
Motion

Application Specific Function Block Manual

Version 16.1.1
G & L Motion Control Inc.

NOTE

Progress is an on-going commitment at G & L Motion Control Inc. We continually strive to offer the
most advanced products in the industry; therefore, information in this document is subject to change
without notice. The illustrations and specifications are not binding in detail. G & L Motion Control
Inc. shall not be liable for any technical or editorial omissions occurring in this document, nor for any
consequential or incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any G & L Motion Control Inc. product until the use of such product is
completely understood. It is the responsibility of the user to make certain proper operation practices
are understood. G & L Motion Control Inc. products should be used only by qualified personnel and
for the express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service
Department, G & L Motion Control Inc., 672 South Military Road, P.O. Box 1960, Fond du Lac, WI
54936-1960. Telephone us at (800) 558-4808 (within the United States only) or (920) 921–7100 or by
e-mail at glmotion.support@danahermotion.com.

DISCLAIMER: All programs in this release (application demos, application specific function
blocks (ASFB's), etc.), are provided “AS IS, WHERE IS”, WITHOUT ANY WARRANTIES,
EXPRESS OR IMPLIED. There may be technical or editorial omissions in the programs and
their specifications. These programs are provided solely for user application development and
user assumes all responsibility for their use. Programs and their content are subject to change
without notice.

Release 2004

Catalog No. (Order No.) M.1300.7573

Printed Version Part No. M.3000.0416

Electronic Version Part No. M. 3000.0415

© 1993-2007 G & L Motion Control Inc.
IBM is a registered trademark of International Business Machines Corporation.
Windows 95, 98, NT, Microsoft, and MS-DOS are registered trademarks of Microsoft Corporation.
Pentium and PentiumPro are trademarks of Intel Corporation.
ARCNET is a registered trademark of Datapoint.
PiC900, PiCPro, MMC, PiCServoPro, PiCTune, PiCProfile, LDO Merge, PiCMicroTerm and PiC Progrmming Pendant are
trademarks of G & L Motion Control, Inc.

Table of Contents: Motion ASFB Manual

CHAPTER 1-Application Specific Function Block Guidelines 1-1

Installation.. 1-1

Revisions ... 1-1

Network 1 .. 1-2
Network 2 .. 1-2
Network 3 .. 1-3
Network 4 .. 1-3

Using ASFBs... 1-3

CHAPTER 2-Motion ASFBs ... 2-1

ADDCKSUM... 2-6
BYTE2HEX... 2-6
CHKCKSUM... 2-7
DWOR2HEX ... 2-7
HEX2BYTE... 2-8
HEX2DWOR ... 2-9
HEX2WORD ... 2-9
M_C2M_1.. 2-10
M_CHK1 ... 2-37
M_CHK101 ... 2-38
M_CHK109 ... 2-39
M_CHK49 ... 2-40
M_CHK57 ... 2-41
M_CHK65 ... 2-42
M_CHK73 ... 2-43
M_CHK9 ... 2-44
M_CHKALL.. 2-45
M_CHOME ... 2-47
M_CLOS1.. 2-50
M_CLOS9.. 2-52
M_CLS101... 2-54
M_CLS109... 2-56
M_CLSALL... 2-58
M_CRSFIN.. 2-60
M_DATCAP.. 2-62
M_DATCPT .. 2-66
M_DISMV1 ... 2-70
M_DNJOGC .. 2-72
M_DNPOSC .. 2-74
M_DNSTAT .. 2-76
M_DSMCOM .. 2-78

RS232 Connections.. 2-82
RS422/RS485 Connections.. 2-82
TOC-1

M_DW2BOO... 2-83
M_ERROR... 2-85
M_FHOME.. 2-86
M_INCPTR.. 2-88
M_INDEX ... 2-89
M_JOG... 2-137
M_LHOME.. 2-138
M_LINCIR... 2-141
M_POSMV1 .. 2-145
M_PRTCAM ... 2-147
M_PRTREL ... 2-149
M_PRTSLP.. 2-151
M_RATREL .. 2-153
M_RATSLP ... 2-154
M_RDTUNE.. 2-156
M_REGMOV... 2-157
M_RGSTAT .. 2-161
M_RSET49 .. 2-163
M_RSET57 .. 2-164
M_RSET65 .. 2-165
M_RSET73 .. 2-166
M_SACC ... 2-167
M_SCRVLC .. 2-169
M_SRCMON ... 2-175
M_SRCPRC... 2-177
M_SRCRDL .. 2-179
M_SRCWT .. 2-181
M_SRCWTL.. 2-183

ERR Output.. 2-184
SERR Output ... 2-187
BSER Output ... 2-188

M_STATUS... 2-189
M_SUPMV .. 2-191
M_WTTUNE ... 2-193
M_XL2CM .. 2-195
S_CLOS1 ... 2-198
S_CLOS9 ... 2-200
S_CLS101.. 2-203
S_CLS109.. 2-206
S_ERRORC ... 2-209
S_FHOME ... 2-212
S_IO_C .. 2-215
S_LHOME ... 2-217
SD_AXIS ... 2-220
SD_IO .. 2-234
SD_STAT .. 2-236
TOC-2

SD_STAT1 .. 2-244
WORD2HEX ... 2-251

APPENDIX A-M_DSMCOM Commands .. A-1

Exception Responses ... A-1
Host Command Set .. A-2
Common Product Line Commands ... A-3
General Commands .. A-4
Position Loop Commands ... A-5
Velocity Loop Commands .. A-6
Torque Current Conditioning Commands ... A-7
Motor Commands .. A-8
Motor Commands (Continued) .. A-9
Motor Commands (Continued) .. A-10
Digital I/O Commands ... A-11
Analog I/O Commands .. A-12
Analog I/O Commands (Continued).. A-13
Serial Port Commands .. A-14
Operating Mode Commands .. A-15
Operating Mode Commands (Continued).. A-16
Alternative Operating Mode Commands ... A-17
Alternative Operating Mode Commands (Continued)............................. A-18
Runtime Command and Control Commands .. A-19
Runtime Status Commands .. A-20
Runtime Status Commands (Continued) ... A-21
Runtime Data Commands ... A-22
Runtime Data Commands (Continued).. A-23
Runtime Data Collection Commands .. A-24
Runtime Data Collection Commands (Continued) A-25

APPENDIX B-Press Transfer ASFBs .. B-1

Introduction.. B-1
M_PRF2MV .. B-6
M_PRF1MV .. B-17
M_PRFERR ... B-18
M_PROFL ... B-20
M_PRFDWL.. B-22
M_SETVAJ ... B-23
M_SC_ACC... B-25
M_CNST_V... B-26
M_SC_DEC ... B-27

APPENDIX C-Contents of the Applications CD C-1

APPENDIX D-Standalone MMC Examples.. D-1

Descriptions of the Standalone MMC Examples .. D-1

Basic Application Examples D-1
TOC-3

Operator Interface Application Examples D-2
SERCOS Drive Interface Application Example D-3
Press Transfer Application Example D-3
Stepper Application Example D-4
Centurion DeviceNet Positioning MicroDSM Drive Application Example D-4

Starting a New MMC Application from a Standalone MMC Example D-4

APPENDIX E-Digital Smart Drive Examples .. E-1

APPENDIX F-Servo Setup Assistant .. F-1

-Index ... Index-1
TOC-4

CHAPTER 1 Application Specific Function Block
Guidelines

Installation

The following guidelines are recommended ways of working with Application
Specific Function Blocks (i.e. ASFBs) from Danaher Motion.

The Applications CD includes the ASFB package as follows:

• .LIB file(s) containing the ASFB(s)

• source .LDO(s) from which the ASFB(s) was made

• example LDO(s) with the ASFB(s) incorporated into the ladder
which you can then use to begin programming from or merge with
an existing application ladder

When you install the Applications CD, the ASFB paths default to:

C:\G&L Motion Control Data\Applications vxx.x.r\ASFB

and

C:\G&L Motion Control Data\Applications vxx.x.r\Examples

where vxx.x is the PiCPro version number that these ASFBs and examples were built under. The .r
is the revision number of the Application software itself.

The .LIB files and source .LDO files are put in the ASFB subdirectory. The exam-
ple .LDO files are put in the Examples subdirectory.

Revisions

The first four networks of each ASFB source ladder provide the following infor-
mation:
 1-1

Network 1

The first network just informs you that the ASFB is provided to assist your
application development.

Network 2

The second network is used to keep a revision history of the ASFB. Revisions can
be made by Danaher Motion personnel or by you.

The network identifies the ASFB, lists the requirements for using this ASFB, the
name of the library the ASFB is stored in, and the revision history.

The revision history includes the date, ASFB version (see below), the version of
PiCPro used while making the ASFB, and comments about what the revision
involved.

When an ASFB is revised, the number of the first input (EN_ _ or
RQ_ _) to the function block is changed in the software declarations table. The
range of numbers available for Danaher Motion personnel is 00 to 49. The range
of numbers available for you is 50 to 99. See chart below.

Revision Danaher Motion
revisions

User
revisions

1st EN00 EN50
2nd EN01 EN51

. . .

. . .

. . .
50th EN49 EN99
 1-2

Network 3

The third network describes what you should do if you want to make a revision to
the ASFB.

Network 4

The fourth network describes the ASFB and defines all the inputs and outputs to
the function block.

Using ASFBs

When you are ready to use the ASFB in your application, there are several
approaches you can take as shown below.

• Create a new application LDO starting with the example LDO for the
ASFB package. The advantage is that the software declarations table for
the ASFB has been entered for you.

• If you already have an application LDO, copy and paste the example LDO
into yours. The software declaration tables for both LDOs will also merge.
 1-3

NOTES
 1-4

CHAPTER 2 Motion ASFBs
The motion support function blocks are contained in the libraries as shown. They
are used to aid in the application of servo and digitizing axes. Included with these
library files are other example LDO files as listed. The motion support function
blocks are described in alphabetical order.

The SERCOS motion function blocks are also shown. They are used to aid in the
application of SERCOS servo and digitizing axes. Their names start with S_.
They are written to replace the corresponding M_ motion function block, when the
axes use SERCOS control rather than analog control.

Library
Function
Block Description

M_C2M_1
M_C2M_1 Translates a M and G code format ASCII file into servo

motion.
M_COMMON

BYTE2HEX Places the data type byte into hexadecimal notation.
DWOR2HEX Places the data type double word into hexadecimal notation.
HEX2BYTE Places the hexadecimal notation into a byte.
HEX2DWOR Places the hexadecimal notation into a double word.
HEX2WORD Places the hexadecimal notation into a word.
M_DW2BOO Places the data type double word into 32 booleans
WORD2HEX Places the data type from word into hexadecimal notation.

M_DATA
M_DATCAP Captures axis information on an interrupt basis.
M_DATCPT Captures axis information on an interrupt basis to printable

text file
M_ERROR Returns E-stop, C-stop, and programming errors for a servo

axis or E-stop errors for a digitizing axis.
M_INCPTR Increment buffer pointers for M_DATCPT (not used in your

LDO).
M_PRTCAM Creates a text file for the CAM input of RATIOCAM.
M_PRTREL Creates a text file for the REAL input of RATIO_RL.
M_PRTSLP Creates a text file for the SLOPE input of RATIOSLP.
M_RATREL Calculates ending ratio and slope for use in ratio real profile.
M_RATSLP Calculates ending ratio and slope for use in ratio slope pro-

file.
M_RDTUNE Reads tuning parameters for a closed loop axis.
M_RGSTAT Returns registration information for a closed loop or digitiz-

ing axis.
 2-1

M_STATUS Returns status information (for example, position and fol-
lowing error) for a closed loop, time, or digitizing axis.

M_WTTUNE Changes tuning parameters on a closed loop axis

M_DEVNET
M_DNJOGC Jogs a Centurion DeviceNet drive axis
M_DNPOSC Moves a Centurion DeviceNet drive to a position

(either absolute or incremental)
M_DNSTAT Obtains the DeviceNet module status

M_DRVCOM
ADDCKSUM Support routine for M_DSMCOM. (Not used in your LDO.)
CHKCKSUM Support routine for M_DSMCOM. (Not used in your LDO.)
M_DSCOM Allows interfacing between the PiC and one or more

Centurion DS100/200 servo drives.
M_INDEX

INDXFILE Support routine for INDXFILE. (Not used in your LDO.)
M_INDEX Single axis indexer / motion sequencer

M_INIT
M_CHK1 Checks to see which servo axes (1 to 8) have been

initialized.
M_CHK101 Checks to see which servo axes 101 to 108 (17 to 24) have

been initialized.
M_CHK109 Checks to see which servo axes 109 to 116 (25 to 32) have

been initialized.
M_CHK49 Checks to see which digitizing axes (49 to 56) have been

initialized.
M_CHK57 Checks to see which digitizing axes (57 to 64) have been

initialized.
M_CHK65 Checks to see which digitizing axes (65 to 72) have been

initialized.
M_CHK73 Checks to see which digitizing axes (73 to 80) have been

initialized.
M_CHK9 Checks to see which servo axes (9 to 16) have been

initialized.
M_CHKALL Checks to see which servo axes (1 to 132) have been initial-

ized.
M_CLOS1 Closes the loop on servo axes 1 to 8.
M_CLOS9 Closes the loop on servo axes 9 to 16.
M_CLS101 Closes the loop on servo axes 101 to 108 (17 to 24).
M_CLS109 Closes the loop on servo axes 109 to 116 (25 to 32).
M_CLSALL Closes the loop on servo axes 1 to 132.
M_RSET49 Resets E-stop errors on digitizing axes 49 to 56.
 2-2

M_RSET57 Resets E-stop errors on digitizing axes 57 to 64.
M_RSET65 Resets E-stop errors on digitizing axes 65 to 72.
M_RSET73 Resets E-stop errors on digitizing axes 73 to 80.

M_MOVE
M_DISMV1 Performs and monitors distance moves.
M_JOG Jogs a closed loop axis.
M_LINCIR Performs linear, circular, and simultaneous endpoint arrival

moves on closed loop axes.
M_POSMV1 Performs and monitors position moves.
M_REGMOV Performs an incremental distance / registration move.
M_SACC Calculates the ACC and JERK values to be used with the

ACC_JERK function.
M_SCRVLC Provides the interface from the application .LDO to the

RATIO_RL function in order to perform linear coordinated,
circular, or third axis departure (simultaneous endpoint
arrival) moves with S-curve acceleration and deceleration.

M_SUPMV Add move to geared axis.
M_PROFL

M_CNST_V Constant velocity segment.
M_PRF1MV One slave move for master.
M_PRF2MV Two slave moves for master
M_PRFDWL Slave dwell in profile.
M_PRFERR Check for profile errors.
M_PROFL Make profile for 1 move
M_SC_ACC Acceleration segment.
M_SC_DEC Deceleration segment
M_SETVAJ Set velocity, acceleration, and jerk values.

M_REF
M_CHOME Performs a reference cycle on an axis using a hard mechani-

cal stop as a location sense.
M_CRSFIN Implements coarse, medium and fine resolvers.
M_FHOME Performs a home cycle on a closed loop axis using the fast

input as the reference switch.
M_LHOME Performs a home cycle on a closed loop axis using a discrete

input as the reference switch.
M_SERCOS

M_SRCMON Monitors up to five SERCOS IDNs.
M_SRCPRC Executes a SERCOS procedure command function.
M_SRCRDL Reads a list of SERCOS IDNs.
M_SRCWT Writes and reads up to five SERCOS IDNs.
M_SRCWTL Writes a list of SERCOS IDNs.
 2-3

M_XL2CM
M_XL2CM Converts an ASCII CSV file in the correct format to a data

structure that can be called directly by RATIOCAM,
RATIOSLP or RATIO_RL.

S_ASFB
S_CLOS1 Closes the loop on SERCOS servo axes 1 to 8 (to replace

M_CLOS1)
S_CLOS9 Closes the loop on SERCOS servo axes 9 to 16 (to replace

M_CLOS9)
S_ERRORC Returns e-stop, c-stop, and programming errors for a SER-

COS servo axis or e-stop errors for a SERCOS digitizing
axis; SERCOS ring and slave errors are also returned (to
replace M_ERROR for SERCOS axis).

S_FHOME Performs a home cycle on a SERCOS servo axis using the
fast input as the reference switch (to replace M_FHOME for
SERCOS axis)

S_IO_C Allows control of the discrete I/O for a SERCOS servo axis
with a Centurion drive.

S_LHOME Performs a home cycle on a SERCOS servo axis using a dis-
crete input as the reference switch (to replace M_LHOME
for SERCOS axis)

SD_AXIS
SD_AXIS Performs MMC Digital Smart Drive axis and drive status,

loop control, home and jog functions.
SD_DATA

SD_IO Reads the current values of the analog and DC inputs and
reads/writes the outputs for the MMC Digital Smart Drive.

SD_STAT Provides status and fault information using the READ_SV
variables and other common Motion functions for an MMC
Digital Servo Axis.

SD_STAT1
SD_STAT1 Provides status and fault information using the READ_SV

variables and other common Motion functions for an MMC
Digital Servo Axis.
 2-4

Example LDOs

The following example LDOs are included:

M_CAMREL An example .LDO that uses the M_RATREL function block
to convert a RATIOCAM profile to a
RATIO_RL profile.

M_CAMSLP An example .LDO that uses the M_RATSLP function block
to convert a RATIOCAM profile to a RATIO-
SLP profile. The M_PRTSLP function block is
then used to print the RATIOSLP profile.

M_CAPTUR An example .LDO that shows how to use the M_DATCAP
function block.

M_COORD An example .LDO that uses the M_LINCIR function block
to perform linear and circular coordinated moves
on a pair of axes.

M_DSM_EX An example .LDO that uses the M_DSMCOM function
block to communicate with Centurion drives
through a serial communications board in rack 0,
slot 10, channel 2.

M_EXAMPL An example .LDO that shows how to use the M_CHK1,
M_CHK49, M_CLOS1, M_CRSFIN,
M_ERROR, M_FHOME, M_JOG, M_LHOME,
M_RGSTAT, M_RSET49, and M_STATUS
function blocks.

M_PRF_EX An example .LDO that shows how to use the M_PRF2MV
function block to configure a slave profile for a
RATIO_RL move.

M_TUNE An example .LDO that shows how to use the M_RDTUNE
and M_WTTUNE function blocks.

MMC_DND An example .LDO that controls a Centurion DeviceNet
drive axis. The axis is homed, jogged or moved
to a position
(either an absolute position or a relative dis-
tance).
 2-5

ADDCKSUM
Add checksum to string USER/M_DRVCOM

ADDCKSUM(EN := <<BOOL>>, OK => <<BOOL>>);

This function block appends the one-byte checksum to the end of an input
string.This is a support routine and is not used in your LDO.

BYTE2HEX
Converts a byte to a hex value USER/M_COMMON

<<INSTANCE NAME>>:BYTE2HEX(EN := <<BOOL>>, BYTE :=
<<BYTE>>, STRG := <<STRING>>, OK => <<BOOL>>);

This function block places the hexadecimal notation of the value at BYTE into
the string at STRG.

Example: If 27 is entered at the BYTE input, 1B will be reported at STRG.

⁄ƒƒ NAME ƒø
≥ADDCKSUM ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥STRG ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STRG(STRING) - input string

Outputs: OK (BOOL) - execution complete

⁄ƒƒ NAME ƒø
≥BYTE2HEX ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥BYTE ≥
≥ ≥
¥STRG ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

BYTE (BYTE) - value to convert

STRG(STRING) - converted value

Outputs: OK (BOOL) - execution complete

 2-6

CHKCKSUM
Check checksum in string USER/M_DRVCOM

CHKCKSUM(EN := <<BOOL>>, STRG := <<STRING>>, OK => <<BOOL>>,
OUT => <<BOOL>>);

This function block checks the checksum in an input string. This is a support rou-
tine and is not used in your LDO.

DWOR2HEX
Converts a double word to a hex value USER/M_COMMON

<<INSTANCE NAME>>:DWOR2HEX(EN := <<BOOL>>, DWOR :=
<<DWORD>>, STRG := <<STRING>>, OK => <<BOOL>>);

This function block places the hexadecimal notation of the value at DWOR into
the string at STRG.

Example: If 845,621 is entered at the DWOR input, CE735 will be reported at
STRG.

⁄ƒƒ NAME ƒø
≥CHKCKSUM ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥STRG OUT√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STRG(STRING) - input string to check

Outputs: OK (BOOL) - execution complete

 OUT (BOOL) - checksum OK output

⁄ƒƒ NAME ƒø
≥DWOR2HEX ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥DWOR √ƒ
≥ ≥
¥STRG ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

DWOR (DWORD) - value to convert

STRG (STRING) - converted value

Outputs: OK (BOOL) - execution complete
 2-7

HEX2BYTE
Converts a hex value to a byte USER/M_COMMON

<<INSTANCE NAME>>:HEX2BYTE(EN := <<BOOL>>, STRG :=
<<STRING>>, OK => <<BOOL>>, BYTE => <<BYTE>);

This function block places the hexadecimal notation of the string at STRG into the
output at BYTE.

Example: If 1B is entered at the STRG input, 27 will be reported at the BYTE
output.

⁄ƒƒ NAME ƒø
≥HEX2BYTE ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥STRG BYTE√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STRG (STRING) - hexadecimal value to convert

Outputs: OK (BOOL) - execution complete

BYTE (BYTE) - converted value
 2-8

HEX2DWOR
Converts a hex value to a double word USER/M_COMMON

<<INSTANCE NAME>>:HEX2DWOR(EN := <<BOOL>>, STRG :=
<<STRING>>, OK => <<BOOL>>, DWOR => <<DWORD>);

This function block places the hexadecimal notation at STRG into the output at
DWOR.

Example: If CE735 is entered at the STRG input, 845,621 will be reported at the
DWOR output.

HEX2WORD
Converts a hex value to a word USER/M_COMMON

<<INSTANCE NAME>>:HEX2WORD(EN := <<BOOL>>, STRG :=
<<STRING>>, OK => <<BOOL>>, WORD => <<WORD>);

This function block places the hexidecimal notation at STRG into the output at
WORD.

Example: If 26,854 is entered at the STRG input, 68E6 will be reported at the
WORD output.

