STOP?(AXIS := <<USINT>>, OK => <<BOOL>>, CSTP => <<BOOL>>)

The C_STOP? function asks if there is a C-stop in effect for this axis.

⁄ƒƒƒƒƒƒƒƒƒø
≥ C_STOP? ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS CSTP√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error

CSTP (BOOL) - indicates a C-stop is active when set
2-86 Chapter 2 Function/Function Block Description

DATE2STR
DATE2STR
Date to String Datatype/D_TCONV

DATE2STR(OUT := <<STRING>>, IN := <<DATE>>, OK => <<BOOL>>,
OUT => <<STRING>>)

The DATE2STR function converts the value in the variable or constant at IN to a
STRING and places the result in the variable at OUT.

Example of DATE to STRING

⁄ƒƒƒƒƒƒƒƒƒø
≥ DATE2STR≥
≥ ≥
¥EN OK√
≥ ≥
¥OUT---OUT√
≥ ≥
¥IN ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

OUT (STRING) - output STRING

IN (DATE) - value to be converted

Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

Var at IN Value at OUT
D#1995-11-01 1995-11-01
Chapter 2 Function/Function Block Description 2-87

DELETE
DELETE
Delete String/DELETE

DELETE(OUT := <<STRING>>, IN := <<STRING>>, L := <<INT>>, P :=
<<INT>>, OK => <<BOOL>>, OUT => <<STRING>>)

The DELETE function is used to delete characters from a STRING. It deletes
characters from the variable at IN. The input at L specifies how many characters
to delete, starting at the position specified by the input at P. The resulting (left-
over) STRING is placed into the variable at OUT.

An error occurs if any of the following is true:

Example of delete function

⁄ƒƒƒƒƒƒƒƒƒø
≥ DELETE ≥
≥ ≥
¥EN OK√
≥ ≥
¥OUT---OUT√
≥ ≥
¥IN ≥
≥ ≥
¥L ≥
≥ ≥
¥P ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

OUT (STRING) - output STRING

IN (STRING) - input STRING

L (INT) - length

P (INT) - position (cannot equal 0)

Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

P = 0
P > 255
P > length of IN
L > 255
Length of IN - L > length of OUT

Var at IN Value at L Value at P Var at OUT
stringlong 4 7 string
2-88 Chapter 2 Function/Function Block Description

DELFIL
DELFIL
Delete File Io/COMM

<<INSTANCE NAME>>:DELFIL(REQ := <<BOOL>>, NAMZ :=
<<STRING>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<INT>>);

The DELFIL function block allows you to delete a file from the RAMDISK or
from PiCPro.

At the NAMZ input, enter the complete pathname to delete a file in PiCPro.

Or enter the following to delete a file on the RAMDISK.

 An empty subdirectory can be deleted with the DELFIL function also.

NOTE: The DELFIL function block cannot be used with the FMSDISK.

 ⁄ NAME ƒø
 ≥ DELFIL ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥NAMZ FAIL√
 ≥ ≥
 ≥ ERR√
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (One-shot)

NAMZ (STRING) - a string containing the complete
pathname

Outputs: DONE (BOOL) - energized if ERR = 0
not energized if ERR ≠ 0

FAIL (BOOL) - energized if ERR ≠ 0
not energized if ERR = 0

ERR (INT) - 0 if data transferred successfully
≠ 0 if data transfer unsuccessful

See Appendix B in the PiCPro Online Help for error
codes.

With a subdirectory,

PICPRO:c:\sub\filename.ext$00 or
Without a subdirectory,

PICPRO:c:filename.ext$00

With a subdirectory,

RAMDISK:sub\filename.ext$00 or
Without a subdirectory,

RAMDISK:filename.ext$00
Chapter 2 Function/Function Block Description 2-89

DINT2DW
DINT2DW
Double Integer to Double Word Datatype/DINTCONV

DINT2DW(IN := <<DINT>>, OK => <<BOOL>>, OUT => <<DWORD>>)

The DINT2DW function changes the data type of the value at IN from a double
integer to a double word. The result is placed in the variable at OUT.

DINT2INT
Double Integer to Integer Datatype/DINTCONV

DINT2INT(IN := <<DINT>>, OK => <<BOOL>>, OUT => <<INT>>)

The DINT2INT function changes the data type of the value at IN from a double
integer to an integer. The leftmost 16 bits of the double integer are truncated. The
result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ DINT2DW ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (DWORD) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ DINT2INT≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (INT) - converted value
2-90 Chapter 2 Function/Function Block Description

DINT2RE
DINT2LI
Double Integer to Long Integer Datatype/DINTCONV

DINT2LI(IN := <<DINT>>, OK => <<BOOL>>, OUT => <<LINT>>)

The DINT2LI function converts a double integer into a long integer. The sign bit
of the DINT is extended into the leftmost 32 bits of the long integer. The result is
placed in a variable at OUT.

DINT2RE
Double Integer to Real Datatype/DINTCONV

DINT2RE(IN := <<DINT>>, OK => <<BOOL>>, OUT => <<REAL>>)

The DINT2RE function converts a double integer into a real. The result is placed
in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ DINT2LI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ DINT2RE ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (REAL) - converted value
Chapter 2 Function/Function Block Description 2-91

DINT2SI
DINT2SI
Double Integer to Short Integer Datatype/DINTCONV

DINT2SI(IN := <<DINT>>, OK => <<BOOL>>, OUT => <<SINT>>)

The DINT2SI function changes the data type of the value at IN from a double inte-
ger to a short integer. The leftmost 24 bits of the double integer are truncated. The
result is placed in the variable at OUT.

DINT2UDI
Double Integer to Unsigned Double Integer Datatype/DINTCONV

DINT2UDI(IN := <<DINT>>, OK => <<BOOL>>, OUT => <<UDINT>>)

The DINT2UDI function changes the data type of the value at IN from a double
integer to an unsigned double integer. The result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ DINT2SI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (SINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ DINT2UDI≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DINT) - value to convert

Outputs: OK (BOOL) - execution complete

OUT (UDINT) - converted value
2-92 Chapter 2 Function/Function Block Description

DIRECT
DIRECT
Directory Io/COMM

<<INSTANCE NAME>>:DIRECT(REQ := <<BOOL>>, BEG := <<BOOL>>,
DIR := <<STRING>>, NAME := <<STRING>>, DTST := <<STRING>>,
DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>, NAME =>
<<STRING>>, DTST => <<STRING>>, SIZE => <<DINT>>, SDIR
:=<<BOOL>>);

The DIRECT function block allows you to read RAMDISK or FMSDISK file
directory information from the ladder.

⁄ NAME ƒø
≥ DIRECT ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥BEG FAIL√
≥ ≥
¥DIR ERR√
≥ ≥
¥NAME-NAME√
≥ ≥
¥DTST-DTST√
≥ ≥
≥ SIZE√
≥ ≥
≥ SDIR√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (One-shot)

BEG (BOOL) - enable to start at beginning of direc-
tory. Disable to step through directory.

DIR (STRING) - a string containing the directory
name

NAME (STRING) - (see below)

DTST (STRING) - (see below)

Outputs: DONE (BOOL) - energized if ERR = 0
not energized if ERR ≠ 0

FAIL (BOOL) - energized if ERR ≠ 0
not energized if ERR = 0

ERR (INT) - 0 if data transferred successfully
≠ 0 if data transfer unsuccessful

NAME (STRING) - a string containing the filename

DTST (STRING) - a string containing the date/time
string

SIZE (DINT) - gives the size of the file

SDIR (BOOL) - set if NAME output is a subdirectory

See Appendix B in the PiCPro Online Help for error
codes.
Chapter 2 Function/Function Block Description 2-93

DIRECT
The directory name is entered at DIR using one of the formats shown below.

Set the BEG input in order to start at the beginning of the directory.

Transition the REQ input. This places the first file in NAME, the date/time in
DTST, and the file size in SIZE. (SDIR is set when the name at the NAME output
is a subdirectory.)

Turn the BEG off to step through the remaining files in the directory. When the
last file is reached, you can go back to the beginning by setting BEG again.

When
using:

To list contents of a
subdirectory, enter the
name of the subdirecto-
ry at sub in the
following:

To list the contents
of the current di-
rectory, enter the
following:

When the main directory is not the
current directory and you want to list
the contents of the main directory ,
enter the following:

RAM-
DISK

RAMDISK:sub\$00 RAMDISK:$00 RAMDISK:*.*$00

FMSDISK FMSDISK:sub\$00 FMSDISK:$00 FMSDISK:*.*$00
2-94 Chapter 2 Function/Function Block Description

DISTANCE
DISTANCE
Distance Motion/MOVE

DISTANCE(AXIS := <<USINT>>, RATE := <<UDINT>>, RATE :=
<<UDINT>>, DIST := <<DINT>>, OK => <<BOOL>>, QUE => <<USINT>>)

The DISTANCE function moves an axis a specified distance at a specified fee-
drate. When the distance move is used with a time axis, the S_CURVE function
must be called first.

When used on a servo axis, the ACC/DEC will be a ramp, unless S-Curve interpo-
lation is enabled via Servo-Setup or the WRITE_SV function.

⁄ƒƒƒƒƒƒƒƒƒø
≥DISTANCE ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS QUE√
≥ ≥
¥RATE ≥
≥ ≥
¥DIST ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies axis (servo or time)

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

DIST (DINT) - indicates incremental move distance
(entered in LU)

Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - number of distance move for queue
Chapter 2 Function/Function Block Description 2-95

DIV
DIV
Divide Arith/ARITH

DIV(DVND := <<NUMERIC/TIME>>, DVSR := <<NUMERIC/DINT>>, OK
=> <<BOOL>>, QUOT => <<NUMERIC/TIME>>)

The DIV function divides the value of the variable or constant at DVND by the
value of the variable or constant at DVSR, and places the result in the variable at
QUOT. If there is a remainder it is not returned. See the MOD function.

⁄ƒƒƒƒƒƒƒƒƒø
≥ DIV ≥
≥ ≥
¥EN OK√
≥ ≥
¥DVND QUOT√
≥ ≥
¥DVSR ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

DVND (NUMERIC or TIME duration) - dividend

DVSR (same type as DVND if DVND is numeric;
DINT if DVND is TIME) - divisor

Outputs: OK (BOOL) - execution completed without error

QUOT (same type as DVND) - quotient

X DVND
÷ Y DVSR

Z QUOT
2-96 Chapter 2 Function/Function Block Description

DLS_INIT
DLS_INIT
Start and monitor DLS communications Motion/DATA

<<INSTANCE NAME>>:DLS_INIT(REQ := <<BOOL>>, NODE :=
<<USINT>>, RATE := <<USINT>>, SLVS := <<USINT>>, DONE =>
<<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>, STAT => <<INT>>);

As Communication Master:

The role of this function block as a communication master is to define the node
number and the interrupt rate, start the DLS communications and then monitor the
communications to determine if all other MMC for PCs have also started up. When
programmed in the ladder of an MMC for PC communication master, it will indi-
cate the progress of the initialization of the slaves.

The ladder in the DLS master must receive a DONE set indication from
DLS_INIT prior to calling SERCOS initialization. The NODE input must be zero
for a master, the RATE is the update rate of the communication and the SLVS input
is a bit pattern indicating which slaves must be ready and operational in order for
the DONE to be set. When the initialization of all slaves is complete, DONE will
be set with ERR equal to zero. The top eight bits of the STAT output indicate the
progress of individual slaves and the master.

 ⁄ƒ NAMEƒƒø
 ≥ DLS_INIT≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥NODE FAIL√
 ≥ ≥
 ¥RATE ERR√
 ≥ ≥
 ¥SLVS STAT√
 ≥ ≥
 ¥ √
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - starts initialization of DLS network
(one-shot)

NODE (USINT) - the node number of this MMC for
PC, 0 = Master, 1-7 = Slave

RATE (USINT) - SERCOS/DLS interrupt rate, 1-8 ms

SLVS (USINT) - bit array of returned slaves (not used
on slave, Master only)

Outputs: DONE (BOOL) - energized if ERR = 0
not energized if ERR = 0

FAIL (BOOL) - energized if ERR ≠ 0
not energized if ERR ≠ 0

ERR (INT) - error number if function failed

STAT (INT) - initialization status

Bit # 15 14-8 7 6 5 4 3 2 1 0

MMC
for PC
node yet
to initial-
ize

master X X node 7 node 6 node 5 node 4 node 3 node 2 node 1
Chapter 2 Function/Function Block Description 2-97

DLS_INIT
As Communication Slave:

The role of this function block as a communication slave is to start the DLS com-
munications and then monitor the communications to determine if all other MMC
for PCs have also started interrupts.

The ladder in the DLS slave must receive a DONE set indication from DLS_INIT
prior to calling SERCOS initialization. When programmed in the ladder of an
MMC for PC communication slave, it will indicate the progress of the initializa-
tion of the master and all other slaves. The inputs are the communication node of
this slave (NODE), and the update rate (RATE). The SLVS input is not used in the
slave MMC for PC. When the initialization of the master and all slaves is com-
plete, DONE will be set with both STAT and ERR equal to zero. If the master is
not yet initialized, bit 15 will be clear. The status of bit 14 indicates the progress of
all slaves, but is only valid if bit 15 is set, indicating the master is initialized.

.

DLS_INIT will report an error if the DLS module is not installed or the MMC for
PC does not support DLS.

Possible errors returned by this Function Block are as follows:

Bit # 15 14 13 12 11 10 9 8 5-7 0-4
MMC
for PC
node yet
to initial-
ize

master all
other
slaves

master
update
rate

X

Error No. Description

1 Error with node number input

2 DLS board not present

3 Bad DLS Network link

4 Firmware not compatible (update your firmware)

5 Hardware not compatible (update MMC for PC)

6 Servos not running yet

7 Error with DLS communications

8 DLS rate error
2-98 Chapter 2 Function/Function Block Description

DLS_RECV
DLS_RECV
Read most recent send data from MMC for PC DLS Slave Master Motion/DATA

<<INSTANCE NAME>>:DLS_RECV(EN := <<BOOL>>, NODE :=
<<USINT>>, DONE => <<BOOL>>, RLT1 => <<DWORD>>, RLT2 =>
<<DWORD>>, ERR => <<INT>>);

As Communication Master:

When programmed in the ladder of an MMC for PC communication master, this
function block will read the most recent send data from the MMC for PC slave
indicated by NODE. NODE is the communication slave number (from 0-7) used in
the DLS_INIT function in the slave ladder.

As Communication Slave:

When programmed in the ladder of an MMC for PC communication slave, this
function will read the most recent broadcast of data from the MMC for PC master.
NODE must be set to 0 when receiving broadcast data from the master.

Possible errors returned by this Function Block are as follows:

Note: RLT1 and RLT2 will be from the same ladder scan on the Remote node.

 ⁄ƒ NAMEƒƒø
 ≥ DLS_RECV≥
 ≥ ≥
 ¥EN DONE√
 ≥ ≥
 ¥NODE RLT1√
 ≥ ≥
 ≥ RLT2√
 ≥ ≥
 ≥ ERR √
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

NODE (USINT) - node to receive from

Outputs: OK (BOOL) - energized if ERR = 0
not energized if ERR ≠ 0

RLT1 (DWORD) - result 1

RLT2 (DWORD) - result 2

ERR (INT) - error number

Error No. Description

1 Error with node number input

2 DLS board not present

3 Bad DLS Network link

4 Firmware not compatible (update your firmware)

5 Hardware not compatible (update MMC for PC)

6 Servos not running yet

7 Error with DLS communications

8 DLS rate error
Chapter 2 Function/Function Block Description 2-99

DLS_SEND
DLS_SEND
Send data to DLS Slave/Master Motion/DATA

DLS_SEND(DAT1 := <<DWORD>>, DAT2 => <<DWORD>>, OK =>
<<BOOL>>, ERR => <<INT>>);

As Communication Master:

When programmed in the ladder of an MMC for PC communication master, this
function will broadcast the value of DATA to all communication slaves. This func-
tion may be called in the ladder task or the servo task. The data stored by this func-
tion is buffered in hardware and will be sent on the following update.

As Communication Slave:

When programmed in the ladder of an MMC for PC communication slave, this
function will send the value of DATA to the communication master. This function
may be called in the ladder task or the servo task. The data stored by this function
is buffered in hardware and will be sent on the following update.

Possible errors returned by this Function Block are as follows:

⁄ƒƒƒƒƒƒƒƒƒø
≥ DLS_SEND≥
≥ ≥
¥EN OK√
≥ ≥
¥DAT1 ERR√
≥ ≥
¥DAT2 ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

DAT1 (DWORD) - data 1

DAT2 (DWORD) - data 2

Outputs: OK (BOOL) - execution completed OK

ERR (INT) - error number

Error No. Description

1 Error with node number input

2 DLS board not present

3 Bad DLS Network link

4 Firmware not compatible (update your firmware)

5 Hardware not compatible (update MMC for PC)

6 Servos not running yet

7 Error with DLS communications

8 DLS rate error
2-100 Chapter 2 Function/Function Block Description

DLS_STAT
DLS_STAT
Indicate bit array of DLS status and communication errors Motion/DATA

<<INSTANCE NAME>>:DLS_STAT(EN := <<BOOL>>, OK => <<BOOL>>,
FAIL => <<BOOL>>, STAT => <<INT>>, ECNT => <<INT>>);

As a Communication Master:

When programmed in the ladder of an MMC for PC communications master,
STAT will contain a bit array of all slaves communicating. ECNT will contain the
number of communications errors that have occurred.

The communication error count is the number of CRC errors that corrupted master
data since servo initialization, as well as lost or missed packets.

As a Communication Slave:

When programmed in the ladder of an MMC for PC communication slave, STAT
will be non-zero if the master is communicating. ECNT will contain the number of
communication errors that have occurred.

 ⁄ƒ NAMEƒƒø
 ≥ DLS_STAT≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ≥ FAIL√
 ≥ ≥
 ≥ STAT√
 ≥ ≥
 ≥ ECNT√
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - starts initialization of DLS network
(one-shot)

Outputs: OK (BOOL) - energized if execution completed

FAIL (BOOL) - execution failed

STAT (INT) - bit array of slaves present/error code

ECNT (INT) - number of COMMO errors since
initialization
Chapter 2 Function/Function Block Description 2-101

DPOSMODE
DPOSMODE
Digital Drive Position Mode Motion/MOVE

DPOSMODE(AXIS := <<USINT>>, OK => <<BOOL>>);

The DPOSMODE function will switch the digital drive to Position Mode. The
axis number is specified by the AXIS input. This function will perform a smooth
transition to Position Mode from Torque Mode or Velocity Mode. The MMCD
defaults to Position Mode. This function is only applicable to an MMCD system.

⁄ƒƒƒƒƒƒƒƒƒø
≥ DPOSMODE≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enable execution (One-shot)

AXIS (USINT) - axis number (servo)

Outputs: OK (BOOL) - execution complete
2-102 Chapter 2 Function/Function Block Description

DRSETFLT
DRSETFLT
Reset Digital Drive Faults Motion/INIT

DRSETFLT(AXIS := <<USINT>>, OK => <<BOOL>>);

The DRSETFLT function will command the digital drive, specified by the AXIS
input, to reset the drive faults. This function is only applicable to an MMCD sys-
tem.

⁄ƒƒƒƒƒƒƒƒƒø
≥ DRSETFLT≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enable execution (One-shot)

AXIS (USINT) - axis number (servo)

Outputs: OK (BOOL) - execution complete
Chapter 2 Function/Function Block Description 2-103

DSTRTSRV
DSTRTSRV
Digital Start Servo Motion/INIT

DSTRTSRV(REQ := <<BOOL>>, DONE => <<BOOL>>, FAIL => <<BOOL>>,
ERR => <<INT>>, ERAX => <<INT>>);

The DSTRTSRV function block will initialize the axes of an MMCD system. All
other CPUs should use STRTSERV. The user-defined servo setup function must
be executed prior to executing DSTRTSRV. After DSTRTSRV completes success-
fully, all axes are initialized, the servo interrupts are running, and any axis-related
functions or function blocks can now be executed. A typical method for program-
ming the user-defined servo setup function and DSTRTSRV is shown below.

The DONE output will be energized when the axis initialization completes suc-
cessfully. The FAIL output indicates a failure occurred attempting to initialize the
axes. The ERR output will indicate the error. The possible values for ERR are
listed in Servo Initialization Errors. If the ERR output is 10, 11, 12, or 13, the
ERAX output will indicate which axis is in error. Otherwise, the ERAX output
will be 0.

Note: If a Digital Drive Communication Error E-Stop 800H occurs, DSTRTSRV
must be called again to reset the E-stop and restart communication with the digital
drives. E_RESET will not reset this E-stop.

⁄ƒ NAMEƒƒø
≥ DSTRTSRV≥
≥ ≥
¥REQ DONE√
≥ ≥
≥ FAIL√
≥ ≥
≥ ERR√
≥ ≥
≥ ERAX√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enable execution (One-shot)

Outputs: DONE (BOOL) - initialization complete

FAIL (BOOL) - initialization failed

ERR (INT) - error code

ERAX (INT) - axis number of the axis in error if

 ERR = 10, 11, 12, or 13
2-104 Chapter 2 Function/Function Block Description

DT2STR
DT2DATE
Date and Time to Date Datatype/D_TCONV

DT2DATE(IN := <<DATE_AND_TIME>>, OK => <<BOOL>>, OUT =>
<<DATE>>)

The DT2DATE function extracts the DATE from the DATE_AND_TIME value in
the variable or constant at IN, and places it into the variable at OUT. Any time val-
ues (hours, minutes, seconds) are truncated.

Example of DATE_AND_TIME to DATE

DT2STR
Date and Time to String Datatype/D_TCONV

DT2STR(OUT := <<STRING>>, IN := <<DATE_AND_TIME>>, OK =>
<<BOOL>>, OUT => <<STRING>>)

The DT2STR function converts the value in the variable or constant at IN into a
STRING, and places the result in the variable at OUT.

Example of DATE_AND_TIME to STRING

⁄ƒƒƒƒƒƒƒƒƒø
≥ DT2DATE ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DATE_AND_TIME) - value to extract from

Outputs: OK (BOOL) - execution completed without error

OUT (DATE) - extracted date

Var at IN Value at OUT
DT#1993-05-13:00:37:44 D#1993-05-13

⁄ƒƒƒƒƒƒƒƒƒø
≥ DT2STR ≥
≥ ≥
¥EN OK√
≥ ≥
¥OUT---OUT√
≥ ≥
¥IN ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

OUT (STRING) - STRING output

IN (DATE_AND_TIME) - value to extract from

Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

Var at IN Value at OUT
DT#1993-05-13:00:37:44 1993-05-13:00:37:44
Chapter 2 Function/Function Block Description 2-105

DT2TOD
DT2TOD
Date and Time to Time of Day Datatype/D_TCONV

DT2TOD(IN := <<DATE_AND_TIME>>, OK => <<BOOL>>, OUT =>
<<TIME_OF_DAY>>)

The DT2TOD function extracts the TIME_OF_DAY from the variable or constant
at IN, and places the result in the variable at OUT. Any date values (year, month,
day) are truncated.

Example of DATE_AND_TIME to TIME_OF_DAY

⁄ƒƒƒƒƒƒƒƒƒø
≥ DT2TOD ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DATE_AND_TIME) - value to extract from

Outputs: OK (BOOL) - execution completed without error

OUT (TIME_OF_DAY) - extracted value

Var at IN Value at OUT
DT#1993-05-13:00:37:44 TOD#00:37:44
2-106 Chapter 2 Function/Function Block Description

DTORQCMD
DTORQCMD
Digital Drive Torque Mode Command Motion/MOVE

DTORQCMD(AXIS := <<USINT>>, CURR := <<DINT>>, <<OK =>
<<BOOL>>)

The DTORQCMD function will issue a command current to a digital drive in
Torque Mode. The axis number is specified by the AXIS input. The command
current is specified by the CURR input in units of 0.01 amps. For example, a value
of 3475 at the CURR input would command 34.75 amps. The CURR input must
be in the range of [-25500, 25500]. If the digital drive is not in Torque Mode, this
function will switch the digital drive to Torque Mode and immediately apply the
current specified at CURR. To provide a smooth transition to Torque Mode from
either Position Mode or Velocity Mode, the ladder should specify, at CURR, the
value returned from READ_SV Variable 73 "Digital Drive Current". This func-
tion is only applicable to an MMCD system.

Note: When switching from Position Mode to Torque Mode, all Position Mode
moves in the queue will be aborted similar to executing an ABRTALL.
While in Torque Mode, any attempts by the ladder to queue a Position
Mode move (i.e. DISTANCE, POSITION, RATIO_GR, etc.) will be
ignored and the OK output will not be energized.

Note: If DTORQCMD is called while the loop is open, the OK output will be
energized, the digital drive will switch to Torque Mode if it’s not cur-
rently in Torque Mode, and the command current will remain zero
regardless of the value at CURR.

⁄ƒƒƒƒƒƒƒƒƒø
≥DTORQCMD ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥CURR ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - axis number (servo)

CURR (DINT) - command current

Outputs: OK (BOOL) - execution complete
Chapter 2 Function/Function Block Description 2-107

DVELCMD
DVELCMD
Digital Drive Velocity Mode Command Motion/MOVE

DVELCMD(AXIS := <<USINT>>, VEL := <<DINT>>, <<OK => <<BOOL>>)

The DVELCMD function will issue a command velocity to a digital drive in
Velocity Mode. The axis number is specified by the AXIS input. The command
velocity is specified by the VEL input in RPM (motor revolutions / minute). The
VEL input must be in the range [-32768, 32767]. If the digital drive is not in
Velocity Mode, this function will switch the drive to Velocity Mode and immedi-
ately apply the command velocity specified at VEL. To provide a smooth transi-
tion to Velocity Mode from either Position Mode or Torque Mode, the ladder
should specify, at VEL, the value returned from READ_SV Variable 89 "Digital
Drive Predicted Command Velocity". This function is only applicable to an
MMCD system.

Note: When switching from Position Mode to Velocity Mode, all Position
Mode moves in the queue will be aborted similar to executing an
ABRTALL. While in Velocity Mode, any attempts by the ladder to
queue a Position Mode move (i.e. DISTANCE, POSITION, RATIO_GR,
etc.) will be ignored and the OK output will not be energized.

Note: If DVELCMD is called while the loop is open, the OK output will be
enerized, the digital drive will switch to Velocity Mode if it’s not cur-
rently in Velocity Mode, and the command velocity will remain zero
regardless of the value at VEL.

⁄ƒƒƒƒƒƒƒƒƒø
≥ DVELCMD ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥VEL ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - axis number (servo)

VEL (DINT) - command velocity

Outputs: OK (BOOL) - execution complete
2-108 Chapter 2 Function/Function Block Description

DWORD2BYT
DWORD2BYT
Double Word to Byte Datatype/DWORDCNV

DWOR2BYT(IN := <<DWORD>>, OK => <<BOOL>>, OUT => <<BYTE>>)

The DWOR2BYT function changes the data type of the value at IN from a double
word to a byte. The leftmost 24 bits of the double word are truncated. The result
is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ DWOR2BYT≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (BYTE) - converted value
Chapter 2 Function/Function Block Description 2-109

DWOR2DI
DWOR2DI
Double Word to Double Integer Datatype/DWORDCNV

DWOR2DI(IN := <<DWORD>>, OK => <<BOOL>>, OUT => <<DINT>>)

The DWOR2DI function changes the data type of the value at IN from a double
word to a double integer. The result is placed in the variable at OUT.

DWOR2LW
Double Word to Long Word Datatype/DWORDCNV

DWOR2LW(IN := <<DWORD>>, OK => <<BOOL>>, OUT => <<LWORD>>)

The DWORD2LW function converts a double word into a long word. The left-
most 32 bits of the long word are filled with zeros. The result is placed in a vari-
able at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ DWOR2DI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (DINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ DWOR2LW ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LWORD) - converted value
2-110 Chapter 2 Function/Function Block Description

DWOR2UDI
DWOR2RE
Double Word to Real Datatype/DWORDCNV

DWOR2RE(IN := <<DWORD>>, OK => <<BOOL>>, OUT => <<REAL>>)

The DWORD2RE function converts a double word into a real. The result is placed
in a variable at OUT.

DWOR2UDI
Double Word to Unsigned Double Integer Datatype/DWORDCNV

DWOR2UDI(IN := <<DWORD>>, OK => <<BOOL>>, OUT => <<UDINT>>)

The DWOR2UDI function changes the data type of the value at IN from a double
word to an unsigned double integer. The result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ DWOR2RE ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (REAL) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ DWOR2UDI≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (UDINT) - converted value
Chapter 2 Function/Function Block Description 2-111

DWOR2WO
DWOR2WO
Double Word to Word Datatype/DWORDCNV

DWOR2WO(IN := <<DWORD>>, OK => <<BOOL>>, OUT => <<WORD>>)

The DWOR2WO function changes the data type of the value at IN from a double
word to a word. The leftmost 16 bits of the double word are truncated. The result
is placed in the variable at OUT.

D_TOD2DT
Concatenate Date and Time of Day Datatype/D_TCONV

D_TOD2DT(IN1 := <<DATE>>, IN2 := <<TIME_OF_DAY>>, OK =>
<<BOOL>>, OUT => <<DATE_AND_TIME>>)

The D_TOD2DT function concatenates (combines) the value of the variable or
constant at IN1 with the value of the variable or constant at IN2. The result is a
DATE_AND_TIME value that is placed in the variable at OUT.

Example of concatenate DATE and TIME_OF_DAY

⁄ƒƒƒƒƒƒƒƒƒø
≥ DWOR2WO ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DWORD) - value to convert

Outputs:OK (BOOL) - execution completed without error

OUT (WORD) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ D_TOD2DT≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN1 (DATE) - value to be combined

IN2 (TIME_OF_DAY) - value to be combined

Outputs: OK (BOOL) - execution completed without error

OUT (DATE_AND_TIME) - concatenated value

Var at IN Value at IN2 Value at OUT
D#1995-01-02 TOD#03:04:05 DT#1995-01-02-03:04:05
2-112 Chapter 2 Function/Function Block Description

EQ
EQ
Equal To Evaluate/EQ

EQ(IN1 := <<ANY>>, IN2 := <<ANY>>, IN1 := <<ANY>>, IN2 := <<ANY>>,
IN3 := <<ANY>> ... IN17 := <<ANY>>, <<OK => <<BOOL>>, OUT =>
<<BOOL>>)

This is an extensible function which can compare up to 17 inputs.

If all the input values at IN1, IN2, ... IN17 are equal, the coil at OUT is energized.
If one or more values are not equal, the coil at OUT is not energized.

The variable or constants at IN1 through IN17 are compared as follows:

IN1 is compared to IN2, then IN2 is compared to IN3, then IN3 is compared to
IN4, ..., finally, IN16 is compared to IN17. If all of these comparisons are equal,
then the coil at OUT will be energized, otherwise the coil at OUT is not energized.

⁄ƒƒƒƒƒƒƒƒƒø
≥ EQ ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

IN1 (ANY except BOOL or STRUCT) - value to be
compared

IN2...IN17 (same type as IN1) - value to be compared

Outputs: OK (BOOL) - execution completed without error

OUT (BOOL) - indicates if values are equal
Chapter 2 Function/Function Block Description 2-113

EXIST?
EXIST?
Axis successfully initialized? Motion/INIT

EXIST?(AXIS := <<USINT>>, OK => <<BOOL>>, EXST => <<BOOL>>)

The EXIST? function asks if this axis number has been successfully initialized. If
the EXST output is set, a successful initialization has occurred.

⁄ƒƒƒƒƒƒƒƒƒø
≥ EXIST? ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS EXST√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error

EXST (BOOL) - indicates the axis exists
2-114 Chapter 2 Function/Function Block Description

EXP
EXP
Exponential Arith/TRIG

EXP(LN := <<REAL/LREAL>>, OK => <<BOOL>>, NUM => <<REAL/
LREAL>>)

The EXP function is the inverse of the LN function which calculates the natural
log of a number.

⁄ƒƒƒƒƒƒƒƒƒø
≥ EXP ≥
≥ ≥
¥EN OK√
≥ ≥
¥LN NUM√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

LN (REAL/LREAL) - natural log value

Outputs: OK (BOOL) - execution completed without error

NUM (REAL/LREAL) - the number whose natural log
is entered at LN

NOTE: The data types entered at LN and NUM must
match, i.e. if LN is REAL, then NUM must be REAL.
Chapter 2 Function/Function Block Description 2-115

E_ERRORS
E_ERRORS
Emergency Errors Motion/ERRORS

E_ERRORS(AXIS := <<USINT>>, OK => <<BOOL>>, ERRS => <<WORD>>)

The E_ERRORS function returns 16 bits at the ERRS output that indicate what
emergency-stop (E-stop) errors are currently active for the axis specified at the
AXIS input. If there are no E-stop errors, ERRS will return 0. If there is an E-stop
error, the uppermost bit (bit location 15) will be set indicating that an E-stop error
exists plus one or more of the low 9 bits will be set indicating the type of E-stop
error(s). Table 2-10 describes each of the E-stop errors represented by these bits.
The Hex Value column shows the hexadecimal (and decimal) value that is
returned at the ERRS output. Note that multiple E-stop bits could be set resulting
in a value that is not listed in the table. For example, if an Excess Error E-stop and
a User-set E-stop exist, bit locations 1 and 3 (and also 15) will be set, resulting in a
returned value of 800A hexadecimal or 32778 decimal.

NOTE: If an E-stop error occurs using the stepper axis module, the command to
the stepper will be zeroed. There is no loss of feedback or excess error with the
stepper axis.

⁄ƒƒƒƒƒƒƒƒƒø
≥E_ERRORS ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ERRS√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo or digitizing)

Outputs: OK (BOOL) - execution completed without error

ERRS (WORD) - identifies errors
2-116 Chapter 2 Function/Function Block Description

E_ERRORS
Table 2-10. Emergency Stop Errors.

Error Description Bit Location
Hex
Value
(Decimal)

8 7 6 5 4 3 2 1 0 (in LDO)
Digital
Drive
Communi-
cation
Error

Two consecutive CRC errors were
detected in the data transferred between
the MMCD and the digital drive. This E-
stop cannot be reset with E_RESET. The
ladder must call DSTRTSRV again to
restart communication and reset this E-
stop.

E 8100
(33024)

Digital
Drive
Fault

A drive fault was reported from the digi-
tal drive

E 8080
(32896)

ASIU
Update
Error

The MMC-for-PC did not receive the
servo update data from the ASIU in time

E 8040
(32832)

SERCOS
error

Cyclic data synchronization error E 8020
(32800)

SERCOS
error

SERCOS drive E-stop - Status word bit
13 = 1.

E 8010
(32784)

User-set The ladder called the E-stop function. E 8008
(32776)

Overflow
error

A slave delta overflow during runtime has
occurred. This problem is most likely to
occur if you are moving at a high rate of
speed and/or the slave distance is very
large compared to the master distance.

There are two conditions that can set this
bit.

1. In FU, if the master moved position
times the slave distance entered is greater
than 31 bits.

2. In FU, if the

 is greater than 16 bits.

E 8004
(32772)

Excess
error

The Position Error has exceeded the Fol-
lowing Error limit.

 E 8002
(32770)

Loss of
feedback

A loss of feedback from the feedback
device has occurred.

E 8001
(32769)

mastermoved × SDIS
 MDIS
Chapter 2 Function/Function Block Description 2-117

E_RESET
E_RESET
Emergency Stop Reset Motion/ERRORS

E_RESET(AXIS := <<USINT>>, OK => <<BOOL>>)

The E_RESET function resets the E-stop condition and all the errors that caused it.
After an E-stop error occurs, you must always reset it. If the E-Stop being reset is a
Resumable E-Stop (see READ_SV Variable 63), the moves in the active and next
queues will remain intact. If it is not a Resumable E-Stop, the active and next
queues will be cleared.

Note: The E_RESET function will close the loop if a CLOSLOOP function is
executed before the E_STOP.

Note: If the axis is a digital drive servo axis, E_RESET will also reset the digital
drive faults.

Note: E_RESET will not reset a Digital Drive Communication Error E-stop
8100H. The ladder must call DSTRTSRV again to reset this E-stop and
restart communication.

E_STOP
Emergency Stop Motion/ERRORS

E_STOP(AXIS := <<USINT>>, OK => <<BOOL>>)

The E_STOP function will open the servo loop and zero the analog output.

If Resumable E-Stop Allow is set (Servo Setup or WRITE_SV Variable 63), this
function will also cause the axis to go into Resume Mode. See READ_SV Variable
63 & 64, RESMODE?, and RESUME.

⁄ƒƒƒƒƒƒƒƒƒø
≥ E_RESET ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs:EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo or digitizing)

Outputs:OK (BOOL) - execution completed without error

⁄ƒƒƒƒƒƒƒƒƒø
≥ E_STOP ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error
2-118 Chapter 2 Function/Function Block Description

E_STOP?
E_STOP?
Emergency Stop? Motion/ERRORS

E_STOP?(AXIS := <<USINT>>, OK => <<BOOL>>, ESTP => <<BOOL>>)

The E_STOP? function asks if there is a E-stop in effect for this axis.

⁄ƒƒƒƒƒƒƒƒƒø
≥ E_STOP? ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ESTP√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo or digitizing)

Outputs: OK (BOOL) - execution completed without error

ESTP (BOOL) - indicates an E-stop is active when set
Chapter 2 Function/Function Block Description 2-119

FAST_QUE
FAST_QUE
Fast Input Queue Motion/QUE

FAST_QUE (AXIS := <<USINT>>, FAST := <<USINT>>, DIST := <<DINT>>,
OK => <<BOOL>>)

The FAST_QUE function allows you to manage the queues based on the occur-
rence of a fast input to the feedback module for an axis.

SERCOS NOTE: The function block SCA_PBIT must be called and com-
pleted successfully prior to calling the FAST_QUE function
with a SERCOS axis.

This function can be used to:

1. Start a move

2. Go from one move to another
If the first move completes before the fast input occurs, the second move will
begin just as if the FAST_QUE function had not been called.

3. End a move
If the fast input does not occur, the move will end in the normal way.

Using the fast input to trigger one of the above provides a faster response time than
is possible when managing the queues from the ladder.

⁄ƒƒƒƒƒƒƒƒƒø
≥FAST_QUE ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥FAST ≥
≥ ≥
¥DIST ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies axis to be affected by the
fast input (servo)
This can either be the same axis as FAST or a second
axis.

FAST (USINT) - identifies axis with fast input
NOTE: Fast input on axis feedback required.
NOTE: Entering a zero will cancel the FAST_QUE’s
holding mode

DIST (DINT) - the distance the fast input axis must
travel after the fast input occurs (entered in LU)
Range of ± 4,194,303 FU (A “0” may be entered if no
distance needs to be covered by the fast input axis.)

NOTE: A programming error will be generated if the
axis moves more than 65,535 FU in the opposite direc-
tion of what is entered at DIST.

Outputs: OK (BOOL) - execution completed without error
2-120 Chapter 2 Function/Function Block Description

FAST_QUE
The update rate entered in setup for the axis identified at AXIS and the axis identi-
fied at FAST must be the same.

NOTE: An internal bit remains on for eight updates after a fast input event occurs.
If the FAST_QUE is called during those eight updates, the bit is ignored until it
changes state again. Therefore, to ensure that you do not miss a fast input event,
there should always be nine or more updates between events. (One iteration equals
eight updates.)

When the FAST_QUE is called, a “holding” mode for any of the three actions is in
effect until the following two conditions are met:

• The fast input on the axis identified at FAST occurs.

• The FAST axis has moved the designated distance entered at DIST.

The holding mode is cleared when both of these conditions are met and it is then
possible to manipulate the moves in the queue(s) in one of the following ways.

TO START A MOVE:

Step 1.Call the FAST_QUE function.

Step 2.Put the move to occur on the fast input in the active queue.

The move will start after the fast input occurs and the FAST axis has
moved the specified distance. If the fast input occurs before the
FAST_QUE is called, it will be ignored. You must call the FAST_QUE
before the fast input occurs.

TO MOVE FROM ONE MOVE TO ANOTHER:

Step 1. Put the first move in the active queue. It will begin.

Step 2. Call the FAST_QUE function.

Step 3. Put the second move in the next queue.

The first move will be aborted and the second move will begin after the fast
input occurs and the fast input axis has moved the specified distance.
Again, the FAST_QUE function must be called before the fast input occurs
or it will be ignored until the next fast input.

TO END A MOVE:

Step 1. Put the move in the active queue. It will begin.

Step 2. Call the FAST_QUE function.

The move will end when the fast in occurs and the axis moves the distance
entered at DIST. Do not put any move in the next queue until after the fast
input occurs. If you do, the second move will begin when the fast input
occurs as described above.

A programming error (P_ERRORS function) will occur on the axis identi-
fied at AXIS on the FAST_QUE function if the fast axis travels in the
wrong direction more than 65,535 FU. If the axis continued to move in the
wrong direction, a move could be started unexpectedly.
Chapter 2 Function/Function Block Description 2-121

FAST_QUE
It is important that you ensure this does not occur. Do this by programming
an ABORTALL function at the occurrence of this programming error to
remove all moves from the queues.

The programming error must be reset with the P_RESET function.

Note: The move will travel the distance specified in DIST and then you abort
the move. The total distance traveled beyond the fast input will equal the
DIST value plus whatever distance it takes to decel.

The holding mode can be cancelled by calling the FAST_QUE function with a zero
on the function input labeled “FAST”. Cancelling the holding mode will cause the
axis to behave as if no FAST_QUE had been called. Note that if a queued move is
waiting on a fast input to begin, canceling the holding mode will cause the move to
begin.
2-122 Chapter 2 Function/Function Block Description

FAST_REF
FAST_REF
Fast Input Reference (Machine Reference) Motion/REF

FAST_REF(AXIS := <<USINT>>, PLUS := <<BOOL>>, RATE := <<UDINT>>,
DIM := <<DINT>>, OPTION := <<WORD>>, OK => <<BOOL>>, QUE =>
<<USINT>>)

The fast input reference is a machine reference. It will cause a servo axis to move
in the direction (PLUS) and at the feedrate (RATE) specified to the reference
switch. The reference switch is connected to the fast input on the feedback mod-
ule. When the switch closes, the position of the axis is recorded based on the near-
est null of the resolver or the next index mark of the encoder. The value entered at
DIM is assigned to this position. If the axis is a digitizing axis or if “no motion”
has been selected at OPTN (see below), this function does not cause motion. You
must use other methods of moving the axis to the reference switch. The inputs
PLUS and RATE are ignored when no motion is selected.

A fast reference done with the FAST_REF function monitors the axis until a fast
input on the feedback module occurs. How the fast input responds is defined by
variable 19 in the WRITE_SV function. The default is to respond to the rising
edge. In contrast, the ladder reference (see LAD_REF and REF_END functions)
monitors the axis until the REF_END function is called in your ladder program.

When using a SERCOS axis, the function block SCA_RFIT must be called and
completed successfully prior to calling the FAST_REF function.

Note: If an encoder is the feedback device, the axis will continue to move after
the switch closes until the next index mark is seen.

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥FAST_REF ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥AXIS QUE√
 ≥ ≥
 ¥PLUS ≥
 ≥ ≥
 ¥RATE ≥
 ≥ ≥
 ¥DIM ≥
 ≥ ≥
 ¥OPTN ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies axis (servo or digitizing)
NOTE: Fast input on axis feedback required.

PLUS (BOOL) - indicates direction of motion to refer-
ence switch

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

DIM (DINT) - reference dimension for the nearest
resolver null or the next encoder index mark after the
fast input occurs. It is entered in LU. If DIM is outside
the range of -536,870,912 to 536,870,911 FU, the OK
will not be set.

OPTN (WORD) - provides referencing options

Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - number of reference move for queue
Chapter 2 Function/Function Block Description 2-123

FAST_REF
The OPTN input provides the following options:

If no option is desired, enter a “0.”

Option inputs

Ignore the index/null

Choosing this option allows a reference to occur which ignores the index mark of
an encoder or the null of a resolver during the reference cycle. If bit 0 is set to “1,”
the reference position assigned by DIM will be assigned to the position the axis is
at when the fast input makes its transition.

With an encoder, the axis will stop immediately after the fast input transitions. The
axis does not continue movement until the index mark is reached. NOTE: This
makes the reference switch position given with the READ_SV function invalid.
With a resolver, the reference switch position available with the READ_SV func-
tion is valid.

No motion

The no motion option allows a reference to occur without any motion. The axis is
put into a mode whereby it is watching for the conditions of a reference cycle.
Even though no move is placed in the queue, a queue must be available. A move
will be initiated by the ladder following the reference cycle.

Once the call is made, the reference complete flag goes low until the fast input
occurs and the index mark (unless “ignore index” option is active) is received. The
reference complete flag goes high once these events occur and the axis position
takes on the reference value at DIM.

If the move type is VEL, RATIO_GR, LAD_REF, or FAST_REF, the new axis
position assigned by the no-motion reference has no effect on the move itself.
With a DISTANCE move, the actual distance covered will be the same. If a no-
motion reference occurs during a position move, the endpoint will be reached.

If a no-motion reference is used during a RATIO_PRO move, the lock on point of
the slave axis to the master axis may be undefined. This is not recommended.

Note: A fast reference can also be performed on a digitizing axis. You must cause
the axis to move and the fast input to occur. Use variable 29 with the READ_SV
function to read the reference switch position. REF_DNE? can also be used with
digitizing axes.

Option Binary value Hex value
1. Ignore index/null 00000000 00000001 0001
2. No motion 00000000 00000010 0002
3. Null setup 00000000 00000100 0004
2-124 Chapter 2 Function/Function Block Description

FAST_REF
Null Setup

This option will establish a null position for a digital drive axis with resolver feed-
back or single-turn Stegmann encoder feedback in addition to perfoming the fast
reference. The null position will be stored in the digital drive’s flash memory and
will be retained through power cycles. This feature allows the user to omit the
setup process of physically positioning the reference switch to be near the null. To
provide repeatable references, this option bit should be set with the first call to
FAST_REF and should be reset for subsequent calls.
Chapter 2 Function/Function Block Description 2-125

FAST_REF
Setting up a machine reference switch

A reference switch is needed for each axis requiring a machine reference. When
the switch is tripped, the position of the axis is indicated by the signal from the
feedback device coupled to the axis. The PiC references to the nearest null of a
resolver or the next index mark of an encoder. If the switch is improperly placed in
relation to the feedback device, a reference could take place that was one revolu-
tion off of the previous reference. To ensure that you will always get an accurate
repeatable reference, there are certain factors to keep in mind when setting up the
reference switch:

• With encoders - the software calculations assign the reference value of the
function to the first index mark following switch closure. The reference
switch should be positioned so that the count bandwidth is within the range
of 25 to 75% of the total count. If the total count is 1000 per rev, the switch
location should be between 250 and 750 counts. See A in Referencing posi-
tions for encoders and resolversbelow.

• With resolvers - the software calculations assign the reference value of the
function to the nearest null following the switch closure. The reference
switch should be positioned so that the count is greater than 3000 or less
than 1000. The switch location is incorrect if the resolver signal is between
10001 and 2999. See Figure 2-5 below.

Figure 2-5. Referencing positions for encoders and resolvers

Note that the referencing position is in different halves for the encoder and
resolver. That is because the encoder references to the next index mark and
you want to avoid referencing in the same half of the encoder revolution as
the index mark. The resolver references to the nearest null so you want to
avoid referencing around the half-rev point.

Encoder

750 250

0

999

Resolver

3000 1000

0
Null

BA

Index Mark

Machine reference
should occur in this half.

3999
2-126 Chapter 2 Function/Function Block Description

FAST_REF
• After a machine reference is completed, the READ_SV function (see servo
data functions) can be used to read the reference switch position after the
switch closes by entering variable 29 in the VAR input and viewing the
RSLT output (in feedback units) in PiCPro. An encoder reference switch
position is the distance between the switch closure and the index mark. A
resolver reference switch position is the position of the resolver when the
switch is closed.

If the reference switch position read from the READ_SV function is between 25%
and 75% for the total encoder count or less than 1000 or more than 3000 for a
resolver, than your reference switch is positioned properly to ensure accurate,
repeatable referencing. If the position read is outside of these ranges you can
change the position of the feedback device when the switch transitions by either
moving the reference switch or the feedback device. Perform the machine refer-
ence again and read the reference switch position to see if it is within the range.

One factor to keep in mind when performing a machine reference from the ladder
with the LAD_REF function is there can be a lag time between the actual closing
of the reference switch and the software calculations. This is caused by up to 32
ms of update time and up to 200 ms of scan time. (200 ms is the maximum time
limit for one scan before a loss of scan occurs.) This could affect the repeatability
of your reference especially when referencing at high velocities.

The example which follows illustrates this. Assume an axis using resolver feed-
back is moving at a velocity of 50000 counts per minute (NOTE: 50000 C/MIN =
.83333 C/ms). Looking at an example with the maximum update and scan
time: (32 ms + 200 ms) * .83333 C/ms = 193.333 or 193 C. If the READ_SV
function gave a reading of 1000 C for the reference switch position, the actual
position of the device when the switch closed could be up to 1193 counts (or 807
counts if referencing in the negative direction). By using a lower velocity, the
number of counts is lowered. For example, if the velocity is 5000 C/MIN, then the
count is as follows (NOTE: 5000 C/MIN = .08333 C/ms): (32 ms + 200 ms) *
.08333 C/ms = 193.33 or 193 C.

The actual position of the reference could be up to 1019 counts (981 counts if ref-
erencing in the negative direction). When the machine reference is done using the
fast input with the FAST_REF function, the recording of the reference switch tran-
sition is not affected by what the ladder scan is executing at the time. There is vir-
tually no lag between the time the reference occurs and the time it is recorded.
This is a very accurate method of referencing. The only time consideration for the
fast input is a short (50 µs) turn-on time.

Note: This function cannot be used with the stepper axis module.

NOTE

If in adjusting the location of the reference switch or the feedback de-
vice, you find that the result of variable 29 increases when you expect
it to decrease after performing the machine reference, move the de-
vice in the opposite direction until the reading is acceptable.
Chapter 2 Function/Function Block Description 2-127

FB_CLS
FB_CLS
Field Bus Close Fbinter/FB_CLS

<<INSTANCE NAME>>:FB_CLS(REQ := <<BOOL>>, SLOT := <<USINT>>,
DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>);

The FB_CLS function block is used to close communications with the Field Bus.
You must call the FB_OPN function block to re-establish field bus communica-
tions.

The ERR output will be ≠ 0 if an error occurred.

⁄CLOSEƒƒƒƒø
≥ FB_CLS ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥SLOT FAIL√
≥ ≥
¥ ERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (one-shot)

SLOT (USINT) - slot number (use same slot number
entered for FB_OPN)

Outputs: DONE (BOOL) - set when communications with the
field bus are closed

FAIL (BOOL) - set if an error occurred

ERR (INT) - error number

ERR# Description What to do/check

0 No error

1 No Fieldbus module was found at
the slot number entered at SLOT
input.

Ensure that a Fieldbus module is installed in
the correct slot.
2-128 Chapter 2 Function/Function Block Description

FB_OPN
FB_OPN
Field Bus Open Fbinter/FB_OPN

<<INSTANCE NAME>>:FB_OPN(REQ := <<BOOL>>, SLOT := <<USINT>>,
DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>);

The FB_OPN function block is used to open communications with the field bus
placing the Fieldbus module in the RUN mode.

The ERR output will be ≠ 0 if an error occurred.

⁄ƒ OPENƒƒƒø
≥ FB_OPN ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥SLOT FAIL√
≥ ≥
¥ ERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (one-shot)

SLOT (USINT) - slot number (for PiC 3 - 13 main rack
only available, for MMC for PC any value, for MMC 3
or 4)

Outputs: DONE (BOOL) - set when Fieldbus module is in RUN
mode.

FAIL (BOOL) - set if an error occurred

ERR (INT) - error number

ERR# Description What to do/check

0 No error

1 No Fieldbus module was found at
the slot number entered at SLOT
input.

Ensure that the Fieldbus module is installed in
the correct slot.

2 No configuration file for this slot. Ensure that you have a .UCT (configuration)
file with the same name as your .LDO file.
Chapter 2 Function/Function Block Description 2-129

FB_RCV
FB_RCV
Field Bus Receive Fbinter/FB_RCV

FB_RCV(SLOT := <<USINT>>, OK => <<BOOL>>, ERR => <<INT>>)

The FB_RCV function receives all data from the configurator file indicated by Tag
names.

The ERR output will be ≠ 0 if an error occurred.

⁄ƒƒƒƒƒƒƒƒƒø
≥ FB_RCV ≥
≥ ≥
¥EN OK√
≥ ≥
¥SLOT ERR√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

SLOT (USINT) - slot number (use same slot number
as entered for FB_OPN)

Outputs: OK (BOOL) - execution completed without error

ERR (INT) - error number

ERR# Description What to do/check

0 No error

1 No Fieldbus module was found at
the slot number entered at SLOT
input.

Ensure that the Fieldbus module is installed in
the correct slot.
2-130 Chapter 2 Function/Function Block Description

FB_SND
FB_SND
Field Bus Send Fbinter/FB_SND

FB_SND(SLOT := <<USINT>>, OK => <<BOOL>>, ERR => <<INT>>)

The FB_SND function is used to send data indicated by Tag names in the configu-
rator file.

The ERR output will be ≠ 0 if an error occurred.

⁄ƒƒƒƒƒƒƒƒƒø
≥ FB_SND ≥
≥ ≥
¥EN OK√
≥ ≥
¥SLOT ERR√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

SLOT (USINT) - slot number (use same slot number
as entered for FB_OPN)

Outputs: OK (BOOL) - execution completed without error

ERR (INT) - error number

ERR# Description What to do/check

0 No error

1 No Fieldbus module was found at
the slot number entered at SLOT
input.

Ensure that the Fieldbus module is installed in
the correct slot.
Chapter 2 Function/Function Block Description 2-131

FB_STA
FB_STA
Field Bus Status Fbinter/FB_STA

<<INSTANCE NAME>>:FB_STA(EN := <<BOOL>>, SLOT := <<USINT>>,
OK => <<BOOL>>, FAIL => <<BOOL>>, ONL1 => <<BOOL>>, ERR =>
<<INT>>, STAT => <<DWORD>>);

The FB_STA function block allows you to check if the Fieldbus module is com-
municating with nodes and to check field bus status information.

The ERR output will be ≠ 0 if an error occurred.

The following tables define the value of status information that can appear at the
STAT output based on the double word format shown below.

⁄ƒƒƒƒƒƒƒƒƒø
≥ FB_STA ≥
≥ ≥
¥EN OK√
≥ ≥
¥SLOT FAIL√
≥ ≥
≥ ONLI√
≥ ≥
≥ ERR√
≥ ≥
≥ STAT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

SLOT (USINT) - slot number (use same slot number
as entered for FB_OPN)

Outputs: OK (BOOL) - execution completed without error

FAIL (BOOL) - set if an error occurred

ONLI (BOOL) - set if the Fieldbus module is commu-
nicating with nodes.

ERR (USINT) - number of error

STAT (DWORD) - status information

ERR# Description What to do/check

0 No error

1 No Fieldbus module was found at
the slot number entered at SLOT
input.

Ensure that the Fieldbus module is installed in
the correct slot.

MSB LSB2 LSB1 LSB0

NET_STATUS_FLAGS NET_STATUS_CODE IF_STATUS_FLAGS IF_STATUS_CODE
2-132 Chapter 2 Function/Function Block Description

FB_STA
NET_STATUS_FLAGS

NET_STATUS_FLAGS indicates various conditions related to the Fieldbus mod-
ule network interface. Each Fieldbus module supports a subset of the status flags
as appropriate.

NET_STATUS_CODE

NET_STATUS_CODE indicates the status of the Fieldbus module network inter-
face. Each Fieldbus module supports a subset of the status codes as appropriate.

Bit Name Description

0 Warning The communication error warning threshold has been exceeded.

1 NO_POWER Bus power is not present.

2 NO_BUS Bus is not connected.

3 - 7 (Reserved)

Value Name Description

00 OFFLINE Network interface is offline.

01 OFFLINE_FAULT Network interface is offline due to a network fault.

02 OFFLINE_BAD_CF
G

Network interface is offline due to a configuration fault
(invalid or duplicate station address, invalid baud rate,
invalid DIP-switch data, etc.)

03 ONLINE Network interface is online, no faults detected.

04 ONLINE_FAULT Network interface is online, one or more network services
has failed.

05 ONLINE_ACTIVE Network interface is online and is exchanging data, no
faults detected.

Any failure of a secure service is reported.

06 ONLINE_IDLE Network interface is online and is exchanging data, one or
more services is receiving an idle indication, no faults
detected.

07 ONLINE_INACTIVE Network interface is online, one or more previously active
services has been suspended, no faults detected.

08-
0FFh

(Reserved)
Chapter 2 Function/Function Block Description 2-133

FB_STA
IF_STATUS_FLAGS

IF_STATUS_FLAGS indicates various conditions related to the Fieldbus module
end of the data exchange interface.

IF_STATUS_CODE

IF_STATUS_CODE indicates various conditions related to the Fieldbus module
data exchange interface.

NOTE: FB_XXX functions can be used with either a DeviceNet or Profibus net-
work. Fieldbus is used as a generic term.

Bit Name Description

0 EVENT_LOST An event was lost due to a full event queue. This flag is cleared
when the data exchange interface is closed.

1 - 7 (Reserved)

Value Name Description

00 CLOSED Data exchange interface is closed.

01 OPEN Data exchange interface is open.

02 HEARTBEAT_
FAULT

Data exchange interface is faulted due to heartbeat timeout.
(Same behavior as closed.)

03h -
0FFh

(Reserved)
2-134 Chapter 2 Function/Function Block Description

FIND
FIND
Find String/FIND

FIND(IN1 := <<STRING>>, IN2 := <<STRING>>, OK => <<BOOL>>, OUT =>
<<INT>>)

The FIND function is used to find a STRING that is contained in another STRING.
It searches within the variable at IN1 for the first occurrence of the variable at IN2.
If the STRING is found, the position of its first character is placed into the variable
at OUT. If the STRING is not found a zero is placed in the variable at OUT.

An error occurs if:

Example of find function

⁄ƒƒƒƒƒƒƒƒƒø
≥ FIND ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN1 (STRING) - STRING to search

IN2 (STRING) - STRING to find

Outputs: OK (BOOL) - execution completed without error

OUT (INT) - position

Length of IN1 = 0

Length of IN2 = 0

Length of IN2 > length of IN1

Var at IN1 Var at IN2 Var at OUT
string1string2 ring 3
Chapter 2 Function/Function Block Description 2-135

FRESPACE
FRESPACE
Free Space Io/COMM

<<INSTANCE NAME>>:FRESPACE(REQ := <<BOOL>>, NAMZ :=
<<STRING>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<INT>>, QTY => <<DINT>>);

The FRESPACE function block allows you to read at the QTY output how many
bytes of memory are available on the RAMDISK or FMSDISK.

At the NAMZ input, enter the following to check the available free space on the
RAMDISK or FMSDISK:

 ⁄ NAME ƒø
 ≥FRESPACE ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥NAMZ FAIL√
 ≥ ≥
 ≥ ERR√
 ≥ ≥
 ≥ QTY√
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (One-shot)

NAMZ (STRING) - a string containing the complete
pathname

Outputs: DONE (BOOL) - energized if ERR = 0
not energized if ERR ≠ 0

FAIL (BOOL) - energized if ERR ≠ 0
not energized if ERR = 0

ERR (INT) - 0 if data transferred successfully
≠ 0 if data transfer unsuccessful

QTY (DINT) - number of bytes available on the RAM-
DISK or FMSDISK

See Appendix B in the PiCPro Online Help for error
codes.

For RAMDISK RAMDISK:$00
For FMSDISK FMSDISK:$00
2-136 Chapter 2 Function/Function Block Description

FU2LU
FU2LU
Feedback Units to Ladder Units Motion/DATA

FU2LU(AXIS := <<USINT>>, FU := <<DINT>>, OK => <<BOOL>>, LU =>
<<DINT>>)

The FU2LU function converts the feedback unit value at FU to its equivalent lad-
der unit value and places the result at LU.

⁄ƒƒƒƒƒƒƒƒƒø
≥ FU2LU ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS LU√
≥ ≥
¥FU ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - axis number (servo or digitizing)

FU (DINT) - feedback unit value to convert

Outputs: OK (BOOL) - execution completed without error

LU (DINT) - ladder unit value
Chapter 2 Function/Function Block Description 2-137

GE
GE
Greater Than or Equal To Evaluate/GE

GE(IN1 := <<ANY>>, IN2 := <<ANY>>, OK => <<BOOL>>, OUT =>
<<BOOL>>)

The GE function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.

For the inputs at IN1, IN2, ...IN17

If IN1 ≥ IN2 ≥ IN3 ≥≥ IN17, the coil at OUT is energized.

Otherwise the coil at OUT is not energized.

⁄ƒƒƒƒƒƒƒƒƒø
≥ GE ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

IN1 (ANY except BOOL or STRUCT) - value to be
compared

IN2 (same type as IN1) - value to be compared

Outputs: OK (BOOL) - execution completed without error

OUT (BOOL) - indicates if values are greater than or
equal to successive values
2-138 Chapter 2 Function/Function Block Description

GETDAY
GETDAY
Get Day Xclock/GETDAY

GETDAY(WEEK := <<BOOL>>, OK => <<BOOL>>, DAY => <<UINT>>)

The GETDAY function outputs the day of the week or the day of the year.

If power flow exists at WEEK, the (number of) the day of the week is output to the
variable at DAY. The numbers 0 - 6 correspond to Sunday - Saturday.

If power flow does not exist at WEEK, the (number of) the day of the year is out-
put to the variable at DAY. The numbers are from 1 - 365 or 366.

⁄ƒƒƒƒƒƒƒƒƒø
≥ GETDAY ≥
≥ ≥
¥EN OK√
≥ ≥
¥WEEK DAY√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

WEEK (BOOL) - determines day of week or year

Outputs: OK (BOOL) - execution completed without error

DAY (UINT) - value extracted
Chapter 2 Function/Function Block Description 2-139

GR_END
GR_END
Gear End Motion/RATIOMOV

GR_END(AXIS := <<USINT>>, OK => <<BOOL>>)

The GR_END function ends the ratio gear move. When it is called in the ladder,
the slave axis will stop moving immediately with no ramping.

A ratio gear move may also be stopped by aborting the move:

• with no move in the queue. The ratio gear move will ramp down at the
default deceleration rate and motion will stop.

OR

• with another move in the queue. The velocity will ramp to the new move
rate and continue with the new move or the velocity will step and continue
if a master/slave move is next.

NOTE: A gear ratio move may also be ended with a SYN_END function. It is
possible to specify the point at which the slave should drop out of synchronization
with SYN_END.

⁄ƒƒƒƒƒƒƒƒƒø
≥ GR_END ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error
2-140 Chapter 2 Function/Function Block Description

HOLD
GT
Greater Than Evaluate/GT

GT(IN1 := <<ANY>>, IN2 := <<ANY>>, OK => <<BOOL>>, OUT =>
<<BOOL>>)

The GT function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.

For the inputs at IN1, IN2, ...IN17

If IN1 > IN2 > IN3 >> IN17, the coil at OUT is energized.

Otherwise the coil at OUT is not energized.

HOLD
Feed Hold Motion/MOVE_SUP

HOLD(AXIS := <<USINT>>, OK => <<BOOL>>)

The HOLD function tells the iterator to stop iterating the current move on the spec-
ified axis. It will ramp down at the set decel rate. This function works with the dis-
tance, velocity, and position moves.

⁄ƒƒƒƒƒƒƒƒƒø
≥ GT ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

IN1 (ANY except BOOL or STRUCT) - value
to be compared

IN2 (same type as IN1) - value to be compared

Outputs: OK (BOOL) - execution completed without
error

OUT (BOOL) - indicates if values are greater
than successive values

⁄ƒƒƒƒƒƒƒƒƒø
≥ HOLD ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs:EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo)

Outputs:OK (BOOL) - execution completed without error
Chapter 2 Function/Function Block Description 2-141

HOLD_END
HOLD_END
Feed Hold End Motion/MOVE_SUP

HOLD(AXIS := <<USINT>>, OK => <<BOOL>>)

The HOLD_END function tells the iterator to resume iterating the current move
on the specified axis. It will ramp up at the set accel rate. This function works with
the distance, velocity, and position moves.

It works in conjunction with the feed hold function listed previously.

⁄ƒƒƒƒƒƒƒƒƒø
≥HOLD_END ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error
2-142 Chapter 2 Function/Function Block Description

INSERT
INSERT
Insert String/INSERT

INSERT(OUT := <<STRING>>, IN1 := <<STRING>>, IN2 := <<STRING>>, P
:= <<INT>>, OK => <<BOOL>>, OUT => <<STRING>>)

The INSERT function is used to insert a STRING into another STRING. The vari-
able at IN2 is placed within the variable at IN1, starting after the position specified
by P. The resulting STRING is placed into the variable at OUT.

The variable at IN2 must be unique from the variable at OUT, or an error will
occur.

Examples of insert function

⁄ƒƒƒƒƒƒƒƒƒø
≥ INSERT ≥
≥ ≥
¥EN OK√
≥ ≥
¥OUT---OUT√
≥ ≥
¥IN1 ≥
≥ ≥
¥IN2 ≥
≥ ≥
¥P ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

OUT (STRING) - output STRING

IN1 (STRING) - STRING to insert into

IN2 (STRING) - STRING to insert

P (INT) - position after which insert occurs

Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

An error will also occur if:
P > 255
P > length of IN1
IN2 = OUT
Length of IN1 + length of IN2 > length of OUT

var at IN1 value at IN2 value at P var at OUT
stringstring2 1 6 string1string2
stringstring2 1 0 1stringstring2
Chapter 2 Function/Function Block Description 2-143

INT2DINT
INT2DINT
Integer to Double Integer Datatype/INTCONV

INT2DINT(IN := <<INT>>, OK => <<BOOL>>, OUT => <<DINT>>)

The INT2DINT function changes the data type of the value at IN from an integer
to a double integer. The sign of the integer is extended into the leftmost 16 bits of
the double integer. The result is placed in the variable at OUT.

INT2LINT
Integer to Long Integer Datatype/INTCONV

INT2LINT(IN := <<INT>>, OK => <<BOOL>>, OUT => <<BOOL>>)

The INT2LINT function converts an integer into a long integer. The sign bit of the
INT is extended into the leftmost 48 bits of the long integer. The result is placed in
a variable at OUT

⁄ƒƒƒƒƒƒƒƒƒø
≥ INT2DINT≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (INT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (DINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥INT2LINT ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (INT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LINT) - converted value
2-144 Chapter 2 Function/Function Block Description

INT2UINT
INT2SINT
Integer to Short Integer Datatype/INTCONV

INT2SINT(IN := <<INT>>, OK => <<BOOL>>, OUT => <<SINT>>)

The INT2SINT function changes the data type of the value at IN from an integer to
a short integer. The leftmost 8 bits of the integer are truncated. The result is
placed in the variable at OUT.

INT2UINT
Integer to Unsigned Integer Datatype/INTCONV

INT2UINT(IN := <<INT>>, OK => <<BOOL>>, OUT => <<UINT>>)

The INT2UINT function changes the data type of the value at IN from an integer
to an unsigned integer. The result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ INT2SINT≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (INT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (SINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ INT2UINT≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (INT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (UINT) - converted value
Chapter 2 Function/Function Block Description 2-145

INT2WORD
INT2WORD
Integer to Word Datatype/INTCONV

INT2WORD(IN := <<INT>>, OK => <<BOOL>>, OUT => <<WORD>>)

The INT2WORD function changes the data type of the value at IN from an integer
to a word. The result is placed in the variable at OUT.

IN_POS?
In Position Motion/MOVE_SUP

IN_POS?(AXIS := <<USINT>>, OK => <<BOOL>>, INPS => <<BOOL>>)

The IN_POS? function asks the question “Are both the active and the next queue
empty and is the position within the setup parameter?” If the output at INPS is set,
the axis is in position. If not, the axis is not in position.

For a TIME axis, the INPS output will be set if S-curve is enabled (via Servo Setup
or the SCURVE function) and a Distance, Position, or Velocity move is not in
progress. If S-curve is not enabled, the OK output will be reset and the INPS out-
put is undefined.