⁄ƒƒ NAME ƒø
≥HEX2DWOR ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥STRG DWOR√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STRG (STRING) - hexadecimal value to convert

Outputs: OK (BOOL) - execution complete

DWOR (DWORD) - converted value

⁄ƒƒ NAME ƒø
≥HEX2WORD ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥STRG WORD√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STRG (STRING) - hexadecimal value to convert

Outputs: OK (BOOL) - execution complete

WORD (WORD) - converted value
 2-9

M_C2M_1
Translates M and G ASCII file to servo motion USER/M_C2M_1

⁄ƒƒ NAME ƒø
≥ M_C2M_1 ≥
≥ ≥
¥EN01 DONE√ƒ
≥ ≥
¥FNAM FAIL√ƒ
≥ ≥
¥STRT ACTV√ƒ
≥ ≥
¥CONT MDID√ƒ
≥ ≥
¥SNGL FERR√ƒ
≥ ≥
¥EXEC PERR√ƒ
≥ ≥
¥MDIM MERR√ƒ
≥ ≥
¥MDIS LINE√ƒ
≥ ≥
¥ABRT LACT√ƒ
≥ ≥
¥SETP ≥
≥ ≥
¥I ≥
≥ ≥
¥O ≥
≥ ≥
¥VLIN ≥
≥ ≥
¥DATA ≥
≥ ≥
¥OVRD ≥
¿ƒƒƒƒƒƒƒƒƒƒŸ

Inputs: E: EN01 (BOOL) - enables execution
FNAM (STRING[32]) - filename string (name of program to be
executed).
STRT (BOOL)) - pulsed to start program execution
CONT (BOOL) - energized to repeat program execution contin-
uously
SNGL (BOOL) - energized to enter single step mode
EXEC (BOOL) - pulsed to execute next instruction in single step
mode
MDIM (BOOL) - energize to select Manual Data Input mode
MDIS (STRING[130]) - manual data input string
ABRT (BOOL) - pulse to abort program execution
SETP (STRUCT) - defines the operation of this application of
M_C2M_1
I (STRUCT) - user Input structure
O (STRUCT) - user Output structure
VLIN (STRING[64]) - string that shows the current program
line being executed.
DATA- (STRUCT) - modal data structure

OVRD (USINT) - Path feedrate override

Outputs: DONE (BOOL) - initialization completed without
error or was aborted by an ABRT request
FAIL (BOOL) - indicates that an error occurred while trying to
execute the program
ACTV (BOOL) - active indicates that program execution is in
progress
MDID(BOOL) -Manual Data Input mode done
FERR (INT) - indicates file read error
PERR (INT) - indicates program error
MERR (INT) - indicates motion error
LINE (DINT) – line number

LACT (BOOL) – line active
 2-10

<<INSTANCE NAME>>:M_C2M_1(EN01 := <<BOOL>>, FNAM :=
<<STRING[32]>>, STRT := <<BOOL>>, CONT := <<BOOL>>, SNGL :=
<<BOOL>>, EXEC := <<BOOL>>, MDIM := <<BOOL>>, MDIS :=
<< STRING[130]>>, ABRT := <<BOOL>>, SETP := <<STRUCT>>,
I := << STRUCT >>, O := << STRUCT >>, VLIN := <<STRING[64]>>, DATA
:= << STRUCT >>, OVRD := <<USINT>>, DONE => <<BOOL>>, FAIL =>
<<BOOL>>, ACTV => <<BOOL>>, MDID => <<BOOL>>, FERR =>
<<INT>>, PERR => <<INT>>, MERR => <<INT>>, LINE => <<DINT>>,
LACT => <<BOOL>>);

M_C2M_1, the Cad2Motion ASFB translates an M and G code format ASCII file
into servo motion. Many applications require description of their motion path
using CAD software. Third party packages (such as Gcode2000) will convert the
CAD package DXFoutput to M and G code text files. M_C2M_1 will translate the
M and G code file to servomotion. Applications include glue laying and textile cut-
ting, to name a few. This ASFB is not intended for application to metal cutting
machine tools such as lathes and mills and as such does not support features
required by CNC applications such as cutter radius compensation, tool offsets and
constant surface speed.
 2-11

M_C2M_1 G Code Instruction Summary

Code Type Use Description

% Start of Program All characters before the % are ignored

/ Start/End Comment After first / is encountered all code is
ignored until another / encountered or the
end of the program

N Line Number For reference only, ignored

X X Command X axis endpoint (G90) or incremental dis-
tance (G91)

Y Y Command Y axis endpoint (G90) or incremental dis-
tance (G91)

Z Z Command Z axis endpoint (G90) or incremental dis-
tance (G91)

W W Command W axis endpoint (G90) or incremental
distance (G91)

A A Command A axis endpoint (G90) or incremental dis-
tance (G91)

B B Command B axis endpoint (G90) or incremental dis-
tance (G91)

I X Center Point Incremental distance from starting posi-
tion to X Center point

J Y Center Point Incremental distance from starting posi-
tion to Y Center point

K Z Center Point Incremental distance from starting posi-
tion to Z Center point

F Modal Rate Path velocity for G01, G02, G03, time for
G04. Reset to 0 by abort or M30 end of
program when not continuous

L Modal Rate Value for use by application program to
specify use logic seqeunce to execute

S Modal Rate Rate value for use by application pro-
gram, reset to 0 by abort or end of pro-
gram when not continuous
 2-12

G00

Modal

Group

Rapid Move all axes at default Rapid rate to
position/increment,

G00 is default

G01 Linear Move all axes linearly at programmed
rate to position/increment

G02 Circular Clockwise Move all axes linearly at programmed
rate to position/increment

G03 Circular Counter-
clockwise

Move all axes linearly at programmed
rate to position/increment

G04 Dwell Wait length of time specified by F

G09 Decel-to-zero Wait until all axes are in position with no
move queued

G17

Modal

Group

XY Plane XY Plane Select, G17 is default, Z, W, A,
B departure

G18 XZ Plane XZ Plane Select, Y, W, A, B departure

G19 YZ Plane YZ Plane Select, X, W, A, B departure

G90

Modal

Group

Absolute Select Absolute positioning mode, G90 is
default

G91 Incremental Select Incremental positioning mode

G92 Assign Dimension Assign dimension specfied to X, Y, Z, W,
and B data to the respective axis current
position
 2-13

M_C2M_1 M Code Instruction Summary

Code Type Use Description

M03

Modal

Start Cut Set M03 indicator for use by user appli-
cation

M05 Stop Cut Reset M03 indicator for use by user
application

M30 End Program Stop executing program, reset all modal
data flags to default

M10x

Modal

Turn On Output Turn on user output 1 to 9, all outputs
cleared by abort or end of program when
not continuous

M20x Turn Off Output Turn off user output 1 to 9

M50x Wait for Input On Wait until specified input (x = 1 to 9) is
on

M10x and M20x instructions pro-
grammed in the same line as motion
(G00..G03) will cause the specified out-
put to turn on/off when the queued move
becomes active

M60x Wait for Input Off Wait until specified input (x = 1 to 9) is
off

M50x and M60x instructions pro-
grammed in the same line as motion
(G00..G03) will cause the queuing of the
specified move to be delayed until the
wait for on/off states are satisfied

M70x Wait for Input On at
end of instruction

At end of instruction, wait until specified
input (x = 1 to 9) is on. After all other
operations programmed in the instruction
have been executed begin waiting until
the specified input is On.
 2-14

M_C2M_1 Instruction Descriptions

Code Type Use Description
% Start of Program All characters before the % are ignored
All information in all program lines is ignored until a “%”, Start of Program, is encoun-
tered. This allows a detailed description of the program at its beginning. All subsequent
“%” characters are ignored and have no effect.

Optionally, the name of the application can be specified in SETP.Application_Name.
When this string is not null, the comment field immediately after the % must be the same
string, e.g. %.Saw_Type_1/. If SETP.Application_Name is a null then this check is not
performed. If it is specified and the name does not match, PERR is set to 7016 and FAIL
is set.

Code Type Use Description
/ Start/End Comment After first / is encountered all code is

ignored until another / encountered or the
end of the program

All information after the first “/” slash character is encountered is ignored until a second
“/” character or the end of the program file is found. The second “/” may be programmed
in the same program line or later in the program. A single line can contain multiple sec-
tions which surrounded by slashes and ignored. In the line “N1000 /M101/ M201 G90 /
M501/” the M101 and M501 commands would both be ignored.
 2-15

Code Type Use Description
N Line Number For reference only, ignored
The N data word is used by the programmer as a reference point to determine which line
is being processed. It is not used in any way and is ignored.

Code Type Use Description
X X Command X axis endpoint (G90) or incremental dis-

tance (G91)
Y Y Command Y axis endpoint (G90) or incremental dis-

tance (G91)
Z Z Command Z axis endpoint (G90) or incremental dis-

tance (G91)
W W Command W axis endpoint (G90) or incremental dis-

tance (G91)
A A Command A axis endpoint (G90) or incremental dis-

tance (G91)
B B Command B axis endpoint (G90) or incremental dis-

tance (G91)
Including X,Y, Z, W, A, or B endpoints/distances indicates that the specified axes should
be moved according to the modal move mode (G00 to G03) and modal plane select (G17
to G19). Examples of valid X,Y,Z data format include: “X1”, “X0”, “X-1.23”, “X.001”.

For more detail see the Instruction Execution section below.

Code Type Use Description
I X Center point Incremental distance from starting posi-

tion to X Center point
J Y Center point Incremental distance from starting posi-

tion to Y Center point
K Z Center point Incremental distance from starting posi-

tion to Z Center point
When circular clockwise (G02) or circular counterclockwise (G03) modal move type is
active the circle centerpoints must be specified by I and J when the modal XY plane
(G17) is active, or J and K when the modal XZ plane (G18) is active, or I and K when the
modal XZ plane (G19) is selected. Circle centerpoints must always be programmed as
incremental distances from the circle starting position to the circle centerpoint, indepen-
dent of whether the G90 absolute or G91 incremental positioning mode is active.
 2-16

Code Type Use Description
F Modal Rate Path velocity for G01, G02, G03, time for

G04. Reset to 0 by abort or M30 end of
program when not continuous

The F data word specifies the path feedrate for G01 linear and G02/G03 circular moves.
It is modal and does not need to be specified again until a new value is required. It will
be reset to zero if a fault or abort occurs or if an M30 end of program occurs and continu-
ous program repeat mode is not selected.

The F data word specifies the delay in seconds when specified with a G04 dwell instruc-
tion. To select a one-half second delay “G04 F0.5” would be programmed.

Code Type Use Description
S Modal Rate Rate value for use by application pro-

gram, reset to 0 by abort or end of pro-
gram

The value specified by S is presented to the user application by the output SDAT of the
M_C2M_1 ASFB. Typically it is used for rate control. It is modal and its value will not
change until another occurrence of S. It will be cleared to 0 if an error occurs, after M30
end of program when not in continuous mode or when program execution is aborted.

Code Type Use Description
G00

Modal
Group

Rapid Move all axes at default Rapid rate to
position/increment,

G00 is default
G01 Linear Move all axes linearly at programmed rate

to position/increment
G02 Circular Clockwise Move all axes linearly at programmed rate

to position/increment
G03 Circular

Counterclockwise
Move all axes linearly at programmed rate
to position/increment

G00, G01, G02 and G03 are the modal path positioning group. G00 is the default mode.
Once selected the position type does not need to be specified again until you wish to
change it. It will be reset to G00 if an error occurs, after M30 end of program when not in
continuous mode or when program execution is aborted.
 2-17

Code Type Use Description
G04 Dwell Wait length of time specified by F
The F data word specifies the delay in seconds when specified with a G04 dwell instruc-
tion. To select a one-half second delay “G04 F0.5” would be programmed.

The time delay begins immediately unless a Wait for Input (M50x/M60x) is programmed
in the same line, in which case the delay begins after the Wait condition is satisfied.

Code Type Use Description
G09 Decel-to-zero Wait until all axes are in position with no

move queued
Stalls execution until all axes are within the in position bandwidth specified by servo
setup and no moves are queued. If programmed in a line with motion the G09 begins after
the motion has been queued.

Code Type Use Description
G17 Modal

Group
XY Plane XY Plane Select, G17 is default, Z, W, A,

B departure
G18 XZ Plane XZ Plane Select, Y, W, A, B departure
G19 YZ Plane YZ Plane Select, X, W, A, B departure
G17, G18 and G19 are the modal plane select group. G17 is the default mode. Once
selected the plane does not need to be selected again until you wish to change it. It will
be reset to G17 if an error occurs, after M30 end of program when not in continuous
mode or when program execution is aborted. The plane specified is the plane which axes
can be moved using G02 circular clockwise and G03 circular counterclockwise moves. If
endpoints are specified for the departure axes and G02 or G03 is performed, the departure
axis will arrive at their programmed endpoints at the same time as the circular interpola-
tion axes.
 2-18

Code Type Use Description
G90 Modal

Group
Absolute Select Absolute positioning mode, G90 is

default
G91 Incremental Select Incremental positioning mode

G90 and G91 select absolute or incremental position mode. G90 is the default mode.
Once selected, the positioning mode does not need to be specified again until you wish to
change it. It will be reset to G90 if an error occurs, after M30 end of program when not in
continuous mode or when program execution is aborted.

Code Type Use Description
G92 Assign Dimension Assign dimension specified to X, Y, Z, W,

A and B data to the respective axis current
position

G92 will wait for all axes to decel-to-zero an be in-position and then will assign the value
programmed in the X, Y, Z, W, A and B data words to be the current position for each
respective axes.

Code Type Use Description
M03

Modal

Start Cut Set M03 indicator for use by user applica-
tion

M04 Spindle CCW Set Data.M04, reset Data.M03 for use by
user application

M05 Stop Cut Reset M03 indicator for use by user appli-
cation

M03, M04 and M05 are the modal start/stop indicators. M05 is the default mode. Once
selected the start/stop mode does not need to be specified again until you wish to change
it. It will be reset to M05 if an error occurs, after M30 end of program when not in con-
tinuous mode or when program execution is aborted. Programming an M03/M04 in a line
without motion will cause the M03 output of the M_C2M_1 ASFB to energize immedi-
ately. Programming an M03/M04 in a line with motion will cause the M03/M04 output of
the M_C2M_1 ASFB to energize when the move becomes active. Programming an M05
in a line without motion will cause the M03/M04 indicator to de-energize immediately.
Programming an M05 in a line with motion will cause the M03/M04 indicator to de-ener-
gize when the move becomes active.
 2-19

Code Type Use Description
M30 End Program Stop executing program, reset all modal

data flags to default
M30 indicates the end of the program. When a line contains M30 all instructions in the
line will execute, the equivalent of a G09 decel to zero will execute and then the file will
be closed. If the CONT, continuous mode input to M_C2M_1 is energized the program
file will be opened and executed again. If CONT is not energized then all modal data will
be reset, all User Outputs will be de-energized (O.O1 to O.O9), the program file will be
closed and the DONE output of M_C2M_1 will be energized indicating the program has
finished executing. All lines following a line with M30 are ignored.

Code Type Use Description
M10x

Modal

Turn On Output Turn on user output 1 to 9, all outputs
cleared by abort or end of program when
not continuous

M20x Turn Off Output Turn off user output 1 to 9. M10x and
M20x instructions programmed in the
same line as motion (G00..G03) will
cause the specified output to turn on/off
when the queued move becomes active

M10x and M20x are the modal user output control group. M20x, outputs off, is the
default state. Once selected the output state is maintained and does not need to be speci-
fied again until you wish to change it. It will be reset to M20x, outputs off, after M30 end
of program when not in continuous mode or when program execution is aborted. If an
M10x, Turn On, or an M20x, Turn Off, is specified in a line without motion it will take
effect immediately. If specified in a line with motion, it will take effect when the move
becomes active. Multiple M10x's and M20x's may be programmed in a single line. Out-
puts 1 to 9 are presented to the user application via the O input of M_C2M_1.

Code Type Use Description
M50x Wait for Input On Wait until specified input (x = 1 to 9) is on
M60x Wait for Input Off Wait until specified input (x = 1 to 9) is

off

M50x and M60x instructions pro-
grammed in the same line as motion
(G00..G03) will cause the queuing of the
specified move to be delayed until the
wait for on/off states are satisfied

M50x, Wait of Input On, and M60x, Wait for Input Off, are non-modal and effect only the
line they are programmed in. If the line contains M50x and M60x instructions, the rest of
the line will not be executed until all of the M50x and M60x wait for inputs are satisfied.
 2-20

M_C2M_1 ASFB Template
 2-21

INPUTS
Input Description
EN01 Enable - must be energized at all times.
FNAM Filename string – Name of program file to be executed. Typically

“RAMDISK:<filename.txt>$00. The string must be terminated by
$00.

STRT Pulse to start program execution - Modal data is reset.
CONT Energize to repeat program execution continuously.
SNGL Energize to enter single step mode. After using single step mode

deenergizing SNGL will cause execution to continue. When enter-
ing single step mode all pre-processed motion (up to three moves)
will execute before execution is stalled. When in single step mode
the VLIN will show the instruction that will be executed when
EXEC is pulsed. When in single step mode, pulse MDIM to acti-
vate Manual Data Input Mode.

EXEC Pulse to execute next instruction when in single step mode. Pulse to
execute instruction in MDIS when in MDI (Manual Data Input)
mode.

MDIM Energize to select Manual Data Input mode. While in MDI mode
pulse EXEC to execute the instruction specified by MDIS.

MDIS Manual Data Input String. M and G code instruction to be executed
when EXEC is pulsed when in MDI mode.

ABRT Pulse to abort program execution. When program execution is
aborted all user outputs (O.O1 to O.O9) will be deenergized, M03
will turn off, SDAT will be cleared to zero, and all axes motion will
be aborted.

SETP See the table below for a description of the Setup data structure.
I User Input structure I.I1 to I.I9 corresponding to Wait for Input On

M501 to M509 and Wait for Input Off M601 to M609, respectively.
O User Output structure O.O1 to O.O9 corresponding to turn On Out-

put M101 to M109 and Turn Off Output M201 to M209, respec-
tively.

VLIN String which will show the current program line being executed.
Note that due to preprocessing VLIN can be up to three lines ahead
of actual application motion.

DATA M_C2M_1 Data Structure. Provides the data for the active program
line.

OVRD Path feedrate override. Specify from 0 to 255 percent of pro-
grammed (or Rapid) feedrate.
 2-22

SETUP DATA STRUCTURE - The setup data structure defines the operation of this appli-
cation of M_C2M_1. Values should be specified as initial values in Software Declarations
and not changed while running.
Name Type Description
Setp STRUCT Setup Data Structure
.X_ACTIVE BOOL X, Y, Z, W, and B_ACTIVE are set to 1 to

indicate axis is active in this application.

X, Y, Z, W, A and B_AXIS_Number are
set to 1 to 16 to indicate each axis’ servo
setup axis number.

X, Y, Z, W, A and B_DG2R are set to
indicate the number of digits to the right
of the implied decimal point. See Implied
Decimal Point Data section below.

.X_DG2R INT

.X_Axis_Number USINT

.Y_ACTIVE BOOL

.Y_DG2R INT

.Y_Axis_Number USINT

.Z_ACTIVE BOOL

.Z_DG2R INT

.Z_Axis_Number USINT

.W_ACTIVE BOOL

.W_DG2R INT

.W_Axis_Number USINT

.A_ACTIVE BOOL

.A_DG2R INT

.A_Axis_Number USINT

.B_ACTIVE BOOL

.B_DG2R INT

.B_Axis_Number USINT

.I_DG2R INT Indicate the number of digits to the right
of the implied decimal point. See Implied
Decimal Point Data section below.

.J_DG2R INT

.K_DG2R INT

.F_DG2R INT

.S_DG2R INT

.RAPID DINT The feedrate used for G00 Rapid moves

.BNDW DINT The Circular Endpoint on circle band-
width. See PiCPro Function Block Help
for M_SCRVLC for further information.

.PATH USINT Typically set to 1. Set to 2,3 or 4 for
applications running up to four simulta-
neous M_C2M_1 instances. See Interpo-
lation Paths section below for more
information.
 2-23

The offset data provides the application with the ability to identify offset values for
X, Y, Z, W, A, and B which will be added to all absolute (G90) position endpoints.
This includes G00, G01, G02 and G03 move endpoints. Incremental mode (G91)
distances are not affected. The offset values are applied when the corresponding
"ignore" flag is not set.

.ACCEL LREAL Path S-Curve Acceleration/Deceleration
definition. See PiCPro Function Block
Help for M_SCRVLC for more informa-
tion.

.JERK LREAL

.MAXF DINT

.X Offset DINT X axis absolute endpoint offset value

.X Offset_Ignore BOOL Set to ignore X axis endpoint offset

.Y Offset DINT Y axis absolute endpoint offset value

.Y Offset_Ignore BOOL Set to ignore Y axis endpoint offset

.Z Offset DINT Z axis absolute endpoint offset value

.Z Offset_Ignore BOOL Set to ignore Z axis endpoint offset

.W Offset DINT W axis absolute endpoint offset value

.W Offset_Ignore BOOL Set to ignore W axis endpoint offset

.A Offset DINT A axis absolute endpoint offset value

.A Offset_Ignore BOOL Set to ignore A axis endpoint offset

.B Offset DINT B axis absolute endpoint offset value

.B Offset_Ignore BOOL Set to ignore B axis endpoint offset

.Application_Name STRING[25] Name of the application; reference only

.Structure_Check_Constant DINT Must have initial value of +12345. Used
to verify that the application Setup struc-
ture matches the M_C2M_1 structure.

END_STRUCT
 2-24

INPUT DATA STRUCTURE - The input data structure “I” allows integration of
user inputs with the execution of the program.
Name Type Description
I STRUCT Input Data Structure
.I1 BOOL Input 1, M501 Wait for Input On , M601

Wait for Input Off
.I2 BOOL Input 2, M502 Wait for Input On , M602

Wait for Input Off
.I3 BOOL Input 3, M503 Wait for Input On , M603

Wait for Input Off
.I4 BOOL Input 4, M504 Wait for Input On , M604

Wait for Input Off
.I5 BOOL Input 5, M505 Wait for Input On , M605

Wait for Input Off
.I6 BOOL Input 6, M506 Wait for Input On , M606

Wait for Input Off
.I7 BOOL Input 7, M507 Wait for Input On , M607

Wait for Input Off
.I8 BOOL Input 8, M508 Wait for Input On , M608

Wait for Input Off
 I9 BOOL Input 9, M509 Wait for Input On , M609

Wait for Input Off
.M01_Input BOOL If ON enter single step mode when M01

programmed
END_STRUCT
 2-25

OUPUT DATA STRUCTURE - The input data structure “O” allows integration
of user outputs with the execution of the program.
Name Type Description
O STRUCT Output Data Structure
.O1 BOOL Output 1, M101 Turn On Output,

M201 Turn Off Output
.O2 BOOL Output 2, M102 Turn On Output,

M202 Turn Off Output
.O3 BOOL Output 3, M103 Turn On Output,

M203 Turn Off Output
.O4 BOOL Output 4, M104 Turn On Output,

M204 Turn Off Output
.O5 BOOL Output 5, M105 Turn On Output,

M205 Turn Off Output
.O6 BOOL Output 6, M106 Turn On Output,

M206 Turn Off Output
.O7 BOOL Output 7, M107 Turn On Output,

M207 Turn Off Output
.O8 BOOL Output 8, M108 Turn On Output,

M208 Turn Off Output
.O9 BOOL Output 9, M109 Turn On Output,

M209 Turn Off Output
END_STRUCT
 2-26

DATA STRUCTURE - The M_C2M_1 Data Structure "DATA" provides the appli-
cation with a view of all of the program data variables and flags.
Name Type Description
.X_Dat DINT X Command data value.
.Y_Dat DINT Y Command data value.
.Z_Dat DINT Z Command data value.
.W_Dat DINT W Command data value.
.A_Dat DINT A Command data value.
.B_Dat DINT B Command data value.
.F_Dat DINT F Command data value.
.S_Dat DINT S Command data value.
.N_Dat DINT N Command data value.
.I_Dat DINT I Command data value.
.J_Dat DINT J Command data value.
.K_Dat DINT K Command data value.
.L_Dat DINT L Command data value.
 .G00 BOOL G00 Command is active.
 .G01 BOOL G01 Command is active.
 .G02 BOOL G02 Command is active.
 .G03 BOOL G03 Command is active.
 .G17 BOOL G17 Command is active.
 .G18 BOOL G18 Command is active.
 .G19 BOOL G19 Command is active.
 .G90 BOOL G90 Command is active.
 .G91 BOOL G91 Command is active.
.M00_M01_Program_Pause BOOL M00/M01 Command is active.
 .M03 BOOL M03 Command is active.
 .M04 BOOL M04 Command is active.
 .M05 BOOL M05 Command is active.
 .M101 BOOL M101 Command is active.
 .M102 BOOL M102 Command is active.
 .M103 BOOL M103 Command is active.
 .M104 BOOL M104 Command is active.
 .M105 BOOL M105 Command is active.
 .M106 BOOL M106 Command is active.
 .M107 BOOL M107 Command is active.
 .M108 BOOL M108 Command is active.
 .M109 BOOL M109 Command is active.
.Wait_for_Input BOOL Wait_for_Input Command is active.
 2-27

.Wait_for_Time_Delay BOOL Wait_for_Time_Delay Command is active.

.Time_Left UDINT Time left for the Wait_for_Time_Delay
Command.

.Wait_for_In_Position BOOL Wait_for_In_Position_Command is active.

.Wait_for_Servo_Queue BOOL Wait_for_Servo_Queue Command is active.

.Structure_Check_Constant DINT Must have initial value of 12345. Used to
verify that the Data structure matches the
M_C2M_1 structure.

M_C2M_1 OUTPUTS
Outputs Description
DONE Indicates that the program execution has completed successfully or

was aborted by and ABRT request.
FAIL Indicates that an error occurred while trying to execute the program.

The type of error is indicated by FERR, PERR and MERR as
described below. When FAIL occurs all user outputs will be reset,
all axes motion aborted and the program file will be closed.

ACTV Active indicates that program execution is in progress
MDID MDI mode done - set on entry to MDI mode and when execution of

MDIS completes during MDI mode operation.
FERR File read error - Using PiCPro Online Help, refer to I/O Function

Block Error Codes under Error Codes for a description of these
errors.

PERR Program Error - See the Program Error table below for a descrip-
tion of these error codes.

MERR Motion Error - See PiCPro Function Block Help for M_SCRVLC
and refer to the ERR output for a description of error codes.

LINE Indicates the Line number.
LACT Indicates that the Line is active.
 2-28

PERR Program Errors - This table provides a description of errors that will be
reported if an improperly formatted program is encountered.
Error Number Description
7001 CRLF line terminator not found
7002 Unrecognizable Field Code (i.e. not N,X,Y…M)
7003 Unrecognizable G Code
7004 Unrecognizable Mxx Code
7005 Bad data for N Code
7006 Missing CRLF line terminator (line wider than 128 charac-

ters
7007 Missing LF line terminator
7008 Missing CRLF line terminator
7009 End of File missing CRLF line terminator
7010 End of File missing CRLF line terminator
7011 Poorly formed data
7012 SETP structure doesn’t match M_C2M’s SETP structure
7013 Multiple G00, G01, G02, G03, G92, codes in single line
7014 Incomplete line programmed, i.e. “G03 G17X1 Y1 11", J

data word is missing so move could not be executed
7015 % Start of program not found
7016 SETP.Application_Name does not match application name

specified at beginning of program (e.g. %/Saw Type 1/)
 2-29

IMPLIED DECIMAL POINT DATA - Implied decimal point data accommo-
dates the fact that position and feedrate information used with PiCPro motion
control programming is stored in 32-bit double integer variables. The M and G
code program will need to specify position and feedrate information with a deci-
mal point. In the Setup data structure input to the M_C2M_1 ASFB the digits-
to-right (i.e. X_DG2R) specified for each program code is used to scale data
appropriately to the needs of the PiCPro motion control instructions. The table
below shows the effect of setting the DG2R precision to various values.
Digits-to-Right Data in Program Line Data Delivered to Motion Function
3 X123 123000
3 X.1 100
3 X1.2 1200
3 X1 1000
3 X1.0002 1000
4 X123 1230000
4 X.1 1000
4 X1.2 12000
4 X1 10000
4 X1.0002 10002
Scaling from programmed units to machine servo feedback units is defined when pro-
gramming the application specific servo setup data using PiCPro.
 2-30

Path Positioning Using M_C2M_1

When G00 - Rapid is active the axes specified in the line will be move to the end-
point (G90 absolute) or the incremental distance (G91 incremental) specified by
the X, Y, Z, W, A and B data words at the rate specified by SETUP.RAPID.
Unprogrammed axes will not move.. .

G00 Rapid Mode
G00 - The axes specified in the line will be move to the endpoint (G90 absolute) or the
incremental distance (G91 incremental) specified by the X, Y, Z, W, A and B data words
at the rate specified by SETUP.RAPID. Unprogrammed axes will not move.

G00 Rapid Mode Example
%/Start of Program/
N1000 G90 G00 X10.0 Y5.0 /Position X to 10.0 and Y to 5.0 at rapid rate /
N1010 X15 Y0 G09 /Position X to 10 and Y to 0 at rapid rate, decel to zero/
N1020 G91 Y1 /Move Y incrementally 1 at rapid rate/
N1030 G09 Y1 /Move Y incrementally 1 at rapid rate, decel to zero /

G01 Linear Interpolation
G01 - The axes specified in the line will be move to the endpoint (G90 absolute) or the
incremental distance (G91 incremental) specified by the X, Y, Z, W, A and B data
words at the rate specified by F using linear interpolation. Unprogrammed axes will
not move.

G01 Linear Interpolation Example
%/Start of Program/
N1000 G90 G01 X10.0 Y5.0 F100.0 /Position X to 10.0 and Y to 5.0 at a path rate of 100 /
N1010 X15 Y0 G09 /Position X to 10 and Y to 0 at a path rate of 100, decel to zero/
N1020 G91 Y1 /Move Y incrementally 1 at a path rate of 100/
N1030 G09 Y1 /Move Y incrementally 1 at path rate of 100, decel to zero /
 2-31

.

G02 Circular Clockwise and G03 Counter Clockwise Circular Interpolation

Plane Mode Description
G17, XY G02, G03 Use circular interpolation to move to X

and Y endpoints (incremental or absolute
based on G90/G91), I and J centerpoints
(always incremental from start of circle) at
F modal path feedrate. If Z, W, A, or B
are programmed in the same line they will
be moved in a third axis departure move
and arrive at their programmed position
simultaneously with X and Y.

G18, XZ G02, G03 Use circular interpolation to move to X
and Z endpoints (incremental or absolute
based on G90/G91), I and K centerpoints
(always incremental from start of circle) at
F modal path feedrate. If Y, W, A or B are
programmed in the same line they will be
moved in a third axis departure move and
arrive at their programmed position simul-
taneously with X and Z.

G19, YZ G02, G03 Use circular interpolation to move to Y
and Z endpoints (incremental or absolute
based on G90/G91), J and K centerpoints
(always incremental from start of circle) at
F modal path feedrate. If X, W, A or B are
programmed in the same line they will be
moved in a third axis departure move and
arrive at their programmed position simul-
taneously with Y and Z.
 2-32

.

G02 Clockwise and G03 Counter Clockwise Circular Interpolation Examples
%/Start of Program/
G90 /Select Absolute Positioning Mode
F800 /Specify path feedrate of 800 /
G01 X8.000 Y0.000
G01 X16.472 Y0.000
G03 X17.472 Y1.000 I0.000 J1.000 / Circular Counter Clockwise /
G01 X17.472 Y11.707
G03 X9.472 Y19.707 I-8.000 J0.000
G01 X1.000 Y19.707
G03 X0.000 Y18.707 I0.000 J-1.000
G01 X0.000 Y8.000
G03 X8.000 Y0.000 I8.000 J0.000
G09

Coordinating User Outputs with Motion
To turn outputs on and off in step with servo axis positioning program M10x and M20x
instructions in the same line as the desired motion.

%/Start of Program/
N1000 M101 / Immediately Turn on Output 1 /
N1010 G04 F1.5 /Wait for 1.5 seconds
N1020 M102 / Immediately Turn off Output 1 /
N1030 M101 G91 G01 F100.0 X1.00 / Output 1 turns on when this move begins/
N1040 M102 X2.0 / Output 2 turns on when this move begins /
N1050 X3.0 G09
N1060 M103 / Output 3 turns on when the move in N1050 completes /
 2-33

. .

Coordinating Motion with User Inputs
The M50x Wait for Input On and M60x Wait for Input Off instructions are used to coordi-
nate program execution with the state of user application inputs.

%/Start of Program/
N1000 M501 / Program execution stalls until user input 1 is on /
N1010 M502 G91 G01 F100.0 X1.00 / When user input 2 is on start move of 1 /
N1010 M503 G04 F1.5 / When user input 3 is on begin delay of 1.5 seconds /

Effect of Motion Que and Program Execution
To provide continuous path motion a queuing system is used to buffer one move which will
blend with the currently active move with no deceleration of the servo axes. This queuing
system requires that program lines be read and executed while motion started by previous
lines is completed. This will lead to the program line display, VLIN, showing the line cur-
rently being parsed and queued and this line may be many lines after the line which started
the current motion.
Instruction Action
N1000 G90 G01 X100 Starts move of X to 100
N1010 G90 G01 X200 Queues move of X to 200
N1030 G90 G01 X300 Waits until queue move in N1000 completes which will

make room on the queue
Any lines between N1000 and N1030 would execute immediately. Including G09 decel to
zero changes the execution as described below.
Instruction Action
N1000 G90 G01 X100 G09 Starts move of X to 100, and wait till in position
N1010 G90 G01 X200 G09 Start move of X to 200 and wait till in position
N1030 G90 G01 X300 G09 Start move of X to 300 and wait till in position
Using the G09 stalls execution until the move in the line completes
 2-34

Line Execution

Programs are executed a line at a time. In a line containing multiple instructions
the order of execution is based on the type of instruction, not the order of its occur-
rence within the line. Line execution is performed in the following order:

1 - If the line contains any Wait for Input On or Off instructions execution will wait
until all of the conditions have been satisfied.

2 - If the line contains a G04 dwell instruction execution will delay until the time
specified by F passes.

3 - If the line contains a G00 to G03 motion instruction execution will wait until
the servo queue is ready to accept the next move.

Lines Containing Incomplete Motion Instructions

Incomplete motion instructions that can be detected will result in FAIL being set
with PERR = 7014 and the move will not be executed. An example of a line con-
taining an incomplete motion instruction would be “G03 G17 X1 Y2 I3”. In this
case the J data word specifying the Y axis centerpoint is missing resulting in the
M&G program execution being ignored.

Simultaneous Multiple Paths

M_C2M_1 will support up to four completely independent motion programs on
four separate interpolators. To do this the users application must have four sepa-
rate instances of M_C2M_1. The SETUP.PATH should be set to 1,2,3 and 4 for
instance 1 to 4, respectively. The table below describes the servo axis numbering
in the applications servo setup data that must be used for each path.

Adding user outputs to the same examples also shows the effect of the queue
Instruction Action
N1000 G90 G01 X100 M101 Starts move of X to 100, turn on output 1
M102 Output 2 turns on while move to 100 is occurring
N1010 G90 G01 X200 M103 Queues move of X to 200, output 3 will turn on when this

move becomes active
M104 Output 4 turns on while move to 100 in N1000 is occur-

ing. Output 4 will turn on before output 3
N1030 G90 G01 X300 Waits until queue move in N1000 completes which will

make room on the queue.
 2-35

Program File Structure

Program lines can contain up to 126 characters and must be terminated with a car-
riage return ($0D) and line feed ($0A). Fields within the line must be combina-
tions of letters followed by values, i.e. X-123.456, no space can occur between the
letter and the value. One or more spaces must occur between fields, i.e. X123
Y245 is valid, X1Y2 is invalid.

The last line of the program must contain a carriage return ($0D) and line feed
($0A).

Using M_C2M_1 with Third Party Cad-to-Motion Tools

M_C2M_1, the Cad2Motion ASFB can be used to translate the output of a third-
party DXF to Ascii file conversion program like Gcode2000 to machine and
motion control. For more information log onto http://members.aol.com/_ht_a/gco-
demcode/index.htm.
 2-36

M_CHK1
Check for Servo Axis Initialized USER/M_INIT

<<INSTANCE NAME>>:M_CHK1(EN01 := <<BOOL>>, OK => <<BOOL>>,
A1I => <<BOOL>>, A2I => <<BOOL>>, A3I => <<BOOL>>, A4I =>
<<BOOL>>, A5I => <<BOOL>>, A6I => <<BOOL>>, A7I => <<BOOL>>,
A8I => <<BOOL>>);

This function block checks to see which servo axes numbered from 1 to 8 have
been initialized by the user's servo setup function

The OK output of the STRTSERV function should be wired directly to the enable
(EN01) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other motion
functions.

⁄ƒƒ NAME ƒø
≥ M_CHK1 ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
≥ A1I√ƒ
≥ ≥
≥ A2I√ƒ
≥ ≥
≥ A3I√ƒ
≥ ≥
≥ A4I√ƒ
≥ ≥
≥ A5I√ƒ
≥ ≥
≥ A6I√ƒ
≥ ≥
≥ A7I√ƒ
≥ ≥
≥ A8I√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A1I (BOOL) - set if axis number 1 has been
 initialized

A2I (BOOL) - set if axis number 2 has been
initialized

A3I (BOOL) - set if axis number 3 has been
initialized

A4I (BOOL) - set if axis number 4 has been
initialized

A5I (BOOL) - set if axis number 5 has been
initialized

A6I (BOOL) - set if axis number 6 has been
initialized

A7I (BOOL) - set if axis number 7 has been
initialized

A8I (BOOL) - set if axis number 8 has been
initialized
 2-37

M_CHK101
Check for Servo Axis Initialized USER/M_INIT

<<INSTANCE NAME>>:M_CHK101(EN01 := <<BOOL>>, OK =>
<<BOOL>>, A101 => <<BOOL>>, A102 => <<BOOL>>, A103 =>
<<BOOL>>, A104 => <<BOOL>>, A105 => <<BOOL>>, A106 =>
<<BOOL>>, A107 => <<BOOL>>, A108 => <<BOOL>>);

This function block checks to see which servo axes numbered from 101 to 108
(servo axes 17 to 24) have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN01) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other motion
functions.

⁄ƒƒ NAME ƒø
≥ M_CHK101≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
≥ A101√ƒ
≥ ≥
≥ A102√ƒ
≥ ≥
≥ A103√ƒ
≥ ≥
≥ A104√ƒ
≥ ≥
≥ A105√ƒ
≥ ≥
≥ A106√ƒ
≥ ≥
≥ A107√ƒ
≥ ≥
≥ A108√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A101 (BOOL) - set if axis number 101 has been
initialized (servo axis 17).

A102 (BOOL) - set if axis number 102 has been
initialized (servo axis 18).

A103 (BOOL) - set if axis number 103 has been
 initialized (servo axis 19).

A104 (BOOL) - set if axis number 104 has been
initialized (servo axis 20).

A105 (BOOL) - set if axis number 105 has been
 initialized (servo axis 21).

A106 (BOOL) - set if axis number 106 has been
 initialized (servo axis 22).

A107 (BOOL) - set if axis number 107 has been
 initialized (servo axis 23).

A108 (BOOL) - set if axis number 108 has been
initialized (servo axis 24).
 2-38

M_CHK109
Check for Servo Axis Initialized USER/M_INIT

<<INSTANCE NAME>>:M_CHK109(EN01 := <<BOOL>>, OK => <<BOOL>>
A109 => <<BOOL>>, A110 => <<BOOL>>, A111 => <<BOOL>>, A112 =>
<<BOOL>>, A113 => <<BOOL>>, A114 => <<BOOL>>, A115 =>
<<BOOL>>, A116 => <<BOOL>>);

This function block checks to see which servo axes numbered from 109 to 116
(servo axes 25 to 32) have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN01) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other motion
functions.

⁄ƒƒ NAME ƒø
≥ M_CHK109≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
≥ A109√ƒ
≥ ≥
≥ A110√ƒ
≥ ≥
≥ A111√ƒ
≥ ≥
≥ A112√ƒ
≥ ≥
≥ A113√ƒ
≥ ≥
≥ A114√ƒ
≥ ≥
≥ A115√ƒ
≥ ≥
≥ A116√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A109 (BOOL) - set if axis number 109 has been
initialized (servo axis 25).

A110 (BOOL) - set if axis number 110 has been
initialized (servo axis 26).

A111 (BOOL) - set if axis number 111 has been
 initialized (servo axis 27).

A112 (BOOL) - set if axis number 112 has been
initialized (servo axis 28).

A113 (BOOL) - set if axis number 113 has been
initialized (servo axis 29).

A114 (BOOL) - set if axis number 114 has been
 initialized (servo axis 30).

A115 (BOOL) - set if axis number 115 has been
 initialized (servo axis 31).

A116 (BOOL) - set if axis number 116 has been
initialized (servo axis 32).
 2-39

M_CHK49
Check for Digitizing Axis Initialized USER/M_INIT

<<INSTANCE NAME>>:M_CHK49(EN01 := <<BOOL>>, OK => <<BOOL>>
A49I => <<BOOL>>, A50I => <<BOOL>>, A51I => <<BOOL>>, A52I =>
<<BOOL>>, A53I => <<BOOL>>, A54I => <<BOOL>>, A55I =>
<<BOOL>>, A56I => <<BOOL>>);

This function block checks to see which digitizing axes numbered from 49 to 56
have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN01) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other functions.

⁄ƒƒ NAME ƒø
≥ M_CHK49 ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
≥ A49I√ƒ
≥ ≥
≥ A50I√ƒ
≥ ≥
≥ A51I√ƒ
≥ ≥
≥ A52I√ƒ
≥ ≥
≥ A53I√ƒ
≥ ≥
≥ A54I√ƒ
≥ ≥
≥ A55I√ƒ
≥ ≥
≥ A56I√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A49I (BOOL) - set if axis number 49 has been
initialized

A50I (BOOL) - set if axis number 50 has been
 initialized

A51I (BOOL) - set if axis number 51 has been
initialized

A52I (BOOL) - set if axis number 52 has been
 initialized

A53I (BOOL) - set if axis number 53 has been
 initialized

A54I (BOOL) - set if axis number 54 has been
 initialized

A55I (BOOL) - set if axis number 55 has been
 initialized

A56I (BOOL) - set if axis number 56 has been
 initialized
 2-40

M_CHK57
Check for Digitizing Axis Initialized USER/M_INIT

<<INSTANCE NAME>>:M_CHK57(EN00 := <<BOOL>>, OK => <<BOOL>>
A57I => <<BOOL>>, A58I => <<BOOL>>, A59I => <<BOOL>>, A60I =>
<<BOOL>>, A61I => <<BOOL>>, A62I => <<BOOL>>, A63I =>
<<BOOL>>, A64I => <<BOOL>>);

This function block checks to see which digitizing axes numbered from 57 to 64
have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN00) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other functions.

⁄ƒƒ NAME ƒø
≥ M_CHK57 ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
≥ A57I√ƒ
≥ ≥
≥ A58I√ƒ
≥ ≥
≥ A59I√ƒ
≥ ≥
≥ A60I√ƒ
≥ ≥
≥ A61I√ƒ
≥ ≥
≥ A62I√ƒ
≥ ≥
≥ A63I√ƒ
≥ ≥
≥ A64I√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A57I (BOOL) - set if axis number 57 has been
initialized

A58I (BOOL) - set if axis number 58 has been
initialized

A59I (BOOL) - set if axis number 59 has been
initialized

A60I (BOOL) - set if axis number 60 has been
initialized

A61I (BOOL) - set if axis number 61 has been
initialized

A62I (BOOL) - set if axis number 62 has been
initialized

A63I (BOOL) - set if axis number 63 has been
initialized

A64I (BOOL) - set if axis number 64 has been
initialized
 2-41

M_CHK65
Check for Digitizing Axis Initialized USER/M_INIT

<<INSTANCE NAME>>:M_CHK65(EN00 := <<BOOL>>, OK => <<BOOL>>
A65I => <<BOOL>>, A66I => <<BOOL>>, A67I => <<BOOL>>, A68I =>
<<BOOL>>, A69I => <<BOOL>>, A70I => <<BOOL>>, A71I =>
<<BOOL>>, A72I => <<BOOL>>);

This function block checks to see which digitizing axes numbered from 65 to 72
have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN00) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other functions.

⁄ƒƒ NAME ƒø
≥ M_CHK65 ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
≥ A65I√ƒ
≥ ≥
≥ A66I√ƒ
≥ ≥
≥ A67I√ƒ
≥ ≥
≥ A68I√ƒ
≥ ≥
≥ A69I√ƒ
≥ ≥
≥ A70I√ƒ
≥ ≥
≥ A71I√ƒ
≥ ≥
≥ A72I√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A65I (BOOL) - set if axis number 65 has been
initialized

A66I (BOOL) - set if axis number 66 has been
initialized

A67I (BOOL) - set if axis number 67 has been
initialized

A68I (BOOL) - set if axis number 68 has been
initialized

A69I (BOOL) - set if axis number 69 has been
initialized

A70I (BOOL) - set if axis number 70 has been
initialized

A71I (BOOL) - set if axis number 71 has been
initialized

A72I (BOOL) - set if axis number 72 has been
initialized
 2-42

M_CHK73
Check for Digitizing Axis Initialized USER/M_INIT

<<INSTANCE NAME>>:M_CHK73(EN00 := <<BOOL>>, OK => <<BOOL>>
A73I => <<BOOL>>, A74I => <<BOOL>>, A75I => <<BOOL>>, A76I =>
<<BOOL>>, A77I => <<BOOL>>, A78I => <<BOOL>>, A79I =>
<<BOOL>>, A80I => <<BOOL>>);

This function block checks to see which digitizing axes numbered from 73 to 80
have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN00) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other functions.