⁄ƒƒƒƒƒƒƒƒƒø
≥ INT2WORD≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (INT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (WORD) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ IN_POS? ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS INPS√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo or time)

Outputs: OK (BOOL) - execution completed without error

INPS (BOOL) - indicates if the axis is in position if it
is within the bandwidth established in setup and
including any filter following error and the propor-
tional gain position, and both queues are empty
2-146 Chapter 2 Function/Function Block Description

IO_CFG
IO_CFG
IO Configuration Io/IO_CFG

<<INSTANCE NAME>>:IO_CFG(REQ := <<BOOL>>, FUNC := <<USINT>>,
NUM := <<USINT>>, DATA := <<BYTE ARRAY>>, DONE => <<BOOL>>,
FAIL => <<BOOL>>, ERR => <<UINT>>);

The IO_CFG function block monitors the status of I/O systems and initialize the
configuration of the Block I/O and the ASIU systems. It can also be used to inhibit
the Block I/O system allowing you to add or remove blocks. Enter one of the fol-
lowing numbers in the FUNC input to select what the function block will do:

 ⁄ƒ NAMEƒƒø
 ≥ IO_CFG ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥FUNC FAIL√
 ≥ ≥
 ¥NUM ERR√
 ≥ ≥
 ¥DATA ≥
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution

FUNC (USINT) - number of function desired

NUM (USINT) - number of missing blocks in DATA

DATA (BYTE ARRAY) - array of missing blocks

Outputs: DONE (BOOL) - set if the block I/O or ASIU system
is configured

FAIL (BOOL) - set if the block I/O or ASIU system is
not configured

ERR (UINT) - error number if function failed

FUNC Input
Number

Function

1 Initialize the block I/O configuration
2 Check the status of the block I/O system
3 Inhibit the block I/O system
10 Restart/Configure the ASIU system
11 Check the status of the ASIU system

State of the DONE, FAIL and ERR outputs based on FUNC input
FUNC # DONE (if set) FAIL (If set) ERR (If FAIL is set)
1(Initiate) Configured Cannot be configured Code for first I/O module that

cannot be configured
2(Evaluate) Configured and

operational
Cannot be configured or
is not operational

Code for first I/O module that
cannot be configured or is not
operational

3(Inhibit) NA Not operational 0
10(Initiate) Configured Cannot be configured Code for first ASIU that can-

not be configured
11(Evaluate) Configured and

operational
Cannot be configured or
is not operational

Code for first ASIU that can-
not be configured or is not
operational
Chapter 2 Function/Function Block Description 2-147

IO_CFG
The error number at the ERR output can be a master rack diagnostic code (22_) or
an expansion rack diagnostic code (3_ _) or an MMC for PC ASIU diagnostic code
(24_), (25_), (260), where the _ indicates the number of the module or ASIU.
Note: Only the -01 or later block I/O modules are capable of changing their initial
configuration. Any block I/O modules in your system with a part number ending
with -00 cannot be used with this function block to change the configuration of
modules (function 1). These -00 modules must be addressed consecutively in the
hardware declarations starting with “1” and all declared blocks must be physically
in the system before scanning can occur.

The IO_CFG function block is used in conjunction with the I/O Config/Scan
Options radio buttons on the hardware declarations page of the main ladder. If the
radio button is checked for Reconfigurable I/O and continue to scan with Mas-
ter Rack, Remote Rack or Block I/O failures, the CPU will no longer indicate a
blink code when an I/O configuration error or failure is detected. This function
block provides that blink code to the ladder. If the operator needs that code, then
the ladder must make it available to the operator. Otherwise, the operator can use
PiCPro to do an Online | Status... to get the error information in the Run Time
Failure description (a message that indicates which module or connection has
failed). If the radio button is checked for Reconfigurable I/O and continue to
scan with Master Rack, Remote Rack, Block or ASIU failures, the CPU will no
longer indicate a blink code when an I/O configuration error or failure is detected;
and additionally, ASIU failures will not cause a ladder to stop scanning. This func-
tion block provides that blink code to the ladder. Note: A separate instance of
IO_CFG is required for the Master Rack/Block/Remote I/O system and a separate
instance is required for the ASIU system as different FUNC inputs are required to
monitor each system.

When the programmer checks any of these radio buttons, a dialog is immediately
displayed reminding the programmer of the I/O_CFG function block in the ladder.
When this feature is enabled, the CPU will continue to scan with an I/O or ASIU
failure. If this feature is enabled, the ladder must have an IO_CFG function block
to monitor the I/O systems, and an IO_CFG function block to monitor the ASIU
system (if used). This allows the ladder to react to any failures.
2-148 Chapter 2 Function/Function Block Description

IO_CFG

If the FUNC input is 1 and REQ is one-shot then the ladder is telling the CPU
which block modules are missing. The DATA input is a byte array that indicates
which block I/O modules are missing in the configuration; NUM is the number of
missing blocks in DATA. The last item in the array will have a value of 0. For
example, if the 4th block will be missing from however many blocks are normally
there, the array would consist of 4, 0 and NUM would be 1. A non-zero value for
ERR (and FAIL set) indicates that a failure exists in the I/O system. If the FAIL is
set then the set of missing blocks apparently did not result in a valid block I/O con-
figuration based on the ladder's hardware declarations.

When using the FUNC value of 1, the ladder's hardware declarations will include
all of the block I/O modules that can exist in any configuration. For a specific con-
figuration, the DATA array indicates which of those blocks are currently missing.
If a machine has one variation with block 4 missing but another variation has
blocks 3, 5, and 8 missing, then the DATA array is configured for the correct list of
missing blocks when the IO_CFG REQ is made. In the first case, the DATA array
would have 4, 0 and NUM is 1. In the second case, the DATA array would have 3,
5, 8, 0 and NUM is 3. The DATA array can be sized for the longest list of missing
modules and the NUM value indicates the number of blocks in the list at the time
of the request.

If the FUNC input is 1 then the block I/O modules that are in the list as missing
blocks really must be missing. If the modules are actually connected, then the CPU
will try to reconfigure them to subsequent locations (based on the DATA array).
This request can result in an odd ERR value because the modules are not really
missing. If the correct blocks are connected, do not try to configure them as miss-
ing.

IMPORTANT

If the ladder Configurable I/O box is enabled on the Hardware Decla-
rations page, the ladder will continue to scan even if a run time I/O or
ASIU failure occurs. If the failure occurs in either Remote I/O (in ex-
pansion racks) or in block I/O, the main rack I/O will continue to
function. If the I/O failure occurs in the main rack then all I/O will be
non-functional. Note that this applies only to discrete I/O. A commu-
nications module will not be affected by this status so the CPU is still
capable of communicating with other processors unless it is the com-
munications module itself that failed.
With the respective I/O/Config/Scan Option enabled, it is the main
ladder’s responsibility to use the IO_CFG function block to obtain the
state of the I/O system and the ASIU system (two instances of the
function block. Based on the state of the I/O system and the ASIU sys-
tem, , the ladder must take the appropriate actions.
Chapter 2 Function/Function Block Description 2-149

IO_CFG
If the FUNC input is 2 then the ladder is asking the CPU to provide the state of the
I/O system. A non-zero value for ERR (and FAIL set) indicates that a failure exists
in the I/O system. This value is the blink code that would be sent by the CPU if this
PiCPro feature is not used. If the FAIL is set then the ladder must react appropri-
ately to the failure in its I/O system.

If the FUNC input is 3 then the remote I/O system is inhibited (for all block I/O
modules and any remote expansion racks). The main rack I/O remains operational
in this state. Block I/O modules may be moved or removed without causing an I/O
failure. The FAIL output is set indicating the I/O system is not operational but the
ERR output will be zero. To enable the I/O system after inhibiting the block I/O
chain in this manner, the IO_CFG must be triggered (with REQ) with the FUNC at
1 so that the block I/O system is configured again.

If the FUNC input is 10 then the ladder is requesting the CPU to restart the
ASIU’s. This is used after a ASIU failure or power loss. After the ASIU’s are
restarted, it will be necessary for the ladder to perform the servo start up sequence
with SV_INIT etc.

If the FUNC input is 11, the ladder is requesting the CPU to provide the state of the
ASIU system. A non-zero value for ERR (and FAIL set) indicates that a failure
still exists in the ASIU system. This value is the blink code that would be sent by
the CPU if this PiCPro feature was not used. If the FAIL is set, the ladder must
react appropriately to the failure in the ASIU system.

For the FUNC inputs of 1, 2, 10, and 11 the ERR output is the blink code value.
The default animation display for a UINT variable will be decimal. By entering an
initial value of 16#0 for this variable, the animation will display the value in hexa-
decimal format. For example, if the first block I/O module failed or was not con-
nected, the ERR output would be shown as 929 in decimal or 3A1 in hexidecimal
(depending on an initial value, if any). The 3A1 hex value is read as 3-10-1, which
corresponds to a blink code of 3-10-1. This blink code sequence indicates the first
block I/O module. To make this important data easier to reference using animation,
the initial value of 16#0 for the ERR output variable is recommended.
2-150 Chapter 2 Function/Function Block Description

IPACCEPT
IPACCEPT
(IP Accept) Io/SOCKETS

<<INSTANCE NAME>>:IPACCEPT(REQ := <<BOOL>>, HNDL :=
<<UINT>>, IPZ := <<STRING>>, DONE => <<BOOL>>, FAIL =>
<<BOOL>>, IPZ => <<STRING>>, ERR => <<INT>>, IPZ => <<STRING>>,
HNDL => <<UINT>>);

The IPACCEPT function block is used by the TCP server to accept incoming con-
nect requests. It is used after the IPSOCK and the IPLISTEN function blocks. It
removes the next connect request from the queue (or waits for one), creates a new
socket for the connection, and returns a handle to that new socket.

The TCP/IP stack will check for an available connect request assigned to the
socket specified in HNDL. If a request is found, a new socket will be created. If no
request is found, the scan will continue until a request is found.

If a new socket cannot be created, the scan will continue until there is a socket
available.

The Host node address will be returned at IPZ.

Once the new socket is no longer needed, the application must call the IPCLOSE
function block in order to free that socket.

Refer to the IPWRITE function block for an Overview for Using the Ethernet-
TCP/IP Function Blocks and for a list of Ethernet-TCP/IP Errors.

 ⁄ƒNAME ƒƒƒø
 ≥IPACCEPT ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥HNDL FAIL√
 ≥ ≥
 ¥IPZ---IPZ√
 ≥ ≥
 ≥ ERR√
 ≥ ≥
 ≥ HNDL√
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - requests execution (One-shot)

HNDL (UINT) - socket handle from IPSOCK function
block

IPZ (STRING) - holds the remote node IP address

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is ≠ 0

IPZ (STRING) -same area as IPZ input, with zero ter-
minated string inserted

ERR (INT) - error number if FAIL is set

HNDL (UINT) - new socket handle for connection
Chapter 2 Function/Function Block Description 2-151

IPCLOSE
IPCLOSE
(IP Close) Io/SOCKETS

<<INSTANCE NAME>>:IPCLOSE(REQ := <<BOOL>>, HNDL := <<UINT>>,
DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>);

The IPCLOSE function block is used by an application to terminate a
communication session for the socket specified at HNDL. Any unread data at a
socket will be discarded. Once the IPCLOSE function block is called, the socket
handle is no longer valid and free to be reused by a subsequent IPSOCK or
IPACCEPT call.

Refer to the IPWRITE function block for an Overview for Using the Ethernet-
TCP/IP Function Blocks and for a list of Ethernet-TCP/IP Errors.

 ⁄ƒNAME ƒƒƒø
 ≥ IPCLOSE ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥HNDL FAIL√
 ≥ ≥
 ≥ ERR√
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - requests execution (One-shot)

HNDL (UINT) - socket handle from the IPSOCK
function block

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is ≠ 0

ERR (INT) - error number if FAIL is set
2-152 Chapter 2 Function/Function Block Description

IPCONN
IPCONN
(IP Connection) Io/SOCKETS

<<INSTANCE NAME>>:IPCONN(REQ := <<BOOL>>, HNDL := <<UINT>>,
HOSZ := <<STRING>>, PORT := <<UINT>>, DONE => <<BOOL>>, FAIL
=> <<BOOL>>, ERR => <<INT>>);

The IPCONN function block is used by a client application to connect to a remote
server by specifying the remote endpoint address for a socket. If used with a TCP
socket, the three-way TCP handshake is initiated. If used with a UDP socket, it
simply fills in the target endpoint (address and protocol port).

The TCP/IP protocol stack will obtain the endpoint address for the named host and
connect to the requested protocol port (if the preceding call to the IPSOCK func-
tion block had the TYPE set to 1 for TCP).

In the absence of DNS/DHCP, the TCP/IP protocol stack will keep its own route
table to nearby neighbors for peer-to-peer connections.

Refer to the IPWRITE function block for an Overview for Using the Ethernet-
TCP/IP Function Blocks and for a list of Ethernet-TCP/IP Errors.

 ⁄ƒNAME ƒƒƒø
 ≥ IPCONN ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥HNDL FAIL√
 ≥ ≥
 ¥HOSZ ERR√
 ≥ ≥
 ¥PORT ≥
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - requests execution (One-shot)

HNDL (UINT) - socket handle from the IPSOCK
function block

HOSZ (STRING) - name or address of the target host,
zero terminated

PORT (UINT) - port number on the target host

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is ≠ 0

ERR (INT) - error number if FAIL is set
Chapter 2 Function/Function Block Description 2-153

IPHOSTID
IPHOSTID
(IP Host Identification) Io/SOCKETS

<<INSTANCE NAME>>:IPHOSTID(REQ := <<BOOL>>, SLOT :=
<<USINT>>, CHAN := <<USINT>>, NAMZ := <<STRING>>, DONE =>
<<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>);

The IPHOST function block is optional and not required to be used. It assigns a
name to a communication resource. If there are multiple communication resources
in use, the IPHOST function block must be called for each one so that a different
name is assigned to each resource.

The SLOT input is used to select the physical location of the TCP/IP communica-
tion module to use. There may be up to two in the system.

The CHAN input is used to select one of several possible communication
resources. The actual assignments will be an on-going, upward compatible assign-
ment of numeric assignment to a physical communication resource.

The NAMZ input is used to assign a TCP/IP address to this resource. If a Domain
Name Server (DNS) or DHCP is in operation, a name may be inserted. Otherwise,
an IP address in dotted decimal notation is required. This input variable must be a
zero terminated string. The loop-back resource shall be predefined and named
localhost at address 127.0.0.1. Implementation of the localhost resource still
requires a TCP/IP protocol stack running on a communication module or ethernet
module. Refer to the IPWRITE function block for an Overview for Using the
Ethernet-TCP/IP Function Blocks and for a list of Ethernet-TCP/IP Errors.

 ⁄ƒNAME ƒƒƒø
 ≥IPHOSTID ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥SLOT FAIL√
 ≥ ≥
 ¥CHAN ERR√
 ≥ ≥
 ¥NAMZ ≥
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - requests execution (One-shot)

SLOT (USINT) - slot number of the resource

CHAN (USINT) - channel number for this NAME

NAMZ (STRING) - name of this resource, zero termi-
nated

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is ≠ 0

ERR (INT) - error number if FAIL is set

Channel Description

0 Default ethernet connection (currently BNC)

1 10-Base-T connection (twisted pair)

2 10-Base-5 connection (15-pin AUI)

3 10-Base-2 connection (BNC coax)

4 Modem port
2-154 Chapter 2 Function/Function Block Description

IPIP2NAM
IPIP2NAM
(IP IP to Name) Io/SOCKETS

<<INSTANCE NAME>>:IPIP2NAM(REQ := <<BOOL>>, IPZ :=
<<STRING>>, CNT := <<INT>>, HOSZ := <<STRING>>, DONE =>
<<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>, HOSZ =>
<<STRING>>);

The IPIP2NAM function block allows the application to obtain the host name
when you supply the IP address.

NOTE: You must have a DNS (Domain Name Server) configured in the system
and available on the network to use this function block.

Refer to the IPWRITE function block for an Overview for Using the Ethernet-
TCP/IP Function Blocks and for a list of Ethernet-TCP/IP Errors.

 ⁄ƒNAME ƒƒƒø
 ≥IPNAM2IP ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥IPZ FAIL√
 ≥ ≥
 ¥CNT ERR√
 ≥ ≥
 ¥HOSZ-HOSZ√
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - requests execution (One-shot)

IPZ (STRING) - IP address, zero terminated

CNT (INT) - Size of the HOSZ buffer

HOSZ (STRING) - receives the host name

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is ≠ 0

ERR (INT) - error number if FAIL is set

HOSZ (STRING) - receives the host name
Chapter 2 Function/Function Block Description 2-155

IPLISTEN
IPLISTEN
(IP Listen) Io/SOCKETS

<<INSTANCE NAME>>:IPLISTEN(REQ := <<BOOL>>, HNDL := <<INT>>,
QUE := <<UINT>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<INT>>);

The IPLISTEN function block is used to make a socket passive (i.e., ready to
accept incoming connect requests). It binds the socket defined in HNDL to the port
defined by the protocol port (PROT) when the socket is created with the IPSOCK
function block. For UDP it binds and for TCP it binds and also prepares for con-
nects. It also sets the size of a queue used to buffer multiple connect requests while
a server processes the first one.

The socket specified in HNDL is prepared to service remote requests for a TCP
connection. The number of connect requests that may be buffered is defined by the
QUE input. The IPACCEPT function block can be used to remove connect
requests from the queue.

Refer to the IPWRITE function block for an Overview for Using the Ethernet-
TCP/IP Function Blocks and for a list of Ethernet-TCP/IP Errors.

 ⁄ƒNAME ƒƒƒø
 ≥IPLISTEN ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥HNDL FAIL√
 ≥ ≥
 ¥QUE ERR√
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - requests execution (One-shot)

HNDL (UINT) - socket handle from the IPSOCK
function block

QUE (UINT) - depth of queue (maximum of 5)

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is ≠ 0

ERR (INT) - error number if FAIL is set
2-156 Chapter 2 Function/Function Block Description

IPNAM2IP
IPNAM2IP
(IP Name to IP) Io/SOCKETS

<<INSTANCE NAME>>:IPNAM2IP(REQ := <<BOOL>>, HOSZ :=
<<STRING>>, CNT := <<INT>>, IPZ := <<STRING>>, DONE =>
<<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>, IPZ =><<STRING>>);

The IPNAM2IP function block allows the application to obtain an IP address when
you supply the host name.

NOTE: You must have a DNS (Domain Name Server) configured in the system
and available on the network to use this function block.

Refer to the IPWRITE function block for an Overview for Using the Ethernet-
TCP/IP Function Blocks and for a list of Ethernet-TCP/IP Errors.

 ⁄ƒNAME ƒƒƒø
 ≥IPNAM2IP ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥HOSZ FAIL√
 ≥ ≥
 ¥CNT ERR√
 ≥ ≥
 ¥IPZ---IPZ√
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - requests execution (One-shot)

HOSZ (STRING) - name of host, zero terminated

CNT (INT) - size of the HOSZ buffer

IPZ (STRING) - receives the IP address

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is ≠ 0

ERR (INT) - error number if FAIL is set

IPZ (STRING) - IP address, zero terminated
Chapter 2 Function/Function Block Description 2-157

IPREAD
IPREAD
(IP Read) Io/SOCKETS

<<INSTANCE NAME>>:IPREAD(REQ := <<BOOL>>, HNDL := <<UINT>>,
CNT := <<INT>>, BUFR := <<MEMORY AREA>>, OFST := <<UINT>>, PRI
:= <<BOOL>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<INT>>, BUFR => <<MEMORY AREA>>, ACT => <<INT>>);

The IPREAD function block allows you to read input data sent between a client
function and a remote server. The data content is a stream of octets. As data is
received by the TCP/IP stack, it is appended to this stream. A read of this stream
will return the CNT number of octets or the entire stream if it contains fewer octets
than CNT. The IPREAD function block is used with a TCP or UDP (connected)
socket. NOTE: When the socket is a UDP (connectionless) socket, use the
IPRECV function block to get a packet of octets from a UDP socket.

The PRI input sets the priority level at which the function block will be handled. A
high priority is indicated when PRI is set. To affect a high priority, the function
block should be in a ladder task.

The ACT output will not always equal CNT and nothing can be learned if they are
not equal. ACT = 0 also means nothing.

Refer to the IPWRITE function block for an Overview for Using the Ethernet-
TCP/IP Function Blocks and for a list of Ethernet-TCP/IP Errors.

 ⁄ƒNAME ƒƒƒø
 ≥ IPREAD ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥HNDL FAIL√
 ≥ ≥
 ¥CNT ERR√
 ≥ ≥
 ¥BUFR BUFR√
 ≥ ≥
 ¥OFST ACT√
 ≥ ≥
 ¥PRI ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (One-shot)

HNDL (UINT) - socket handle from the IPSOCK
function block

CNT (INT) - size of the buffer

BUFR (MEMORY AREA) - buffer to contain data

MEMORY AREA is a STRING, ARRAY, STRUC-
TURE, ARRAY ELEMENT, or STRUCTURE
MEMBER

OFST (UINT) - offset into buffer for data

PRI (BOOL) -priority of the function block

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is ≠ 0

ERR (INT) - error number if FAIL is set

BUFR (MEMORY AREA) - same area as BUFR input

ACT (INT) - number of bytes stored in buffer
2-158 Chapter 2 Function/Function Block Description

IPRECV
IPRECV
(IP Receive) Io/SOCKETS

<<INSTANCE NAME>>:IPRECV(REQ := <<BOOL>>, HNDL := <<UINT>>,
CNT := <<INT>>, BUFR := <<MEMORY AREA>>, OFST := <<UINT>>, IPZ
:= <<STRING>>, PRI := <<BOOL>>, DONE => <<BOOL>>, FAIL =>
<<BOOL>>, ERR => <<INT>>, BUFR => <<MEMORY AREA>>, ACT =>
<<INT>>, IPZ => <<STRING>>, PORT => <<UINT>>);

The IPRECV function block is used to get a packet of data sent between a client
function and a remote server. The data content is a complete packet of octets.

If there is a UDP packet waiting on the TCP/IP stack, this packet will be returned.
If there is no packet available, this function block will wait indefinitely until a
packet is received. Any time-out function must be implemented in the application
software. The IPRECV function block may be cancelled by closing the socket.

 ⁄ƒNAME ƒƒƒø
 ≥ IPRECV ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥HNDL FAIL√
 ≥ ≥
 ¥CNT ERR√
 ≥ ≥
 ¥BUFR BUFR√
 ≥ ≥
 ¥OFST ACT√
 ≥ ≥
 ¥IPZ---IPZ√
 ≥ ≥
 ¥PRI PORT√
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - requests execution (One-shot)

HNDL (UINT) - socket handle from the IPSOCK
function block

CNT (INT) - size of buffer area

BUFR (MEMORY AREA*) - buffer to contain mes-
sage

OFST (UINT) - offset into message

IPZ (STRING) - place to receive node IP address

PRI (BOOL) - priority of the function

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is ≠ 0

ERR (INT) - error number if FAIL is set

BUFR (MEMORY AREA*) - same area as BUFR
input

ACT (INT) - number of bytes stored in BUFR

IPZ (STRING) - same as IPZ input but holds the IP
address of the sending node

PORT (UINT) - port number in sending node

*MEMORY AREA is a STRING, ARRAY, STRUC-
TURE, ARRAY ELEMENT, or STRUCTURE
MEMBER
Chapter 2 Function/Function Block Description 2-159

IPRECV
The PRI input sets the priority level at which the function block will be handled. A
high priority is indicated when PRI is set. To affect a high priority, the function
block should be in a ladder task

The IPRECV function block is used with a UDP (connectionless) socket. NOTE:
When the socket is a TCP or UDP (connected) socket, use the IPREAD function
block.

Refer to the IPWRITE function block for an Overview for Using the Ethernet-
TCP/IP Function Blocks and for a list of Ethernet-TCP/IP Errors.
2-160 Chapter 2 Function/Function Block Description

IPSEND
IPSEND
(IP Send) Io/SOCKETS

<<INSTANCE NAME>>:IPSEND(REQ := <<BOOL>>, HNDL := <<UINT>>,
CNT := <<INT>>, BUFR := <<MEMORY AREA>>, CNT := <<INT>>, OFST :=
<<UINT>>, NAMZ := <<STRING>>, PORT := <<UINT>>, PRI := <<BOOL>>,
DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>);

The IPSEND function block is used to send data between client function and
remote servers. The data content is a packet of octets.

The PRI input sets the priority level at which the function block will be handled. A
high priority is indicated when PRI is set. To affect a high priority, the function
block should be in a ladder task.

The IPSEND function block is used with a UDP (connectionless) socket. NOTE:
When the socket is a TCP or UDP (connected) socket, use the IPWRITE function
block.

Refer to the IPWRITE function block for an Overview for Using the Ethernet-
TCP/IP Function Blocks and for a list of Ethernet-TCP/IP Errors.

 ⁄ƒNAME ƒƒƒø
 ≥ IPSEND ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥HNDL FAIL√
 ≥ ≥
 ¥BUFR ERR√
 ≥ ≥
 ¥CNT ≥
 ≥ ≥
 ¥OFST ≥
 ≥ ≥
 ¥NAMZ ≥
 ≥ ≥
 ¥PORT ≥
 ≥ ≥
 ¥PRI ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - requests execution (One-shot)

HNDL (UINT) - socket handle from the IPSOCK
function block

BUFR (MEMORY AREA) - buffer containing data-
gram

MEMORY AREA is a STRING, ARRAY, STRUC-
TURE, ARRAY ELEMENT, or STRUCTURE
MEMBER

CNT (INT) - size of buffer

OFST (UINT) - offset into message

NAMZ (STRING) - name or address of target node,
zero terminated

PORT (UINT) - port number in target node

PRI (BOOL) - priority

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is ≠ 0

ERR (INT) - error number if FAIL is set
Chapter 2 Function/Function Block Description 2-161

IPSOCK
IPSOCK
(IP Socket) Io/SOCKETS

<<INSTANCE NAME>>:IPSOCK(REQ := <<BOOL>>, TYPE := <<USINT>>,
PROT := <<UINT>>, SLOT := <<USINT>>, DONE => <<BOOL>>, FAIL =>
<<BOOL>>, ERR => <<INT>>, HNDL => <<UINT>>);

The IPSOCK function block is used to obtain a data structure and assign it to a
specific communication resource. When the REQ input is set, the input parameters
will be passed to the TCP/IP protocol stack defined by the SLOT input. The func-
tion will then wait for a response to the request. This may take multiple scans.

If a socket data structure is allocated, the DONE output will be set. The HNDL
output can then be used for further operations with this socket data structure. If an
error occurs, the FAIL output will be set and the ERR output will be set to the
error number.

The type of service (TCP, UDP Client, or UDP Server) and Protocol (PROT) are
required to bind the protocol to the socket. NOTE: Bind is done by the IPLISTEN
function block using the data entered in the TYPE and PROT inputs of the
IPSOCK function block. The TCP/IP community assigns protocols via RFC 1060
(Assigned Numbers).

Refer to the IPWRITE function block for an Overview for Using the Ethernet-
TCP/IP Function Blocks and for a list of Ethernet-TCP/IP Errors.

 ⁄ƒNAME ƒƒƒø
 ≥ IPSOCK ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥TYPE FAIL√
 ≥ ≥
 ¥PROT ERR√
 ≥ ≥
 ¥SLOT HNDL√
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - requests execution (One-shot)

TYPE (USINT) - 0 = UDP CLIENT, 1 = TCP, 4 =
UDP SERVER

PROT (UINT) - protocol port number

SLOT (USINT) - slot number

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is ≠ 0

ERR (INT) - error number if FAIL is set

HNDL (UINT) - unique socket handle

NOTE

If ERR has a value of 1005 (TCP/IP Failure) a ladder program change
is needed. A ladder with Ethernet functions loaded on an MMC for
PC requires the IPSTAT function to reset the connection to the host.
The other PiC CPU models have an external Ethernet module (with
it’s own TCP/IP stack) and do not require IPSTAT.
2-162 Chapter 2 Function/Function Block Description

IPSTAT
IPSTAT
IP Status Io/SOCKETS

IPSTAT(RES := <<BOOL>>, OK => <<BOOL>>)

This function should be called on a periodic basis with the RES input not energized
whenever it is desired to know the status of the resources provided by the Win-
dows NT operating system. Should these resources become unavailable the OK
output will not be energized. If the resources are available, the OK output will be
energized.
After a loss of resources, it will be necessary to call this function with the RES
input energized. This will re-arm the detection of the BSOD. The reset functional-
ity is provided to allow the ladder application to ensure that all required applica-
tion code that requires the detection of the loss has seen the loss of resources.
Furthermore, it allows the application ladder to ensure that all appropriate actions
have been completed before the BSOD flag is reset. Therefore, it is recommended
to wait until all TCP/IP function blocks have executed at least once before a reset
is requested. This “wait” could be simply be implemented by use of a timer that
ensures that all tasks containing TCP/IP function blocks have executed, or by con-
tacts indicating that all appropriate actions have been taken and that active TCP/IP
function blocks have terminated.

Because the MMC for PC may be run regardless of the state of the Windows NT
operating system or the power status of the PC from which it is run, the status out-
put OK may or may not be energized upon the first scan of the application ladder.
It cannot be assumed that the status is OK initially. If the status is not OK, the
application ladder is required to perform the RESET functionality of this function.

This function is specifically for use on the MMC for PC. However, it can be used
in any other 486 based PiC without causing any problems. In this case the status
will always be OK, regardless of the status of the TCP/IP stack.

Refer to the IPWRITE function block for an Overview for Using the Ethernet-
TCP/IP Function Blocks and for a list of Ethernet-TCP/IP Errors.

⁄ƒƒƒƒƒƒƒƒƒø
≥ IPSTAT ≥
≥ ≥
¥EN OK√
≥ ≥
¥RES ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables function

RES (BOOL) - indicates reset Blue Screen of Death
(BSOD) status is requested

Outputs: OK (BOOL) - Indicates OK status of the Windows NT
resources
Chapter 2 Function/Function Block Description 2-163

IPWRITE
IPWRITE
(IP Write) Io/SOCKETS

<<INSTANCE NAME>>:IPWRITE(REQ := <<BOOL>>, HNDL := <<UINT>>,
BUFR := <<MEMORY AREA>>, OFST := <<UINT>>, CNT := <<INT>>, PRI
:= <<BOOL>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<INT>>, ACT => <<INT>>);

The IPWRITE function block is used to send data between client function and
remote servers. The data content is a sequence of octets. That sequence will be
appended to the stream of any other octets that have previously been sent via this
function block.

The PRI input sets the priority level at which the function will be handled. A high
priority is indicated when PRI is set. To affect a high priority, the function block
should be in a ladder task.

The IPWRITE function block is used with a TCP or UDP (connected) socket.

Note: When the socket is a UDP (connectionless) socket, use the IPSEND
function block.

 ⁄ƒNAME ƒƒƒø
 ≥ IPWRITE ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥HNDL FAIL√
 ≥ ≥
 ¥BUFR ERR√
 ≥ ≥
 ¥OFST ACT√
 ≥ ≥
 ¥CNT ≥
 ≥ ≥
 ¥PRI ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - requests execution (One-shot)

HNDL (UINT) - socket handle from the IPSOCK
function block

BUFR (MEMORY AREA) - buffer containing data

MEMORY AREA is a STRING, ARRAY, STRUC-
TURE, ARRAY ELEMENT, or STRUCTURE
MEMBER

OFST (UINT) - offset into the buffer for data

CNT (INT) - number of bytes in the buffer

PRI (BOOL) - priority of the function

Outputs: DONE (BOOL) - execution completed without error

FAIL (BOOL) - energized if and only if err is ≠ 0

ERR (INT) - error number if FAIL is set

ACT (INT) - number of bytes appended
2-164 Chapter 2 Function/Function Block Description

IPWRITE
Overview for Using the Ethernet -TCP/IP Function Blocks

The following procedures summarize the various ways of using the IP function
blocks to accomplish certain operations with TCP or UDP.

Creating a TCP Server

The following procedure is used to setup a TCP server.

1. Call the IPSOCK function block. Enter a “1” (TCP) in the TYPE input of the
IPSOC function block. this creates a data structure that will be used to associate
this server with a specific TCP based protocol.

2. Call the IPLISTEN function block. This marks the socket as used by the server.
Incoming connect requests will be buffered up to the depth of the queue. They
are removed by an accept request.

3. Call the IPACCEPT function block. This obtains a new socket that can be
passed to a server TASK or used by the server in the application. The IPZ value
may be used to determine who issued the connect request.

4. When the server is done using IPREAD and IPWRITE function blocks, the
IPCLOSE function block should be called to free the new socket that was cre-
ated.

5. Steps 3 and 4 can then be repeated. Step 3 can be called again before step 4 is
called if multiple connections are required. However it is the application’s
responsibility to make sure that each server uses the correct socket.

6. Once the ladder decides that the socket created by the IPACCEPT function
block is no longer required, call the IPCLOSE function block to free this socket.

7. Also, once the ladder decides that the server is no longer required, the IPCLOSE
operation should be called to free the original socket obtained in step 1.

Creating a TCP Client

The following procedure is used to setup a TCP client connection to a server. The
server must already be running for the operation to work.

1. Call the IPSOCK function block. Enter a “1” (TCP) in the TYPE input of the
IPSOCK function block. This creates a data structure that allows the client to
use a specific protocol.

2. Call the IPCONN function block. This connects the client with the requested
server on the requested node.

3. Call the IPREAD and IPWRITE function blocks to transfer data between the
client and the server.

4. When done transferring data, call the IPCLOSE function block to free the
socket obtained in step 1.
Chapter 2 Function/Function Block Description 2-165

IPWRITE
Creating a UDP Server (Connectionless)

The following procedure is used to setup a UDP server.

1. Call the IPSOCK function block. Enter a “4” (UDP Server) in the TYPE input
of the IPSOCK function block.This creates a data structure that will be used to
associate this server with a specific UDP based protocol.

2. Call the IPLISTEN function block.

3. Call the IPRECV function block. This provides a buffer that an incoming data-
gram can be read into. Upon receipt of a datagram, the response (if any) may be
generated and sent using the IPSEND function block. The sending node name
and port (IPZ and PORT) are available to be used in a response.

4. Call the IPSEND function block if necessary and return to step 3 or go to step 5.

5. When done using the IPRECV and IPSEND function blocks, the IPCLOSE
function block can be called to free the socket that was created in step 1.

Creating a UDP Client (Connectionless)

The following procedure is used to setup a UDP client.

1. Call the IPSOCK function block. Enter a “0” (UDP Client) in the TYPE input of
the IPSOCK function block. This creates a data structure that will be used to
associate this client with a specific UDP based protocol.

2. Call the IPSEND function block with a message to be sent to the server.

3. Call the IPRECV function block if a response is expected. Go back to step 2 or
on to step 4. If a time-out occurs, decide whether to call the IPRECV function
block again.

4. When done using the IPRECV and IPSEND function blocks, the IPCLOSE
function block can be called to free the socket that was created in step 1.

NOTE: If there are multiple messages in transit, UDP clients and servers are not guar-
anteed that messages will be received or received in the same order as sent.

UDP Client (Connected)

1. Call the IPSOCK function block. Enter a “0” (UDP Client) in the TYPE input of
the IPSOCK function block.

2. Call the IPCONN function block to connect the client to the server.

3. Call the IPREAD and IPWRITE function blocks to read and write data to the
server.

The UDP server is implemented in the same manner as a connectionless UDP
server (see above).

NOTE
The following books may be helpful as references when working with TCP/IP:

• Comer, D.E. (1991), Internetworking with TCP/IP Vol.I: Principals, Protocols, and Architecture. Prentice-
Hall, Englewood Cliffs, New Jersey. ISBN 0-13-468505-9

• Comer, D.E. (1993), Internetworking with TCP/IP Vol. III: Client-Server Programming and Applications.
Prentice-Hall, Englewood Cliffs, New Jersey. ISBN 0-13-474222-2
2-166 Chapter 2 Function/Function Block Description

IPWRITE
Ethernet-TCP/IP Errors

The following errors can be reported our of the ERR output on the IPXXXX function blocks.

ERR# Description

-35 Detected hardware failure

-34 Can’t find a reasonable interface

-33 Can’t find a reasonable next IP hop

-32 Bad header at upper layer (for upcalls)

-31 No ARP for a given host

-30 Send to net failed at low layer

-24 TCP layer timeout error

-23 TCP layer state error

-22 Ran out of other queue-able resource

-21 Ran out of free packets

-20 Malloc or calloc failed

0 No error

1 Not owner

2 No such file or directory

3 No such process

4 Interrupted system call

5 I/O error

6 No such device or address

7 Arg list too long

8 Exec format error

9 Bad file number

10 No children

11 No more processes

12 Not enough core

13 Permission denied

14 Bad address

15 Directory not empty

16 Mount device busy

17 File exists

18 Cross-device link

19 No such device

20 Not a directory

21 Is a directory

22 Invalid argument

23 File table overflow
Chapter 2 Function/Function Block Description 2-167

IPWRITE
24 Too many files open

25 Not a typewriter

26 File name too long

27 File too large

28 No space left on device

29 Illegal seek

30 Read-only file system

31 Too many links

32 Broken pipe

33 Resource deadlock avoided

34 No locks available

35 Unsupported value

36 Message size

37 Argument too large

38 Result too large

40 Destination address required

41 Protocol wrong type for socket

42 Protocol not available

43 Protocol not supported

44 Socket type not supported

45 Operation not supported on socket

46 Protocol family not supported

47 Address family not supported

48 Address already in use

49 Can’t assign requested address

50 Socket operation on non-socket

51 Network is unreachable

52 Network dropped connection on reset

53 Software caused connection abort

54 Connection reset by peer

55 No buffer space available

56 Socket is already connected

57 Socket is not connected

58 Can’t send after socket shutdown

59 Too many references: can’t splice

60 Connection timed out

61 Connection refused

62 Network is down

63 Text file busy
2-168 Chapter 2 Function/Function Block Description

IPWRITE
64 Too many levels of symbolic links

65 No route to host

66 Block device required

67 Host is down

68 Operation now in progress

69 Operation already in progress

70 Operation would block

71 Function not implemented

72 Operation cancelled

1000 There is a non-zero terminated string which requires zero termination.

1001 There is a CNT input which is too large.

1002 The SLOT number requested does not contain an Ethernet board.

1003 Either the firmware does not support TCP/IP or there is no Ethernet board
in the rack.

1004 The IPZ buffer is too small.

1005 The PC operating system has reset the TCP/IP stack. See IPSTAT.
Chapter 2 Function/Function Block Description 2-169

LAD_REF
LAD_REF
Ladder Reference (Machine Reference) Motion/REF

ANLG_OUT(AXIS := <<USINT>>, PLUS := <<BOOL>>, RATE :=
<<UDINT>>, DIM := <<DINT>>, OPTN := <<WORD>>, OK => <<BOOL>>,
QUE => <<USINT>>)

The ladder reference is a machine reference done from the ladder. It will cause a
servo axis to move in the direction (PLUS) and at the feedrate (RATE) specified to
the reference switch* until the REF_END function is called in your ladder pro-
gram. In your ladder logic, the closing of the reference switch should enable
REF_END. When the switch closes, the position of the axis is recorded based on
the nearest null of the resolver or the next index mark of the encoder. The value
entered at DIM is assigned to this position.

If the axis is a digitizing axis or if ‘no motion’ has been selected at OPTN (see
below), this function does not cause motion. You must use other methods of mov-
ing the axis to the reference switch. The inputs PLUS and RATE are ignored when
no motion is selected.

The ladder reference monitors the axis until the REF_END function is called in
your ladder program. In contrast, a fast reference (see FAST_REF) monitors the
axis until a fast input on the feedback module occurs. When using a SERCOS axis,
the function block SCA_RFIT must be called and completed successfully prior to
calling the LAD_REF function.

NOTE: If an encoder is the feedback device, the axis will continue to move after
the switch closes until the next index mark is seen.

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥LAD_REF ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥AXIS QUE√
 ≥ ≥
 ¥PLUS ≥
 ≥ ≥
 ¥RATE ≥
 ≥ ≥
 ¥DIM ≥
 ≥ ≥
 ¥OPTN ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies axis to be referenced (servo
or digitizing)

PLUS (BOOL) - indicates direction of motion to refer-
ence switch

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

DIM (DINT) - reference dimension for the nearest
resolver null or the next encoder index mark when ref-
erence switch is set. It is entered in LU. If DIM is out-
side the range of -536,870,912 to 536,870,911 FU, the
OK will not be set.

OPTN (WORD) - provides referencing options

Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - queue number for reference move
2-170 Chapter 2 Function/Function Block Description

LAD_REF
The OPTN input provides the following options:

If no option is desired, enter a “0.”

*See FAST_REF function for information on setting up a reference switch.

Option inputs

Ignore the index/null

Choosing this option allows a reference to occur which ignores the index mark of
an encoder or the null of a resolver during the reference cycle. If bit 0 is set to “1,”
the reference position assigned by DIM will be assigned to the position the axis is
at when REF_END is enabled.

With an encoder, the axis will stop immediately after the fast input transitions. The
axis does not continue movement until the index mark is reached. NOTE: This
makes the reference switch position given with the READ_SV function invalid.

With a resolver, the reference switch position available with the READ_SV func-
tion is valid.

No motion

The no motion option allows a reference to occur without any motion. The axis is
put into a mode whereby it is watching for the conditions of a reference cycle.

Even though no move is placed in the queue, a queue must be available. A move
will be initiated by the ladder following the reference cycle.

Once the call is made, the reference complete flag goes low until the reference
switch input occurs and the index mark (unless “ignore index” option is active) is
received. The reference complete flag goes high once these events occur and the
axis position takes on the reference value at DIM.

If the move type is VEL, RATIO_GR, LAD_REF, or FAST_REF, the new axis
position assigned by the no-motion reference has no effect on the move itself.
With a DISTANCE move, the actual distance covered will be the same. If a no-
motion reference occurs during a position move, the endpoint will be reached.

If a no-motion reference is used during a RATIO_PRO move, the lock on point of
the slave axis to the master axis may be undefined. This is not recommended.

Note:A ladder reference can also be performed on a digitizing axis. You must
cause the axis to move and the fast input to occur. Use variable 29 with the
READ_SV function to read the reference switch position. REF_DNE? can also be
used with digitizing axes. This function cannot be used with the stepper axis mod-
ule.

Option Binary value Hex value
Ignore index/null 00000000 00000001 0001
No motion 00000000 00000010 0002
Null setup 00000000 00000100 0004
Chapter 2 Function/Function Block Description 2-171

LAD_REF
Null Setup

This option will establish a null position for a digital drive axis with resolver feed-
back or single-turn Stegmann encoder feedback in addition to performing the ref-
erence. The null position will be stored in the digital drive’s flash memory and
will be retained through power cycles. This feature allows the user to omit the
setup process of physically positioning the reference switch to be near the null. To
provide repeatable references, this option bit should be set with the first call to
LAD_REF and should be reset for subsequest calls.
2-172 Chapter 2 Function/Function Block Description

LE
LE
Less Than or Equal To Evaluate/LE

LE(IN1 := <<ANY>>, IN2 := <<ANY>>, OK => <<BOOL>>, OUT =>
<<BOOL>>)

The LE function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.

For the inputs at IN1, IN2, ...IN17

If IN1 ≤ IN2 ≤ IN3 ≤≤ IN17, the coil at OUT is energized.

Otherwise the coil at OUT is not energized.

⁄ƒƒƒƒƒƒƒƒƒø
≥ LE ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

IN1 (ANY except BOOL or STRUCT) - value to be
compared

IN2 (same type as IN1) - value to be compared

Outputs: OK (BOOL) - execution completed without error

OUT (BOOL) - indicates if values are less than or equal
to successive values
Chapter 2 Function/Function Block Description 2-173

LEFT
LEFT
Left String String/LEFT

LEFT(OUT := <<STRING>>, IN := <<STRING>>, L := <<INT>>, OK =>
<<BOOL>>, OUT => <<STRING>>)

The LEFT function is used to extract characters from the left side of a STRING.
The number of characters specified by the input at L are extracted from the left
side of the variable at IN and placed into the variable at OUT.

Example of left function

⁄ƒƒƒƒƒƒƒƒƒø
≥ LEFT ≥
≥ ≥
¥EN OK√
≥ ≥
¥OUT---OUT√
≥ ≥
¥IN ≥
≥ ≥
¥L ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

OUT (STRING) - output STRING

IN (STRING) - STRING to extract from

L (INT) - length

Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

An error occurs if:
L > 255
L > length of OUT

Var at IN Value at L Var at OUT
string1string2 7 string1
2-174 Chapter 2 Function/Function Block Description

LEN
LEN
Length String/LEN

LEN(STR := <<STRING>>, OK => <<BOOL>>, LEN => <<INT>>);

The LEN function is used to return the length of a STRING. The number of char-
acters in the variable at STR is placed in the variable at LEN.

Example of length function

⁄ƒƒƒƒƒƒƒƒƒø
≥ LEN ≥
≥ ≥
¥EN OK√
≥ ≥
¥STR LEN√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STR (STRING) - input value

Outputs: OK (BOOL) - execution completed without error

LEN (INT) - length

Declared length of string Value at STR Value at LEN
10 string 6
Chapter 2 Function/Function Block Description 2-175

LIMIT
LIMIT
Limit Filter/LIMIT

LIMIT(MIN := <<ANY>>, IN := <<ANY>>, MAX := <<ANY>>, OK =>
<<BOOL>>, OUT => <<ANY>>)

The LIMIT function assigns a value to the variable at OUT that is within the lower
and upper limits you enter. The value at MIN (lower limit) must be less than the
value at MAX (upper limit). The value at OUT will be the value of the input at
either 1) IN, 2) MIN, or 3) MAX.

For the variables or constants assigned at IN, MIN, and MAX if:

MIN ≤ IN ≤ MAX, then OUT = IN

IN > MAX, then OUT = MAX

IN < MIN, then OUT = MIN

⁄ƒƒƒƒƒƒƒƒƒø
≥ LIMIT ≥
≥ ≥
¥EN OK√
≥ ≥
¥MIN OUT√
≥ ≥
¥IN ≥
≥ ≥
¥MAX ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

MIN (ANY except BOOL and STRUCT)) - minimum
value

IN (same type as MIN) - value to be limited

MAX (same type as MIN) - maximum value

Outputs: OK (BOOL) - execution completed without error

OUT (same type as MIN) - value within limits
2-176 Chapter 2 Function/Function Block Description

LINT2INT
LINT2DI
Long Integer to Double Integer Datatype/LINTCONV

LINT2DI(IN := <<LINT>>, OK => <<BOOL>>, OUT => <<DINT>>)

The LINT2DI function converts a long integer into a double integer. The left most
32 bits of the long integer are truncated. The result is placed in a variable at OUT.

LINT2INT
Long Integer to Integer Datatype/LINTCONV

LINT2INT(IN := <<LINT>>, OK => <<BOOL>>, OUT => <<INT>>)

The LINT2INT function converts a long integer into a double integer. The left
most 48 bits of the long integer are truncated. The result is placed in a variable at
OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ LINT2DI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (DINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥LINT2INT ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (INT) - converted value
Chapter 2 Function/Function Block Description 2-177

LINT2LR
LINT2LR
Long Integer to Long Real Datatype/LINTCONV

LINT2LR(IN := <<LINT>>, OK => <<BOOL>>, OUT => <<LREAL>>)

The LINT2LR function converts a long integer into a long real. The result is
placed in a variable at OUT.

LINT2LW
Long Integer to Long Word Datatype/LINTCONV

LINT2LW(IN := <<LINT>>, OK => <<BOOL>>, OUT => <<LWORD>>)

The LINT2LW function converts a long integer into a long word The result is
placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ LINT2LR ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LREAL) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ LINT2LW ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LWORD) - converted value
2-178 Chapter 2 Function/Function Block Description

LINT2ULI
LINT2SI
Long Integer to Short Integer Datatype/LINTCONV

LINT2SI(IN := <<LINT>>, OK => <<BOOL>>, OUT => <<SINT>>)

The LINT2SI function converts a long integer into a short integer. The left most
56 bits of the long integer are truncated. The result is placed in a variable at OUT.

LINT2ULI
Long Integer to Unsigned Long Integer Datatype/LINTCONV

LINT2ULI(IN := <<LINT>>, OK => <<BOOL>>, OUT => <<ULINT>>)

The LINT2ULI function converts a long integer into an unsigned long integer The
result is placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ LINT2SI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (SINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥LINT2ULI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (ULINT) - converted value
Chapter 2 Function/Function Block Description 2-179

LN
LN
Natural Log Arith/TRIG

LN(NUM := <<REAL/LREAL>>, OK => <<BOOL>>, LN => <<REAL/
LREAL>>)

The LN function calculates the natural log of the number entered at NUM. The
result is placed at LN.

LOG
Log Arith/TRIG

LOG(NUM := <<REAL/LREAL>>, OK => <<BOOL>>, LOG => <<REAL/
LREAL>>)

The LOG function calculates the log of the number entered at NUM. The result is
placed at LOG.

⁄ƒƒƒƒƒƒƒƒƒø
≥ LN ≥
≥ ≥
¥EN OK√
≥ ≥
¥NUM LN√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

NUM (REAL/LREAL) - value

Outputs: OK (BOOL) - execution completed without error

LN (REAL/LREAL) - natural log

NOTE: The data types entered at NUM and LN must
match, i.e. if NUM is REAL, then LN must be REAL.

⁄ƒƒƒƒƒƒƒƒƒø
≥ LOG ≥
≥ ≥
¥EN OK√
≥ ≥
¥NUM LOG√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

NUM (REAL/LREAL) - value

Outputs: OK (BOOL) - execution completed without error

LOG(REAL/LREAL) - log of NUM

NOTE: The data types entered at NUM and LOG must
match, i.e. if NUM is REAL, then LOG must be
REAL.
2-180 Chapter 2 Function/Function Block Description

LREA2LW
LREA2LI
Long Real to Long Integer Datatype/LREALCNV

LREA2LI(IN := <<LREAL>>, OK => <<BOOL>>, OUT => <<LINT>>)

The LREA2LI function converts a long real into a long integer. The result is
placed in a variable at OUT.

LREA2LW
Long Real to Long Word Datatype/LREALCNV

LREA2LW(IN := <<LREAL>>, OK => <<BOOL>>, OUT => <<LWORD>>)

The LREA2LW function converts a long real into a long word. The result is
placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ LREA2LI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LREAL) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ LREA2LW ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LREAL) - value to convert

Outputs: OK (BOOL) -execution completed without error

OUT (LWORD) - converted value
Chapter 2 Function/Function Block Description 2-181

LREA2RE
LREA2RE
Long Real to Real Datatype/LREALCNV

LREA2RE(IN := <<LREAL>>, OK => <<BOOL>>, OUT => <<REAL>>)

The LREA2RE function converts a long real into a real. The result is placed in a
variable at OUT.

LREA2ULI
Long Real to Unsigned Long Integer Datatype/LREALCNV

LREA2ULI(IN := <<LREAL>>, OK => <<BOOL>>, OUT => <<ULINT>>)

The LREA2ULI function converts a long real into a unsigned long integer. The
result is placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ LREA2RE ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LREAL) - value to convert

Outputs: OK (BOOL) -execution completed without error

OUT (REAL) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥LREA2ULI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LREAL) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (ULINT) - converted value
2-182 Chapter 2 Function/Function Block Description

LT
LT
Less Than Evaluate/LT

LT(IN1 := <<ANY>>, IN2 := <<ANY>>, OK => <<BOOL>>, OUT =>
<<BOOL>>)

The LT function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2. This is an extensible function which can
compare up to 17 inputs.

For the inputs at IN1, IN2, ...IN17

If IN1 < IN2 < IN3 << IN17, the coil at OUT is energized.

Otherwise the coil at OUT is not energized.

⁄ƒƒƒƒƒƒƒƒƒø
≥ LT ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

IN1 (ANY except BOOL or STRUCT) - value to be
compared

IN2 (same type as IN1) - value to be compared

Outputs: OK (BOOL) - execution completed without error

OUT (BOOL) - indicates if values are less than succes-
sive values
Chapter 2 Function/Function Block Description 2-183

LU2FU
LU2FU
Ladder Units to Feedback Units Motion/DATA

LU2FU(AXIS := <<USINT>>, LU := <<DINT>>, OK => <<BOOL>>, FU =>
<<DINT>>)

The LU2FU function converts the ladder unit value at LU to its equivalent feed-
back unit value and places the result at FU.

LWOR2BYT
Long Word to Byte Datatype/LWORDCNV

LWOR2BYT(IN := <<LWORD>>, OK => <<BOOL>>, OUT => <<BYTE>>)

The LWOR2BYT function converts a long word into a byte. The leftmost 56 bits
of the long word are truncated. The result is placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ LU2FU ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS FU√
≥ ≥
¥LU ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - axis number (servo or digitizing)

LU (DINT) - ladder unit value to convert

Outputs: OK (BOOL) - execution completed without error

FU (DINT) -feedback unit value

⁄ƒƒƒƒƒƒƒƒƒø
≥LWOR2BYT ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (BYTE) - converted value
2-184 Chapter 2 Function/Function Block Description

LWOR2LI
LWOR2DW
Long Word to Double Word Datatype/LWORDCNV

LWOR2DW(IN := <<LWORD>>, OK => <<BOOL>>, OUT => <<DWORD>>)

The LWOR2DW function converts a long word into a double word. The leftmost
32 bits of the long word are truncated. The result is placed in a variable at OUT.

LWOR2LI
Long Word to Long Integer Datatype/LWORDCNV

LWOR2LI(IN := <<LWORD>>, OK => <<BOOL>>, OUT => <<LINT>>)

The LWOR2LI function converts a long word into a long integer. The result is
placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ LWOR2DW ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (DWORD) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ LWOR2LI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LINT) - converted value
Chapter 2 Function/Function Block Description 2-185

LWOR2LR
LWOR2LR
Long Word to Long Real Datatype/LWORDCNV

LWOR2LR(IN := <<LWORD>>, OK => <<BOOL>>, OUT => <<LREAL>>)

The LWOR2LR function converts a long word into a long real. The result is
placed in a variable at OUT.

LWOR2ULI
Long Word to Unsigned Long Integer Datatype/LWORDCNV

LWOR2ULI(IN := <<LWORD>>, OK => <<BOOL>>, OUT => <<ULINT>>)

The LWOR2ULI function converts a long word into an unsigned long integer. The
result is placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ LWOR2LR ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LREAL) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥LWOR2ULI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (ULINT) - converted value
2-186 Chapter 2 Function/Function Block Description

LWR_CASE
LWOR2WO
Long Word to Word Datatype/LWORDCNV

LWOR2WO(IN := <<LWORD>>, OK => <<BOOL>>, OUT => <<WORD>>)

The LWOR2WO function converts a long word into a word. The leftmost 48 bits
of the long word are truncated. The result is placed in a variable at OUT.

LWR_CASE
Lower Case String/LWR_CASE

LWR_CASE(EN := <<BOOL>>, IN := <<STRING>>, OK => <<BOOL>>, OUT
=> <<STRING>>)

The LWR_CASE function converts the characters in a string to all lower case char-
acters. The result is placed in the string at OUT.

The OK will not be set if the number of characters in the string at IN is larger than
the maximum number of characters you have declared in the string at OUT. See
also UPR_CASE function.

⁄ƒƒƒƒƒƒƒƒƒø
≥ LWOR2WO ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (LWORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (WORD) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥LWR_CASE ≥
≥ ≥
¥EN OK√
≥ ≥
¥OUT---OUT√
≥ ≥
¥IN ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (STRING) - string of characters to convert to lower
case

Outputs: OK (BOOL) - execution completed without error

OUT (STRING) - converted string
Chapter 2 Function/Function Block Description 2-187

MAX
MAX
Maximum Filter/MAX

MAX(IN1 := <<ANY>>, IN2 := <<ANY>>, OK => <<BOOL>>, OUT1 :=
<<ANY>>)

The MAX function determines which input at IN1 or IN2 has the largest (maxi-
mum) value, and places the value of that variable or constant into the variable at
OUT. This is an extensible function which can output the maximum value of up to
17 variables.

MEASURE
Measure Motion/MOVE_SUP

MEASURE(AXIS := <<USINT>>, OK => <<BOOL>>)

If registration or referencing are not being used but you still want the fast input to
be read, the MEASURE function is used. It enables the module to respond to the
fast input. It must be called once before variable 20 (Fast input distance) is read.

SERCOS NOTE: The function block SCA_PBIT must be called and completed
successfully prior to calling the MEASURE function with a SERCOS axis.

⁄ƒƒƒƒƒƒƒƒƒø
≥ MAX ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT1√
≥ ≥
¥IN2 ≥
≥ ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

IN1 (ANY except BOOL and STRUCT) - value to be
compared/moved

IN2 (same type as IN1) - value to be compared/moved

Outputs: OK (BOOL) - execution completed without error

OUT1 (same type as IN1) - moved value

⁄ƒƒƒƒƒƒƒƒƒø
≥ MEASURE ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo or digitizing)
NOTE: Fast input on axis feedback required.

Outputs: OK (BOOL) - execution completed without error
2-188 Chapter 2 Function/Function Block Description

MID
MID
Middle String String/MID

MID(OUT := <<STRING>>, IN := <<STRING>>, L := <<INT>>, P := <<INT>>,
OK => <<BOOL>>, OUT => <<STRING>>)

The MID function is used to extract characters from (the middle of) a STRING.
The number of characters specified by the input at L are extracted from the vari-
able at IN, starting at the position specified by the input at P. The resulting
STRING is placed in the variable at OUT.

Example of MID Function

The value at L is 4 so four characters will be extracted from the string at IN and
placed in the string at OUT. In the example below, start counting from the left.

⁄ƒƒƒƒƒƒƒƒƒø
≥ MID ≥
≥ ≥
¥EN OK√
≥ ≥
¥OUT---OUT√
≥ ≥
¥IN ≥
≥ ≥
¥L ≥
≥ ≥
¥P ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

OUT (STRING) - output STRING

IN (STRING) - STRING to extract from

L (INT) - length

P (INT) - position

Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

An error occurs if:

P = 0
P > 255
P > length of IN
L > 255
L > length of OUT

Var at IN Value at L Value at P Var at OUT

abcdefghij 4 3 cdef
Chapter 2 Function/Function Block Description 2-189

MIN
MIN
Minimum Filter/MIN

MID(IN1 := <<ANY>>, IN2 := <<ANY>>, OK => <<BOOL>>, OUT1 =>
<<ANY>>)

The MIN function determines which input at IN1 or IN2 has the lowest (mini-
mum) value, and places the value of that variable or constant into the variable at
OUT. This is an extensible function which can output the minimum value of up to
17 variables.

MOD
Modulo (Remainder) Arith/ARITH

MOD(DVND := <<NUMERIC or TIME dur>>, DVSR := <<NUMERIC or TIME
if DVND is NUMERIC, DINT if DVND is TIME>>, OK => <<BOOL>>, REM
=>NUMERIC or TIME dur<<)

The MOD function divides the value of the variable or constant at DVND by the
value of the variable or constant at DVSR, and places the remainder in the variable
at REM. If there is no remainder, zero is placed in the variable. The quotient is
not returned. See the DIV function.

⁄ƒƒƒƒƒƒƒƒƒø
≥ MIN ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT1√
≥ ≥
¥IN2 ≥
≥ ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

IN1 (ANY except BOOL and STRUCT) - value to be
compared/moved

IN2 (same type as IN1) - value to be compared/moved

Outputs: OK (BOOL) - execution completed without error

OUT1 (same type as IN1) - moved value

⁄ƒƒƒƒƒƒƒƒƒø
≥ MOD ≥
≥ ≥
¥EN OK√
≥ ≥
¥DVND REM√
≥ ≥
¥DVSR ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

DVND (NUMERIC or TIME dur) - dividend

DVSR (same type as DVND if DVND is numeric;
DINT if DVND is TIME) - divisor

Outputs: OK (BOOL) - execution completed without error

REM (same type as DVND) - remainder
2-190 Chapter 2 Function/Function Block Description

MOVE
MOVE
Move Filter/MOVE

MOVE(IN1 := <<ANY>>, OUT1 => <<ANY>>)

The MOVE function puts the value of the constant or variable at IN1 into the vari-
able at OUT1, the value of the variable or constant at IN2 into the variable at
OUT2, etc. 1 to 16 inputs can be moved.

The input variables or constants to this function can be of different types. An out-
put variable must be of the same type as its corresponding input (on the same line).

Note: In this extensible function, each input is moved to its corresponding out-
put sequentially. Other extensible functions look at all the inputs first
and then go to the outputs.

⁄ƒƒƒƒƒƒƒƒƒø
≥ MOVE ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT1√
≥ ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

IN1 (ANY) - value to be moved

Outputs: OK (BOOL) - execution completed without error

OUT1 (same type as IN1) - moved value
Chapter 2 Function/Function Block Description 2-191

MUL
MUL
Multiply Arith/ARITH

MUL(MCND := <<NUMERIC or TIME dur>>, MPLR := <<NUMERIC or TIME
dur if MCND is NUMERIC, DINT if MCND is TIME >>, OK => <<BOOL>>,
PROD => <<NUMERIC or TIME dur>>)

The MUL function multiplies the value of the variable or constant at MCND by
the value of the variable or constant at MPLR, and places the result in the variable
at PROD. This is an extensible function that can multiply up to 17 numbers.

⁄ƒƒƒƒƒƒƒƒƒø
≥ MUL ≥
≥ ≥
¥EN OK√
≥ ≥
¥MCND PROD√
≥ ≥
¥MPLR ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

MCND (NUMERIC or TIME dur) - multiplicand

MPLR (same type as MCND if MCND is numeric;
DINT if MCND is TIME) - multiplier

Outputs: OK (BOOL) - execution completed without error

PROD (same type as MCND) - product

X MCND
* Y MPLR

Z PROD
2-192 Chapter 2 Function/Function Block Description

MUX
MUX
Multiplex Filter/MUX

MUX(K := <<USINT>>, IN0 := <<ANY>>, IN1 := <<ANY >>, OK =>
<<BOOL>>, OUT => <<ANY>>)

The MUX function is used to select one of two (or more) values and place it into
the output variable. The selection is based on the value of the NUMERIC input at
K.

If the value at K equals 0, then the value of the variable or constant at IN0 is placed
into the variable at OUT. If the input at K equals 1, then the value of the input at
IN1 is placed into the variable at OUT.

This is an extensible function. Up to 17 inputs can be specified. If the value of the
input at K equals 2, 3, ...16, then the value of the input at IN2, IN3, ...IN16 is
placed into the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ MUX ≥
≥ ≥
¥EN OK√
≥ ≥
¥K OUT√
≥ ≥
¥IN0 ≥
≥ ≥
¥IN1 ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

K (USINT) - value selector

IN0 (ANY except STRUCT) - value to be selected

IN1 (same type as IN0) - value to be selected

Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN0) - selected value
Chapter 2 Function/Function Block Description 2-193

NE
NE
Not Equal To Evaluate/NE

NE(IN1 := <<ANY>>, IN2 := <<ANY>>, IN1 := << ANY>>, IN2 := <<ANY>>,
IN3 := <<ANY>> ... IN17 := <<ANY>>, OK => <<BOOL>>, OUT =>
<<BOOL>>)

The NE function compares the value of the variable or constant at IN1 with the
value of the variable or constant at IN2.

This is an extensible function that can compare up to 17 inputs. For the inputs IN1,
IN2, ... IN17, if IN1 < > IN2 < > IN3 < > ... IN17, the coil at OUT is energized.
Otherwise, the coil at OUT is not energized. The variable or constants at IN1
through IN17 are compared as follows:

IN1 is compared to IN2, then IN2 is compared to IN3, then IN3 is compared to
IN4, ..., finally, IN16 is compared to IN17. If all of these comparisons are not
equal, then the coil at OUT will be energized, otherwise the coil at OUT is not
energized.

NEG
Negate Value Arith/ARITH

NE(IN := <<NUMERIC>>, OK => <<BOOL>>, OUT => <<NUMERIC>>)

The NEG function negates (finds the opposite) value of the signed number at IN
and places the result into the variable at OUT. The negate function on a number,
x, is: f(x) = -x

⁄ƒƒƒƒƒƒƒƒƒø
≥ NE ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

IN1 (ANY except BOOL or STRUCT) - value to be
compared

IN2...IN17 (same type as IN1) - value to be compared

Outputs: OK (BOOL) - execution completed without error

OUT (BOOL) - indicates if values are not equal

⁄ƒƒƒƒƒƒƒƒƒø
≥ NEG ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (NUMERIC) - signed number to negate

Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN) - negated number
2-194 Chapter 2 Function/Function Block Description

NETFRE
NETCLS
NEXNET Network Close Io/NETWORK

<<INSTANCE NAME>>:NE(REQ := <<BOOL>>, DONE => <<BOOL>>);

The NETCLS function block closes the communication channel for this PiC,
removing the node from the NEXNET network.

NETCLS should not be executed before the DONE output of the NETOPN func-
tion block has been set. If NETCLS has been executed, the NETOPN function
block must execute again to re-enable communication.

NETFRE
NEXNET Network Free Io/NETWORK

<<INSTANCE NAME>>:NETFRE(EN := <<BOOL>>, OK => <<BOOL>>,
CLRC => <<UINT>>);

The NETFRE function block clears the input buffer of data involved in the most
recent receipt transaction, telling the communications daughter board that data can
be received again.

NETFRE zeros the output at CLRC, which should be the same variable that is at
the CNT output of the NETSTA function block.

This function block should be executed after all data for a transaction has been
received. Until NETFRE executes, receipt of new data is inhibited.

⁄ƒƒNAME ƒƒø
≥ NETCLS ≥
≥ ≥
¥REQ DONE√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (Typically one-shot)

Outputs: DONE (BOOL) - execution completed without error

⁄ƒƒNAME ƒƒø
≥ NETFRE ≥
≥ ≥
¥EN OK√
≥ ≥
≥ CLRC√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (typically one-shot)

Outputs: OK (BOOL) - execution completed without error

CLRC (UINT) - number of bytes cleared, same variable
as at CNT for NETSTA
Chapter 2 Function/Function Block Description 2-195

NETMON
NETMON
NEXNET Network Monitor Io/NETWORK

<<INSTANCE NAME>>:NE(EN := <<BOOL>>, OK => <<BOOL>>, STAT =>
<<INT>>);

The NETMON function block monitors and outputs the status of the PiC network.
NETMON is for diagnostic purposes only. Do not use it in your application LDO.
Never enable the NETMON function all the time.

The status of the network is placed in the variable at STAT:

⁄ƒƒNAME ƒƒø
≥ NETMON ≥
≥ ≥
¥EN OK√
≥ ≥
≥ STAT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (typically one-shot)

Outputs: OK (BOOL) - execution completed without error

STAT (INT) - status of network

STAT = 0 If No receive activity and transmitter is enabled. The transmitter
and/or receiver are not functioning properly.

STAT = 3 The node sees receive activity and sees the token. The transmitter
is enabled. The network and node are operating properly.

STAT = 8 The node sees receive activity, but is not seeing the token. Possi-
ble causes are listed below.

1. No other nodes exist on the network.

2. Data corruption exists.

3. The media driver is not functioning properly.

4. The topology is set up incorrectly.

5. There is noise on the network.

6. A reconfiguration is occurring.
2-196 Chapter 2 Function/Function Block Description

NETOPN
NETOPN
NEXNET Network Open Io/NETWORK

<<INSTANCE NAME>>:NETOPN(REQ := <<BOOL>>, SID := <<USINT>>,
DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>);

The NETOPN function block prepares the PiC (in which it is executed) for com-
munication with another PiC. It performs the following:

The value at SID (Source IDentification) is assigned to this PiC as a unique node
number. The value at SID should be from 1 - 255. This number is used by other
PiCs in the network to reference this PiC.

If no errors occur, the output at DONE is energized, the output at FAIL is not ener-
gized, and the output at ERR equals zero.

If an error occurs, it occurs during the checking and initialization of the daughter
board. The output at DONE is not energized, the output at FAIL is energized, and
the output at ERR ≠ 0 as shown in the following table.

⁄ƒƒNAME ƒƒø
≥ NETOPN ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥SID FAIL√
≥ ≥
≥ ERR√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (typically One-shot)

SID (USINT) - source ID number of PiC

Outputs: DONE (BOOL) - energized if ERR = 0, not energized
if ERR ≠ 0
FAIL (BOOL) - energized if ERR ≠ 0, not energized if
ERR = 0

ERR (INT) - 0 if no errors occur, ≠ 0 if error occurs

1. Checks and initializes communications.
2. Assigns a unique network node number to this PiC.
3. Opens the communication channel if no errors occur.
Chapter 2 Function/Function Block Description 2-197

NETOPN

All PiCs in a network should execute the NETOPN function block one time (the
input at REQ should be a one-shot) before they execute any other NEXNET func-
tion blocks.

Other NEXNET function blocks are: NETCLS, NETFRE, NETMON, NETRCV,
NETSND, and NETSTA.

If a PiC has executed a NETCLS, it must execute NETOPN again to re-enable
communications.

ERR = 1 The ARCNET hardware ID check failed.
ERR = 2 The transmitter is not available. An ARCNET communications

failure has occurred.
ERR = 3 The power-on reset flag cannot be cleared. An ARCNET commu-

nications failure has occurred.
ERR = 4 The SID specified is assigned to another node. Check SID num-

bers.
ERR = 5 to 44 Check Appendix B in the PiCPro Online Help for errors connected

to the OPEN function block.
ERR > 1XXX The node number has been set by PiCPro and is different than the

number you entered at the SID input. The XXX holds the PiCPro
node number 001 through 255.
2-198 Chapter 2 Function/Function Block Description

NETRCV
NETRCV
NEXNET Network Receives Io/NETWORK

<<INSTANCE NAME>>:NETRCV(EN := <<BOOL>>, CNT := <<INT>>,
OFST := <<UINT>>, BUFR := <<MEMORY AREA>>, OK => <<BOOL>>,
FAIL => <<BOOL>>, ACT => <<INT>>, BUFR => <<INT>>, ERR =>
<<INT>>);

The NETRCV function block “reads” data from the input buffer (of the communi-
cations hardware) and places it in a data memory area.