⁄ƒƒ NAME ƒø
≥ M_CHK73 ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
≥ A73I√ƒ
≥ ≥
≥ A74I√ƒ
≥ ≥
≥ A75I√ƒ
≥ ≥
≥ A76I√ƒ
≥ ≥
≥ A77I√ƒ
≥ ≥
≥ A78I√ƒ
≥ ≥
≥ A79I√ƒ
≥ ≥
≥ A80I√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A73I (BOOL) - set if axis number 73 has been
initialized

A74I (BOOL) - set if axis number 74 has been
initialized

A75I (BOOL) - set if axis number 75 has been
initialized

A76I (BOOL) - set if axis number 76 has been
initialized

A77I (BOOL) - set if axis number 77 has been
initialized

A78I (BOOL) - set if axis number 78 has been
initialized

A79I (BOOL) - set if axis number 79 has been
initialized

A80I (BOOL) - set if axis number 80 has been
initialized
 2-43

M_CHK9
Check for Servo Axis Initialized USER/M_INIT

<<INSTANCE NAME>>:M_CHK9(EN00 := <<BOOL>>, OK => <<BOOL>>
A9I => <<BOOL>>, A10I => <<BOOL>>, A11I => <<BOOL>>, A12I =>
<<BOOL>>, A13I => <<BOOL>>, A14I => <<BOOL>>, A15I =>
<<BOOL>>, A16I => <<BOOL>>);

This function block checks to see which servo axes numbered from 9 to 16 have
been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN00) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other motion
functions.

⁄ƒƒ NAME ƒø
≥ M_CHK9 ≥
≥ ≥
¥ENxx OK√ƒ
≥ ≥
≥ A9I√ƒ
≥ ≥
≥ A10I√ƒ
≥ ≥
≥ A11I√ƒ
≥ ≥
≥ A12I√ƒ
≥ ≥
≥ A13I√ƒ
≥ ≥
≥ A14I√ƒ
≥ ≥
≥ A15I√ƒ
≥ ≥
≥ A16I√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A9I (BOOL) - set if axis number 9 has been
initialized

A10I (BOOL) - set if axis number 10 has been
initialized

A11I (BOOL) - set if axis number 11 has been
initialized

A12I (BOOL) - set if axis number 12 has been
initialized

A13I (BOOL) - set if axis number 13 has been
initialized

A14I (BOOL) - set if axis number 14 has been
initialized

A15I (BOOL) - set if axis number 15 has been
initialized

A16I (BOOL) - set if axis number 16 has been
initialized
 2-44

M_CHKALL
Check for Servo Axis Initialized USER/M_INIT

<<INSTANCE NAME>>:M_CHKALL(ENxx := <<BOOL>>, HANA :=
<<USINT>>, AXTP := <<MEMORY AREA>>, SVAX := <<MEMORY
AREA>>, SVNR := <<MEMORY AREA>>, DGNR := <<MEMORY AREA>>,
OK => <<BOOL>>, HNSA => <<USINT>>, NMSA => <<USINT>>, NMDA =>
<<USINT>>, NMTA => <<USINT>>);

This function block checks for information about the axes that have been initial-
ized by the servo setup function and STRTSERV or DSTRTSRV. It provides
information in several ways about the number and types of all axes that have been
initialized.

Its results can be checked manually to make sure all the axes expected are present.
It may also be used in the ladder for automatic configuration of features or some
safety checking.

⁄ƒƒ NAME ƒø
≥ M_CHKALL≥
≥ ≥
¥ENxx OK√ƒ
≥ ≥
¥HANA HNSA√ƒ
≥ ≥
¥AXTP NMSA√ƒ
≥ ≥
¥SVAX NMDA√ƒ
≥ ≥
¥SVNR NMTA√ƒ
≥ ≥
¥DGNR ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - enable FB - turn on only after the
drives have initialized OK (xx indicates revision #)

HANA (USINT) - Highest axis number allowed by
PiCPro

AXTP (USINT) - Array sized for HANA + 1. See
below.

SVAX (BOOL) - Array sized for HANA + 1. See
below.

SVNR (USINT) - Array sized for number of servo
axes + 1. See below.

DGNR (USINT) - Array sized for number of digitiz-
ing axes + 1. See below.

Outputs: OK (BOOL) - Block executed OK

HNSA (USINT) - Highest numbered servo axis
found

NMSA (USINT) - Number of servo axes found

NMDA (USINT) - Number of digitizing axes found

NMTA (USINT) - Number of time axes found
 2-45

 Note on Axis Numbering

PiCPro 16 Pro Edition allows 132 axis numbers, consisting of 64 servo / 64 digitiz-
ing and 4 time axes assigned how the user wants. Users can assign any number to
any axis and there can be gaps in the axes numbers used. However, for more effi-
cient use of memory, it is better to keep the servo axes numbers as low as possible.
Servo axis array memory is assigned for all axes up to the highest numbered one.

Virtual axes are counted in the servo axis quantities.

AXTP[N] will contain a number identifying axis type for that number.

Values are 0= none, 1 = servo / virtual, 2 = digitizing, 3 = time

SVAX [N] will be set if a servo axis of number N is present

SVNR [1] will contain the axis number of the 1st servo axis found, SVNR [2] the
2nd and so on. If an element is 0, there is no servo axis present.

DGNR [1] will contain the axis number of the 1st digitizing axis found, DGNR [2]
the 2nd and so on. If an element is 0, there is no digitizing axes present there.

HNSA should be used in the application ladder to check that the highest numbered
servo axis found is not greater than the number specified for the array sizes for the
axes data.
 2-46

M_CHOME
Performs a Reference Cycle Using a Hard Mechanical Stop USER/M_REF

⁄ƒƒ NAME ƒø
≥ M_CHOME ≥
≥ ≥
¥ENxx OK√ƒ
≥ ≥
¥STRT HCMP√ƒ
≥ ≥
¥STOP HACT√ƒ
≥ ≥
¥AXIS QUE√ƒ
≥ ≥
¥PLUS ERR√ƒ
≥ ≥
¥RATE SWPO√ƒ
≥ ≥
¥MAXD ≥
≥ ≥
¥TRGT ≥
≥ ≥
¥ACTL ≥
≥ ≥
¥DIM ≥
≥ ≥
¥HOME ≥
≥ ≥
¥HDIM ≥
≥ ≥
¥OPTN ≥
≥ ≥
¥FEWD ≥
≥ ≥
¥ILIM ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - Enable FB - on at all times (xx indi-
cates revision #)

STRT (BOOL) - Start Home Cycle - one shot on to start

STOP (BOOL) - Stop Home Cycle - turn on to stop

AXIS (USINT) - Axis number to be homed

PLUS (BOOL) - Home initial direction - on for plus, off
for minus

RATE (UDINT) - Home rate in LU per min

MAXD (DINT) - Maximum distance to travel looking
for current/foll. err home in LU

TRGT (DINT) - Target current / following error setting
for home position

ACTL (DINT) - Actual motor current / position loop
following error

DIM (DINT) - Value axis position is set to at home tar-
get / marker pulse

HOME (BOOL) - On if a move is to be made after home
target / marker seen

HDIM (DINT) - Dimension to move to if Home input is
on

OPTN (WORD) - Options for home cycle involving use
of marker pulse

FEWD (DINT) - %(100-200) to change following error
limit to during home cycle

ILIM (DINT) - %(1-100) to set drive direction current
limit at while homing

Outputs: OK (BOOL) - Home cycle command accepted

HCMP (BOOL) - Home cycle completed successfully

HACT (BOOL) - Home cycle is active

QUE (USINT) - Home queue number

ERR (BYTE) - Home command error number - see
below

SWPO (DINT) - Distance in feedback units (FU) from
the reference switch to the index mark of an encoder or
the null of a resolver
 2-47

<<INSTANCE NAME>>:M_CHOME(ENxx := <<BOOL>>, STRT :=
<<BOOL>>, STOP := <<BOOL>>, AXIS := << USINT>>, PLUS :=
<<BOOL>>, RATE := <<UDINT>>, MAXD := <<DINT>>, TRGT :=
<<DINT>>, ACTL := <<DINT>>, DIM := <<DINT>>, HOME := <<BOOL>>,
HDIM := <<DINT>>, OPTN := <<WORD>>, FEWD := <<DINT>>, ILIM :=
<<DINT>>, OK => <<BOOL>>, HCMP => <<BOOL>>, HACT => <<BOOL>>,
QUE => <<USINT>>, ERR => <<BYTE>>, SWPO => <<DINT>>);

This function block performs a reference cycle on an axis using a hard mechanical
stop as the target position. This is detected by using motor current or position loop
following error setting. Once sensed, it can be optionally followed by a reversal to
the motor index pulse and / or a homing (position) move to a designated location.

Before this function block can be used, the axis must be initialized and the position
loop closed with no errors present.

The block will remove any axis position rollover value before it runs and restore it
afterward. This will help avoid the possibility of driving the axis further on to the
hard stop due to the settings of the DIM and HDIM inputs and any rollover setting
that may be in use. The block will set the following error limit, to avoid nuisance
trips, to the % of the FEWD input - range 100-200%.

The drive current limit in the homing direction can be reduced during the home
cycle to the % value at the ILIM input - range 10-100%.

NOTE: If the scan is stopped or the control is turned off while M_CHOME is
active, the following error and/or current limit will be set to the adjusted values
when the scan is restarted. Thus you should set these to the correct values after the
servos are initialized.

The reference cycle will cause the selected axis to move in the designated direction
until the ACTL input is greater than the TRGT input. The actual motor current or
following error is not measured by this block and must be provided at the ACTL
input. It is up to the main ladder program to filter the actual reading if required to
avoid false tripping of the home point detection due to acceleration or other axis
conditions. The function block takes the absolute values of the ACTL and TRGT
inputs, so the programmer need not be concerned about sign.

When the target hard stop is sensed the axis may optionally back off to the next
index mark of an encoder or the nearest null of a resolver. It will then reference
(assign a value) to the position using the data at the DIM input. After the value is
assigned the axis will reposition to the DIM value +/- 1LU if the HOME input is
off. The 1 LU moves the axis off the hard stop to allow the current to drop off.
Otherwise, it tends to stay high due to the integral action in the drive loops.

If the HOME input is on when the reference done is sensed, a move will automati-
cally be triggered to position the axis at a desired location specified at the HDIM
input. This position move must be away from the hard stop or an error will occur
and the cycle will not start.

The SWPO output is used to determine if the hard stop location will allow for
repeatable referencing if the index mark is to be used. If the hard stop is too close
 2-48

to the index mark of an encoder or the null of a resolver it could possibly intermit-
tently reference a revolution off due to the effect of ladder scan time. To prevent
this, the value reported by this output should be as follows:

For an encoder system it should be greater than 25% and less than 75% of the total
counts (FU) per revolution. Example: For 8000 FU/Rev, the value should be
>2000 and <6000. For a resolver system the value of this output should be less
than 25% or greater than 75% of the total counts (FU) per revolution. Example:
For 4000 FU/Rev, the value should be <1000 or >3000. If the value is out of range
either the hard stop will have to be moved or the transducer coupling shifted.

See the table below for a description of valid OPTN input values.

See the table below for a description of ERR output values.

 OPTN Description

0 Do full cycle
1 Ignore index mark search

 ERR Description

1 Final home move point is beyond hard stop
2 Invalid option selected
3 Active queue not available to start home move
4 Failed to read/write rollover, reduced current or expanded fol-

lowing error limit
5 Distance move did not start
6 Target limit sensed - no move in progress
7 Hard stop not reached - distance move ended first
8 Distance move abort failed
9 Part Reference failed
10 Move to index mark did not start
11 Reference End function not OK
12 Move to final position did not start
13 Home cycle stopped from Stop input
14 Axis C stop or P stop occurred during home cycle
15 Restore of original rollover or following error limit failed
16 Following error increase % out of range
17 Current limit % out of range
 2-49

M_CLOS1
Close Loop on Servo Axes 1 to 8 USER/M_INIT

<<INSTANCE NAME>>:M_CLOS1(EN01 := <<BOOL>>, MSTR :=
<<BOOL>>, DELY := <<TIME>>, CLSD => <<BOOL>> A1C =>
<<BOOL>>, A2C => <<BOOL>>, A3C => <<BOOL>>, A4C => <<BOOL>>,
A5C => <<BOOL>>, A6C => <<BOOL>>, A7C => <<BOOL>>, A8C =>
<<BOOL>>);

This function block is used to reset the E-stop, C-stop, and programming errors on
servo axes 1 through 8 when the machine start input is pulsed. It closes the loop on
servo axes 1 through 8 after the machine start input is pulsed and a programmable
time delay has elapsed. It drops the loop closed flag if an E-stop fault occurs.

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the
current state of the electrical E-stop status as shown below.

⁄ƒƒ NAME ƒø
≥ M_CLOS1 ≥
≥ ≥
¥EN01 CLSD√ƒ
≥ ≥
¥MSTR A1C√ƒ
≥ ≥
¥DELY A2C√ƒ
≥ ≥
≥ A3C√ƒ
≥ ≥
≥ A4C√ƒ
≥ ≥
≥ A5C√ƒ
≥ ≥
≥ A6C√ƒ
≥ ≥
≥ A7C√ƒ
≥ ≥
≥ A8C√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

MSTR (BOOL) - machine start input

DELY (TIME) - amount of time that will elapse after
a positive transition of MSTR until the loops will be
closed

Outputs: CLSD (BOOL) - one or more of axes 1 to 8 have
their position loops closed

A1C (BOOL) - set when the loop is closed on axis 1

A2C (BOOL) - set when the loop is closed on axis 2

A3C (BOOL) - set when the loop is closed on axis 3

A4C (BOOL) - set when the loop is closed on axis 4

A5C (BOOL) - set when the loop is closed on axis 5

A6C (BOOL) - set when the loop is closed on axis 6

A7C (BOOL) - set when the loop is closed on axis 7

A8C (BOOL) - set when the loop is closed on axis 8
 2-50

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical
E-stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended ladder logic for the E-stop handling of
the M_CLOS1 application. Please refer to MMC2_EX.LDO for an example of
M_CLOS1.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time at DELY is normally in the range from 500 ms to 2 sec.

On a positive transition of MSTR, this function will reset all E-stop, C-stop, and
programming errors on axes 1 through 8.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, the loops will be closed on axes 1 to 8. CLSD will be energized
if one or more axes 1 to 8 have their position loops closed. The delay allows the
drive some time to power up before it starts controlling the axis.

If an E-stop fault occurs on any of axis 1 to 8, its loop closed output (A1 to A8)
will be dropped. CLSD is true as long as one or more of axes 1 to 8 have their
position loops closed.

ESTOPACT

MACHSTRT
 P ENxx
 2-51

M_CLOS9
Close Loop on Servo Axes 9 to 16 USER/M_INIT

<<INSTANCE NAME>>:M_CLOS9(EN00 := <<BOOL>>, MSTR :=
<<BOOL>>, DELY := <<TIME>>, CLSD => <<BOOL>> A9C =>
<<BOOL>>, A10C => <<BOOL>>, A11C => <<BOOL>>, A12C =>
<<BOOL>>, A13C => <<BOOL>>, A14C => <<BOOL>>, A15C =>
<<BOOL>>, A16C => <<BOOL>>);

This function block is used to reset the E-stop, C-stop, and programming errors on
servo axes 9 through 16 when the machine start input is pulsed. It closes the loop
on servo axes 9 through 16 after the machine start input is pulsed and a program-
mable time delay has elapsed. It drops the loop closed flag if an E-stop fault
occurs.

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

⁄ƒƒ NAME ƒø
≥ M_CLOS9 ≥
≥ ≥
¥EN00 CLSD√ƒ
≥ ≥
¥MSTR A9C√ƒ
≥ ≥
¥DELY A10C√ƒ
≥ ≥
≥ A11C√ƒ
≥ ≥
≥ A12C√ƒ
≥ ≥
≥ A13C√ƒ
≥ ≥
≥ A14C√ƒ
≥ ≥
≥ A15C√ƒ
≥ ≥
≥ A16C√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

MSTR (BOOL) - machine start input

DELY (TIME) - amount of time that will elapse after
a positive transition of MSTR until the loops will be
closed

Outputs: CLSD (BOOL) - one or more of axis 9 to 16 have
their position loops closed

A9C (BOOL) - set when the loop is closed on axis 9

A10C (BOOL) - set when the loop is closed on
axis 10

A11C (BOOL) - set when the loop is closed on
axis 11

A12C (BOOL) - set when the loop is closed on
axis 12

A13C (BOOL) - set when the loop is closed on
axis 13

A14C (BOOL) - set when the loop is closed on
axis 14

A15C (BOOL) - set when the loop is closed on
axis 15

A16C (BOOL) - set when the loop is closed on
axis 16
 2-52

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the
current state of the electrical E-stop status as shown below.

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical
E-stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended ladder logic for the E-stop handling of
the M_CLOSx application. Please refer to MMC2_EX.LDO for an example of
M_CLOS1 usage that applies to M_CLOS9 as well.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time at DELY is normally in the range from 500 ms to 2 sec.

On a positive transition of MSTR, this function will reset all E-stop, C-stop, and
programming errors on axes 9 through 16.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, the loops will be closed on axes 9 to 16. CLSD will be ener-
gized if one or more of axes 9 to 16 have their position loops closed. The delay
allows the drive some time to power up before it starts controlling the axis.

If an E-stop fault occurs on any of axis 9 to 16, its loop closed output (A9 to A16)
will be dropped. CLSD is true as long as one or more of axes 9 to 16 have their
position loops closed.

ESTOPACT

MACHSTRT
 P ENxx
 2-53

M_CLS101
Close Loop on Servo Axes 101-108 (17th to 24th) USER/M_INIT

<<INSTANCE NAME>>:M_CLS101(EN00 := <<BOOL>>, MSTR :=
<<BOOL>>, DELY := <<TIME>>, CLSD => <<BOOL>> A101 =>
<<BOOL>>, A102 => <<BOOL>>, A103 => <<BOOL>>, A104 =>
<<BOOL>>, A105 => <<BOOL>>, A106 => <<BOOL>>, A107 =>
<<BOOL>>, A108 => <<BOOL>>);

This function block is used to reset the E-stop, C-stop, and programming errors on
servo axes called 101 through 108 (the 17th to the 24th defined axes) when the
machine start input is pulsed. It closes the loop on servo axes 101 through 108 after
the machine start input is pulsed and a programmable time delay has elapsed. It
drops the loop closed flag if an E-stop fault occurs.

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the
current state of the electrical E-stop status as shown below.

⁄ƒƒ NAME ƒø
≥M_CLS101 ≥
≥ ≥
¥EN00 CLSD√ƒ
≥ ≥
¥MSTR A101√ƒ
≥ ≥
¥DELY A102√ƒ
≥ ≥
≥ A103√ƒ
≥ ≥
≥ A104√ƒ
≥ ≥
≥ A105√ƒ
≥ ≥
≥ A106√ƒ
≥ ≥
≥ A107√ƒ
≥ ≥
≥ A108√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution
MSTR (BOOL) - machine start input
DELY (TIME) - amount of time that will elapse after
a positive transition of MSTR until the loops will be
closed

Outputs: CLSD (BOOL) - one or more of axes 101 to 108
have their position loops closed
A101 (BOOL) - set when the loop is closed on
axis called 101 (the 17th defined axis)
A102 (BOOL) - set when the loop is closed on
axis called 102 (the 18th defined axis)
A103 (BOOL) - set when the loop is closed on
axis called 103 (the 19th defined axis)
A104 (BOOL) - set when the loop is closed on
axis called 104 (the 20th defined axis)
A105 (BOOL) - set when the loop is closed on
axis called 105 (the 21st defined axis)
A106 (BOOL) - set when the loop is closed on
axis called 106 (the 22nd defined axis)
A107 (BOOL) - set when the loop is closed on
 axis called 107 (the 23rd defined axis)
A108 (BOOL) - set when the loop is closed on
axis called 108 (the 24th defined axis)
 2-54

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical
E-stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended ladder logic for the E-stop handling of
the M_CLOSx application. Please refer to MMC2_EX.LDO for an example of
M_CLOS1 usage that applies to M_CLS101 as well.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time at DELY is normally in the range from 500 ms to 2 sec.

On a positive transition of MSTR, this function will reset all E-stop, C-stop, and
programming errors on axes 101 to 108.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, the loops will be closed on axes 101 to 108. CLSD will be
energized if one or more of axes 101 to 108 have their position loops closed. The
delay allows the drive some time to power up before it starts controlling the axis.

If an E-stop fault occurs on any of axis 101 to 108, its loop closed output
(A101 to A108) will be dropped. CLSD is true as long as one or more of axes
101 to 108 have their position loops closed.

ESTOPACT

MACHSTRT
 P ENxx
 2-55

M_CLS109
Close Loop on Servo Axes 109-116 (25th to 32nd USER/M_INIT

<<INSTANCE NAME>>:M_CLOS9(EN00 := <<BOOL>>, MSTR :=
<<BOOL>>, DELY := <<TIME>>, CLSD => <<BOOL>> A9C =>
<<BOOL>>, A10C => <<BOOL>>, A11C => <<BOOL>>, A12C =>
<<BOOL>>, A13C => <<BOOL>>, A14C => <<BOOL>>, A15C =>
<<BOOL>>, A16C => <<BOOL>>);

This function block is used to reset the E-stop, C-stop, and programming errors on
servo axes called 109 through 116 (the 25th to the 32nd defined axes) when the
machine start input is pulsed. It closes the loop on servo axes 109 through 116 after
the machine start input is pulsed and a programmable time delay has elapsed. It
drops the loop closed flag if an E-stop fault occurs.

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the
current state of the electrical E-stop status as shown below.

⁄ƒƒ NAME ƒø
≥M_CLS109 ≥
≥ ≥
¥EN00 CLSD√ƒ
≥ ≥
¥MSTR A109√ƒ
≥ ≥
¥DELY A110√ƒ
≥ ≥
≥ A111√ƒ
≥ ≥
≥ A112√ƒ
≥ ≥
≥ A113√ƒ
≥ ≥
≥ A114√ƒ
≥ ≥
≥ A115√ƒ
≥ ≥
≥ A116√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution
MSTR (BOOL) - machine start input
DELY (TIME) - amount of time that will elapse after
a positive transition of MSTR until the loops will be
closed

Outputs: CLSD (BOOL) - one or more of axes 109 to 116 have
their position loops closed
A109 (BOOL) - set when the loop is closed on
axis called 109 (the 25th defined axis)
A110 (BOOL) - set when the loop is closed on
axis called 110 (the 26th defined axis)
A111 (BOOL) - set when the loop is closed on
axis called 111 (the 27th defined axis)
A112 (BOOL) - set when the loop is closed on
axis called 112 (the 28th defined axis)
A113 (BOOL) - set when the loop is closed on
axis called 113 (the 29th defined axis)
A114 (BOOL) - set when the loop is closed on
axis called 114 (the 30th defined axis)
A115 (BOOL) - set when the loop is closed on
axis called 115 (the 31st defined axis)
A116 (BOOL) - set when the loop is closed on
axis called 116 (the 32nd defined axis)
 2-56

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical
E-stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended ladder logic for the E-stop handling of
the M_CLOSx application. Please refer to MMC2_EX.LDO for an example of
M_CLOS1 usage that applies to M_CLS109 as well.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time at DELY is normally in the range from 500 ms to 2 sec.

On a positive transition of MSTR, this function will reset all E-stop, C-stop, and
programming errors on axes 109 to 116.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, the loops will be closed on axes 109 to 116. CLSD will be
energized if one or more of axes 109 to 116 have their position loops closed. The
delay allows the drive some time to power up before it starts controlling the axis.

If an E-stop fault occurs on any of axis 109 to 116, its loop closed output
(A109 to A116) will be dropped. CLSD is true as long as one or more of axes
109 to 116 have their position loops closed.

ESTOPACT

MACHSTRT
 P ENxx
 2-57

M_CLSALL
Close Loop on Servo Axes 1-132 USER/M_INIT

<<INSTANCE NAME>>:M_CLSALL(ENxx:=1,MSTR:=<<BOOL>>,
DELY:=<<TIME>>,Clos:=<<MEMORY AREA>>,Clsd:=<<MEMORY
AREA>>,OK=><<BOOL>>);

This function block is used to reset the E-stop, C-stop, and programming errors on
the servo axes when the machine start input is pulsed. It closes the loop on servo
axes after the machine start input is pulsed and a programmable time delay has
elapsed. It drops the loop closed flag if an E-stop fault occurs. This function block
can be enabled every scan. If the enable input changes from ON to OFF during the
time delay after machine start, the function block will abort the time delay and not
close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the cur-
rent state of the electrical E-stop status as shown below.

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical
E-stop condition).

⁄ƒƒ NAME ƒø
≥M_CLS109 ≥
≥ ≥
¥ENxx OK√ƒ
≥ ≥
¥MSTR ≥
≥ ≥
¥DELY ≥
≥ ≥
¥Clos ≥
≥ ≥
¥Clsd ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - enables execution, (xx indicates
revision #)
MSTR (BOOL) - machine start input
DELY (TIME) - amount of time that will elapse after
a positive transition of MSTR until the loops will be
closed
Clos (BOOL[0..132]) - array of bools indicating
which axes should be closed.
Clsd (BOOL[0..132]) - array of bools indicating
which axes have been closed. Clsd[0] indicates if
any are closed.

Outputs: OK (BOOL) - execution complete

ESTOPACT

MACHSTRT
 P ENxx
 2-58

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time at DELY is normally in the range from 500 ms to 2 sec.

On a positive transition of MSTR, this function will reset all E-stop, C-stop, and
programming errors on the axes.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, the loops will be closed on the axes. CLSD[0] will be ener-
gized if one or more axes have their position loops closed. The delay allows the
drive some time to power up before it starts controlling the axis.

If an E-stop fault occurs on any axis, its loop closed output (CLSD[Axis]) will be
dropped. CLSD[0] is true as long as one or more of the axes have their position
loops closed.
 2-59

M_CRSFIN
Coarse, Medium and Fine Resolver USER/M_REF

<<INSTANCE NAME>>:M_CLS101(EN00 := <<BOOL>>, C_AX :=
<<USINT>>, M_AX := <<USINT>>, F_AX:= <<USINT>>, CRAT :=
<<DINT>>, MRAT := <<DINT>> OK => <<BOOL>> ERR => <<INT>>,
FPOS => <<DINT>>, CVAL => <<DINT>>, MVAL => <<DINT>>, FVAL =>
<<BOOL>>);

This function block reads coarse, medium, and fine resolvers and then part refer-
ences the fine axis to the value calculated by using coarse, medium and fine.
Three separate combinations of resolvers can be used: coarse, medium, and fine;
coarse and fine; or medium and fine.

This function block should be one-shot after the axes have been initialized by the
user's servo setup function.

The value entered at C_AX is the axis number for the coarse resolver, or 0 if you
are not using a coarse resolver.

The value entered at M_AX is the axis number for the medium resolver, or 0 if you
are not using a medium resolver.

The value entered at F_AX is the axis number for the fine resolver. This is also the
axis that will be part referenced by this function block.

⁄ƒƒ NAME ƒø
≥ M_CRSFIN≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥C_AX ERR√ƒ
≥ ≥
¥M_AX FPOS√ƒ
≥ ≥
¥F_AX CVAL√ƒ
≥ ≥
¥CRAT MVAL√ƒ
≥ ≥
¥MRAT FVAL√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

C_AX (USINT) - coarse resolver axis number

M_AX (USINT) - medium resolver axis number

F_AX (USINT) - fine resolver axis number

CRAT (DINT) - coarse to medium or coarse to

fine ratio

MRAT (DINT) - medium to fine ratio

Outputs: OK (BOOL) - execution complete without error

ERR (INT) - error number

FPOS (DINT) - position that the fine axis has
been part referenced to

CVAL (DINT) - value read from the coarse resolver

MVAL (DINT) - value read from the medium

resolver

FVAL (BOOL) - value read from the fine resolver
 2-60

The value entered at CRAT is the coarse to medium ratio if coarse, medium and
fine resolvers are being used, or the coarse to fine ratio if only coarse and fine
resolvers are being used.

The value entered at MRAT is the medium to fine ratio.

The OK output indicates execution complete without error. If the OK output is not
set, then an error has occurred and the error code will be stored in the ERR output.
A listing of possible errors is shown below:

The FPOS output will show the final value that the fine axis has been part refer-
ence to.

The CVAL output will show the value read from the coarse resolver.

The MVAL output will show the value read from the medium resolver.

The FVAL output will show the value read from the fine resolver.

ERR Description
0 No error
1 The OK from the READ_SV function for the fine axis was not set
2 The OK from the READ_SV function for the medium axis was not

set
3 The OK from the READ_SV function for the coarse axis was not

set
4 M_AX and C_AX inputs are both zero
5 M_AX was non-zero, but MRAT was zero
6 C_AX was non-zero, but CRAT was zero
7 The fine axis is moving or drifting
8 The medium axis is moving or drifting
9 The coarse axis is moving or drifting
10 The fine axis position was not between 0 and 3999
11 The medium axis position was not between 0 and 3999
12 The coarse axis position was not between 0 and 3999
13 An error occurred in the calculations for coarse, medium and fine
14 An error occurred in the calculations for coarse and fine
15 An error occurred in the calculations for medium and fine
16 The OK from the part reference function for F_AX did not get set
 2-61

M_DATCAP
Captures Axis Information USER/M_DATA

⁄ƒƒ NAME ƒø
≥ M_DATCAP≥
≥ ≥
¥EN00 IDNE√ƒ
≥ ≥
¥INIT IERR√ƒ
≥ ≥
¥SRCE ELEM√ƒ
≥ ≥
¥QTY CDNE√ƒ
≥ ≥
¥SIZE SNDE√ƒ
≥ ≥
¥STRT SFAL√ƒ
≥ ≥
¥ONCE SERR√ƒ
≥ ≥
¥SEND ≥
≥ ≥
¥RDSK ≥
≥ ≥
¥SDIR ≥
≥ ≥
¥FILE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

INIT (BOOL) - initializes data capture memory area

SRCE (STRUCT(0..7)) - defines axis number and
variable number to capture

QTY (USINT) - defines the number of variables to
capture (This is the same as the number of elements
used in the SRCE array.)

SIZE (UINT) - defines the number of samples to
be captured

STRT (BOOL) - starts data capture

ONCE (BOOL) - set to capture data once; reset
to capture data continuously

SEND (BOOL) - starts save of captured data
to RAMDISK or workstation

RDSK (BOOL) - set if data will be saved to the
RAMDISK or reset if data will be saved to the
workstation

SDIR (STRING) - the subdirectory on the
workstation or RAMDISK to send the data to (an
eight
character maximum)

FILE (STRING) - the file name that the data will be
saved as (a 12 character maximum)

Outputs: IDNE (BOOL) - initialization complete without error

IERR (USINT) - error number that occurred during
initialization

ELEM (UINT) - the element number currently
being captured

CDNE (BOOL) - capture done

SDNE (BOOL) - file send done

SFAL (BOOL) - file send failed

SERR (INT) - error number that occurred during
file send
 2-62

<<INSTANCE NAME>>:M_DATCAP (EN00 := <<BOOL>>, INIT :=
<<BOOL>>, SRCE := <<MEMORY AREA>>, QTY:= <<USINT>>, SIZE :=
<<UINT>>, STRT := <<BOOL>>, ONCE := <<BOOL>> SEND :=
<<BOOL>>, RDSK := <<BOOL>>, SDIR := <<STRING>>, FILE :=
<<STRING>>, IDNE => <<BOOL>>, IERR => <<USINT>>, ELEM =>
<<UINT>>, CDNE => <<BOOL>>, SDNE => <<BOOL>>, SFAL =>
<<BOOL>>, SERR => <<INT>>);

This function block is considered obsolete. It requires the CAP2ASC.EXE DOS
utility to extract the data captured. The M_DATCPT function block performs the
same data capture operations as M_DATCAP with the same function block inputs
and outputs except M_DATCPT creates an output file that is already in a directly
viewable ASCII text format (it is a tab-delimited variable format).

This function block captures axis information on an interrupt basis and stores it in
a structure. The structure can then be written out to a binary file on the RAMDISK
or the workstation. In order to manipulate the data, convert this binary file to an
ASCII text file using the CAP2ASC.exe which is included with the Motion ASFB
examples. On your PC, type:

CAP2ASC filename

where filename is the name you assigned to the binary file. You can then view and/
or edit this ASCII file using a text editing program or import it into a
spreadsheet.

The EN00 input of this function block should be set every scan.

On a positive transition of the INIT input, the values entered at the SRCE input are
examined. The SRCE input is an array of structures and must have the following
members:

Name Data Type Definition
SRCE STRUCT(0..7) Defines axis and variables to capture
.AXIS USINT Defines the axis to capture data for
.VAR USINT Defines the variable to capture
 2-63

The SRCE(X).VAR input must be one of the following values:

 * The variables in the READ_SV function are reported in ladder units
(LU). The variables in DATCAP function block are reported in feedback
units (FU).

If an error is found at the SRCE input, then IDNE will not be set and IERR will
hold a number describing the error that occurred. If no errors are found at the
SRCE input, then IDNE will be set. A listing of possible errors at IERR are shown
below:

SRCE(X).VAR Definition
1 Actual Position (variable 1 of READ_SV)*
2 Fast input occurred
3 Commanded position (variable 3 of READ_SV)*
4 Position error (variable 4 of READ_SV)*
5 Filter error (variable 5 of READ_SV)*
6 Command change (variable 6 of READ_SV)*
7 Position change (variable 7 of READ_SV)*
8 Feedback position (variable 8 of READ_SV)*
9 Prefilter commanded
10 Prefilter command change
11 Remaining master offset
12 Remaining slave offset

IERR Description
0 No error
1 The function block has not stopped capturing data from a previous

data capture initialization.
2 An axis number in the structure is invalid
3 The limit of eight variables in the array of structures has been

exceeded.
4 Parameter number in the structure is out of range.
5 The initialization was done before the STRTSERV function was

called.
6 Reserved
7 Reserved
8 Reserved
9 The total number of bytes to capture exceeds 7992.
 2-64

The QTY input defines the number of variables that will be captured. This is the
same as the number of array elements used in the SRCE input.

The SIZE input defines the number of samples to capture.

When the STRT input is on, if ONCE is also on, the data will be captured once.
When the STRT input is on, if ONCE is off, then the data will be captured continu-
ously until the STRT input drops.

While the data is being captured, the ELEM output will show the current element
number being captured. When data capture is complete, the CDNE output will be
set.

Once the data has been captured, it can be sent to a file on the RAMDISK or work-
station. The data will be sent when the SEND input is pulsed. If the RDSK input is
ON when the SEND input is pulsed, then the captured data will be sent to the
PiC900 RAMDISK. If the RDSK input is OFF when the SEND input is pulsed,
then the captured data will be sent to the workstation C: drive.

The file will be saved with the name entered at FILE. This must be of the form
FILENAME.EXT.

The SDIR input defines the subdirectory where the file will be located. The subdi-
rectory must not exceed eight characters.

When the file has been successfully sent, the SDNE output will be set. If an error
occurred in writing the file, then SFAL will be set and SERR will contain a number
describing the error that occurred. A list of errors is shown below:

SERR Description
0 No error

1 to 99 Error occurred on file open
101 to 199 Error occurred on file write
201 to 299 Error occurred on file write
301 to 399 Error occurred on file write
401 to 499 Error occurred on file write
501 to 599 Error occurred on file close
 2-65

M_DATCPT
Capture Axis data to file USER/M_DATA

⁄ƒƒ NAME ƒø
≥ M_DATCPT≥
≥ ≥
¥EN00 IDNE√ƒ
≥ ≥
¥INIT IERR√ƒ
≥ ≥
¥SRCE ELEM√ƒ
≥ ≥
¥QTY CDNE√ƒ
≥ ≥
¥SIZE SNDE√ƒ
≥ ≥
¥STRT SFAL√ƒ
≥ ≥
¥ONCE SERR√ƒ
≥ ≥
¥SEND ≥
≥ ≥
¥RDSK ≥
≥ ≥
¥SDIR ≥
≥ ≥
¥FILE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

INIT (BOOL) - initializes data capture memory area

SRCE (STRUCT(0..7)) - defines axis number and
variable number for each item to capture

QTY (USINT) - number of variables to capture
(This is the same as the number of elements
used in the SRCE array.)

SIZE (UINT) - number of samples to be captured

STRT (BOOL) - starts the data capture

ONCE (BOOL) - set to capture data once; reset
to capture data continuously

SEND (BOOL) - starts save of captured data
to specified file

RDSK (BOOL) - set if data will be saved to the
RAMDISK or reset if data will be saved to the
PC hard disk.

SDIR (STRING) - name of subdirectory (an eight
character maximum)

FILE (STRING) - the file name that the data will be
saved as (8.3 format)

Outputs: IDNE (BOOL) - initialization complete without error

IERR (USINT) - initialization error number

ELEM (UINT) - the element number currently
being captured

CDNE (BOOL) - capture done

SDNE (BOOL) - file send done

SFAL (BOOL) - file send failed

SERR (INT) - error number that occurred during
file send
 2-66

<<INSTANCE NAME>>:M_DATCPT (EN00 := <<BOOL>>, INIT :=
<<BOOL>>, SRCE := <<MEMORY AREA>>, QTY:= <<USINT>>, SIZE :=
<<UINT>>, STRT := <<BOOL>>, ONCE := <<BOOL>> SEND :=
<<BOOL>>, RDSK := <<BOOL>>, SDIR := <<STRING>>, FILE :=
<<STRING>>, IDNE => <<BOOL>>, IERR => <<USINT>>, ELEM =>
<<UINT>>, CDNE => <<BOOL>>, SDNE => <<BOOL>>, SFAL =>
<<BOOL>>, SERR => <<INT>>);

This function block captures axis information on an interrupt basis and stores it in
a structure. The structure can then be written out to a text file on the RAMDISK or
the workstation. This text file is directly viewable with any text editor. It is also tab
delimited so its possible to import it into some spreadsheet applications. This func-
tion block provides simpler control of CAPTINIT and CAPSTAT. Both of these
standard functions are documented in the PiCPro Function Block Reference Guide
and in on-line Help.

The EN00 input of this function block should be set every scan.

On a positive transition of the INIT input, the values entered at the SRCE input are
examined. The SRCE input is an array of structures and must have the following
members:

The SRCE(X).VAR input must be one of the following values:

Name Data Type Definition
SRCE STRUCT(0..7) Defines axis and variables to capture
.AXIS USINT Defines the axis to capture data for
.VAR USINT Defines the variable to capture

SRCE(X).VAR Definition
1 Actual Position (variable 1 of READ_SV)*
2 Fast input occurred
3 Commanded position (variable 3 of READ_SV)*
4 Position error (variable 4 of READ_SV)*
5 Filter error (variable 5 of READ_SV)*
6 Command change (variable 6 of READ_SV)*
7 Position change (variable 7 of READ_SV)*
8 Feedback position (variable 8 of READ_SV)*
9 Prefilter commanded position
10 Prefilter command change
11 Remaining master offset
12 Remaining slave offset
 2-67

* The variables in the READ_SV function are reported in ladder units (LU). The
variables in DATCAP function block are reported in feedback units (FU).

If an error is found at the SRCE input, then IDNE will not be set and IERR will
hold a number describing the error that occurred. If no errors are found at the
SRCE input, then IDNE will be set. A listing of possible errors at IERR are shown
below:

The QTY input defines the number of variables that will be captured. This is the
same as the number of array elements used in the SRCE input.

The SIZE input defines the number of samples to capture.

When the STRT input is on, if ONCE is also on, the data will be captured once.
When the STRT input is on, if ONCE is off, then the data will be captured continu-
ously until the STRT input drops.

While the data is being captured, the ELEM output will show the current element
number being captured. When data capture is complete, the CDNE output will be
set.

Once the data has been captured, it can be sent to a file on the RAMDISK or work-
station. The data will be sent when the SEND input is pulsed. If the RDSK input is
ON when the SEND input is pulsed, then the captured data will be sent to the
PiC900 RAMDISK. If the RDSK input is OFF when the SEND input is pulsed,
then the captured data will be sent to the workstation C: drive.

13 Command change (variable 6 of READ_SV)
14 Position change (variable 7 of READ_SV)
15 Prefilter command change

IERR Description
0 No error
1 The function block has not stopped capturing data from a previous

data capture initialization.
2 An axis number in the structure is invalid
3 The limit of eight variables in the array of structures has been

exceeded.
4 Parameter number in the structure is out of range.
5 The initialization was done before the STRTSERV function was

called.
6 Reserved
7 Reserved
8 Reserved
9 The total number of bytes to capture exceeds 7992.
 2-68

The file will be saved with the name entered at FILE. This must be of the form
FILENAME.EXT.

The SDIR input defines the subdirectory where the file will be located. The subdi-
rectory must not exceed eight characters.

When the file has been successfully sent, the SDNE output will be set. If an error
occurred in writing the file, then SFAL will be set and SERR will contain a number
describing the error that occurred. A list of errors is shown below:

SERR Description
0 No error

1 to 99 Error occurred on file open.
(See Appendix B in the online help)

101 to 199 Error occurred on file write
201 to 299 Error occurred on file close
 2-69

M_DISMV1
Performs and Monitors Distance Moves USER/M_MOVE

<<INSTANCE NAME>>:M_DISMV1(ENxx := <<BOOL>>, AXIS :=
<<USINT>>, DIST := <<DINT>>, RATE := <<UDINT>>, WTIP :=
<<BOOL>>, OK => <<BOOL>>, DONE => <<BOOL>>, FAIL =>
<<BOOL>>, MVIP => <<BOOL>>, QUE => <<USINT>>, MVIQ =>
<<BOOL>>);

This block will initiate and track progress on a Distance move for the specified
axis. It is mainly intended for use in sequential move applications where each
move is followed by another non motion or different axis action. In these situa-
tions, the move will typically become active immediately.

However, the block will queue a move as long as a queue is available and it will
start when the active move completes.

E-stops and C-stops will cause the motion being monitored by the block to end. In
these cases, the OK output will go off and the FAIL output will come on. The
DONE output will stay off.

Aborts will also cause the move to terminate. The block cannot tell that an Abort
has been done, and the OK and DONE outputs will come on in these cases. There
is also one specific case where the MVIQ output will stay on incorrectly. This will
occur if a move triggered by this block is in the queue and it is aborted and another
Distance move is started before this block runs.

⁄ƒ NAME ƒƒø
≥ M_DISMV1≥
≥ ≥
¥ENxx OK√ƒ
≥ ≥
¥AXIS DONE√ƒ
≥ ≥
¥DIST FAIL√ƒ
≥ ≥
¥RATE MVIP√ƒ
≥ ≥
¥WTIP QUE√ƒ
≥ ≥
≥ MVIQ√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - Enables execution (one shot)

AXIS (USINT) - Axis number

DIST (DINT) - Incremental Distance to move in LU

RATE (UDINT) - Feed rate in LU / minute

WTIP (BOOL) - Wait for In Position signal before
completing

Outputs: OK (BOOL) - Command was accepted

DONE (BOOL) - Distance move is complete

FAIL (BOOL) - No queue available or move is E-
stopped or C-stopped

MVIP (BOOL) - Distance move is in progress

QUE (USINT) - Queue number for move

MVIQ (BOOL) - Queued waiting for active move to
end
 2-70

INPUTS:

ENxx - (BOOL) one shot to trigger move

AXIS - (USINT) axis number to position

DIST - (DINT) Incremental Distance to move in LU

RATE - (UDINT) feed rate for move in LU / Minute

WTIP - (BOOL) wait for in position. If this is on, the DONE output will not turn
on until the axis is within the in position band. If off, DONE will turn on when the
command position stops iterating. If a move is in the queue behind this move, then
this setting has no effect and the DONE will be on when the move stops iterating.

OUTPUTS:

OK - (BOOL) turns on if move is accepted and goes off if move does not complete
normally

DONE - (BOOL) turns on when move completes, turns off when new move started

FAIL - (BOOL) on if move stopped due to E or C stop or no queue is available
when EN turns on

MVIP - (BOOL) distance move is in progress

QUE - (USINT) queue number for distance move

MVIQ - (BOOL) move is in queue waiting for active move to end
 2-71

M_DNJOGC
Jog DeviceNet Axis USER/M_DEVNET

<<INSTANCE NAME>>:M_DNJOGC (EN00 := <<BOOL>>, JPLS :=
<<BOOL>>, JMNS := <<BOOL>>, RATE:= <<DINT>>, WDB :=
<<BOOL>>, ZERV := <<BOOL>>, OK => <<BOOL>>, JACT =>
<<BOOL>>, WRC => <<BOOL>>, CDI0 => <<BOOL>>, CDI1 =>
<<BOOL>>, CDI2 => <<BOOL>>, CMD => <<DWORD>>);

This function block is used to allow a manual jog (move at a velocity) of a Centu-
rion DeviceNet Drive axis.

Before this function block can be used, the axis must be enabled and placed into
servo lock.

If the enable is active, triggering job plus (JPLS) or jog minus (JMNS) input will
cause the specified DeviceNet axis to move at the indicated rate in the correspond-
ing direction. When the input is deactivated, motion will stop.

This function block should be used only to allow an operator to manually move an
axis on a machine. It is not designed for any other purpose.

Important - If the enable is disabled while a move is underway the axis will con-
tinue to move until the jog switch is deactivated.

The JPLS input enables a move in the positive direction for the selected axis. The
JMNS input enables a move in the negative direction for the selected axis.