The number of bytes specified by the value at CNT are read and placed within the
memory area specified at BUFR. The value of CNT should be such that:

1 ≤ CNT ≤ 494.

The data is placed in BUFR starting at OFST bytes past the first byte of BUFR. (If
OFST equals 0, 1, 2, etc. the data starts at 0, 1, 2, etc. bytes past the beginning of
BUFR).

⁄ƒƒNAME ƒƒø
≥ NETRCV ≥
≥ ≥
¥EN OK√
≥ ≥
¥CNT FAIL√
≥ ≥
¥OFST ACT√
≥ ≥
¥BUFR-BUFR√
≥ ≥
≥ ERR√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

CNT (INT) - number of bytes to read

OFST (UINT) -offset from start of BUFR

BUFR (memory area) - destination of data

memory area is a STRING, ARRAY, or STRUCTURE

Outputs: OK (BOOL) -energized immediately after enable if
ERR = 0
not energized if ERR = 1 or 2

FAIL (BOOL) - energized if ERR = 1 or 2
not energized if ERR = 0

ACT (INT) - number of bytes received

BUFR (same variable as BUFR input)

ERR (INT) - 0 if no errors occur
1 or 2 if an error occurs

IMPORTANT

When receiving a STRING, the length specified should be the number
of characters indicated by the CNT output of NETSTA.
Chapter 2 Function/Function Block Description 2-199

NETRCV
The number of bytes actually read is placed in the variable at ACT. The value of
ACT will be less than the value of CNT when an error occurs. Otherwise the value
of ACT will equal the value of CNT.

Multiple NETRCV function blocks may be executed to sequentially read the data
from one transaction, allowing for the separation of the data into different memory
areas. The total number of bytes read by one or more NETRCVs should equal the
value of the CNT output of the NETSTA function block.

If an error occurs the output at DONE is not energized, the output at FAIL is ener-
gized, the value at ACT equals 0, the value at BUFR is unchanged, and the output
at ERR equals 1 or 2.

ERR = 1 There is no data in the input buffer to receive.
ERR = 2 The value of CNT is greater than the number of bytes in the input

buffer.

NOTE: The NETFRE function block should be executed after all
data (for one transaction) has been read from the input buffer.
2-200 Chapter 2 Function/Function Block Description

NETSND
NETSND
NEXNET Network Sends Io/NETWORK

<<INSTANCE NAME>>:NETSND(REQ := <<BOOL>>, TUBF := <<MEMORY
AREA>>, TCNT := <<INT>>, DBUF := <<MEMORY AREA>>, DCNT :=
<<INT>>, OFST := <<UINT>>, DID := <<USINT>>, DONE => <<BOOL>>,
FAIL => <<BOOL>>, ERR => <<INT>>, ACT => <<INT>>);

The NETSND function block sends data from this PiC to another PiC or all net-
worked PiCs (broadcast message). NETSND transfers protocol data from the
memory area specified at TBUF and/or data from the memory area specified at
DBUF.

Protocol data is not required. If protocol data is created, the value of TCNT should
specify the number of bytes of protocol (at TBUF). If protocol data is not used,
there should be a null input at TBUF and the value at TCNT should be 0.

The value at DCNT specifies the number of bytes to send from the entry at DBUF.

The data that is transferred from within DBUF starts at OFST bytes past the begin-
ning of DBUF. (If OFST equals 0, 1, 2, etc. then the data sent starts at 0, 1, 2, etc.
bytes past the first byte of DBUF.)
 It is required that TCNT + DCNT ≤ 494.

⁄ƒƒNAME ƒƒø
≥ NETSND ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥TBUF FAIL√
≥ ≥
¥TCNT ERR√
≥ ≥
¥DBUF ACT√
≥ ≥
¥DCNT ≥
≥ ≥
¥OFST ≥
≥ ≥
¥DID ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (typically one-shot)

TBUF (memory area*) - optional protocol data

TCNT (INT) - # of bytes to send from TBUF

DBUF (memory area*) - data to be sent

DCNT (INT) - # of bytes to send from DBUF

OFST (UINT) - offset from start of DBUF

DID (USINT) - destination PiCs

*memory area is a STRING, ARRAY, or STRUC-
TURE

Outputs: DONE (BOOL) - energized if ERR = 0

not energized if ERR ≠ 0
FAIL (BOOL) - energized if ERR ≠ 0

not energized if ERR = 0

ERR (INT) - 0 if transfer successful

≠ 0 if transfer unsuccessful

ACT (INT) - actual number of bytes sent
Chapter 2 Function/Function Block Description 2-201

NETSND
The receiving PiCs should have a memory area that is equivalent to the data being
sent defined at the BUFR input to the NETRCV function block(s).

The value at DID should be from 0 - 255. If the value at DID is 0, the data is sent
to all other PiCs in the network. If the value at DID is 1 - 255, the data is sent to
the PiC with that SID.

If an error occurs, the output at DONE is not energized, the output at FAIL is ener-
gized, the value at ERR equals an error number (see below) and the value at ACT
is 0.

Note: This PiC should execute the NETSND function only after it has set the
DONE output of the NETOPN function block.

IMPORTANT

When sending a STRING, the length specified should be the number
of characters plus 2 (bytes).

ERR = 1 The transmitter is unavailable. A previous send has not com-
pleted.

ERR = 2 The message failed to be acknowledged as received within 900
milliseconds.

ERR = 3 An attempt was made to send more than 494 bytes.

ERR = 4 There is no TBUF input to the function block when protocol data
is created.

ERR = 5 There is no DBUF input to the function block.
ERR = 6 to 44 Check Appendix B in the PiCPro Online Help for errors con-

nected to the WRITE function block.
2-202 Chapter 2 Function/Function Block Description

NETSTA
NETSTA
NEXNET Network Status Io/NETWORK

<<INSTANCE NAME>>:NETSTA(EN := <<BOOL>>, OK => <<BOOL>>, SID
=> <<USINT>>, DID => <<USINT>>, CNT => <<INT>>);

The NETSTA function block outputs the number of bytes that are in this PiCs
daughter board input buffer (sent by another PiC). It also outputs the node number
of the sending PiC and the node number of this (receiving) PiC.

The number of the sending PiC (1 - 255) is placed in the variable at SID. The
value at SID equals 0 if there is no data in the buffer.

The number of this PiC is placed in the variable at DID. The value at DID equals
0 if the data is a broadcast or if there is no data in the buffer.

The number of bytes in the input buffer is placed in the variable at CNT. This
value indicates how many bytes should be read or received (by one or more
NETRCV function blocks). The value at CNT equals 0 if there is no data in the
buffer.

If only one NETRCV function block is executed to read the data from the input
buffer, then the CNT output value of NETSTA should equal the CNT input value
to the NETRCV.

If more than one NETRCV function block is executed to read the data from the
input buffer, then the sum of the bytes read by the NETRCVs should equal the
CNT value from NETSTA.

Note: Ensure that the DONE output of the NETOPN function block is set (the
communication channel is open) before NETSTA executes.

⁄ƒƒNAME ƒƒø
≥ NETSTA ≥
≥ ≥
¥EN OK√
≥ ≥
≥ SID√
≥ ≥
≥ DID√
≥ ≥
≥ CNT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

Outputs: OK (BOOL) -execution completed without error

SID (USINT) - source node ID

DID (USINT) - destination node ID

CNT (INT) - number of bytes received
Chapter 2 Function/Function Block Description 2-203

NEWRATIO
NEWRATIO
New Ratio Motion/MOVE_SUP

NEWRATIO(AXIS := <<USINT>>, MAST := <<USINT>>, SDST :=
<<DINT>>, MDST := <<DINT>>, OK => <<BOOL>>)

The NEWRATIO function allows you to change the current constant ratio in a
RATIO_GR or a RATIOSYN move and change the default ratio in a RATIOSLP
move.

Changing the ratio in RATIO_GR and RATIOSYN

You define a constant ratio when using the RATIO_GR or RATIOSYN moves.
The NEWRATIO function is called after the RATIO_GR or RATIOSYN move is
active and allows you to change this constant ratio. The new ratio takes effect after
the next servo interrupt.

The function does not use the queue but changes the ratio of the move in the active
queue.

Changing the default ratio in RATIOSLP and RATIO_RL

The RATIOSLP and RATIO_RL moves have a default ratio of 1:1. The NEWRA-
TIO function is normally called before the move is active and allows you to
change this default ratio.

⁄ƒƒƒƒƒƒƒƒƒø
≥ NEWRATIO≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥MAST ≥
≥ ≥
¥SDST ≥
≥ ≥
¥MDST ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies the slave axis (servo)

MAST (USINT) - identifies the master axis the slave
axis follows in the ratio move

SDST (DINT) - (slave distance) indicates the new dis-
tance the slave should move for each MDST distance
(entered in LU*)

MDST (DINT) - (master distance) indicates the new
distance the master axis will move during each SDST
(entered in LU*)

*NOTE: The range of values entered in SDST and
MDST is -536870912 to +536870911 FU (excluding 0
for the MDST input.) If you are using ladder units,
make sure they do not exceed this range when con-
verted to feedback units.

Outputs: OK (BOOL) - execution complete without errors
2-204 Chapter 2 Function/Function Block Description

NEWRATIO
If the NEWRATIO function is called after the move, the current ratio of the move
is used initially and the ratio defined by NEWRATIO takes effect after the next
servo interrupt.

The OK will not be set if any of the following programming errors occur:

1. Master axis not available
2. Master distance not valid
3. Slave distance not valid.

IMPORTANT

Whenever the NEWRATIO function is called, it always sets the default ratio
for a RATIOSLP move.

If, for example, the NEWRATIO function is called for a RATIO_GR
or RATIOSYN move, and later a RATIOSLP move is called, the RA-
TIOSLP move will also use the ratio established in the NEWRATIO
function as its default ratio.

If you do not want to use this ratio, call the NEWRATIO function
again.
Chapter 2 Function/Function Block Description 2-205

NEW_RATE
NEW_RATE
New Rate Motion/MOVE_SUP

NEW_RATE(AXIS := <<USINT>>, RATE := <<UDINT>>, QUE :=
<<USINT>>, OK => <<BOOL>>)

The NEW_RATE function allows the rate of the move identified by the queue
number to be changed. The move identified by the queue number can be in the
active or next queue.

If a “0” is entered in QUE, the new feedrate only affects the move in the active
queue.

⁄ƒƒƒƒƒƒƒƒƒø
≥NEW_RATE ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥RATE ≥
≥ ≥
¥QUE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo)

RATE (UDINT) - new feedrate (entered in LU/MIN)

QUE (USINT) - number of move whose rate you want
to change

Outputs: OK (BOOL) - execution completed without error
2-206 Chapter 2 Function/Function Block Description

NOT
NOT
Not Binary/NOT

NOT(IN := <<BITWISE>>, OK => <<BOOL>>, OUT => <<BITWISE>>)

The NOT function complements the variable or constant at IN and places the result
in the variable at OUT. The net effect of this function is that the bits of the output
variable are the reverse of the bits of the input variable or constant.

If bit x of the input is 0 then bit x of the output is 1. If bit x of the input is 1 then bit
x of the output is 0.

Example of NOT function:

⁄ƒƒƒƒƒƒƒƒƒø
≥ NOT ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (BITWISE) - number to be complemented

Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN) - complemented number

Value at IN Value at OUT
11001010 00110101
Chapter 2 Function/Function Block Description 2-207

NO_OFFST
NO_OFFST
No Offset Zone Motion/MOVE_SUP

NO_OFFST(AXIS := <<USINT>>, STRT := <<DINT>>, END := <<DINT>>,
OK => <<BOOL>>)

The NO_OFFST function defines a zone in which no master or slave offsets will
be applied. Master and slave offsets will only be applied when the axis’s current
position is outside the specified zone. This affects all master and slave offsets gen-
erated by registration or specified by WRITE_SV variables 13 through 16. The
following table defines when a master or slave offset will be applied:

where CP = Current Position of the axis.

Example 1:

STRT = 300

END = 500

⁄ƒƒƒƒƒƒƒƒƒø
≥NO_OFFST ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥STRT ≥
≥ ≥
¥END ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (one-shot)

AXIS (USINT) - axis number (servo)

STRT (DINT) - start position of the no-offset zone in
ladder units

END (DINT) - end position of the no-offset zone in lad-
der units

Outputs: OK (BOOL) - execution complete without error

If Then
STRT < END Offsets will not be applied when CP >= STRT AND CP <= END
STRT > END Offsets will not be applied when CP >= STRT OR CP <= END
STRT = END Offsets will be applied regardless of CP
2-208 Chapter 2 Function/Function Block Description

NO_OFFST
Example 2:

STRT = 900

END = 100

Rollover = 1000
Chapter 2 Function/Function Block Description 2-209

NUM2STR
NUM2STR
Numeric to String Datatype/NUM2STR

NUM2STR(STR := <<STRING>>, NUM := <<NUMERIC>>, OK =>
<<BOOL>>, STR => <<STRING>>)

The NUM2STR function converts the numeric variable or constant at NUM into a
STRING, and places the result into the variable at STR. If the length of the vari-
able at STR is not adequate to hold the value (from NUM), the output at OK will
not energize and the value of the variable at STR will be null (STRING length of
zero).

When converting REAL or LREAL floating point numbers, the output follows the
following format.

⁄ƒƒƒƒƒƒƒƒƒø
≥ NUM2STR ≥
≥ ≥
¥EN OK√
≥ ≥
¥STR---STR√
≥ ≥
¥NUM ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STR (STRING) - output STRING

NUM (NUMERIC) - number to convert (may include
plus (+) or minus (-) sign)

Outputs: OK (BOOL) - execution completed without error

STR (same variable as STR input) - output STRING

REAL LREAL
Minimum size

of string 13 characters 23 characters
String output

+1.234567 E + 10

Mantissa Exponent

S
ig

n
 o

f
th

e
m

an
ti

ss
a

Si
ng

le
 d

ig
it

 to
 le

ft
 o

f d
ec

im
al

 p
oi

nt

6
di

gi
ts

 t
o

ri
gh

t
of

 d
ec

im
al

 p
oi

nt

Si
gn

 o
f

th
e

ex
po

ne
nt

2
di

gi
ts

 o
f

th
e

ex
po

ne
nt

+1.234567890123456 E + 123

Mantissa

S
ig

n
 o

f
th

e
m

an
ti

ss
a

Si
ng

le
 d

ig
it

 t
o

le
ft

 o
f

de
ci

m
al

 p
oi

nt

Si
gn

 o
f

th
e

ex
po

ne
nt

15
 d

ig
it

s
to

 r
ig

ht
 o

f
de

ci
m

al
 p

oi
nt

3
di

gi
ts

 o
f

th
e

ex
po

ne
nt

Exponent
2-210 Chapter 2 Function/Function Block Description

OK_ERROR
OK_ERROR
Any Function OK error in existing network Evaluate/OK_ERROR

OK_ERROR(OK => <<BOOL>>, ERR => <<BOOL>>)

The OK_ERROR function evaluates the condition of the OK outputs of all func-
tions from the beginning of the network to this function. If the OK of all the
included functions are set, the ERR output of the OK_ERROR function will not be
energized. If the OK of any of the included functions is not set, the ERR output
will be energized.

Note: All Function Blocks and Functions whose EN is not energized, are not
evaluated and are ignored by the OK_ERROR function.

The primary purpose of this function is to detect runtime errors in expressions used
in Structured Text networks. Typical runtime errors that might occur are Overflow,
divide by zero, etc. In a Ladder network these run-time errors are detected by
examining the output at OK on functions such as ADD, MULT, etc. Since Struc-
tured Text expressions do not have this output directly accessible, the OK_ERROR
function should be called to detect these runtime errors.

Example:

FORCE := MASS * ACCEL;
OK_ERROR(ERROR:=ERROR);

If a runtime error occurs in the calculation MASS * ACCEL, then ERROR will be
energized, otherwise it will not be energized.

⁄ƒƒƒƒƒƒƒƒƒø
≥OK_ERROR ≥
≥ ≥
¥EN OK√
≥ ≥
¥ ERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

Outputs: OK (BOOL) - execution completed without error

ERR (BOOL) - Function OK error was detected
Chapter 2 Function/Function Block Description 2-211

OPEN
OPEN
Open Io/COMM

<<INSTANCE NAME>>:OPEN(REQ := <<BOOL>>, NAMZ := <<STRING>>,
MODE := <<INT>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<INT>>, HNDL => <<INT>>);

The OPEN function block prepares a file or device for a sequential read/write.
It performs three functions.

1. It accepts the name of the file or device from the input at NAMZ.

2. It accepts the mode in which the file/device should be opened from the input at MODE.

3. It assigns a unique number (called a handle) for the file/device and mode, and places the
number into the variable at HNDL.

A maximum of 10 modes can be assigned for files/devices at one time. A READ
and WRITE or an APPEND equals two modes. All others equal one.

⁄ƒƒNAME ƒƒø
≥ OPEN ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥NAMZ FAIL√
≥ ≥
¥MODE ERR√
≥ ≥
≥ HNDL√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (One-shot)

NAMZ (STRING) - name of file/device

MODE (INT) - mode in which to open channel

Outputs: DONE (BOOL) - energized if ERR = 0
not energized if ERR ≠ 0

FAIL (BOOL) - energized if ERR ≠ 0
not energized if ERR = 0

ERR (INT) - 0 if data transfer successful
≠ 0 if data transfer not successful

HNDL (INT) - unique communication number

See Appendix B in the PiCPro Online Help for ERR
codes.

Input variable Enter this To do this
NAMZ* PICPRO:c:\sub\filename.ext$00 open workstation DOS files**

RAMDISK:sub\filename.ext$00 open RAMDISK files
FMSDISK:filename.ext$00*** open FMSDISK files
USER:$00 open User Port

MODE** 16#601 READ ONLY
16#602 WRITE ONLY****
16#603 READ and WRITE
16#604 APPEND (READ and WRITE -

start write at end of file)
2-212 Chapter 2 Function/Function Block Description

OPEN
* PICPRO, RAMDISK, FMSDISK, and USER must be entered in capital let-
ters, followed by a colon (:). A full (directory) path must be specified for files.
The $00 characters are required at the end. NOTE: The total number of characters
is limited to 77.

** Workstation files can be opened only in the read (16#601) or write
(16#602) mode; and only one workstation file at a time can be open.

*** FMSDISK files can be opened only in the read mode.

**** If there is an existing file, opening it in the write only mode will delete
the existing data. The new data will then be written to it.
A subdirectory can be created by opening in the WRITE ONLY mode. If the sub-
directory and filename do not exist when the OPEN is performed, both will be cre-
ated.

OPEN is used in conjunction with the CLOSE, CONFIG, READ, SEEK, STA-
TUS, and WRITE I/O function blocks.
Chapter 2 Function/Function Block Description 2-213

OPENLOOP
OPENLOOP
Open Loop Motion/INIT

OPENLOOP(AXIS := <<USINT>>, OK => <<BOOL>>)

The position loop for the designated axis is opened when the OPENLOOP func-
tion is activated. The servo software instructs the analog output to send a zero-volt
signal to the drive.

If the drive has been properly adjusted, the zero-volt signal will cause it to hold the
motor at zero velocity. If the drive has not been adjusted properly, the motor may
“drift.”

No other commands can be sent until the loop is closed again. See also
CLOSLOOP.

⁄ƒƒƒƒƒƒƒƒƒø
≥OPENLOOP ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error

DIGITAL DRIVE NOTES

If OPENLOOP is called while the digital drive is in Velocity Mode,
the software drive enable will be reset, the velocity loop will be
opened, and the command velocity will be set to zero. While the loop
is open, the command velocity will be held at zero.
If OPENLOOP is called while the digital drive is in Torque Mode, the
software drive enable will be reset, the torque loop will be opened,
and the command current will be set to zero. While the loop is open,
the command current will be held at zero.
2-214 Chapter 2 Function/Function Block Description

OR
OR
Or (Inclusive) Binary/OR

OR(IN1 := <<BITWISE>>, IN2 := <<BITWISE>>, OK => <<BOOL>>, OUT =>
<<BITWISE>>)

The OR function ORs the variable or constant at IN1 with the variable or constant
at IN2, and places the results in the variable at OUT. This is an extensible function
which can OR up 17 inputs.

The OR function places a 1 in bit x of the output variable when bit x of one or
more (including all) input variables equals 1. A zero is placed in bit x of the output
variable if bit x of all input variables equals 0.

Example of OR function (on three inputs):

⁄ƒƒƒƒƒƒƒƒƒø
≥ OR ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

IN1 (BITWISE) - number to be ORed

IN2 (same type as IN1) - number to be ORed

Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN1) - ORed number

11000011 value at IN1
10101010 value at IN2
11001100 value at IN3
11101111 value at OUT
Chapter 2 Function/Function Block Description 2-215

PART_CLR
PART_CLR
Part Reference Clear Motion/REF

PART_CLR(AXIS := <<USINT>>, OK => <<BOOL>>)

The PART_CLR function cancels the part reference dimension (See PART_REF
below). The axis reverts to the original reference value.

An axis can be “part referenced’ several times. The PART_CLR function will can-
cel all part references as if no part reference had occurred.

Note: This function can be used with the stepper axis module.

⁄ƒƒƒƒƒƒƒƒƒø
≥PART_CLR ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo or digitizing)

Outputs: OK (BOOL) - execution completed without error
2-216 Chapter 2 Function/Function Block Description

PART_REF
PART_REF
Part Reference Motion/REF

PART_REF(AXIS := <<USINT>>, REFD := <<DINT>>, OK => <<BOOL>>)

The part reference function allows you to change the current position of an axis.
No motion occurs when a part reference is performed. The reference dimension
value at REFD will become the new current position for the axis specified at
AXIS. This reference dimension will remain in effect until it is canceled using the
PART_CLR function or replaced by a new part reference.

A servo axis must be at rest when a part reference is performed. A digitizing axis
can be in motion when a part reference is performed.

This function can be used with the stepper axis module.

⁄ƒƒƒƒƒƒƒƒƒø
≥PART_REF ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥REFD ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies axis to be part referenced
(servo or digitizing)

REFD (DINT) - reference dimension entered in LU.
If REFD is outside the range of:
-536,870,910 to 536,870,911 FU, the OK will not be
set.

Outputs: OK (BOOL) - execution completed without error
Chapter 2 Function/Function Block Description 2-217

PID
PID
Proportional, Integral, Derivative Io/PID

<<INSTANCE NAME>>:PID(EN := <<BOOL>>, SPT := <<DINT>>, ACT :=
<<DINT>>, IST := <<MEMORY AREA>>, REV := <<BOOL>>, MAN :=
<<BOOL>>, BTVL := <<DINT>>, OK => <<BOOL>>, FAIL => <<BOOL>>,
ERR => <<SINT>>, OUT => <<DINT>>, HILT => <<BOOL>>, LOLT =>
<<BOOL>>);

Background information on PID control

When a process characteristic such as level, speed, temperature, pressure, flow,
etc. is being monitored and controlled, the PID function block can be used to main-
tain the desired or setpoint value for the process. The actual process characteristic
could deviate from the desired setpoint due to disturbances in the system. This
deviation is the error.

E = setpoint (SPT) - actual (ACT)

or

E = actual (ACT) - setpoint (SPT)

⁄ƒƒ NAMEƒƒø
≥ PID ≥
≥ ≥
¥EN OK√
≥ ≥
¥SPT FAIL√
≥ ≥
¥ACT ERR√
≥ ≥
¥IST OUT√
≥ ≥
¥REV HILT√
≥ ≥
¥MAN LOLT√
≥ ≥
¥BTVL ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (timer output)

SPT (DINT) - setpoint value of the control variable
specified as a scaled value between ± 2,147,483,646

ACT (DINT) - actual value of the control variable in
same units as setpoint value

IST (STRUCT) - structure holding PID variables

REV - (BOOL) - reverse sign on output

MAN - (BOOL) - Manual/auto mode

BTVL - (DINT) - bumpless transfer value

Outputs: OK (BOOL) - execution completed without error

FAIL (BOOL) - set if ERR ≠ 0

ERR (SINT) - 0 = no error; 1 = math overflow error

OUT (DINT) - value of the output in the range of
± 2,147,483,646

HILT (BOOL) - set if output was limited by the HIGH
limit

LOLT (BOOL) - set if output was limited by the LOW
limit
2-218 Chapter 2 Function/Function Block Description

PID
Once an error is detected, the PiC will modify the output to the process in an
attempt to force the error to zero. The purpose of the PID function is to act on this
error in one or a combination of the ways listed below.

The process output can be controlled by using P, PI, PID, or PD depending on the
desired response for the process.

The PID function block is designed to provide proportional, integral, and deriva-
tive control for processing applications. There are two PID algorithms available to
use in a PID control loop. The function block must be declared in the software
declaration table.

The desired setpoint for the process variable is entered at SPT (setpoint). The
actual (ACT) input specifies the measured value of the process variable.

If REV input is set, the sign on the PID output is reversed.

A bumpless transfer feature is available with the MAN and BTVL inputs. The
MAN is a manual/automatic boolean switch. When it is set, the value at the BTVL
input is the value at the OUT output. The algorithm updates the integral accumula-
tor. This prevents the accumulation of an integral error during the manual mode.
Then when the MAN input is cleared, the transfer to PID control is smooth.

The FAIL output will be set if a math overflow error occurs. A 1 appears at the
ERR output. The function output will be the output of the last iteration that did not
fail.

The IST is an input structure to the PID function block. The members are
described below.

Definition Characteristics
Proportional establishes an output whose value is

proportional to the value of the instanta-
neous error. (P)

* Fast response

* Easy to use

* Always some error (offset)
between setpoint and actual

Integral or
reset

establishes an output whose value is
proportional to the error over a period of
time. (I)

* Provides most correction for
slowly changing processes

* Eliminates the inherent offset of
proportional only control

* Adversely affects stability
Derivative or
rate

establishes an output whose value is
proportional to the rate of change of the
error. (D)

* Provides most correction for
rapidly changing processes

* Almost anticipates correction
needed

* Cannot be used alone

* Does not reduce the inherent offset
Chapter 2 Function/Function Block Description 2-219

PID
Structure for the IST input of PID function block

IMPORTANT

The structure you enter in the software declarations table for the IST
input must have the members entered in the order shown below. The
data type for each member of the structure must be as shown in the
Type column in order for the software to recognize the information.
Put initial values for the following structure members in the Init. Val
column: KP, KI, KD, TS, KDFT, FP, FD, DBPLUS, DBMINUS,
HIGH, LOW, and EXOP.
The software assigns values to PROP, INTG, and DERV.
The initial values for these three structure members must be 0.

IST
.KP
.KI
.KD
.TS
.KDFT
.FP
.FD
.DBPLUS
.DBMINUS
.HIGH
.LOW
.EXOP
.PROP
.INTG
.DERV

Members
of Structure

Structure
name STRUCT

INT
INT
INT
INT
SINT
SINT
SINT
INT
INT
DINT
DINT
WORD
DINT
DINT
DINT
END_STRUCT
2-220 Chapter 2 Function/Function Block Description

PID
The IST structure members

A filter value for the derivative term can be entered at KDFT. Filters for the pro-
portional and derivative errors can be entered at FP and FD respectively.

KP
(proportional)

INT (write)

Proportional gain (Kp) * 100 [For example, P of 0.55 entered as 55]

KI
(integral)

INT (write)

Reciprocal of the integral time (f (1,Ti)) * 100 (time units)

KD
(derivative)

INT (write)

Derivative time (Td) * 100 (time units)
TS
(sample time)

INT (write)

PID sample time in seconds * 100

TS represents the sample time used to calculate the integral and deriva-
tive gains for the PID loop as shown in the equations below.

NOTE: The TS value is the product of the PID sample time (the PID
enable period) times 100. For example, a 10 ms sample results in a TS
value of 1 (0.010 * 100) and a 200 ms sample results in a TS value of 20
(0.200 * 100).

KDFT
(derivative
filter)

SINT (write)

Filter value for the derivative term in percent (derivative change limit)

FP
(proportional
filter)

SINT (write)

Proportional error filter in percent (100% = no filtering)

FD
(derivative
error filter

SINT (write)

Derivative error filter in percent (100% = no filtering)
Chapter 2 Function/Function Block Description 2-221

PID

EXO
(exe
tion
tion
A deadband is used to set up a range on either side of the setpoint where the output
does not change if the error remains within the range or band. This allows you to
control how close the actual value will match the setpoint value without changing
the output. The range is entered in DBPLUS and DBMINUS.

An anti-reset windup feature is available with the HIGH and LOW limits. It pre-
vents the integral gain from becoming excessive or winding up when the limits are
reached. The output will be held at the value it was during the previous iteration
whenever the high or low limit is encountered.

(The HILT and LOLT outputs are set respectively if the HIGH or LOW limits are
encountered.)

The word available with the EXOP gives you four options.

DBPLUS
(positive dead-
band)

INT (write)

Deadband in the positive direction of out (OUT + DB)

DBMINUS
(negative
deadband)

INT (write)

Deadband in the negative direction of out (OUT - DB)

HIGH
(high limit)

DINT (write)

Output high limit used for integral accumulator high saturation limit. Same
units as setpoint.

LOW
(low limit)

DINT (write)

Output low limit used for integral accumulator high saturation limit. Same
units as setpoint.

NOTE: HIGH and LOW are used for anti-reset windup.

P
cu-
 op-
s)

WORD (write)
2-222 Chapter 2 Function/Function Block Description

PID
EXOP Bit 0

The PID function block gives you a choice of two algorithms in the EXOP mem-
ber of the IST structure at bit 0.

The terms used in the following equations are described here:

The following continuous equation performs the calculation with the ISA algo-
rithm:

1. The ISA algorithm
2. The independent gains algorithm

Equation
Term

(Function
Term)

Description

Mn (OUT) = output
Kp (KP) = proportional gain constant
Ts (TS) = sample rate
Ki (KI) = integral gain constant
Kd (KD) = derivative gain constant
Ej --------- = error the jth iteration
DCL (KDFT) = derivative change limit
D (j - 1) --------- = derivative from previous iteration

� �() �� � � �() �� �
�

�

∫ �()�� ��
�� �()
��

------------⋅⋅

Chapter 2 Function/Function Block Description 2-223

PID

Y

The discrete equation is shown below:

The block diagram below illustrates the ISA algorithm.

Figure 2-6. Block diagram of ISA algorithm

�	 ��
	 �� ��

	
 	 ��()

�
------------------------------- ��

��

 	 ��()�[] �� � 	 ��() � ���()⋅[]⋅

	 ��

	 ��

∑⋅ ⋅

�

Prop Integral
(Reset)

Derivative (current)
(Rate)

ReturnEN

Manual

NO

YES

SPT

ACT

Dead
Band

Differential
Term

Proportional
Error

P

BTVL Output

Integral
Accumulator

User conversion
factors for device
interface
Device Unit Output

PID Engaged

SPT

ACT

Dead
Band

Differential
Term

Proportional
Error

P

High

OutputClamp

Integral
Term

Low

Rev

Polarity

User conversion
factors for device
interface
Output Device Unit

DEVICE
AD Board
etc.

NO

Manual Engaged

Manual Input

ES
2-224 Chapter 2 Function/Function Block Description

PID

t

it

N

Y

The following continuous equation performs the calculation with the independent
gains algorithm:

The discrete equation is shown below:

The block diagram below illustrates the independent gains algorithm.

Figure 2-7. Block diagram of Independent gains algorithm

� �() �� � �()⋅ �� �
�

�

∫ ��� ��
���

��
--------⋅⋅�

�	 ��
	 ����

	
 	 ��()

�
------------------------------- ��

��

	 ��()�[] �� � 	 ��() � ���()⋅⋅ ⋅

	 ��

	 ��

∑⋅⋅�

ReturnEN

Manual

NO

YES

SPT

ACT

Dead
Band

Differential
Term

Proportional
Error

BTVL Output

Integral
Accumulator

User conversion
factors for device
interface
Device Unit Outpu

PID Engaged

SPT

ACT

Dead
Band

Differential
Term

Proportional
Error P

High

OutputClamp

Integral
Term

Low

Rev

Polarity

User conversion
factors for device
interface
Output Device Un

DEVICE
AD Board
etc.

O

Manual Engaged

Manual Input

ES

P

Chapter 2 Function/Function Block Description 2-225

PID
EXOP Bit 1

With bit 1, you can choose to have the error calculated by the setpoint minus the
actual or by the actual minus the setpoint.

EXOP Bit 2

With bit 2, you can choose to have the proportional filter multiplied by the setpoint
minus the actual or by the setpoint only.

EXOP Bit 3

With bit 3, you can choose to have the derivational filter multiplied by the setpoint
minus the actual or by the setpoint only.

The values of the proportional, integral, and derivative terms for the current step
can be read with members PROP, INTG, and DERV. Add them to your View list
in PiCPro.

You may execute the PID loop every scan or trigger it at your own update rate by
using the timer TON function block at the EN input (see below). Total update time
is the timer value plus the time required for one ladder scan.

Figure 2-8. Example PID network using a timer

PROP
(proportional
gain)

DINT (read)

The value of the proportional term at this step.

INTG
(integral gain)

DINT (read)

The value of the integral term at this step.
DERV
(derivative
gain)

DINT (read)

The value of the derivative term at this step.
2-226 Chapter 2 Function/Function Block Description

PID2
PID2
Proportional, Integral, Derivative PID/PID2

<<INSTANCE NAME>>:PID2(EN := <<BOOL>>, SPT := <<DINT>>, ACT :=
<<DINT>>, IST := <<STRUC>>, MAN := <<BOOL>>, BTVL := <<DINT>>,
OK => <<BOOL>>, FAIL => <<BOOL>>, ERR => <<SINT>>, OUT =>
<<DINT>>, HILT => <<BOOL>>, LOLT => <<BOOL>>);

The PID2 function block is a simplified version of the PID function block. There is
significantly less configuration information because many of the filtering options
have been omitted. However, it should be noted that many of the filtering and algo-
rithm options omitted may be effectively performed on the data input to the Func-
tion Block yielding similar or improved results. The PID2 function block utilizes
the Independent gains algorithm.

The PID2 function block is designed to provide proportional, integral, and deriva-
tive control for processing applications. This function block must be declared in
the software declaration table.

The desired setpoint for the process variable is entered at SPT (setpoint). The
actual (ACT) input specifies the measured value of the process variable.

⁄ƒƒ NAMEƒƒø
≥ PID2 ≥
≥ ≥
¥EN OK√
≥ ≥
¥SPT FAIL√
≥ ≥
¥ACT ERR√
≥ ≥
¥IST OUT√
≥ ≥
¥MAN HILT√
≥ ≥
¥BTVL LOLT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (timer output)

SPT (DINT) - setpoint value of the control variable
specified as a scaled value between ± 2,147,483,646

ACT (DINT) - actual value of the control variable in
same units as setpoint value

IST (STRUC) - structure holding PID variables

MAN - (BOOL) - Manual/auto mode

BTVL - (DINT) - bumpless transfer value

Outputs: OK (BOOL) - execution completed without error

FAIL (BOOL) - set if ERR 0

ERR (SINT) - 0 = no error; 1 = math overflow error

OUT (DINT) - value of the output in the range of
± 2,147,483,646

HILT (BOOL) - set if output was limited by the HIGH
limit

LOLT (BOOL) - set if output was limited by the LOW
limit
Chapter 2 Function/Function Block Description 2-227

PID2
A bumpless transfer feature is available with the MAN and BTVL inputs. The
MAN is a manual/automatic boolean switch. When it is set, the value at the BTVL
input is the value at the OUT output. The algorithm updates the integral accumula-
tor. This prevents the accumulation of an integral error during the manual mode.
Then when the MAN input is cleared, the transfer to PID2 control is smooth.

The FAIL output will be set if an error occurs. A 1 appears at the ERR output.
The function output will be the output of the last iteration that did not fail.

An error value of 1 indicates a math error. An error value of 2 indicates a parame-
ter error.

The HIGH and LOW limits are used for “Anti-Reset Windup”. The range of the
output value of the PID2 is limited by the HIGH or LOW limits. If the output is
limited, the amount of limitation is fed back to the integrator to prevent continued
integration, thereby limiting windup. The HIGH and LOW limits do not directly
limit the integral term, but rather, indirectly limit the integral (reset windup) from
integrating the output into saturation.

The HILT and LOLT outputs are set respectively if the HIGH or LOW limits are
encountered.

The integral and derivative gains in this function block are dependent on the fre-
quency upon which it is executed. Therefore, it becomes important to ensure that
the rate at which the function is executed is as consistent as necessary for the appli-
cation. This can be accomplished by placing the PID2 function block in a Time
Tick Task, or by enabling the function block with a timer output in the main ladder.
If the function block is enabled by a timer, the rate at which it is enabled should be
significantly longer than the scan time for best results. It is also important to ensure
that TS is set equal to the rate at which the function block is enabled.

The IST is an input structure to the PID2 function block. The members are
described below.

IMPORTANT

IST is an input structure to the PID2 Function Block. The structure
and members are described as follows:
The structure you enter in the software declarations table for the IST
input must have the members entered in the order shown below. The
data type for each member of the structure must be as shown in the
Type column in order for the software to recognize the information.
Put initial values for the following structure members in the Init. Val
column: KP, KI, KD, DBPLUS, DBMINUS, HIGH, LOW, and OPT.
The software assigns values to PROP, INTG, and DERV.
The initial values for these three structure members must be 0.
2-228 Chapter 2 Function/Function Block Description

PID2
Structure for the IST input of PID2 function block

The IST structure members

A deadband is used to set up a range on either side of the setpoint where the output
does not change if the error remains within the range or band. This allows you to
control how close the actual value will match the setpoint value without changing
the output. The range is entered in DBPLUS and DBMINUS.

KP
(proportional)

REAL (write)

Proportional gain, (counts output/counts error)
KI
(integral)

REAL (write)

Integral gain or reset rate (1/reset time) [I/P] 1/seconds
KD
(derivative)

REAL (write)

Derivative gain seconds
TS
(sample time)

TIME (write)

Sample time

DBPLUS
(positive dead-
band)

INT (write)

Positive Deadband (enter as positive number)

DBMINUS
(negative
deadband)

INT (write)

Negative Deadband (enter as a negative number)

IST
.KP
.KI
.KD
.TS
.DBPLUS
.DBMINUS
.HIGH
.LOW
.OPT
.PROP
.INTG
.DERV

Members
of Structure

Structure
name STRUCT

REAL
REAL
REAL
TIME
INT
INT
DINT
DINT
WORD
REAL
REAL
REAL
END_STRUCT
Chapter 2 Function/Function Block Description 2-229

PID2
An anti-reset windup feature is available with the HIGH and LOW limits. It pre-
vents the integral gain from becoming excessive or winding up when the limits are
reached. The output will be held at the value it was during the previous iteration
whenever the high or low limit is encountered.

(The HILT and LOLT outputs are set respectively if the HIGH or LOW limits are
encountered.)

HIGH
(high limit)

DINT (write)

Output high limit used for integral accumulator high saturation limit. Same
units as setpoint.

LOW
(low limit)

DINT (write)

Output low limit used for integral accumulator high saturation limit. Same
units as setpoint.

NOTE: HIGH and LOW are used for anti-reset windup.
OPT WORD (write)

PID2 options. This is for future use and should be set to 0.

PROP REAL
Current Proportional Term

INTG REAL
Current Integral Term

DERV REAL
Current Derivative Term

PROP
(proportional
gain)

REAL

The value of the proportional term at this step.

INTG
(integral gain)

REAL

The value of the integral term at this step.
DERV
(derivative
gain)

REAL

The value of the derivative term at this step.
2-230 Chapter 2 Function/Function Block Description

PID2
You must trigger the PID2 function block at your own update rate by using the
timer TON function block at the EN input (see below). Total update time is the
timer value plus the time required for one ladder scan.

Figure 2-9. Example PID2 network using a timer
Chapter 2 Function/Function Block Description 2-231

PLS
PLS
Programmable Logic Switch Motion/MOVE_SUP

PLS(AXIS := <<USINT>>, POSN := <<MEMORY AREA>>, QTY :=
<<USINT>>, SLOT := <<USINT>>, PNT := <<USINT>>, DABL :=
<<BOOL>>, OK => <<BOOL>>, OUT => <<BOOL>>)

The PLS function is used to turn on a discrete output for specified ranges of axis
positions. These ranges are specified by the list of ON/OFF positions pointed to by
the POSN input. If the axis’ current position is within any of the ranges specified,
the output will be turned on. If the axis’ current position is in none of the ranges
specified, the output will be turned off.

The EN input enables execution of the function block. A one-shot is all that is
required to activate the PLS. The EN input may be left enabled to update the OUT
output each scan.

The AXIS input specifies the axis whose position will control the state of the out-
put. This may be a servo axis, digitizing axis, or time axis. The POSN input is an
array of structures specifying the axis position ranges in which the output is to be
turned on. The array of structures must be in the following format:

⁄ƒƒƒƒƒƒƒƒƒø
≥ PLS ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS OUT√
≥ ≥
¥POSN ≥
≥ ≥
¥QTY ≥
≥ ≥
¥SLOT ≥
≥ ≥
¥PNT ≥
≥ ≥
¥DABL ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - axis number (servo, digitizing or time)

POSN (Array of STRUCTURE) - list of ON/OFF posi-
tions

QTY (USINT) - number of ON/OFF positions

SLOT (USINT) - slot number of output module or MMC
for PC ASIU number

PNT (USINT) - output point

DABL (BOOL) - disable control of output

Outputs:OK (BOOL) - execution completed without error

OUT (BOOL) - output state

POSN STRUCT (0..n-1)
.ONPOS DINT
.OFFPOS DINT
END STRUCT
(where n = number of ranges)
2-232 Chapter 2 Function/Function Block Description

PLS
The ONPOS and OFFPOS values are axis positions expressed in ladder units.
When PLS is active, the following logic is used to determine if the axis’ current
position is within an ON/OFF range:

If the axis’ current position is within any of the ranges specified, the output will be
turned on. If the axis’ current position is in none of the ranges specified, the output
will be turned off. Examples of turning on an output for varying distances is illus-
trated in Figure 2-10.

Figure 2-10. Examples of PLS ON/OFF

If ON < OFF, CP is in the range if CP ≥ ON and CP < OFF.
If ON > OFF, CP is in the range if CP ≥ ON or CP < OFF.
If ON = OFF, the range is ignored.
(where CP is the axis’ current position)

Example 1

On1 = 200 , Off1 = 400

On2 = 500 , Off2 = 600

Quantity = 2

With Rollover

Given:

Off1
400

On1
200

On2
500

Without Rollover

0 100 200 300 400 500 600

Example 2

On = 200 , Off = 100
Quantity = 1

With Rollover

Given:

=

Without Rollover

0 100 200 300 400 500 600

Off On

On1 Off1 On2 Off2

Distance the output is on

= Distance the output is on

1000

0

Off
100

On
200

1000

0

Off2
600
Chapter 2 Function/Function Block Description 2-233

PLS
The QTY input specifies the number for ranges in the POSN array of structures.
Valid input values are 1 through 255.

Valid SLOT values are dependent on the type of control:

Control Valid SLOT values
PiC900/PiC90 3 through 13, specifying the slot number in the main rack

(must be an output module, not an input/output module)
MMC 2, specifying the CPU board

4 through 7, specifying an expansion module
MMC-for-PC 1 through 8, specifying the ASIU number
MMC-D 2, specifying the CPU board

100, specifying a digital drive output (AXIS indicates
which digital drive)

101 through 232, specifying a digital drive output.
101 indicates the digital drive of axis 1.
102 indicates the digital drive of axis 2.
 :
 :
232 indicates the digital drive of axis 132.
Only servo or digitizing axes can be specified.

MMC-D64 /
MMC-D32

4 through 7, specifying an expansion module

100, specifying a digital drive output (AXIS indicates
which digital drive)

101 through 232, specifying a digital drive output.
101 indicates the digital drive of axis 1.
102 indicates the digital drive of axis 2.
 :
 :
232 indicates the digital drive of axis 132.
Only servo or digitizing axes can be specified.

MMC-DSA 2, specifying the CPU board

4 through 7, specifying an expansion module

100, specifying a digital drive output (AXIS indicates
which digital drive)

101 through 232, specifying a digital drive output.
101 indicates the digital drive of axis 1.
102 indicates the digital drive of axis 2.
:
:
232 indicates the digital drive of axis 132.
Only servo or digitizing axes can be specified.
2-234 Chapter 2 Function/Function Block Description

PLS
If SLOT = 100, only servo or digitizing axes are allowed at AXIS.

No more than two different SLOT values may be specified by multiple calls to
PLS. Slot values 100 through 232 are considered one slot.

Valid values for PNT are 1 through the number of outputs available on the module
specified by SLOT. If SLOT = 0, valid values for PNT are 1 through 16.

The DABL input will disable the PLS function. If PLS is called with DABL set,
the discrete output and the function ’s OUT output will be turned off and will no
longer be controlled by PLS.

The OK output indicates the function block executed successfully. If the OK out-
put is reset, any of the following errors occurred:

• AXIS input is invalid

• SLOT input is invalid

• PNT input is invalid

• Too many slots have been specified by multiple calls to PLS functions

The OUT output is set when the axis’ current position is within is any of the ON/
OFF ranges and the DABL input is reset. The OUT output is reset when the axis’
current position is none of the ON/OFF ranges. It is also reset when the DABL
input is set.

The distance during which each output remains on can vary by changing the values
in ON and OFF in each function.

Notes:

1. PLS will operate with or without rollover-on-position specified for the axis.

2. The outputs being controlled by PLS are updated every servo interrupt.

3. While the PLS is active, the ON/OFF values may only be modified via the PLS _EDIT
function. Modifying these values by any other means while the PLS is active may cause
outputs to unexpectedly turn on or off. If the DABL input is set or if the EN input has
never been set, the ON/OFF values may be modified by conventional means (i.e. MOVE
function).

4. Do not declare the PLS output point (specified by SLOT and PNT) in the software decla-
rations.

All Controls 0 is a valid SLOT value for any control. SLOT = 0 indi-
cates no physical output will be controlled; only the
function output, OUT, will be controlled.
Chapter 2 Function/Function Block Description 2-235

PLS_EDIT
PLS_EDIT
Programmable Logic Switch Editor Motion/MOVE_SUP

PLS_EDIT(POSN := <<MEMORY AREA>>, INDX := <<USINT>>, ON :=
<<DINT>>, OFF := <<DINT>>, OK => <<BOOL>>)

The PLS EDIT function is used to edit an ON/OFF pair of values used by a PLS
function while PLS is active. Since the PLS function accesses the ON/OFF values
on an interrupt basis, the ladder must not attempt to change these values with any
other function (i.e. MOVE function) while PLS is active. PLS_EDIT will protect
the integrity of the ON/OFF values when changing them.

The EN input enables execution of the function.

The POSN input is the array of structures containing the list of ON/OFF positions.
The array of structures must be in the following format:

The INDX input specifies the ON/OFF range to edit. Valid input values are 0
through 254.

The ON input specifies the new value for the ON position of the range.

The OFF input specifies the new value for the OFF position of the range.

The OK output indicates the function executed successfully.

⁄ƒƒƒƒƒƒƒƒƒø
≥PLS_EDIT ≥
≥ ≥
¥EN OK√
≥ ≥
¥POSN ≥
≥ ≥
¥INDX ≥
≥ ≥
¥ON ≥
≥ ≥
¥OFF ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (one-shot)

POSN (Array of STRUCTURE) - list of ON/OFF posi-
tions

INDX (USINT) - index of ON/OFF positions to change

ON (DINT) - new ON position

OFF (DINT) - new OFF position

Outputs:OK (BOOL) - execution completed without error

POSN STRUCT (0..n-1)
.ON DINT
.OFF DINT
END STRUCT
(where n = number of ranges)
2-236 Chapter 2 Function/Function Block Description

POSITION
POSITION
Position Motion/MOVE

POSITION(AXIS := <<USINT>>, RATE := <<UDINT>>, POS := <<DINT>>,
OK => <<BOOL>>, QUE => <<USINT>>)

The POSITION function moves an axis to an endpoint at a specified feedrate.
When the position move is used with a time axis, the S_CURVE function must be
called first.

When used on a servo axis, the ACC/DEC will be a ramp, unless S-Curve interpo-
lation is enabled via Servo-Setup or the WRITE_SV function.

⁄ƒƒƒƒƒƒƒƒƒø
≥POSITION ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS QUE√
≥ ≥
¥RATE ≥
≥ ≥
¥POS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies axis (servo or time)

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

POS (DINT) - indicates absolute position endpoint
(entered in LU)

Outputs:OK (BOOL) - execution completed without error

QUE (USINT) - number of position move for queue
Chapter 2 Function/Function Block Description 2-237

P_ERRORS
P_ERRORS
Programming Errors Motion/ERRORS

P_ERRORS(AXIS := <<USINT>>, OK => <<BOOL>>, ERRS => <<WORD>>)

The ERRS output on the P_ERRORS function is a word, or two bytes, as shown
below. The MSB bit (indicated by the “x”) in the high byte word indicates that
there is an error.

 x _ _ _ _ _ _ _ _ _ _ _ _ _ _

High byte Low byte

The programming errors listed in the tables below can be divided into two catego-
ries--those connected to the FAST_QUE function and those connected to the mas-
ter/slave moves.

Note: The P_ERRORS can also be viewed from the tune section of the Servo
setup program.

The Bit Location column indicates which bit is set in the low or high byte of the
word connected to each error. The “E” is what appears on the tune screen in Servo
setup.

The Hex Value column represents the form the error is returned in while monitor-
ing the ERRS output of the function in your ladder program.

The first error listed (bit location 7 of low byte) is connected to the FAST_QUE
function. The remaining errors are connected to the master/slave moves.

⁄ƒƒƒƒƒƒƒƒƒø
≥P_ERRORS ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ERRS√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error

ERRS (WORD) - identifies errors
2-238 Chapter 2 Function/Function Block Description

P_ERRORS
Programming errors (Low byte)

Error Description
Bit Location

(low byte)
Hex *
Value

(Decimal)
7 6 5 4 3 2 1 0 (in LDO)

The FAST axis in
the FAST_QUE
function moved too
far in wrong direc-
tion

The axis traveled more than 65,535
FU in the opposite direction of the
value entered in DIST of the
FAST_QUE function.

E 8080
(32896)

Profile number not
found

Data for a profile move is not valid. E 8040
(32832)

Master axis not
available

This error can occur when using the
FAST_QUE function or the functions
for master/slave moves (RATIO_GR,
RATIOSYN, or RATIOPRO). The
conditions that can set this bit:

1. Master axis or fast axis not initial-
ized

2. Interrupt rates different for axes

3. Axis at slave input is the same as
axis at master input in master/slave
move.

4. The master/slave move has
requested to use the master’s com-
mand position and the master axis
is not a servo axis. Choosing to
use the master’s command position
is achieved with the OPTN input
for RATIOCAM, RATIOSLP, and
RATIO_RL or WRITE_SV Vari-
able 59 for RATIO_GR, RATIO-
SYN, and RATIOPRO.

E 8020
(32800)

(not used)
(not used)
(not used)
(not used)
Master start posi-
tion for lock on

When the dimension for the lock posi-
tion was converted to feedback units,
it was too big to fit into 32 bits.

E 8001
(32769)
Chapter 2 Function/Function Block Description 2-239

P_ERRORS
Programming errors (High byte)

*When more than one error occurs, the hex values are OR’d. For example, if 8100
and 8200 occur, the result is 8300 hex (33536 decimal)

Error Description
Bit Location
(high byte)

Hex*
Value

(Deci-
mal)

7 6 5 4 3 2 1 0 (in LDO)
This bit is set whenever any of the
remaining 15 bits is set.

X 8000
(32768)

(not used)
(not used)
(not used)
Master axis beyond
start point

The master axis is beyond its starting
point for a ratio move.

E 8800
(34816)

Slave axis beyond
start point

The slave axis is beyond its starting
point for a ratio move.

E 8400
(33792)

Master distance not
valid

When the master distance is converted
to feedback units, it is greater than 16
bits.

E 8200
(33280)

Slave distance not
valid

When the slave distance is converted
to feedback units, it is greater than 16
bits.

E 8100
(33024)
2-240 Chapter 2 Function/Function Block Description

P_RESET
P_RESET
Programming Reset Motion/ERRORS

P_RESET(AXIS := <<USINT>>, OK => <<BOOL>>)

Use the P_RESET function to reset any programming errors that occur.

⁄ƒƒƒƒƒƒƒƒƒø
≥ P_RESET ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error
Chapter 2 Function/Function Block Description 2-241

PWDTY
PWDTY
Accepts input value and converts to duty cycle percentage PID/PWDTY

PWDTY(IN := <<DINT>>, PER := <<TIME>>, MAXR := <<DINT>>, MINR :=
<<DINT>>, MAXT := <<TIME>>, MINT := <<TIME>>, OK => <<BOOL>>,
ON => <<BOOL>>, DUTY => <<TIME>>)

The Pulse Width Duty Cycle function block accepts an input value between the
minimum and maximum input range and converts this to a duty cycle percentage.
The output is then cycled on and off over the input duty cycle period proportion-
ally to this duty cycle percentage. If it is desired to have the output ON time range
from 0 to the duty cycle period, the minimum should be set to zero, and the maxi-
mum to the duty cycle period.

If there is a programming error, the output will remain OFF.

If the calculated duty cycle based on the input and range values is less than mini-
mum ON time (MINT), the output will not come on. This guarantees that the out-
put will come on for very short periods of time as long as the minimum ON time is
greater than zero.

If the calculated duty cycle is between or equal to the range values, the output is
cycled by the duty cycle.

If the calculated duty cycle is greater than the maximum ON time (MAXT), the
output will remain on. This will ensure that the output cannot turn off for brief
periods of time unless the maximum ON time is set equal to the time period.

⁄ƒƒƒƒƒƒƒƒƒø
≥ PWDTY ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN ON√
≥ ≥
¥PER DUTY√
≥ ≥
¥MAXR ≥
≥ ≥
¥MINR ≥
≥ ≥
¥MAXT ≥
≥ ≥
¥MINT ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DINT) - duty cycle input

PER (TIME) - period of duty cycle

MAXR (DINT) - maximum input range

MINR (DINT) - minimum input range

MAXT (TIME) - maximum ON time

MINT (TIME) - minimum ON time

Outputs:OK (BOOL) - function block OK

ON (BOOL) - duty cycle ON

DUTY (TIME) - current duty cycle ON time
2-242 Chapter 2 Function/Function Block Description

Q_AVAIL?
Q_AVAIL?
Queue Available? Motion/QUE

Q_AVAIL?(AXIS := <<USINT>>, OK => <<BOOL>>, QAVL => <<BOOL>>)

The queue available function asks the question “Is a queue available for the speci-
fied axis?” If QAVL is set, then a queue is available. If not, no queue is available.

The Q_AVAIL? inquiry cannot be set until the servo loop is closed.

⁄ƒƒƒƒƒƒƒƒƒø
≥Q_AVAIL? ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS QAVL√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution
AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error
QAVL (BOOL) - queue available if set
Chapter 2 Function/Function Block Description 2-243

Q_NUMBER
Q_NUMBER
Queue Number Motion/QUE

Q_NUMBER(AXIS := <<USINT>>, OK => <<BOOL>>, QUE => <<USINT>>)

The Q_NUMBER function gives the number of the move that is in the active
queue. A queue number is assigned to each move by the software when the move
function OK output is set. Queue numbers are assigned to the moves sequentially
from 1 to 255. A “0” at the QUE output indicates that there is no move in the
queue.

⁄ƒƒƒƒƒƒƒƒƒø
≥Q_NUMBER ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS QUE√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo)

Outputs:OK (BOOL) - execution completed without error

QUE (USINT) - the number of the move in the active
queue
2-244 Chapter 2 Function/Function Block Description

RAMP
RAMP
Generate ramp outputs from step inputs PID/RAMP

RAMP(OUTL := <<DINT>>, IN := <<DINT>>, DELT := <<DINT>>, OK =>
<<BOOL>>, OUT =><<DINT>>)

The function RAMP generates a ramp output from step inputs. The output of the
function will “ramp” to the input of the function, at the rate defined by the DELT
(delta) input. This function should be called on a periodic basis. The input OUTL
must be set to the previous value of the output OUT. The variable to be ramped is
IN. The output will simply increase or decrease by the difference between IN and
OUT, or it will increase or decrease by the DELT, which ever is less.

⁄ƒƒƒƒƒƒƒƒƒø
≥ RAMP ≥
≥ ≥
¥EN OK√
≥ ≥
¥OUTL QUT√
≥ ≥
¥IN ≥
≥ ≥
¥DELT ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution
OUTL (DINT) - generator output last (previous value)
IN (DINT) - generator input
DELT (DINT) - generator delta

Outputs: OK (BOOL) - execution completed without error
OUT (DINT) - generator output (current value)
Chapter 2 Function/Function Block Description 2-245

RATIOCAM
RATIOCAM
Ratio Cam Motion/RATIOMOV

RATIOCAM(AXIS := <<USINT>>, MAST := <<USINT>>, CAM := <<MEMO-
RY AREA>>, SSTR := <<DINT>>, MSTR := <<DINT>>, OPTN :=
<<WORD>>, OK => <<BOOL>>, QUE =><<USINT>>)

With RATIO_GR and RATIOSYN functions, the slave distance/master distance
ratio is constant.

With the RATIOCAM function, the slave distance/master distance ratio can vary in
steps or segments over the course of the profile as shown below in Figure 2-
11. There are 10 segments in the example profile.

NOTE: Each square equals 10 feedback units.

In each individual segment, you define the slave distance/master distance ratio by
determining how far the slave axis will move while the master axis covers its seg-
ment distance.

The master moves five units in each segment (NOTE: It is not required that the
master axis move the same distance each segment).

⁄ƒƒƒƒƒƒƒƒƒø
≥ RATIOCAM≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS QUE√
≥ ≥
¥MAST ≥
≥ ≥
¥CAM ≥
≥ ≥
¥SSTR ≥
≥ ≥
¥MSTR ≥
≥ ≥
¥OPTN ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)
AXIS (USINT) - identifies slave axis (servo)
MAST (USINT) - identifies master axis (servo, digi-
tizing, or time)
CAM (ARRAY OF STRUCTURES) - points to the
first element in the array of structures defining the pro-
file to run NOTE: Each segment of the profile is
entered in FUs. If you are entering equal master seg-
ments, then you enter a STRUCTURE WITH AN
ARRAY here.
SSTR (DINT) - Slave starting point in LU
If SSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.
MSTR (DINT) - Master starting point in LU
If MSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set
OPTN (WORD) - provides five options: repeat,
ignore master start, ignore slave start, equal master
segments, and use master command position

Outputs: OK (BOOL) - execution completed without error
QUE (USINT) - number of the cam profile move for
the queue.
2-246 Chapter 2 Function/Function Block Description

RATIOCAM
Figure 2-11. A ratiocam profile with 10 segments

An example of a profile where the master distance varies over the course of the
ratiocam profile is shown in Figure 2-12.

Figure 2-12. A ratiocam profile with 9 segments

An example of a profile where the slave axis is moving in a negative direction dur-
ing the last four segments of the ratiocam profile is shown in Figure 2-13.
Chapter 2 Function/Function Block Description 2-247

RATIOCAM
Figure 2-13. A ratiocam profile with 10 segments

The SSTR, MSTR, and OPTN inputs

When the SSTR input is used, it defines the slave axis position at the beginning of
the profile.

When the MSTR input is used, it defines the master axis position at the beginning
of the profile.

The OPTN input provides the following options.

If you want to follow the master’s command position instead of the master’s actual
position, set bit 4.

Velocity Compensation should be inhibited (WRITE_SV Variable 32 = 1) prior to
executing RATIOCAM with this bit set.

The Equal master segments option can be used if the master distance for each seg-
ment is the same. It provides a way of saving memory. Instead of entering an
array of structures to hold the profile data, you enter a structure with an array.
Information on equal master segments can be found at the end of this RATIOCAM
description.

If you want the profile to repeat continuously, set bit 0.

If you choose to ignore the master start (bit 1 set), any value you enter in MSTR
has no effect. The cam profile will begin executing as soon as the function is
called. During the first cycle, the slave axis may be located within the profile
depending on its current position and the value in SSTR.

Bit # Option Binary Value Hex Value
Entered

0 Repeat profile 0000000000000001 0001
1 Ignore master start 0000000000000010 0002
2 Ignore slave start 0000000000000100 0004
3 Equal master segments 0000000000001000 0008
4 Use master command position 0000000000010000 0010
2-248 Chapter 2 Function/Function Block Description

RATIOCAM
If you choose to ignore the slave start (bit 2 set), any value entered in SSTR has no
effect and the profile will execute at the beginning when the master axis reaches its
starting point (MSTR).

If you choose to ignore both MSTR and SSTR (bits 1 and 2 set), the profile will
execute immediately at the beginning from wherever the master and slave axes are
currently located.

Example 1 - Ignore SSTR and MSTR

Entering a 7 in the OPTN input sets all three bits. The value at the SSTR and
MSTR inputs (xxx) will be ignored. The profile will repeat, the master start will
be ignored, and the slave start will be ignored.

When the RATIOCAM function is called, the axes lock on immediately and the
slave begins moving. The current positions of the axes become the positions at the
beginning of the profile.

The four examples that follow illustrate
what affect ignoring or using the SSTR and
MSTR inputs via OPTN have on what the
beginning position for each axis will be.

Three segments of a ratiocam profile
(shown on the right) will be used in each
example. The master axis moves 100 units
in each segment. The slave axis moves 50,
75, and 100 units in the first, second, and
third segments respectively.

RATIOCAM Current Axes Positions Portion of Cam Profile

Slave Axis @ 100

Master Axis @ 400
Chapter 2 Function/Function Block Description 2-249

RATIOCAM
Example 2 - Ignore SSTR

The value in the SSTR input is ignored since a 5 has been entered in the OPTN
input setting bits 0 and 2. The profile will repeat, the master start will not be
ignored, and the slave start will be ignored.

When the RATIOCAM function is called, the master must move from its current
position to 100 (the MSTR value) before lock on occurs and the slave begins mov-
ing. The positions at the beginning of the profile are the MSTR value for the mas-
ter axis and the current position (100) for the slave axis.

Example 3 - Ignore MSTR

The value in the MSTR input is ignored since a 3 is entered in the OPTN input set-
ting bits 0 and 1. The profile will repeat, the master start will be ignored, and the
slave start will not be ignored.

When the RATIOCAM function is called, the slave is at 150 within the profile.
Lock on occurs immediately and the slave begins to move. The beginning posi-
tions of the axes are based on the value in SSTR (50) for the slave axis and the cur-
rent master position minus how far the master has moved in the profile (200 - 167)
or 33 for the master axis.

RATIOCAM Current Axes
Positions

Portion of Cam Profile

Slave Axis @ 100

Master Axis @ 50
2-250 Chapter 2 Function/Function Block Description

RATIOCAM

Example 4 - Use both SSTR and MSTR

The SSTR and the MSTR inputs are not ignored. A 1 is entered in the OPTN input
setting bit 0. The profile will repeat, the master start will not be ignored, and the
slave start will not be ignored.

When the RATIOCAM function is called, the slave is at 250 within the profile.
The master axis is at 100 and must move to 425 within the profile to lock on. The
beginning positions of the axes at the start of the profile are based on the value in
the SSTR (50) and the MSTR (150) inputs .

*Typically, the position of the slave axis in examples 3 and 4 must be within the
profile (> 50), unless rollover on position is on.

RATIOCAM Current Axes Positions Portion of Cam Profile

Slave Axis @ 150*

Master Axis @ 200

RATIOCAM Current Axes Positions Portion of Cam Profile

Slave Axis @ 250*

Master Axis @ 100
Chapter 2 Function/Function Block Description 2-251

RATIOCAM
Other characteristics of the ratiocam move include:

• Affects the slave axis only.

• The slave axis may be a master axis to another axis.

• More than one slave axis may be connected to the master axis.

• The master axis may be a servo, a time, or a digitizing axis.

• If the master axis reverses direction, the slave axis will follow. A positional
relationship has been established for each segment and the software will
maintain that relationship. If, for example, the master axis would change
direction during the profile, the slave axis would move backwards through
the profile so that when the master axis reaches a certain position the slave
axis will be at its corresponding position as defined in the array of struc-
tures.

• If it is not desirable to have the slave axis follow the master axis when the
master reverses direction, variable 21 (reversal not allowed) of the
WRITE_SV function can be set. (The state of variable 21 can also be read
with the READ_SV function.) The WRITE_SV function must always be
called before the RATIOCAM function.

• Inverted ratios are possible by entering negative slave segment elements in
the array of structures defining your profile. (NOTE: The sign on the mas-
ter elements entered in the array of structures must all be the same.)

• Starting points for the master axis and slave axis may be entered.

• Both the master and slave axes must be at the same interrupt rate.

• Registration can be used with the RATIOCAM function.

• The ratiocam function move will repeat continuously if the repeat option is
set until either the move is aborted or a REP_END function is called. With
the abort move function, the move will stop wherever it is in the profile.
With the repeat end function, the move will stop at the end of the current
profile.
A new ratio cam profile can then be called.
2-252 Chapter 2 Function/Function Block Description

RATIOCAM
• Some conditions for which the OK will not be set and the queue will be “0”
include:

1. Master axis not available (P-error) [Master axis not initialized, master
and slave interrupts different, the same axis was entered as master and
slave, or OPTN bit 4 is set and the master axis is not a servo axis.]

2. Profile error (P-error) [A number less than two entered as the size of
the profile, a master segment is zero, or not all master segments have
the same sign]

3. Slave start value is out of range, current slave position is not within
profile, or not ignoring slave start with both queues not available
(NOTE: Rollover on position will not be used by the servo software to
correct this condition.)]

4. Master start value is out of range.

5. Slave axis (AXIS) not initialized during setup

• A P-error will occur if the master axis is beyond it’s start point.

• A P-error will occur if the slave axis is beyond it’s start point.

• An E-error will occur if there is a slave delta overflow during runtime. The
hex code 0004 indicates this error on the ERRS output of the E_ERRORS
function.
To ensure that this E-error will not occur, calculate the worst case for your
application as explained below. With feedback units equal to ladder units,
master distance/interrupt (velocity) X largest slave array value<32 bits

Creating a profile with an array of structures

Each segment or step in the cam profile is defined by you in PiCPro by creating an
array of structures in the software declarations table. (More information on arrays
and structures can be found in the PiCPro Online Help.)

There are two members of the structure--the master distance and the slave dis-
tance. These distances are entered in feedback units. Each element in the array
represents the master distance and the slave distance for one segment of the cam
profile.

In order to create the array of structures, you need to know:

1. The master distance and the slave distance for each segment. The table on the
left that follows contains this information for the example in Figure 2-11.

NOTE

An array of structures is always used to create the ratio cam profile if
the master distance varies with each segment. It can also be used if
the master distance for each segment is equal as shown in the example
that follows. However, if you want to save memory, you can set op-
tion bit 3 and enter a structure with an array.
Chapter 2 Function/Function Block Description 2-253

RATIOCAM
2. The number of segments the profile contains.

Note: Add “1” to this number to calculate the length of the array you will
declare. For the example which contains 10 segments, the length of the
array is “11” as seen in Figure 2-11. The servo software uses the first ele-
ment in the array to determine the size of the profile.

The table below on the right contains the array information for the example in Fig-
ure 2-11.

*See note that follows.

By entering the name of the array and the first element at the CAM input, the
desired profile can be accessed by the RATIOCAM function.

DISTANCE DATA FOR EXAMPLE
PROFILE

ARRAY DATA FOR EXAMPLE
PROFILE

Segment # Master Slave Element .Master (FU) .Slave (FU)
0 +11* +0*

1 50 100 1 +50 +100
2 50 200 2 +50 +200
3 50 350 3 +50 +350
4 50 450 4 +50 +450
5 50 550 5 +50 +550
6 50 450 6 +50 +450
7 50 350 7 +50 +350
8 50 250 8 +50 +250
9 50 150 9 +50 +150
10 50 50 10 +50 +50

NOTE

Remember that the first element (0) in the array determines the size
of the cam profile.
The .MASTER line of the first element must contain the number of
segments in the profile plus one.
It is not necessary to enter any value in the SLAVE line. It will de-
fault to zero.
2-254 Chapter 2 Function/Function Block Description

RATIOCAM
The example below shows how the RATIOCAM function can be entered in your
LDO.

CAUTION

Never attempt to change the values in the array elements while the
move is being executed.

P EN

STARTCAM

OK

1

2

RC1 (0)

0

0

7

AXIS QUE

MAST

CAM

SSTR

MSTR

OPTN

QUE 1

P EN

STOP-CAM

RATIOCAM

REP_END

OK

1 AXIS
Chapter 2 Function/Function Block Description 2-255

RATIOCAM
Equal Master Segments

If the master distance for all the segments in the RATIOCAM profile is the same,
you can define the profile in the software declarations table with a structure with
an array as shown below in order to save memory.

In this structure with an array,

.SIZE is the number of slave segments in the profile plus 2

.MASTER is the master distance for all segments

.SLAVE is an array holding the slave distances for each segment (In this
example, there are 10 slave segments.)

Bit 3 of the option bits must be set when you use this structure with an array.

The array of structures used in the previous examples (shown below) must be used
if the master distance for all the segments varies in the RATIOCAM profile. It can
also be used when the master distance for each segment is equal but it uses more
memory than using the structure with an array above.