⁄ƒƒ NAME ƒø
≥ M_DNJOGC≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥JPLS JACT√ƒ
≥ ≥
¥JMNS WRC√ƒ
≥ ≥
¥RATE CDI0√ƒ
≥ ≥
¥WDB CDI1√ƒ
≥ ≥
¥ZERV CDI2√ƒ
≥ ≥
≥ CMD√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

JPLS (BOOL) - jog in the PLUS direction (CW)

JMNS (BOOL) - jog in the MINUS direction (CCW)

RATE (DINT) - rate or velocity (programmed as
RPM * 65536)

WDB (BOOL) - DeviceNet write data busy flag

ZERV (BOOL) - axis zero velocity - axis has stopped

Outputs: OK (BOOL) - function block is active

JACT (BOOL) - axis jog is active

WRC (BOOL) - write data/command to the drive

CDI0 (BOOL) - command data index - bit 0

CDI1 (BOOL) - command data index - bit 1

CDI2 (BOOL) - command data index - bit 2

CMD (DWORD) - command data value
 2-72

Rate is programmed in RPM * 65,536. An example: for 100 RPM, Rate =
6553600. If both the JPLS and the JMNS inputs are set; motion will stop until both
inputs are dropped and one is again selected.
 2-73

M_DNPOSC
Move DN Axis to Position USER/M_DEVNET

<<INSTANCE NAME>>:M_DNPOSC (EN00 := <<BOOL>>, STRT :=
<<BOOL>>, RATE := <<DINT>>, POS := <<DINT>>, ABSO := <<BOOL>>,
ABSO := <<BOOL>>, FDBK := <<DWORD>>, WDB := <<BOOL>>, ZERV
:= <<BOOL>>, INPPO := <<BOOL>>, HOME := <<BOOL>>, OK =>
<<BOOL>>, STAT => <<INT>>, STRI => <<BOOL>>, WRC => <<BOOL>>,
CDI0 => <<BOOL>>, CDI1 => <<BOOL>>, CDI2 => <<BOOL>>; CDI3 =>
<<BOOL>>, CDI4 => <<BOOL>>, CMD => <<BOOL>>);

⁄ƒƒ NAME ƒø
≥ M_DNPOSC≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥STRT STAT√ƒ
≥ ≥
¥RATE STRI√ƒ
≥ ≥
¥POS WRC√ƒ
≥ ≥
¥ABSO CDI0√ƒ
≥ ≥
¥FDBK CDI1√ƒ
≥ ≥
¥WDB CDI2√ƒ
≥ ≥
¥ZERV CDI3√ƒ
≥ ≥
¥INPO CDI4√ƒ
≥ ≥
¥HOME CMD√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

STRT (BOOL) - start the axis move

RATE (DINT) - rate or velocity (programmed as
RPM * 65536)

POS (DINT) - command position in FU

ABSO (BOOL) - absolute or incremental position
(set indicates absolute)

FDBK (DWORD) - actual position (feedback) from
the drive

WDB (BOOL) - DeviceNet write data busy flag

ZERV (BOOL) - axis is at zero velocity - axis has
stopped

INPO (BOOL) - axis is in position - axis is at its
commanded
position

HOME (BOOL) - axis is homed

Outputs: OK (BOOL) - function block is active

STAT (INT) - axis status value

STRI (BOOL) - start move indicator

WRC (BOOL) - write data/command to the drive

CDI0 (BOOL) - command data index - bit 0

CDI1 (BOOL) - command data index - bit 1

CDI2 (BOOL) - command data index - bit 2

CDI3 (BOOL) - command data index - bit 3

CDI4 (BOOL) - command data index - bit 4 (not
used)

CMD (DWORD) - command data value
 2-74

This function block is used to allow a position / index move with a Centurion
DeviceNet Drive axis.

Before this function block can be used, the axis must be enabled and placed into
servo lock.

If the enable is active, triggering (STRT) input will cause the specified DeviceNet
axis to move at the indicated rate to the position endpoint (POS). The axis will
travel an incremental distance if the ABSO input is deactivated. The axis will
travel to an absolute position if the ABSO input is activated.

Important - If the enable is disabled while a move is underway, the axis will con-
tinue to move until it has reached its endpoint.

The Position command (POS) is entered in feedback counts. (Example: for an
8000 counts/rev encoder and an incremental move, Position = 16000 will result in
a move of 2 revolutions).

Rate is programmed in RPM * 65,536. For example, for 100 RPM, Rate =
6553600.

The axis status (STAT) will indicate the status of the axis based on the following
code:

1 = Axis is Positioning

2 = Absolute mode: the command is equal to current position

3 = Incremental mode: the command is equal to zero

4 = Rate is equal to zero

5 = Absolute mode and axis is not Homed
 2-75

M_DNSTAT
DeviceNet Module Status USER/M_DEVNET

<<INSTANCE NAME>>:M_DNSTAT (EN00 := <<BOOL>>, SLOT :=
<<USINT>>, OK => <<BOOL>>, FAIL =>, <<BOOL>>, ONLI =>
<<BOOL>>, NSC => <<BYTE>>, IFSC => <<BYTE>>, WARN =>
<<BOOL>>, NPWR => <<BOOL>>, NBUS => <<BOOL>>, EVLO =>);

This function block obtains the DeviceNet network and interface status conditions.
Those conditions are presented in outputs as bytes and booleans.

ONLI is set if the DeviceNet module is communicating with nodes.

NSC is the status of the DeviceNet module network interface.

0 = network interface is offline.

1 = network interface is offline due to a network fault.

2 = network interface is offline due to a configuration fault.

3 = network interface is online and no faults are detected.

4 = network interface is online but one or more network services have failed.

5 = network interface is online and is exchanging data; no faults are detected.

6 = network interface is online and is exchanging data; one or more network ser-
vices is receiving an idle indication; no faults are detected.

7 = network interface is online but one or more previously active network services
have been suspended; no faults are detected.

⁄ƒƒ NAME ƒø
≥ M_DNSTAT≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥SLOT FAIL√ƒ
≥ ≥
≥ ONLI√ƒ
≥ ≥
≥ NSC√ƒ
≥ ≥
≥ IFSC√ƒ
≥ ≥
≥ WARN√ƒ
≥ ≥
≥ NPWR√ƒ
≥ ≥
≥ NBUS√ƒ
≥ ≥
≥ EVLO√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

SLOT (USINT) - slot number for the DeviceNet
module

Outputs: OK (BOOL) - execution complete

FAIL (BOOL) - failure getting the DeviceNet status

ONLI - (BOOL) - DeviceNet module is online

NSC (BYTE) - DeviceNet Network Status Code

IFSC (BYTE) - DeviceNet Interface Status Code

WARN (BOOL) - DeviceNet communication error
warning

NPWR (BOOL) - No DeviceNet bus power

NBUS (BOOL) - No DeviceNet bus connection

EVLO (BOOL) - DeviceNet event was lost due to
full event
queue
 2-76

IFC is the status of the DeviceNet module data exchange interface.

0 = data exchange interface is closed.

1 = data exchange interface is open

2 = data exchange interface is faulted due to a "heartbeat" timeout.

WARN is set when the communication warning threshold has been exceeded.

NPWR is set when DeviceNet bus power is not present.

NBUS is set when DeviceNet bus is not connected.

EVLO is set when an event was lost due to a full event queue in the DeviceNet
module. This flag is cleared when the DeviceNet interface is closed (FB_CLS).

For more information regarding how this information is gathered or the meaning
of any of the outputs, consult the FB_STA function description.
 2-77

M_DSMCOM
Centurion DSM Serial Communication USER/M_DRVCOM

<<INSTANCE NAME>>:M_DSMCOM (EN00 := <<BOOL>>, PORT :=
<<STRING>>, ADDR := <<USINT>>, INIT := <<BOOL>>, SEND :=
<<BOOL>>, CMD := <<UINT>>, WDAT := <<MEMORY AREA>>, DONE
=> <<BOOL>>, FAIL => <<BOOL>>, FERR => <<UINT>>, DERR =>
<<UINT>>, RNUM => <<USINT>>);

The M_DSMCOM function block allows the PiC to interface with from 1 to 32
Centurion DSM100 servo drives via RS232 or RS422/RS485 serial communica-
tion links. With this function block, various drive parameters can be read and writ-
ten. These parameters are listed in Appendix A.

⁄ƒƒ NAME ƒø
≥ M_DSMCOM≥
≥ ≥
¥EN00 DONE√ƒ
≥ ≥
¥PORT FAIL√ƒ
≥ ≥
¥ADDR FERR√ƒ
≥ ≥
¥INIT OERR√ƒ
≥ ≥
¥SEND DERR√ƒ
≥ ≥
¥CMD RNUM√ƒ
≥ ≥
¥WDAT ≥
≥ ≥
¥WNUM ≥
≥ ≥
¥RDAT ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

PORT (STRING) - identifies the serial
communication port

ADDR (USINT) - identifies the Centurion servo

drive address

INIT (BOOL) - (one-shot) initializes M_DSMCOM

SEND (BOOL) - (one-shot) executes read or write
command

CMD (UINT) - command to execute

WDAT (memory area) source of data for the write

command
memory area is a STRING, ARRAY, or
STRUCTURE

WNUM (USINT) - number of bytes of data in

WDAT

RDAT (memory area) - destination of data returned
by the read command
memory area is a STRING, ARRAY, or
STRUCTURE

Outputs: DONE (BOOL) - command executed without error

FAIL (BOOL) - command encountered an error

FERR (UINT) - PiC format error number

OERR (UINT) - operation error number

DERR (UINT) - Centurion drive error number

RNUM (USINT) - number of bytes of data in RDAT
 2-78

Inputs

The EN00 input of this function block should be set every scan.

The PORT input identifies the serial communication port. If the PiC user port is
used, the reserved name USER:$00 is entered. If a serial communication module is
used, the name assigned to the port by the ASSIGN function block should be
entered. The string can be no longer than 10 characters, with up to eight characters
for the name followed by a ":" and the null character"$00".

The ADDR input identifies the Centurion servo drive address. The drive address is
set using the sixteen position rotary addressing switch on the drive or via software
using DSMPro. The range is 0 to 32.

The INIT input initializes the M_DSMCOM function block. The DONE output
will be set when the initialization has successfully completed. This initialization
must be executed before a read or write is executed.

The SEND input executes a read or write command.

To execute a read command:

1. Move the command number into the CMD input.

2. One-shot the SEND input.

When the DONE output goes high:

• RDAT will hold the data read.

• RNUM will hold the number of bytes of data read.

To execute a write command:

1. Move the command number into the CMD input.

2. Move the data to write into the WDAT input.

3. Move the number of bytes of data into the WNUM input.

4. One-shot the SEND input.

When the DONE output goes high, the command is complete.

NOTE: Never send a new command until any previous command or initialization
has completed. Completion is indicated by the DONE (or FAIL) output going high.

The CMD input specifies which read or write command to execute. See Appendix
A for a list of all the available commands.
 2-79

The WDAT input is the data to be written to the drive. The type and number of data
depends on the write command being executed. There are two ways to handle the
data to this input:

1. If your application will only be writing one specific command or different
commands that are all the same data type, use a structure whose member(s)
is/are the correct data type(s) to be sent.
For example, the write command 0DDH Analog Output Write Value
expects an unsigned byte value followed by a signed word value. With this
command, you could enter a structure at the WDAT input whose first mem-
ber is an USINT and whose second member is an INT.

2. If your application will be writing different commands that are different
data types, use a structure with one member that is the largest data type and
use the PiCPro datatype conversion functions to convert any data to the
data type of the structure member before sending the data.

The WNUM input is the number of bytes of data in WDAT.

The RDAT input is the data read from the drive. Following the successful comple-
tion of a read command, the memory area pointed to by the RDAT input holds the
data read from the drive. The RNUM output will indicate the number of bytes of
data read. The type and number of data depends on the read command being exe-
cuted. Again, there are two ways to handle this data.

1. If your application will only be reading one specific command or different
commands that are all the same data type, use a structure whose member(s)
is/are the correct data type(s) to be sent.
For example, the read command 042H Gear Ratio reads two signed word
values. With this command, you could enter a structure at the RDAT input
with two INT members.

2. If your application will be reading different commands that are different
data types, use a structure with one member that represents the largest data
type and use the PiCPro conversion functions to convert any data to its cor-
rect data type after reading it.

Outputs

The DONE output will be set if the initialization or a read or write command is
completed successfully. The FAIL output will be set if an error occurs during the
execution of the initialization or a read or write command.

The FERR output will identify errors encountered by the M_DSMCOM function
block when using the PiC serial communications function blocks. The OERR out-
put will identify errors detected when a read or write command is executed. They
are described below.

OERR Description
0 No error
 2-80

The DERR output will identify errors reported by the Centurion drive in a
response to a command. They are described below.

The RNUM output indicates the number of bytes of data in RDAT after a read
command has executed.

Application Notes

1. The M_DSMCOM function block must only be entered in the LDO once
for each serial port being used.

2. A read or write command must not be attempted until the function block
initialization is complete.

3. A read or write command must not be attempted until a previous read or
write command is complete.

4. If no data is being sent with a command (which is the normal mode for
most read commands), the WNUM input must be zero.

1 Checksum error - invalid checksum in the drive response
2 Timeout error - drive did not respond in time
3 Read or write attempted before initialization
4 Invalid PORT name
5 CMD input out of range
6 ADDR input out of range
7 WNUM input out of range
8 Invalid address in drive response
9 Invalid function in drive response
10 Invalid data in drive response
11 Invalid drive response

DERR Description
0 No error
1 Invalid data
2 Command not enabled
3 EEPROM write error
4 Data accepted after limiting to minimum
5 Data accepted after limiting to maximum
6 Command disabled when drive is enabled
7 Flash programming error
8 Invalid function code
9 Command disabled when drive is disabled
 2-81

Connections

RS232 Connections

In single drive applications where the communications link is less than 50 feet, a
three wire RS232 serial communication link may be used. The pinout is shown
below.

RS422/RS485 Connections

Typically, the M_DSMCOM function block will be used with RS422/RS485 serial
communication. RS422/RS485 provides superior noise immunity, allows commu-
nication links greater than 50 feet, and allows multiple drive connections to one
PiC. A four wire daisy chain connection is made between a PiC Serial Communi-
cations Module and the DSM100 drives.

Example LDO with the M_DSMCOM Function Block

 Please refer to the example ASFB M_DSM_EX.LDO ladder.

Drive J5 Serial Port
9-pin D Connector

PiC User Port
10-pin Screw Terminal Connector

2 RCV 10 TD
3 XMT 9 RD
5 COM 8 GRD

������
���	

��

���
���������

��������

��������

	��
����

���
���

������

���	

��

���
���������

��������

��������

	��
����

���
���

��
������� �

� !��������� �

��"!���
#������	�

��

��

$�

��

������������		��#���"

�

��	%�&���

��	%�&���

��	%�&���

��	%�&��

��'��������	

��# �����������(#��#� !���)��

��������"�������#���"��*��#��"���+��#��������������,��
 2-82

M_DW2BOO
Convert DWORD to BOOLs USER/M_COMMON

⁄ƒƒ NAME ƒø
≥M_DW2BOO ≥
≥ ≥
¥EN00 OK√ƒ
¥IN O0√ƒ
≥ O1√ƒ
≥ O2√ƒ
≥ O3√ƒ
≥ O4√ƒ
≥ O5√ƒ
≥ O6√ƒ
≥ O7√ƒ
≥ O8√ƒ
≥ O9√ƒ
≥ O10√ƒ
≥ O11√ƒ
≥ O12√ƒ
≥ O13√ƒ
≥ O14√ƒ
≥ O15√ƒ
≥ O16√ƒ
≥ O17√ƒ
≥ O18√ƒ
≥ O19√ƒ
≥ O20√ƒ
≥ O21√ƒ
≥ O22√ƒ
≥ O23√ƒ
≥ O24√ƒ
≥ O25√ƒ
≥ O26√ƒ
≥ O27√ƒ
≥ O28√ƒ
≥ O29√ƒ
≥ O30√ƒ
≥ O31√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

IN (DWORD) - the data to convert

Outputs: OK (BOOL) - execution complete
O0 (BOOL) - bit 0 of IN (least significant bit of IN)
O1 (BOOL) - bit 1 of IN
O2 (BOOL) - bit 2 of IN
O3 (BOOL) - bit 3 of IN
O4 (BOOL) - bit 4 of IN
O5 (BOOL) - bit 5 of IN
O6 (BOOL) - bit 6 of IN
O7 (BOOL) - bit 7 of IN
O8 (BOOL) - bit 8 of IN
O9 (BOOL) - bit 9 of IN
O10 (BOOL) - bit 10 of IN
O11 (BOOL) - bit 11 of IN
O12 (BOOL) - bit 12 of IN
O13 (BOOL) - bit 13 of IN
O14 (BOOL) - bit 14 of IN
O14 (BOOL) - bit 15 of IN
O16 (BOOL) - bit 16 of IN
O17 (BOOL) - bit 17 of IN
O18 (BOOL) - bit 18 of IN
O19 (BOOL) - bit 19 of IN
O20 (BOOL) - bit 20 of IN
O21 (BOOL) - bit 21 of IN
O22 (BOOL) - bit 22 of IN
O23 (BOOL) - bit 23 of IN
O24 (BOOL) - bit 24 of IN
O25 (BOOL) - bit 25 of IN
O26 (BOOL) - bit 26 of IN
O27 (BOOL) - bit 27 of IN
O28 (BOOL) - bit 28 of IN
O29 (BOOL) - bit 29 of IN
O30 (BOOL) - bit 30 of IN
O31 (BOOL) - bit 31 of IN (most significant bit)
 2-83

<<INSTANCE NAME>>:M_DW2BOO(EN00 := <<BOOL>>, IN :=
<<DWORD>>, O0 => <<BOOL>> O1 => <<BOOL>>, O2 => <<BOOL>>, O3
=> <<BOOL>>, O4 => <<BOOL>>, O5 => <<BOOL>>, O6 => <<BOOL>>,
O7 => <<BOOL>>, O8 => <<BOOL>>, O8 => <<BOOL>> O9 =>
<<BOOL>>, O10 => <<BOOL>>, O11 => <<BOOL>>, O12 => <<BOOL>>,
O13 => <<BOOL>>, O14 => <<BOOL>>, O15 => <<BOOL>>, O16 =>
<<BOOL>>, O17 => <<BOOL>> O18 => <<BOOL>>, O19 => <<BOOL>>,
O20 => <<BOOL>>, O21 => <<BOOL>>, O22 => <<BOOL>>, O23 =>
<<BOOL>>, O24 => <<BOOL>>, O25 => <<BOOL>>, O26 => <<BOOL>>
O27 => <<BOOL>>, O28 => <<BOOL>>, O29 => <<BOOL>>, O30 =>
<<BOOL>>, O31 => <<BOOL>>);

This function block converts a DWORD to 32 BOOLs.
 2-84

M_ERROR
Axis Error Checking USER/M_DATA

<<INSTANCE NAME>>:M_ERROR(EN01 := <<BOOL>>, AXIS :=
<<USINT>>, OK => <<BOOL>> ESTO => <<BOOL>>, CSTO =>
<<BOOL>>, PSTO => <<BOOL>>, E_ER => <<WORD>>, C_ER =>
<<WORD>>, P_ER => <<WORD>>);

This function block is used to report servo E-stop, C-stop and programming error
conditions in the ladder. These conditions may be caused by the servo software or defined
by the programmer. If defined by the programmer they will be triggered using the E-
STOP or C_STOP functions. All of these errors for the defined axis are reported in one
location

The enable input of this function should be directly connected to the rail with a
wire, causing this function block to be executed each scan.

The boolean outputs can be used as flags in the ladder to report error conditions.

The word outputs can be converted to a HEX display by using the Module Monitor
Edit View List command and inserting the variables. An option will be given on
the format to display them. The variable’s value during animation will be dis-
played in HEX format if the variable provided has 16#0 for its initial value. The
default format during animation is decimal.

After monitoring them in HEX, referring to the tables in the manual of functions
E_ERRORS, C_ERRORS and P_ERRORS will help identify the exact problem.

⁄ƒƒ NAME ƒø
≥ M_ERROR ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
¥AXIS ESTO√ƒ
≥ ≥
≥ CSTO√ƒ
≥ ≥
≥ PSTO√ƒ
≥ ≥
≥ E_ER√ƒ
≥ ≥
≥ C_ER√ƒ
≥ ≥
≥ P_ER√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

AXIS (USINT) - identifies axis

Outputs: OK (BOOL) - execution complete

ESTO (BOOL) - indicates an E-stop is active
when set

CSTO (BOOL) - indicates an C-stop is active
when set

PSTO (BOOL) - indicates a programming error
has occurred when set

E_ER (WORD) - identifies E-stop errors

C_ER (WORD) - identifies C-stop errors

P_ER (WORD) - identifies programming errors
 2-85

M_FHOME
Performs a Home Cycle using a Fast Reference USER/M_REF

<<INSTANCE NAME>>:M_FHOME(EN01 := <<BOOL>>, STRT :=
<<USINT>>, AXIS := <<USINT>> PLUS := <<BOOL>>, RATE :=
<<UDINT>>, DIM := <<DINT>>, OPTN := <<WORD>>, BKOF :=
<<BOOL>>, HOME := <<BOOL>>, HDIM := <<DINT>>, HCMP =>
<<BOOL>>, HACT => <<BOOL>>, QUE => <<USINT>>, SWPO =>
<<DINT>>, ERR => <<BYTE>>,);

This function block performs a fast reference cycle on an axis, followed by a hom-
ing (position) move to a designated location.

Before this function can be used, the axis must be initialized and the position loop
closed.

⁄ƒƒ NAME ƒø
≥ M_FHOME ≥
≥ ≥
¥EN01 HCMP√ƒ
≥ ≥
¥STRT HACT√ƒ
≥ ≥
¥AXIS QUE√ƒ
≥ ≥
¥PLUS SWPO√ƒ
≥ ≥
¥RATE ERR√ƒ
≥ ≥
¥DIM ≥
≥ ≥
¥OPTN ≥
≥ ≥
¥BKOF ≥
≥ ≥
¥HOME ≥
≥ ≥
¥HDIM ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

STRT (BOOL) - enables the home cycle

AXIS (USINT) - identifies axis

PLUS (BOOL) - indicates direction of home cycle

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

DIM (DINT) - reference dimension for the nearest
resolver null or the next encoder index mark when
the reference switch is set (entered in LUs)

OPTN (WORD) - provides referencing options (0 or
1) 0=No option 1=Ignore index or null

BKOF (BOOL) - selects backoff of reference switch
option

HOME (BOOL) - selects homing after referencing
option

HDIM (DINT) - home location to move to after
reference is complete

Outputs: HCMP (BOOL) - home cycle is complete

HACT (BOOL) - home cycle is being executed

QUE (USINT) - number of move for queue

SWPO (DINT) - distance in feedback units (FUs)
from the reference switch to the index mark of an
encoder or the null of a resolver

ERR (BYTE) - report an error 1-4 if input data is
invalid
 2-86

The reference cycle will cause the selected axis to move in the designated direction
until the reference switch is sensed. In a fast reference this reference switch is
wired to the fast input of the selected axis on the feedback module in the PiC900.
When the fast input occurs, the position of the axis is latched by the hardware on
the encoder module independent of the ladder scan. When the reference switch is
sensed the axis will reference (assign a value) to the next index mark of an encoder
or the nearest null of a resolver. After the value is assigned, the axis will decelerate
to a stop and set the reference done flag.

If the HOME input is on when the reference done has been sensed, the home move
will automatically be triggered to position the axis at a desired location.

If the BKOF input is on when the reference is requested, and the axis is on the ref-
erence switch, the axis will move in the opposite direction until the reference
switch opens and will then move back onto the reference switch. If the BKOF
input is not on the axis will move in the specified direction until it sees an off to on
transition of the limit switch.

This function block is used to perform a fast reference, immediately followed by a
position move to a selected home position. It should be executed every scan unless
a home cycle will only be performed when the machine is started. In that case a
normally closed contact of the output of HCMP may be used.

The inputs to this function block are basically the same as for the FAST_REF func-
tion. There are three additional inputs listed below.

The BKOF input selects the backoff reference switch option.

The HOME input selects the homing after referencing option.

The HDIM input assigns the home dimension to move to.

If the axis is sitting on the limit switch when the home cycle is requested, and the
BKOF input is on, the axis will move in the opposite direction of that indicated by
the PLUS input until the switch opens and then will complete the home cycle in
the normal manner.
 2-87

The SWPO output is used to determine if the reference switch location will allow
for repeatable referencing. If the reference switch is not properly located in rela-
tionship to the index marker of an encoder or the null of a resolver it could possi-
bly reference a revolution off. To prevent this, the value reported by this output
should be as follows:

• For an encoder system the value of this output should be greater than 25%
and less than 75% of the total counts (FUs) per revolution. Example: For
8000 FUs/Rev, the value should be >2000 and <6000.

• For a resolver system the value of this output should be less than 25% or
greater than 75% of the total counts (FUs) per revolution. Example: For
4000 FUs/Rev, the value should be <1000 or >3000.

If the value is out of range either the reference switch will have to be moved or the
transducer coupling shifted.

The ERR output indicates that invalid data was entered on one of the inputs. The
possible errors are listed below:

M_INCPTR
Increment buffer pointers USER/M_DATA

This function block increments the buffer pointers for M_DATCPT.

<<INSTANCE NAME>>:M_INCPTR (EN00 := <<BOOL>>, P := <<MEMORY
AREA>>, TOTB := <<UINT>> OK => <<BOOL>>);

ERR Description
0 No error
1 The queue was not empty when the reference was requested
2 An error occurred in backing off of the reference switch
3 An error occurred in referencing
4 An error occurred in homing

⁄ƒƒ NAME ƒø
≥M_INCPTR ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥P √ƒ
≥ ≥
¥TOTB ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enable

P (STRUCT) - pointer for data buffer

TOTB (UINT) - total bytes to increment

Outputs: OK (BOOL) - increment of pointers ok

 2-88

M_INDEX
Single Axis Indexer / Motion Sequencer USER/M_INDEX

<<INSTANCE NAME>>:M_INDEX(ENxx := <<BOOL>>, Axis :=
<<USINT>>, Data := <<MEMORY AREA>>, Ctrl := <<MEMORY AREA>>, IO
:= <<MEMORY AREA>>, Stat := <<MEMORY AREA>>, File := <<MEMORY
AREA>>, OK => <<BOOL>>, Fail => <<BOOL>>, Err => <<UINT>>, Actv =>
<<BOOL>>, Indx => <<UINT>>);

The M_INDEX ASFB is a single axis motion indexer or sequencer. It can be used
to perform the same functions as a standalone positioning type drive. This ASFB
executes up to 300 different indexes or program steps. The index can be a used to
move an axis, turn on an output, wait for an input, or to pass data to the main lad-
der for user-defined functions. Indexes can be stringed together to create a motion/
IO sequence. This section describes these functions along with the inputs and out-
puts for the M_INDEX ASFB. There are several different types of commands that
can be executed in each index of the program.

⁄ƒƒ NAME ƒø
≥ M_INDEX ≥
≥ ≥
¥ENxx OK√ƒ
≥ ≥
¥Axis Fail√ƒ
≥ ≥
¥Data Err√ƒ
≥ ≥
¥Ctrl Actv√ƒ
≥ ≥
¥IO Indx√ƒ
≥ ≥
¥Stat ≥
≥ ≥
¥File ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - Enables execution, should be
enabled all the time. (xx indicates revision #)

Axis (USINT) - Axis Number.

Data (STRUCT) - Data structure that contains the
indexer sequence parameters defined below.

Ctrl (STRUCT) - Used to control (start, stop, etc.) the
index sequence.

IO (STRUCT) - Used to pass the state of the index
inputs and outputs between the main ladder and the
ASFB.

Stat (STRUCT) - Status information, faults, active
flags, etc.

File (STRUCT) - Used to read/write the index Data
from/to RAMDISK.

Outputs: OK (BOOL) - Indicates that the ASFB is enabled and
was initialized correctly.

Fail (BOOL) - Indicates that the ASFB failed to ini-
tialize correctly.

Err (UINT) - Error code.

Actv (BOOL) - Index Sequence is Active.

Indx (UINT) - Number of active index step.
 2-89

 Distance Moves:

1. Incremental

2. Registration

 Position Moves:

3. Absolute

4. Rotary shortest distance

5. Rotary Forward

6. Rotary Backward

 Velocity/Jog Moves:

7. Velocity Forward

8. Velocity Backward

9. Velocity Stop

 Motion Support:

10. Set Rollover Position

11. Part Reference

12. Set Ignore Distance for Registration move

13. Set Maximum Number of Missed Registration Marks

14. Set S-curve Acceleration/Deceleration Rates

15. Set Linear Acceleration/Deceleration Rates

16. Wait for Position Greater Than or Equal To

17. Wait for Position Less Than or Equal To

18. Wait for In-Position

19. New Rate

 I/O Control:

20. Turn On

21. Turn Off Output

22. Wait for Input On

23. Wait for Input Off
 2-90

 Repeat/Cycle Counters:

24. Increment the Cycle Counter

25. Set the Loop Counter

26. Increment the Loop Counter

 User Defined Commands:

27. User Command 1

28. User Command 2

 Misc. Commands:

29. NOP. No operation

30. End of Program

 Error Codes

The table below describes the different errors that may occur.

Error Number Description

1-9 General Index Data Errors.

1 Invalid Range for Index Complete Mode. Range of val-
ues is 0 - 3.

2 Increment Cycle Count failed, cycle count may have
exceeded 65,535.

3 Invalid Loop Counter. Range of values is 1 - 2.

4 Loop Count exceeded 65,535.

5 Invalid Index Number. Range of values is 0 - 299.

6 Invalid Index Type, check IndexType string variable.

7-9 Reserved.

8 Invalid Index Number. Range of values is 0 – 299.

9 Invalid Index Type, check IndexType string variable.

10-19 Motion Support Command Errors.
 2-91

10 Set S-Curve Acc/Dec failed. Check parameters and
make sure that the “Enable S-Curve” box was checked in
the servo setup.

11 Set Linear Acc/Dec failed, check parameters.

12 New Rate failed. Either a move was not active or the
Rate was invalid.

13 Set Rollover failed, check Data_1 variable.

14 Invalid Range Index Complete Mode, “Start Next Index
Before Move Is Done” was selected for a non-motion
command.

15 Part Reference failed. Axis may have been in motion
when the index was executed.

16 Set Ignore Distance command failed.

17 Invalid number of missed marks.

18-19 Reserved.

20-29 Distance Command Errors.

20 Distance command was called when another move was
active.

21 Distance command failed, check parameters.

22-29 Reserved.

30-39 Registration Command Errors.

30-31 Registration command was called when another move
was active.

32 Distance move failed, check Data_1 variable or WriteSV
to enable Fast Queuing failed.

33 A move was queued up outside of the M_INDEX ASFB.
No motion commands should be executed in the main
ladder when an index is active or started.

34 FAST_QUE function or DISTANCE for RegDist failed.

35 A move was queued up outside of the M_INDEX ASFB.
No motion commands should be executed in the main
ladder when an index is active or started.
 2-92

36 The fast input for the Registration Sensor never went off.

37-38 Reserved.

39 The maximum number of consecutive missed registra-
tion was reached.

40-49 Position Command Errors.

40 Position command was called when another move was
active.

41 Calculation for Rotary move failed, check rollover value
and Data_1 variable.

42 Position commanded failed, check Data_1 and Rate vari-
ables.

43-49 Reserved.

50-59 Velocity Command Errors.

50 Velocity command was called when another move was
active.

51 VEL_STRT commanded failed, check Rate variable.

52 VEL_END command failed, move may have been
aborted in the main ladder.

53 Velocity Stop command was called when there was not
an active Velocity move.

60-69 IO Command Errors.

60 Invalid Output Number, valid range 1-8.

61 Invalid Input Number, valid range 1-8.

62-69 Reserved.

101-109 General Initialization Errors.

101 The structure size of the Data structure is not valid.
Check to make sure that the structure matches the
description in the manual.

102 The structure size of the Ctrl structure is not valid.
Check to make sure that the structure matches the
description in the manual.
 2-93

103 The structure size of the IO structure is not valid. Check
to make sure that the structure matches the description in
the manual.

104 The structure size of the Stat structure is not valid.
Check to make sure that the structure matches the
description in the manual.

105 The structure size of the File structure is not valid.
Check to make sure that the structure matches the
description in the manual.

106 SizeOf function failed when calculating the size of the
Data and/or IO Structures, contact factory.

107-109 Reserved.

110 File Read/Write Error. An error has occurred while
trying to read or writ ethe Indexing Program from or to
the RAMDISK. Refer to the File.FileError and the
File.Error variables and the error codes below for a more
detailed error description.

File.FileError

<> 0

File Operation Failed. An error occurred with one of
the file operations, i.e. OPEN, READ, WRITE, etc.
Refer to the "PiCPro Software Manual Appendix B -
Errors - I/O Function Block Error Codes" for a
description of the error.

File.Error

<> 0

File Read Errors. These errors occurred while read-
ing and converting the text file. Check to make sure
the text format matches the Excel Spread Sheet. The
Error numbers below will be shown in the File.Error
variable.

1 The structure size of the Data structure is not valid.
Check to make sure that the structure matches the
description in the manual.

2 SizeOf function failed when calculating the size of the
Data Structure, contact factory.

3 Invalid File Name.

4-9 Reserved.

10 Line too long, a line in the text file exceeded 255 charac-
ters.
 2-94

11 Missing StartOfProgram in the file.

12 Missing EndOfData in the file.

13-19 Reserved.

20 Number of lines in the text file exceeded 32,767.

21 A line in the text file contained more than 7 data fields.

22 Invalid format in the line of text.

23-29 Reserved.

30 Index Number field is not valid, valid range is 0-299.

31 Index Type field is not valid.

32 Data_1 field is not valid.

33 Data_2 field is not valid.

34 Data_3 field is not valid.

35 Dwell field is not valid.

36 Next Index Number field is not valid, valid range is 0-
299.

37 Index Complete Mode field is not valid.

38 Invalid format in the line of text.

39-40 Reserved.

50-59 File Write Errors. These errors occurred while trying
to write the file, check the Data Structure format in
your ladder and make sure it matches the format out-
lined below.

50 Invalid Data.Comments[] string, check Data Structure
format to make sure that the comment string size is 40.

51 Invalid comment header, check Data Structure format.

52 Unable to convert Data structure to a text string, check
Data Structure format.

53 Invalid EndOfData string when writing the file, consult
factory.
 2-95

 Inputs/Outputs

This section describes the inputs and outputs for the M_INDEX ASFB. The struc-
tures are shown as inputs but in some cases the structure elements are written by
the ASFB.

Axis USINT Axis Number.

Data Structure

The Data structure contains the index data or part program. The following is a
description of the structure elements. You can have up to 300 different indexes or
program steps.

Data.Comments STR[40](0..9) You can have up to 10 lines of program com-
ments. Each line can have up to 40 charaters.

Data.IndexType STR[16](0..299) Type of Index or Program Step, there are 30
different types. See the list above or detailed descriptions below.

Data.Data_1 DINT(0..299) Data for index, description changes with the type of
index.

Data.Data_2 DINT(0..299) Data for index, description changes with the type of
index.

54-59 Reserved.
 2-96

Data.Data_3 UDINT(0..299) Data for index, description changes with the type of
index.

Data.Dwell UDINT(0..299) The amount of time between the end of the move or
index and the start of the index or step. The time is entered in milliseconds and has
a range of 0 to 4,294,967,295 ms.

Data.NextIndex UINT(0..299) The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The value can be between 0 and
299.

Data.IndxCmpMode INT(0..299) Action taken when the index or step is com-
plete. The following are valid values:

0. Stop.

1. Start next index when move is complete and after Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the Optional Stop input is
on.

NOTE

The Data_1, Data_2 and Data_3 elements have different descriptions
depending upon the IndexType
 2-97

Control Structure

The Ctrl Structure is used to control the indexing sequence or part program. All of
the elements are inputs to the ASFB. The following is a description of each ele-
ment.

Ctrl.Start BOOL Starts the index selected by the Ctrl.IndxSel if a sequence is not
active. If a sequence is active, it continues or starts the next index step.

Ctrl.IndxSel UINT Number of the index to start executing when that Ctrl.Start
input turns on and a sequence is not active.

Ctrl.Hold BOOL When the input turns on, it pauses or holds the execution of the
index and issues a feed hold for the axis until the input goes off.

Ctrl.Stop BOOL Aborts any active moves and resets/stops the index sequence.

Ctrl.OptStop BOOL When this input is on and the Index Complete Mode is set to
Optional Stop the index sequence will stop at the end of the index and wait for a
Start input. The Optional Stop can be used to set break points in the program for
debug or to have the operator check the part periodically.

Ctrl.SingleStep BOOL Forces the index sequence to stop at the end of each index
or step. The next index will be executed when the Ctrl.Start input goes on. This
feature allows the user to step though the program one index at a time.

Ctrl.FeedRateOveride UINT Feed rate override percentage, percent to increase
or decrease feed rate for all moves for the specified axis. The range is from 0 to
199% with 100% being the feed rate entered at RATE for distance, position and
 2-98

velocity moves. NOTE: If 200 to 255% is entered, the software handles it as if 199
was entered.

Ctrl.StatusSv WORD STAT output from the STATUSSV function. The ASFB
uses the Move Started and Fast Input Occurred status bits. These bits are "read and
clear" (one shot) bits. A set bit means the event occurred since the last time the
function was called. Therefore, the function can be called only once in the ladder
to prevent missing the event.

Ctrl.StructureSize UINT Must be set to the size or number of bytes of the Ctrl
Structure. The SIZEOF function can be used to calculate the size of the structure.

IO Structure

The IO Structure is used to interface between the main ladder and the Turn On/Off
and Wait for Input On/Off commands in the indexing program. The outputs are
written by the program and the inputs are read. The zero [0] elements are not used
in the program. The following is a description of each of elements.

IO.Output BOOL(0..8) The Turn On/Off commands are used to control the 8 user
defined outputs, which can be used in the main ladder to control physical outputs
or drive other ladder logic.

IO.Input BOOL(0..8) The 8 user defined inputs are used by Wait for Input On/Off
commands. These variables are typically turned on/off in the main ladder by ener-
gize or set/reset coils. They can be connected to physical input variables or driven
by other ladder logic.

IO.StructureSize UINT Must be set to the size or number of bytes of the IO
Structure. The SIZEOF function can be used to calculate the size of the structure.
 2-99

 Stat Structure

The Stat Structure is used to pass status information to the main ladder. The fol-
lowing is a description of each element.

Stat.Active BOOL Indicates that there is an active part program or index.

Stat.ActIndex UINT Number of the current or active index step.

Stat.MotionAct BOOL Indicates that the axis is currently in motion or not in-
position.

Stat.DwellAct BOOL Indicates that the dwell is active for the current index step.

Stat.DwellEt TIME Elapsed time for the dwell timer.

Stat.WaitForInput BOOL Indicates that the active index step is either a Wait-
ForInputOn or WaitForInputOff command, which is waiting for the user defined
input to change states.
 2-100

Stat.WaitForPos BOOL Indicates that the active index step is either a WaitFor-
PosnGE or WaitForPosnLE command, which is waiting for the axis position to
reach the programmed position.

Stat.WaitForStart BOOL Indicates that the active index step has completed it
command and is waiting for the Ctrl.Start input before continuing on to the next
index.

Stat.UserCommand BOOL Indicates that the active index step is one of the two
user commands, UserCommand1 or UserCommand2.

Stat.BadMark BOOL Indicates that the last Registration command or index did
not see a registration mark.

Stat.NumbOfBadMarks DINT Number of consecutive registration marks
missed, this variable is reset to zero when we get a good registration mark.

Stat.LoopCounter1 DINT Value of the program Loop Counter 1, which is con-
trolled in the part program by the SetLoopCount and IncLoopCount commands.

Stat.LoopCounter2 DINT Value of the program Loop Counter 2, which is con-
trolled in the part program by the SetLoopCount and IncLoopCount commands.

Stat.CycleCounter DINT Value of the program Cycle Counter, which is con-
trolled in the part program by the IncCycleCount command.

Stat.StructureSize UINT Must be set to the size or number of bytes of the Stat
Structure. The SIZEOF function can be used to calculate the size of the structure.
 2-101

File Structure

The File structure is used to control and provide status information for reading and
writing the data structure from/to the RAMDISK. The following is a description
of each element.

File.FileName STRING[14] Name of the file to be read or written from the
RAMDISK. The file name format is "FileName.Ext$00, where the file name can
be up to 8 characters and the extension up to 3 characters. The $00 is a null termi-
nator.

File.SubDir STRING[14] Name of the Sub-Directory on the RAMDISK were the
file is stored. If it is left blank the file will be stored in the root directory. The sub-
directory name format is "SubDir", where the SubDir can be up to 8 characters.

File.Start BOOL Starts the read or write operation.

File.ReadWrite BOOL Off = File Read, On = File Write.

File.Done BOOL Indicates that the file operation is complete.

File.Fail BOOL Indicates that the file operation failed to complete.
 2-102

File.Active BOOL Indicates that the file operation is active.

File.FileError INT File access Error Number. An error occurred with one of the
file operations, i.e. OPEN, READ, WRITE, etc. Refer to the "PiCPro Software
Manual Appendix B -Errors - I/O Function Block Error Codes" for a description of
the error.

File.Error INT File File Data Format Error Number. An error occurred while
converting the text file for the Data Structure. See the File Error Codes above for a
detailed description of the error.

File.LineNumber INT Line number in the text file where the File.Error occurred.

File.NumbDecimalPlaces INT The number of decimal places in the file for the
axis position/distant data.

File ScalingForRate DINT Scaling factor used to convert the Rate in the File to
LU/Min. This would allow you to enter the Rate as RPM vs LU/Min, in this case
you would put in the number of LU per Rev. The number of decimal places is also
applied. Thus if 1 LU = .001 degrees or 360,000 LU/Revolution, you would set
the scaling to 360 or 360.000 degrees per Revolution.

File.StructureSize UINT Must be set to the size or number of bytes of the File
Structure. The SIZEOF function can be used to calculate the size of the structure.
 2-103

 Programming Indexes

The following sections describe how to program each type of index.

 ABSOLUTE

Moves the axis to an absolute position or endpoint. The axis acceleration and
deceleration ramps are defined by the SetScurveAccDec or SetLinearAccDec
commands. This command uses the POSITION function to execute the move, ref-
erence the PiCPro Function/Function Block Reference Guide for details on the
POSITION function.

Data Variable Description

.IndexType[x] Absolute

.Data_1[x] Absolute position to go to. The value is
entered in LU.

.Data_2[x] Not Used.

.Data_3[x] Maximum velocity. The value is entered in
LU/Min.

.Dwell[x] The amount of time between the end of the
move or index and the start of the index or
step. The time is entered in milliseconds and
has a range of 0 to 4,294,967,295 ms.

.Next Index[x] The number of the next index or step to exe-
cute when Index Complete Mode is not set to
Stop. The value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is com-
plete. The following are valid values:

0. Stop.

1. Start next index when move is complete
and after Dwell.

2. Start next index when Start Index Input is
on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the
index if the Optional Stop input is on.
 2-104

 INCREMENTAL

Moves the axis an incremental distance. The axis acceleration and deceleration
ramps are defined by the SetScurveAccDec or SetLinearAccDec commands. This
command uses the DISTANCE function to execute the move, reference the PiCPro
Function/Function Block Reference Guide for details on the DISTANCE function.

Data Variable Description

.IndexType[x] Incremental

.Data_1[x] Incremental Distance to go, the value is
entered in LU.

.Data_2[x] Not Used.

.Data_3[x] Maximum velocity, the value is entered in
LU/Min.

.Dwell[x] The amount of time between the end of the
move or index and the start of the index or
step. The time is entered in milliseconds and
has a range of 0 to 4,294,967,295 ms.

.Next Index[x] The number of the next index or step to exe-
cute when Index Complete Mode is not set to
Stop. The value ranges from 0 to 299.

.Index Complete
Mode[x]

Action taken when the index or step is com-
plete. The following are valid values:

0. Stop.

1. Start next index when move is complete
and after Dwell.

2. Start next index when Start Index Input is
on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the
index if the Optional Stop input is on.
 2-105

 INCREMENT CYCLE COUNTER

At the start of an index sequence, the cycle counter is reset. This command incre-
ment’s the cycle counter by 1. If the value is equal to the (.Data_1) variable, the
index sequence stops. Otherwise, the next index is started based on the Index
Complete Mode.

Data Variable Description

.IndexType[x] IncCycleCount

.Data_1[x] Number of Times to repeat the cycle. The value
can be between 0 and 65,535.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move
or index and the start of the index or step. The
time is entered in milliseconds and has a range of
0 to 4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop.
The value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and
after Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if
the Optional Stop input is on.
 2-106

 INCREMENT LOOP COUNTER

There are two counters that can be used for looping in the index sequence or pro-
gram. This command is used to increment the value of one of the Loop Counters
by 1. If the new value is less that the loop count value then the Loop To Index will
be the next index, otherwise the Next Index will be the next index. The SetLoop-
Count command can be used to set the counter.

Data Variable Description

.IndexType[x] IncLoopCount

.Data_1[x] Loop Counter Number, range is 1 or 2.

.Data_2[x] Number of times to loop, range is 0 to
2,147,483,647

.Data_3[x] Loop to this Index Number if the loop counter is
less than the number of times to loop.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-107

 NEW RATE

Allows you to change the rate or velocity of the active move. This command uses
the NEW_RATE function to change the rate, reference the PiCPro Function/Func-
tion Block Reference Guide for details on the NEW_RATE function.

Data Variable Description

.IndexType[x] NewRate

.Data_1[x] Not Used.

.Data_2[x] Not Used.

.Data_3[x] New velocity, the value is entered in LU/Min.

.Dwell[x] The amount of time between the end of the move
or index and the start of the index or step. The
time is entered in milliseconds and has a range of
0 to 4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop.
The value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and
after Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if
the Optional Stop input is on.
 2-108

 NOP

This command performs No OPeration, it can be used as a blank program step for
future use.

Data Variable Description

.IndexType[x] NOP

.Data_1[x] Not Used.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move
or index and the start of the index or step. The
time is entered in milliseconds and has a range of
0 to 4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop.
The value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and
after Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if
the Optional Stop input is on.
 2-109

 PART REF

This command allows you to change the current position of an axis. No motion
occurs when a part reference is performed. The axis must be at rest or not in
motion when calling this command. This command uses the PART_REF function
to execute the move, reference the PiCPro Function/Function Block Reference
Guide for details on the PART_REF function.