Structure with an array (if master distance for all segments is equal)
RC1
.SIZE
.MASTER
.SLAVE

STRUCT
INT
INT
INT (0..9)

Array of Structures (if master distance for all segments varies)
RC1
.MASTER
.SLAVE

STRUCT (0..10)
INT
INT
2-256 Chapter 2 Function/Function Block Description

RATIOSCL
RATIOSCL
Ratio Scale Motion/MOVSUP

RATIOSCL(AXIS := <<USINT>>, NUM := <<INT>>, DEN := <<INT>>, OPTN
:= <<WORD>>, OK => <<BOOL>>)

The RATIOSCL function allows you to scale the slave and/or master axis in
RATIOCAM and RATIOSLP, and the master axis in RATIO_RL moves. The pro-
files generated by these moves will be scaled by the amount defined in the numer-
ator (NUM) and denominator (DEN) inputs to the RATIOSCL function. To turn
off scaling, call this function again with equal numbers entered in NUM and in
DEN.

Ratio move functions called before calling the RATIOSCL function are not
affected by the scaling. Only the ratio move functions called after the RATIOSCL
function will be scaled by the value in NUM and DEN. Scaling will be in effect on
any RATIOCAM, RATIOSLP, and RATIORL move in your program.

Scaling resolution is maintained throughout the profile. An example of the effect
this has is if you have an original profile with equal positive and negative dis-
tances, then the scaled profile will also have equal positive and negative distances.

⁄ƒƒƒƒƒƒƒƒƒø
≥RATIOSCL ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥NUM ≥
≥ ≥
¥DEN ≥
≥ ≥
¥OPTN ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies the slave axis associated
with the scaling (servo)

NUM (INT) - numerator of the scale factor

DEN (INT) - denominator of the scale factor
NOTE: Range for NUM and DEN inputs is [1,32767].

OPTN (WORD) - set the LSB to zero for slave scaling;
set the LSB to one for master scaling

NOTE: Master and slave scaling are independent. To
scale both, the function must be called twice.

Outputs: OK (BOOL) - execution complete without errors .
Chapter 2 Function/Function Block Description 2-257

RATIOSCL
To change the scaling of an already repeating ratio move, follow these steps in
order.

1. Call the RATIOSCL function with a new ratio. This will change the scaling for
subsequent moves.

2. Call the ratio move again. This will queue the move with the new scaling.

3. Call the REP_END function. This will end the first move and blend into the
second profile with the new scaling.

An overflow in the calculations will cause an E-stop error to be set. Overflows can
be caused by a profile segment and/or scaling that is extremely large.

The scaling does not affect the default gear ratio that can be used with the RATIO-
SLP and RATIO_RL functions. Use the NEWRATIO function to change the
default gear ratio value.

It is important to remember that the scaling affects the master/slave relationship,
not the individual axes. Multiple slave axes following the same master can each
have different master scaling.

With slave scaling, the slave distance is multiplied by the scaling factor. With
master scaling, the master distance as viewed by the slave is multiplied by the scal-
ing factor as it occurs. This is illustrated by the examples for a RATIOCAM and a
RATIOSLP move that follow.
2-258 Chapter 2 Function/Function Block Description

RATIOSCL
Ratio Cam Profile

The RATIOCAM move with no scaling is shown on the left. When you enter a 2/
1 slave scaling factor as shown in the center, each original slave distance is multi-
plied by the scaling factor of 2/1. When you use a 2/1 master scaling factor as
shown on the right, the slave axis views the actual master travel as multiplied by
the scaling factor of 2/1 as it occurs; i.e., a master travel of 50 counts is actually the
100 counts of the profile.

RatioCam
No scaling

RatioCam
Effective profile with slave

scaling (2/1)

RatioCam
Effective profile with
master scaling (2/1)
Chapter 2 Function/Function Block Description 2-259

RATIOSCL
Ratio Slope Profile

The RATIOSLP move with no scaling is shown on the left. When you enter a 2/1
slave scaling factor as shown in the center, each original slave distance is multi-
plied by the scaling factor of 2/1. When you use a 2/1 master scaling factor as
shown on the right, the slave axis views the actual master travel as multiplied by
the 2/1 scaling factor as it occurs; i.e., a master travel of 50 counts is actually the
100 counts of the profile.

Ratio Slope
No scaling

Ratio Slope
Effective profile with slave

scaling (2/1)

Ratio Slope
Effective profile with
master scaling (2/1)
2-260 Chapter 2 Function/Function Block Description

RATIOSLP
RATIOSLP
Ratio Slope Motion/RATIOMOV

RATIOSLP(AXIS := <<USINT>>, MAST := <<USINT>>, SLPE := <<MEM-
ORY AREA>>, MSTR := <<DINT>>, OPTN := <<WORD>>, OK =>
<<BOOL>>, QUE => <<USINT>>)

The RATIOSLP function is similar to the RATIOPRO and RATIOCAM functions.
It allows a ratio to be established between a slave axis and a master axis which var-
ies over the course of the profile. The table below compares the three types of
moves.

⁄ƒƒƒƒƒƒƒƒƒø
≥ RATIOSLP≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS QUE√
≥ ≥
¥MAST ≥
≥ ≥
¥SLPE ≥
≥ ≥
¥MSTR ≥
≥ ≥
¥OPTN ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies the slave axis (servo)

MAST (USINT) - identifies the master axis (servo, digi-
tizing, or time)

SLPE (ARRAY OF STRUCTURES) - data to define the
profile

MSTR (DINT) - Master starting point entered in LU
If MSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set

OPTN (WORD) - provides three options: repeat, ignore
master start, and use master command position

Outputs:OK (BOOL) - execution complete without errors

QUE (USINT) - number of the RATIOSLP move for the
queue
Chapter 2 Function/Function Block Description 2-261

RATIOSLP
With the RATIOSLP function, the slave distance/master distance ratio can vary
linearly in segments over the course of the profile.

The data required for creating a slope profile is entered in an array of structures at
the SLPE input of the RATIOSLP function. More information on this is covered in
the sections on the RATIOSLP structure members and Creating an array of struc-
tures.

The master starting point is entered in the MSTR input. The profile will begin exe-
cuting at the beginning with the master and slave axes locked on when the master
reaches its starting position.

Note: If the ratio slope move is queued with no master starting position and the
master axis is moving in the opposite direction of that indicated in the pro-
file segments, the direction of the master will have to be reversed and the
accumulated distance covered before the move will execute.

Comparison of RATIOSLP, RATIOCAM and RATIOPRO
RATIOSLP RATIOCAM RATIOPRO

Setup Array of structures in
ladder

Structure members
Master distance
Slave distance
Slope
Starting ratio
Flags

Array of structures in lad-
der

Structure members
Master distance
Slave distance

Axis profile setup with
PiCPFL editing program

Limit of M/S
distances/
segment

16-bit (FU) 16-bit (FU) 32-bit (FU)

Profile
 ratios

Ratios can change lin-
early within each seg-
ment.

Ending ratio of previ-
ous segment does not
have to equal starting
ratio of next segment.

Ratio is constant within
each segment.

Ratios can change linearly
within each segment.

Ending ratio of previous
segment must equal start-
ing ratio of next segment.

Default
 ratio

Has a default ratio of 1:1
(Can change default
with NEWRATIO func-
tion)

No default ratio No default ratio
2-262 Chapter 2 Function/Function Block Description

RATIOSLP
The OPTN input provides the following options

If you want the profile to repeat continuously, bit 0 is set. If bit 0 is not set, the
profile will execute once and then stop.

If you choose to ignore the master start (bit 1 set), any value you have entered in
MSTR has no effect. The slope profile will begin executing as soon as the func-
tion is called.

If you want to follow the master’s command position instead of the master’s actual
position, set bit 4.

Velocity Compensation should be inhibited (WRITE_SV Variable 32 = 1) prior to
executing RATIOSLP with this bit set.

Other characteristics of the ratio slope move include:

• Affects the slave axis only.

• The slave axis may be a master axis to another axis.

• More than one slave axis may be connected to the master axis.

• The master axis may be a servo, a time, or a digitizing axis.

• If the master axis reverses direction, the slave axis will follow. A positional
relationship has been established for each segment and the software will
maintain that relationship. If, for example, the master axis would change
direction during the profile, the slave axis would move backwards through
the profile so that when the master axis reaches a certain position the slave
axis will be at its corresponding position as defined in the array of struc-
tures.

• If it is not desirable to have the slave axis follow the master axis when the
master reverses direction, variable 21 (reversal not allowed) of the
WRITE_SV function can be set. (The state of variable 21 can also be read
with the READ_SV function.) The WRITE_SV function must always be
called before the RATIOSLP function.

• Inverted ratios are possible by entering negative slave segment elements in
the array of structures defining your profile. (NOTE: The sign on the mas-
ter elements entered in the array of structures must all be the same.)

• An individual segment of the profile may pass through zero. Segment 3 in
the profile on the left passes through zero to cover the slave distance
(shaded areas). The profile on the right uses two segments to accomplish
the same thing.

Bit # Option Binary Value
Hex Value
Entered

0 Repeat profile 0000000000000001 0001
1 Ignore master start 0000000000000010 0002
4 Use master command position 0000000000010000 0010
Chapter 2 Function/Function Block Description 2-263

RATIOSLP

• The starting point for the master axis may be entered. If the move is queued
with no master start and the master axis is moving in the opposite direction
as defined by the profile segments, the distance will be accumulated. This
distance must be recovered before motion will start.

• Both the master and slave axes must be at the same interrupt rate.

• Registration can be used with the RATIOSLP function.

• The profile can be changed on the fly by queuing up a new ratio slope move
and aborting the current one. Any remainder from the previous move is
cleared.

• The default ratio of the function is executed whenever an empty segment is
encountered and/or the flag is set. The default ratio is 1:1. This can be
changed with the NEWRATIO function.
NOTE: It is possible to set up a default ratio with no motion on the slave
axis by entering a 0 in the SDST input of the NEWRATIO function.

• The ratioSLP function move will repeat continuously if bit 0 of the OPTN
input is set until either the move is aborted or a REP_END function is
called. With the abort move function, the move will stop wherever it is in
the profile. With the repeat end function, the move will stop at the end of
the current profile.

Segment passing through zero Two separate segments
2-264 Chapter 2 Function/Function Block Description

RATIOSLP
• Some conditions for which the OK will not be set and the queue will be “0”
include:

1. Master axis not available (P-error) [Master axis not initialized, master
and slave interrupts different, the same axis was entered as master and
slave, or OPTN bit 4 is set and the master axis is not a servo axis.]

2. Profile error (P-error) [A number less than two entered as the size of
the profile, a master segment is zero, or not all master segments have
the same sign]

3. Master start value is out of range.

4. Slave axis (AXIS) not initialized during setup

• A P-error will occur if the master axis is beyond it’s start point.

• An E-error will occur if there are calculation errors during runtime. The hex
code 0004 indicates this error on the ERRS output of the E_ERRORS func-
tion.
Chapter 2 Function/Function Block Description 2-265

RATIOSLP
RATIOSLP structure members

The five members of the structure required for the array of structures at the SLPE
input are described below.

MASTER
(master dis-
tance)

INT
Range -32768 to

32767 FU

The MASTER member specifies the distance (in
feedback units) the master travels during a seg-
ment. The values of the master distance entered
in feedback units must all be the same sign for
each segment.

SLAVE
(slave distance)

INT
Range -32786 to

32787 FU

The SLAVE member specifies the distance (in
feedback units) the slave travels while the mas-
ter travels its distance during a segment. The
values of the slave distance entered in feedback
units can be either sign.

SLOPE
(slope)

DINT
Range -2147483648

to 2147483647
scaled by 224

(Range -127 to 127
unscaled)

The SLOPE member specifies the slope of the
segment.

SRATIO
(starting ratio)

DINT
Range -2147483648

to 2147483647
scaled by 224

(Range -127 to 127
unscaled)

The SRATIO member specifies the starting ratio
of the segment.
2-266 Chapter 2 Function/Function Block Description

RATIOSLP
Bit 0:
0 = execute valid data for segment;
1 = execute default ratio

Bit 1:
0 = copy a 0 to bit 0 after segment
execution;
1 = copy a 1 to bit 0 after segment
execution

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 6 4 3 2 1 0

DWORDFLAGS
(flags)

If bit is set to 0, the segments of the slope profile will execute in sequence as
entered in the array of structures.
If bit 0 is set to 1, the segment is considered empty. The default ratio will be in
effect until bit 0 is set to 0 and a valid slope profile data is entered in the array
of structures.
NOTE: The default ratio of the RATIOSLP function is 1:1. The NEWRATIO
function allows you to change the default to another value.
As each segment completes its execution, whatever value is in bit 1 is copied
into bit 0.
All remaining bits (2-15) should be set to zero.

57

 (32 bits; 0-31)
Chapter 2 Function/Function Block Description 2-267

RATIOSLP
Working with the FLAGS member

The FLAGS member of the structure provides the capability of using the default
ratio with the RATIOSLP function. Once the default ratio is running it is possible
to use the array of structures like a rotary queue with data moving in from the lad-
der and out via servos in sequence.

When each segment of the profile completes its execution, whatever is in bit 1 is
copied into bit 0.

NOTE: Whenever the default ratio is used, set the reversal not allowed flag using
variable 21 of the WRITE_SV function before calling the RATIOSLP function.

Creating a profile with an array of structures

Each segment in the slope profile is defined by you in PiCPro by creating an array
of structures in the software declarations table. (More information on arrays and
structures can be found in Chapters 2 and 3. See also the RATIOCAM function.)

There are five members of the structure--the master distance, the slave distance,
the slope, the starting ratio, and flags. Each element in the array represents these
five items for one segment of the slope profile.

In order to enter the data for the array of structures, you need to know:

1. The master distance, the slave distance, the slope, the starting ratio, and the
ending ratio for each segment.

2. Whether or not you want to turn the array of structures into a rotary queue
and make use of default ratio capability. This is done with the FLAGS
member of the structure.

3. The number of segments the profile contains. NOTE: Add “1” to this num-
ber to calculate the length of the array to determine the size of the profile.

Bit 1 Bit 0 Example
0 0 With both bits set to zero, the RATIOSLP function will

execute like RATIOCAM. If repeat is set on the OPTN
input, the profile will repeat continuously.

1 1 With both bits set to one, the RATIOSLP function will
execute at the default ratio until the ladder places data in
the array of structures and clears bit 0.

Default
Ratio
2-268 Chapter 2 Function/Function Block Description

RATIOSLP
Example

A simplified example of a ratio slope profile is shown in Figure 2-14. It has six
segments.

Figure 2-14. Slope profile

For each individual segment, you determine how far the slave axis will move while
the master axis covers its segment distance. This establishes the slave distance/
master distance ratio for the segment. You also need to know the starting ratio of
each segment. With this information, an ending ratio can be calculated. Once this
is known, the slope for the segment can be calculated.
Chapter 2 Function/Function Block Description 2-269

RATIOSLP
The following steps illustrate how to determine this data for one segment from the
profile as shown in Figure 2-15.

Figure 2-15. Segment 3 of the ratio slope profile

Step 1. Master Distance - The master distance for segment 3 is 500 units.

Step 2. Slave Distance - The slave distance is determined by calculating the area
under the curve. This is 4000 units.

Step 3. Starting Ratio - The starting ratio from the vertical axis is 6.
The starting ratio must be scaled by 2

24 or 16777216 before entering the
array element.

Step 4. Ending Ratio - The ending ratio is calculated from the following formula:

Note: The ending ratio is needed in order to calculate the slope. It is not entered
into the structure.

where:
ER = ending ratio
S = slave distance
M = master distance
SR = starting ratio

	 ��
× ���		���	�

�
�

�
------ �

�
���×
���

--------------------- 	�
 ������
2-270 Chapter 2 Function/Function Block Description

RATIOSLP
Step 5. Slope - The slope is calculated from the following formula.

Slope = .004

The slope must be scaled by 2
24 or 16777216 before entering in the array element.

*The ending ratio is needed in order to calculate the slope. It is not entered into the
structure.

DATA REQUIRED FOR RATIO SLOPE PROFILE

Segment # 1 2 3 4 5 6

Master 500 1000 500 500 500 500

Slave 1500 6000 4000 3000 2500 2500

Slope .012 0 .008 -.008 .008 -.008

Starting
Ratio

0 6 6 8 3 7

(Ending
Ratio*)

(6) (6) (10) (4) (7) (3)

 ����

� ��

�
--------------------�

 ����
�� ��

���
---------------�

����
 ��
× 	�����
Chapter 2 Function/Function Block Description 2-271

RATIOSLP
By entering the name of the array and the first element at the SLPE input, the
desired profile can be accessed by the RATIOSLP function.

DATA TO ENTER INTO ARRAY OF STRUCTURE

Element # 0 1 2 3 4 5 6

Master 7 500 1000 500 500 500 500

Slave 0 1500 6000 4000 3000 2500 2500

Slope
(Scaled)

0 67108 0 134218 -134218 134218 -134218

Starting
Ratio

(Scaled)

0 0 100663296 100663296 134217728 50331648 117440512

Flag 0 0 0 0 0 0 0

IMPORTANT

Remember that the first element in the array determines the size of the
profile.
The .MASTER line of the first element must contain the number of
segments in the profile plus one.
It is not necessary to enter any value in the remaining lines. They will
default to zero.

CAUTION

Never attempt to change the values in the array elements while the
move is being executed unless the rotary queue is in effect.
2-272 Chapter 2 Function/Function Block Description

RATIOSYN
RATIOSYN
Ratio Synchronization Motion/RATIOMOV

RATIOSYN(AXIS := <<USINT>>, MAST := <<USINT>>, SDST := <<DINT>>,
MDST := <<DINT>>, SSTR := <<DINT>>, OK => <<BOOL>>, QUE =>
<<USINT>>)

The ratio syn move function, like the ratio gear move, establishes a constant ratio
between a slave axis and a master axis.

In addition, a positional relationship between the master and slave is defined. The
master starting point (MSTR) and the slave starting point (SSTR) are entered. The
sign on the number entered in MDST dictates the direction the axis must approach
its starting point.

If the slave axis should move 2 units every time the master axis moves 3 units,
enter “2” in SDST and “3” in MDST.

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ RATIOSYN≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥AXIS QUE√
 ≥ ≥
 ¥MAST ≥
 ≥ ≥
 ¥SDST ≥
 ≥ ≥
 ¥MDST ≥
 ≥ ≥
 ¥SSTR ≥
 ≥ ≥
 ¥MSTR ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies the slave axis which will
move at a constant ratio depending on the master axis
movement (servo)

MAST (USINT) - identifies the master axis (servo, dig-
itizing, or time)

SDST (DINT) - (slave distance) indicates the distance
the slave should move for each MDST distance
(entered in LU*)

MDST (DINT) - (master distance) indicates the dis-
tance the master axis will move during each SDST
(entered in LU*)

*NOTE: The range of values entered in SDST and
MDST is -536,870,912 to 536,870,911 FU excluding 0.
If you are using ladder units be sure they do not exceed
this range when converted to feedback units.

SSTR (DINT) - Slave starting point entered in LU
If SSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

MSTR (DINT) - Master starting point entered in LU
If MSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - number of ratio syn move for queue
Chapter 2 Function/Function Block Description 2-273

RATIOSYN
If there is a remainder as a result of the software division, the soft-

ware includes it in its calculations preventing any drifting from the desired ratio.

The ratiosyn move is similar to the ratio
gear move in that the gears will move at a
constant ratio. In addition, a positional
relationship between the master and slave
axes is established.

The profile of the move would look like
that shown to the right of example C.
Note that the A, B, and C points corre-
spond to the gear positioning in diagrams
A, B, and C on the left.

When the function is executed (A), the
master is in motion. From A to B in the
profile, the positional relationship is
established.

At B, the axes move together and are locked
on. The slave axis began to move at a point
that ensured that it will reach SSTR when the
master axis reaches MSTR.

In the profile, the shaded area represents the
distance the slave moved in anticipation of
arriving at SSTR when the master reached
MSTR. It represents the difference between
SSTR and the actual position of the slave. The
slave starts out at the constant ratio.

When the axes arrive at C, their positions are
aligned as shown in C below left. This posi-
tional relationship will be maintained through-
out the move.

��������������

���������������

Master Slave

A. Mechanical Representation

B.

Master Slave
2-274 Chapter 2 Function/Function Block Description

RATIOSYN
Ratio Syn Profile

C.

Master Slave
Chapter 2 Function/Function Block Description 2-275

RATIOSYN
Some characteristics of the ratio syn move include:

• Affects the slave axis only.

• The slave axis may be a master axis to another axis.

• More than one slave axis may be connected to the master axis.

• The master axis may be a servo or a digitizing axis.

• If the master axis reverses direction, the slave will follow.

• Inverted ratios are possible by making either SDST or MDST negative.
(Making both signs negative has the same affect as making both signs posi-
tive.)

• Starting points for the master axis and slave axis are entered. (See the
explanation that follows for conditions necessary to ensure that a ratio syn
move will begin.)

• Both the master and slave axes must be at the same interrupt rate.

• The ratio can be changed on the fly by using the NEWRATIO function

• If WRITE_SV Variable 59 = 0 (default), RATIOSYN will use the master’s
actual position. If Variable 59 = 1, RATIOSYN will use the master’s com-
mand position. Also, if Variable 59 = 1, the master axis must be a servo axis.

Master and slave axes starting points

For a RATIOSYN move to occur, the slave axis must start at a point so that when
the master axis arrives at the value entered in MSTR, the slave axis will be at the
value entered at SSTR. The following guidelines ensure that this will happen.

• Both axes must be below their respective starting points.

• The master axis must be moving in the correct direction to reach its starting
points. Direction is defined by the sign of the number entered in MDST.

• The master axis must be a greater distance from its MSTR position than the
slave axis is from its SSTR position.

When you enter a value in SSTR, the software uses that information plus what it
knows about the slave’s actual position to calculate the ratio syn starting position
for the master. Several examples of how the master start is calculated follow. The
first three follow the guidelines listed above.

Examples 4 and 5 show the effect of rollover on position in allowing the guidelines
to be “stretched.”
2-276 Chapter 2 Function/Function Block Description

RATIOSYN
Example 1 - Slave axis at SSTR

Figure 2-16. Slave axis at SSTR

In this example: The slave/master ratio is 1:1. A slave starting point
(SSTR) of 100 and a master starting point (MSTR) of
200 has been entered. The slave axis is at SSTR. In
this case, the calculated master start will equal the
value at MSTR.

ms (calculated master start) = MSTR

When the master axis reaches 200, the slave axis
begins to move. The axes are locked and synchro-
nized.

SDST = 1
MDST = 1
SSTR = 100
MSTR = 200

SC (slave current position) = 100
ROP (rollover on position) = Off

This symbol represents
lock on for the axes.
Chapter 2 Function/Function Block Description 2-277

RATIOSYN
Example 2 - Slave axis below SSTR

Figure 2-17. Slave axis below SSTR

In this example: The slave/master ratio is 1:1, the slave start is 100
and a master start is 200. The slave’s current position
is 25. The calculation is:

ms = MSTR - (SSTR - SC)

ms = 200 - (100 - 25)

ms = 125

When the master axis reaches 125, the slave axis
will begin to move toward 100 so that when the mas-
ter reaches 200 the slave will be at 100.

SDST = 1
MDST = 1
SSTR = 100
MSTR = 200

SC (slave current position) = 25
ROP (rollover on position) = Off

This symbol represents
lock on for the axes.
2-278 Chapter 2 Function/Function Block Description

RATIOSYN
Example 3 - Slave/master ratio in not 1:1

In this example: Rotary axes will be used to show a ratio of 2:1. The
slave start is 100 and the master start is 200. The
slave’s current position is 25. The calculation is:

When the master axis reaches 162.5, the slave axis
will begin to move to 100 so that when the master
reaches 200 the slave will be at 100.

SDST = 2
MDST = 1
SSTR = 100
MSTR = 200

SC (slave current position) = 25
ROP (rollover on position) = Off

��
 �� �() �� �×

 � �
---�

��
��� ���() �×

�
-----------------------------------�

�� �����

�� � �� ����

�� ��� ������

�� �	����
Chapter 2 Function/Function Block Description 2-279

RATIOSYN
Figure 2-18. S/M ratio not 1:1

In any of these examples, it would be impossible to perform a ratio syn move if the
slave axis was past SSTR or the master axis was past the calculated master start
position.

However, if rollover on position is applied to the master and/or slave axis, it may
still be possible to lock on and synchronize.

This symbol represents
lock on for the axes.
2-280 Chapter 2 Function/Function Block Description

RATIOSYN
Example 4 - Rollover on position on the slave axis; the slave is past the SSTR

Figure 2-19. ROP on slave; slave past SSTR

In this example: The current slave position is past its SSTR value.

Without using rollover on position, the ratio syn
move could not be started.

With rollover on position set at 100, the calculated
master start is as follows:

ms = MSTR - (SSTR - SC + ROP)

ms = 200 - (50 - 75 + 100)

ms = 125

SDST = 1
MDST = 1
SSTR = 50
MSTR = 200

SC (slave current position) = 75
ROP (rollover on position)
(slave)

= 100
Chapter 2 Function/Function Block Description 2-281

RATIOSYN
Example 5 - Rollover on position on the master axis; master is past the MSTR

Figure 2-20. ROP on master; master past MSTR

In this example:

SDST = 1
MDST = 1
SSTR = 100
MSTR = 75

SC (slave current position) = 50
MC (master current position) = 175
ROP (rollover on position) = 200
(master)

The current master position is past its MSTR
value. Without using rollover on position, the
ratio syn move could not be started.

With rollover on position set at 200, the calculated
master start is as follows:

ms = (MSTR - MC + ROP) - (SSTR - SC)
ms = (100 - (100 - 50))

ms =50

Since the master is already past 50, A ROP is
added to ms to ensure start.

NOTE

Master and slave offsets will also have an effect on the starting of a
ratio syn move. They would be added into (or subtracted out of) the
calculations with MSTR and SSTR respectively.
2-282 Chapter 2 Function/Function Block Description

RATIO_GR
RATIO_GR
Ratio Gear Motion/RATIOMOV

GR(AXIS := <<USINT>>, MAST := <<USINT>>, SDST := <<DINT>>, MDST
:= <<DINT>>, OK => <<BOOL>>, QUE => <<USINT>>)

The ratio gear move function establishes a constant ratio between a slave axis
(AXIS) and a master axis (MAST).

NOTE: The master axis cannot be entered in AXIS. This will generate a P-error if
attempted.

If the slave axis should move 2 units every time the master axis moves 3 units,
enter “2” in SDST and “3” in MDST.

If there is a remainder as a result of the software division of slave distance divided
by master distance, the software includes it in its calculations preventing any drift-
ing from the desired ratio.

See also RATIOSYN.

⁄ƒƒƒƒƒƒƒƒø
≥RATIO_GR≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS QUE√
≥ ≥
¥MAST ≥
≥ ≥
¥SDST ≥
≥ ≥
¥MDST ≥
¿ƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies the slave axis which will
move at a constant ratio depending on the master axis
movement. (servo)

MAST (USINT) - identifies the master axis (servo, digi-
tizing, or time)

SDST (DINT) - (slave distance) indicates the distance
the slave should move for each MDST distance (entered
in LU*)

MDST (DINT) - (master distance) indicates the distance
the master axis will move during each SDST (entered in
LU*)

*NOTE: The range of values entered in SDST and
MDST is -536870912 to +536870911 FU (excluding 0
for the MDST input.) If you are using ladder units,
make sure they do not exceed this range when converted
to feedback units.

 Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - number of ratio gear move for queue
Chapter 2 Function/Function Block Description 2-283

RATIO_GR
Some characteristics of the gear ratio move include:

• Affects the slave axis only.

• The slave axis may be a master axis to another axis.

• More than one slave axis may be connected to the master axis.

• The master axis may be a servo or a digitizing axis.

• If the master axis reverses direction, the slave will follow.

• Inverted ratios are possible by making either SDST or MDST negative.
(Making both signs negative has same affect as making both signs positive.)

• No starting or stopping points are entered.

• Both the master and slave axes must be at the same interrupt rate.

A ratio gear move can be represented
mechanically by two gears as shown on
the left. The master gear is in motion.

When the function is executed, imagine
the gears moving together as shown in B.
The slave begins its motion from what-
ever position it is at and follows the mas-
ter at a constant ratio until the move is
ended.

The profile of the move would look like
that shown to the right of example B.

Master Slave

A. Mechanical Representation

B.

Master Distance

R
a
tio()

Constant ratio

Slave Distance
SDST

MDST

Ratio Gear Profile

Master Slave
2-284 Chapter 2 Function/Function Block Description

RATIO_GR
• The ratio can be changed on the fly by:

•Calling the NEWRATIO function

•Queuing up a new ratio move and aborting the current one.
Any remainder from the previous move is cleared.

• If WRITE_SV Variable 59 = 0 (default), RATIO_GR will use the master’s
actual position. If Variable 59 = 1, RATIO_GR will use the master’s com-
mand position.

• Some conditions for which OK will not be set and the queue is “0” include:

•Master axis not available (P-error) [Master axis not initialized, master and
slave interrupts different, same axis entered as master and slave, or
variable 59 = 1 and the master axis is not a servo axis.]

•Slave distance not valid (P-error)

•Master distance not valid (P-error)

•Slave axis (AXIS) not initialized during setup

• An E-error will occur if there is a slave delta overflow during runtime. The
hex code 0004 indicates this error on the ERRS output of the E_ERRORS
function.
Chapter 2 Function/Function Block Description 2-285

RATIO_RL
RATIO_RL
Ratio Real Motion/RATIOMOV

RATIO_RL(AXIS := <<USINT>>, MAST := <<USINT>>, REAL := <<MEM-
ORY AREA>>, MSTR := <<DINT>>, OPTN := <<WORD>>, OK =>
<<BOOL>>, QUE => <<USINT>>)

The RATIO_RL function is an axis control function requiring servo initialization
and a math coprocessor on the PiC CPU. It is similar to the function. The differ-
ence is that the data defining the slave axis profile for RATIO_RL uses floating
point numbers. Each segment of the profile can be a trigonometric function or a
polynomial. A trigonometric function requires that the radius, starting angle, and
segment length be entered in a structure.

RATIO_RL can be used in conjunction with the math conversion COORD2RL
function.

The AXIS and MAST inputs are used to identify the slave and master axes respec-
tively.

When the MSTR input is used, it defines the master axis position at the beginning
of the profile.

⁄ƒƒƒƒƒƒƒƒƒø
≥RATIO_RL ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS QUE√
≥ ≥
¥MAST ≥
≥ ≥
¥REAL ≥
≥ ≥
¥MSTR ≥
≥ ≥
¥OPTN ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies slave axis (servo)

MAST (USINT) - identifies master axis (servo, digitiz-
ing, or time)

REAL (ARRAY OF STRUCTURES) - points to the
first element in the array of structures defining the pro-
file to run

MSTR - (DINT) - master starting point of the move
entered in LU
If MSTR is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

OPTN - (WORD) - provides three options: repeat,
ignore master start, and use master’s command posi-
tion

Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - number of real profile move for the
queue
2-286 Chapter 2 Function/Function Block Description

RATIO_RL
The OPTN input provides the following options:

If you want the profile to repeat continuously, bit 0 is set. If bit 0 is not set, the
profile will execute once and then stop.

If you choose to ignore the master start (bit 1 set), any value you have entered in
MSTR has no effect. The slope profile will begin executing as soon as the func-
tion is called.

If you want to follow the master’s command position instead of the master’s actual
position, set bit 4.

Velocity Compensation should be inhibited (WRITE_SV Variable 32 = 1) prior to
executing RATIO_RL with this bit set.

Bit # Option Binary Value
Hex Value
Entered

0 Repeat profile 0000000000000001 0001
1 Ignore master start 0000000000000010 0002
4 Use master command position 0000000000010000 0010
Chapter 2 Function/Function Block Description 2-287

RATIO_RL
Some characteristics of the ratio real move include:

• Affects the slave axis only.

• The slave axis may be a master axis to another axis.

• More than one slave axis may be connected to the master axis.

• The master axis may be a servo, a time, or a digitizing axis.

• If the master axis reverses direction, the slave axis will follow. A positional
relationship has been established for each segment and the software will
maintain that relationship. If, for example, the master axis would change
direction during the profile, the slave axis would move backwards through
the profile so that when the master axis reaches a certain position the slave
axis will be at its corresponding position as defined in array of structures.

• If it is not desirable to have the slave axis follow the master axis when the
master reverses direction, variable 21 (reversal not allowed) of the
WRITE_SV function can be set. (The state of variable 21 can also be read
with the READ_SV function.) The WRITE_SV function must always be
called before the RATIO_RL function.

• Inverted ratios are possible by entering negative slave segment elements in
the array of structures defining your profile. (NOTE: The sign on the mas-
ter elements entered in the array of structures must all be the same.)

• The starting point for the master axis may be entered. If the move is
queued with no master start and the master axis is moving in the opposite
direction as defined by the profile segments, the distance will be accumu-
lated. This distance must be recovered before motion will start.

• Both the master and slave axes must be at the same interrupt rate.

• Registration can be used with the RATIO_RL function.

• The ratio_RL function move may repeat continuously if the repeat option is
set until either the move is aborted or a REP_END function is called. With
the abort move function, the move will stop wherever it is in the profile.
With the repeat end function, the move will stop at the end of the current
profile.

• Some conditions for which the OK will not be set and the queue will be “0”
include

1. Master axis not available (P-error) [Master axis not initialized, master
and slave interrupts different, the same axis was entered as master and
slave, or OPTN bit 4 is set and the master axis is not a servo axis.]

2. Profile error (P-error) [A number less than two entered as the size of
the profile, a master segment is zero, or not all master segments have
the same sign]

3. Master start value is out of range.

4. Slave axis (AXIS) not initialized during setup.

• A P-error will occur if the master axis is beyond it’s start point.

• An E-error will occur if there is a slave delta overflow during runtime.
2-288 Chapter 2 Function/Function Block Description

RATIO_RL
RATIO_RL structure members for the REAL input

The members of the structure required for the array of structures at the REAL
input are described below.

IMPORTANT

The structure entered in the software declarations table for the REAL
input must have the members entered in the order listed in the table
that follows. The data type entered in the Type column for each
member of the structure must be as shown in order for the software to
recognize the information.

NOTE

Remember that the first (0) element in the array determines the size
of the profile. The .MASTER line of the first element must contain
the number of segments in the profile plus one.
It is not necessary to enter any value in the other lines. They will de-
fault to zero.
Chapter 2 Function/Function Block Description 2-289

RATIO_RL
MASTER
(master distance)

DINT
(Range -536,870,912
to +536,870,911 FU)

The MASTER member specifies the distance (in
feedback units) the master travels during a seg-
ment. The values of the master distance must all
be the same sign for each segment.

SLAVE
(slave distance)

DINT
(Range -536,870,912
to +536,870,911 FU)

The SLAVE member specifies the distance (in
feedback units) the slave travels while the master
travels its distance during a segment. The values
of the slave distance can be either sign.

LEN
(length/K1)

LREAL For a circular move, LEN holds the number of
master counts in one radian.

For a linear move, LEN holds the value of K1.

AMPL
(amplitude/K2)

LREAL For a circular move, AMPL holds the wave
amplitude.
For a linear move, AMPL holds the value of K2.

STANGL
(starting angle/K3)

LREAL For a circular move, STANGL holds the value of
the starting angle in radians.
For a linear move, STANGL holds the value of
K3.

SPARE
(spare)

LREAL Declare this in your structure since it may be
used in the future for additional features.

FLAGS
(flags)

DWORD Bits 0 through 4 are currently being used.
2-290 Chapter 2 Function/Function Block Description

RATIO_RL
0 = copy a 0 to bit 0 after segment execution;
1 = copy a 1 to bit 0 after segment execution

0 = execute valid data for segment;
1 = execute default ratio.

15 14 13 12 11 10 9 8 6 4 3 2 1 0

DWORDFLAGS
(flags)

57

 Bits 0 through 4 are currently being used.

1 = execute a sine function
Bits 3 and 4 must be zero.

1 = execute a cosine function
Bits 2 and 4 must be zero.

0 = execute a polynomial function
Bits 2 and 3 must be zero also.

If bit is set to 0, the segments of the real profile will execute in

Bit 0 If bit 0 is set to 1, the segment is considered empty. The default ratio

entered in the array of structures

NOTE: The default ratio of the RATIO_RL function is 1:1.
.

As each segment completes its execution, whatever value is in bit 1 is

If bit 2 is set to 1 and bits 3 and 4 are 0, a sine wave is executed.

Bit 1

Bit 2

where:

A = amplitude

LEN = number of master counts in one radian
0s = starting angle in radians

m = master distance into segment

�������� �
�

�
�

��� θ�
 � θ������

will be in effect until bit 0 is set to 0 and valid real profile data is

The NEWRATIO function allows you to change the default to

copied into bit 0.

The slave distance into the segment is calculated as follows:

sequence as entered in the array of structures.

another value.
Chapter 2 Function/Function Block Description 2-291

RATIO_RL
If bit 3 is set to 1 and bits 2 and 4 are 0, a cosine wave is executed.

where:

A = amplitude

LEN = number of master counts in one radian
0s = starting angle in radians

m = master distance into segment

The slave distance into the segment is calculated as follows:

�������� �
�

�
�

��� θ�

 � θ��� ���

Bit 4 If bits 2, 3, and 4 are 0, a polynomial is executed. The slave distance
into the segment is calculated as follows:

Distance = K1m + K2m2 + K3m3

where: K1, K2, K3 = long reals
m = master distance into segment

All remaining bits (5-15) should be set to zero.

Bit 3

DWORDFLAGS (Cont.) Bits 0 through 4 are currently being used.
(flags)
2-292 Chapter 2 Function/Function Block Description

RATIO_RL
Working with the FLAGS and the default ratio

The FLAGS member of the structure provides the capability of using the default
ratio with the RATIO_RL function. Once the default ratio is running it is possi-
ble to use the array of structures like a rotary queue with data moving in from
the ladder and out via servos in sequence.

When each segment completes its execution, whatever is in bit 1 is copied into
bit 0.

Note: Whenever the default ratio is used, set the reversal not allowed flag
using variable 21 of the WRITE_SV function before calling the
RATIO_RL function.

The master starting point is entered in the MSTR input. The profile will begin
executing at the beginning with the master and slave axes locked on when the
master reaches its starting position.

Note: If the ratio real move is queued with no master starting position and the
master axis is moving in the opposite direction of that indicated in the
profile segments, the direction of the master will have to be reversed
and the accumulated distance covered before the move will execute.

Bit 1 Bit 0 Example
0 0 With both bits set to zero, the RATIO_RL func-

tion will execute the segment beginning at the
defined starting angle. If repeat is set on the
OPTN input, the profile will repeat continuously.

1 1 With both bits set to one, the RATIO_RL function
will execute at the default ratio until the ladder
places data in the array of structures and clears bit
0.
Chapter 2 Function/Function Block Description 2-293

RATIO_RL
Comparison of some ratio moves

The table below shows how the RATIO_RL works compared to the RATIOCAM and
RATIOSLP functions. RATIO_RL relies on the distance calculations. RATIOCAM and
RATIOSLP rely on the velocity calculations (indicated by the dark boxes).

RATIO_RL

RATIOCAM RATIOSLP (Polynomial) (Trig)

How

Defined

SSlave distance

MMaster distance

SSlave distance

MMaster distance

K
1
Start ratio

K
2
Slope

SSlave distance

MMaster distance

K
1
M coefficient

K
2
M

2
 coefficient

K
3
M

3
 coefficient

SSlave distance

MMaster distance

LEN# of master counts in 1 radian

AMPLAmplitude

θsStarting angle

Distance

Polyno-
mial

D=K
1
 m

D=K
2
 m

2
 + K

1
 m

K
1
=start ratio

D =

K
3
m

3 + K
2
m

2 +K
1m

D =

Distance

Plot

Velocity

Polyno-
mial

V= K
1

V= K
2
 m + K

1

K
1
= Start ratio

K
2
= Slope

V = K
3
m

2
+K

2
m + K

1

K
1
= K

1
 of position

K
2
= 2K

2
 of position

K
3
= 3K

3
 of position

Velocity

Plot

�
�

�
-----�

��
 ����

�
--------------�

��!�
�

�
�
----------- θ�

��� ��!� θ�����

�
�

�
-----�

� ��!�
�

�
�
----------- θ�

����
2-294 Chapter 2 Function/Function Block Description

READ
READ
Read Io/COMM

<<INSTANCE NAME>>:READ(REQ := <<BOOL>>, HNDL := <<INT>>, CNT
:= <<INT>>, BUFR := <<MEMORY AREA>>, DONE => <<BOOL>>, FAIL
=> <<BOOL>>, ACT => <<INT>>, BUFR => <<MEMORY AREA>>, ERR
=> <<INT>>);

The READ function block reads data from the file or device at the User Port spec-
ified by the value at HNDL and places it in the variable at BUFR. The number of
bytes to read is specified by the variable at CNT. The number of bytes actually
read is placed into the variable at ACT. ACT will be less than CNT when there are
less bytes in the file than specified by CNT, or when there is an error. Otherwise
the value of ACT will equal the value of CNT.

⁄ƒƒNAME ƒƒø
≥ READ ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥HNDL FAIL√
≥ ≥
¥CNT ACT√
≥ ≥
¥BUFR-BUFR√
≥ ≥
≥ ERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (One-shot)

HNDL (INT) - output from OPEN function block

CNT (INT) - number of bytes to read

BUFR (MEMORY AREA) - area to read data into

MEMORY AREA is a STRING, ARRAY, STRUC-
TURE, ARRAY ELEMENT, or STRUCTURE
MEMBER

Outputs: DONE (BOOL) - energized if ERR = 0
not energized if ERR ≠ 0

FAIL (BOOL) - energized if ERR ≠ 0
not energized if ERR = 0

ACT (INT) - number of bytes read

BUFR (same variable as BUFR input)

ERR (INT) - 0 if data transfer successful
≠ 0 if data transfer unsuccessful

See Appendix B in the PiCPro Online Help for ERR
codes.

WARNING

If the input at BUFR does not have as many bytes as specified by CNT,
the "extra" data will overflow into the declared memory area immediately
after the memory area at BUFR.
Chapter 2 Function/Function Block Description 2-295

READ
READ is used in conjunction with the CLOSE, CONFIG, OPEN, SEEK, STA-
TUS, and WRITE I/O function blocks.

IMPORTANT

See APPLICATION NOTE # 1 in the Application Note section (at
end of the PiCPro Online Help) for information about READing from
and WRITing to STRINGs.
2-296 Chapter 2 Function/Function Block Description

READFDBK
READFDBK
Read Feedback Io/READFDBK

READFDBK(RSCD := <<MEMORY AREA>>, VARS := <<MEMORY
AREA>>, OK => <<BOOL>>)

The READFDBK function allows an encoder or a resolver feedback device to be
read on a scan time basis (in background). Using this feature allows you to place
encoder and resolver modules in an expansion rack. It can be used with the
encoder, 12 channel resolver, block resolver, and block stepper/encoder/DC in
modules.

 No information needs to be entered in the servo setup program. These are read
only feedback devices used in open loop control.

The function performs initialization, update, and reference tasks.

Data is stored and manipulated in two structures you declare in the software decla-
rations table. The members of these structures can be written to or read from in the
ladder.

The first structure at the RSCD input identifies the rack, slot, channel, and device
(type of encoder). The second structure at the VARS input allows you to read and
write variables required for reading encoders in background.

The READFDBK function should be called by the ladder once each scan.

A separate READFDBK function must be used for each axis.

PROGRAMMING NOTE: If multiple axes will be read in the background with
READFDBK functions, you may want to create an array of structures for the
RSCD and the VARS structures. This eliminates the need to enter these structures
individually for each axis in the software declarations table.

It is necessary to declare the encoder or resolver module in the hardware declara-
tions table.

Explanations of the two structures required for the READFDBK function follow.

⁄ƒƒƒƒƒƒƒƒƒø
≥ READFDBK≥
≥ ≥
¥EN OK√
≥ ≥
¥RSCD ≥
≥ ≥
¥VARS ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

RSCD (STRUCT) - a structure to identify rack, slot,
channel, and device

VARS (STRUCT) - a structure to contain variables
required for reading encoders or resolvers in back-
ground

Outputs: OK (BOOL) - set if no errors in structure data
Chapter 2 Function/Function Block Description 2-297

READFDBK
The RSCD input structure

The structure that must be used at the RSCD input of the READFDBK function is
shown in Figure 2-21. It has four members; RACK, SLOT, CHAN, and
DEVICE.

Figure 2-21. The structure at the RSCD input

IMPORTANT

The structure you enter in the software declarations table for the
RSCD input must have the members entered in the order shown in
Figure 2-21. The data type for each member of the structure must be
as shown in the Type column in order for the software to recognize
the information.
Initial values are entered by you for the rack, slot, channel, and device
for the encoder axis at the RACK, SLOT, CHAN, and DEVICE mem-
bers of the structure.

Structure name

Members of Structure

RSCD
. RACK
. SLOT
. CHAN
. DEVICE

STRUCT
USINT
USINT
USINT
BYTE
END_STRUCT
2-298 Chapter 2 Function/Function Block Description

READFDBK
RSCD structure members

RACK
(rack number)

USINT (Write)
Range 0 to 8
Range = 100 for
block modules

The RACK member specifies the rack the
encoder or resolver module resides in. (The
master or CPU rack is #0. Expansion racks are
numbered 1 - 7 (1 - 8 for some earlier versions of
the CPU), where #1 is the rack connected to the
master, #2 is the rack connected to #1, etc.)

For a block module, RACK must be set to 100.

SLOT
(slot number)

USINT (Write)
Range 3 to 13

Range 1 to 77 for
block modules

The SLOT member specifies the slot in the rack
the module resides in. Slots are numbered left to
right when facing the controller. Slot 1 and 2 are
reserved for the CSM and CPU module respec-
tively.

For a block module, SLOT must be the block
number.

CHAN
(module channel)

USINT (Write)
Range 1 to 4 for
encoder
Range 1 to 12 for
multi-channel
resolver

Range 1 to 2 for
block st/enc/DC in

Range 1 to 6 for
block resolver

The CHAN member specifies the number of the
channel on the module.

With an encoder if 3 and 4 are used, a four chan-
nel encoder module must reside in the rack.
Chapter 2 Function/Function Block Description 2-299

READFDBK
DEVICE
(type of encoder)

BYTE (Write)

The DEVICE member defines the type of feedback device.
Encoders
Bit 0 defines whether it is quadrature or pulse encoder.
Bit 1 defines whether it is differential or single-ended.
Resolvers
Bit 2 defines whether an encoder or a resolver module is being read.
If bit 2 is set to 1, the resolver is being read and bits 0 and 1 are ignored.
If bit 2 is 0, the encoder is being read.

All remaining bits (3 - 7) should be set to zero.

01234567

0 = Quadrature; 1 = Pulse

0 = Differential; 1 = Single-ended

0 = Encoder; 1 = Multi-Channel Resolver

Encoder
2-300 Chapter 2 Function/Function Block Description

READFDBK
The VARS input structure

The structure that must be used at the VARS input of the READFDBK function is
shown in Figure 2-22. The members of this structure are; REFER (reference),
REFVAL (reference value), ROLPOS (rollover position), STATUS, ERROR,
FDBK (feedback), LATCH, POSITN (position), REFSWT (reference switch),
ADDRESS, SPARE1 and SPARE2.

Figure 2-22. The structure at the VARS input

IMPORTANT

The structure you enter in the software declarations table for the
VARS input must have the members entered in the order shown in
Figure 2-22. The data type for each member of the structure must be
as shown in the Type column in order for the software to recognize
the information.
You write values to REFER, REFVAL, and ROLPOS.
The software assigns values to STATUS, ERROR, FDBK, LATCH,
POSITN, REFSWT, and ADDRESS*. Never enter any values for
them.
 *See note for exceptions at the ADDRESS structure member that fol-
lows.

Structure name

Members of Structure

V
. REFER
. REFVAL
.
. STATUS

STRUCT
BYTE
DINT
DINT
BYTE
USINT

. ROLPOS

. ERROR

. FDBK

. LATCH

. POSITN

. REFSWT

. ADDRESS

. SPARE1

. SPARE2

DINT
DINT
DINT
DINT
WORD
DINT
DINT
END_STRUCT
Chapter 2 Function/Function Block Description 2-301

READFDBK
The VARS structure members

REFER
(reference)

BYTE (Write)

The REFER member of the structure allows you to do a reference with the READFDBK
function. It requests a reference and defines the type of reference that will occur. (If no ref-
erence is required, leave bit 0 set to 0.)

With an encoder, it is possible to do a reference based on a fast input to the encoder module
or on a ladder event. Either type can be used with or without the index mark.
NOTE: With the fast input, the position is latched in hardware when the fast input transitions.

With the block stepper/encoder/DCin module, it is possible to do a reference based on the
DCin or on a ladder event. Either type can be used with or without the index mark.
NOTE: With the block DCin, the position is read in software when the DCin transitions.

NOTE: The Block I/O 5-Axis Integrated Stepper Module does not support a DC input or
latching on an index mark.

With a resolver, it is only possible to do a reference based on a ladder event.

The chart below summarizes how the reference value entered in the REFVAL member is
assigned to the reference position.

All remaining bits (4 - 7) should be set to zero.
Reference With index Without index

Fast input reference
(Encoder only) or
DCin reference with
the block st/enc/DCin
module

Assigns the value in REFVAL to the
next index mark after the fast in
occurred.

Assigns the value in REFVAL
to the position where the fast
in occurred.

Ladder reference
(Encoder or resolver)

Assigns the value in REFVAL to the
next index mark (Enc) or null (Res)
after the ladder reference switch
turns on (bit 1 of REFER).

Assigns the value in REFVAL
to the position where the lad-
der reference input switch
turns on (bit 1 of REFER).

01234567

Set if ladder arming for reference

Set if ladder reference input switch is on (bit 3 must be set)

0 = index, 1 = no index (Enc) 0 = null, 1 = no null (Res)

0 = fast, 1 = ladder (Enc) (ignored for Res)
or

0 = DC input (Block Step/Enc/DC In) (ignored for Res)
2-302 Chapter 2 Function/Function Block Description

READFDBK
Figure 2-23. BOOL2BYT conversion for REFER

Before bit 0 is set requesting a reference, you must define the type of refer-
ence desired with bits 2 and 3. When a positive transition of bit 0 occurs, the
reference complete bit in the STATUS member (see below) is cleared. Bit 0
of REFER may be cleared at any time after the transition occurs.

Once the function knows what type of reference will be performed and that a
request has been made, it will wait for the reference to be completed.

For a fast input reference, it will wait for the fast in to occur.
For a ladder reference, it will wait for a positive transition on bit 1. Use the
reference switch to set this bit in the ladder. Use the BOOL2BYT conversion
to set the bits in the REFER member of the VARS structure as shown in Fig-
ure 80.

NOTE: Any unconnected input (IN4 - IN7) places a zero in that bit of the
byte.
Chapter 2 Function/Function Block Description 2-303

READFDBK
REFVAL
(reference
value)

DINT (Write)
Range = ±536,870,912 FU

The REFVAL member defines the reference
value you want to assign to the reference posi-
tion. Always be sure the number you enter is
within the range given since no limit checking is
done by the software.

ROLPOS
(rollover on
position)

DINT (Write)
Range = ± 536,870,912 FU

The ROLPOS member defines the rollover posi-
tion you want. Entering a zero means no roll-
over position is in effect.
Always be sure the number you enter is within
the range given since no limit checking is done
by the software.

STATUS
(status)

BYTE (Read)

24V Input Status If pin 5 of the Stepper Encoder is a nominal 24V,
this bit will be high.

Reference Complete This bit is set when the reference is complete.

Set if reference complete
Set for one update after fast input transitions (Enc only; always 0 for Res)**
Set if fast input is on (Enc only; always 0 for Res)***
Internal status bits (not used by the ladder)

* See note at ADDRESS structure member.
** If using the block stepper/encoder/DC in module,

this will be set for the index mark of the encoder.
*** If using the block stepper/encoder/DC in module,

this will be set for the DC input.

7 6 5 4 3 2 1 0

Set if loss of feedback* (With differential encoder or multichannel resolver)

24V input status

Drive overcurrent fault
SSI valid double read
reserved

7 6 5 4 3 2 1 0

Note: If the feedback is read from a Block I/O 5-Axis Integrated Stepper
Module, STATUS will hold the following information:

Reference complete
2-304 Chapter 2 Function/Function Block Description

READFDBK
Drive Overcurrent Fault If an overcurrent condition is detected, the drive
is automatically disabled and this bit will be set.
After the cause of the overcurrent has been reme-
died, this bit can be cleared by issuing a "Drive
Reset" command (Command 11 below) or by
power cycling the unit.

SSI Valid Double Read If an SSI encoder supporting the double read
function is being used, this bit will be high if the
last read from the encoder was valid; it will be
low if the double read failed. If the double read
fails, the feedback value should be ignored. If
the encoder does not support the double read
function, this bit is undefined and should be
ignored. For a detailed description of the double
read function, refer to the Block I/O Modules
Manual.

The STATUS member gives the status of the items shown above in bits 0 - 3.
The remaining bits are internal and not used by the ladder. Use the
BYT2BOOL conversion to check the bits in the STATUS member of the
VARS structure.
Chapter 2 Function/Function Block Description 2-305

READFDBK
Figure 2-24. BYT2BOOL conversion for STATUS
2-306 Chapter 2 Function/Function Block Description

READFDBK
ERROR
(error num-
ber)

USINT (Read)
(0-6)

The ERROR member will contain one of the fol-
lowing values:
0 No error
1 Invalid rack number
2 Invalid slot number
3 Invalid channel number
4 Module not found or not enough channels
5 Structure memory written to by something
other than this function
6 Cannot read from specified rack/slot/channel

FDBK
(actual feed-
back value)

DINT (Read) The FDBK member gives the actual feedback
value from the module.
Encoder - A 24 bit value.
Resolver - 0 - 3999

LATCH
latched
value
(Encoder
only)

DINT (Read) The LATCH member gives the most recent fast
input latched value. It is a 24 bit value.

It is always the rising edge of the fast input
unless the reference cycle just completed used
the fast input and the index. After the reference
is complete, the module will once again respond
to a rising edge of the fast input.

If you are using a block stepper/encoder/DC in
module, the latch value is the index position of
the encoder.

POSITN
(axis posi-
tion)

DINT (Read) The POSITN member gives the position of the
axis according to the reference, rollover position,
and encoder activity since power on. This value
will roll over if it exceeds a four byte value in the
positive or negative direction.

REFSWT
(reference
switch)

DINT (Read) For an encoder, the REFSWT member gives the
distance between the reference switch and the
index mark.

For a resolver, the REFSWT member gives the
value at FDBK when the transition of the refer-
ence complete bit occurs.

NOTE: REFSWT is only valid if the reference
complete status bit is set.
Chapter 2 Function/Function Block Description 2-307

READFDBK
ADDRESS
(address)

WORD
(No action*)

This address must be zero in order for the soft-
ware to initialize the READFDBK function.
After initialization the software assigns an
address to it.

*NOTE: Normally, no action is required on
your part. However, if it is ever necessary to
reinitialize, you must write a zero to ADDRESS
and call the function.
Also, if a loss of feedback occurs, you must write
a zero to ADDRESS and call the function in
order to clear the loss of feedback. It is not
cleared when feedback is restored.

SPARE1
(reserved)

DINT

SPARE2
(reserved)

DINT
2-308 Chapter 2 Function/Function Block Description

READ_SV
READ_SV
Read Servo Motion/DATA

READ_SV(AXIS := <<USINT>>, VAR := <<SINT>>, OK => <<BOOL>>,
RSLT => <<DINT>>)

The read servo function allows the specified variable (VAR) to be read for the
specified axis. The result of the read is displayed at RSLT.

The variables that can be read using the function are listed in the table below.

The table also indicates which variables can be written with the WRITE_SV func-
tion and what type of axis apply (servo, digitizing, or time).

The READ_SVF and WRIT_SVF functions allow you to read and write the same
variables listed below faster by not converting values to ladder units and by not
checking if servo interrupts are running. It is noted in the variable description if
READ_SVF returns values in different units than READ_SV or if WRIT_SVF
accepts values in different units than WRITE_SV.

Note: When using read/write variables with the Stepper Axis Module, the
feedback units are stepper units. Ladder units may still be used.

Key for the variable table below:

V# - identifies the variable number you enter in the read and/or write servo func-
tions at VAR.

R column - the variable can be read with READ_SV and READ_SVF.

W column - the variable can be written with WRITE_SV and WRIT_SVF.

S = servo axis D = digitizing axis T = time axis

⁄ƒƒƒƒƒƒƒƒƒø
≥ READ_SV ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS RSLT√
≥ ≥
¥VAR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) = identifies axis (servo, digitizing, or
time)

VAR (SINT) = variable to be read

Outputs: OK (BOOL) - execution completed without error

RSLT (DINT) = servo data read
Chapter 2 Function/Function Block Description 2-309

READ_SV
Variables Table

V # Definition R W
1 Actual position - Reads the actual position of the axes in ladder

units.

With a DLS axis, this will read the actual position if the actual
position is broadcast, or the command position if the command
position is broadcast.

A position may only be written to a time axis. The range is
+2147483647 to -2147483648 counts.

READ_SVF reads the actual position in feedback units.

S, D,
T

T

2 Move type - The active move type is indicated by a number: S

3 Command position - Reads the command position in ladder
units.

READ_SVF reads the command position in feedback units.

S, D

4 Position error - Represents the position error in ladder units.

NOTE: With SERCOS where the actual position error is in the
drive, internal calculations approximate the position error and
bring the approximation out to variable 4. This approximation
may vary by the distance moved in one or two updates from the
actual position error read from the drive via the service channel.

NOTE: Not available with the stepper axis module.

READ_SVF reads the position error in feedback units.

S

5 Slow velocity filter error - Represents the error of the slow veloc-
ity filter in ladder units.

READ_SVF reads the error in feedback units.

S

 11 position move 20 ratiosyn or ratiogr
 12 distance move 22 ratiocam
 14 velocity start 23 ratioslp
 16 fast reference

or ladder reference
24 ratioreal
2-310 Chapter 2 Function/Function Block Description

READ_SV
6 Command velocity - Reads the command velocity in ladder units/
minute for servo axes and counts/second for time axes. Range for
a time axis is ±2,000,000 counts/sec.

A time axis can be commanded by writing this variable.

*Do not write a command velocity when running s-curve velocity
profiles.

READ_SVF reads the command velocity in feedback units/servo
update.

S, T T*

7 Position change - Reads the distance moved during one interrupt
in ladder units/minute for a servo axis and in ladder units/update
for a digitizing axis. To read the position change over several
interrupts, see variable 34.

READ_SVF reads the position change in feedback units/servo
update.

S, D

8 Feedback last - Reads the latest feedback position directly from
the feedback module in feedback units.

Ranges for various feedback devices:

Encoder/resolverCounts from 0 to 16,777,215 FU and then rolls
over. The number returned will count according to the feedback
polarity specified in setup.
Analog input 0 to 4095 unipolar; -2048 to 2047 bipolar
TTL (Depends on number of bits used for position
data.)

SERCOS -2,147,483,648 to 2,147,483,647

Virtual -2,147,483,648 to 2,147,483,647

S, D

9 Fast input position (hardware) - Reads the axis position when
the fast input occurs in feedback units. The module must have
been set up to respond to fast inputs through the FAST_QUE,
FAST_REF, REGIST, or MEASURE functions.

NOTE: Not available with the stepper axis module.

S, D

V # Definition (Continued) R W
Chapter 2 Function/Function Block Description 2-311

READ_SV
V # Definition (Continued) R W
10 Registration/referencing position change - Reads the distance

position changed in ladder units due to registration or the last
machine reference. This number can be used to allow the ladder to
synchronize axes if a slave axis started before registration ever
ran.

NOTE: Not available with the stepper axis module.

READ_SVF reads the position change in feedback units.

S, D

11 Consecutive bad marks - Reads the number of consecutive bad
marks since the last good mark when using registration. You can
also write any positive number into variable 11 to set the number
of consecutive bad marks. Typically, 0 would be entered to initial-
ize the counter.

When a good mark occurs, this number will be reset to 0. If the
number of bad marks exceeds 2,147,483,647, the number returned
will “roll over” to -2,147,483,648 and start counting toward 0.
NOTE: Not available with the stepper axis module.

S, D S, D

12 Rollover position- Reads the rollover position in ladder units.
Allows you to write a rollover position which overrides the one
entered in setup.

The range is 0 to 536,870,911 FU. Entering a 0 turns rollover off.
Negative values cannot be entered.

Note: With rollover off, when 2,147,483,647 is reached, the next
number will be -2,147,483,648. The count continues to zero and
back up to 2,147,483,647, etc.

Digital Drive Note: If an absolute reference (WRITE_SV Vari-
able 90) was performed prior to changing the rollover position
(WRITE_SV Variable 12), the absolute reference will need to be
performed again since WRITE_SV Variable 90 also writes the
current rollover position to the digital drive. The digital drive then
stores the rollover position and uses it to correctly calculate the
absolute position on subsequent power cycles.

READ_SVF reads the rollover position in feedback units.

WRIT_SVF writes the rollover position in feedback units.

S, D,
T

S, D,
T

2-312 Chapter 2 Function/Function Block Description

READ_SV
NOTE

Variables 13 through 16 deal with master/slave offsets. It is important to remember
that these offsets affect the master/slave relationship, not the individual axes. The
master axis is accessed through the slave axis. Offsets are calculated based on the
slave axis ladder units. The number of the slave axis is entered at the AXIS input of
the READ_SV and WRITE_SV functions.

V # Definition (Continued) R W
13 Slave offset incremental - Reads the total remaining slave offset

in slave ladder units. Writes an incremental slave offset. The total
incremental offset entered is applied each time the WRITE_SV
function is called. The offset cannot be canceled.*

READ_SVF reads the offset in feedback units.

WRIT_SVF writes the offset in feedback units.

S S

14 Master offset incremental - Reads the total remaining master off-
set in slave ladder units. Writes an incremental master offset. It is
applied each time the WRITE_SV function is called. The offset
cannot be canceled.*

READ_SVF reads the offset in feedback units.

WRIT_SVF writes the offset in feedback units.

S S

15 Slave offset absolute - Reads the absolute slave offset in slave
ladder units. Writes an absolute slave offset. Each time the
WRITE_SV function is called with an absolute offset an offset is
applied which is the difference between the last call and this call
will be applied. An absolute offset can be canceled by entering an
absolute offset of 0.*

READ_SVF reads the offset in feedback units.

WRIT_SVF writes the offset in feedback units.

S S

16 Master offset absolute - Reads the absolute master offset in slave
ladder units. Writes an absolute master offset. Each time the
WRITE_SV function is called with an absolute offset an offset is
applied which is the difference between the last call and this call
will be applied. An absolute offset can be canceled by entering an
absolute offset of 0.*

READ_SVF reads the offset in feedback units.

WRIT_SVF writes the offset in feedback units.

S S
Chapter 2 Function/Function Block Description 2-313

READ_SV
The examples that follow illustrate how offsets are incorporated into moves. Off-
sets can be entered in the ladder with variables 13 to 16 and offsets are added by
the software from calculations done if registration is being used.

*Variables 13, 14, 15, 16 - Incremental/absolute example

If an incremental offset of 100 is requested, and then later another
incremental offset of 110 is requested, the total offset applied will
be 210.

If an absolute offset of 100 is requested, and then later another
absolute offset of 110 is requested, the total offset applied will be
110.

1. Master/slave move
No offsets In the example on the left, the master is traveling 10

units and the slave is traveling 50 units (shown by
the area under the curve). No offsets have been
entered.

NOTE: The examples are showing just one seg-
ment of a profile.

2. Master/slave move
Negative slave offset In the example on the left, a slave offset of -2 has

been entered. The master travels 10 units and the
slave travels 48 units (shown by the area under the
curve).

NOTE: This also represents what would occur if
registration was running on the slave axis and an
offset of -2 was calculated by the software. The
distance the master travels remains constant and the
distance the slave travels varies.*

3. Master/slave move
Positive slave offset In the example on the left, a slave offset of +2 has

been entered. The master travels 10 units and the
slave travels 52 units (shown by the area under the
curve).

NOTE: This also represents what would occur if
registration was running on the slave axis and an
offset of +2 was calculated by the software. The
distance the master travels remains constant and the
distance the slave travels varies.*

0

5
Slave distance

Master distance 10

0

5
Slave distance

Master distance 10

0

5
Slave distance

Master distance 10
2-314 Chapter 2 Function/Function Block Description

READ_SV

4. Master/slave move
Negative master offset In the example on the left, a master offset of -1 has

been entered. The master travels 9 units and the
slave travels 50 units (shown by the area under the
curve).

NOTE: This also represents what would occur if
registration was running on the master axis and an
offset of -1 was calculated by the software. The
distance the master travels varies and the distance
the slave travels remains constant.*

5. Master/slave move
Positive master offset

In the example on the left, a master offset of +1 has
been entered. The master travels 11 units and the
slave travels 50 units (shown by the area under the
curve).

NOTE: This also represents what would occur if
registration was running on the master axis and an
offset of +1 was calculated by the software. The
distance the master travels varies and the distance
the slave travels remains constant.*

*When using registration on either the master or
slave axis, it is always the slave axis that makes the
physical adjustment when an offset is calculated.

V # Definition (continued) R W
17 Slave offset filter - Allows you to write a rate in the range of +1 to

+101 or -1 to -10001 as shown below. This range represents the
percentage the velocity will increase or decrease to apply the off-
set. At +101 or -10001, the offset is applied as a step function
which in effect is no filter. This is the default if nothing is entered
in WRITE_SV variable 17.

S

18 Master offset filter - Allows you to write a rate in the range of +1
to +101 or -1 to -10001 as shown below. This range represents the
percentage the velocity will increase or decrease to apply the off-
set. At +101 or -10001, the offset is applied as a step function
which in effect is no filter. This is the default if nothing is entered
in WRITE_SV variable 18.

S

0

5
Slave distance

Master distance 109

0

5
Slave distance

Master distance 10 11
Chapter 2 Function/Function Block Description 2-315

READ_SV
See the figure below for more information on master/slave offset filters.

Figure 2-25.
Range of values for Slave/Master offset filter

DATA
Input of

WRITE_SV

Percent
Filter
2-316 Chapter 2 Function/Function Block Description

READ_SV
V # Definition (Continued) R W
19 Fast input direction - By entering one of the following numbers,

the fast input will be written (W) as shown in the chart below.

0 - only on a low to high (rising) transition (default)

1 - only on a high to low (falling) transition

2 - alternating rising and falling beginning with a low to high tran-
sition

3 - alternating falling and rising beginning with a high to low tran-
sition

NOTE: Not available with the stepper axis module.

S, D

20 Fast input distance - Reads the distance in ladder units between
the most recent fast input and the previous fast input. This allows
the ladder to measure the distance between two fast inputs.

When this variable is used with the MEASURE or REGISTRA-
TION functions, the function must be called first and then the
variable read.

This distance can be one of four distances depending on how the
direction was defined in variable 19. This is illustrated in the
examples that follow.

See also the STATUSSV function.

NOTE: Not available with the stepper axis module.

READ_SVF reads the distance in feedback units.

S, D

0
1
2
3

W W W
W W W
W W WW W W
W W WW W

#

Chapter 2 Function/Function Block Description 2-317

READ_SV
*Note that when variable 19 is set to 2, the STATUSSV bit indicates which dis-
tance is in variable 20.

If WRITE_S
V variable 19
is:

0 (rising)

Then Statussv’s fast input
rising bit is:

1

And READ_SV variable 20 will
give the distance between rising
edges:

If WRITE_S
V variable 19
is:

1 (falling)

Then Statussv’s fast input
rising bit is:

0

And READ_SV variable 20 will
give the distance between falling
edges:

If WRITE_S
V variable 19
is:

2 (both)*

And Statussv’s fast input
rising bit is:

1

Then READ_SV variable 20 will
give the distance from falling edge to
rising edge:

If WRITE_S
V variable 19
is:

2 (both)*

And Statussv’s fast input
rising bit is:

0

Then READ_SV variable 20 will
give the distance from rising edge to
falling edge:
2-318 Chapter 2 Function/Function Block Description

READ_SV
.

V # Definition (Continued) R W
21 Reversal not allowed - Allows the feature of the slave following

the master when the master reverses direction to be turned on or
off for the ratio_gr and ratiosyn functions. (NOTE: The ratiopro
function has an input for this feature.)

A “0” (the default) allows the slave to follow the master in the
reverse direction. A “1” does not allow the slave to follow the
master in the reverse direction.

Write_sv must always be called before the move function. The
state of reversal cannot be changed after the move has started.

An overflow Estop error will occur if the reversed distance
exceeds 536,870,912 units in either the plus or minus direction.

S S

22 Fast input position (software) - Reads the actual software posi-
tion of the axis in ladder units. This position value is determined
by things like the reference value and rollover on position.

The module must have been set up to respond to fast inputs
through the FAST_QUE, FAST_REF, REGIST, or MEASURE
functions.

NOTE: This differs from the variable 9 fast input position which
is the hardware latch position.

READ_SVF reads the position in feedback units.

S, D
Chapter 2 Function/Function Block Description 2-319

READ_SV
V # Definition (Continued) R W
23 Position (software) of axis 1 with fast input on axis 2 - Reads

the position in feedback units of axis 1 when a fast input occurs on
axis 2.

Both the WRITE_SV and READ_SV functions are required to use
this variable.

The module must have been set up to respond to fast inputs
through the FAST_QUE, FAST_REF, REGIST, or MEASURE
functions.

Enter the number of the fast input axis (servo or digitizing axis) at
the AXIS input of both functions.
Enter the number of the axis (servo, digitizing, or time axis)
whose position you want to read in the DATA input of the
WRITE_SV function. The position is read at the RSLT output of
the READ_SV function.

The position of a servo, digitizing, or time axis can be read.

Example:

S, D, T S, D

Axis 1
Axis 2= axis whose position

you want to read when
a fast input occurs on
another axis.

= fast input axis

READ_SV

EN

AXIS

VAR

OK

Axis 1

Axis 2

23

WRITE_SV

EN

AXIS

VAR

DATA

OK

RSLTAxis 2

23 Axis 1

Position of
2-320 Chapter 2 Function/Function Block Description

READ_SV
V # Definition (Continued) R W
24 Registration switch - Allows you to turn registration on or off for

the master or slave axis (bit 0, 1). Allows you to choose whether
or not the registration calculations will change the axis position
(bit 2).

Set bit 0 to turn off registration compensation for the slave axis.
Set bit 1 to turn off registration compensation for the master axis.

note (bit 0,1)

Bit 0 and bit 1 of variable 24 deal with master/slave compensation
due to registration. It is important to remember that this compen-
sation affects the master/slave relationship, not the individual
axes. The master axis is accessed through the slave axis. The
number of the slave axis is entered at the AXIS input of the
READ_SV and WRITE_SV functions.

Set bit 2 so that the registration calculations do not change the axis
position.

NOTE: This bit can be used with a servo axis or a digitizing only
axis. When used with a digitizing only axis, bit 0 and bit 1 must
be set to zero.

Variable 10 can be read to see how much change there would have
been if bit 2 was not set.

Writing a zero to variable 24 returns the registration calculations
to normal.

NOTE: Not available with the stepper axis module.

S, D S, D
Chapter 2 Function/Function Block Description 2-321

READ_SV
V # Definition (Continued) R W
25 Fast queuing - Entering a one turns fast queuing on. A move

start, abort move, or a fast queue event will now start within one
interrupt. When it is set to zero, these activities can take up to
eight interrupts to begin. Fast queueing makes your axis more
responsive, but there is a trade-off in that the execution time is
increased.

When one or more axis is slaved to a master axis that is starting
and stopping using distance moves (normally with the SCURVE
function), you must also set Fast queuing for each slave axis. This
ensures that the slave distances will be reached before the master
axis stops.

When doing a synchronized slave start, see the note at variable 26.

S S

26 Synchronized slave start - Allows you to tell a master axis which
of its slave axes must be queued up before any of them begin their
move. Each slave axis you want to synchronize is identified by
setting a bit in a DINT using the lower 16 bits where the LSB =
axis 1 and the MSB = axis 16. When the last “set” axis has been
queued, all the slave axes will begin their move on the next inter-
rupt.

WRITE_SV must be called before the move. It can be called
again when you want to identify a different set of synchronized
slave axes. Change the bits only after the slave axes identified in
the first WRITE_SV have started to move.
Writing a zero to variable 26 clears all identified axes.

READ_SV returns the bits of the slave axes being synchronized,
in the low word of RSLT.

NOTE: Always use fast queuing (variable 25) with this variable.
This ensures that the slave axes will be checking for the synchro-
nized slave start flag every interrupt, not just on the next interrupt.
Remember that the synchronized slave start variable 26 is set on
the master axis and fast queuing variable 25 is set on each slave
axis.

S, D, T S, D, T
2-322 Chapter 2 Function/Function Block Description

READ_SV
V # Definition (Continued) R W
27 Backlash compensation - Writes a backlash compensation value.

Enter the value in ladder units. The amount is added or subtracted
from the command whenever the commanded direction is
reversed. The value written should equal the amount of mechani-
cal backlash in the gears between the servo motor and the desired
motion.

NOTE: Because the backlash value is added or subtracted after
the commanded position is calculated, the distance moved will not
be reflected in variable 3 (commanded position). It will, however,
be reflected in variable 1 (actual position).

It is also important at power on to ensure that the PiC will com-
pensate for backlash correctly. The PiC assumes that the most
recent move is in the positive direction. Program a positive move
to “wind up” the backlash in a positive direction before writing to
variable 27. Once the initial positive direction has been estab-
lished, the PiC will compensate for backlash as described above
whenever the commanded value changes direction.

READ_SV reads the backlash compensation value in ladder units.

(0 - 327 feedback units) default = 0

NOTE: Not available with a stepper axis or a SERCOS axis.

READ_SVF reads the compensation in feedback units.

WRIT_SVF writes the compensation in feedback units.

S S

28 TTL feedback - Reads the position of the feedback axis by
returning the state of 24 TTL inputs to the DINT at the RSLT out-
put of READ_SV. The 24 inputs are the low 24 bits.

Depending on the hardware, the 24th TTL input can be used as an
indicator of valid data. When it is used to indicate valid data, then
you must monitor a waiting flag at the MSB of the DINT at RSLT.

The waiting flag will be high until the hardware sends valid data
to the TTL inputs. Do not attempt to close the loop while the wait-
ing flag is high. The OK on the CLOSLOOP function will not be
set if the waiting flag is high. When valid data is received, the
waiting flag goes low and you can then successfully close the
loop.

You can write to the eight TTL outputs using the eight LSBs of the
DINT at the DATA input on the WRITE_SV function.

NOTE: Not available with the stepper axis or a SERCOS axis.

S, D S, D
Chapter 2 Function/Function Block Description 2-323

READ_SV
V # Definition (Continued) R W
29 Reference switch position - With encoder feedback, the position

here represents the distance between the reference switch and the
index mark in feedback units.

With resolver feedback, the position here represents the absolute
position of switch closure in feedback units.

With analog input or TTL feedback, the position here represents
the absolute position when referencing occurred.

Note: The number returned in variable 29 always counts in the
same direction regardless of the feedback polarity specified in
setup.

This measurement could be in error up to the distance traveled in
eight updates. You can reduce that error to no more than the dis-
tance traveled in one update by setting variable 25 Fast Queuing
using the WRIT_SV function.

Note: Not available with the stepper axis module.

READ_SVF reads the position in feedback units.

S, D
2-324 Chapter 2 Function/Function Block Description

READ_SV
The next four variables (30 - 33) allow you to put a master delta filter on a slave
axis. Variations in the master delta can cause undesirable “jitter” in the slave axis.
Applying a master delta filter can correct this problem.

V # Definition (Continued) R W
30 Filter time constant - Defines a first order filter on the master

axis as viewed by each slave axis defined. In some applications it
is necessary to filter the master delta to control variations that can
occur in master axis travel. There are 10 approximate filter val-
ues:

The time constant has a fine resolution at low values and a coarse
resolution at high values.

Identify the slave axis at the AXIS input of READ_SV or
WRITE_SV.

 Related master filter variables: 31, 32, 33

(0 - 1023, 0 disables filter)

S S

31 Filter error limit - Limits the amount of lag introduced by the fil-
ter. When this limit is reached, the filter will no longer be in
effect. This allows you to implement a large filter at low veloci-
ties when resolution problems are more pronounced and still limit
the following error effects at high velocities when filtering is not
required. A positive number is entered using WRITE_SV. It
applies to both positive and negative errors.

Identify the slave axis at the AXIS input of READ_SV or
WRITE_SV.

Related master filter variables: 30, 32, 33

(1 to 2147483647 feedback units)

S S

 2
 4
 8
16
32

 64
 128
 256
 512
1024
Chapter 2 Function/Function Block Description 2-325

READ_SV
V # Definition (Continued) R W
32 Velocity compensation flag - Entering a one turns the default

velocity compensation feature off. Turning it off will result in the
slave axis lagging the master axes by the amount traveled by the
master axis in one interrupt (or multiple interrupts for SERCOS
and digital drive axes). Velocity compensation should be turned
off when using Command Based Master/Slave funtionality (i.e.
Variable 59 = 1).Velocity compensation works independent of the
filter. Identify the slave axis at the AXIS input of READ_SV or
WRITE_SV.
Related master filter variables: 30, 31, 33
(0, 1)

S S

33 Filter lag - Reads the filter following error.
Identify the slave axis at the AXIS input of READ_SV.
Related master filter variables: 30, 31, 32
(-2147483648 to +2147483647 feedback units)

S

NOTES ON FILTER LAG

Normally, the filter time constant and error limit will be established
prior to the move call. If they are changed after the slave axis is
locked to the master axis, keep the following in mind:

• If the filter lag is already at the filter error limit and the error is
increased, the new limit will be reached at the rate defined by the fil-
ter and master axis velocity.

• If the filter lag is already at the filter error limit and the error is
decreased, the excess will be dumped into the slave axis command in
one update.

• If the filter lag is already at the filter error limit, changing the time
constant will have no effect.

• If the filter time constant is set to zero, any lag will remain.
2-326 Chapter 2 Function/Function Block Description

READ_SV
V # Definition (Continued) R W
34 Position change over several interrupts - Variable 7 reads the

change in position in a single interrupt. However, it can be diffi-
cult to get an accurate reading in one interrupt especially if an axis
is moving slowly. Variable 34 allows the change in position to be
read over several interrupts.

Write at the DATA input of WRITE_SV the number of interrupts
(0 to 255) over which the change in position will be summed.
Writing a zero to the DATA input turns the feature off.

Read with READ_SV the distance moved over several interrupts
in ladder units for a servo or digitizing axis. The value is not nec-
essarily changed every interrupt. It changes only after the number
of interrupts designated with WRITE_SV have occurred since the
last value was read. NOTE: A non-zero value must be written
with WRITE_SV before you call READ_SV or the READ_SV
OK will not be set.

 An overflow can occur if the axis is moving fast and the number
of interrupts selected is large. If an overflow occurs, the OK of
READ_SV will not be set. Write to variable 34 to clear an over-
flow error condition.

READ_SVF reads the change in feedback units.

S, D S, D

35 Part reference offset - Reads the part reference offset in ladder
units. The offset represents the distance that would have to be
subtracted from the current position to remove the part reference.

READ_SVF reads the offset in ladder units.

S, D

36 Software upper limit- read or write in ladder units the upper end-
limit for a servo axis. Exceeding the endlimit will generate a C-
stop.

The range is -536870912 to 536870911 FU.

READ_SVF reads the limit in feedback units.

WRIT_SVF writes the limit in feedback units.

S S
Chapter 2 Function/Function Block Description 2-327

READ_SV
V # Definition (Continued) R W
37 Software lower limit - read or write in ladder units the lower end-

limit for a servo axis. Exceeding the endlimit will generate a C-
stop.

The range is -536870912 to 536870911 FU.

READ_SVF reads the limit in feedback units.

WRIT_SVF writes the limit in feedback units.

 S S

38 Commanded position (before slow velocity filter) - reads the
commanded position before the slow velocity filter is applied to a
servo axis. If slow velocity filter is not in effect, it returns the
same commanded position as variable 3 returns.

READ_SVF reads the command position in feedback units.

S, D

39 Following error limit - read or write in ladder units the following
error limit for a servo axis. This overrides the following error
limit entered in servo setup.

The range is -536870912 to 536870911 FU.

READ_SVF reads the limit in feedback units.

WRIT_SVF writes the limit in feedback units.

S S

40 In-position band - read or write in ladder units the in-position for
a servo axis. This overrides the in-position band entered in servo
setup.

The range is -536870912 to 536870911 FU.

READ_SVF reads the band in feedback units.

WRIT_SVF writes the band in feedback units.

S S

Variables 41, 42, and 43 work with the RATIOCAM, RATIOSLP, and RATIO_RL.
41 Current segment number - returns the segment number from the

ratio move currently being executed. The first segment is number
1. This matches the array element number in the profile. If one of
the three above moves is not being executed, the OK of
READ_SV will be clear.

S

2-328 Chapter 2 Function/Function Block Description

READ_SV
V # Definition (Continued) R W
42 Slave distance into segment - returns the distance the slave axis

is into the segment identified in variable 41. If one of the three
above moves is not being executed, the OK of READ_SV will be
clear. The units are feedback units.

READ_SVF reads the distance in feedback units.

S

43 Master distance into segment - returns the distance the master
axis is into the segment identified in variable 41. If one of the
three above moves is not being executed, the OK of READ_SV
will be clear. The units are in feedback units.

READ_SVF reads the distance in feedback units.

S

Chapter 2 Function/Function Block Description 2-329

READ_SV
Background Information on Servo Control Variables 44 through 48

Variables 44, 45, 46, 47, and 48 are used to control the servo software. In normal
operation, the servo iteration command is determined by the move type (DIS-
TANCE, VEL_STRT, RATIOCAM, etc.) The command is compared to the feed-
back and the difference is fed to the internal PID calculations. The result is the
servo PID command which is written to the D/A.

These variables allow you to interrupt this normal servo operation at various points
as illustrated by the diagram below. They perform the following:

• Read the result of the servo iteration command and write a user iteration
command before the next internal PID calculation (44 and 45).

• Read the result of the servo PID command and write a user PID command
(46 and 47).

• Disable the servo software (48) and allow the D/A command to come from
the ANLG_OUT function.

• CAUTION: Fault conditions are ignored when the servo software is dis-
abled.

 Typically, these variables will be used within user servo tasks (refer to the PiCPro
Online Help).

Iteration

In
te

rn
a

l P
ID

Feedback

+

-

To D/A

S
lo

w
 V

e
lo

c
ity

 F
ilte

r

O
u

tp
u

t P
o

la
rity

A
n

a
lo

g
 O

u
tp

u
t O

ffs
e

t

+

-

S
lo

w
 V

e
lo

c
ity

 F
ilte

r

In
te

rn
a

l P
ID

O
u

tp
u

t P
o

la
rity

A
n

a
lo

g
 O

u
tp

u
t O

ffs
e

t

1

0

READ
Variable 45

READ
Variable 47

1

0

1

0

To D/A

WRITE
Variable 45

WRITE
Variable 47

Variable 44 Variable 46 Variable 48

ANLG_OUT
 Function

Iteration

Disable Servo Software

Feedback

 Command
User Iteration

 Command

Servo Iteration
 Command

User PID

 Command
Servo PID

1

0

LOOP OPEN?

Yes

No

Note: If the loop is open, the
software outputs the D/A offset.

2-330 Chapter 2 Function/Function Block Description

READ_SV
In certain cases when using these variables, it may be helpful to know the sequence
in which execution occurs.

On every interrupt, the following occurs in the order given:

1. The PID code is executed.

If variable 44 = 0 read servo iteration command (the data servo iteration code
writes)

Else (variable 44 = 1) read user iteration command (the data variable 45 writes)

Compare to feedback

Perform internal PID calculations

Store result into servo PID command (the data variable 47 reads)

If variable 46 = 0 read servo PID command (the data PID calculations write)

Else (variable 46 = 1) read user PID command (the data variable 47 writes)

Apply output polarity and analog output offset

If variable 48 = 0, then write value to D/A register

2. The iteration code is executed.

Calculate iteration from move type, store in servo iteration command

3. The user servo TASK code is executed.

Read variable 45 (Read servo iteration command)

Write variable 45 (Write user iteration command)

Read variable 47 (Read servo PID command)

Write variable 47 (Write user PID command)
Chapter 2 Function/Function Block Description 2-331

READ_SV
V # Definition (Continued) R W
44 Set user iteration command -when set to one, allows you to use

the user iteration command before the slow velocity filter. The
user iteration command is written with variable 45. A valid value
should be written to variable 45 before variable 44 is set to one.

0 = use servo iteration command (default)
1 = use user iteration command before PID calculations

Note: When this variable is 1, Superimposed Moves (Variable 66)
will not be applied.

S S

45 User iteration command - allows you to read the result of the
servo iteration command and write the user iteration command to
the input of the next PIC calculations when variable 44 is set to
one. The value read or written is the distance in feedback units per
servo update.

To zero the command, a zero must be written with variable 45.
Otherwise, the most recent write value will be in effect.

The range is -67108864 to 67108863 FU/update

Note: Reading this variable while a Superimposed Move (Vari-
able 66) is being applied will not result in returning the combined
iteration command for this axis and it’s assigned Superimposed
Move axis. It will return only the iteration command for this axis’s
move.

S S

46 Set user PID command - when set to one, allows you to use the
user PID command after the PID calculation and before the D/A
command. You can then write a user PID command with varible
47. A valid PID command should be written to variable 47 before
variable 46 is set to one.

0 = use servo PID command (default)

1 = use user PID command

NOTE: Not available with a stepper axis or a SERCOS axis.

S S
2-332 Chapter 2 Function/Function Block Description

READ_SV
V # Definition (Continued) R W
47 User PID command - allows you to read the output of the servo

PID command that is to be sent to the D/A and write a user PID
command when variable 46 is set to one.

To zero the PID command, a zero must be written to variable 47.
Otherwise, the most recent write value will be in effect.

Units are D/A bits where one bit is .33mV.

The range is -32768 to 32767 D/A bits.

NOTE: Not available with a stepper axis or a SERCOS axis.

S S

48 Disable servo software- when set to one, the ANLG_OUT func-
tion can be used to control the D/A command or, with a SERCOS
system, the SCS_CTRL and the SCA_WCYC functions can be
used to control the axis instead of the servo software.

The most recent value from the servo software, from the
ANLG_OUT function, or the most recent position value from the
SCA_WCYC function, remains in effect regardless of any E-stop
or other fault conditions.

0 = use servo software (default)

1 = disable servo software {use ANLG_OUT) [use ANLG_OUT
function or D/A command; for SERCOS, use the SCS_CTRL
function (to set the control bits) and the SCA_WCYC function (to
write the position) or the battery box (to control velocity) of the
axis.

NOTE: Not available with the stepper axis module.

S S

49 Reserved

50 Override endlimit check - allows you to disable endlimit check-
ing whether referencing has occurred or not.

0 = enable endlimit check

1 = disable endlimit check

Note: If the Servo Setup “Ignore Limits” selection was “Yes,”
variable 50 will be 1. If the selection was “No” or “Until Refer-
enced”, variable 50 will be 0.

Note: If the Servo Setup “Ignore limits?” selection was “Yes” and
the ladder writes 0 to variable 50 via WRITE_SV, the end limit
check will default to “Ignore Limits Until Referenced”.

S S
Chapter 2 Function/Function Block Description 2-333

READ_SV
The table below summarizes the programming features that affect whether or not endlimits
are checked.

Variable 50

Servo Setup
Ignore limits?

Reference
Occurred?

Status of
Check Limits

0 Until Referenced No No Check
0 Until Referenced Yes Check
0 No Don’t Care Check
0 Yes No No Check
0 Yes Yes Check
1 Don’t Care Don’t Care No Check

V# Definition (Continued) R W
51 SERCOS command position - reads the SERCOS position.

The value is in feedback units.

S

55 Queued move type - The queued move type is indicated by a num-
ber:

S

 11 position move 20 ratiosyn or ratiogr
 12 distance move 22 ratiocam
 14 velocity start 23 ratioslp
 16 fast reference

or ladder reference
24 ratioreal
2-334 Chapter 2 Function/Function Block Description

READ_SV
V # Definition (Continued) R W
58 SERCOS Modulo Value - tells the control what the SERCOS

drive’s modulo value is for its SERCOS digitizing axis. Writing to
this variable will not change the modulo value in the SERCOS drive.
This only tells the control what modulo value the SERCOS drive is
using so the control can account for the rollover in the feedback
value it’s reading from the drive. This value is read and written in
feedback units.

The rule for using this variable is:

If the axis is a SERCOS digitizing axis
AND
Bit 7 (modulo format) of IDN 76 (position data scaling type) is set-
AND
IDN 103 (modulo value) is non-zero
THEN
Write the modulo value to variable 58 via
WRITE_SV

Writing a value of zero to this variable tells the control that modulo
format is not being used in the SERCOS drive. Writing variable 58 is
only required for a SERCOS digitizing axis. The modulo flag and
value for a SERCOS servo axis are read from the drive when the
SCA_CLOS function block is executed.

Reading this variable with READ_SV will not read the modulo
value from the drive. It will only read what is currently stored in
variable 58.

S, D S, D

59 Command Position Based Master/Slave - Indicates and specifies
if RATIO_GR, RATIOSYN, and RATIOPRO will base their slave
axis motion on the master axis’ actual position or command posi-
tion. The slave axis number is entered at the AXIS input. When
writing this variable, the WRITE_SV function must be executed
prior to the execution of the RATIO_GR, RATIOSYN, or RATIO-
PRO function. Velocity compensation should be inhibited (Variable
32 = 1) when using this feature.

0 = Use master’s actual position (default)

1 = Use master’s command position

Note: This variable must be 0 if the master axis is a time or digitiz-
ing axis, otherwise a “Master axis is not available” P-error will
occur when the RATIO move is attempted.

S S
Chapter 2 Function/Function Block Description 2-335

READ_SV
V # Definition (Continued) R W
60 Servo Axis S-Curve interpolation - indicates/selects whether S-

Curve Interpolation or Linear Ramp Interpolation will be used
when the axis is accelerating and decelerating. Writing this variable
is only allowed if the axis’ “Enable S-Curve checkbox is checked in
Servo Setup.

0 = the current acceleration ramp and deceleration ramp will be
used to accelerate and decelerate the axis

1 = the current S-Curve will be used to accelerate and decelerate the
axis

S S

61 Multiple Interrupt Velocity Compensation – selects whether
multiple interrupt velocity compensation or normal velocity com-
pensation will be used for master/slave moves. The slave axis
number should be specified at the AXIS input.

Valid Range = [0,1]

0 = Use normal single-interrupt velocity compensation (default)
1 = Use multiple-interrupt velocity compensation (default for dig-
ital drive axes)

Normal velocity compensation compensates for the inherent one-
interrupt position lag that occurs between master and slave axes
when the master’s actual position is used to command the slave
axis. With SERCOS and digital drive axes, there is a multiple-
interrupt lag that occurs.

With SERCOS axes, the “Position Error Cyclic Update Offset”
specified in Servo Setup is used to determine the correct number
of interrupts. The offset that provides the correct position error in
the control will also be the offset that provides the correct amount
of velocity compensation.

With digital drive axes, the correct number of interrupts is 3.
These defaults are established when STRTSERV or DSTRTSRV
executes.

Due to the larger amount of velocity compensation, SERCOS and
digital drive axes will default to using a velocity compensation fil-
ter to avoid an overly sensitive slave axis. This will cause some
lag to occur between the master and slave positions during master
acceleration and deceleration. This filter can be adjusted or elimi-
nated with Variable 62. See Variable 62 for a description of the
velocity compensation filter.

If Variable 32 Velocity Compensation Flag = 1, all velocity com-
pensation will be inhibited regardless of the state of variable 61.

S S
2-336 Chapter 2 Function/Function Block Description

READ_SV
V # Definition (Continued) R W
62 Velocity Compensation Filter – specifies the number of servo

interrupts in which a given amount of velocity compensation will be
applied to a slave axis

Valid Range = [1,20]

1 = the amount of velocity compensation calculated for a
given interrupt will be applied in 1 interrupt (i.e. no filter)

2 = the amount will be divided up and applied over the next 2 inter-
rupts

3 = the amount will be divided up and applied over the next 3 inter-
rupts

.

.

.
20 = the amount will be divided up and applied over the next 20

interrupts

Increasing this value will reduce the sensitivity of the slave to
changes in the master’s velocity but will increase the amount of
master/slave position lag that will occur during master acceleration
and deceleration. Reducing this value will reduce or eliminate the
amount of master/slave position lag that will occur during master
acceleration and deceleration but will increase the sensitivity of the
slave to changes in the master’s velocity. Note that this master/slave
position lag only occurs during acceleration and deceleration of the
master axis.

Default = 1, for analog interface servo axes
 = 3, for digital drive axes
 = Position Error Cyclic Update Offset + 6,
 for SERCOS axes

S S
Chapter 2 Function/Function Block Description 2-337

READ_SV
V # Definition (Continued) R W
63 Resumable E-Stop Allow - selects whether the User-Set E-Stop

(E_STOP function) and the Excess Following Error E-Stop will be
resumable.

When this variable is 1, the E_STOP function and the Excess Fol-
lowing Error E-Stop will execute a Resumable E-Stop. When a
Resumable E-Stop occurs, the following happens:

1. The servo loop is opened

2. Zero voltage is sent to the analog outputs.

3. The moves in the active and next queues remain intact.

4. The axis’ Normal Interpolator remains running.

5. The axis goes into Resume Mode. In Resume Mode, the axis will
follow the Resume Interpolator. The Resume Interpolator will
output zero velocity until the RESUME function is called. The
RESUME function can only be called after the Resumable E-
Stop has been reset and the servo loop has been closed. The axis
remains in Resume Mode until the RESUME function brings it
back on path or until a non-resumable E-Stop occurs and cancels
Resume Mode.

When this variable is 0, the E_STOP function and the Excess Fol-
lowing Error E-Stop will execute a normal E-Stop (i.e. open the
servo loop, zero voltage to the Analog outputs, and clear the active
and next queues).

This variable is initialized by STRTSERV based on the selection in
Servo Setup.

Note that the E_STOP function and the Excess Following Error E-
Stop are the only types of E-Stops that are resumable. All other
types of E-Stops will execute normally regardless of the state of this
variable.

Also see READ_SV Variable 64, RESMODE?, and RESUME.

S S

64 Resume distance - is the signed distance between the Resume
Interpolator’s command position and the Normal Interpolator’s
command position in ladder units. This value determines the direc-
tion and distance of a RESUME move. If this value is positive, the
RESUME function will cause the axis to move in the positive direc-
tion. If this value is negative, the RESUME function will cause the
axis to move in the negative direction. This value is only valid when
the axis is in Resume Mode.

Also see READ_SV Variable 63, RESMODE?, and RESUME.

READ_SVF reads the distance in feedback units.

S

2-338 Chapter 2 Function/Function Block Description

READ_SV
V # Definition (Continued) R W
65 Velocity Compensation Factor – is the value used to multiply the

change in the master axis feedback delta when calculating the slave
axis’s velocity compensation. Refer to Variable 61 for a description
of Multiple Interrupt Velocity Compensation. The slave axis num-
ber should be specified at the AXIS input.

For most applications, the default value will be correct and this vari-
able should not be changed. However, the exception to this rule is
described in the following SERCOS NOTE.

SERCOS Note: For SERCOS axes, this value defaults to [Position
Error Cyclic Update Offset + 6]. The Position Error Cyclic Update
Offset is entered in Servo Setup. It is used to correctly calculate the
position error of a SERCOS axis. In most cases, this default value
will be the correct value to eliminate any position lag between
SERCOS master and slave axes. However, if the master and slave
axes are different types, (i.e. one analog interface and the other
SERCOS) or the master and slave SERCOS drives are different (i.e.
different manufacturer), it may be necessary to change this value to
eliminate position lag between the master and slave axes. If this
value is changed, it may also be desirable to change the velocity
compensation filter. Refer to Variable 62 for a description of the
velocity compensation filter.

Valid Range = [1,20]

1 = The change in the master axis feedback is not multiplied
prior to calculating the slave axis’s velocity compensation. In
other words, it will operate exactly like normal velocity com-
pensation.

2 = The change in the master axis feedback delta will be multiplied
by 2 when calculating the slave axis’s velocity compensation.

.

.

.
20 = The change in the master axis feedback delta will be multiplied

by 20 when calculating the slave axis’s velocity compensation.
Default Value = 1, for analog interface servo axes

 = 3, for digital drive axes
 = Position Error Cyclic Update Offset + 6,
 for SERCOS axes

S S
Chapter 2 Function/Function Block Description 2-339

READ_SV
V # Definition (Continued) R W
66 Superimposed Move Axis Assignment – activates or cancels the

Superimposed Move feature. This feature allows the ladder to add a
move on top of an axis’s current move.

Writing a valid servo axis number to this variable turns on the
Superimposed Move feature by assigning that axis (the Superim-
posed Move axis) to the axis specified at the AXIS input. (the
Receiving axis). After this variable is written, any move executed
by the Superimposed Move axis will be added on top of the current
move of the Receiving axis. Internally, this is performed by adding
the iteration command of the Superimposed Move axis to the itera-
tion command of the Receiving axis. The Receiving Axis will only
accept the additional command while it is executing a RATIO_
move or a VEL_STRT move. A typical application will specifiy a
virtual axis for this variable. Writing a value of 0 cancels the Super-
imposed Move axis assignment. Both the Receiving axis and the
Superimposed Move axis must have the same servo update rate.

Reading this variable will return the axis number of the Superim-
posed Move axis. A returned value of 0 indicates there is no Super-
imposed Move axis assigned.

Valid Range = [0,16] and [101,116]
Default Value = 0

Notes:
If Variable 44 (User Iteration Command) is set to 1,
Superimposed Moves will not be applied.

Reading Variable 45 (Iteration Command) will not return the
combined iteration command of the specified axis and the
assigned Superimposed Move axis. It will return only the iter-
ation command of the specified axis.

S S
2-340 Chapter 2 Function/Function Block Description

READ_SV
V # Definition (Continued) R W
67 Digital Drive Status Word – indicates the following digital drive

states. Each bit represents a state.

0000 0001H - Startup Commutation Complete
0000 0002H - At Zero Speed
0000 0004H - In Speed Window
0000 0008H - Up to Speed
0000 0010H - At Plus Current Limit
0000 0020H - At Minus Current Limit
0000 0040H - Drive Bus Charged
0000 0080H - Drive Enabled
0000 0100H - Drive Ready
0000 0200H - Release Brake
0000 0400H - Drive Fault
0000 0800H - Drive Warning
0000 1000H - 220V Shunt on 440V Drive
0000 2000H - Drive Ready and Bus Charged
0100 0000H - Hardware Enable Line
0200 0000H - Auxiliary Feedback Loss-of-Feedback

All other bits are reserved

Note: The S200 drive does not support the "Drive Bus Charged"
bit. This bit will always be set. The "Drive Ready and Bus
Charged" bit will reflect the state of "Drive Ready".

S,D
Chapter 2 Function/Function Block Description 2-341

READ_SV
V # Definition (Continued) R W
68 Digital Drive Faults – indicates any faults currently active in the

digital drive. Each bit represents a fault.

0000 0000H - No fault
0000 0001H - Drive Memory Fault
0000 0002H - Drive Bus Over Voltage Fault
0000 0004H - Drive PM1 Over Current Fault
0000 0008H - Drive Bus Under Voltage Fault
0000 0010H - Motor Temperature Fault
0000 0020H - Continuous Current Fault
0000 0040H - Drive Heatsink Temperature Fault
0000 0080H - Drive F2 Feedback Fault
0000 0100H - Drive F1 Feedback Fault
0000 0200H - Drive Ambient Temperature Fault
0000 0400H - Motor Calculated Temperature Fault
0000 0800H - Drive Timing Fault
0000 1000H - Drive Interface Fault
0000 2000H - User Set Fault
0000 4000H - Drive F1 Communication Fault
0000 8000H - Over Speed Fault
0001 0000H - Over Current Fault
0002 0000H - Control Panel Disconnect Fault
0004 0000H - Drive Power Module Fault
0008 0000H - Feedback Type Mismatch Fault
0010 0000H - ENDAT/BiSS Fault
0020 0000H - Drive Relay Fault
0040 0000H - Drive PM2 Over Current Fault
0080 0000H - Drive PM Temperature Fault
0100 0000H - Motor Ground Fault
0200 0000H - Drive AC Input Over Voltage Fault
0400 0000H - Overtravel Plus Fault
0800 0000H - Overtravel Minus Fault
1000 0000H - Digital Link Communication Error
2000 0000H - Invalid Switch Setting Fault
4000 0000H - Hardware Failure Fault
8000 0000H - S200 Fault

S

2-342 Chapter 2 Function/Function Block Description

READ_SV
V # Definition (Continued) R W
69 Digital Drive Warnings – indicates any warnings currently active

in the digital drive. Each bit represents a warning.

0000 0000H - No warnings
0000 0001H - Drive Heatsink Temperature Warning
0000 0002H - Drive Ambient Temperature Warning
0000 0004H - Motor Temperature Warning
0000 0008H - Motor Calculated Temperature Warning
0000 0010H - Overtravel Plus Warning
0000 0020H - Overtravel Minus Warning

All other bits are reserved.

S

70 Digital Drive Analog Input – returns a value representing the volt-
age at the digital drive’s analog input. The value is in the range [-
8192,8191] where 8192 counts = 10 volts.

For example:

8191 = 10V
4096 = 5V
0 = 0V
-4096 = -5V
-8192 = -10V

The following formula can be used to calculate the voltage:
Voltage = Variable70 * 10V / 8192

S

71 Digital Drive Inputs – returns the states of the digital drive inputs.
Each bit represents the state of one input.

Bit 0 = Input 1
Bit 1 = Input 2
Bit 2 = Input 3
Bit 3 = Input 4
Bit 4 = Input 5
Bit 5 = Input 6
Bit 6 = Input 7
Bit 7 = Input 8
Bits 8 through 31 are undefined

0 means the input if OFF
1 means the input is ON

Note: “MMC Application Input” must be checked as an Input
Assignment in PiCPro for each input that is to be read here. If not,
the bit representing that input will always be 0.

S

Chapter 2 Function/Function Block Description 2-343

READ_SV
V # Definition (Continued) R W
72 Digital Drive Outputs – Reading this variable returns the states of

the digital drive outputs. Each bit represents the state of one output.

Bit 0 = Output 1
Bit 1 = Output 2
Bit 2 = Output 3
Bit 3 = Output 4
Bit 4 = Output 5
Bits 5 through 31 are undefined

0 means the output is OFF
1 means the output is ON

Writing this variable will set or reset the digital drive outputs. Write
a bit to 0 to turn OFF an output and write a bit to 1 to turn ON an
output.

Note: “MMC Application Output” must be checked as an Output
Assignment in PiCPro for each output that is to be written by this
variable. If not, writing this variable will have no effect on the dig-
ital drive output.

Note: If the control of an output is specified in drive setup to be
controlled by both the MMC Application and other states within the
drive, the state defined by the MMC takes precedence.

Note: If PLS or CAM_OUT has specified controlling a digital
drive output, writing this variable will have no effect on that output.
Other outputs on the same digital drive can still be written by this
variable. Only the bits of the outputs specified by PLS or
CAM_OUT will be ignored. However, if the application relin-
quishes PLS or CAM_OUT control of the output by first setting the
EN and DABL inputs to disable PLS or CAM_OUT and then reset-
ting the EN input to turn off PLS or CAM_OUT, this variable can
then again control the output.

Note: The S200 drive supports four outputs.

Bit 0 = Output 1
Bit 1 = Output 2
Bit 2 = Output 3
Bit 3 = Output 4
Bits 4 through 31 are undefined

S S
2-344 Chapter 2 Function/Function Block Description

READ_SV
73 Digital Drive Current – is returned in the range [-25500,25500]
where the units represent .01 amps.

For example:

25500 = 255.00 amps
165 = 1.65 amps
-14554 = -145.54 amps

S

74 Digital Drive Average Current – is returned in the range
[0,25500] where the units represent .01 amps.

For example:

25500 = 255.00 amps
165 = 1.65 amps

Note: the S200 drive does not support this variable. If the AXIS
input indicates an S200 drive axis, the OK output will be low and
the RSLT output will be undefined.

S

V # Definition (Continued) R W
75 Digital Drive Plus Current Limit – is returned in the range

[0,25500] where the units represent .01 amps.

For example:

25500 = 255.00 amps
165 = 1.65 amps

The digital drive will limit this value to the lesser of the Motor
Maximum Current and the Drive Maximum Current.

S S

76 Digital Drive Minus Current Limit – is in the range [0,25500]
where the units represent .01 amps.

For example:

25500 = 255.00 amps
165 = 1.65 amps

The digital drive will limit this value to the lesser of the Motor
Maximum Current and the Drive Maximum Current.

S S
Chapter 2 Function/Function Block Description 2-345

READ_SV
77 Digital Drive Motor Temperature – If the motor has a thermistor,
the temperature is returned in degrees C. If the motor has a thermal
switch, 0 is returned if the switch is open and 1 is returned if the
switch is closed. If the motor has neither a thermistor nor a thermal
switch, the calculated termperature is returned in degrees C.

Note: The S200 drive does not support this variable. If the AXIS
input indicates an S200 drive axis, the OK output will be low and
the RSLT output will be undefined.

S

78 Digital Drive Position Loop Proportional Gain – is in the range
[0,32767]. The units are:

feedback units / minute / feedback units of following error

S S

79 Digital Drive Position Loop Feedforward – is the percentage of
feedforward applied to the digital drive’s position loop. The range
is [0%,100%].

S S

80 Digital Drive Velocity Loop Proportional Gain – is in the range
[0,32767] representing values in the range [0.0,3276.7]

S S

81 Digital Drive Velocity Loop Integral Gain – is in the range
[0,32767].

S S

V # Definition (Continued) R W
82 Digital Drive Velocity Loop Integrator Inhibit

0 = do not inhibit the digital drive velocity loop integrator
1 = inhibit the digital drive velocity loop integrator

S S

83 Digital Drive Velocity Loop Integrator Hold

0 = do not hold the digital drive velocity loop integrator
1 = hold the digital drive velocity loop integrator

S S

84 Digital Drive Current Plus Enable

0 = disable digital drive plus current
1 = enable digital drive plus current
default = 1

S S
2-346 Chapter 2 Function/Function Block Description

READ_SV
85 Digital Drive Current Minus Enable

0 = disable digital drive minus current
1 = enable digital drive minus current
default = 1

S S

86 Prevent Digital Drive Overtravel Plus Fault – is typically used
to prevent a Digital Drive Overtravel Plus Fault from occurring
while the axis is being moved off the plus limit switch. This only
applies to a digital drive system.

0 = generate an Overtravel Plus Fault when the plus travel limit is
reached
1 = do not generate an Overtravel Plus Fault when the plus travel
limit is reached

Note: The drive will always prohibit travel beyond the plus limit
regardless of the state of this variable. This variable only prevents
the drive fault from being generated.

Note: A drive warning is always generated when the axis reaches
the plus limit switch regardless of the state of this variable. See
variable 69.

S S

V # Definition (Continued) R W
87 Prevent Digital Drive Overtravel Minus Fault – is typically used

to prevent a Digital Drive Overtravel Minus Fault from occurring
while the axis is being moved off the minus limit switch. This only
applies to a digital drive system.

0 = generate an Overtravel Minus Fault when the minus travel limit
is reached
1 = do not generate an Overtravel Minus Fault when the minus
travel limit is reached

Note: The drive will always prohibit travel beyond the minus limit
regardless of the state of this variable. This variable only prevents
the drive fault from being generated.

Note: A drive warning is always generated when the axis reaches
the minus limit switch regardless of the state of this variable. See
variable 69.

S S

88 Digital Drive Position Loop I-Gain – specifies the integral gain
value to be used in the digital drive’s position loop. The units are
((FU / min) * 1000) / (FUFE * min).

S S
Chapter 2 Function/Function Block Description 2-347

READ_SV
89 Digital Drive Predicted Command Velocity – is the command
velocity that can be used to perform a smooth transition when
switching the digital drive to Velocity Mode. See DVELCMD. The
units are RPM, motor revolutions / min.

S

V # Definition (Continued) R W
90 Digital Drive Absolute Reference Position – specifies the posi-

tion value, in feedback units, to be assigned to the current position
of a digital drive axis with an absolute feedback device. This is a
one-time setup operation. This value is sent to the digital drive and
the drive will retain this reference position through power cycles.
When this value is sent to the digital drive, the current rollover posi-
tion is also sent. The digital drive uses the rollover position to prop-
erly calculate the absolute position on subsequent power cycles.
(Therefore, if the rollover position is ever changed by the ladder
with WRITE_SV Variable 12, this absolute reference will need to
be performed again.) The function REF_DNE? will indicate that
the absolute reference is complete. Events that will clear this refer-
ence are:

- Drive scaling changed

- Loss-of-feedback occurred

- Location of F1 or F2 feedback has changed

- PiCPro’s "Clear Absolute Reference" was selected by the user

- Motor is changed

The valid range is [0, 2147483647]. Also, after feedback scaling is
applied in the digital drive, the result must be in the range
[0, 4294967295].

NOTE: The absolute reference position will be retained through
power cycles provided the encoder does not rotate more than one-
fourth of a feedback cycle or 1,073,741,824 encoder counts, which-
ever is less, while power is off. If the encoder rotates beyond this
limit while power is off, this variable must be written again to re-
establish the absolute reference position.

S,D

91 Digital-Drive-to-Control Communication Errors – is the num-
ber of communication errors detected in messages sent from the
digital drive to the MMCD.

S

92 Control-to-Digital-Drive Communication Errors – is the num-
ber of communication errors detected in messages sent from the
MMCD to the digital drive.

S

2-348 Chapter 2 Function/Function Block Description

READ_SV
93 Virtual Axis Feedback Source Switch – selects the source of the
virtual axis’s feedback.

0 = the control automatically provides a feedback value (default)

1 = the ladder provides a feedback value via WRITE_SV variable
94

S S

V # Definition (Continued) R W
94 Virtual Axis Feedback – allows you to provide the feedback value

for a virtual axis. The control assumes this value is in feedback
units in the range [-8388608,8388607]. This will only have an
effect when WRITE_SV variable 93 is 1.

S

95 Distance Between the Last Two Good Marks – returns the dis-
tance, in ladder units, between the last two good registration marks.
READ_SVF returns this value in feedback units.

S,D

96 Registration Compensation – returns the most recent registration
compensation value in ladder units. READ_SVF returns this value
in feedback units.

S,D

97 Consecutive Good Marks – returns the number of consecutive
good registration marks since the last bad registration mark. When
a bad mark occurs, this value will be reset to 0.

Any number can be written to this value via WRITE_SV. Typically,
0 would be written to initialize this value.

S,D S,D

98 Master Axis Number – returns the axis number of the master axis.
When the axis specified at the AXIS input is executing a RATIO_
move, this variable will return the master’s axis number. If no
move is active or the active move is not a RATIO_ move, this vari-
able will return 0.

S

99 Actual Velocity – is sampled every 256 msec and is returned in
ladder units/minute. If the actual velocity exceeds the range [-
2147483648 lu/min, 2147483647 lu/min], the OK output will be
reset and the RSLT output will return 0.

S,D
Chapter 2 Function/Function Block Description 2-349

READ_SV
100 Fast Input Response Time – specifies the observed response time
of the fast input in µsec. When this value is non-zero, the control
will compensate for this time delay by calculating and applying
adjustments to the latched positions based on the current velocity of
the axis. The valid range for this variable is [0µsec, 32767µsec].

S,D S,D

101 S200 Fault – returns the fault code from an S200 digital drive.
This variable is only valid when bit "8000 0000H S200 Fault" of
variable of 68 is set. The fault codes are:

 0 reserved
 1 No Fault
 2 Motor Over Temperature
 3 Drive Over/Under Temperature
 4 Drive I*t Too High
 5 Motor I*I*t Too High
 6 Optional Battery Low
 7 Bus Over Voltage
 8 Bus Under Voltage
 9 Motor line-to-line or line-to-neutral Short
 10 Output Over Current
 11 Hall Fault
 12 SFD Configuration Error
 13 SFD Short
 14 SFD Motor Data Error
 15 SFD Sensor Failure
 16 SFD UART Error
 17 SFD Communication Error
 18 Option Card Watch Dog Timer
 19 Position Error Too Large
 20 OC Fault

S

2-350 Chapter 2 Function/Function Block Description

READ_SVF
READ_SVF
Read Servo Fast Motion/DATA

READ_SVF(AXIS := <<USINT>>, VAR := <<SINT>>, OK => <<BOOL>>,
RSLT => <<DINT>>)

The read servo fast function allows the specified variable (VAR) to be read for the
specified axis. The results of the read are displayed at RSLT. The READ_SVF
function performs the read faster than the READ_SV function. It consumes less
CPU time in exchange for some features. Less verification is performed on the
inputs to READ_SVF. All values that involve velocity or distance are in feedback
units and updates rather than ladder units and minutes.

Refer to the Variables Table in the READ_SV function for a listing of variables
that can be read using the READ_SVF function.

NOTE: Because of minimal error checking, calling READ_SVF without first ini-
tializing servos using STRTSERV will result in invalid outputs at OK and RSLT.

⁄ƒƒƒƒƒƒƒƒƒø
≥READ_SVF ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS RSLT√
≥ ≥
¥VAR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo, digitizing, or
time)

VAR (SINT) - variable to be read

Outputs: OK (BOOL) - execution completed without error

RSLT (DINT) - servo data read
Chapter 2 Function/Function Block Description 2-351

REAL2DI
REAL2DI
Real to Double Integer Datatype/REALCONV

REAL2DI(N := <<REAL>>, OK => <<BOOL>>, OUT => <<DINT>>)

The REAL2DI function converts a real into a double integer. The result is placed
in a variable at OUT.

REAL2DW
Real to Double Word Datatype/REALCONV

REAL2DW(IN := <<REAL>>, OK => <<BOOL>>, OUT => <<DWORD>>)

The REAL2DW function converts a real into a double word. The result is placed
in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ REAL2DI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (REAL) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (DINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ REAL2DW ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (REAL) - value to convert

Outputs: OK (BOOL) -execution completed without error

OUT (DWORD) - converted value
2-352 Chapter 2 Function/Function Block Description

REAL2UDI
REAL2LR
Real to Long Real Datatype/REALCONV

REAL2LR(IN := <<REAL>>, OK => <<BOOL>>, OUT => <<LREAL>>)

The REAL2LR function converts a real into a long real. The result is placed in a
variable at OUT.

REAL2UDI
Real to Unsigned Double Integer Datatype/REALCONV

REAL2UDI(IN := <<REAL>>, OK => <<BOOL>>, OUT => <<UDINT>>)

The REAL2UDI function converts a real into a unsigned double integer. The
result is placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ REAL2LR ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (REAL) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LREAL) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ REAL2UDI≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (REAL) - value to convert

Outputs:OK (BOOL) - execution completed without error

OUT (UDINT) - converted value
Chapter 2 Function/Function Block Description 2-353

REF_DNE?
REF_DNE?
Reference Done? Motion/REF

REF_DNE?(AXIS := <<USINT>>, OK => <<BOOL>>, RDNE => <<BOOL>>)

The reference done function asks the question “Is the machine reference cycle
complete?” If RDNE is set, a reference cycle is done. If not, then the reference
cycle is not done.

RDNE is cleared when servo reinitialization takes place and whenever a reference
function is called.

NOTE: This function cannot be used with the stepper axis module.

REF_END
Reference End Motion/REF

REF_END(AXIS := <<USINT>>, OK => <<BOOL>>)

When the reference switch is tripped in a ladder machine reference, this function is
used to inform the software that the reference has occurred. Also see LAD_REF.
When performing a LAD_REF on the index mark with a virtual axis, REF_END
will also generate the index event.

⁄ƒƒƒƒƒƒƒƒƒø
≥ REF_DNE?≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS RDNE√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo or digitizing)

Outputs:OK (BOOL) - execution completed without error

RDNE (BOOL) - indicates if machine reference is done

⁄ƒƒƒƒƒƒƒƒƒø
≥ REF_END ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo or digitizing)

Outputs: OK (BOOL) - execution completed without error

IMPORTANT

The REF_END function is always used when doing a ladder
(LAD_REF) machine reference. The REF_END function cannot be
used with the stepper axis module.
2-354 Chapter 2 Function/Function Block Description

REGIST
REGIST
Registration Motion/MOVE_SUP

REGIST(AXIS := <<USINT>>, DIST := <<UDINT>>, TOLR := <<UDINT>>,
IGNR := <<UDINT>>, LGTH := <<UDINT>>, DIM := <<DINT>>, OK =>
<<BOOL>>)

The registration function is used to set the axis position to a defined value when a
fast input occurs. It can be used on a servo or digitizing axis with any move type.

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ REGIST ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥AXIS ≥
 ≥ ≥
 ¥DIST ≥
 ≥ ≥
 ¥TOLR ≥
 ≥ ≥
 ¥IGNR ≥
 ≥ ≥
 ¥LGTH ≥
 ≥ ≥
 ¥DIM ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies the axis registration will be
applied to. (servo or digitizing)
NOTE: Fast input on axis feedback required.

DIST (UDINT) - distance between registration marks
that identifies the second mark as a good mark. (Usu-
ally the same as LGTH.) Range of values is 0 to
536,870,912 FU. Entered in LU.

TOLR (UDINT) - error allowed to exist between two
marks when compared to DIST. Range of values is 0 to
536,870,912 FU. Entered in LU.

IGNR (UDINT) - distance after a mark in which any
mark will be ignored. Range of values is 0 to
536,870,912 FU. Entered in LU.

LGTH (UDINT) - theoretical distance between good
registration marks. Used to calculate the compensation
needed, if any, in master/slave applications. Range of
values is 0 to 536,870,912 FU. Entering a zero turns
registration off. Entered in LU.

DIM (DINT) - value axis position will take on when a
good registration mark occurs. Range of values is -
32,768 to 32,767 FU. Entered in LU.

Outputs: OK (BOOL) - execution completed without error

The OK will not be set if any of the following occur:

• The axis is not found.

• Any input is out of range.

• A reference move is in the active or next queue.
Chapter 2 Function/Function Block Description 2-355

REGIST
SERCOS NOTE: The function block SCA_PBIT must be called and completed
successfully prior to calling the REGIST function with a SER-
COS axis.

Registration is most frequently used in master/slave applications. When used with
master/slave moves, it has the additional ability of compensating for errors that
may occur. The end result is a system that remains synchronized with no accumu-
lated error. Repeatable accuracy throughout a process can be maintained.

The axis identified at AXIS may be a master or a slave axis. Registration can run
on either one. But because the control may not be controlling the master axis, any
compensation for error is done on the slave axis.

The software calculates how much compensation is required by the value entered
in LGTH (Note: A zero entered in LGTH turns registration off). This is the theo-
retical distance between good registration marks. In a packaging application, this
is often equivalent to the product length or the cycle length.

Note: For registration to work properly, the ratio of the LGTH to the slave or mas-
ter distance entered in the ratio move function must equal a whole number as illus-
trated in the following equations.

When registration is used in combination with master-slave ratio moves, you must
ensure that registration and the ratio moves work together properly. In most appli-
cations there is an integer relationship between the value entered at LGTH and the
associated distance traveled for both the master and slave.

The next three inputs, DIST, TOLR, and IGNR, are used to determine whether or
not the registration mark is good. For a mark to be recognized as good, it must be
the value entered in DIST from the previous mark. A tolerance can be entered in
TOLR which allows an error between two marks when compared to DIST.

, or 2 etc. (whole number)

�� !
�"

#"

�"

 ×

$�$
#"

--- ��

For Slave Registration:

For Master Registration:

, or 2 etc. (whole number)

�� !
�"

#"

�"

 ×

%�$
#"

--- ��
2-356 Chapter 2 Function/Function Block Description

REGIST
A distance can be entered in IGNR which allows any marks within that distance to
be ignored following the last mark.

Note: This last mark is not necessarily a good mark.

This is illustrated in What Determines a Good Mark The second registration mark
is recognized as a good mark because it is within the distance ± tolerance range
and it is not in the ignore region.

Note on tolerance: If a value of 10 units is entered at TOLR, then there is a range
of ±10 which make up the tolerance band.

Figure 2-26. What Determines a Good Mark

If all marks are to be recognized as good marks, enter a 0 in DIST and a 0 in
IGNR.

Whenever a good registration mark occurs, the axis position is reset to the value
entered in DIM.

PROGRAMMING NOTE

The REGIST function should be called only once when you are ready to begin reg-
istration. It is only necessary to call it again if any of the inputs have changed.
When the REGIST function is called, any pending non-motion reference is
cleared.

Note: Any motion reference in the active or next queue will prevent the regis-
tration function from executing.

SERCOS NOTE: The function block SCA_PBIT must be called and completed
successfully prior to calling the REGIST function with a SER-
COS axis.

Any registration mark not
ignored

Next registration
mark

Tolerance
Band

Ignore
Chapter 2 Function/Function Block Description 2-357

REGIST
Background on registration

In many closed-loop servo systems, it is often necessary to maintain synchroniza-
tion and accurate positioning repeatedly throughout a process. This can be diffi-
cult when the product or process itself is inconsistent. Using registration allows
you to overcome this difficulty.

Many factors can contribute to inconsistency. Some examples of the numerous
possibilities are as follows:

• Working with non-rigid material which may stretch or shrink during pro-
cessing.

• Working with the mechanics of a system where the revolution of a feedback
device may give you 5975 counts on one revolution and 5974 on the next.

• Unevenly spaced products on a belt.

Typically, when using registration, sensors are used to detect the position of the
product. With non-rigid materials which may stretch or shrink, a photo eye can
detect registration marks on the material. With rigid products (or processes), a
proximity switch could detect material spacing.

Registration capabilities are available on any axis with any move type. The fast
input on the feedback module allows a position at a registration event to be cap-
tured. When this occurs, the system recalculates the numerical representation of
the axis position.

This is important in applications such as packaging or converting where the pro-
cess must be precisely coordinated and any non-rigid material cannot be depended
upon to retain dimensional relationships. These applications usually involve mas-
ter/slave moves. The fast input signals can be used as repeatable references to
which the master and all subsequent slaves continually synchronize. This discus-
sion uses a master/slave application.

Registration example

This example uses the RATIOPRO move which is based on a master/slave algo-
rithm. The move has a defined cycle length. Registration compensation, when
required, takes place within this cycle with the insertion of an offset value calcu-
lated by the software. (There are also offsets that can be entered by you with the
WRITE_SV function.)

Looking at a packaging process (Example of registration) where a labeled product
coming off a web of non-rigid material (master axis) must be cut with a rotary
knife (slave axis) to 5 inch lengths so that the label is always in the center of the
product, you would want to compensate for any variation in product length during
each cycle.
2-358 Chapter 2 Function/Function Block Description

REGIST
Figure 2-27. Example of registration

Correcting taking
place on slave driveRegistration running on master

Draw
Rolls

Photo
Eye

Rotary
Knife

Continuous Web
of Material Registration

Marks

Stationary Machine
Shear Point

Cut product
5" long with

label in center

PIC 900

Drive

Gear
Box

Motor Feedback
Device

Feedback
Device

Feedback
Module
Chapter 2 Function/Function Block Description 2-359

REGIST
If you did not compensate, then the error would accumulate and the label would no
longer be centered. As an example, the product is being cut at a rate of 500 per
minute. If the product becomes stretched so that the actual length is 5.001 inch, in
one minute the label on the product would be off by 1/2 inch--in two minutes, by 1
inch, etc.

By using a photo eye to detect registration marks on the product, any error in prod-
uct length will be detected. The rotary knife will adjust its position to compensate
for any error in product length so that the product is always cut at the correct posi-
tion. Because the stretching of the material is gradual, the compensation will be
minimal. If there is no stretching of the product, no compensation will occur.

Block diagrams of registration showing the interaction between the various com-
ponents of registration are shown in Block diagram of master registration and in
Block diagram of slave registration

Some of the bits and variables of the servo data functions (STATUSSV,
READ_SV, and WRITE_SV) are used in conjunction with registration.

With registration running on the master axis (Example of registration), the actual
axis position is monitored by the control with the feedback device.

The photo eye is watching for registration marks and sending a fast input signal
when it sees one. The “good mark detector” decides if the mark is recognized as
good by the parameters you have defined in DIST, TOLR, and IGNR. Information
coming out of the good mark detector includes whether a good or bad mark has
been detected, if the distance plus tolerance has been exceeded, and the number of
consecutive bad marks.

When a good mark is detected, that information is sent to two places; the registra-
tion calculation and the axis position calculation. In the registration calculation,
the LGTH value, the good mark, and the actual axis position are all used to calcu-
late an offset value for the master.

This offset value is sent to the master/slave profile (through the offset filter if it is
turned on).

When a good mark occurs, the axis position is reset to the value entered in DIM.
2-360 Chapter 2 Function/Function Block Description

REGIST
Figure 2-28. Block diagram of master registration

When registration is running on the slave axis (Block diagram of slave registra-
tion), the block diagram is very similar to the master registration one in Block dia-
gram of master registration

Registration
on master axis

Photo
Fast

Registration Marks

Master axis

Actual Axis Posi-

STATUSSV function

READ_SV function

Good mark detected
Bad mark detected
Distance + tolerance

Number of consecutive bad marks (V11)

DIST TOUR IGNR

Good mark
detector

Good

mark

LGTH

Registration
calculation

Axis position
calculation

DIM

Axis position Numerical
representation of
the master axis
position.

Lock on
Information

Master offset

Master offset filter
(V18) (optional)

Master/slave
profile
(Ratio_gr
Ratiosyn
Ratiopro)

KEY

Indicates an input to the
REGIST function

V Indicates a variable for the
READ_SV or WRITE_SV
functions
Chapter 2 Function/Function Block Description 2-361

REGIST
Figure 2-29. Block diagram of slave registration

Registration
on slave axis

Photo
Fast

Registration Marks

Slave axis

Actual Axis Posi-

STATUSSV function

READ_SV function

Good mark detected
Bad mark detected
Distance + tolerance

Number of consecutive bad marks (V11)

DIST TOUR IGNR

Good mark
detector

Good

mark

LGTH

Registration
calculation

Axis position
calculation

DIM

Axis position Numerical
representation of
the master axis
position.

Lock on
Information

Slave offset

Slave offset filter
(V17) (optional)

Master/slave
profile
(Ratio_gr
Ratiosyn
Ratiopro)

KEY

Indicates an input to the
REGIST function

V Indicates a variable for the
READ_SV or WRITE_SV
functions
2-362 Chapter 2 Function/Function Block Description

REGIST
Two ways in which registration could be used are explained below. Every mark is
recognized in Registration with all good marks This can be done by entering a 0 in
the DIST and a 0 in the IGNR inputs. Now every mark will be recognized as good.

Figure 2-30. Registration with all good marks

This is acceptable when there is no chance for the photo eye to trigger off of any
other mark on the product.

Sometimes there are other marks occurring that you do not want to register off of,
such as those shown in Registration that recognizes some marks as good It is pos-
sible to skip unwanted marks.

Figure 2-31. Registration that recognizes some marks as good

Registration marks

Product length

Distance between rising and
falling edge of registration mark

Registration marks

Product length
Chapter 2 Function/Function Block Description 2-363

RENAME
RENAME
Rename Io/COMM

<<INSTANCE NAME>>:RENAME(REQ := <<BOOL>>, OLDZ :=
<<STRING>>, NEWZ := <<STRING>>, DONE => <<BOOL>>, FAIL =>
<<BOOL>>, ERR => <<INT>>);

Note: The RENAME function block cannot be used with the FMSDISK.

The RENAME function block allows you to rename an existing file on the RAM-
DISK or in PiCPro. The complete pathname is placed in the OLDZ and the new
name is placed in the NEWZ. The new name must not be the name of an existing
file.

At the OLDZ input, enter the complete pathname to rename a file in PiCPro:

or the following to rename a file on the RAMDISK.

 ⁄ NAME ƒø
 ≥ RENAME ≥
 ≥ ≥
 ¥REQ DONE√
 ≥ ≥
 ¥OLDZ FAIL√
 ≥ ≥
 ¥NEWZ ERR√
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (One-shot)

OLDZ (STRING) - a string containing the complete
pathname

NEWZ (STRING) - a string containing the new file-
name

Outputs: DONE (BOOL) - energized if ERR = 0
not energized if ERR ≠ 0

FAIL (BOOL) - energized if ERR ≠ 0
not energized if ERR = 0

ERR (INT) - 0 if data transferred successfully
≠ 0 if data transfer unsuccessful

See Appendix B in the PiCPro Online Help for error
codes.

With a subdirectory,

PICPRO:c:\sub\file-
name.ext$00

or
Without a subdirectory,

PICPRO:c:filename.ext$00

With a subdirectory,

RAMDISK:sub\file-
name.ext$00

or
Without a subdirectory,

RAMDISK:filename.ext$00
2-364 Chapter 2 Function/Function Block Description

RENAME
At the NEWZ input, enter the new filename in the format shown below.

filename.ext$00
Chapter 2 Function/Function Block Description 2-365

REPLACE
REPLACE
Replace String/REPLACE

RENAME(OUT := <<STRING>>, IN1 := <<STRING>>, IN2 := <<STRING>>,
L := <<STRING>>, P := <<INT>>, OK => <<BOOL>>, OUT =>
<<STRING>>)

The REPLACE function is used to replace one or more characters in a STRING
with all characters from another STRING. All characters in the variable at IN2
replace characters in the variable at IN1, starting at the position specified by the
input at P. The input at L specifies how many characters in the variable at IN1 are
being replaced. The variables at IN1 and IN2 must be unique from the variable at
OUT.

An error occurs:

If P = 0

If P > 255

If P > length of IN1

If L > 255

If IN1 = OUT

If IN2 = OUT

If length of IN1 - L + length of IN2 > length of OUT

Example of replace function

⁄ƒƒƒƒƒƒƒƒƒø
≥ REPLACE ≥
≥ ≥
¥EN OK√
≥ ≥
¥OUT---OUT√
≥ ≥
¥IN1 ≥
≥ ≥
¥IN2 ≥
≥ ≥
¥L ≥
≥ ≥
¥P ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

OUT (STRING) - output STRING

IN1 (STRING) - characters to replace

IN2 (STRING) - characters which replace

L (INT) - length

P (INT) - position

Outputs:OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

Var at IN1 Var at IN2 Value at L Value at P Var at OUT
stringLong2 1string 4 7 string1string2
2-366 Chapter 2 Function/Function Block Description

REP_END
REP_END
Repeat Profile End Motion/RATIOMOV

REP_END(AXIS := <<USINT>>, OK => <<BOOL>>)

The repeat profile end function is required to stop repeating profiles that have been
started in the RATIOCAM, RATIOSLP, or RATIO_RL functions.

It will only stop repeating profiles if the function calling for repeating profiles is in
the active queue. It has no effect on moves that are not in the active queue.

Example:

A REP_END function was activated while a RATIOSLP move was in the active
queue at Point 1 shown below. The profile will continue executing until it reaches
segment 5. (See Point 2.) Then it will come to an end instead of returning to seg-
ment 2 as it does when repeating.

Figure 2-32. Ending a repeating profile

⁄ƒƒƒƒƒƒƒƒƒø
≥ REP_END ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies axis (servo)

Outputs: OK (BOOL) - execution completed without error

1 REP_E
ND
func-
tion

Portion of profile that will be repeated
when repeat profile is selected.

2 Profile will be executed to
this point and then will not
repeat but follow segments 5

1 2 3 4 5

First segment Last segment
Chapter 2 Function/Function Block Description 2-367

RESMODE?
RESMODE?
Axis in Resume Mode? Motion/ERRORS

RESMODE?(AXIS := <<USINT>>, OK => <<BOOL>>, RSMD =>
<<BOOL>>)

The RESMODE? function asks if the axis is in Resume Mode. If so, RSMD will
be energized; if not, RSMD will be de-energized. An axis is in Resume Mode
from the time a Resumable E-Stop occurs until the RESUME function moves the
axis back on path and the Normal Interpolator resumes control of the axis or until a
non-resumable E-Stop occurs to cancel Resume Mode. While in Resume Mode,
the Resume Interpolator (commanded via the RESUME function) controls the axis
and the Normal Interpolator is allowed to continue running, but controls nothing.
The difference between the commands of these two interpolators is accumulated in
Resume Distance (READ_SV Variable 64). A Resumable E-Stop occurs when the
E_STOP function is called or an Excess Following Error E-Stop occurs while
Resumable E-Stop Allow is set (WRITE_SV/READ_SV Variable 63).

Also see RESUME and READ_SV Variables 63 & 64.

⁄ƒƒƒƒƒƒƒƒƒø
≥ RESMODE?≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS RSMD√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo only)

Outputs:OK (BOOL) - execution completed without error

RSMD (BOOL) - indicates the axis is in Resume
Mode when set
2-368 Chapter 2 Function/Function Block Description

RESUME
RESUME
Resume to Normal Interpolator Path Motion/ERRORS

RESUME(AXIS := <<USINT>>, RATE := <<UDINT>>, BNDW :=
<<UDINT>>, OK => <<BOOL>>)

After a Resumable E-Stop occurs and the axis goes into Resume Mode, the
RESUME function will command the axis to move back to the Normal Interpola-
tor’s command position at the velocity specified by RATE. The direction and dis-
tance the axis will travel are determined by the Resume Distance (READ_SV
Variable 64).

If the Resume Distance is positive, the axis will travel in the positive direction. If
the Resume Distance is negative, the axis will travel in the negative direction. The
Resume Distance is the distance between the Resume Interpolator’s command
position and the Normal Interpolator’s command position. When the Resume Dis-
tance is less than or equal to BNDW (i.e. the axis is back on path), the Normal
Interpolator will resume control of the axis and Resume Mode is turned off.

IMPORTANT:

Be aware that acceleration/deceleration ramps are not applied to
this motion. The rate specified is immediately applied to the
axis. Therefore, the feedrate used should slowly move the axis
back to path.

IMPORTANT:

Also be aware that once the Resume Distance is within the band-
width BNDW, the axis will be commanded to move the remain-
der of the distance to path in the next update. Therefore, care
should be taken in selecting the size of BNDW.

⁄ƒƒƒƒƒƒƒƒƒø
≥ RESUME ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ERR√
≥ ≥
¥RATE ≥
≥ ≥
¥BNDW ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (one-shot)

AXIS (USINT) - axis number (servo only)

RATE (UDINT) - axis feedrate in LU/min (range
= 0 to the velocity limit specified in Servo Setup)

BNDW (UDINT) - back on path bandwidth in
LU (range = 0 FU to 2147483647 FU)

Outputs:OK (BOOL) - execution complete without error

ERR (INT) - error number
Chapter 2 Function/Function Block Description 2-369

RESUME
Notes:

• This function can only be called if the axis is in Resume Mode and the loop
is closed.

• This function can be called multiple times while in Resume Mode if the lad-
der desires to change the feedrate or bandwidth during the move.

• The Slow Velocity Filter is applied to the output of the Resume Interpolator

If no error occurs, OK will be energized and ERR will be 0. If an error occurs, OK
will be de-energized and ERR will indicate the error. Possible values for ERR are:

0 = no error
1 = invalid AXIS input
2 = axis is not in Resume Mode
3 = axis servo loop is not closed
4 = invalid RATE input
5 = invalid BNDW input

Also see RESMODE? and READ_SV Variables 63 & 64.
2-370 Chapter 2 Function/Function Block Description

RIGHT
RIGHT
Right String String/RIGHT

RIGHT(OUT := <<STRING>>, IN := <<INT>>, L := <<INT>>, OK =>
<<BOOL>>, OUT => <<STRING>>)

The RIGHT function is used to extract characters from the right side of a string.
The number of characters specified by the input at L are extracted from the right
side of the variable at IN and placed into the variable at OUT.

Example of right function

⁄ƒƒƒƒƒƒƒƒƒø
≥ RIGHT ≥
≥ ≥
¥EN OK√
≥ ≥
¥OUT---OUT√
≥ ≥
¥IN ≥
≥ ≥
¥L ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

OUT (STRING) - output STRING

IN (STRING) - STRING to extract from

L (INT) - length

Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

An error occurs:

If L > OUT

If L > 255

Var at IN1 Value at L Var at OUT
string1string2 7 string2
Chapter 2 Function/Function Block Description 2-371

ROL
ROL
Rotate Left Binary/ROL

ROL(IN := <<BITWISE>>, N := <<USINT>>, OK => <<BOOL>>, OUT =>
<<BITWISE>>)

The ROL function is similar to the shift left function. The bits in the variable or
constant at IN are moved to the left the number of positions specified by N. The
bits on the left are not discarded, but are rotated, replacing the bits on the right.
The result is placed in the variable at OUT.

Rotate left, where N = 2:

Examples of rotate left:

⁄ƒƒƒƒƒƒƒƒƒø
≥ ROL ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¥N ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (BITWISE) - value to have bits rotated

N (USINT) - number of bits to rotate

Outputs:OK (BOOL) - execution completed without error

OUT (same type as IN) - rotated value

ROL (3) 11110000 = 10000111
ROL (4) 01110011 = 00110111
ROL (6) 11000011 = 11110000

11001101

0111001 1
2-372 Chapter 2 Function/Function Block Description

ROR
ROR
Rotate Right Binary/ROR

ROR(IN := <<BITWISE>>, N := <<USINT>>, OK => <<BOOL>>, OUT =>
<<BITWISE>>)

The ROR function is similar to the shift right function. The bits in the variable or
constant at IN are moved to the right the number of positions specified by N. The
bits on the right are not discarded, but are rotated, replacing the bits on the left.
The result is placed in the variable at OUT.

Rotate right, where N = 2:

Examples of rotate right

⁄ƒƒƒƒƒƒƒƒƒø
≥ ROR ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¥N ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (BITWISE) - value to have bits rotated

N (USINT) - number of bits to rotate

Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN) - rotated value

ROR (3) 11110000 = 00011110
ROR (4) 01110011 = 00110111
ROR (8) 11001101 = 11001101

1 0 1 1 0 0 1 1

1 1 1 0 1 1 00
Chapter 2 Function/Function Block Description 2-373

R_PERCEN
R_PERCEN
Rate Percent Motion/MOVE_SUP

R_PERCEN(AXIS := <<USINT>>, RPER := <<USINT>>, OK => <<BOOL>>)

The rate percent function allows the feedrate for all moves connected with the
specified axis to be changed.

Note: This is a temporary change in feedrates lasting until the servos are
reinitialized. At that point, it defaults to the feedrates entered in setup.
The velocity limit entered in setup will never be exceeded by what is
entered in the RPER input.

⁄ƒƒƒƒƒƒƒƒƒø
≥R_PERCEN ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥RPER ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo)

RPER (USINT) - percent to increase or decrease fee-
drate at for all moves for the specified axis. The range
is from 0 to 199% with 100% being the feedrate
entered at RATE for distance, position and velocity
moves.
NOTE: If 200 to 255% is entered, the software han-
dles it as if 199 was entered.

Outputs: OK (BOOL) - execution completed without error
2-374 Chapter 2 Function/Function Block Description

SC_INIT
SC_INIT
SERCOS initialization Motion/SERC_SYS

<<INSTANCE NAME>>:SC_INIT(REQ := <<BOOL>>, OPTN := <<USINT>>,
DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR => <<UINT>>);

The SC_INIT function block copies the initialization data into all SERCOS inter-
face modules. It is used in conjunction with the user-defined function block cre-
ated in the SERCOS setup program. See the PiCPro Online Help for more
information.

The REQ input should be one-shot at the beginning of the ladder after calling the
user-defined function block created in SERCOS setup. The SC_INIT function
block must be scanned every ladder scan. Never program a jump around this func-
tion block.

The OPTN input is reserved for future use and must be set to zero.

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

⁄ƒƒNAME ƒƒø
≥ SC_INIT ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥OPTN FAIL√
≥ ≥
≥ ERR√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - set to call (one-shot)

OPTN (USINT) - must be zero

Outputs: DONE (BOOL) - set when initialization has completed
successfully

FAIL (BOOL) - Set if initialization error occurred

ERR (UINT) - ≠ 0 if initialization error occurred
Chapter 2 Function/Function Block Description 2-375

SCA_ACKR
SCA_ACKR
SERCOS axis acknowledge reference Motion/REF

<<INSTANCE NAME>>:SCA_ACKR(REQ := <<BOOL>>, AXIS :=
<<USINT>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<INT>>, SERR => <<UINT>>);

The SCA_ACKR function block is used with a servo SERCOS axis and acknowl-
edges the reference cycle. It sends IDN 148 with a value of zero.

The drive will again be controlled by the SERCOS master (the PiC) after this func-
tion block is called.

The AXIS input identifies the servo SERCOS axis.

The DONE output is set after the internal conditions to acknowledge the reference
cycle are complete.

The FAIL output is set if an ERR occurs.

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

The SERR output will be ≠ 0 if the ERR output is 128. See Table 2-12 on page 415
for a list of errors.

⁄ NAME ƒø
≥SCA_ACKR ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥AXIS FAIL√
≥ ≥
≥ ERR√
≥ ≥
≥ SERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - set to acknowledge the reference cycle
(one-shot)

AXIS (USINT) - identifies servo SERCOS axis

Outputs: DONE (BOOL) - set when the write is complete

FAIL (BOOL) - set if an error occurred

ERR (INT) ≠ 0 if an error occurred

SERR (UINT) - slave error; ≠ 0 if ERR is 128
2-376 Chapter 2 Function/Function Block Description

SCA_CLOS
SCA_CLOS
SERCOS axis close Motion/INIT

<<INSTANCE NAME>>:SCA_CLOS(REQ := <<BOOL>>, AXIS :=
<<USINT>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<INT>>, SERR => <<UINT>>);

The SCA_CLOS function block is used to close a servo SERCOS position loop. It
performs the following:

• read drive IDN 76 and determine if the drive modulo (rollover) is set

• read IDN 103 if modulo is set

• read IDN 47 to determine current drive position

• update the servo data with the new position

• send the value as commanded position

• set the control bits to cause the drive to close the feedback loop.

The REQ input is set to read the drive IDN. This can take several scans.

The AXIS input identifies the servo SERCOS axis.

The DONE output is set after the internal conditions to close the loop are set.

The FAIL output is set if an ERR occurs.

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

The SERR output will be ≠ 0 if the ERR output is 128. See Table 2-12 on page 415
for a list of errors.

Note: Rollover on position in the PiC is the same concept as modulo in the drive.
They are independent of each other. Their values can be the same or dif-
ferent and one or the other or both can be turned on or off.

⁄ NAME ƒø
≥SCA_CLOS ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥AXIS FAIL√
≥ ≥
≥ ERR√
≥ ≥
≥ SERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - set to read the drive IDNs (one-shot)

AXIS (USINT) - identifies servo SERCOS axis

Outputs: DONE (BOOL) - set when the write is complete

FAIL (BOOL) - set if an error occurred

ERR (INT) - ≠ 0 if a read error occurred

SERR (UINT) - slave error; ≠ 0 if ERR is 128
Chapter 2 Function/Function Block Description 2-377

SCA_CTRL
SCA_CTRL
SERCOS axis control Motion/DATA

SCA_CTRL(AXIS := <<USINT>>, IN1 := <<BOOL>>, IN2 := <<BOOL>>, IN3
:= <<BOOL>>, OPTN := <<USINT>>, OK => <<BOOL>>, ERR =>
<<INT>>)

When the SERCOS slave is being controlled by the functions in Motion.lib, the
SCA_CTRL function is used to control bits 6 - 9 and 11 of the MDT control word.
Refer to the SERCOS specification for the definitions of the MDT control word.

Bits 8, 9, and 11 define the operation mode. They are normally set to zero which is
the default.

Bits 6 and 7 define the real time control bits. The SERCOS specification and your
drive manual define the purpose of these bits. Typically, bits 6 and 7 are left at
zero.

The following table illustrates how the IN and OPTN inputs are used.

⁄ƒƒƒƒƒƒƒƒƒø
≥SCA_CTRL ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ERR√
≥ ≥
¥IN1 ≥
≥ ≥
¥IN2 ≥
≥ ≥
¥IN3 ≥
≥ ≥
¥OPTN ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - set to call function

AXIS (USINT) - identifies SERCOS axis

IN1 (BOOL) - used to set the appropriate control word
bit

IN2 (BOOL) - used to set the appropriate control word
bit

IN3 (BOOL) - used to set the appropriate control word
bit

OPTN (USINT) - defines which control word bits are
affected by IN1-3

Outputs: OK (BOOL) - set if write is allowed

ERR (INT) - ≠ 0 if error occurred
2-378 Chapter 2 Function/Function Block Description

SCA_CTRL
Note: All bits default to zero.

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

If the OPTN
Input is:

Then is control
word bit

Description

0 (Not used for SCA_CTRL)

1

IN1

IN2

IN3

8

9

11

The chart below summarizes the mode options for IN1,
IN2 and IN3 when OPTN 1 is chosen. Typically, primary
operation is used.

Bits

11 9 8 Description
0 0 0 Primary operation mode (IDN 32)
0 0 1 Secondary operation mode 1 (IDN 33)
0 1 0 Secondary operation mode 2 (IDN 34)
0 1 1 Secondary operation mode 3 (IDN 35)
1 0 0 Secondary operation mode 4 (IDN

284)
1 0 1 Secondary operation mode 5 (IDN

285)
1 1 0 Secondary operation mode 6 (IDN

286)
1 1 1 Secondary operation mode 7 (IDN

287)

2

IN1

IN2

IN3

6

not used

not used

Real time control bit 1

3

IN1

IN2

IN3

7

not used

not used

Real time control bit 2
Chapter 2 Function/Function Block Description 2-379

SCA_CTRL
Application Note

When the SERCOS slave is controlled by Motion. lib, you follow the steps sum-
marized below.

1. Initialize the SERCOS axis.

2. Initialize the servo axis.

3. Use the SCA_CTRL function to set the operation mode and the realtime
bits 1 and 2. NOTE: The primary operation mode is the default mode and
typically used for most applications.

4. Control bits 13, 14, and 15 for the drive loop closure with Motion.lib logic.
NOTE: If the loop closure bits must be controlled by the ladder,
WRITE_SV variable 48 must be set to 1 and the bits controlled by
SCS_CTRL.
2-380 Chapter 2 Function/Function Block Description

SCA_ERST
SCA_ERST
SERCOS axis error reset Motion/ERRORS

<<INSTANCE NAME>>:SCA_ERST(REQ := <<BOOL>>, AXIS :=
<<USINT>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<INT>>, SERR => <<UINT>>);

The SCA_ERST function block is used to reset internal E-errors and can close the
loop on a servo SERCOS axis.

The REQ input is set to reset internal E-errors.

The AXIS input identifies the servo SERCOS axis.

The DONE output is set after the internal conditions to reset the E-errors are com-
plete.

The FAIL output is set if an ERR occurs.

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

SERR output will be ≠ 0 if the ERR output is 128. See Table 2-12 on page 415 for
a list of errors.

⁄ NAME ƒø
≥SCA_ERST ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥AXIS FAIL√
≥ ≥
≥ ERR√
≥ ≥
≥ SERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - set to reset internal E-errors (one-shot)

AXIS (USINT) - identifies servo SERCOS axis

Outputs: DONE (BOOL) - set when errors are reset

FAIL (BOOL) - set if an error occurred

ERR (INT) ≠ 0 if an error occurred

SERR (UINT) - slave error; ≠ 0 if ERR is 128
Chapter 2 Function/Function Block Description 2-381

SCA_PBIT
SCA_PBIT
SERCOS axis probe initialize Motion/MOVE_SUP

<<INSTANCE NAME>>:SCA_PBIT(REQ := <<BOOL>>, AXIS :=
<<USINT>>, PRB := <<USINT>>, DONE => <<BOOL>>, FAIL =>
<<BOOL>>, ERR => <<INT>>, SERR => <<UINT>>);

The SCA_PBIT function block is used to initialize the SERCOS fast input.
Before executing a REGIST, MEASURE, or FAST_QUE function with a
SERCOS axis, this function block must be called to initialize the SERCOS fast
input. The SERCOS specification refers to the fast input as a “probe input”.
Most SERCOS drive manufacturers provide two fast inputs: one for the
SERCOS servo axis and one for the SERCOS digitizing axis. When executed,
the SCA_PBIT function block will communicate with the SERCOS drive to
set up the drive’s fast input as requested by the PRB input.
The AXIS input identifies the SERCOS servo or digitizing axis.
The PRB input selects the probe input direction. Valid input values are:

The DONE output is set when the function block completes successfully.
The FAIL output is set if an error occurs.
The ERR output will return the error number if an error occurred. See Table 2-
11 on page 412 for a list of errors.
SERR output will return the SERCOS slave error number if ERR = 128. See
Table 2-12 on page 415 for a list of errors.

⁄ƒƒ NAME ƒø
≥SCA_PBIT ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥AXIS FAIL√
≥ ≥
¥PRB ERR√
≥ ≥
≥ SERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - executes function block (one-shot)

AXIS (USINT) - SERCOS axis number (servo or digi-
tizing

PRB (USINT) - SERCOS probe input direction

Outputs: DONE (BOOL) - function block complete

FAIL (BOOL) - function block failure

ERR (INT) function block error

SERR (UINT) - SERCOS slave error

Value Description of when to capture the SERCOS fast input

0 No SERCOS fast input capture
1 On the positive edge only
2 On the negative edge only
3 On both edges, positive edge first
4 On both edges, negative edge first
2-382 Chapter 2 Function/Function Block Description

SCA_PBIT
Note: The SCA_PBIT function block uses the SERCOS slave’s real-time
control bits and may also use the real-time status bits. Therefore, while
SCA_PBIT and the subsequent registration, measure, or fast queue
operations are active, the ladder should NOT attempt to do any of the
following:

• Assign IDN numbers to the real-time status bits.
• Assign IDN numbers to the real-time control bits.
• Modify the control bits.
• Modify any IDN related to the probe inputs.

Note: When programming two SCA_PBIT function blocks, one for a SER-
COS servo axis and another for a SERCOS digitizing axis on the same
SERCOS drive, the execution of the two function blocks must not
occur simultaneously. In other words, the execution of the second func-
tion block must not begin until the execution of the first function block
is complete.
Chapter 2 Function/Function Block Description 2-383

SCA_RCYC
SCA_RCYC
SERCOS axis read cyclic Motion/DATA

SCA_RCY(AXIS := <<USINT>>, TASK := <<MEMORY AREA>>, OK =>
<<BOOL>>, ERR => <<INT>>)

The SCA_RCYC function allows you to read cyclic data between the ladder and
the SERCOS hardware. It can be called either in a servo task or in the main ladder,
but never in both. When used in a servo task, the function needs to be called
once.When used in the main ladder, the function needs to be called continuously.

The STRUCT input at TASK and at MAIN must match the order and size of the
list of IDNs selected for the AT in IDN16. (In SERCOS setup, it is possible to copy
the IDN list to the clipboard from within the Define Cyclic Data dialog box and
then paste it into the software declarations table.) The structure is labeled ILISTR
and would have the following format:

⁄ƒƒƒƒƒƒƒƒƒø
≥SCA_RCYC ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ERR√
≥ ≥
¥TASK ≥
≥ ≥
¥MAIN ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - set to call function

AXIS (USINT) - identifies the servo SERCOS axis

TASK (STRUCT) - structure that accesses data elements
within a servo task

MAIN (STRUCT) - structure that accesses data ele-
ments in the main ladder

Outputs: OK (BOOL) - set if read is allowed

ERR (INT) - ≠ 0 if error occurred

ILISTR STURCT
.IDN51 DINT
.IDN... (varies)
.IDN... (varies)
...n...
.SIZE USINT
2-384 Chapter 2 Function/Function Block Description

SCA_RCYC
The SIZE member of the structure indicates the number of bytes in the AT cyclic
data as well as the number of bytes in the structure less the SIZE byte. The SIZE
will be compared with the size indicated on the SERCOS module and an error will
be generated if they are not equal. This preserves the integrity of the data.

Note: Regardless of where this function is used (in a servo task or in the main
ladder), you must enter the above structure at both the TASK input and
the MAIN input. The structure name must be different for each one, but
the members must be the same. Or you can make an array of structures
entering a different array on each input.

When the function is initially called, the address of TASK is stored in servo data
memory. During each servo update, the TASK structure is copied from the SER-
COS module to data memory.

Every time the function is called, the information in the TASK structure is copied
to the MAIN structure. There are internal checks that ensure the entire group of
IDNs came from the same interrupt.

The ERR output will be ≠ 0 if an error occurred.See Table 2-11 on page 412 for a
list of errors.
Chapter 2 Function/Function Block Description 2-385

SCA_RECV
SCA_RECV
SERCOS axis receive Motion/DATA

<<INSTANCE NAME>>:SCA_RECV(REQ := <<BOOL>>, AXIS :=
<<USINT>>, DATA := <<MEMORY AREA>>, DONE => <<BOOL>>, FAIL
=> <<BOOL>>, ERR => <<INT>>, SERR => <<UINT>>);

The SCA_RECV function block is used to receive information from the service
channel section of the SERCOS communication.

The AXIS input identifies the servo SERCOS axis.

The DATA input is a structure with the following members:

⁄ NAME ƒø
≥SCA_RECV ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥AXIS FAIL√
≥ ≥
¥DATA ERR√
≥ ≥
≥ SERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - request for receiving data (one-shot)

AXIS (USINT) - identifies the servo SERCOS axis

DATA (STRUC) - structure that sets up the format for
the data received

Outputs: DONE (BOOL) - set when the data is received

FAIL (BOOL) - set if error occurred

ERR (INT) - ≠ 0 if receive error occurred

SERR (UINT) - slave error; ≠ 0 if ERR is 128
2-386 Chapter 2 Function/Function Block Description

SCA_RECV
The DONE output is set after the internal conditions to receive are set.

The FAIL output is set if an ERR occurs.

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

SERR output will be ≠ 0 if the ERR output is 128. See Table 2-12 on page 415 for
a list of errors.

Member Type Description
IDN UINT IDN value
IDTYPE BYTE 0 = (S)ystem 1 = (P)roduct
ELEM USINT 1 = Read procedure command status (SIZE = 1)

2 = Name string (SIZE = 3)
3 = Attribute (SIZE = 2)
4 = Units string (SIZE = 3)
5 = Minimum value (SIZE = 1 or 2)
6 = Maximum value (SIZE = 1 or 2)
7 = Operation data (SIZE = 1, 2, 3, or 4)

NOTE: When the SIZE is 3 or 4, a string must be provided
at the STRARR member and the string size must be entered
at the AVAIL member.
If a 3 (attribute) is entered, the value will be put into the
LDATA member DINT since the attribute is always a 4-byte
value.
If a 5 (minimum value) or 6 (maximum value) is entered, the
data size must be the same as the operation data size above.

SIZE UINT 1 = two bytes 2 = four bytes 3 = String 4 = Array
AVAIL UINT Quantity of bytes available in the array
ACTUAL UINT Quantity of bytes actually in the array
SDATA UINT Data received if 1 is entered in SIZE
LDATA DINT Data received if 2 is entered in SIZE
STRARR STRING/

ARRAY
(Optional - only required if a 3 or 4 is entered in SIZE)
Data received is a string if 3 is entered in SIZE or
data received is an array if 4 is entered in SIZE
Chapter 2 Function/Function Block Description 2-387

SCA_REF
SCA_REF
SERCOS axis reference Motion/REF

<<INSTANCE NAME>>:SCA_REF(REQ := <<BOOL>>, AXIS := <<USINT>>,
DIM := <<DINT>>, I147 := <<WORD>>, OPTN := <<WORD>>, DONE =>
<<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>, SERR => <<UINT>>,
STAT => <<INT>>, RSLT => <<DINT>>);

The SCA_REF function block is used to run a reference cycle on the servo SER-
COS slave axis identified at the AXIS input.

The DIM input is the value assigned to the index mark or the reference switch
position.

The I147 input holds the bits for IDN 147. Refer to the SERCOS specification for
more information. Typically, bits 2, 3, and 4 are 101 respectively. The other bits
depend on the application and the features offered by the drive.

The OPTN input determines whether IDN147 is sent during the reference cycle.
For some drives, IDN 147 must be sent during phase 2. Set bit 0 of the option word
to 1 if you are sending IDN 147 during the reference cycle. Set bit 0 of the option
word to 0 if you are not sending IDN 147 during the reference cycle.

The DONE output is set when the reference cycle is complete. The SCA_ACKR
function must be called after the reference cycle is complete.

⁄ NAME ƒø
≥ SCA_REF ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥AXIS FAIL√
≥ ≥
¥DIM ERR√
≥ ≥
¥I147 SERR√
≥ ≥
¥OPTN STAT√
≥ ≥
≥ RSLT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - request for reference cycle (one-shot)

AXIS (USINT) - identifies the servo SERCOS axis

DIM (DINT) - the value to assign to the index mark
(feedback marker pulse) or the switch position

I147 (WORD) - bits for IDN147

OPTN (WORD) - 0 if IDN 147 is not sent; 1 if IDN 147
is sent.

Outputs: DONE (BOOL) - set when the reference cycle is com-
plete

FAIL (BOOL) - set if an error occurred

ERR (INT) - 0 if no error occurred; ≠ 0 if a read error
occurred

SERR (UINT) - slave error; ≠ 0 if ERR is 128

STAT (INT) - indicates which IDN is being sent or
received

RSLT (DINT) - the commanded position after the refer-
ence is complete
2-388 Chapter 2 Function/Function Block Description

SCA_REF
The FAIL output is set if there is an error.

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

SERR output will be ≠ 0 if the ERR output is 128. See Table 2-12 on page 415 for
a list of errors.

The STAT output indicates which IDN is being sent or received. It is used only for
troubleshooting failure conditions. See the chart below.

The RSLT output gives the commanded position for your information after the ref-
erence is complete.

Note: This function block cannot be called while the axis is in Resume Mode or if
Resumable E_Stop Allow (READ_SV/WRITE_SV variable 63) is set.
Also, do not turn on Resumable E_Stop Allow while a SERCOS axis refer-
ence is executing.

STAT# IDN
1 Sending IDN 147 - option bits
2 Sending IDN 52 - reference position
3 Sending IDN 148 - start reference
4 Receiving IDN 148 - reference started?
5 Receiving IDN 403 - reference done?
6 Receiving IDN 47 - position?
0 Reference complete
Chapter 2 Function/Function Block Description 2-389

SCA_RFIT
SCA_RFIT
SERCOS axis reference initialize Motion/REF

<<INSTANCE NAME>>:SCA_RFIT(REQ := <<BOOL>>, AXIS :=
<<USINT>>, PRB := <<USINT>>, OPTN := <<WORD>>, DONE =>
<<BOOL>>, FAIL => <<BOOL>>, MFAL => <<BOOL>>, ERR => <<INT>>,
SERR => <<UINT>>);

The SCA_RFIT function block must be executed before calling a FAST_REF
or LAD_REF function. The function block performs two functions:

1. When the REQ input is energized, it initializes the SERCOS drive’s fast
input (referred to as a probe input in the SERCOS specification) and index
mark detection as requested by the PRB and OPTN inputs.

2. After the DONE output is set and after the FAST_REF or LAD_REF func-
tion has begun, it continually communicates with the SERCOS drive to
monitor the occurrence of the reference switch or index mark and then
reads the latched position from the drive. Because of this monitoring fea-
ture, the SCA_RFIT function block must be scanned every ladder scan
while the reference cycle is active. Never program a jump around this func-
tion block.

The AXIS input specifies the SERCOS servo or digitizing axis.

The PRB input selects the probe input direction. Valid input values are:

⁄ƒƒ NAME ƒø
≥SCA_RFIT ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥AXIS FAIL√
≥ ≥
¥PRB MFAL√
≥ ≥
¥OPTN ERR√
≥ ≥
≥ SERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - executes function block (one-shot)

AXIS (USINT) - SERCOS axis number (servo or digi-
tizing)

PRB (USINT) - selects SERCOS probe input direction

OPTN (WORD) - reference options

Outputs: DONE (BOOL) - initialization is complete

FAIL (BOOL) - initialization failure

MFAL (BOOL) - monitor failure

ERR (INT) - SERCOS error

SERR (UINT) - SERCOS slave error

Value Description
0 Do not capture the axis position with SERCOS probe input
1 Capture the axis position on the SERCOS probe input positive edge
2 Capture the axis position on the SERCOS probe input negative edge
2-390 Chapter 2 Function/Function Block Description

SCA_RFIT
The OPTN input provides the following options:

Setting bit 0 will cause the SERCOS drive to capture the axis position at the
reference switch. Leaving bit 0 reset will cause the SERCOS drive to capture
the axis position at the first occurrence of the index mark after the reference
switch.
Note: The state of bit 0 (set or reset) must match the state of bit 0 of the

OPTN input of the FAST_REF or LAD_REF function.
IMPORTANT: If the SERCOS drive is not a Danaher Motion Centurion
drive, bit 0 must be set. Currently, only the Danaher Motion Centurion drives
support capturing the axis position at the first occurrence of the index mark
after the reference switch.
Setting bit 2 will abort SCA_RFIT. If called while initializing (i.e. before
DONE or FAIL are set), the FAIL output will be set and the ERR output will
return 39 “Function block aborted by user”. If called while monitoring for the
reference event (i.e. after DONE is set), the MFAL output will be set, the ERR
output will return 39 “Function block aborted by user”, and the reference will
be aborted.
The DONE output is set when the initialization phase completes successfully.
It is then OK to execute the FAST_REF or LAD_REF function.
The FAIL output is set if an error occurs during the initialization phase.
The MFAL output is set if an error occurs during the monitoring phase. If
MFAL is set, the reference will be aborted. The ERR output will return the
error number if an error occurred during either the initialization phase or the
monitoring phase.
The SERR output will return the SERCOS slave error number if ERR = 128.
Note: The SCA_RFIT function block uses the SERCOS slave’s real-time

control bits. Therefore, while the SCA_RFIT function block and the
subsequent fast reference or ladder reference operations are active, the
ladder should not attempt to:

1. Assign IDN numbers to the real-time controls bits.

2. Modify the real-time controls bits.

3. Modify any IDN related to the probe inputs.

Note: When programming two SCA_RFIT function blocks, one for a SER-
COS servo axis and another for a SERCOS digitizing axis on the same
SERCOS drive, the execution of the two function blocks must not
occur simultaneously. In other words, the execution of the second func-
tion block must not begin until the execution of the first function block
is complete.

Bit Description
0 Ignore index (binary value = 0000 0000 0000 0001)
1 Reserved
2 Abort (binary value = 0000 0000 0000 0100)

3 - 15 Reserved
Chapter 2 Function/Function Block Description 2-391

SCA_RFIT
Note: If the MEASURE function is active when SCA_RFIT is called with
PRB not equal to zero or OPTN equal to zero, the MEASURE function
will be turned off. To reactivate the MEASURE function, call it after
the reference is complete.
2-392 Chapter 2 Function/Function Block Description

SCA_SEND
SCA_SEND
SERCOS axis send Motion/DATA

<<INSTANCE NAME>>:SCA_SEND(REQ := <<BOOL>>, AXIS :=
<<USINT>>, DATA := <<MEMORY AREA>>, DONE => <<BOOL>>, FAIL
=> <<BOOL>>, ERR => <<INT>>), SERR => <<UINT>>);

The SCA_SEND function block is used to send information to the service channel
section of the SERCOS communication.

The AXIS input identifies the servo SERCOS axis.

The DATA input is a structure with the following members:

⁄ NAME ƒø
≥SCA_SEND ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥AXIS FAIL√
≥ ≥
¥DATA ERR√
≥ ≥
≥ SERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - request to send data (one-shot)

AXIS (USINT) - identifies the servo SERCOS axis

DATA (STRUC) - structure that sets up the format for
the data sent

Outputs: DONE (BOOL) - set when the send is complete

FAIL (BOOL) - set if an error occurred

ERR (INT) - 0 if no error occurred; ≠ 0 if a send error
occurred

SERR (UINT) - slave error; ≠ 0 if ERR is 128
Chapter 2 Function/Function Block Description 2-393

SCA_SEND
NOTE: The same structure members are used for the SCA_RECV and the
SCA_SEND function blocks.

The DONE output is set after the internal conditions to send are set.

The FAIL output is set if an error occurs.

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

SERR output will be ≠ 0 if the ERR output is 128. See Table 2-12 on page 415 for
a list of errors.

Member Type Description
IDN UINT IDN value
IDTYPE BYTE 0 = (S)ystem 1 = (P)roduct
ELEM USINT 2 = Name string (SIZE = 3)

3 = Attribute (SIZE = 2)
4 = Units string (SIZE = 3)
5 = Minimum value (SIZE = 1 or 2)
6 = Maximum value (SIZE = 1 or 2)
7 = Operation data (SIZE = 1, 2, 3, or 4)

NOTE: When the SIZE is 3 or 4, a string must be pro-
vided at the STRARR member and the string size must
be entered at the AVAIL member.
If a 3 (attribute) is entered, the value will be put into the
LDATA member DINT since the attribute is always a 4-
byte value.
If a 5 (minimum value) or 6 (maximum value) is entered,
the data size must be the same as the operation data size
above.

SIZE UINT 1 = two byte 2 = four byte 3 = String 4 = Array
AVAIL UINT Quantity of bytes available in the array
ACTUAL UINT Quantity of bytes actually in the array
SDATA UINT Data to be sent if 1 is entered in SIZE
LDATA DINT Data to be sent if 2 is entered in SIZE
STRARR STRING/ARRAY (Optional - only required if a 3 or 4 is entered in SIZE)

Data received is a string if 3 is entered in
SIZE or
data received is an array if 4 is entered in
SIZE
2-394 Chapter 2 Function/Function Block Description

SCA_STAT
SCA_STAT
SERCOS axis status Motion/DATA

SCA_STAT(AXIS := <<USINT>>, OK => <<BOOL>>, STAT => <<WORD>>)

The SCA_STAT function is used for monitoring the ready-to-operate drive mode,
for diagnostic troubleshooting, or for monitoring the two real-time status bits
returned from the drive. For the definition of the bit assignments to the AT status
word, consult the SERCOS specification.

⁄ƒƒƒƒƒƒƒƒƒø
≥SCA_STAT ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS STAT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - set to read

AXIS (USINT) - identifies the SERCOS axis

Outputs: OK (BOOL) - set if read is allowed

STAT (WORD) - the status word of the most recent AT
info
Chapter 2 Function/Function Block Description 2-395

SCA_WCYC
SCA_WCYC
SERCOS axis write cyclic Motion/DATA

SCA_WCYC(AXIS := <<USINT>>, TASK => <<MEMORY AREA>>, OK =>
<<BOOL>>, ERR => <<INT>>)

The SCA_WCYC function allows you to write cyclic data between the ladder and
the SERCOS hardware. It is called once and may only be used in a servo task.

The STRUCT input at TASK must match the order and size of the list of IDNs
selected for the MDT in IDN24. (In SERCOS setup, it is possible to copy the IDN
list to the clipboard from within the Define Cyclic Data dialog box and then paste
it into the software declaration table.) The structure would have the following for-
mat:

The SIZE member of the structure indicates the number of bytes in the MDT
cyclic data as well as the number of bytes in the structure less the SIZE byte. The
SIZE will be compared with the size indicated on the SERCOS module and an
error will be generated if they are not equal. This preserves the integrity of the
data.

 When the function is initially called, the address of TASK is stored in servo data
memory. During each servo update, the TASK structure is copied from data mem-
ory to the SERCOS module.

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

⁄ƒƒƒƒƒƒƒƒƒø
≥SCA_WCYC ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ERR√
≥ ≥
¥TASK ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - set to call function (one-shotted)

AXIS (USINT) - identifies the servo SERCOS axis

TASK (STRUCT) - structure that accesses data elements
within a servo task

Outputs: OK (BOOL) - set if read is allowed

ERR (INT) - ≠ 0 if error occurred

ILISTW STRUCT
.IDN47 DINT
.IDN... (varies)
.IDN... (varies)
...n...
.SIZE USINT
2-396 Chapter 2 Function/Function Block Description

SCR_CONT
SCR_CONT
SERCOS ring continue Motion/SERC_SYS

SCR_CONT(SR := <<MEMORY AREA>>, OK => <<BOOL>>, ERR =>
<<USINT>>)

If you have chosen in SERCOS setup to pause SERCOS communication of this
ring after phase 2 in order to send additional IDN numbers, use the SCR_CONT
function to continue through phase 4.

The SR input is a structure consisting of the following members which identify the
SERCOS axis:

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

⁄ƒƒƒƒƒƒƒƒƒø
≥SCR_CONT ≥
≥ ≥
¥EN OK√
≥ ≥
¥SR ERR√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (one-shot)

SR (STRUCT) -structure that identifies the SERCOS
ring affected

Outputs: OK (BOOL) -set if continuation is allowed

ERR (USINT) - 0 if OK is set; ≠ 0 if an error occurs

SLOT (UINT)
RING (UINT)
Chapter 2 Function/Function Block Description 2-397

SCR_ERR
SCR_ERR
SERCOS ring error Motion/SERC_SYS

<<INSTANCE NAME>>:SCR_ERR(EN := <<BOOL>>, SR := <<MEMORY
AREA>>, OK => <<BOOL>>, ERR => <<INT>>, SLV => <<UINT>>, IDN
=> <<UINT>>, SERR => <<UINT>>);

The SCR_ERR function block identifies ring errors that can occur during the
transfer of IDNs. It can also represent a hardware failure such as a break in the
fiber optic cable or a failure during initialization. In addition, it can supply some
information as to what is happening before the error occurred. See the background
information at the end of this description.

The SR input is a structure consisting of the following members which identify the
SERCOS ring:

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

Note: You must always return to phase 0 and reinitialize the SERCOS ring after
a ring error occurs.

⁄ NAME ƒø
≥SCR_ERR ≥
≥ ≥
¥EN OK√
≥ ≥
¥SR ERR√
≥ ≥
≥ SLV√
≥ ≥
≥ IDN√
≥ ≥
≥ SERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - set to read errors

SR (STRUCT) - structure that identifies the SERCOS
ring

Outputs: OK (BOOL) - set if the SR input is valid

ERR (INT) - 0 if there is no error; ≠ 0 if an error occurs

SLV (UINT) -identifies slave 1 - 8 if ERR = 128, 136, or
144

IDN (UINT) - indicates the most recent IDN read or
written if ERR = 128 or 144

SERR (UINT) - slave error; ≠ 0 if ERR is 128

NOTE: SLV, IDN, and SERR are valid only if ERR ≠ 0.

SLOT (UINT)
RING (UINT)
2-398 Chapter 2 Function/Function Block Description

SCR_ERR
The SLV output is valid only if the ERR output equals 128, 136, or 144. Then it
can be helpful in identifying which slave (1 - 8) has the problem.

The IDN output is valid only if the ERR output equals 128 or 144. Then it indi-
cates the most recent IDN read or written.

SERR output will be ≠ 0 if the ERR output is 128. See Table 2-12 on page 415 for
a list of errors.

Background Information on Using SCR_ERR for Diagnostics

If the SCR_PHAS function does not return a “4” at the PHAS output within a few
seconds of calling SC_START, looking at the outputs of the SCR_ERR function
block will be helpful to diagnose problems that may have occurred. (Remember
that you may have chosen to pause at phase 2.)

If a ring error occurs during the initialization through the phases, the SCR_ERR
function block outputs show the most recent IDN number and the slave to which it
was sent or received. If the slave returned an error due to an IDN transfer, this
error number defined by the slave manufacturer can be read at the SERR output.
This information in addition to knowing the sequence of the IDN send and receive
activity will aid in diagnosing the initialization failure. This activity is described
below.

Phase 0

During phase 0 a test is performed to determine if a communication telegram is
able to make it all the way around the ring. If it can, the fiber optic ring is com-
plete and all slaves are turned on. If it cannot, error 20 will occur.

Phase 1

Each slave is individually addressed and a response is expected. If the address
switches on the drive are not set correctly, it will not respond when addressed by
the PiC. If a slave does not respond, error 136 occurs and the number of the unre-
sponsive slave will appear at the SLV output. When phase 1 is completed, all the
drives are addressed properly.

Phase 2

Several IDNs are read, calculations are made and several IDNs are written for each
slave on the ring. If a slave cannot respond with data due to an IDN read or does
not accept IDN data from an IDN write, error 128 will occur and the most recent
IDN and slave read or written will appear at the IDN and SLV output. If an error
occurs, no more IDNs are read or written to any slave. The order in which the
IDNs are read and written are:

For each slave in numerical order:

Read the following IDNs: 3, 4, 5, 88, 90, and 96.
Timing calculations are done based on this read information.
Chapter 2 Function/Function Block Description 2-399

SCR_ERR
For each slave in numerical order:

Write the following IDNs: 1, 2, 6, 89, 8, 7, 9, 10, 15, and 32.

Note: IDN 32 is not sent if telegram type of IDN 15 is 0 or 7.

For each slave:

The IDNs in the SERCOS setup list are written.

For each slave:

IDNs 99 and 127 are written.
If pause after phase 2 was set, IDNs are transferred as requested by the ladder. If
phase 2 is complete, all timing is calculated, all configuration IDNs have been
written and accepted by the slaves.

Phase 3

For each slave:

IDN 128 is written. Note: Phase 3 is a brief preparation for phase 4.

Phase 4

All initializing operations are complete.

The SERR output will be ≠ 0 if the ERR output is 128. See Table 2-12 on page 415
for a list of errors.
2-400 Chapter 2 Function/Function Block Description

SCR_PHAS
SCR_PHAS
SERCOS ring phase Motion/SERC_SYS

SCR_PHAS(SR := <<MEMORY AREA>>, OK => <<BOOL>>, PHAS =>
<<USINT>>)

The SCR_PHAS function identifies the completed phase (0 - 4).

The SR input is a structure consisting of the following members which identify the
SERCOS ring:

The OK output will remain clear until phase 0 has begun.

The PHAS output gives the highest phase (0 - 4) completed by the SERCOS ring
identified at the SR input.

⁄ƒƒƒƒƒƒƒƒƒø
≥SCR_PHAS ≥
≥ ≥
¥EN OK√
≥ ≥
¥SR PHAS√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - set to call function

SR (STRUC) -structure that identifies SERCOS ring

Outputs: OK (BOOL) -set if phase number is returned

PHAS (USINT) - highest phase number completed

SLOT (UINT)
RING (UINT)
Chapter 2 Function/Function Block Description 2-401

SCS_ACKR
SCS_ACKR
SERCOS slave acknowledge reference Motion/SERC_SLV

<<INSTANCE NAME>>:SCS_ACKR(REQ := <<BOOL>>, SRS := <<MEM-
ORY AREA>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<INT>>, SERR => <<UINT>>);

The SCS_ACKR function block acknowledges the reference cycle. It sends IDN
148 with a value of zero.

The drive will again be controlled by the SERCOS master (the PiC) after this func-
tion block is called.

The SRS input is a structure consisting of the following members which identify
the SERCOS axis:

The DONE output is set after the internal conditions to acknowledge the reference
are set.

The FAIL output is set if an ERR occurs.

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

The SERR output will be ≠ 0 if the ERR output is 128. See Table 2-12 on page 415
for a list of errors.

⁄ NAME ƒø
≥SCS_ACKR ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥SRS FAIL√
≥ ≥
≥ ERR√
≥ ≥
≥ SERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - set to acknowledge the reference cycle
(one-shot)

SRS (STRUC) - structure that identifies SERCOS slave

Outputs: DONE (BOOL) - set when the write is complete

FAIL (BOOL) - set if an error occurred

ERR (INT) ≠ 0 if a read error occurred

SERR (UINT) - slave error; ≠ 0 if ERR is 128

CAUTION

You must write the newly referenced value (using the SCS_SEND or
WRITE_SV function) that is returned from the SCS_REF function
before calling this function block.

SLOT (UINT)
RING (UINT)
SLAVE (UINT)
2-402 Chapter 2 Function/Function Block Description

SCS_CTRL
SCS_CTRL
SERCOS slave control Motion/SERC_SLV

SCS_CTRL(SRS := <<MEMORY AREA>>, IN1 := <<BOOL>>, IN2 :=
<<BOOL>>, IN3 := <<BOOL>>, OPTN := <<USINT>>, OK => <<BOOL>>,
ERR => <<INT>>)

The SCS_CTRL function is used to control bits 6 - 9, bit 11, and bits 13 - 15 of the
MDT control word. Refer to the SERCOS specification for the definitions of the
MDT control word.

Typically, bits 13 - 15 are all set to 1 to enable the drive. Bits 8 and 9 define the
operation mode. They are normally set to zero which is the default.

Bits 6 and 7 define the real time control bits. The SERCOS specification and your
drive manual define the purpose of these bits. Typically, bits 6 and 7 are left at
zero.

The SRS input is a structure consisting of the following members which identify
the SERCOS axis:

⁄ƒƒƒƒƒƒƒƒƒø
≥SCS_CTRL ≥
≥ ≥
¥EN OK√
≥ ≥
¥SRS ERR√
≥ ≥
¥IN1 ≥
≥ ≥
¥IN2 ≥
≥ ≥
¥IN3 ≥
≥ ≥
¥OPTN ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - set to call function

SRS (STRUC) - structure that identifies SERCOS slave

IN1 (BOOL) - used to set the appropriate control word
bit

IN2 (BOOL) - used to set the appropriate control word
bit

IN3 (BOOL) - used to set the appropriate control word
bit

OPTN (USINT) - defines which control word bits are
affected by IN1-3

Outputs: OK (BOOL) - set if write is allowed

ERR (INT) - ≠ 0 if error occurred

SLOT (UINT)
RING (UINT)
SLAVE (UINT)
Chapter 2 Function/Function Block Description 2-403

SCS_CTRL
The table below illustrates how the IN and OPTN inputs are used.

* If the SERCOS slave is being controlled by the functions in Motion.lib, the
SCA_CLOS and OPENLOOP functions will control these bits and SCS_CTRL
must not be called with option 0 or 1. Note: All bits default to zero. The ERR out-
put will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a list of errors.

If the OPTN
Input is:

Then is control
word bit

Description

0*

IN1

IN2

IN3

13

14

15

Halt/restart drive

Enable drive

Drive on/off

1

IN1

IN2

IN3

8

9

11

The chart below summarizes the mode options for IN1,
IN2 and IN3 when OPTN 1 is chosen. Typically, primary
operation is used

Bits
11 9 8 Description
0 0 0 Primary operation mode (IDN 32)
0 0 1 Secondary operation mode 1 (IDN 33)
0 1 0 Secondary operation mode 2 (IDN 34)
0 1 1 Secondary operation mode 3 (IDN 35)
1 0 0 Secondary operation mode 4

(IDN 284)
1 0 1 Secondary operation mode 5

(IDN 285)
1 1 0 Secondary operation mode 6

(IDN 286)
1 1 1 Secondary operation mode 7

(IDN 287)

2

IN1

IN2

IN3

6

not used

not used

Real time control bit 1

3

IN1

IN2

IN3

7

not used

not used

Real time control bit 2
2-404 Chapter 2 Function/Function Block Description

SCS_RECV
SCS_RECV
SERCOS slave receive Motion/SERC_SLV

<<INSTANCE NAME>>:SCS_RECV(REQ := <<BOOL>>, SRS := <<MEM-
ORY AREA>>, DATA := <<MEMORY AREA>>, DONE => <<BOOL>>,
FAIL => <<BOOL>>, ERR => <<INT>>, SERR => <<UINT>>);

The SCS_RECV function block is used to receive information from the service
channel section of the SERCOS communication.

The SRS input is a structure consisting of the following members which identify
the SERCOS axis:

⁄ NAME ƒø
≥SCS_RECV ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥SRS FAIL√
≥ ≥
¥DATA ERR√
≥ ≥
≥ SERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - request for receiving data (one-shot)

SRS (STRUCT) - structure that identifies the SERCOS
slave

DATA (STRUCT) - structure that sets up the format for
the data received

Outputs: DONE (BOOL) - set when data received

FAIL (BOOL) - set if error occurred

ERR (INT) - ≠ 0 if receive error occurred

SERR (UINT) - slave error, ≠ 0 if ERR = 128

SLOT (UINT)
RING (UINT)
SLAVE (UINT)
Chapter 2 Function/Function Block Description 2-405

SCS_RECV
The DATA input is a structure with the following members:

The DONE output is set after the internal conditions to receive are complete.

The FAIL output is set if an ERR occurs.

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

The SERR output will be ≠ 0 if the ERR output is 128. See Table 2-12 on page 415
for a list of errors.

Member Type Description
IDN UINT IDN value
IDTYPE BYTE 0 = (S)ystem 1 = (P)roduct
ELEM USINT 1 = Read procedure command status (SIZE = 1)

2 = Name string (SIZE = 3)
3 = Attribute (SIZE = 2)
4 = Units string (SIZE = 3)
5 = Minimum value (SIZE = 1 or 2)
6 = Maximum value (SIZE = 1 or 2)
7 = Operation data (SIZE = 1, 2, 3, or 4)

NOTE: When the SIZE is 3 or 4, a string must be provided
at the STRARR member and the string size must be entered
at the AVAIL member.
If a 3 (attribute) is entered, the value will be put into the
LDATA member DINT since the attribute is always a 4-byte
value.
If a 5 (minimum value) or 6 (maximum value) is entered, the
data size must be the same as the operation data size above.

SIZE UINT 1 = two bytes 2= four bytes 3 = String 4 = Array
AVAIL UINT Quantity of bytes available in the array
ACTUAL UINT Quantity of bytes actually in the array
SDATA UINT Data received if 1 is entered in SIZE
LDATA DINT Data received if 2 is entered in SIZE
STRARR STRING/

ARRAY
(Optional - only required if a 3 or 4 is entered in SIZE)
Data received is a string if 3 is entered in SIZE or
data received is an array if 4 is entered in SIZE
2-406 Chapter 2 Function/Function Block Description

SCS_REF
SCS_REF
SERCOS slave reference Motion/SERC_SLV

<<INSTANCE NAME>>:SCS_REF(REQ := <<BOOL>>, SRS := <<MEMORY
AREA>>, DIM := <<DINT>>, I147 := <<WORD>>, OPTN := <<WORD>>,
DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>, SERR =>
<<UINT>>, STAT => <<INT>>, RSLT => <<DINT>>);

The SCS_REF function block is used to run a reference cycle on the non-servo
SERCOS slave axis identified at the SRS input.

The SRS input is a structure consisting of the following members which identify
the SERCOS axis:

⁄ NAME ƒø
≥ SCS_REF ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥SRS FAIL√
≥ ≥
¥DIM ERR√
≥ ≥
¥I147 SERR√
≥ ≥
¥OPTN STAT√
≥ ≥
≥ RSLT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - request for reference cycle (one-shot)

SRS (STRUC) - identifies the servo SERCOS slave

DIM (DINT) - the value to assign to the index mark
(feedback marker pulse) or the switch position

I147 (WORD) - bits for IDN147

OPTN (WORD) - 0 if IDN 147 is not sent; 1 if IDN 147
is sent.

Outputs: DONE (BOOL) - set when the reference cycle is com-
plete

FAIL (BOOL) - set if an error occurred

ERR (INT) - 0 if no error occurred; ≠ 0 if a read error
occurred

SERR (UINT) - slave error; ≠ 0 if ERR is 128

STAT (INT) - indicates which IDN is being sent or
received

RSLT (DINT) - the commanded position after the refer-
ence is complete NOTE: This value must be sent to the
slave before the SCS_ACKR function block is called.

SLOT (UINT)
RING (UINT)
SLAVE (UINT)
Chapter 2 Function/Function Block Description 2-407

SCS_REF
The DIM input is the value assigned to the index mark or the reference switch
Position.

The I147 input holds the bits for IDN 147. Refer to the SERCOS specification for
more information. Typically, bits 2, 3, and 4 are 101 respectively. The other bits
depend on the application and the features offered by the drive.

The OPTN input determines whether IDN147 is sent during the reference cycle.
For some drives, IDN 147 must be sent during phase 2. Set bit 0 of the option word
to 1 if you are sending IDN 147 during the reference cycle. Set bit 0 of the option
word to 0 if you are not sending IDN 147 during the reference cycle.

The DONE output is set when the reference cycle is complete. The SCS_ACKR
function must be called after the reference cycle is complete.

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

The SERR output will be ≠ 0 if the ERR output is 128. See Table 2-12 on page 415
for a list of errors.

The STAT output indicates which IDN is being sent or received. It is used only for
troubleshooting failure conditions. See the chart below.

The RSLT output gives the commanded position after the reference is complete. If
the ladder is using the SCS_SEND function to write the drive position, this new
value must be used prior to calling the SCS_ACKR function.

STAT# IDN
1 Sending IDN 147 - option bits
2 Sending IDN 52 - reference position
3 Sending IDN 148 - start reference
4 Receiving IDN 148 - reference started?
5 Receiving IDN 403 - reference done?
6 Receiving IDN 47 - position?
0 Reference complete
2-408 Chapter 2 Function/Function Block Description

SCS_SEND
SCS_SEND
SERCOS slave send Motion/SERC_SLV

<<INSTANCE NAME>>:SCS_SEND(REQ := <<BOOL>>, SRS := <<MEM-
ORY AREA>>, DATA := <<MEMORY AREA>>, DONE => <<BOOL>>,
FAIL => <<BOOL>>, ERR => <<INT>>, SERR => <<UINT>>);

The SCS_SEND function block is used to send information to the service channel
section of the SERCOS communication.

The SRS input is a structure consisting of the following members which identify
the SERCOS axis:

⁄ NAME ƒø
≥SCS_SEND ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥SRS FAIL√
≥ ≥
¥DATA ERR√
≥ ≥
≥ SERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - request to send data (one-shot)

SRS (STRUCT) - structure that identifies the SERCOS
slave

DATA (STRUCT) - structure that sets up the format for
the data sent

Outputs: DONE (BOOL) - set when the send is complete

FAIL (BOOL) - set if an error occurred

ERR (INT) - 0 if no error occurred; ≠ 0 if a send error
occurred

SERR (UINT) - slave error, ≠ 0 if ERR = 128

SLOT (UINT)
RING (UINT)
SLAVE (UINT)
Chapter 2 Function/Function Block Description 2-409

SCS_SEND
The DATA input is a structure with the following members:

NOTE: The same structure members are used for the SCS_RECV and the
SCS_SEND function blocks.

The DONE output is set after the internal conditions to send are complete.

The FAIL output is set if an ERR occurs.

The ERR output will be ≠ 0 if an error occurred. See Table 2-11 on page 412 for a
list of errors.

The SERR output will be ≠ 0 if the ERR output is 128. See Table 2-12 on page 415
for a list of errors.

Member Type Description
IDN UINT IDN value
IDTYPE BYTE 0 = (S)ystem 1 = (P)roduct
ELEM USINT 2 = Name string (SIZE = 3)

3 = Attribute (SIZE = 2)
4 = Units string (SIZE = 3)
5 = Minimum value (SIZE = 1 or 2)
6 = Maximum value (SIZE = 1 or 2)
7 = Operation data (SIZE = 1, 2, 3, or 4)

NOTE: When the SIZE is 3 or 4, a string must be provided at the
STRARR member and the string size must be entered at the
AVAIL member.
If a 3 (attribute) is entered, the value will be put into the LDATA
member DINT since the attribute is always a 4-byte value.
If a 5 (minimum value) or 6 (maximum value) is entered, the data
size must be the same as the operation data size above.

SIZE UINT 1 = two bytes 2 = four bytes 3 = String 4 = Array
AVAIL UINT Quantity of bytes available in the array
ACTUAL UINT Quantity of bytes actually in the array
SDATA UINT Data sent if 1 is entered in SIZE
LDATA DINT Data sent if 2 is entered in SIZE
STRARR STRING/

ARRAY
(Optional - only required if a 3 or 4 is entered in SIZE)
Data sent is a string if 3 is entered in SIZE or
data sent is an array if 4 is entered in SIZE
2-410 Chapter 2 Function/Function Block Description

SCS_STAT
SCS_STAT
SERCOS slave status Motion/SERC_SLV

SCS_STAT(SRS := <<MEMORY AREA>>, OK => <<BOOL>>, STAT =>
<<WORD>>)

The SCS_STAT function is used for monitoring the ready-to-operate drive mode,
for diagnostic troubleshooting, or for monitoring the two real-time status bits
returned from the drive. For the definition of the bit assignments to the AT status
word, consult the SERCOS specification.

The SRS input is a structure consisting of the following members which identify
the SERCOS axis:

⁄ƒƒƒƒƒƒƒƒƒø
≥SCS_STAT ≥
≥ ≥
¥EN OK√
≥ ≥
¥SRS STAT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - set to read

SRS (STRUC) - structure that identifies the SERCOS
slave

Outputs: OK (BOOL) - set if read is allowed

STAT (WORD) - the status word of the most recent AT
info

SLOT (UINT)
RING (UINT)
SLAVE (UINT)
Chapter 2 Function/Function Block Description 2-411

SCS_STAT
SERCOS Errors

The errors listed in Table 2-11 can appear at the ERR output of certain SERCOS
functions\function blocks described in the preceding section.

Table 2-11 List of ERR Errors

ERR # Description
0 No error
1 IDN queue was busy when called or the amount of dynamic memory currently

available on the SERCOS board is not enough to accommodate the size specified
in .AVAIL..

2 The quantity specified in the .AVAIL structure member is not large enough for
the received data. The actual size of the received data is returned in the
.ACTUAL structure member. This error is reported by the SERCOS firmware.

3 Axis is not initialized, is not a SERCOS axis, or the slot/ring/slave specification
is incorrect.

4 Invalid data in DATA input structure
5 Error reset function could not be completed.
6 SERCOS ring 1 busy*
7 SERCOS ring 2 busy*
8 SERCOS ring 1 configuration size error**
9 SERCOS ring 2 configuration size error**
10 Function block enabled while already in process
11 Bit 3 or bit 8 set in the procedure command acknowledgment (data status)

Either operation data invalid or procedure command error
12 Not enough pool memory available
13 Change bit in status word was zero after reference complete.
14 The IDN queue was cleared during an IDN transfer, typically caused by calling

the SC_INIT function while an IDN is being read or written.
15 SERCOS module is unavailable for IDN transfer because the phase-to-phase

transistion in progress is between phase 2 and phase 4.
16 Slave response timed out
17 The SERCOS module did not receive an expected AT response. SERCOS cable

may be disconnected.
18 Number of SERCOS slots or slaves is invalid.
19 The SERCOS module did not receive an expected MDT response. SERCOS

cable may be disconnected.
20 Phase 0 detected that the ring is not complete. The optic cable could be open or

drive turned off.
21 The SERCOS module firmware is outdated for the features requested from a

newer version of the motion library.
22 The SERCOS module firmware is a newer version and the motion library is out-

dated and unable to interface.
2-412 Chapter 2 Function/Function Block Description

SCS_STAT
23 The version of PiCPro used to create the SERCOS setup data is outdated for the
features requested from the library or the SERCOS module firmware.

24 The version of PiCPro used to create the SERCOS setup data is a newer version
and the library is unable to interface.

25 A two-ring SERCOS module was specified in SERCOS setup but the module is a
one-ring SERCOS module.

26 Invalid PRB input on the SCA_PBIT or SCA_RFIT function blocks or invalid
OPTN input on the SCA_RFIT function block.

27 The SERCOS setup data was configured for a different CPU (PiC, MMC, or
MMC for PC).

28 The SERCOS ring is not currently halted in phase 2. SERCOS Setup may not
have specified “Pause after Phase 2".

29 The axis is in Resume Mode or Resumable E-EStop Allow (READ_SV/
WRITE_SV Variable 63) is set.

30 The drive status word (bit 13=1) indicates an error.
31 An E-stop condition exists for this axis in the PiC900.
32 Incorrect phase number, contact Danaher Motion.
33 Incorrect address error, contact Danaher Motion.
34 Incorrect AT number error, contact Danaher Motion.
35 Variable 48 is set to 1 and you attempt to close the loop
36 OPTN input is invalid.
37 The quantity specified in the .AVAIL structure member is not large enough for

the received data. The actual size of the received data is returned in the
.ACTUAL structure member. This error is reported by the motion library soft-
ware.

38 Open loop was requested while SCA_CLOS was in progress.
39 Function block aborted by user
48 Service channel not ready when attempt to send/receive non-cyclic data
49 No data to send or receive
50 The value of the .SIZE member of the TASK input structure does not match the

byte count in the SERCOS module.
51 The value of the .SIZE member of the MAIN input structure does not match the

byte count in the SERCOS module.
65 Error occurred calculating when MDT should occur.
66 Error occurred calculating when drive data valid.
67 Error occurred calculating when feedback data valid.
68 Error occurred calculating total time required for communication cycle.
69 Error occurred calculating cyclic data memory for SERCON processor.
70 Error occurred calculating cyclic data memory for internal memory map.
71 Error occurred calculating service channel memory map.
72 Incorrect ring error, contact Danaher Motion.
73 Incorrect AT count error, contact Danaher Motion.
Chapter 2 Function/Function Block Description 2-413

SCS_STAT
*This busy error may occur if the SC_INIT function is not one-shotted and a sec-
ond store operation is attempted before the first one is done.

**This size error will occur if too many IDNs are defined in the SERCOS setup
data.

The errors listed in Table 2-12 can appear at the SERR output of certain SERCOS
functions/function blocks described in the preceding section.

74 CPU on SERCOS module has too many tasks during update.
128 Slave error occurred. Read SERR output to identify error. The SLV output indi-

cates the slave number.
136 Slave will not respond in phase 1. The SLV output indicates the slave number.
144 Procedure command error - The slave number can be viewed at the SLV output

and the IDN number at the IDN output.
152 CRC error. The bit pattern received by the SERCOS receiver is corrupted.
2-414 Chapter 2 Function/Function Block Description

SCS_STAT
Table 2-12 List of SERR Errors

SERR # Description
4097 This IDN does not exist.
4105 The data for this IDN may not be accessed.
8193 The name does not exist
8194 The name transmission is too short
8195 The name transmission is too long
8196 The name may not be changed
8197 The name is write-protected
12290 The attribute transmission is too short
12291 The attribute transmission is too long
12292 The attribute may not be changed
12293 The attribute is write-protected at this time
16385 The units do not exist
16386 The units transmission is too short
16387 The units transmission is too long
16388 The units may not be changed
16389 The units are write-protected at this time
20481 The minimum value does not exist
20482 The minimum value transmission is too short
20483 The minimum value transmission is too long
20484 The minimum value may not be changed
20485 The minimum value is write-protected
24577 The maximum value does not exist
24578 The maximum value transmission is too short
24579 The maximum value transmission is too long
24580 The maximum value may not be changed
24581 The maximum value is write-protected
28674 The data is too short.
28675 The data is too long
28676 The data may not be changed.
28677 The data is write-protected at this time.
28678 The data is smaller than the minimum value.
28679 The data is larger than the maximum value.
28680 The bit pattern for this IDN is invalid.
Chapter 2 Function/Function Block Description 2-415

SCURVE
SCURVE
S Curve Motion/MOVE_SUP

SCURVE(AXIS := <<USINT>>, ACC := <<LREAL>>, JERK := <<LREAL>>,
OK => <<BOOL>>)

NOTE: A math coprocessor is required to use the SCURVE function.

The SCURVE function allows a master time axis to follow an s-curve velocity pro-
file instead of a trapezoidal velocity profile as shown below. In the typical trape-
zoidal profile, there will be jerks (shown by arrows below) when motion starts and
accelerates, when the commanded velocity is reached, when deceleration begins,
and when deceleration ends. These jerks can be suppressed by using an s-curve
profile which smooths out the acceleration and deceleration.

⁄ƒƒƒƒƒƒƒƒƒø
≥ SCURVE ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥ACC ≥
≥ ≥
¥JERK ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - time axis number

ACC (LREAL) - the maximum acceleration rate in

counts/min2

JERK(LREAL) - the constant jerk in counts/min3

Outputs: OK (BOOL) - execution complete without errors

Jerk Jerk

Time
Jerk Jerk

S-Curve Profile

V
el

oc
it

y

Trapezoidal ProfileV
el

oc
it

y

2-416 Chapter 2 Function/Function Block Description

SCURVE
You create an s-curve profile by defining a maximum acceleration rate (ACC) and
a constant jerk rate (J) for a master time axis in the SCURVE function. (See the
Notes that follow.) Then you can use the DISTANCE, POSITION, or VEL_STR/
VEL_END functions to move a distance, reach an endpoint, or follow a velocity.

Two other functions can be used with the SCURVE function. The IN_POS? func-
tion is used to indicate when the distance or position move is complete. The
NEWRATE function is used to change the velocity of the time axis while it is
moving.

The command velocity (variable 6) can be read with the READ_SV function. This
value is given in counts/sec. It will read the velocity command due to the s-curve
profile. When the axis is accelerating or decelerating, the value will be different
than the value commanded . NOTE: Do not write a command velocity with vari-
able 6 when a non-zero value is entered in the ACC and JERK inputs.

You can turn the s-curve off by entering a zero in the ACC input and in the JERK
input. The acceleration and deceleration of the time axis will then work with a
position and a step velocity written with variables 1 and 6 using the WRITE_SV
function. DISTANCE, POSITION, and VEL_STR/END functions are not used.

To improve performance, it is recommended that the velocity compensation flag
(read servo variable 32) be turned off for any slaves following the s-curve master
time axis.

Time axes do not use the queue like servo axes do. If the time axis is already mov-
ing when another function call is made, the new move will begin immediately.
The moves are blended together. For example if a second distance move is called
before the first is completed, the distance values of the first and second move will
be summed. The rate specified in the second move will also take effect immedi-
ately. Depending upon distance, endpoint, or direction selected in a distance, posi-
tion or velocity move, the axis could reverse direction.
Chapter 2 Function/Function Block Description 2-417

SCURVE
Notes on Determining ACC and JERK Inputs

The following guidelines may help you determine the maximum acceleration
[ACC input (Am)] and the constant jerk [JERK input (J)] for your application.
The two examples below present two ways to approach this.

Example 1

In the first example, assume that when going from 0 to maximum velocity (Vm)
the first third of the velocity change is spent in constant jerk, the second third is
spent in constant acceleration, and the final third is spent in constant jerk as shown
below.

When this 1/3 relationship is true, the relationship between acceleration, jerk,
velocity and time can be expressed as follows:

If you select an approximate time for acceleration from 0 to Vm (left column) and
a value for the maximum velocity (top row), then the table provides the value for
constant jerk (first line) and maximum acceleration (second line) in each row.
Typically, you set the ACC and JERK inputs once based on the maximum your
application can handle.

and

Vm

Constant jerk

Constant
Acceleration

Constant jerk

Time

�
�

�
---�

��
�

��
---------- ��

�

�
---�

��

����

2-418 Chapter 2 Function/Function Block Description

SCURVE

Example 2:

Vm = Maximum velocity

tm =The total time to reach velocity Vm if the axis starts at 0

tj = The total constant jerk time

ta = The total constant acceleration time

Time
(sec)

Velocity
(FU/min)

1x103

Velocity
(FU/min)

1x10
4

Velocity
(FU/min)

1x105

Velocity
(FU/min)

1x106

Velocity
(FU/min)

1x107

0.01 1.5x1011

1.0x107

1.5x1012

1.0x108

1.5x1013

1.0x109

1.5x1014

1.0x1010

1.5x1015

1.0x1011

JERK (FU/min3)

ACC (FU/min2)

0.1 1.5x109

1.0x106

1.5x1010

1.0x107

1.5x1011

1.0x108

1.5x1012

1.0x109

1.5x1013

1.0x1010

JERK (FU/min3)

ACC (FU/min2)

1 1.5x107

1.0x105

1.5x108

1.0x106

1.5x109

1.0x107

1.5x1010

1.0x108

1.5x1011

1.0x109

JERK (FU/min3)

ACC (FUmin2)

10 1.5x105

1.0x104

1.5x106

1.0x105

1.5x107

1.0x106

1.5x108

1.0x107

1.5x109

1.0x108

JERK (FU/min2)

ACC (FU/min2)

100 1.5x103

1.0x103

1.5x104

1.0x104

1.5x105

1.0x105

1.5x106

1.0x106

1.5x107

1.0x107

JERK (FU/min3)

ACC (FU/min2)

0

ta 0.5 tj0.5 tj

tm

V
el

oc
it

y

Vm

Time
��������������
�������������� = constant jerk

= constant acceleration
Chapter 2 Function/Function Block Description 2-419

SCURVE
s= The fraction of time spent in constant jerk calculated by:

If you know Vm, tm, and s, then you can calculate jerk and acceleration using the
following formulas.

The units for JERK are ladder units per minute3; therefore, Vm is in ladder units

per minute and tm is in minutes. The units for ACCL are ladder units per minute2.

�
�	

��
-----�

�
��
� ��×

� ��
�× � ���� �×()

--�

��
��

�� � ���� �×()
-----------------------------------�
2-420 Chapter 2 Function/Function Block Description

SEEK
SEEK
Seek Io/COMM

<<INSTANCE NAME>>:SEEK(REQ := <<BOOL>>, HNDL := <<INT>>, ORG
:= <<INT>>, OFF := <<DINT>>, DONE => <<BOOL>>, FAIL =>
<<BOOL>>, ERR => <<INT>>);

When you use the OPEN function block, the file or device is set up for a sequential
read/write. The SEEK function block allows you to change the location of the
pointer.

This function block positions a pointer in a RAMDISK or FMSDISK file. A
READ or WRITE executed after this function block will start reading from or
writing at that point. The pointer is positioned from one of three origins specified
by the value at ORG. It is offset from the origin by the number of bytes specified
at OFF. The offset value can be positive (for forward) or negative (for backward).

If the offset value moves the pointer beyond the end of file, the pointer will be at
the end of the file. If the offset value moves the pointer before the beginning of
file, the pointer will be at the beginning of the file.

⁄ƒƒNAME ƒƒø
≥ SEEK ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥HNDL FAIL√
≥ ≥
¥ORG ERR√
≥ ≥
¥OFF ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (One-shot)

HNDL (INT) - output from OPEN function block

ORG (INT) - origin

OFF (DINT) - offset

Outputs: DONE (BOOL) - energized if ERR = 0
not energized if ERR ≠ 0

FAIL (BOOL) - energized if ERR ≠ 0
not energized if ERR = 0

ERR (INT) - 0 if data transfer successful
≠ 0 if data transfer unsuccessful

See Appendix B in the PiCPro Online Help for ERR
codes.

Enter at ORG Positions pointer at OFF bytes from:
16#A00 beginning of file
16#A01 its current location
16#A02 end of file
Chapter 2 Function/Function Block Description 2-421

SEEK
Examples of SEEK function

SEEK is used in conjunction with the CLOSE, CONFIG, OPEN, READ, STA-
TUS, and WRITE I/O function blocks.

Value at ORG Value at OFF Positions pointer at OFF bytes from:
16#A00 10 10 bytes beginning of file
16#A02 0 the end of the file
16#A00 -5 the beginning of file
2-422 Chapter 2 Function/Function Block Description

SEL
SEL
Select Filter/SEL

SEL(G := <<BOOL>>, IN0 := <<ANY>>, IN1 := <<USINT>>, OK =>
<<BOOL>>, OUT => <<ANY>>)

The SEL function is used to select one of two values and place it in the output vari-
able. The selection is based on the value of the BOOLEAN input at G.

If power flow/logic continuity does not exist to the point at G, then the value of the
variable or constant at IN0 is placed into the variable at OUT. If power flow/logic
continuity exists to the point at G, then the value of the variable or constant at IN1
is placed into the variable at OUT.

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ SEL ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥G OUT√
 ≥ ≥
 ¥IN0 ≥
 ≥ ≥
 ¥IN1 ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

G (BOOL) - value selector

IN0 (ANY except STRUCT) - value to be
selected

IN1 (same type as IN0) - value to be selected

Outputs: OK (BOOL) - execution completed without
error

OUT (same type as IN0) - selected value
Chapter 2 Function/Function Block Description 2-423

SERVOCLK
SERVOCLK
Servo Clock Xclock/SERVOCLK

SERVOCLK(RATE := <<TIME>>, OK => <<BOOL>>, ERR => <<USINT>>)

The SERVOCLK function is used in conjunction with the task feature. It allows
you to run a task tied to the servo interrupt clock without actually running any ser-
vos. This gives you the ability to run a faster, higher-priority task than either the
hardware or system tasks.

NOTE: When you are running servos, the servo interrupt clock is started when
you call the STRTSERV function.

The SERVOCLK function is called only once to start the servo interrupt clock. It
may be called before or after the task(s) that is to run on the servo clock.

If the STRTSERV and the SERVOCLK functions are both called in the same lad-
der, the most recent one called will be in effect. Calling SERVOCLK after STRT-
SERV will stop the servos.

The errors that can appear at the ERR output are listed below.

*If you are using a Turbo2 control, do not set the servo interrupt clock at 16 ms.

⁄ƒƒƒƒƒƒƒƒƒø
≥ SERVOCLK≥
≥ ≥
¥EN OK√
≥ ≥
¥RATE ERR√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

RATE (TIME) -250 µs, 500 µs, 1, 2, 4, 8, or 16 ms. To
enter 250 or 500 microseconds, use the format T#250us
or T#500us. For milliseconds times, use the normal T#
format.

Outputs: OK (BOOL) - interrupt started without error

ERR (USINT) - 0 if OK is set. ≠ 0 if an error occurs.

ERR = 1 Invalid rate value entered. Must be 1, 2, 4, 8, or 16* ms.
ERR = 2 Out of memory.
ERR = 3 Invalid CPU revision. Outdated EPROMs.
2-424 Chapter 2 Function/Function Block Description

SHL
SHL
Shift Left Binary/SHL

SHL(IN := <<BITWISE>>, N := <<USINT>>, OK => <<BOOL>>, OUT =>
<<BITWISE>>)

The SHL function moves all bits in the variable or constant at IN to the left. The
bits are shifted the number of positions specified by the variable or constant at N.
N bits on the left side are dropped. N bits on the right side are replaced with zeros.
The result is placed in the variable at OUT.

Shift left, where N = 2:

Examples of shift left:

⁄ƒƒƒƒƒƒƒƒƒø
≥ SHL ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¥N ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (BITWISE) - value to have bits shifted

N (USINT) - number of bits to shift

Outputs: OK (BOOL) - execution completed without
error

OUT (same type as IN) - shifted value

SHL (3) 11110000 = 10000000
SHL (4) 01110011 = 00110000
SHL (8) 11111111 = 00000000

11001101

0011001 1

0s inserted

discarded
Chapter 2 Function/Function Block Description 2-425

SHR
SHR
Shift Right Binary/SHR

SHR(IN := <<BOOL>>, N := <<USINT>>, OK => <<BOOL>>, OUT => <<BIT-
WISE>>)

The SHR function moves all bits in the variable or constant at IN to the right. The
bits are shifted the number of positions specified by the variable or constant at N.
N bits on the right side are dropped. N bits on the left side are replaced with zeros.
The result is placed in the variable at OUT.

Shift right, where N = 2:

Examples of shift right:

⁄ƒƒƒƒƒƒƒƒƒø
≥ SHR ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¥N ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (BITWISE) - value to have bits shifted

N (USINT) - number of bits to shift

Outputs: OK (BOOL) - execution completed without
error

OUT (same type as IN) - shifted value

SHR (3) 10101010 = 00010101
SHR (4) 01110011 = 00000111
SHR (8) 11111111 = 00000000

1 1

0 0 1 0 1 1 00

0’s inserted

discarded

1 1 10 0 0
2-426 Chapter 2 Function/Function Block Description

SINT2BYT
SIN
Sine Arith/TRIG

SIN(ANGL := <<REAL/LREAL>>, OK => <<BOOL>>, SIN => <<REAL/
LREAL>>)

The SIN function calculates the sine of the angle entered at ANGL. The result is
placed at SIN.

SINT2BYT
Short Integer to Byte Datatype/SINTCONV

SINT2BYT(IN := <<BOOL>>, OK => <<BOOL>>, OUT => <<BYTE>>)

The SINT2BYT function changes the data type of the value at IN from a short
integer to a byte. The result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ SIN ≥
≥ ≥
¥EN OK√
≥ ≥
¥ANGL SIN√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

ANGL (REAL/LREAL) - angle value (in radians)

Outputs: OK (BOOL) - execution completed without error

SIN (REAL/LREAL) - sine calculated

NOTE: The data types entered at ANGL and SIN must
match, i.e. if ANGL is REAL, then SIN must be
REAL.

⁄ƒƒƒƒƒƒƒƒƒø
≥ SINT2BYT≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (SINT) - value to convert

Outputs: OK (BOOL) - execution completed without
error

OUT (BYTE) - converted value
Chapter 2 Function/Function Block Description 2-427

SINT2DI
SINT2DI
Short Integer to Double Integer Datatype/SINTCONV

SINT2DI(IN := <<BOOL>>, OK => <<BOOL>>, OUT => <<DINT>>)

The SINT2DI function changes the data type of the value at IN from a short inte-
ger to a double integer. The sign of the short integer is extended into the leftmost
24 bits of the double integer. The result is placed in the variable at OUT.

SINT2INT
Short Integer to Integer Datatype/SINTCONV

SINT2INT(IN := <<SINT>>, OK => <<BOOL>>, OUT => <<INT>>)

The SINT2INT function changes the data type of the value at IN from a short in-
teger to an integer. The sign of the short integer is extended into the leftmost 8 bits
of the integer. The result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ SINT2DI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (SINT) - value to convert

Outputs: OK (BOOL) - execution completed without
error

OUT (DINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ SINT2INT≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (SINT) - value to convert

Outputs: OK (BOOL) - execution completed without
error

OUT (INT) - converted value
2-428 Chapter 2 Function/Function Block Description

SINT2USI
SINT2LI
Short Integer to Long Integer Datatype/SINTCONV

SINT2LI(IN := <<SINT>>, OK => <<BOOL>>, OUT => <<LINT>>)

The SINT2LI function converts a short integer into a long integer. The sign bit of
the DINT is extended into the leftmost 56 bits of the long integer. The result is
placed in a variable at OUT.

SINT2USI
Short Integer to Unsigned Short Integer Datatype/SINTCONV

SINT2USI(IN := <<SINT>>, OK => <<BOOL>>, OUT => <<USINT>>)

The SINT2USI function changes the data type of the value at IN from a short inte-
ger to an unsigned short integer. The result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ SINT2LI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (SINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ SINT2USI≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (SINT) - value to convert

Outputs: OK (BOOL) - execution completed without
error

OUT (USINT) - converted value
Chapter 2 Function/Function Block Description 2-429

SIZEOF

D

SIZEOF
Size of variable Datatype/SIZEOF

SIZEOF(IN := <<ANY>>, OK => <<BOOL>>, OUT => <<UNIT>>)

The SIZEOF function is used to give you the size of the variable name you
enter at IN.

The OK will be set if the EN is on and off when the EN is off.

The OUT output reports the size in bytes of the variable at IN.

⁄ƒƒƒƒƒƒƒƒƒø
≥ SIZEOF ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - set to call the function (one-shot)

IN (any data type) - variable name

Outputs: OK (BOOL) - set when EN is on

OUT (UINT) - size in bytes of the variable entered at IN

ata Type
of

Variable

OUT
Output

(in bytes)

Data Type
of Variable

OUT Output
(in bytes)

BOOL 1 STRING Declared length +2
BYTE 1 DATE 2
WORD 2 TIME_OF_DAY 4
DWORD 4 DATE_AND_TIME 4
LWORD 8 TIME 4
SINT 1 Variable (ARRAY) Size of one element in array
INT 2 STRUCT Number of bytes in structure
DINT 4 STRUCT.member Size of member
LINT 8 STRUCT.member (ARRAY) Size of one element in array mem-

ber
USINT 1 STRUCT (ARRAY) Size of one structure in the array
UNIT 2 STRUCT (ARRAY).member Size of member
UDINT 4 STRUCT (ARRAY).member

(ARRAY)
Size of one element in array mem-
ber

ULINT 8 Variable name of array only Not supported
REAL 4 Name of structure array only Not supported
LREAL 8 Constant 4 unless DATE (D#) which is 2
2-430 Chapter 2 Function/Function Block Description

SIZEOF
Below is an example of what the size output would be for the structure MACH
and each of its members.

*The 4 represents DWORD (0). There are another 4 bytes in DWORD (1)
which brings the total for the structure to 14.

Variable Name
at IN

Data Type
of Variable

SIZE Out-
put

(in bytes)
MACH STRUCT 14
.ONE BYTE 1
.TWO DWORD

(2)
4*

.END STR (3) 5
END_STRUCT
Chapter 2 Function/Function Block Description 2-431

SQRT
SQRT
Square Root Arith/ARITH

SQRT(SQR := <<USINT, UINT, UDINT, REAL>>, OK => <<BOOL>>, ROOT
=> <<USINT, UINT, UDINT, REAL>>)

The SQRT function determines the square root of the number at SQR and places it
in the variable at ROOT. The value at SQR must be greater than or equal to zero.

The square root function, operating on a non-negative number S, is defined as:

If the value at ROOT is not an integer, it is rounded up to the nearest integer if the
fractional value is greater than or equal to .5. It is rounded down to the nearest
integer if the fractional value is less than .5.

Note: You can use other datatypes such as INTs, DINTs, etc. as long as they
are positive values.

⁄ƒƒƒƒƒƒƒƒƒø
≥ SQRT ≥
≥ ≥
¥EN OK√
≥ ≥
¥SQR ROOT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

SQR (USINT, UINT, UDINT, REAL constant) -
value to find square root of

Outputs:OK (BOOL) - execution completed without error

ROOT (same type as SQR) - square root of the
number

where r * r = S

 "�
2-432 Chapter 2 Function/Function Block Description

STATUS
STATUS
Status Io/COMM

<<INSTANCE NAME>>:STATUS(REQ := <<BOOL>>, HNDL := <<INT>>,
DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>, STAT =>
<<INT>>);

The STATUS function block outputs the number of bytes that are in the input
buffer for the device designated by HNDL. The number of bytes is placed in the
variable at STAT. The value of STAT should be used as an input to the READ
function (at CNT) to specify how many bytes should be read from the port.

• Use this function block only for a device at the User Port, and only when the
device is opened in the READ or READ/WRITE mode. ERR code # 9 will
be returned if this function is used on workstation or DISK files.

• The maximum number of characters that will be buffered by the PiC is 128.
If a read is not done, the buffer will fill up. Subsequent characters will be
lost.

STATUS is used in conjunction with the CLOSE, CONFIG, OPEN, READ,
SEEK, and WRITE I/O function blocks.

⁄ƒƒNAME ƒƒø
≥ STATUS ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥HNDL FAIL√
≥ ≥
≥ ERR√
≥ ≥
≥ STAT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (One-shot)

HNDL (INT) - output from OPEN function block

Outputs: DONE (BOOL) - energized if ERR = 0
not energized if ERR ≠ 0
FAIL (BOOL) - energized if ERR ≠ 0
not energized if ERR = 0

ERR (INT) - 0 if data transfer successful
≠ 0 if data transfer unsuccessful

See Appendix B in the PiCPro Online Help for ERR
codes.

STAT (INT) - number of bytes in buffer
Chapter 2 Function/Function Block Description 2-433

STATUSSV
STATUSSV
Status Servo Motion/DATA

STATUSSV(AXIS := <<USINT>>, OK => <<BOOL>>, STAT => <<WORD>>)

The STATUSSV function identifies the following axis characteristics in the STAT
word output:

These bits are “read and clear” (one shot) bits except the fast input on bit. A set bit
means that the event has occurred since the last time the function was called.
Therefore, it is recommended that the function be called only once in the ladder to
prevent missing the event.

Move started - This bit will be set when the software starts iterating a move. It
will be set whenever a move begins.

A situation where checking the status of this bit is helpful is when the start of a
move has been held off by the distance requirement in the FAST_QUE function.
The bit will be set when the move actually begins.

Fast input occurred - This bit will be set by the software whenever a fast input
occurs on the servo or digitizing axis. The module must be configured to watch for
the fast input by using the FAST_QUE, the FAST_REF, REGIST, or MEASURE.
The FAST_QUE and FAST_REF functions must be called each time you want to
perform the function and configure the module. REGIST and MEASURE are
called once.

Typically, the Fast input occurred bit will be set anytime the fast input occurs on
the axis. However, if it is an encoder axis that uses the index mark to reference,
the bit is set when the index mark occurs. With the FAST_REF function, the bit is
set when the index mark occurs after the fast input transitions. With the

⁄ƒƒƒƒƒƒƒƒƒø
≥STATUSSV ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS STAT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo or digitizing)

Outputs: OK (BOOL) - execution completed without error

STAT (WORD) - gives the status of the axis

Characteristic Binary Value Hex Value
Move started 00000000 00000001 0001
Fast input occurred 00000000 00000010 0002
Fast input on 00000000 00000100 0004
Good mark detected 00000000 00001000 0008
Bad mark detected 00000000 00010000 0010
DIST + TOLR exceeded 00000000 00100000 0020
Fast input rising 00000000 01000000 0040
2-434 Chapter 2 Function/Function Block Description

STATUSSV
LAD_REF function, the bit is set when the index mark occurs after the REF_END
function is called in the ladder.

Fast input on - This bit is set by the hardware when the fast input is on.
NOTE: If the STATUS_SV function is called after the fast input turns on but
before a servo interrupt occurs, the Fast input on bit is set and the Fast input
occurred bit will not be set until the next scan.
NOTE: This bit is not supported with SERCOS or virtual axes. It will always be
reset.

Good mark detected- This bit will be set when a good mark is detected.

Bad mark detected - This bit keeps track of bad marks.
NOTE: Since the first mark is always “bad,” it will be set on the first mark after
registration is called.

Distance + tolerance exceeded - This bit is set as soon as the distance from the
last mark exceeds the value of DIST + TOLR whether or not a mark has occurred.
It will be reset when any mark occurs.

Fast input rising - This bit indicates the direction of the most recent fast input
until the next fast input occurs.

If the transition direction is defined as rising (a 0 entered in variable 19 of
WRITE_SV), then this bit will always be on.

If the transition direction is defined as falling (a 1 entered in variable 19 of
WRITE_SV), then this bit will always be off.

If the transition direction is defined as both rising and falling (a 2 entered in
variable 19 of WRITE_SV), then this bit will alternate between on and off as the
fast input signal alternates.

See also the table of variables at the READ_SV function.
Chapter 2 Function/Function Block Description 2-435

STEPCNTL
STEPCNTL
Stepper Control Io/STEPPER

STEPCNTL(STRC := <<MEMORY AREA>>, CNTL := <<UINT>>, OK =>
<<BOOL>>)

The STEPCNTL function is used to send a control word to the stepper motor con-
trol module (SMCM). The number entered in CNTL represents a control word
from those listed in the table that follows.

⁄ƒƒƒƒƒƒƒƒƒø
≥ STEPCNTL≥
≥ ≥
¥EN OK√
≥ ≥
¥STRC ≥
≥ ≥
¥CNTL ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

STRC (STRUCT) - handle of axis initialized in
STEPINIT at STRC input (See STEPINIT function.)

CNTL (UINT) - control word number for axis at STRC

Outputs: OK (BOOL) - execution completed without error

IMPORTANT

When the STEPCNTL function is called, it can take the SMCM up to
3 ms to process it. To ensure proper operation, always check that the
“control word not processed” bit in the status word is clear before
sending a control word.
2-436 Chapter 2 Function/Function Block Description

STEPCNTL

Control # Name Description
1 Enable profile The enable profile control word is required to allow profile com-

mands to be entered into the command queue.
2 Pause profile The pause profile control word will prevent any further profile

commands in the command queue from being executed until a
continue control word is received.

NOTE: An active distance or position command will complete
its execution.

3 Continue pro-
file

The continue control word will cause profile command execution
to resume. It resets the pause bit and goes to the next command in
the command queue.

If a continue control word is received before the current command
is completed, that command will be aborted and the next com-
mand in the command queue will be executed.

NOTE: If a velocity command is executed and there are no more commands in the command
queue, the queue empty bit will be set as soon as the continue profile word is written.
Because there are no more commands to execute the SMCM will then force the stepper to
decelerate to zero at the current acc/dec rate.-

4 Emergency
stop

The emergency stop control word causes the SMCM to stop out-
putting pulses to the stepper regardless of the current acc/dec rate.
The command queue is emptied.

5 Controlled
stop

The controlled stop control word causes the SMCM to immedi-
ately decelerate to zero velocity at the current acc/dec rate. The
command queue is emptied.

6 Step/direction The step/direction control word causes pulses to be output on the
step/cw output and direction to be output on the direction/ccw
output as shown below. The step/direction mode is the default.

Step/cw

Direction/ccw (FWD) (REV)
Chapter 2 Function/Function Block Description 2-437

STEPCNTL
Interrupting distance, position, and velocity moves

Moves can be interrupted in various ways--a controlled stop, an emergency stop, or
a continue control word. The effects each of these has on a move are illustrated in
the next three figures.

When a controlled stop control word is received from the ladder, the move is
aborted and the axis decelerates to zero at the current acc/dec rate as shown in
Controlled stop control word received before end of a move

Figure 2-33. Controlled stop control word received before end of a move

When an emergency stop control word is received from the ladder, the axis comes
to an immediate halt as shown in Emergency stop control word received before
end of distance move

7 CW/CCW The CW/CCW control word causes steps to be output on the step/
cw output when the stepper motor moves in a forward direction
and on the direction/ccw output when the stepper motor moves in
the reverse direction.

Step/cw

Direction/ccw

(FWD)

(REV)

T

Controlled
Stop

Move Without
Controlled Stop

V

Move
Start
2-438 Chapter 2 Function/Function Block Description

STEPCNTL
Figure 2-34. Emergency stop control word received before end of distance move

When the word to continue is received from the ladder, the next command in the
profile is executed as shown in Velocity move with continue control word received
before velocity reached

Figure 2-35. Velocity move with continue control word received before velocity
reached

T

Emergency
Stop

Move Without
Emergency Stop

V

Move
Start

T

Move Continue
ReceivedStart

Velocity Without
Continue

Next Command
Executed Here

V

Command
Velocity
Chapter 2 Function/Function Block Description 2-439

STEPINIT
STEPINIT
Step Initialization Io/STEPPER

STEPINIT(STRC := <<MEMORY AREA>>, OK => <<BOOL>>)

The STEPINIT function initializes an axis as a stepper axis. It verifies the integ-
rity of the rack, slot, and channel location and assigns a handle (ID) to the axis at
that location.

It also returns the errors listed in the table below at the ERROR member of the
structure.

You enter a structure in the software declarations table following the format shown
below. The name of the structure in this example is STEP1.

⁄ƒƒƒƒƒƒƒƒƒø
≥ STEPINIT≥
≥ ≥
¥EN OK√
≥ ≥
¥STRC ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

STRC (STRUCT) - contains the following members:
RACK, SLOT, CHAN, ERROR, and ID which
identifies the axis as a stepper axis

Outputs: OK (BOOL) - execution completed without error

Error number for ERROR member of structure
Name of Error Function OK not set with error
0 No error N/A
1 Invalid rack number or remote rack not available STEPINIT
2 Invalid slot number STEPINIT
3 Invalid channel number STEPINIT
4 Module not found at rack and slot location or not

enough channels on the module
STEPINIT

5 Invalid command number STEP_CMD
6 Invalid data for the command STEP_CMD
7 Invalid control number STEPCNTL
8 A stepper function called before the STEPINIT func-

tion
STEP_COM, STEPCNTL,

STEPSTAT, and STEP_POS
9 A BLOCK_IO error has occurred STEP_COM, STEPCNTL,

STEPSTAT, and STEP_POS
2-440 Chapter 2 Function/Function Block Description

STEPINIT
 Structure for STEPINIT function

Initial values are entered by you for the rack, slot, and channel numbers for the
stepper axis at the RACK, SLOT, and CHAN members of the structure.

NOTE: With the block stepper/encoder/DCin module, the RACK must be set to
100, the SLOT is the module number from 1 to 77 (1 for the block module con-
nected to the CPU, 2 for the block module connected to #1, 3 for the module con-
nected to #2, etc., and CHAN is 1 or 2.

The software assigns values to ERROR and ID. Never enter any values for them.

IMPORTANT

The structure you enter in the software declarations table must have
the members entered in the order shown above. The data type for
each member of the structure must be as shown in the Type column
in order for the software to recognize the information.
Chapter 2 Function/Function Block Description 2-441

STEPSTAT
STEPSTAT
Step Status Io/STEPPER

STEPSTAT(STRC := <<MEMORY AREA>>, OK => <<BOOL>>, STAT =>
<<WORD>>)

The STEPSTAT function allows you to read the data on the status of the axis. See
the table below.

⁄ƒƒƒƒƒƒƒƒƒø
≥ STEPSTAT≥
≥ ≥
¥EN OK√
≥ ≥
¥STRC STAT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STRC (STRUCT) - handle of axis initialized in
STEPINIT at STRC input

Outputs:OK (BOOL) - execution completed without error

STAT (WORD) - stepper status for AXIS

IMPORTANT

It takes the stepper motor control module (SMCM) up to 3 ms to pro-
cess a control word. If the “control word not processed” bit in the sta-
tus word is clear, the status word reflects the last control word that
was written.
2-442 Chapter 2 Function/Function Block Description

STEPSTAT
Table 2-13. WORD Output from STEPSTAT Function

Name Description Binary value Dec Hex
Profile
enabled

When set, this bit indicates that commands
can be sent to the queue for execution. It is
set by sending the enable profile control
word.

The following conditions will reset this bit:

• Sending an emergency stop control word

• Completing a controlled stop

• Controller scan loss

• Illegal command/data is executed

• Illegal control word received

• Calculation error occurred

• Command queue overflow

When reset, the following occurs:

• The SMCM stops outputting pulse

• The queue is emptied

• Any commands sent to the queue are lost

• Status information for the axis is invalid

00000000 00000001 1 0001

Profile
paused

When set, this bit indicates that no more
commands will be executed from the queue.
The following commands will set this bit:

• A pause profile command or control word

• A velocity move command

This bit is reset by sending a continue profile
control word.

00000000 00000010 2 0002

At veloc-
ity

When set, this bit indicates that the desired
velocity has been reached. This bit is set
when a velocity move command is executed
and the desired velocity is reached.

This bit is reset by sending a continue profile
control word.

00000000 00000100 4 0004

Queue
empty

This bit is set when the final command in the
queue has completed execution.

This bit is reset when a command is placed
into the queue for execution.

00000000 00001000 8 0008
Chapter 2 Function/Function Block Description 2-443

STEPSTAT
NOTE: If a velocity command is executed and there are no more commands in the command
queue, the queue empty bit will be set as soon as the continue profile word is written.
Because there are no more commands to execute the SMCM will then force the stepper to
decelerate to zero at the current acc/dec rate.
Queue
full

This bit is set when the queue is full (500
commands). An E-stop will occur if another
command is sent to the queue.

This bit is reset when a command is removed
from the queue for execution.

00000000 00010000 16 0010

Control
word not
pro-
cessed

This bit is set until the control word is pro-
cessed.

00000000 00100000 32 0020

(not used) 00000000 0X000000 64 0040
(not used) 00000000 X0000000 128 0080
(not used) 0000000X 00000000 256 0100
(not used) 000000X0 00000000 512 0200
(not used) 00000X00 00000000 1024 0400
(not used) 0000X000 00000000 2048 0800
(not used) 000X0000 00000000 4096 1000
(not used) 00X00000 00000000 8192 2000
Reserved for future version # of firmware 0V000000 00000000 16384 4000
Reserved for future version # of firmware V0000000 00000000 32768 8000

Name Description Binary value Dec Hex
2-444 Chapter 2 Function/Function Block Description

STEP_CMD
STEP_CMD
Step Command Io/STEPPER

STEP_CMD(STRC := <<MEMORY AREA>>, CMD := <<UINT>>, DATA :=
<<DINT>>, OK => <<BOOL>>)

The STEP_CMD function sends a profile command and its related data to the step-
per axis identified in STRC. The commands available and their range of data are
listed in the table below. Several commands (up to 500) can be sent to the com-
mand queue on the stepper motor control module (SMCM) to run a profile for the
axis identified at STRC.

⁄ƒƒƒƒƒƒƒƒƒø
≥ STEP_CMD≥
≥ ≥
¥EN OK√
≥ ≥
¥STRC ≥
≥ ≥
¥CMD ≥
≥ ≥
¥DATA ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

STRC (STRUCT) - handle of axis initialized in
STEPINIT at STRC input (See STEPINIT function.)

CMD (UINT) - stepper command for STRC

DATA (DINT) - command data for STRC

Outputs: OK (BOOL) - execution completed without error

IMPORTANT

When the STEP_CMD function is called, the command is moved into
a command queue on the SMCM. It can take up to 3 ms for the
SMCM to process a command after it has been moved into the com-
mand queue. In some cases, it is important that the command be pro-
cessed before some other action is taken (i.e. sending a control word).
To ensure that the command is processed before some other action,
send a pause command immediately after the command. Check to see
that the pause bit in the status word is set before initiating the next ac-
tion.

NOTE

If the command queue is empty when the SMCM is ready to execute
another command, the SMCM will force the stepper to decelerate to
zero at the current acc/dec rate. If another command is sent to the
command queue during this deceleration, that command will be exe-
cuted immediately.
Chapter 2 Function/Function Block Description 2-445

STEP_CMD

Profile Commands
Com # Profile Command Range

1 Distance

The distance command will cause the stepper to move the indi-
cated number of steps relative to the current position.

For example, if the current position is 200 and the commanded
distance is 1000, the endpoint will be 1200. The SMCM will
output 1000 steps.

The SMCM will cause the motor to accelerate, decelerate, or
reverse direction in order to move the required distance.

At the end of an uninterrupted distance move, the velocity is
always zero.

The distance move will accelerate towards (or decelerate to) the
maximum velocity set with command 4.

All acceleration and deceleration required to move the com-
manded distance will be at the acc/dec rate set with command 5.

A distance move is aborted when a continue control word is
received from the ladder.

±2,147,352,575
steps

2 Position

The position command is identical to the distance command
except the move is relative to absolute zero. When power is
first applied to the SMCM, the absolute position is zero. Any
distance moved from this point is added to or subtracted from
(for reverse move) the current position to form the new absolute
position.

For example, if the current position is 200 and the commanded
position is 1000, the endpoint will be 1000. The SMCM will
output 800 steps.

The SMCM will cause the motor to accelerate, decelerate, and
reverse directions, if necessary, in order to move to the com-
manded position.

At the end of an uninterrupted position move, the velocity is
always zero.

The position move will accelerate towards (or decelerate to) the
maximum velocity set with command 4.

All acceleration and deceleration required to move the com-
manded distance will be at the acc/dec rate set with command 5.

A position move is aborted when a continue control word is
received from the ladder.

±2,147,352,575
steps
2-446 Chapter 2 Function/Function Block Description

STEP_CMD
The starting velocity is “0” and the move accelerates at the current acc/dec rate to
the commanded velocity in Velocity move with starting velocity = 0 It will con-
tinue at the commanded velocity until the next command is received.

Figure 2-36. Velocity move with starting velocity = 0

3 Velocity

The velocity command will cause the stepper to accelerate or
decelerate at the current acc/dec rate from the current velocity
to the commanded velocity.

When the velocity command is executed, the “pause” bit in the
status word is set immediately. The next command will not be
executed until a continue control word from the ladder is
received. If a continue control word is received during the acc/
dec portion of the move, the velocity command is aborted and
the next command is executed.

If no continue control word is received during the acc/dec sec-
tion, the commanded velocity is reached and the “at velocity”
bit in the status word is set. The axis will continue at that veloc-
ity until a continue control word is received.

The velocity that will be reached is the velocity specified by the
command and is not related in any way to the maximum veloc-
ity . Three examples of velocity moves are shown in Figures 9-
37 through 9-39.

±1,000,000
steps/sec

T

Move
Start

V

Command
Velocity
Chapter 2 Function/Function Block Description 2-447

STEP_CMD
A velocity move where the starting velocity is greater than the commanded veloc-
ity is illustrated in Velocity move with starting velocity > commanded velocity
The move decelerates at the current acc/dec rate until it is at the commanded
velocity.

Figure 2-37. Velocity move with starting velocity > commanded velocity

A velocity move where the starting velocity is forward and the commanded veloc-
ity is reverse is illustrated in Velocity move with starting velocity forward (+),
commanded velocity reverse (-)The move decelerates to “0” and then reverses
direction as commanded.

T

Move
Start

V

Command
Velocity
2-448 Chapter 2 Function/Function Block Description

STEP_CMD
Figure 2-38. Velocity move with starting velocity forward (+), commanded velocity
reverse (-)

T

Move
Start

V

-V

Command
Velocity
Chapter 2 Function/Function Block Description 2-449

STEP_CMD
Com # Command Range
4 Set Maximum Velocity

The set maximum velocity command defines the maximum
velocity that will be allowed during a distance or position move.

1 to 1,000,000
steps/sec

(Default - 200
steps/sec)

5 Set Acc/Dec Rate

The set acc/dec rate command defines the rate at which the
stepper motor will accelerate or decelerate.

Note: ACC/DEC rates above 1,000,000 steps/sec/sec during
distance or position moves may cause an overshoot in the num-
ber of steps sent to the drive. Avoid this by setting the rate
below 1,000,000 steps/sec/sec.

1 to 16,777,215
steps/sec/sec

(Default - 200
steps/sec/sec)

6 Set Reference

The set reference command is used to establish an absolute
position for subsequent position moves. The absolute position
is forced to the reference position defined by the set reference
data.

±2,147,352,575
steps

(Default - 0)

7 Pause

The pause command causes the SMCM to remain at the current
command until a continue control word is received from the
ladder.

--
2-450 Chapter 2 Function/Function Block Description

STEP_CMD
Com Command Range
8 Steps Per Revolution (5-Axis Integrated Stepper Module only)

This value specifies the number of steps per revolution for a step-
per axis controlled by the 5-Axis Integrated Stepper Module. The
following table indicates the steps per revolution for each of the
valid DATA input values.

0 to 13

Value mSteps/Step Steps/Rev (assuming 1.8° motor)

0 2 400
1 4 800
2 8 1,600
3 16 3,200
4 32 6,400
5 64 12,800
6 128 25,600
7 256 51,200
8 5 1,000
9 10 2,000
10 25 5,000
11 50 10,000
12 125 25,000
13 250 50,000

Module power-on default: 0

Note: This is not a command that is entered into the stepper mod-
ule’s command queue. The value is written to the stepper module
and is effective immediately.
Chapter 2 Function/Function Block Description 2-451

STEP_CMD
Com # Command Range
9 Driven Run Current (5-Axis Integrated Stepper Module only)

This value specifies the peak current that will be applied when
stepping.

1 count = 19.65 mA
204 counts = 4 A (maximum)
Peak current = (RMS current)(1.4)

Module power-on default: 0

Note: This is not a command that is entered into the stepper
module’s command queue. The value is written to the stepper
module and is effective immediately.

0 to 204

10 Drive Idle Current (5-Axis Integrated Stepper Module only)

This value specifies the peak current that will be applied to
maintain holding torque.

1 count = 19.65 mA
204 counts = 4 A (maximum)
Peak current = (RMS current)(1.4)

Module power-on default: 0

Note: This is not a command that is entered into the stepper
module’s command queue. The value is written to the stepper
module and is effective immediately.

0 to 204
2-452 Chapter 2 Function/Function Block Description

STEP_CMD
Profile example

The table below gives an example of a profile for one stepper axis. This example
sends 10 commands to the command queue via the STEP_CMD function. The
position of the axis at the end of each command is given in the last column.

Note: The first command is a reference to zero. By including this command
you ensure that the stepper axis position will always be reset to zero when
restarting the ladder scan.

11 Drive Enable Reset (5-Axis Integrated Stepper Module only)

Bit0 is the Drive Enable bit.
Bit0 = 0 disables the drive
Bit0 = 1 enables the drive

Bit1 is the Drive Reset bit.
Bit1 = 0 indicates no reset
Bit1 = 1 resets the drive and clears an Overcurrent Fault

Bits 2 through 31 are reserved.

Note: The connected stepper motor will not rotate unless the
Drive Enable bit is set and the Drive Reset bit is clear.

Module power-on default: 0

Note: This is not a command that is entered into the stepper
module’s command queue. The value is written to the stepper
module and is effective immediately.

0 to 2

Binary

Bit1 Bit0 Decimal

0 0 0 = no reset, drive disable
0 1 1 = no reset, drive enable
1 0 2 = drive reset, drive disable
Chapter 2 Function/Function Block Description 2-453

STEP_CMD

Programming suggestion

In the previous example, it would be necessary to enter 10 STEP_CMD functions
in the ladder to send all the profile commands to the module. The variables at the
CMD and DATA inputs would hold the values listed in the table.

In order to transfer all the profile commands and data needed for one stepper axis
in the STEP_CMD function, an array of structures can be used.

The structure P1 (profile 1) would have two members; .C (command) and .D
(data). The array would be long enough to hold all the profile commands needed
for the stepper axis identified at STRC plus an additional element holding zeros to
mark the end of the array. In the ladder example that follows, the EQ function will
reset LOAD_PRO when the command equals zero.

NOTE: You may want to declare an array with several extra elements. This would
allow you to easily add additional commands and data to an existing profile.
Always ensure that the last array element contains zeros.

One method of using this array of structures with the STEP_CMD function in the
ladder is shown below.

Example profile commands for one stepper axis
CMD from

STEP_CMD
DATA from
STEP_CMD Steps output Direction

Absolute
position

6 (Set Reference) 0 0 N/A 0
4 (Set Max Vel) 5000 0 N/A 0
5 (Set acc/dec rate) 2000 0 N/A 0
1 (Distance) 1,000 1,000 Forward +1,000
1 (Distance) 1,000 1,000 Forward +2,000
1 (Distance) -3,000 3,000 Reverse -1,000
2 (Position) 1,000 2,000 Forward +1,000
6 (Set Reference) 10,000 0 N/A +10,000
1 (Distance) 1,000 1,000 Forward +11,000
2 (Position) -1,000 12,000 Reverse -1,000
2-454 Chapter 2 Function/Function Block Description

STEP_CMD
P EN

IN1 MOVE

OK

IN1

OK

P1 (N).C

STRC

CMD

DATA

STEP_CMD

0 OUT 1 N

(S)
LOAD_PRO

...13......

LOAD_PRO ADD

EN

IN1N

IN21

OK

SUM

EN

DA (0)

P1 (N).D

N

OK

P1 (N).C IN1

IN2

EQ

...14......

LOAD_PRO

EN

0

OUT (R)
LOAD_PRO
Chapter 2 Function/Function Block Description 2-455

STEP_POS
STEP_POS
Stepper Position Io/STEPPER

STEP_POS(STRC := <<MEMORY AREA>>, OK => <<BOOL>>, POS =>
<<DINT>>)

The STEP_POS function allows you to read the position of the stepper axis.

⁄ƒƒƒƒƒƒƒƒƒø
≥ STEP_POS≥
≥ ≥
¥EN OK√
≥ ≥
¥STRC POS√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STRC (STRUCT) - handle of axis initialized in STE-
PINIT at STRC input (See STEPINIT function.)

Outputs: OK (BOOL) - execution completed without error

POS (DINT) - latest position read for axis at STRC
2-456 Chapter 2 Function/Function Block Description

STR2D_T
STR2D_T
String to Date and Time Datatype/STRCONV

STR2D_T(STR := <<USINT>>, OK => <<BOOL>>, NUM =>
<<DATE_AND_TIME>>)

The STR2D_T function converts a string into a date and time.

The string at STR consists of six fields (three required, three optional) entered in
the following order:

Guidelines for entering strings

• If any of the three required fields are not entered, the OK will not be set.

• The three optional fields will default to zero if nothing is entered in them.

• Whenever a field is entered, all fields to the left of it must also be entered.

• Every field must be separated by a delimiter character. Use dashes, colons,
or commas. Alpha/numeric characters are not recommended.

• If a number is out of range, the OK will not be set. The function will return
to the base of the calendar clock--1988-01-01:00:00:00.

 To set the time of day clock in the control, use the DATE_AND_TIME output
from the STR2D_T function as the input to the IN on the CLOCK function.

⁄ƒƒƒƒƒƒƒƒƒø
≥ STR2D_T ≥
≥ ≥
¥EN OK√
≥ ≥
¥STR NUM√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution
STR (STRING) - string to convert

Outputs: OK (BOOL) - execution completed without error

NUM (DATE_AND_TIME) - Date and time conver-
sion

Required Optional
Field Year Month Day Hour Minute Second

Range 1988 to
2051 1 to 12 1 to 31 0 to 23 0 to 59 0 to 59

Example
string

1992 - 10 - 25 - 12 : 30 : 15
Chapter 2 Function/Function Block Description 2-457

STR2NUM
STR2NUM
String to Numeric Datatype/STRCONV

STR2NUM(STR := <<STRING>>, OK => <<BOOL>>, NUM =>
<<NUMERIC>>)

The STR2NUM function converts the STRING value of the variable at STR into a
numeric value, and places the result into the variable at NUM. If the STRING
contains non-numeric characters, other than + or -, the output at OK will not ener-
gize and the value of the variable at NUM will be unpredictable.

STR2USI
String to Unsigned Short Integer Datatype/STRCONV

STR2USI(STR := <<STRING>>, OK => <<BOOL>>, NUM => <<USINT>>)

The STR2USI function converts the first character of the STRING value at STR
into a USINT at NUM. Any ASCII character may be converted to USINT.

For example, if the string 'A' appears at STR, the value of NUM becomes 65.

The output at OK will not be energized if the actual length of the string at STR is
zero (no characters).

⁄ƒƒƒƒƒƒƒƒƒø
≥ STR2NUM ≥
≥ ≥
¥EN OK√
≥ ≥
¥STR NUM√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STR (STRING) - STRING to convert (may include
plus (+) or minus (-) sign)

Outputs: OK (BOOL) - execution completed without error

NUM (NUMERIC) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ STR2USI ≥
≥ ≥
¥EN OK√
≥ ≥
¥STR NUM√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STR (STRING) - string to convert

Outputs: OK (BOOL) - execution completed without error

NUM (USINT) - usint (ASCII code)
2-458 Chapter 2 Function/Function Block Description

STRTSERV
STRTSERV
Start servo Motion/INIT

STRTSERV(OK => <<BOOL>>, ERR => <<USINT>>)

NOTE: Use DSTRTSRV instead of STRTSV when programming an MMCD con-
trol.

The STRTSERV function is used with the user-defined setup function
(USER_SET) to initialize all the setup data for your application. When STRT-
SERV is activated it finds the setup data, initializes it, and places it in the RAM
memory of the PiC. The servo software is then running and interrupts are occur-
ring. Everything is ready for a ladder command for motion. A basic method of
entering these two functions into your ladder is shown below.

The positive transition contact (STRT_SER) is used as a one shot and the set coil
(INIT_OK) latches the initialization OK for multiple scans.

When working with SERCOS axes, the user-defined setup function and STRT-
SERV should not be called until the SERCOS ring completes phase 4. The SER-
COS ring phase can be determined via the SCR_PHAS function.

⁄ƒƒƒƒƒƒƒƒƒø
≥STRTSERV ≥
≥ ≥
¥EN OK√
≥ ≥
≥ ERR√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

Outputs: OK (BOOL) - execution completed without error

ERR (USINT) - An integer indicates an error (See
STRTSERV function error table below.)

P EN

USER_SET

OK

STRTSERV

EN OK

ERR

(S)

STRT_SER

STRT_SER

(S)

INIT_OK

STR_ERR
Chapter 2 Function/Function Block Description 2-459

STRTSERV
The ERR output will contain one of the numbers listed in the table below.

Table 2-14. Servo Initialization Errors
ERR Name Description

0 No error
1 Bad user function data The CPU is 486, all the axes are digitizing axes, and all

are declared with a 16 msec update rate. Change at least
one of the axes’ update rates to something less than 16
msec.

2 Not enough low memory There are too many axes called for in the user-defined
setup function for the available memory.

3 Feedback module(s) not
found

One or more feedback modules identified in setup can-
not be found. This error will also occur if the channel
selected is three or four and the feedback module in the
rack is only a two channel module.

4 Analog module(s) not
found

One or more analog output modules identified in setup
cannot be found. This error will also occur if the chan-
nel selected is five through eight and the analog module
in the rack is only a four channel module.

5 Update rate

(SERCOS axis only)

The update rate of a SERCOS interface axis does not
match the update rate of the SERCOS ring declared in
SERCOS Setup.

6 Incorrect CPU type The servo setup data was configured for the wrong con-
troller and needs to be configured for the proper control-
ler.

7 Wrong CPU The CPU is not the required 486-based processor. You
must either upgrade to a 486-based CPU or use a pre-
11.0 release of the motion library.

8 Incompatible drive firm-
ware

One or more of the digital drives contain firmware that
is incompatible with the MMCD firmware.

9 Invalid firmware The MMC for PC SERCOS Firmware returned an error
10 Address not found The digital drive address specified in servo setup was

not found. ERAX indicates the axis.
11 Duplicate address More than one digital drive was found with the address

specified in servo setup. ERAX indicates the axis.
12 Digital drive firmware too

old
The digital drive firmware version is too old for this
version of the motion.lib. ERAX indicates the axis.

13 Digital drive firmware too
new

The digital drive firmware version is too new for this
version of the motion.lib. ERAX indicates the axis.

14 No digital drives found No digital drives were found.
15 Cyclic data sizes not identi-

cal
The digital drives’ cyclic data sizes are not identical.
This is due to incompatible firmware versions among
the digital drives.
2-460 Chapter 2 Function/Function Block Description

STRTSERV
16 Cyclic failed to start Cyclic data mode failed to start. This is due to a com-
munication error between the MMCD and the digital
drives. This could also be due to one or more digital
drives failing to respond.

17 Deallocate servo data
memory failure

The servo data memory allocated by a previous call can-
not be deallocated because it was allocated with a newer
version of motion.lib. Cycle power on the control to
deallocate the servo data memory.

18 Communication error
reading feedback

A communication error occurred when attempting to
read the feedback value.

19 Too many axes This control does not support the number of axes
declared in Servo Setup.

23 Outdated Servo Setup data The setup data was compiled with a version of PiCPro
that is older than this version of STRTSERV and is
incompatible with this version of STRTSERV. Open the
Servo Setup file and recompile it.

This error can also occur if the user-defined servo setup
function is not called prior to calling STRTSERV.

24 Newer Servo Setup data The Servo Setup data was compiled with a version of
PiCPro that is newer than this version of STRTSERV
and is incompatible with this version of STRTSERV.
Upgrade PiCPro to the same (or newer) version that the
Servo Setup data was compiled with. Or recompile the
Servo Setup data with this version of PiCPro.

This error can also occur if the user-defined servo setup
function is not called prior to calling STRTSERV.
Chapter 2 Function/Function Block Description 2-461

SUB
SUB
Subtract Arith/ARITH

SUB(IN0 := <<NUMERIC/TIME>>, IN1 := <<NUMERIC/TIME>>, OK =>
<<BOOL>>, DIFF => <<NUMERIC/TIME>>)

The SUB function subtracts the value of the variable or constant at IN1 from the
value of the variable or constant at IN0, and places the result in the variable at
DIFF.

⁄ƒƒƒƒƒƒƒƒƒø
≥ SUB ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN0 DIFF√
≥ ≥
¥IN1 ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN0 (NUMERIC or TIME duration) - minuend

IN1 (same type as IN0) - subtrahend

Outputs: OK (BOOL) - execution completed without error

DIFF (same type as IN0) - difference

X IN0
- Y IN1

Z DIFF
2-462 Chapter 2 Function/Function Block Description

SYN_END
SYN_END
Synchronization End Motion/RATIOMOV

SYN_END(AXIS := <<USINT>>, DROP := <<DINT>>, OK => <<BOOL>>)

The syn end function ends a ratio syn move. When it is called in the ladder, the
slave axis will stop moving immediately when it reaches the position entered at the
DROP input with no ramping.

A ratio syn move may also be stopped by aborting the move:

• with no move in the queue. The ratio syn move will ramp down at the
default deceleration rate and motion will stop.

OR

• with another move in the queue. The velocity will ramp to the new move
rate and continue with the new move, or the velocity will step and continue
if a master/slave move is next.

Note: A ratio syn move may also be ended with a GR_END function. However,
you cannot specify a slave drop point with GR_END.

⁄ƒƒƒƒƒƒƒƒƒø
≥ SYN_END ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥DROP ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies axis (servo)

DROP (DINT) - slave position when it is to drop out of
synchronization
If DROP is outside the range of -536,870,912 to
536,870,911 FU, the OK will not be set.

Outputs: OK (BOOL) - execution completed without error
Chapter 2 Function/Function Block Description 2-463

S_DT_DT
S_DT_DT
Subtract: Date and Time Minus Date and Time Arith/DATETIME

S_DT_DT(IN1 := <<DATE_AND_TIME>>, IN2 := <<DATE_AND_TIME>>,
OK => <<BOOL>>, OUT => <<TIME>>)

The S_DT_DT function subtracts the value in the variable or constant at IN2 from
the value in the variable or constant at IN1. The result is a TIME duration value
that is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ S_DT_DT ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN1 (DATE_AND_TIME) - minuend

IN2 (DATE_AND_TIME) - subtrahend

Outputs: OK (BOOL) - execution completed without error

OUT (TIME duration) - difference

Example of subtract: DATE_AND_TIME minus DATE_AND_TIME
Value at IN1 Value at IN2 Value at OUT

DT#1994-09-15-03:31:14 DT#1994-09-13-11:31:00 T#1d16h14s
2-464 Chapter 2 Function/Function Block Description

S_DT_T
S_DT_T
Subtract: Date and Time Minus Time Arith/DATETIME

S_DT_T(IN1 := <<BOOL>>, IN2 := <<TIME>>, OK => <<BOOL>>, OUT =>
<<DATE_AND_TIME>>)

The S_DT_T function subtracts the value in the variable or constant at IN2 from
the value in the variable or constant at IN1. The result is a DATE_AND_TIME
value that is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ S_DT_T ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN1 (DATE_AND_TIME) - minuend

IN2 (TIME) - subtrahend

Outputs: OK (BOOL) - execution completed without error

OUT (DATE_AND_TIME) - difference

Example of subtract: DATE_AND_TIME minus TIME
Value at IN1 Value at IN2 Value at OUT

DT#1994-09-15-03:31:14 T#1h DT#1994-09-15-02:31:14
Chapter 2 Function/Function Block Description 2-465

S_D_D
S_D_D
Subtract: Date Minus Date Arith/DATETIME

S_D_D(IN1 := <<DATE>>, IN2 := <<DATE>>, OK => <<BOOL>>, OUT =>
<<TIME>>)

The S_D_D function subtracts the value in the variable or constant at IN2 from the
value in the variable or constant at IN1. The result is a TIME duration value that is
placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ S_D_D ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN1 (DATE) - minuend

IN2 (DATE) - subtrahend

Outputs: OK (BOOL) - execution completed without error

OUT (TIME duration) - difference

Example of subtract: DATE minus DATE
Value at IN1 Value at IN2 Value at OUT

DT#1991-06-04 D#1991-06-02 T#2d
2-466 Chapter 2 Function/Function Block Description

S_TOD_T
S_TOD_T
Subtract: Time of Day minus Time Arith/DATETIME

S_TOD_T(IN1 := <<TIME_OF_DAY>>, IN2 := <<TIME>>, OK =>
<<BOOL>>, OUT => <<TIME_OF_DAY>>)

The S_TOD_T function subtracts the value of the variable or constant at IN2 from
the value of the variable or constant at IN1. The result is a TIME_OF_DAY value
that is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ S_TOD_T ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN1 (TIME_OF_DAY) - minuend

IN2 (TIME duration) - subtrahend

Outputs: OK (BOOL) - execution completed without error

OUT (TIME_OF_DAY) - difference

Example of subtract: TIME_OF_DAY minus TIME
Value at IN1 Value at IN2 Value at OUT

TOD#14:57:34 T#4h54m23s TOD#10:03:11
Chapter 2 Function/Function Block Description 2-467

S_TOD_TO
S_TOD_TO
Subtract: Time of Day Minus Time of Day Arith/DATETIME

S_TOD_TO(IN1 := <<TIME_OF_DAY>>, IN2 := <<TIME_OF_DAY>>, OK =>
<<BOOL>>, OUT => <<TIME>>)

The S_TOD_TO function subtracts the value in the variable or constant at IN2
from the value in the variable or constant at IN1. The result is a TIME duration
value that is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥S_TOD_TO ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN1 (TIME_OF_DAY) - minuend

IN2 (TIME_OF_DAY) - subtrahend

Outputs: OK (BOOL) - execution completed without error

OUT (TIME duration) - difference

Example of subtract: TIME_OF_DAY minus TIME_OF_DAY
Value at IN1 Value at IN2 Value at OUT

TOD#14:57:34 TOD#10:03:11 T#4h54m23s
2-468 Chapter 2 Function/Function Block Description

TAUFFAC
TAN
Tangent Arith/TRIG

TAN(ANGL := <<REAL/LREAL>>, OK => <<BOOL>>, TAN => <<REAL/
LREAL>>,)

The TAN function calculates the tangent of the angle entered at ANGL. The result
is placed at TAN.

TAUFFAC
Calculate a first order filter for TAUFILT PID/TAUFFAC

TAUFFAC(TAU := <<TIME>>, TIME := <<TIME>> OK => <<BOOL>>, FFAC
=> <<UDINT>>)

The TAUFFAC function calculates a first order filter factor to be used in the first
order filter function TAUFILT. This block accepts as inputs the time constant TAU
and the Sample Time T.

⁄ƒƒƒƒƒƒƒƒƒø
≥ TAN ≥
≥ ≥
¥EN OK√
≥ ≥
¥ANGL TAN√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

ANGL (REAL/LREAL) - angle value (in radians)

Outputs: OK (BOOL) - execution completed without error

TAN (REAL/LREAL) - tangent calculated

NOTE: The data types entered at ANGL and TAN must
match, i.e. if ANGL is REAL, then TAN must be
REAL.

⁄ƒƒƒƒƒƒƒƒƒø
≥ TAUFFAC ≥
≥ ≥
¥EN OK√
≥ ≥
¥TAU FFAC√
≥ ≥
¥TIME ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

TAU (TIME) - time constant TAU

TIME (TIME) - sample time T

Outputs: OK (BOOL) - function block OK

FFAC (REAL) - filter factor
Chapter 2 Function/Function Block Description 2-469

TAUFILT
TAUFILT
Provides a first order filter response PID/TAUFILT

TAUFILT(F_OL := <<REAL>>, F_IN := <<REAL>>, FFAC := <<REAL>>, OK
=> <<BOOL>>, FOUT => <<REAL>>)

The function TAUFILT provides a first order filter response (1 - e^-t/TAU). The
filter factor FFAC is first calculated with the TAUFFAC function, then the filter
can be called on a time basis as defined as the TAUFFAC function input. The input
F_OL must be set to the previous value of the output FOUT. The variable to be fil-
tered is F_IN.

TIM2UDIN
Time to Unsigned Double Integer Datatype/D_TCONV

TIM2UDIN(IN := <<TIME>>, OK => <<BOOL>>, OUT => <<UDINT>>)

The TIM2UDIN function converts the TIME at IN to a UDINT at OUT. The units
of the value at OUT are milliseconds.

For example, an IN value of T#10s results in an OUT of 10000 (milliseconds).

⁄ƒƒƒƒƒƒƒƒƒø
≥TAUFFILT ≥
≥ ≥
¥EN OK√
≥ ≥
¥F_OL FOUT√
≥ ≥
¥F_IN ≥
≥ ≥
¥FFAC ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

F_OL (REAL) - filter output last (previous value)

F_IN (REAL) - filter input

FFAC (REAL) - filter factor from TAUFFAC

Outputs: OK (BOOL) - execution OK

FOUT (REAL) - filter output (current value)

⁄ƒƒƒƒƒƒƒƒƒø
≥ TIM2UDIN≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (TIME) - time value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (UDINT) - value in milliseconds
2-470 Chapter 2 Function/Function Block Description

TIME2STR
TIME2STR
Time to String Datatype/D_TCONV

TIME2STR(OUT := <<STRING>>, IN := <<TIME>>, OK => <<BOOL>>, OUT
=> <<STRING>>)

The TIME2STR function converts the value in the variable or constant at IN to a
STRING value. The result is placed in the variable at OUT.

Note: The minimum length entered in software declarations for the STRING at
OUT must be 17 characters.

⁄ƒƒƒƒƒƒƒƒƒø
≥ TIME2STR≥
≥ ≥
¥EN OK√
≥ ≥
¥OUT---OUT√
≥ ≥
¥IN ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

OUT (STRING) - STRING output

IN (TIME duration) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

Example of TIME to STRING function
Value at IN1 Value at OUT

TOD#14:57:34 45d23h
Chapter 2 Function/Function Block Description 2-471

TME_ERR?
TME_ERR?
Timing Error ? Motion/ERRORS

TIME_ERR?(OK => <<BOOL>>, ERR => <<BOOL>>)

The timing error inquiry asks if the time required to carry out the servo calcula-
tions exceeds the allotted interrupt time.

IMPORTANT: Set an E-stop on all axes when a timing error occurs.

TOD2STR
Time_of_Day to String Datatype/D_TCONV

TOD2STR(OUT := <<STRING>>, IN := <<TIME_OF_DAY>>, OK =>
<<BOOL>>, OUT => <<STRING>>)

The TOD2STR function converts the value in the variable or constant at IN to a
STRING value. The result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥TME_ERR? ≥
≥ ≥
¥EN OK√
≥ ≥
≥ ERR√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

Outputs: OK (BOOL) - execution completed without error

ERR (BOOL) - indicates a timing error has occurred if
set

⁄ƒƒƒƒƒƒƒƒƒø
≥ TOD2STR ≥
≥ ≥
¥EN OK√
≥ ≥
¥OUT---OUT√
≥ ≥
¥IN ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

OUT (STRING) - STRING output

IN (TIME_OF_DAY) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input)

Example of TIME_OF_DAY to STRING function
Value at IN1 Value at OUT

TOD#16:27:45 16:27:45
2-472 Chapter 2 Function/Function Block Description

TOF
TOF
Timer Off Timers/TOF

<<INSTANCE NAME>>:TOF(IN := <<BOOL>>, PT := <<TIME>>, Q =>
<<BOOL>>, ET => <<TIME>>)

The TOF function block de-energizes an output after a duration of time. When the
input at IN is energized, the output at Q is energized. When power to IN drops, the
output at Q stays energized until the time specified by the variable or constant at
PT has passed. Then the output at Q is deenergized. The amount of time that has
passed is placed into the variable at ET, as the time passes.

If power flow to the point at IN occurs before the preset value is reached, the
counting is stopped and the output at Q is not deenergized.

To enter a constant at the PT (preset time) input, type T# followed by the amount
and type [d (day), h (hour), m (minute), s (second), ms (millisecond)]. For exam-
ple, to enter a preset time of 5 seconds type the following at PT:

T#5s

Note: A variable declared in software declarations can also be used at PT.

⁄ƒ NAME ƒø
≥ TOF ≥
≥ ≥
¥IN Q√
≥ ≥
¥PT ET√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: IN (BOOL) - enables execution

PT (TIME duration) - preset time (minimum
10ms)

Outputs: Q (BOOL) - energized from the time IN is ener-
gized until preset time (PT) elapses then deener-
gizes

ET (TIME duration) - elapsed time
Chapter 2 Function/Function Block Description 2-473

TON
TON
Timer On Timers/TON

<<INSTANCE NAME>>:TON(IN := <<BOOL>>, PT := <<TIME>>, Q =>
<<BOOL>>, ET => <<TIME>>)

The TON function block energizes an output after a duration of time. The output
at Q is energized after the input at IN has been energized for the amount of time
specified by the variable or constant at PT. The count starts when the block begins
executing (power flow occurs at IN). The variable at ET contains the amount of
time that has passed, as it passes.

If power flow to the point at IN drops before the preset value is reached, the count-
ing is stopped and the output at Q does not energize. If power flow to the point at
IN drops after Q has been energized, Q is deenergized immediately.

To enter a constant at the PT (preset time) input, type T# followed by the amount
and type [d (day), h (hour), m (minute), s (second), ms (millisecond)]. For exam-
ple, to enter a preset time of 5 seconds type the following at PT:

T#5s

Note: A variable declared in software declarations can also be used at PT.

⁄ƒ NAME ƒø
≥ TON ≥
≥ ≥
¥IN Q√
≥ ≥
¥PT ET√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: IN (BOOL) - enables execution

PT (TIME duration) - preset time (minimum 10ms)

Outputs: Q (BOOL) - energized after IN is energized for the pre-
set time

ET (TIME duration) - elapsed time
2-474 Chapter 2 Function/Function Block Description

TP
TP
Timer Pulse Timers/TP

<<INSTANCE NAME>>:TP(IN := <<BOOL>>, PT := <<TIME>>, Q =>
<<BOOL>>, ET => <<TIME>>)

The TP function block energizes an output for a duration of time. The output at Q
is energized when power flow occurs at IN. Q remains energized for the amount
of time specified by the variable or constant at PT, regardless of the power flow at
IN. The variable at ET holds the amount of time that has elapsed since the output
at Q was energized.

To enter a constant at the PT (preset time) input, type T# followed by the amount
and type [d (day), h (hour), m (minute), s (second), ms (millisecond)]. For exam-
ple, to enter a preset time of 5 seconds type the following at PT:

T#5s

Note: A variable declared in software declarations can also be used at PT.

⁄ƒ NAME ƒø
≥ TP ≥
≥ ≥
¥IN Q√
≥ ≥
¥PT ET√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: IN (BOOL) - enables execution

PT (TIME duration) - preset time (minimum 10ms)

Outputs: Q (BOOL) - energized for the time period specified at
PT

ET (TIME duration) - elapsed time
Chapter 2 Function/Function Block Description 2-475

TUNEREAD
TUNEREAD
Tune Read Motion/DATA

TUNEREAD(AXIS := <<USINT>>, VAR := <<SINT>>, OK => <<BOOL>>,
RSLT => <<DINT>>)

The TUNEREAD function allows you to read from your LDO the variables listed
in the table in TUNEWRIT. These are the same variables that can be read on the
servo setup view list.

The slow speed filter variable 5 is the only TUNEREAD variable that can be used
with a stepper axis, a SERCOS axis, or a digital drive axis.

⁄ƒƒƒƒƒƒƒƒƒø
≥ TUNEREAD≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS RSLT√
≥ ≥
¥VAR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo)

VAR (SINT) - number of variable to read

Outputs: OK (BOOL) - execution complete without error

RSLT (DINT) - servo data read
2-476 Chapter 2 Function/Function Block Description

TUNEWRIT
TUNEWRIT
Tune Write Motion/DATA

TUNEWRIT(AXIS := <<USINT>>, VAR := <<SINT>>, DATA := <<DINT>>,
OK => <<BOOL>>, ERR => <<INT>>)

The TUNEWRIT function allows you to change the variables listed in the table
below from your LDO. These are the same variables that can be changed with the
servo setup force list. The slow speed filter variable 5 is the only TUNEWRIT
variable that can be used with a stepper axis, a SERCOS axis, or a digital drive
axis.

VARIABLES AVAILABLE FOR THE TUNE READ/WRITE FUNCTIONS

Key for the variable table

V# - identifies the variable number you enter in the tune read and/or write
functions at VAR.

R column- indicates the variable can be used with the tune read function.

W column-indicates the variable can be used with the tune write function.

S = initialized servo axis

⁄ƒƒƒƒƒƒƒƒƒø
≥ TUNEWRIT≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ERR√
≥ ≥
¥VAR ≥
≥ ≥
¥DATA ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (Typically one-shot)

AXIS (USINT) - identifies axis (servo)

VAR (SINT) - number of variable to write to

DATA (DINT) - servo data to write

Outputs: OK (BOOL) - execution complete without error

ERR (INT) - 0 if data transfer is successful
1 to 3 if data transfer is unsuccessful

V # Definition R W
1 Proportional Gain - Proportional gain calibrates corrective action

proportional to the amount of following error. The value written/
read represents the axis units per minute for each axis unit of follow-
ing error. .

Range: 0 - 20000

S S

2 Integral Gain - Integral gain determines corrective action propor-
tional to the amount of following error summed over the time dura-
tion of the error. The longer the following error exists, the greater
the integral error. The value written/read represents the number of
axis units per minute per axis unit of following error times minutes.

Range: 0 - 32000

S S
Chapter 2 Function/Function Block Description 2-477

TUNEWRIT
The outputs at ERR of TUNEWRIT are listed below.

3 Derivative Gain - Derivative gain determines the corrective action
proportional to the magnitude of change of the following error. The
value written/read represents the number of axis units per minute for
each axis unit of following error per minute.

Range: 0 - 1000

S S

4 Offset - If it is not possible to get a zero volts reading from a voltme-
ter placed across the analog output channel for the axis, write the
amount of voltage in millivolts that allows you to reach a zero read-
ing.

Range: -10000 to 10000 mV

S S

5 Slow Speed Filter - Write the milliseconds the filter will take to
smooth out a “step” change in velocity while the axis is moving at
slow velocities.

NOTE: Specifically, the value entered represents the milliseconds
that the servo software takes to carry out 63.2% of the step change.

Range: 0 - 10000 ms

S S

6 Feed Forward Percent - Write a percentage (from 0 to 100%) that
you want the position loop to compensate for the lag that occurs
between the generation of the following error and the correction of
that error by the PID calculations.

Range: 0 - 100%

S S

Err # Description
0 No error
1 Axis is not initialized, axis number is out of range, or the variable is

not supported by this type of an axis (e.g. stepper, SERCOS, or digi-
tal drive axis).

2 Variable is not from 1 through 6
3 Data is out of range or value cannot be calculated.
2-478 Chapter 2 Function/Function Block Description

TUNEWRIT
Note: The CPU must have a math coprocessor in order to use the TUNEREAD
and TUNEWRIT functions. The axis must be an initialized servo axis.

NOTE

When using the TUNEREAD AND TUNEWRIT functions, note that:
The values you enter with TUNEWRIT are stored in the PiC memory
as approximate conversions. Therefore, there may be some discrep-
ancy when these values are read back with TUNEREAD.
Calculated values are stored directly in the PiC memory and used to
issue servo commands. Be aware that when gains are changed, it has
an immediate effect on the axis. The D/A signal may step to a new
voltage causing the axis to jump. The larger the change, the greater
the jump.
If Servo Setup Force and the TUNEREAD and TUNEWRIT are all
being used, the last data written from any source will be what is in ef-
fect.
Chapter 2 Function/Function Block Description 2-479

UDIN2DI
UDIN2DI
Unsigned Double Integer to Double Integer Datatype/UDINTCNV

UDIN2DI(IN := <<UDINT>>, OK => <<BOOL>>, OUT => <<DINT>>)

The UDIN2DI function changes the data type of the value at IN from an unsigned
double integer to a double integer. The result is placed in the variable at OUT.

UDIN2DW
Unsigned Double Integer to Double Word Datatype/UDINTCNV

UDIN2DW(IN := <<UDINT>>, OK => <<BOOL>>, OUT => <<DWORD>>)

The UDIN2DW function changes the data type of the value at IN from an
unsigned double integer to a double word. The result is placed in the variable at
OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ UDIN2DI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (UDINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (DINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ UDIN2DW ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (UDINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (DWORD) - converted value
2-480 Chapter 2 Function/Function Block Description

UDIN2TIM
UDIN2RE
Unsigned Double Integer to Real Datatype/UDINTCNV

UDIN2RE(IN := <<DINT>>, OK => <<BOOL>>, OUT => <<REAL>>)

The UDIN2RE function converts an unsigned double integer into a real. The
result is placed in a variable at OUT.

UDIN2TIM
Unsigned Double Integer to Time Datatype/UDINTCNV

UDIN2TIM(IN := <<UDINT>>, OK => <<BOOL>>, OUT => <<TIME>>)

The UDIN2TIM function converts the UDINT or constant at IN to TIME. The
units of the value at IN are milliseconds.

For example, an IN value of 10000 (milliseconds) results in an OUT of T#10s.

⁄ƒƒƒƒƒƒƒƒƒø
≥ UDIN2RE ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (DINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (REAL) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ UDIN2TIM≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (UDINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (TIME) - time value
Chapter 2 Function/Function Block Description 2-481

UDIN2UI
UDIN2UI
Unsigned Double Integer to Unsigned Integer Datatype/UDINTCNV

UDIN2UI(IN := <<UDINT>>, OK => <<BOOL>>, OUT => <<UINT>>)

The UDIN2UI function changes the data type of the value at IN from an unsigned
double integer to an unsigned integer. The leftmost 16 bits of the unsigned double
integer are truncated. The result is placed in the variable at OUT.

UDIN2ULI
Unsigned Double Integer to Unsigned Long Integer Datatype/UDINTCNV

UDIN2ULI(IN := <<UDINT>>, OK => <<BOOL>>, OUT => <<ULINT>>)

The UDIN2ULI function converts an unsigned double integer into an unsigned
long integer. The leftmost 32 bits of the unsigned long integer are filled with
zeros. The result is placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ UDIN2UI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (UDINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (UINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥UDIN2ULI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (UDINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (ULINT) - converted value
2-482 Chapter 2 Function/Function Block Description

UINT2INT
UDIN2USI
Unsigned Double Integer to Unsigned Short Integer Datatype/UDINTCNV

UDIN2USI(IN := <<UDINT>>, OK => <<BOOL>>, OUT => <<USINT>>)

The UDIN2USI function changes the data type of the value at IN from an unsigned
double integer to an unsigned short integer. The leftmost 24 bits of the unsigned
double integer are truncated. The result is placed in the variable at OUT.

UINT2INT
Unsigned Integer to Integer Datatype/UINTCONV

ANLG_OUT(RACK := <<USINT>>, SLOT := <<USINT>>, CHAN :=
<<USINT>>, VALU := <<INT>>, OK => <<BOOL>>, OPEN => <<BOOL>>)

The UINT2INT function changes the data type of the value at IN from an unsigned
integer to an integer. The result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ UDIN2USI≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (UDINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (USINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ UINT2INT≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (UINT) - value to convert

Outputs:OK (BOOL) - execution completed without error

OUT (INT) - converted value
Chapter 2 Function/Function Block Description 2-483

UINT2UDI
UINT2UDI
Unsigned Integer to Unsigned Double Integer Datatype/UINTCONV

UINT2UDI(IN := <<UINT>>, OK => <<BOOL>>, OUT => <<UDINT>>)

The UINT2UDI function changes the data type of the value at IN from an
unsigned integer to an unsigned double integer. The leftmost 16 bits of the
unsigned double integer are filled with zeros. The result is placed in the variable at
OUT.

UINT2ULI
Unsigned Integer to Unsigned Long Integer Datatype/UINTCONV

UINT2ULI(IN := <<UINT>>, OK => <<BOOL>>, OUT => <<ULINT>>)

The UINT2ULI function converts an unsigned integer into an unsigned long inte-
ger. The leftmost 48 bits of the unsigned long integer are filled with zeros. The
result is placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ UINT2UDI≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (UINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (UDINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥UINT2ULI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (UINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (ULINT) - converted value
2-484 Chapter 2 Function/Function Block Description

UINT2WO
UINT2USI
Unsigned Integer to Unsigned Short Integer Datatype/UINTCONV

UINT2USI(IN <<UINT>>, OK => <<BOOL>>, OUT => <<USINT>>)

The UINT2USI function changes the data type of the value at IN from an unsigned
integer to an unsigned short integer. The leftmost 8 bits of the unsigned integer are
truncated. The result is placed in the variable at OUT.

UINT2WO
Unsigned Integer to Word Datatype/UINTCONV

UINT2WO(IN := <<UINT>>, OK => <<BOOL>>, OUT => <<WORD>>)

The UINT2WO function changes the data type of the value at IN from an unsigned
integer to a word. The result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ UINT2USI≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (UINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (USINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ UINT2WO ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (UINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (WORD) - converted value
Chapter 2 Function/Function Block Description 2-485

ULIN2LI
ULIN2LI
Unsigned Long Integer to Long Integer Datatype/ULINTCNV

ULIN2LI(IN := <<ULINT>>, OK => <<BOOL>>, OUT => <<LINT>>)

The ULIN2LI function converts an unsigned long integer into a long integer. The
result is placed in a variable at OUT.

ULIN2LR
Unsigned Long Integer to Long Real Datatype/ULINTCNV

ULIN2LR(IN := <<ULINT>>, OK => <<BOOL>>, OUT => <<LREAL>>)

The ULIN2LR function converts an unsigned long integer into a long real. The
result is placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ ULIN2LI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (ULINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ ULIN2LR ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (ULINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LREAL) - converted value
2-486 Chapter 2 Function/Function Block Description

ULIN2UDI
ULIN2LW
Unsigned Long Integer to Long Word Datatype/ULINTCNV

ULIN2LW(IN := <<ULINT>>, OK => <<BOOL>>, OUT => <<LWORD>>)

The ULIN2LW function converts an unsigned long integer into a long word. The
result is placed in a variable at OUT.

ULIN2UDI
Unsigned Long Integer to Unsigned Double Integer Datatype/ULINTCNV

ULIN2UDI(IN := <<ULINT>>, OK => <<BOOL>>, OUT => <<UDINT>>)

The ULIN2UDI function converts an unsigned long integer into a unsigned double
integer. The leftmost 32 bits of the unsigned long integer are truncated. The result
is placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ ULIN2LW ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (ULINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LWORD) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ULIN2UDI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (ULINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (UDINT) - converted value
Chapter 2 Function/Function Block Description 2-487

ULIN2UI
ULIN2UI
Unsigned Long Integer to Unsigned Integer Datatype/ULINTCNV

ULIN2UI(IN := <<ULINT>>, OK => <<BOOL>>, OUT => <<UINT>>)

The ULIN2UI function converts an unsigned long integer into a unsigned integer.
The leftmost 48 bits of the unsigned long integer are truncated. The result is
placed in a variable at OUT.

ULIN2USI
Unsigned Long Integer to Unsigned Short Integer Datatype/ULINTCNV

ULIN2USI(IN := <<ULINT>>, OK => <<BOOL>>, OUT => <<USINT>>)

The ULIN2USI function converts an unsigned long integer into a unsigned short
integer. The leftmost 56 bits of the unsigned long integer are truncated. The result
is placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ ULIN2UI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (ULINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (UINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ULIN2USI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (ULINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (USINT) - converted value
2-488 Chapter 2 Function/Function Block Description

USIN2BYT
UPR_CASE
Upper Case String/UPR_CASE

UPR_CASE(OUT := <<STRING>>, IN := <<STRING>>, OK => <<BOOL>>,
OUT => <<STRING>>)

The UPR_CASE function converts the characters in a string to all upper case char-
acters. The result is placed in the string at OUT.

The OK will not be set if the number of characters in the string at IN is larger than
the maximum number of characters you have declared in the string at OUT.

See also LWR_CASE function.

USIN2BYT
Unsigned Short Integer to Byte Datatype/USINTCNV

USIN2BYT(IN := <<USINT>>, OK => <<BOOL>>, OUT => <<BYTE>>)

The USIN2BYT function changes the data type of the value at IN from an
unsigned short integer to a byte. The result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥UPR_CASE ≥
≥ ≥
¥EN OK√
≥ ≥
¥OUT---OUT√
≥ ≥
¥IN ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

OUT (STRING) - output STRING

IN (STRING) - string of characters to convert to upper
case

Outputs: OK (BOOL) - execution completed without error

OUT (same variable as OUT input) - converted string

⁄ƒƒƒƒƒƒƒƒƒø
≥ USIN2BYT≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (USINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (BYTE) - converted value
Chapter 2 Function/Function Block Description 2-489

USIN2SI
USIN2SI
Unsigned Short Integer to Short Integer Datatype/USINTCNV

USIN2SI(IN := <<USINT>>, OK => <<BOOL>>, OUT => <<SINT>>)

The USIN2SI function changes the data type of the value at IN from an unsigned
short integer to a short integer. The result is placed in the variable at OUT.

USIN2STR
Unsigned Short Integer (ASCII Code) to String Datatype/USINTCNV

USIN2STR(STR := <<STRING>>, NUM := <<USINT>>, OK => <<BOOL>>,
STR => <<STRING>>)

The USIN2STR function converts the USINT or constant at NUM into the first
character of the STRING at STR. Any ASCII code may be converted to STRING.

For example, if NUM = 65, the first character of STRING becomes 'A'.

Note: The string at STR will always be a one-character string.

⁄ƒƒƒƒƒƒƒƒƒø
≥ USIN2SI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (USINT) - value to convert

Outputs: OK (BOOL) - execution completed without
error

OUT (SINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ USIN2STR≥
≥ ≥
¥EN OK√
≥ ≥
¥STR---STR√
≥ ≥
¥NUM ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STR (STRING) - output string

NUM (USINT) - usint (ASCII code)

Outputs: OK (BOOL) - execution completed without error

STR (STRING) - converted string
2-490 Chapter 2 Function/Function Block Description

USIN2UI
USIN2UDI
Unsigned Short Integer to Unsigned Double Integer Datatype/USINTCNV

USIN2UDI(IN := <<USINT>>, OK => <<BOOL>>, OUT => <<UDINT>>)

The USIN2UDI function changes the data type of the value at IN from an unsigned
short integer to an unsigned double integer. The leftmost 24 bits of the unsigned
double integer are filled with zeros. The result is placed in the variable at OUT.

USIN2UI
Unsigned Short Integer to Unsigned Integer Datatype/USINTCNV

USIN2UI(IN := <<USINT>>, OK => <<BOOL>>, OUT => <<UINT>>)

The USIN2UI function changes the data type of the value at IN from an unsigned
short integer to an unsigned integer. The leftmost 8 bits of the unsigned integer are
filled with zeros. The result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ USIN2UDI≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (USINT) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (UDINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ USIN2UI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (USINT) - value to convert

Outputs: OK (BOOL) - execution complete

OUT (UINT) - converted value
Chapter 2 Function/Function Block Description 2-491

USIN2ULI
USIN2ULI
Unsigned Short Integer to Unsigned Long Integer Datatype/USINTCNV

USIN2ULI(IN := <<USINT>>, OK => <<BOOL>>, OUT => <<ULINT>>)

The USIN2ULI function converts an unsigned short integer into an unsigned long
integer. The leftmost 56 bits of the unsigned long integer are filled with zeros.
The result is placed in a variable at OUT.

VEL_END
Velocity End Motion/MOVE

VEL_END(AXIS := <<USINT>>, OK => <<BOOL>>)

The velocity end function is required to stop a move started by the VEL_STRT
function.

When used on a servo axis, the ACC/DEC will be a ramp, unless S-Curve interpo-
lation is enabled via Servo-Setup or the WRITE_SV function.

⁄ƒƒƒƒƒƒƒƒƒø
≥USIN2ULI ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (USINT) - value to convert

Outputs:OK (BOOL) - execution completed without error

OUT (ULINT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ VEL_END ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (One-shot)

AXIS (USINT) - identifies axis (servo or time)

Outputs: OK (BOOL) - execution completed without error
2-492 Chapter 2 Function/Function Block Description

VEL_STRT
VEL_STRT
Velocity Start Motion/MOVE

VEL_STRT(AXIS := <<USINT>>, PLUS := <<BOOL>>, RATE :=
<<UDINT>>, OK => <<BOOL>>, QUE => <<USINT>>)

The velocity start function moves an axis at a specified feedrate and direction. If
the input at PLUS is set, then movement occurs in the positive direction as defined
for your system. If it is not set, then movement occurs in the negative direction.
When the velocity move is used with a time axis, the S_CURVE function must be
called first.

To end a velocity start move you must include the VEL_END function in your lad-
der program.

When used on a servo axis, the ACC/DEC will be a ramp, unless S-Curve interpo-
lation is enabled via Servo-Setup or the WRITE_SV function.

⁄ƒƒƒƒƒƒƒƒƒø
≥VEL_STRT ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS QUE√
≥ ≥
¥PLUS ≥
≥ ≥
¥RATE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (one-shot)

AXIS (USINT) - identifies axis (servo or time)

PLUS (BOOL) - indicates direction of motion

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

Outputs: OK (BOOL) - execution completed without error

QUE (USINT) - number of velocity start move for
queue

IMPORTANT

Remember that a VEL_END function only ends the velocity move in
the active queue. A VEL_END function never ends the velocity
move in the next queue. Only call the VEL_END function when the
velocity move you want to end is in the active queue.
Chapter 2 Function/Function Block Description 2-493

VFASTIN
VFASTIN
Virtual Fast Input Motion/MOVE_SUP

VFASTIN(AXIS := <<USINT>>, OPTN := <<UINT>>, OK => <<BOOL>>)

The VFASTIN function generates a virtual fast input for a virtual axis. This can be
used to simulate a fast input for the REGIST, MEASURE, FAST_REF, and
FAST_QUE functions with a virtual axis. When executing a FAST_REF on the
index mark after the fast input, this function will generate both the fast input event
and the index event simultaneously.

When the EN input is energized, a fast input will be generated for the virtual axis
specified at the AXIS input. This axis must be a virtual axis (i.e. “Virtual” is spec-
ified as the Input Type and Output Type in Servo Setup.) The OPTN input exists
for future enhancements and must be 0.

⁄ƒƒƒƒƒƒƒƒƒø
≥ VFASTIN ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥OPTN ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (one-shot)

AXIS (USINT) - identifies virtual axis

OPTN (UINT) - options

Outputs: OK (BOOL) - execution completed without error
2-494 Chapter 2 Function/Function Block Description

WORD2DW
WORD2BYT
Word to Byte Datatype/WORDCONV

WORD2BYT(IN := <<WORD>>, OK => <<BOOL>>, OUT => <<BYTE>>)

The WORD2BYT function changes the data type of the value at IN from a word to
a byte. The leftmost 8 bits of the word are truncated. The result is placed in the
variable at OUT.

WORD2DW
Word to Double Word Datatype/WORDCONV

WORD2DW(IN := <<WORD>>, OK => <<BOOL>>, OUT => <<DWORD>>)

The WORD2DW function changes the data type of the value at IN from a word to
a double word. The leftmost 16 bits of the double word are filled with zeros. The
result is placed in the variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ WORD2BYT≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (WORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (BYTE) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ WORD2DW ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (WORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (DWORD) - converted value
Chapter 2 Function/Function Block Description 2-495

WORD2INT
WORD2INT
Word to Integer Datatype/WORDCONV

WORD2INT(IN := <<WORD>>, OK => <<BOOL>>, OUT => <<INT>>)

The WORD2INT function changes the data type of the value at IN from a word to
an integer. The result is placed in the variable at OUT.

WORD2LW
Word to Long Word Datatype/WORDCONV

WORD2LW(IN := <<WORD>>, OK => <<BOOL>>, OUT => <<LWORD>>)

The WORD2LW function converts a word into a long word. The leftmost 48 bits
of the long word are filled with zeros. The result is placed in a variable at OUT.

⁄ƒƒƒƒƒƒƒƒƒø
≥ WORD2INT≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (WORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (INT) - converted value

⁄ƒƒƒƒƒƒƒƒƒø
≥ WORD2LW ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN OUT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (WORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (LWORD) - converted value
2-496 Chapter 2 Function/Function Block Description

WORD2UI
WORD2UI
Word to Unsigned Integer Datatype/WORDCONV

WORD2UI(IN := <<WORD>>, OK => <<BOOL>>, OUT => <<UINT>>)

The WORD2UI function changes the data type of the value at IN from a word to
an unsigned integer. The result is placed in a variable at OUT.

 ⁄ƒƒƒƒƒƒƒƒƒø
 ≥ WORD2U1 ≥
 ≥ ≥
 ¥EN OK√
 ≥ ≥
 ¥IN OUT√
 ≥ ≥
 ¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

IN (WORD) - value to convert

Outputs: OK (BOOL) - execution completed without error

OUT (UINT) - converted value
Chapter 2 Function/Function Block Description 2-497

WRITE
WRITE
Write Io/COMM

<<INSTANCE NAME>>:WRITE(REQ := <<BOOL>>, HNDL := <<INT>>,
CNT := <<INT>>, BUFR := <<MEMORY AREA>>, DONE => <<BOOL>>,
FAIL => <<BOOL>>, ERR => <<INT>>, ACT => <<INT>>);

The WRITE function block writes data to the file or device at the User Port speci-
fied by the input at HNDL. It writes the number of bytes specified by the value at
CNT, from the variable at BUFR. It replaces or writes over any existing data in a
file. The number of bytes actually written is placed into the variable at ACT. ACT
will be less than CNT when the number of bytes in the variable at BUFR is less
than CNT, or when there is an error. Otherwise the value of ACT will equal the
value of CNT.

WRITE is used in conjunction with the CLOSE, CONFIG, OPEN, READ, SEEK,
and STATUS I/O function blocks.

Note: The FMSDISK does not support the WRITE function block.

⁄ƒƒNAME ƒƒø
≥ WRITE ≥
≥ ≥
¥REQ DONE√
≥ ≥
¥HNDL FAIL√
≥ ≥
¥CNT ERR√
≥ ≥
¥BUFR ACT√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: REQ (BOOL) - enables execution (One-shot)

HNDL (INT) - output from OPEN function block

CNT (INT) - number of bytes to write

BUFR (MEMORY AREA) - to write data from

MEMORY AREA is a STRING, ARRAY, STRUC-
TURE, ARRAY ELEMENT, or STRUCTURE MEM-
BER

Outputs: DONE (BOOL) - energized if ERR = 0
not energized if ERR ≠ 0

FAIL (BOOL) - energized if ERR ≠ 0
not energized if ERR = 0

ERR (INT) - 0 if data transfer successful
≠ 0 if data transfer unsuccessful

See Appendix B in the PiCPro Online Help for ERR
codes.

ACT (INT) - number of bytes writtten
2-498 Chapter 2 Function/Function Block Description

WRITE_SV
WRITE_SV
Write Servo Motion/DATA

WRITE_SV(AXIS := <<USINT>>, VAR ::= <<SINT>>, DATA := <<DINT>>,
OK => <<BOOL>>)

WRITE_SV writes the value at DATA to the variable specified at VAR for the axis
specified at AXIS.

Refer to the Variable Table in the READ_SV function for a listing of variables that
can be written to using the WRITE_SV function.

⁄ƒƒƒƒƒƒƒƒƒø
≥WRITE_SV ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥VAR ≥
≥ ≥
¥DATA ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution (typically one-shot)

AXIS (USINT) - identifies axis (servo, digitizing, or

time)

VAR (SINT) - variable to be written to

DATA (DINT) - servo data to be written to

Outputs: OK (BOOL) - execution completed without error
Chapter 2 Function/Function Block Description 2-499

WRIT_SVF
WRIT_SVF
Write Servo Fast Motion/DATA

WRIT_SVF(AXIS := <<USINT>>, VAR := <<SINT>>, DATA := <<DINT>>,
OK => <<BOOL>>)

The write servo fast function allows the specified variable (VAR) to be written
with DATA for the specified axis. The WRIT_SVF function performs the write
faster than the WRITE_SV function. It consumes less CPU time in exchange for
some features. Less verification is performed on the inputs to WRIT_SVF. All
values that involve velocity or distance are in feedback units and updates rather
than ladder units and minutes.

Refer to the Variables Table in the READ_SV function for a listing of variables
that can be written to using the WRIT_SVF function.

NOTE: Because of minimal error checking, calling WRIT_SVF without first ini-
tializing axes using STRTSERV will corrupt memory and cause unexpected
results.

⁄ƒƒƒƒƒƒƒƒƒø
≥WRIT_SVF ≥
≥ ≥
¥EN OK√
≥ ≥
¥AXIS ≥
≥ ≥
¥VAR ≥
≥ ≥
¥DATA ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

AXIS (USINT) - identifies axis (servo, digitizing, or
time)

VAR (SINT) - variable to be written to

DATA (DINT) - servo data to be written

Outputs: OK (BOOL) - execution completed without error
2-500 Chapter 2 Function/Function Block Description

XOR
XOR
Exclusive Or Binary/XOR

XOR(IN1 := <<BITWISE>>, IN2 := <<BITWISE>>, OK => <<BOOL>>, OUT
=> <<BITWISE>>)

The XOR function exclusive ORs the variable or constant at IN1 with the variable
or constant at IN2, and places the results in the variable at OUT. This is an exten-
sible function which can XOR up 17 inputs.

If two inputs of the XOR function are different, the output is 1. If two inputs are
the same, the output is 0. See the example below.

Example of XOR function with a value at IN1 and IN2:

If a third value would be at IN3, it would be XORed with the first two as shown
below (this would continue with each additional input).

⁄ƒƒƒƒƒƒƒƒƒø
≥ XOR ≥
≥ ≥
¥EN OK√
≥ ≥
¥IN1 OUT√
≥ ≥
¥IN2 ≥
¡ ƒ ƒ ƒ ƒ Ÿ

Inputs: EN (BOOL) - enables execution

IN1 (BITWISE) - number to be XORed

IN2 (same type as IN1) - number to be XORed

Outputs: OK (BOOL) - execution completed without error

OUT (same type as IN1) - XORed number

11000011 value at IN1
10101010 value at IN2
01101001 value at OUT

11000011 value at IN1
10101010 value at IN2
01101001 result
11001100 value at IN3
10100101 value at OUT
Chapter 2 Function/Function Block Description 2-501

XOR
2-502 Chapter 2 Function/Function Block Description

A.1 - Operator Interface ASFB
Your TrueView and Cimrex operator interface device requires the following
ASFBs in your LDO to set up communications between the PiC and the operator
interface device.
A.1 - 1

OI_COMM
Cim/Exter All Comm Types USER/OI

<<INSTANCE NAME>>:OI_COMM(ENxx := <<BOOL>>, ETHN :=
<<BOOL>>, Port := <<UINT>>, OPCS := <<STRUCT>>, R422 :=
<<BOOL>>, OK => <<BOOL>>, OIOK => <<BOOL>>, OIFL =>
<<BOOL>>, ERR => <<INT>>, OIER => <<INT>>, TOUT => <<BOOL>>,
MCNT => <<UINT>>);

This block sets up and handles communications to an Exter or Cimrex screen. One
of three types of communication can be chosen. They are Ethernet, RS232 or
RS422 Serial.

For more help on Ethernet, see the OPC_ENET block. For more help on either
serial method, see the OI_SER block.

INPUTS:

ETHN - set ETHN on for Ethernet communications.

PORT - valid Ethernet port # required for ETHN on.

⁄ƒ NAME ƒƒø
≥ OI_COMM ≥
≥ ≥
¥ENxx OK√
≥ ≥
¥ETHN OIOK√
≥ ≥
¥Port OIFL√
≥ ≥
¥OPCS ERR√
≥ ≥
¥R422 OIER√
≥ ≥
≥ TOUT√
≥ ≥
≥ MCNT√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - Enables FB - on at all times

ETHN (BOOL) - On if Ethernet communications
used. Overrides RS422 selection.

Port (UINT) - Ethernet Port Number

OPCS (STRUCT) - Holds Ethernet communication
data

R422 (BOOL) - On for RS422 communications -
ETHN must be off also

Outputs: OK (BOOL) - FB OK

OIOK (BOOL) - Communications OK

OIFL (BOOL) - OI or communications failure

ERR (INT) - see OI_SERR (ERR) or OPC_ENET
(ERR) help

OIER (INT) - see OI_SERR (OIER) or OPC_ENET
(DERR) help

TOUT (BOOL) - Timeout - on if no message
received in 1 second

MCNT (UINT) - Message count - shows # of mes-
sages received
A.1 - 2

OPCS - Structure to hold Ethernet status data for debug and ladder use - see
OPC_ENET help.

R422 - If ETHN is off and this is off, RS232 communications are used. Turn R422
on for RS422 communications.

OUTPUTS:

OK - Ethernet or serial communications established OK.

OIOK - Operator station communications OK.

OIFL - any communication failure. Will also put a value in one of the two error
numbers.

ERR - Error number - See OI_SER (OIER) or OPC_ENET (DERR) help.

OIER - Operator interface error number - See OI_SER (OIER) or OPC_ENET
(DERR) help depending on method being used.

TOUT - Timeout - message not received in 1 second. Use to create ladder action
for loss of screen communications.

MCNT - Message count - total messages received from operator interface.
A.1 - 3

OI_SER
Operator Interface Serial USER/OI

<<INSTANCE NAME>>:OI_SER(EN := <<BOOL>>, PORT := <<STRING>>,
CFG := <<STRING>>, OK => <<BOOL>>, FAIL => <<BOOL>>, ERROR =>
<<INT>>, NODE => <<USINT>>, OIFL => <<BOOL>>, OIER => <<INT>>,
RMSG => <<BOOL>>);

The OI_Serial function block implements the communication protocol between
the PiC and a Cimrex or TrueView operator interface device. It handles RS232
and RS422 serial communication.

The EN input causes an I/O port to be opened and configured based on the other
inputs. When enabled, the function block will then be ready to receive a protocol
message from the operator interface device. Dropping the enable input will cause
the I/O port to be closed.

The PORT input defines the name of the serial port to be used for communications.
The standard port on any MMC or PiC900 family CPU is ’USER:$00’. The port
name is entered as a string. If a port on a Serial Communication Module is to be
used, the module must be assigned in the main ladder using the ASSIGN function
block. The port name used as the input to the ASSIGN function block would also
be passed as the PORT input.

The CFG input defines the characteristics of the port defined at the PORT input.
Values are the same as for the CONFIG function block.

⁄ƒƒNAME ƒƒø
≥ OI_SER ≥
≥ ≥
¥EN OK√
≥ ≥
¥PORT FAIL√
≥ ≥
¥CFG ERR√
≥ ≥
≥ NODE√
≥ ≥
≥ OIFL√
≥ ≥
≥ OIER√
≥ ≥
≥ RMSG√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

PORT (STRING) - name of the port

CFG (STRING) - port configuration

Outputs: OK (BOOL) - initialization complete

FAIL (BOOL) - initialization failed

ERROR (INT) - error number

See Appendix B in the PiCPro Online Help for ERR
codes.

NODE (USINT) - assigned node number

OIFL (BOOL) - operator interface message fail

OIER (INT) - operator interface error number

RMSG (BOOL) - energized if a message is received

Baud rate Parity Data bits Stop bits Synch mode Terminator
9600, N, 8, 1, N $00
A.1 - 4

If you need to change the default values for the parameters at the CFG string input,
refer to the table of acceptable values found at the CONFIG function block.

The OK output is set if the function block was successful in opening and configuring
the serial port. It is latched and reset only when the enable is dropped and enabled
again.

The FAIL output is set if the function block was not successful in opening and
configuring the serial port. It is latched and reset only when the enable is dropped and
enabled again.

The ERR output contains an error number if the FAIL output is set. These errors are
listed in Appendix B of the PiCPro Online Help.

The NODE output contains the node number specified at the /OI command line
switch. It is provided for information purposes only. If no node number has been
entered, the output will be “0”.

The OIFL output is the operator interface message fail. It is set for one scan when a
failure occurs attempting to process a command from the operator interface.

The OIER output is the operator interface error number. When OIFL is set, this output
will hold one of the following error codes. This error number corresponds to the
Remote error number displayed at the bottom of the operator interface device

The RMSG output is energized for one scan when a message is received from the OI..

String = 9600,N,8,1,N$00

Code Description
1 Data Table Mismatch - The OID file used in the operator interface

configuration does not match the PiC’s data table.
2 Index Number Out of Range - The index number of the data ele-

ment requested by the operator interface is beyond the end of the
PiC’s data table.

3 Invalid Data Size - The specified data size of a specific data ele-
ment requested by the operator interface does not match the data
size of that data element in the PiC’s data table.

4 Response Message Too Long - The length of the response string
generated within OI_SER exceeds the declared length of the
response string.
A.1 - 5

NOTES
A.1 - 6

B.1 - OPC Server ASFB
The OPC [OLE (Object Linking and Embedding) for Process Control] Server was
designed to read and write data to and from the control via Ethernet.
B.1 - 1

OPC_ENET
OPC_Ethernet USER/OPC_ENET

<<INSTANCE NAME>>:OPC_ENET(EN := <<BOOL>>, SLOT :=
<<USINT>>, PORT :=<<UINT>>, STAT:=<<MEMORY AREA>>, OK =>
<<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>, DERR => <<INT>>);

The OPC_ENET function block enables the control to communicate with the G&L
Motion Control OPC Server. It provides a protocol for this communication and
error checking capabilities for the data sent. Any OPC compliant client can be used
with the OPC server.

The function block is configured as a UDP server. It will service incoming UDP
requests but will not solicit information from other controls or PCs.

All the variables to be passed to the OPC Server via this function block must be
declared globally within the ladder. For more information on setting up the OPC
server, refer to the OPC Server Manual.

When the EN input is set, a UDP socket is created on the TCP/IP module defined
in SLOT. It binds that socket to the PORT. It services requests for read or write
data from an OPC server.

The PORT input defines the port to be used for Ethernet communications. You
must assign an available port number above 1024. Use this same number in your
OPC setup to ensure that communications will be established.

The STAT input provides status or debug information on the last message received.
It includes a valid message BOOL that can be used to re-trigger a watch dog timer.

The OK output is set if the function block was successful in opening and
configuring the port.

The FAIL output is set if the function block was not successful in opening and
configuring the port.

The ERR output contains an error number if the FAIL output is set. These are the
same errors that can occur in the IP function/function blocks.

⁄ƒƒNAME ƒƒø
≥ OPC_ENET≥
≥ ≥
¥EN OK√
≥ ≥
¥SLOT FAIL√
≥ ≥
¥PORT ERR√
≥ ≥
¥STAT DERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution, set every scan

SLOT (USINT) - slot number of Ethernet - TCP/IP
module in rack

PORT (UINT) - UDP protocol port number
Choose any available UDP port above 1024.

STAT (STRUCT) - status of last message received

Outputs: OK (BOOL) - execution complete

FAIL (BOOL) - error, execution incomplete

ERR (INT) - error number from IP functions that
occurred during execution

DERR (INT) - data transfer errors
B.1 - 2

STAT STRUCT Status of the last message received
.ValidMsg BOOL Indicates that a valid message was received

(one shot)
.InvalidMsg BOOL Indicates that an invalid message was

received (one shot)
.Command BYTE 2 = Read, 3 = Write
.ClientIPAddr STRING[25] IP Address of the Client that sent the last

message
.CheckSum INT Checksum, used to verify the size of the

Structure, set the Initial Value to 12345
END_STRUCT

IMPORTANT

The last data variable CheckSum must be included in the structure
with the initial value set to 12345. This memory location with a
known value is used by the ASFB to verify the size of the structure.
If the structure is not the correct size, an error will be reported upon
initialization.

Note: All ten checksum elements must have the initial value set to 12345.

ERR# Description ERR# Description

0 No error 40 Destination address required

1 Not owner 41 Protocol wrong type for socket

2 No such file or directory 42 Protocol not available

3 No such process 43 Protocol not supported

4 Interrupted system call 44 Socket type not supported

5 I/O error 45 Operation not supported on socket

6 No such device or address 46 Protocol family not supported

7 Arg list too long 47 Address family not supported

8 Exec format error 48 Address already in use

9 Bad file number 49 Can’t assign requested address

10 No children 50 Socket operation on non-socket

11 No more processes 51 Network is unreachable

12 Not enough core 52 Network dropped connection on reset
B.1 - 3

13 Permission denied 53 Software caused connection abort

14 Bad address 54 Connection reset by peer

15 Directory not empty 55 No buffer space available

16 Mount device busy 56 Socket is already connected

17 File exists 57 Socket is not connected

18 Cross-device link 58 Can’t send after socket shutdown

19 No such device 59 Too many references: can’t splice

20 Not a directory 60 Connection timed out

21 Is a directory 61 Connection refused

22 Invalid argument 62 Network is down

23 File table overflow 63 Text file busy

24 Too many files open 64 Too many levels of symbolic links

25 Not a typewriter 65 No route to host

26 File name too long 66 Block device required

27 File too large 67 Host is down

28 No space left on device 68 Operation now in progress

29 Illegal seek 69 Operation already in progress

30 Read-only file system 70 Operation would block

31 Too many links 71 Function not implemented

32 Broken pipe 72 Operation cancelled

33 Resource deadlock avoided 1000 There is a non-zero terminated string which
requires zero termination or a zero length
string.

34 No locks available 1001 There is a CNT input which is too large.

35 Unsupported value 1002 The SLOT number requested does not contain
an Ethernet board.

36 Message size 1003 Either the firmware does not support TCP/IP or
there is no Ethernet board in the rack.

37 Argument too large 1004 The IPZ buffer is too small.

38 Result too large 1005 A TCP/IP function was terminated due to a
TCP/IP stack failure. The socket the function
block is using is no longer valid. *
B.1 - 4

The DERR output is a data transfer error and can contains one of the numbers
listed below.

NOTE

A ladder with Ethernet functions loaded on an MMC for PC requires
the IPSTAT function to reset the connection to the host. The other PiC
CPU models have an external Ethernet module (with it’s own TCP/IP
stack) and do not require IPSTAT.

Code Description
1 Data Table Mismatch - The message has an invalid CRC value.

The OID file used in the OPC server configuration does not match
the PiC’s data table.

2 Index Number Out of Range - The index number of the data ele-
ment requested by the OPC server is beyond the end of the PiC’s
data table.

3 Invalid Data Size -The specified data size of a specific data ele-
ment requested by the OPC does not match the data size of that data
element in the PiC’s data table.

4 Output Oversize - More than 500 bytes of data have been
requested in one UDP packet.

5 Byte Count Wrong - The byte count of the request message from
the OPC server is inconsistent with the requested data (incomplete
message).

6 Invalid STAT Structure Checksum - The STAT structure is not
the correct size. Check the number of elements, data types and ini-
tial values.
B.1 - 5

OPC_10
OPC Server with 10 ports USER/OPC_ENET

<<INSTANCE NAME>>:OPC_10(EN00 := <<BOOL>>, PORT := <<UINT>>,
SLOT := <<USINT>>, NUMP := <<UINT>>, STAT[0] := <<MEMORY
AREA>>, OK => <<BOOL>>, FAIL => <<BOOL>>, ERR => <<INT>>,
DERR => <<INT>>, PERR => <<USINT>>);

This function block extends the support for the G&L Motion Control OPC Server
(Version 2.0 or later) to use up to 10 UDP protocol ports. This function block
contains several OPC_ENET function blocks to provide this support. The
additional UDP ports allow for data transfer rates up to 10 times higher than the
standard OPC_ENET function block.

All the variables to be passed to the OPC Server via this function block must be
declared globally (the G attribute in the software declarations) within the main
ladder. For more information on setting up the OPC Server, refer to the OPC
Server Manual.

The PORT input defines the first UDP protocol port to be used for the Ethernet
communications with the OPC Server. You must assign an available port number
above 1024. Use this same number in your OPC Server setup to ensure that
communications will be established.

The SLOT input indicates the slot number for the Ethernet module used for the
Ethernet communications with the OPC Server.

⁄ƒƒNAME ƒƒø
≥ OPC_10 ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥PORT FAIL√
≥ ≥
¥SLOT ERR√
≥ ≥
¥NUMP DERR√
≥ ≥
¥STAT PERR√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enable execution, set every scan

PORT (UINT) - first UDP protocol port number
(number must be over 1024)

SLOT (USINT) - slot number of Ethernet module

NUMP (UINT) - number of ports to open for the OPC
Server (from 1 to 10)

STAT (STRUCT(0..9)) - status of last message received

Outputs: OK (BOOL) - execution complete without any errors

FAIL (BOOL) - ethernet error was detected

ERR (INT) - ethernet error number

DERR (INT) - data transfer error number

PERR (USINT) - port number with above error num-
bers (in a range of 0 to 9)
B.1 - 6

The NUMP input defines how many UDP protocol ports will be opened using the
OPC_ENET function block. The value at NUMP must match the number of ports
for the device properties in the OPC Server configuration. The UDP protocol ports
used by this function block will have consecutive values beginning at the PORT
value. For example, if the value at PORT is 1234 and the value at NUMP is 3, then
the OPC communications will occur on UDP ports 1234, 1235 and 1236. IF
NUMP is greater than 10, then PERR will be 99 and ERR will be 9999.

The OK is set as long as none of the OPC_ENET function blocks has detected an
error. As soon as one of them has detected an error, OK will be reset and FAIL will
be set.

The values for the ERR and DERR outputs are defined in the tables with the
OPC_ENET function block description. The PERR output defines which port
number is associated with the ERR and DERR errors. As PERR values begin at 0,
add the PERR value to the PORT value to determine which particular protocol port
is involved in the error.

STAT STRUCT(0..9) Status of the last message received
.ValidMsg BOOL Indicates that a valid message was received

(one shot)
.InvalidMsg BOOL Indicates that an invalid message was

received (one shot)
.Command BYTE 2 = Read, 3 = Write
.ClientIPAddr STRING[25] IP Address of the Client that sent the last

message
.CheckSum INT Checksum, used to verify the size of the

Structure, set the Initial Value to 12345
END_STRUCT

IMPORTANT

The last data variable CheckSum must be included in the structure
with the initial value set to 12345. This memory location with a
known value is used by the ASFB to verify the size of the structure.
If the structure is not the correct size, an error will be reported upon
initialization.
B.1 - 7

NOTES
B.1 - 8

C.1 - Temperature Function Errors

ERR Description
0 No error.
1 The RACK input is invalid.
2 A rack hardware fault occurred
3 The SLOT input is invalid.
4 The module specified is not an analog temperature module
5 The CHAN input is invalid.
6 A module hardware fault occurred.
7 The channel is currently being initialized. Try again later.

Note: This error can occur if the ladder continually
attempts to initialize a channel.

8 A mathematical overflow occurred when converting the
counts to temperature or millivolts.

9 The RNGE input is invalid.
10 The µSEC input is invalid.
11 A temperature underflow occurred. This indicates an open

thermocouple or the temperature read is below the limits
of the hardware.

Note: There is no open indication for grounded thermo-
couples.

12 A temperature overflow occurred. The temperature read is
above the limits of the hardware.

13 The HNDL input is invalid.
14 The VALU output is outside the range specified by the ini-

tialization function.

Note: This error can also occur if the thermocouple is
open.
C.1 - 1

C.1 - 2

INDEX
Symbols

±10V DC output module 2-11, 2-13

Numerics

4-20 mA output 2-13
4-20 mA output module 2-11, 2-13

A

A_DT_T function 1-7, 2-31
A_IN_MMC function 1-22, 2-32
A_INCHIT function 1-22, 2-33

errors 2-35
A_INCHRD function block 1-22, 2-36

errors 2-37
A_INMDIT function 1-22, 2-40

errrors 2-40
A_TOD_T function 1-7, 2-41
abort move 2-3
ABRTALL function 1-37, 2-2
ABRTMOVE function 1-37, 2-2
ABS function 1-6, 2-3
acc/dec rates

limits 2-4
ACC_DEC function 1-36, 2-4
ACC_JERK function 2-5
ACOS function 1-8, 2-9
ADD function 1-6, 2-9, 2-462
algorithm

independent gains 2-223
ISA 2-223

analog
functions 1-22

analog output
units 2-14, 2-15
volts 2-14, 2-15

AND function 1-9, 2-10
ANLG_OUT function 1-22, 2-13
anlgin group functions 1-22
ANLGINIT function 1-22, 2-11
anlgout group functions 1-22
anti-reset windup 2-222, 2-230
APPEND mode 2-212
arith group functions 1-6
arithmetic

arith
ABS 2-3
ADD 2-9, 2-462
DIV 2-96
MOD 2-190
MUL 2-192
NEG 2-194

datetime
A_DT_T 2-31
A_TOD_T 2-41
S_DT_DT 2-464
S_DT_T 2-465
S_TOD_T 2-467

functions 1-6
trig

ACOS 2-9
ASIN 2-22
ATAN 2-25
COS 2-79
EXP 2-115
LN 2-180
LOG 2-180
SIN 2-427
TAN 2-469

ARTDCHIT function 1-27, 2-17
errors 2-18

ARTDCHRD function block 1-27, 2-19
errors 2-20

ARTDMDIT function 1-27, 2-21
errors 2-21

ASIN function 1-8, 2-22
ASSIGN function block 1-24, 2-23

errors 2-24
ATAN function 1-8, 2-25
ATMPCHIT function 1-25, 2-26

errors 2-27
ATMPCHRD function block 1-25, 2-28

errors 2-29
ATMPMDIT function 1-25, 2-30

errors 2-30

B

BAT_OK? function 1-23, 2-43
binary

AND 2-10
functions 1-9
IND-1

NOT 2-207
OR 2-215
ROL 2-372
ROR 2-373
SHL 2-425
SHR 2-426
XOR 2-501

BIO_PERF function block 2-43
bipolar

example 2-39
range 2-34

bit
rotate functions 1-9
shift functions 1-9

BOOL2BYT function 1-11, 2-46
BOOL2BYTE group function 1-11, 1-15
BTMPCHIT function 1-25, 2-47
BTMPCHRD function 2-48, 2-50
BTMPCHRD function block 1-25
BTMPMGR function 1-25
buffer 2-295
bumpless transfer 2-219, 2-228
BYT2BOOL function 1-11, 2-51
BYTE2DW function 1-11, 2-52
BYTE2LW function 1-11, 2-52
BYTE2SI function 1-11, 2-53
BYTE2USI function 1-11, 2-53
BYTE2WO function 1-11, 2-54
byteconv group functions 1-11

C

C_ERRORS function 1-33, 2-83
C_RESET function 1-33, 2-85
C_STOP function 1-33, 2-85

errors 2-84
C_STOP? function 1-33, 2-86
cam output

conditions 2-55
example 2-59

CAM_OUT function 1-36, 2-55
CAPTINIT function 1-30, 2-60

errors 2-62
CAPTSTAT function 1-30, 2-67
Celsius 2-28
changing ratios

RATIO_GR 2-204

RATIO_RL 2-204
RATIOSLP 2-204
RATIOSYN 2-204

clock
get time 2-68
set 2-68

CLOCK function 1-43, 2-68
CLOSE function block 1-24, 2-69
CLOSLOOP function 1-34, 2-70
CLSLOOP? function 1-34, 2-71
comm group function blocks 1-24
communication parms 2-73
comparison

ratio moves 2-294
RATIOSLP, RATIOCAM, RATIOPRO

2-261
CONCAT function 1-42

errors 2-72
CONFIG function block 1-24, 2-73
COORD2RL function 1-30, 2-75, 2-286

errors 2-78
structures 2-75

COS function 1-8, 2-79
counter function blocks 1-10
counters

CTD 2-80
CTU 2-81
CTUD 2-82

C-stop
define 1-32
errors

bit locations 2-84
hex value 2-84

CSTOPDEC function 2-79
CTD function block 1-10, 2-80
CTU function block 1-10, 2-81
CTUD function block 1-10, 2-82

D

d_tconv group functions 1-13
D_TOD2DT function 1-13, 2-112
data

send/receive 1-24
data capture

tasks 2-61
variables
IND-2

actual position 2-63
command change 2-63, 2-64
commanded position 2-63
fast input occurred 2-63
feedback position 2-63
filter error 2-63
position change 2-63, 2-64
position error 2-63
prefilter command change 2-63, 2-64
prefilter commanded 2-63
remaining master offset 2-64
remaining slave offset 2-64

datatype
BOOL2BYT 2-46
byteconv

BYT2BOOL 2-51
BYTE2DW 2-52
BYTE2LW 2-52
BYTE2SI 2-53
BYTE2USI 2-53
BYTE2WO 2-54

d_tconv
D_TOD2DT 2-112
DATE2STR 2-87
DT2DATE 2-104, 2-105
DT2STR 2-105
DT2TOD 2-106
TIM2UDIN 2-470

dintconv
DINT2DW 2-90
DINT2INT 2-90
DINT2LI 2-91
DINT2SI 2-92
DINT2UDI 2-92

dwordcnv
DWOR2BYT 2-109
DWOR2DI 2-110
DWOR2LW 2-110
DWOR2RE 2-111
DWOR2UDI 2-111
DWOR2WO 2-112

intconv
INT2DINT 2-144
INT2LINT 2-144
INT2SINT 2-145
INT2UINT 2-145

INT2WORD 2-146
lintconv

LINT2DI 2-177
LINT2INT 2-177
LINT2LR 2-178
LINT2LW 2-178
LINT2SI 2-179
LINT2ULI 2-179

lrealcnv
LREA2LI 2-181
LREA2LW 2-181
LREA2RE 2-182
LREA2ULI 2-182

lwordcnv
LWOR2BYT 2-184
LWOR2DW 2-185
LWOR2LR 2-186
LWOR2WO 2-187
LWORD2ULI 2-186

NUM2STR 2-210
realconv

REAL2DI 2-352
REAL2DW 2-352
REAL2LR 2-353
REAL2UDI 2-353, 2-354

sintconv
SINT2BYT 2-427
SINT2DI 2-428
SINT2INT 2-428
SINT2LI 2-429
SINT2USI 2-429

strconv
STR2NUM 2-458
STR2USI 2-458

udintcnv
UDIN2DI 2-480
UDIN2DW 2-480
UDIN2RE 2-481
UDIN2TIM 2-481
UDIN2ULI 2-482

uintconv
UINT2ULI 2-484

ulintcnv
ULIN2LI 2-486
ULIN2LR 2-486
ULIN2LW 2-487
IND-3

ULIN2UDI 2-487
ULIN2UI 2-488
ULIN2USI 2-488

usintcnv
USIN2STR 2-490
USIN2ULI 2-492

wordconv
WORD2BYT 2-495
WORD2DW 2-495
WORD2INT 2-496
WORD2LW 2-496
WORD2UI 2-497

datatype functions 1-11
DATE2STR function 1-13, 2-87
datetime group functions 1-7
deadband 2-222, 2-229
DELETE function 1-42, 2-88
DELFIL function block 1-24, 2-89
derivative 2-219

control 2-219
DeviceNet

if status code 2-134
if status flags 2-134
network status 2-133
network status flags 2-133

digitizing axes 2-171, 2-310, 2-315, 2-317, 2-
319, 2-321, 2-325

DINT2DW function 1-12, 2-90
DINT2INT function 1-12, 2-90
DINT2LI function 1-12, 2-91
DINT2RE function 1-12
DINT2SI function 1-12, 2-92
DINT2UDI function 1-12, 2-92
dintconv group functions 1-12
DIRECT function block 1-24, 2-93
DISTANCE function 1-35, 2-95
DIV function 1-6, 2-96
DLS_INIT function block 1-30
DLS_RECV function block 1-30
DLS_SEND function 1-30
DLS_STAT function block 1-30
DNS (Domain Name Server) 2-155, 2-157
DOS

file read/write 1-24
DPOSMODE function 1-35, 2-102
DRSETFLT function 1-34

DRSTRTSRV function 1-34
DT2DATE function 1-13, 2-104, 2-105
DT2STR function 1-13, 2-105
DT2TOD function 1-13, 2-106
DTORQCMD function 1-35, 2-107
DVELCMD function 1-35, 2-108
DWOR2BYT function 1-12, 2-109
DWOR2DI function 1-12, 2-110
DWOR2LW function 1-12, 2-110
DWOR2RE function 1-12, 2-111
DWOR2UDI function 1-12, 2-111
DWOR2WO function 1-12, 2-112
dwordcnv group functions 1-12

E

E_ERRORS function 1-33, 2-116
E_RESET function 1-33, 2-118
E_STOP function 1-33, 2-118
E_STOP? function 1-33, 2-119
encoder 2-123, 2-170

ignore index 2-124, 2-171
end a move

ratio gear 2-140
syn end 2-463
vel end 2-492

EQ function 1-18, 2-113
ERR errors 2-412
error (registration)

accumulate 2-360
errors

C-stop 1-32
ERR 2-412
E-stop 1-32
programming 1-32
SERCOS 2-412
SERR 2-415
temperature function C.1 - 1
timing 1-32

E-stop
define 1-32
errors

bit locations 2-117
hex value 2-117

reset 2-118
ethernet-TCP/IP

errors 2-167
IND-4

ethernet-TCP/IP functions
IPACCEPT 2-151
IPCLOSE 2-152
IPCONN 2-153
IPHOST 2-154
IPIP2NAM 2-155
IPLISTEN 2-156
IPNAM2IP 2-157
IPREAD 2-158
IPRECV 2-159
IPSEND 2-161
IPSOCK 2-162
IPWRITE 2-164

evaluate
EQ 2-113
GE 2-138
GT 2-141
LE 2-173
LT 2-183
NE 2-194

evaluate functions 1-18
EXIST? function 1-34, 2-114
EXP function 1-8, 2-115

F

Fahrenheit 2-28
FAST_QUE function 1-37, 2-120, 2-238

programming error 2-121, 2-238
uses 2-120

FAST_REF function 1-39, 1-40, 1-41, 2-123
FB_CLS function block 1-20, 2-128
FB_OPN function block 1-20, 2-129
FB_RCV function 1-20, 2-130
FB_SND function 1-20, 2-131
FB_STA function 1-20, 2-132
feedrate

change
all moves 2-374

field bus function/blocks
FB_CLS 2-128
FB_OPN 2-129
FB_RCV 2-130
FB_SND 2-131
FB_STA 2-132

filter
LIMIT 2-176

MAX 2-188
MIN 2-190
MOVE 2-191
MUX 2-193
SEL 2-423

filter functions 1-20, 1-21
filter value

derivative 2-221
proportional 2-221

FIND function 1-42, 2-135
FRESPACE function block 1-24
FU2LU function 1-30
functions

menu 1-2

G

GE function 1-18, 2-138
GETDAY function 1-43, 2-139
GR_END function 1-38, 2-140
GT function 1-18, 2-141

H

HOLD function 1-36, 2-141
HOLD_END function 1-36, 2-142

I

I/O function blocks 1-22
IDN

147 2-388
148 2-376

IN_POS? function 1-36, 2-146
INSERT function 1-42, 2-143
INT2DINT function 1-13, 2-144
INT2LINT function 1-13, 2-144
INT2SINT function 1-13, 2-145
INT2UINT function 1-13, 2-145
INT2WORD function 1-13, 2-146
intconv group functions 1-13
integral 2-219

control 2-219
io

anlgin
A_INCHIT 2-33
A_INCHRD 2-36
A_INMDIT 2-40

anlgout
IND-5

ANLG_OUT 2-13
ANLGINIT 2-11

BAT_OK? 2-43
BIO_PERF 2-43
comm

ASSIGN 2-23
CLOSE 2-69
CONFIG 2-73
DELFIL 2-89
DIRECT 2-93
OPEN 2-212
READ 2-295
RENAME 2-364
SEEK 2-421
WRITE 2-498

JKtherm
ATMPCHIT 2-26
ATMPCHRD 2-28
ATMPMDIT 2-30
BTMPCHIT 2-47
BTMPCHRD 2-48, 2-50

network
NETCLS 2-195
NETFRE 2-195
NETMON 2-196
NETOPEN 2-197
NETRCV 2-199
NETSND 2-201
NETSTA 2-203

PID 2-219
PID2 2-227
READFDBK 2-297
rtdtemp

ARTDCHIT 2-17
ARTDCHRD 2-19
ARTDMDIT 2-21

sockets
IPSTAT 2-163

stepper
STEP_POS 2-456
STEPCNTL 2-436
STEPINIT 2-440

IP socket
error numbers B.1 -2

IPACCEPT function block 1-28, 2-151
IPCLOSE function block 1-28, 2-152

IPCONN function block 1-28, 2-153
IPHOST function block 2-154
IPHOSTID function block 1-28
IPIP2NAM function block 1-28, 2-155
IPLISTEN function block 1-28, 2-156
IPNAM2IP function block 1-28, 2-157
IPREAD function block 1-28, 2-158
IPRECV function block 1-28
IPRECV funtion block 2-159
IPSEND function block 1-28, 2-161
IPSOCK function block 1-28, 2-162
IPSTAT function 1-28, 2-163
IPWRITE function block 1-28, 2-164

J

jerks 2-417
J-K thermocouple module 2-28

L

LAD_REF function 1-39, 1-40, 1-41, 2-127,
2-170

ladder reference 2-170
ladder units 1-29
LE function 1-18, 2-173
LEFT function 1-42, 2-174
LEN function 1-42, 2-175
less than 2-183
LIMIT function 1-21, 2-176
LINT2DI function 1-14, 2-177
LINT2INT function 1-14, 2-177
LINT2LR function 1-14, 2-178
LINT2LW function 1-14, 2-178
LINT2SI function 1-14, 2-179
LINT2ULI function 1-14, 2-179
lintconv group functions 1-14
LN function 1-8, 2-180
LOG function 1-8, 2-180
loss of feedback 2-117
LREA2LI function 1-14, 2-181
LREA2LW function 1-14, 2-181
LREA2RE function 1-14, 2-182
LREA2ULI function 1-14, 2-182
lrealcnv group functions 1-14
LT function 1-18, 2-183
LU2FU function 1-30
LWOR2BYT function 1-14, 2-184
IND-6

LWOR2DW function 1-14, 2-185
LWOR2LI function 1-14, 2-185
LWOR2LR function 1-14, 2-186
LWOR2ULI function 1-14, 2-186
LWOR2WO function 1-14, 2-187
lwordcnv group functions 1-14
LWR_CASE function 1-42

M

machine reference 2-123, 2-170
machine reference switch

set up 2-126
master/slave moves

programming errors 2-238
ratio gear 2-283
ratio slope 2-261
ratio synchronization 2-273

math coprocessor 2-1
MAX function 1-21, 2-188
MEASURE function 1-36, 2-188
MID function 1-42, 2-189
MIN function 1-21, 2-190
MMC

A_IN_MMC function 2-32
MOD function 1-6, 2-190
mode

APPEND 2-212
READ 2-212
WRITE 2-212

module 2-13
±10V DC output 2-11, 2-13
4-20 mA output 2-11
J-K thermocouple 2-28

Motion
INIT

EXIST? 1-34, 2-114
MOVE_SUP

NO_OFFST 2-208
motion

data
CAPINIT 2-62
CAPSTAT 2-67
COORD2RL 2-75
READ_SV 2-309
SCA_STAT 2-395
STATUSSV 2-434

TUNEREAD 2-476
TUNEWRIT 2-477
WRITE_SV 2-499

errors
C_ERRORS 2-83
C_RESET 2-85
C_STOP 2-85
C_STOP? 2-86
E_ERRORS 2-116
E_RESET 2-118
E_STOP 2-118
E_STOP? 2-119
P_ERRORS 2-238
P_RESET 2-241
TME_ERR? 2-472

init
CLOSLOOP 2-70
CLSLOOP? 2-71
OPENLOOP 2-214
STRTSERV 2-459

move
DISTANCE 2-95
DPOSMODE 2-102
DTORQCMD 2-107
DVELCMD 2-108
POSTION 2-237
VEL_END 2-492
VEL_STR 2-493

move_sup
ACC_DEC 2-4
ACC_JERK 2-5
CAM_OUT 2-55
CSTOPDEC 2-79
HOLD 2-141
HOLD_END 2-142
IN_POS 2-146
MEASURE 2-188
NEW_RATE 2-206
NEWRATIO 2-204
PLS 2-232
PLS_EDIT 2-236
R_PERCEN 2-374
RATIOSCL 2-257
REGIST 2-355
SCURVE 2-416
VFASTIN 2-494
IND-7

que
ABRTALL 2-2
ABRTMOVE 2-2
FAST_QUE 2-120
Q_AVAIL? 2-243
Q_NUMBER 2-244

ratiomov
GR_END 2-140
RATIO_GR 2-283
RATIO_RL 2-286
RATIOCAM 2-246
RATIOSLP 2-261
RATIOSYN 2-273
REP_END 2-367
SYN_END 2-463

ref
FAST_REF 2-123
LAD_REF 2-170
PART_CLR 2-216
PART_REF 2-217
REF_DNE? 2-354
REF_END 2-354

motion data group functions 1-30
motion error group functions 1-32
motion functions 1-29
motion init group functions 1-34
motion move group functions 1-35
motion move_sup group functions 1-36
motion que group functions 1-37
motion ratiomov group functions 1-38
motion ref group functions 1-39, 1-40, 1-41
MOVE function 1-21, 2-191
moves

distance 2-95
position 2-237
ratio cam 2-246
ratio gear 2-283
ratio real 2-286
ratio slope 2-261
ratio synchronization 2-273
velocity start 2-493

MUL function 1-6, 2-192
MUX function 1-21, 2-193
mV range 2-29

N

NE function 1-18, 2-194
NEG function 1-6, 2-194
NETCLS function block 1-26, 2-195
NETFRE function block 1-26, 2-195
NETMON function block 1-26, 2-196
NETOPN function block 1-26, 2-197

errors 2-197
NETRCV function block 1-26, 2-199

errors 2-200
NETSND function block 1-26, 2-201

errors 2-202
NETSTA function block 1-26, 2-203
network 1-26

group functions 1-26
status 2-196

NEW_RATE function 1-36, 2-206
NEWRATIO function 1-36, 2-204
NEXNET

function blocks 1-26
NO_OFFST function 1-36, 2-208
noise filter 2-34
NOT function 1-9, 2-207
NUM2STR function 1-15, 2-210
NUM2STR group function 1-15

O

offset
examples 2-314

offset bytes 2-421
OI_COMM A.1 -2
OI_SER A.1 -4
OI_SER function block A.1 -4
OK_ERROR 2-211
OK_ERROR function 1-18
one-shot 2-1
OPC B.1 -6
OPC server B.1 -2
OPC_10 function block B.1 -6
OPC_ENET function block B.1 -2
OPEN function block 1-24, 2-23, 2-212
OPENLOOP function 1-34, 2-214
OR function 1-9, 2-215
origin 2-421
IND-8

P

P_ERRORS function 1-33, 2-238
P_RESET function 1-33, 2-241
part reference 2-216
part reference offset 2-327
PART_CLR function 1-39, 2-216
PART_REF function 1-39, 1-41, 2-217
photo eye 2-360
PID

algorithms 2-223
control 2-218
equations 2-223, 2-225
example network 2-226, 2-231
RAMP 2-245
structure 2-220, 2-228

pid
PWDTY 2-242
TAUFFAC 2-469
TAUFILT 2-470

PID code 2-331
PID command 2-330
PID function block 1-27, 2-219

equation terms 2-223
PID functions/blocks 1-43
PID group function 1-27
PID2 function 1-43
PID2 function block 2-227
PLS 2-55
PLS function 1-36, 2-232
PLS_EDIT function 1-36, 2-236
POSITION function 1-35, 2-237
profile

end repeat 2-367
profile (step)

example 2-453
programming errors

bit locations 2-239, 2-240
define 1-32
hex value 2-239, 2-240

proportional 2-219
control 2-219

PWDTY function 2-242
PWDTY function block 1-43

Q

Q_AVAIL? function 1-37, 2-243

Q_NUMBER function 1-37, 2-244
queue

abort all moves 2-2
and fast input 2-120
available 2-243
number 1-37

R

R_PERCEN function 1-36, 2-374
RAMDISK

read/write 1-24
RAMP function 1-43, 2-245
ratio gear

characteristics 2-284
mechanical representation 2-284

ratio real
characteristics 2-288
structure members 2-44, 2-289

RATIO_GR function 1-38, 2-283
RATIO_RL function 1-38, 2-286
ratiocam

and scaling 2-259
array of structures 2-253
characteristics 2-252
master start position 2-248
profile 2-246
slave start position 2-248

RATIOCAM function 1-38, 2-246
RATIOSCL function 1-36, 2-257
ratioslp

and scaling 2-260
array of structures 2-268
characteristics 2-263
profile 2-269
slope 2-271

RATIOSLP function 1-38, 2-261
ratiosyn

characteristics 2-276
master start position 2-276
mechanical representation 2-274
rollover on position 2-281
slave start position 2-276

RATIOSYN function 1-38, 2-273
READ function block 1-24, 2-295
READ mode 2-212
READ_SV function 1-30, 2-309
IND-9

READ_SV function (see variable servo)
READ_SVF function 1-30, 2-351
READFDBK function 1-27, 2-297, 2-364
READFDBK group function 1-27
REAL2DI function 1-15, 2-352
REAL2DW function 1-15, 2-352
REAL2LR function 1-15, 2-353
REAL2UDI function 1-15, 2-353, 2-354
realconv group functions 1-15
REF_DNE? function 1-39, 2-354
REF_END function 1-39, 2-354
reference

complete 2-354
fast input

define 2-123, 2-170
function 2-123

ladder
end function 2-354
function 2-170

no motion 2-124, 2-171
null setup 2-125, 2-172
part

clear function 2-216
switch setup 2-126

REGIST function 1-36, 2-355
registration

background 2-358
example 2-358
fast input 2-355
good marks 2-363
master 2-361
slave 2-362

remainder 2-190
RENAME function block 1-24, 2-364
REP_END function 1-38, 2-367
REPLACE function 1-42, 2-366
RESMODE function 2-368
RESMODE? function 1-33
resolver

ignore null 2-124, 2-171
RESUME function 1-33, 2-369
RIGHT function 1-42, 2-371
ROL function 1-9, 2-372
ROR function 1-9, 2-373
RS422/485 2-73
RTD

channel read errors 2-20
initialize

channel 2-17
errors (channel) C.1 - 1
module 2-21

temperature range 2-17
RTD functions 1-27
RTDtemp group functions 1-27

S

S_D_D function 1-7
S_DT_DT function 1-7, 2-464
S_DT_T function 1-7, 2-465
S_TOD_T function 1-7, 2-467
S_TOD_TO function 1-7
SC_INIT function block 1-41, 2-375, 2-430
SCA_ACKR function block 1-39, 2-376
SCA_CLOS function block 1-34, 2-377
SCA_CTRL function 1-30, 2-378
SCA_ERST function 1-33
SCA_ERST function block 2-381, 2-382
SCA_PBIT function 1-36
SCA_RCYC function 1-30, 2-384
SCA_RECV function block 1-30, 2-386
SCA_REF function block 1-39, 2-388
SCA_RFIT function 1-39
SCA_SEND function block 1-30, 2-393
SCA_STAT function 1-30, 2-395
SCA_WCYC function 1-30, 2-396
SCR_CONT function 1-41, 2-397
SCR_ERR function block 1-41, 2-398
SCR_PHAS function 1-41, 2-401
SCS_ACKR function block 1-40, 2-402
SCS_CTRL function 1-40, 2-403
SCS_RECV function block 1-40, 2-405
SCS_REF function block 1-40, 2-407
SCS_SEND function block 1-40, 2-409
SCS_STAT function 1-40, 2-411
SCURVE function 1-36, 2-416
SEEK function block 1-24, 2-421
SEL function 1-21, 2-423
SERCOS

function blocks
SC_INIT 2-375, 2-430
SCA_ACKR 2-376
SCA_CLOS 2-377
IND-10

SCA_ERST 2-381, 2-382
SCA_RECV 2-386
SCA_REF 2-388
SCA_SEND 2-393
SCR_ERR 2-398
SCS_ACKR 2-402
SCS_RECV 2-405
SCS_REF 2-407
SCS_SEND 2-409

functions
SCA_CTRL 2-378
SCA_RCYC 2-384
SCA_WCYC 2-396
SCR_CONT 2-397
SCR_PHAS 2-401
SCS_CTRL 2-403
SCS_STAT 2-411

SERCOS command position 2-334
SERCOS errors 2-412
serial communications 2-23
SERR errors 2-415
servo

axes 2-310, 2-315, 2-317, 2-319, 2-321,
2-325, 2-477

Servo Control Variables
background information 2-330

servo iteration command 2-330
execution sequence 2-331

servo PID command
execution sequence 2-331

SERVOCLK function 1-43, 2-424
SHL function 1-9, 2-425
SHR function 1-9, 2-426
SIN function 1-8, 2-427
SINT2BYT function 1-15, 2-427
SINT2DI function 1-15, 2-428
SINT2INT function 1-15, 2-428
SINT2LI function 1-15, 2-429
SINT2USI function 1-15, 2-429
sintconv group functions 1-15
slave delta overflow 2-117
SMCM

moves
interrupt 2-438

SOCKETS group functions 1-28
software limit

lower 2-328
upper 2-327

source identification (SID) 2-197
SQRT function 1-6
STATUS function block 1-24
status servo characteristics 1-30
STATUSSV function 1-30, 2-434
step profile

commands 2-446
control words 2-437

continue profile 2-437
pause profile 2-437
step/direction 2-437

distance command 2-446
pause command 2-450, 2-453
position command 2-446
set acc/dec rate command 2-450, 2-452
set maximum velocity command 2-450
set reference command 2-450, 2-451, 2-

452, 2-453
velocity command 2-447

STEP_CMD function 1-28
STEP_POS function 1-28, 2-456
STEPCNTL function 1-28, 2-436
STEPINIT function 1-28, 2-440

errors 2-440
structure 2-440

stepper group functions 1-28
STEPSTAT function 1-28
STR2D_T function 1-16
STR2NUM function 1-16, 2-458
STR2USI function 1-16, 2-458
strconv group functions 1-16
string

CONCAT 2-72
DELETE 2-88
FIND 2-135
INSERT 2-143
LEFT 2-174
LEN 2-175
MID 2-189
REPLACE 2-366
RESMODE 2-368
RESUME 2-369
RIGHT 2-371
UPR_CASE 2-489
IND-11

string functions 1-42
STRTSERV function 1-34, 2-459

initialize setup data 2-459
SUB function 1-6
SYN_END function 1-38, 2-140, 2-463

T

TAN function 1-8, 2-469
task 2-424
TAUFFAC function 1-43, 2-469
TAUFILT function 1-43, 2-470
TCP client

setup 2-165
TCP server

setup 2-165
terminator 2-73
thermocouple

J type 2-28
range 2-26

K type 2-28
range 2-26

TIM2UDIN function 1-13, 2-470
time

axes 2-310, 2-315, 2-317, 2-319, 2-321,
2-325

TIME2STR function 1-13
timer function blocks 1-43
timers

TOF 2-473
TON 2-474
TP 2-475

timing error
define 1-32
inquiry 2-472

TME_ERR? function 1-33, 2-472
TOD2STR function 1-13
TOF function block 1-43, 2-473
TON function block 1-43, 2-226, 2-474
TP function block 1-43, 2-475
trig group functions 1-8
troubleshooting

block I/O 2-43
TrueView TCS A.1 -4
TUNEREAD function 1-30, 2-476
TUNEWRIT function 1-31, 2-477

U

UDIN2DI function 1-16, 2-480
UDIN2DW function 1-16, 2-480
UDIN2RE function 1-16, 2-481
UDIN2TIM function 1-16, 2-481
UDIN2UI function 1-16
UDIN2ULI function 1-16, 2-482
UDIN2USI function 1-16
udintcnv group functions 1-16
UDP Client

setup 2-166
UDP Server

setup 2-166
UINT2INT function 1-16
UINT2UDI function 1-16
UINT2ULI function 1-16, 2-484
UINT2USI function 1-16
UINT2WO function 1-16
uintconv group functions 1-16
ULIN2LI function 1-17, 2-486
ULIN2LR function 1-17, 2-486
ULIN2LW function 1-17, 2-487
ULIN2UDI function 1-17, 2-487
ULIN2UI function 1-17, 2-488
ULIN2USI function 1-17, 2-488
ulintcnv group functions 1-17
unipolar

example 2-39
range 2-34

UPR_CASE function 1-42, 2-489
user iteration command

execution sequence 2-331
user PID command

execution sequence 2-331
user port 2 1-24, 2-69, 2-73, 2-295, 2-433, 2-

498, A.1 -4
USIN2BYT function 1-17
USIN2SI function 1-17
USIN2STR function 1-17, 2-490
USIN2UDI function 1-17
USIN2UI function 1-17
USIN2ULI function 1-17, 2-492
usintcnv group functions 1-17

V

variable servo
IND-12

actual position 2-310
axis position (software) 2-320
backlash comp 2-323
bad marks 2-312
command

position 2-310
velocity 2-311

current segment number 2-328
fast input

direction 2-317
distance 2-317
position (HW) 2-311
position (SW) 2-319, 2-320

fast queuing 2-322
feedback last 2-311
filter

error 2-310
error limit 2-325
lag 2-326
time constant 2-325

filter time constant 2-325
list 1-30, 1-31
master distance into segment 2-329
master offset

absolute 2-313
filter 2-315
incremental 2-313

move type 2-310
part reference offset 2-327
position

change 2-311, 2-327
error 2-310

reference switch position 2-324
reg/ref position change 2-312
registration switch 2-321
reversal not allowed 2-319
rollover on position 2-312
set user iteration command 2-332, 2-333
slave distance into segment 2-329
slave offset

absolute 2-313
filter 2-315
incremental 2-313

software lower limit 2-328
software upper limit 2-327
synchronized slave start 2-322
TTL feedback 2-323
velocity compensation flag 2-326

variable tune
analog output

offset 2-478
derivative

gain 2-478
feed forward

percent 2-478
integral

gain 2-477
proportional

gain 2-477
velocity

filter
slow 2-478

VEL_END function 1-35, 2-492
VEL_STRT function 1-35, 2-493
velocity end 2-3
VFASTIN function 1-37, 2-494

W

WORD2BYT function 1-18, 2-495
WORD2DW function 1-18, 2-495
WORD2INT function 1-18, 2-496
WORD2LW function 1-18, 2-496
WORD2UI function 1-18, 2-497
wordconv group functions 1-18
WRIT_SVF function 1-31, 2-500
WRITE function block 1-24, 2-498
WRITE mode 2-212
WRITE_SV function 1-31, 2-499

X

xclock
CLOCK 2-68
GETDAY 2-139
SERVOCLK 2-424

Xclock functions 1-43
XOR function 1-9, 2-501
IND-13

NOTES
IND-14

	Table of Contents: Function/Function Block Reference Guide
	CHAPTER 1 PiCPro Function/Blocks Overview
	Introduction
	Arithmetic Category
	ARITH group
	DATETIME group
	TRIG group
	Binary Category
	Counters Category
	Datatype Category
	BOOL2BYT group
	BYTECONV group
	DINTCONV group
	DWORDCNV group
	D_TCONV group
	INTCONV group
	LINTCONV group
	LREALCNV group
	LWORDCNV group
	NUM2STR group
	REALCONV group
	SINTCONV group
	SIZEOF group
	STRCONV group
	UDINTCNV group
	UINTCONV group
	ULINTCNV group
	USINTCNV group
	WORDCONV group
	Evaluate Category
	Fbinter Category
	Filter Category
	I/O Category
	ANLGIN group
	ANLGOUT group
	BAT_OK? group
	BIO_PERF group
	COMM group
	JKTHERM group
	NETWORK group
	PID group
	READFDBK group
	RTDTEMP group
	SOCKETS group
	STEPPER group
	Motion Category
	DATA group
	ERRORS group
	INIT group
	MOVE group
	MOVE_SUP group
	QUE group
	RATIOMOV group
	REF group
	SERC_SLV group
	SERC_SYS group
	String Category
	PID Category
	Timers Category
	Xclock Category

	CHAPTER 2 Function/Block Descriptions
	ABRTALL
	ABRTMOVE
	ABS
	ACC_DEC
	ACC_JERK
	ACOS
	ADD
	AND
	ANLGINIT
	ANLG_OUT
	ARTDCHIT
	ARTDCHRD
	ARTDMDIT
	ASIN
	ASSIGN
	ATAN
	ATMPCHIT
	ATMPCHRD
	ATMPMDIT
	A_DT_T
	A_IN_MMC
	A_INCHIT
	A_INCHRD
	A_INMDIT
	A_TOD_T
	BAT_OK?
	BIO_PERF
	BOOL2BYT
	BTMPCHIT
	BTMPCHRD
	BTMPMGR
	BYT2BOOL
	BYTE2DW
	BYTE2LW
	BYTE2SI
	BYTE2USI
	BYTE2WO
	CAM_OUT
	CAPTINIT
	CAPTSTAT
	CLOCK
	CLOSE
	CLOSLOOP
	CLSLOOP?
	CONCAT
	CONFIG
	COORD2RL
	COS
	CSTOPDEC
	CTD
	CTU
	CTUD
	C_ERRORS
	C_RESET
	C_STOP
	C_STOP?
	DATE2STR
	DELETE
	DELFIL
	DINT2DW
	DINT2INT
	DINT2LI
	DINT2RE
	DINT2SI
	DINT2UDI
	DIRECT
	DISTANCE
	DIV
	DLS_INIT
	DLS_RECV
	DLS_SEND
	DLS_STAT
	DPOSMODE
	DRSETFLT
	DSTRTSRV
	DT2DATE
	DT2STR
	DT2TOD
	DTORQCMD
	DVELCMD
	DWORD2BYT
	DWOR2DI
	DWOR2LW
	DWOR2RE
	DWOR2UDI
	DWOR2WO
	D_TOD2DT
	EQ
	EXIST?
	EXP
	E_ERRORS
	E_RESET
	E_STOP
	E_STOP?
	FAST_QUE
	FAST_REF
	FB_CLS
	FB_OPN
	FB_RCV
	FB_SND
	FB_STA
	FIND
	FRESPACE
	FU2LU
	GE
	GETDAY
	GR_END
	GT
	HOLD
	HOLD_END
	INSERT
	INT2DINT
	INT2LINT
	INT2SINT
	INT2UINT
	INT2WORD
	IN_POS?
	IO_CFG
	IPACCEPT
	IPCLOSE
	IPCONN
	IPHOSTID
	IPIP2NAM
	IPLISTEN
	IPNAM2IP
	IPREAD
	IPRECV
	IPSEND
	IPSOCK
	IPSTAT
	IPWRITE
	LAD_REF
	LE
	LEFT
	LEN
	LIMIT
	LINT2DI
	LINT2INT
	LINT2LR
	LINT2LW
	LINT2SI
	LINT2ULI
	LN
	LOG
	LREA2LI
	LREA2LW
	LREA2RE
	LREA2ULI
	LT
	LU2FU
	LWOR2BYT
	LWOR2DW
	LWOR2LI
	LWOR2LR
	LWOR2ULI
	LWOR2WO
	LWR_CASE
	MAX
	MEASURE
	MID
	MIN
	MOD
	MOVE
	MUL
	MUX
	NE
	NEG
	NETCLS
	NETFRE
	NETMON
	NETOPN
	NETRCV
	NETSND
	NETSTA
	NEWRATIO
	NEW_RATE
	NOT
	NO_OFFST
	NUM2STR
	OK_ERROR
	OPEN
	OPENLOOP
	OR
	PART_CLR
	PART_REF
	PID
	PID2
	PLS
	PLS_EDIT
	POSITION
	P_ERRORS
	P_RESET
	PWDTY
	Q_AVAIL?
	Q_NUMBER
	RAMP
	RATIOCAM
	RATIOSCL
	RATIOSLP
	RATIOSYN
	RATIO_GR
	RATIO_RL
	READ
	READFDBK
	READ_SV
	READ_SVF
	REAL2DI
	REAL2DW
	REAL2LR
	REAL2UDI
	REF_DNE?
	REF_END
	REGIST
	RENAME
	REPLACE
	REP_END
	RESMODE?
	RESUME
	RIGHT
	ROL
	ROR
	R_PERCEN
	SC_INIT
	SCA_ACKR
	SCA_CLOS
	SCA_CTRL
	SCA_ERST
	SCA_PBIT
	SCA_RCYC
	SCA_RECV
	SCA_REF
	SCA_RFIT
	SCA_SEND
	SCA_STAT
	SCA_WCYC
	SCR_CONT
	SCR_ERR
	SCR_PHAS
	SCS_ACKR
	SCS_CTRL
	SCS_RECV
	SCS_REF
	SCS_SEND
	SCS_STAT
	SCURVE
	SEEK
	SEL
	SERVOCLK
	SHL
	SHR
	SIN
	SINT2BYT
	SINT2DI
	SINT2INT
	SINT2LI
	SINT2USI
	SIZEOF
	SQRT
	STATUS
	STATUSSV
	STEPCNTL
	STEPINIT
	STEPSTAT
	STEP_CMD
	STEP_POS
	STR2D_T
	STR2NUM
	STR2USI
	STRTSERV
	SUB
	SYN_END
	S_DT_DT
	S_DT_T
	S_D_D
	S_TOD_T
	S_TOD_TO
	TAN
	TAUFFAC
	TAUFILT
	TIM2UDIN
	TIME2STR
	TME_ERR?
	TOD2STR
	TOF
	TON
	TP
	TUNEREAD
	TUNEWRIT
	UDIN2DI
	UDIN2DW
	UDIN2RE
	UDIN2TIM
	UDIN2UI
	UDIN2ULI
	UDIN2USI
	UINT2INT
	UINT2UDI
	UINT2ULI
	UINT2USI
	UINT2WO
	ULIN2LI
	ULIN2LR
	ULIN2LW
	ULIN2UDI
	ULIN2UI
	ULIN2USI
	UPR_CASE
	USIN2BYT
	USIN2SI
	USIN2STR
	USIN2UDI
	USIN2UI
	USIN2ULI
	VEL_END
	VEL_STRT
	VFASTIN
	WORD2BYT
	WORD2DW
	WORD2INT
	WORD2LW
	WORD2UI
	WRITE
	WRITE_SV
	WRIT_SVF
	XOR

	A.1 - Operator Interface ASFB
	OI_COMM
	OI_SER

	B.1 - OPC Server ASFB
	OPC_ENET
	OPC_10

	C.1 - Temperature Function Errors
	INDEX