Data Variable Description

.IndexType[x] PartRef

.Data_1[x] Reference dimension. The value is entered in LU.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-110

 REGISTRATION

This command is used to perform a registration move. It allows you to program
the axis to travel an incremental distance past a registration mark. A sensor must
be wired to the fast or registration input for the axis to detect the registration mark.
This command uses the M_REGMOV function to execute the move, reference the
Motion ASFB Manual for details on the M_REGMOV function. If a registration
mark is not detected, the axis goes the distance programmed in the Maximum
Incremental Distance variable and stops. The BMRK (Bad Mark) output goes on
and NMBD (Number of Bad Marks) counter is incremented. If the number of con-
secutively missed registration marks equals the SetMaxMarkMissed variable, a
fault is generated and the indexing sequence is stopped. Otherwise, the index con-
tinues as programmed. When a registration mark is detected, the NMBD (Number
of Bad Marks) counter is reset. The BMRK output is reset at the start of the next
index.
 2-111

Data Variable Description

.IndexType[x] Registration

.Data_1[x] Maximum Incremental Distance to go. The value is
entered in LU.

.Data_2[x] Distance to go past the registration mark. The value
is entered in LU.

.Data_3[x] Maximum velocity. The value is entered in LU/
Min.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and
after Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-112

 ROTARY BACKWARD

Moves the axis backward to an absolute position or endpoint. The axis rollover
position must be set using the SetRollover command, otherwise a fault is gener-
ated. The axis acceleration and deceleration ramps are defined by the SetScurve-
AccDec or SetLinearAccDec commands. This command uses the POSITION
function to execute the move, reference the PiCPro Function/Function Block Ref-
erence Guide for details on the POSITION function.

Data Variable Description

.IndexType[x] RotaryBackward

.Data_1[x] Absolute position to go to. The value is entered in
LU.

.Data_2[x] Not Used.

.Data_3[x] Maximum velocity. The value is entered in LU/Min.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-113

 ROTARY FORWARD

Moves the axis forward to an absolute position or endpoint. The axis rollover
position must be set using the SetRollover command, otherwise a fault is gener-
ated. The axis acceleration and deceleration ramps are defined by the SetScurve-
AccDec or SetLinearAccDec commands. This command uses the POSITION
function to execute the move, reference the PiCPro Function/Function Block Ref-
erence Guide for details on the POSITION function.

Data Variable Description

.IndexType[x] RotaryForward

.Data_1[x] Absolute position to go to. The value is entered in
LU.

.Data_2[x] Not Used.

.Data_3[x] Maximum velocity. The value is entered in LU/Min.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-114

 ROTARY SHORTEST

Moves the axis forward or backward to an absolute position or endpoint. The
direction is based upon the shortest distance from the current actual position to the
programmed position. The axis rollover position must be set using the SetRollover
command, otherwise a fault is generated. The axis acceleration and deceleration
ramps are defined by the SetScurveAccDec or SetLinearAccDec commands. This
command uses the POSITION function to execute the move, reference the PiCPro
Function/Function Block Reference Guide for details on the POSITION function.

Data Variable Description

.IndexType[x] RotaryShortest

.Data_1[x] Absolute position to go to. The value is entered in
LU.

.Data_2[x] Not Used.

.Data_3[x] Maximum velocity. The value is entered in LU/Min.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-115

 SET IGNORE DISTANCE

Sets the ignore distance for the Registration command. The Registration com-
mand will ignore any fast inputs or registration marks that fall within this distance
from the start of the move. This command sets the Ignr input of the M_REGMOV
ASFB, reference the Motion ASFB Manual for details on the M_REGMOV func-
tion.

Data Variable Description

.IndexType[x] SetIgnoreDist

.Data_1[x] Distance in LU from the start of the move that the
Registration command will ignore any fast inputs.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-116

 SET LINEAR ACCELERATION/DECELERATION

Changes the linear acceleration/deceleration rate for the motion commands. This
command uses the ACC_DEC function to set the rate, reference the PiCPro Func-
tion/Function Block Reference Guide for details on the ACC_DEC function.

Data Variable Description

.IndexType[x] SetLinearAccDec

.Data_1[x] Total time for the axis to reach the Maximum Veloc-
ity Rate. The value is entered in ms.

.Data_2[x] Total time for the axis to decelerate to a stop from
the Maximum Velocity Rate. The value is entered in
ms.

.Data_3[x] Maximum velocity, the value is entered in LU/Min.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-117

 SET LOOP COUNTER

There are two counters that can be used for looping in the index sequence or pro-
gram. This command is used to set the value of one of the Loop Counters. The
IncLoopCount command is used to loop to the program.

Data Variable Description

.IndexType[x] SetLoopCount

.Data_1[x] Loop Counter Number, range is 1 or 2.

.Data_2[x] Value to set loop counter to, range is 0 to
2,147,483,647.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-118

 SET MAXIMUM NUMBER OF MISSED REGISTRATION MARKS

The Registration command checks for a missing registration mark. If the number
of consecutively missed registration marks equals the SetMaxMarkMissed vari-
able, a fault is generated and the indexing sequence is stopped. This command is
used to set the SetMaxMarkMissed variable. If the value is zero the check is dis-
abled.

Data Variable Description

.IndexType[x] SetMaxMarkMissed

.Data_1[x] Value to set the SetMaxMarkMissed variable to,
range is 0 to 2,147,483,647, 0 disables the check.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-119

 SET ROLLOVER

Sets the axis rollover position value. The actual position of the axis will rollover to
zero when it reaches this position when going forward. The actual position of the
axis will rollover to this value when it reaches zero when going backwards This
command uses the READ_SV/WRITE_SV function variable 12 to set the rollover
value, reference the PiCPro Function/Function Block Reference Guide for details
on the READ_SV function.

Entering a 0 turns rollover on position feature off. Negative values cannot be
entered.

NOTE

Without rollover on position when 2,147,483,647 is reached, the next num-
ber is -2,147,483,648. The count continues to zero and back up to
2,147,483,647, etc.
 2-120

Data Variable Description

.IndexType[x] SetRollover

.Data_1[x] Roll Over Position, the value is entered in LU.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-121

 SET S-CURVE ACCELERATION/DECELERATION

Changes the S-Curve acceleration/deceleration rate for the motion commands.
This command uses the M_SACC ASFB and ACC_JERK function to set the rate,
reference the Motion ASFB Manual for details on the M_SACC function and the
PiCPro Function/Function Block Reference Guide for details on the ACC_JERK
function.

Data Variable Description

.IndexType[x] SetScurveAccDec

.Data_1[x] Total time for the axis to reach the Velocity Rate.
The value is entered in ms.

.Data_2[x] The percentage of time spent in constant jerk. A
value of 80(%) percent means 40% of the accel-
eration time spent in constant jerk, 20% in con-
stant acceleration and another 40% in constant
jerk. This value must be set to 100 or less.

.Data_3[x] Maximum velocity, the value is entered in LU/
Min.

.Dwell[x] The amount of time between the end of the move
or index and the start of the index or step. The
time is entered in milliseconds and has a range of
0 to 4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop.
The value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and
after Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if
the Optional Stop input is on.
 2-122

 TURN OFF OUTPUT

Turns off one of the 8 user defined outputs. The IO.Output BOOL (0..8) variables
are used to interface between the ladder the indexing program. These variables
can be used in the ladder to control physical outputs or used in the ladder for user
defined functions.

Data Variable Description

.IndexType[x] TurnOffOutput

.Data_1[x] Output Number, 1-8.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move
or index and the start of the index or step. The
time is entered in milliseconds and has a range of
0 to 4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop.
The value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and
after Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if
the Optional Stop input is on.
 2-123

 TURN ON OUTPUT

Turns on one of the 8 user defined outputs. The IO.Output BOOL (0..8) variables
are used to interface between the ladder the indexing program. These variables
can be used in the ladder to control physical outputs or used in the ladder for user
defined functions.

Data Variable Description

.IndexType[x] TurnOnOutput

.Data_1[x] Output Number, 1-8.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move
or index and the start of the index or step. The
time is entered in milliseconds and has a range of
0 to 4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop.
The value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and
after Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if
the Optional Stop input is on.
 2-124

 USER COMMAND 1

Used to pass data from the indexing program to the main ladder. This data can then
be used to perform special user defined functions in the main ladder. The data is
only valid until the index is executed. Thus, it should be moved to different vari-
ables, if needed.

Data Variable Description

.IndexType[x] UserCommand1

.Data_1[x] DINT data to be used in the main ladder.

.Data_2[x] DINT data to be used in the main ladder

.Data_3[x] UDINT data to be used in the main ladder

.Dwell[x] The amount of time between the end of the move
or index and the start of the index or step. The
time is entered in milliseconds and has a range of
0 to 4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop.
The value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and
after Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if
the Optional Stop input is on.
 2-125

 USER COMMAND 2

Used to pass data from the indexing program to the main ladder. This data can then
be used to perform special user defined functions in the main ladder. The data is
only valid until the index is executed. Thus, it should be moved to different vari-
ables, if needed.

Data Variable Description

.IndexType[x] UserCommand2

.Data_1[x] DINT data to be used in the main ladder.

.Data_2[x] DINT data to be used in the main ladder.

.Data_3[x] UDINT data to be used in the main ladder.

.Dwell[x] The amount of time between the end of the move
or index and the start of the index or step. The
time is entered in milliseconds and has a range of
0 to 4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop.
The value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and
after Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if
the Optional Stop input is on.
 2-126

 VELOCITY BACKWARD

Start a velocity move in the backward or minus direction. If the software end limits
are enabled, the axis stops when it reaches these positions. The NewRate com-
mand can be use to change the rate. The VelocityStop command is used to stop the
move. This command uses the VEL_STRT function to set execute the move, ref-
erence the PiCPro Function/Function Block Reference Guide for details on the
VEL_STRT function.

Data Variable Description

.IndexType[x] VelocityBackward

.Data_1[x] Not Used.

.Data_2[x] Not Used.

.Data_3[x] Maximum velocity, The value is entered in LU/
Min.

.Dwell[x] The amount of time between the end of the move
or index and the start of the index or step. The
time is entered in milliseconds and has a range of
0 to 4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop.
The value ranges from 0 to 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and
after Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if
the Optional Stop input is on.
 2-127

 VELOCITY FORWARD

Start a velocity move in the forward or plus direction. If the software end limits are
enabled, the axis stops when it reaches these positions. The NewRate command
can be use to change the rate. The VelocityStop command is used to stop the
move. This command uses the VEL_STRT function to set execute the move, ref-
erence the PiCPro Function/Function Block Reference Guide for details on the
VEL_STRT function.

Data Variable Description

.IndexType[x] VelocityForward

.Data_1[x] Not Used.

.Data_2[x] Not Used.

.Data_3[x] Maximum velocity. The value is entered in LU/Min.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-128

 VELOCITY STOP

Stop the active VelocityForward or VelocityBackward move. This command uses
the VEL_END function to set execute the move, reference the PiCPro Function/
Function Block Reference Guide for details on the VEL_END function.

Data Variable Description

.IndexType[x] VelocityStop

.Data_1[x] Not Used.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value ranges from 0 to 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-129

 WAIT FOR IN POSITION

Waits for the axis to be in position, the axis is in position when the axis is with-in
the in-position bandwidth which is set in the servo setup or by the WriteServoData
variable 40 command. This function is used when a move command was issued
and the next index was started before the move was completed. It allows the user
to program Wait For …, Turn On/Off Output, and New Rate commands while
motion is active.

Data Variable Description

.IndexType[x] WaitForInPosn

.Data_1[x] Not Used.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute when
Index Complete Mode is not set to Stop. The value
can be between 0 – 127.

.Index Complete
Mode[x]

Action taken when the index or step is complete. The
following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-130

 WAIT FOR INPUT OFF

Waits for one of the 8 user defined inputs to go off. The IO.Input BOOL (0..8)
variables are used to interface between the ladder the indexing program. These
variables can be connected to physical input or turned on/off in the ladder for user
defined functions.

Data Variable Description

.IndexType[x] WaitForInputOff

.Data_1[x] Input number 1-8.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move
or index and the start of the index or step. The
time is entered in milliseconds and has a range of
0 to4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop.
The value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete.
The following are valid values:

0. Stop.

1. Start next index when move is complete and
after Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if
the Optional Stop input is on
 2-131

 WAIT FOR INPUT ON

Waits for one of the 8 user defined inputs to go on. The IO.Input BOOL (0..8)
variables are used to interface between the ladder the indexing program. These
variables can be connected to physical input or turned on/off in the ladder for user
defined functions.

Data Variable Description

.IndexType[x] WaitForInputOn

.Data_1[x] Input number 1-8.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete. The
following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-132

 WAIT FOR POSITION GREATER THAN OR EQUAL

Waits for the actual position to be “Greater Than or Equal To” a programmed
value. This command is typically used along with one of the motion commands.
A typically application would be to change the rate of a move after it reaches a cer-
tain position. The program would be as follows:

Start an Absolute position move

Start next index before move is complete

Wait for the position to be Greater Than or Equal To the speed change posi-
tion

Change the velocity using the NewRate command

Wait for the move to stop using the WaitForInPosition command.

Data Variable Description

.IndexType[x] WaitForPosnGE

.Data_1[x] Position, value is entered in LU.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete. The
following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-133

 Wait For Position Less Than Or Equal

Waits for the actual position to be “Less Than or Equal To” a programmed value.
This command is typically used along with one of the motion commands. A typi-
cally application would be to change the rate of a move after it reaches a certain
position. The program would be as follows:

Start an Absolute position move

Start next index before move is complete

Wait for the position to be Less Than or Equal To the speed change position

Change the velocity using the NewRate command

Wait for the move to stop using the WaitForInPosition command

Data Variable Description

.IndexType[x] WaitForPosnLE

.Data_1[x] Position, value is entered in LU.

.Data_2[x] Not Used.

.Data_3[x] Not Used.

.Dwell[x] The amount of time between the end of the move or
index and the start of the index or step. The time is
entered in milliseconds and has a range of 0 to
4,294,967,295 ms.

.Next Index[x] The number of the next index or step to execute
when Index Complete Mode is not set to Stop. The
value can be between 0 and 299.

.Index Complete
Mode[x]

Action taken when the index or step is complete. The
following are valid values:

0. Stop.

1. Start next index when move is complete and after
Dwell.

2. Start next index when Start Index Input is on.

3. Start next index before move is complete.

4. Optional Stop, stops at the end of the index if the
Optional Stop input is on.
 2-134

 Programming Quick Reference Guide

Index Type Data 1 Data 2 Data 3

Incremental Incremental Dis-
tance LU

Not Used Maximum velocity
LU/Min

Registration Maximum Incre-
mental Distance LU

Distance to go past
the registration
mark LU

Maximum velocity
LU/Min

Absolute Absolute position
LU

Not Used Maximum velocity
LU/Min

RotaryShortest Absolute position
LU

Not Used Maximum velocity
LU/Min

RotaryForward Absolute position
LU

Not Used Maximum velocity
LU/Min

RotaryBackward Absolute position
LU

Not Used Maximum velocity
LU/Min

VelocityForward Not Used Not Used Maximum velocity
LU/Min

VelocityBackward Not Used Not Used Maximum velocity
LU/Min

VelocityStop Not Used Not Used Not Used

SetRollover Roll Over Position
LU

Not Used Not Used

PartRef Reference dimen-
sion LU

Not Used Not Used

SetIgnoreDist Ignore Distance LU Not Used Not Used

SetMaxMark-
Missed

Maximum number
of consecutive bad
registration allowed

Not Used Not Used

SetScurveAccDec Acceleration-Decel-
eration Time mSec

Percent of time
spent in constant
Jerk, 0-100%

Maximum velocity
LU/Min

SetLinearAccDec Acceleration Time
mSec

Deceleration Time
mSec

Maximum velocity
LU/Min

WaitForPosnGE Position LU Not Used Not Used

WaitForPosnLE Position LU Not Used Not Used

WaitForInPosn Not Used Not Used Not Used
 2-135

 Index Setup Spread Sheet

There is an Excel Spreadsheet called “C:\G&L Motion Control Data\Applications
V16.0.1\Tools\MIndexEx.xls” that can be used to generate a CSV file that can be
loaded onto RAMDISK of MMCD controller. The CSV file can then be used by
the M_INDEX ASFB to read in the programmed Indexer Data. The M_INDEX
ASFB can also write the CSV which allows the user to back up the programs.
Open up the file with Excel and save it under another name and create your pro-
gram. Copy it to the RAMDISK using PiCPro. You can then use the File Struc-
ture variables to read the file and convert the text to the Data Structure.

NewRate Not Used Not Used Maximum velocity
LU/Min

NOP Not Used Not Used Not Used

TurnOnOutput User Output Num-
ber 1-8

Not Used Not Used

TurnOffOutput User Output Num-
ber 1-8

Not Used Not Used

WaitForInputOn User Input Number
1-8

Not Used Not Used

WaitForInputOff User Input Number
1-8

Not Used Not Used

IncCycleCount Number of Times to
repeat cycle, 0 –
65,535

Not Used Not Used

SetLoopCount Loop Counter Num-
ber, 1-2

Value to set the loop
counter to,
0 – 65,535

Not Used

IncLoopCount Loop Counter Num-
ber, 1-2

Number of times to
loop,
0 – 65,535

Number of index to
loop to

UserCommand1 User defined, -
2,147,483,648 to
+2,147,483,647

User defined, -
2,147,483,648 to
+2,147,483,647

User defined, 0 to
4,294,967,295

UserCommand2 User defined, -
2,147,483,648 to
+2,147,483,647

User defined, -
2,147,483,648 to
+2,147,483,647

User defined, 0 to
4,294,967,295

NOP Not Used Not Used Not Used

EndOfProgram Not Used Not Used Not Used

Index Type Data 1 Data 2 Data 3
 2-136

M_JOG
Jogs a Closed Loop Axis USER/M_MOVE

<<INSTANCE NAME>>:M_JOG(EN01 := <<BOOL>>, JPLS := <<BOOL>>,
JMNS := <<BOOL>>, RATE := <<UDINT>>, AXIS := <<USINT>>, JACT =>
<<BOOL>>), NO_Q => <<BOOL>>, QUE => <<USINT>>);

This function block is designed to simplify the task of doing a manual jog (veloc-
ity) move on a closed loop axis. The manual jog is defined as a move that would be
triggered by the operator physically pressing a switch or a button to move an axis
on the machine to a different location, without actually running a cycle.

Before this function block can be used, the axis must be initialized and placed in
servo lock. If the enable input is active, triggering the jog plus (JPLS) or jog minus
(JMNS) input will cause the specified axis to move at the indicated rate in the cor-
responding direction. When the input is deactivated motion will stop.

This function block is used to jog an axis that has been initialized and placed in
servo lock with the close loop function. It checks the queue of the selected axis to
be certain that no other moves are being executed. This function block should be
used to allow the operator to manually move an axis on the machine. It is not
designed for any other purpose.

The JPLS input enables a move in the positive direction for the selected axis. The
JMNS input enables a move in the negative direction for the selected axis. If both
the JPLS and JMNS inputs are set, motion will stop until one of them is dropped.
At that time motion will resume in the direction still selected.

⁄ƒƒ NAME ƒø
≥ M_JOG ≥
≥ ≥
¥EN01 JACT√ƒ
≥ ≥
¥JPLS N0_Q√ƒ
≥ ≥
¥JMNS QUE√ƒ
≥ ≥
¥RATE ≥
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

JPLS (BOOL) - enables a jog in the plus direction

JMNS (BOOL) - enables a jog in the minus direction

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

AXIS (USINT) - identifies axis

Outputs: JACT (BOOL) - indicates jogging is active when set;
indicates no motion is occurring when not set

NO_Q (BOOL) - active queue for the specified axis
was not available

QUE (USINT) - number of move for queue

IMPORTANT

If the enable is disabled while a move is under way, the move
will end.
 2-137

M_LHOME
Performs a Home Cycle using a Ladder Reference USER/M_REF

<<INSTANCE NAME>>:M_LHOME(ENxx := <<BOOL>>, STRT :=
<<BOOL>>, AXIS := <<USINT>>, PLUS := <<BOOL>>, RATE :=
<<UDINT>>, DIM := <<DINT>>, OPTN := <<WORD>>, BKOF := <<BOOL>>,
HOME := <<BOOL>> HDIM := <<DINT>>, RFSW := <<BOOL>>, HCMP =>
<<BOOL>>, HACT => <<BOOL>>, QUE => <<USINT>>, SWPO <<DINT>>,
ERR => <<BYTE>>);

⁄ƒƒ NAME ƒø
≥ M_LHOME ≥
≥ ≥
¥ENxx HCMP√ƒ
≥ ≥
¥STRT HACT√ƒ
≥ ≥
¥AXIS QUE√ƒ
≥ ≥
¥PLUS SWPO√ƒ
≥ ≥
¥RATE ERR√ƒ
≥ ≥
¥DIM ≥
≥ ≥
¥OPTN ≥
≥ ≥
¥BKOF ≥
≥ ≥
¥HOME ≥
≥ ≥
¥HDIM ≥
≥ ≥
¥RFSW ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - enables execution, (xx indicates
revision #)

STRT (BOOL) - enables the home cycle

AXIS (USINT) - identifies axis

PLUS (BOOL) - indicates direction of home cycle

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

DIM (DINT) - reference dimension for the nearest
resolver null or the next encoder index mark when
the reference switch is set (entered in LUs)

OPTN (WORD) - provides referencing options
0=No option 1=Ignore index or null 2=Back to
index 4=Use index only for reference

BKOF (BOOL) - selects backoff of reference switch
option

HOME (BOOL) - selects homing after referencing
option

HDIM (DINT) - home location to move to after
reference is complete

RFSW (BOOL) - reference switch on axis

Outputs: HCMP (BOOL) - home cycle is complete

HACT (BOOL) - home cycle is being executed

QUE (USINT) - number of move for queue

SWPO (DINT) - distance in feedback units (FUs)
from the reference switch to the index mark of an
encoder or the null of a resolver.

ERR (BYTE) - report an error 1-4 if input data is
invalid
 2-138

This function block performs a ladder reference cycle on an axis, followed by a
homing (position) move to a designated location.

Before this function block can be used, the axis must be initialized and the position
loop closed.

The reference cycle will cause the selected axis to move in the designated direction
until the reference switch is sensed. In a ladder reference this reference switch is
wired to an input module in the PiC900 and updated each scan of the ladder. When
the reference switch is sensed the axis will reference (assign a value) to the next
index mark of an encoder or the nearest null of a resolver. After the value is
assigned the axis will decelerate to a stop and set the reference done flag.

The OPTN input controls how the reference switch and index are utilized.

If OPTN is set to one, the index is ignored.

If OPTN is set to two, the axis will travel to the reference switch, stop, and
then travel back to the previous index mark.

If OPTN is set to four, the reference switch is ignored during the reference
cycle. The axis will reference only to the index mark.

If the HOME input is on when the reference done has been sensed the home move
will automatically be triggered to position the axis at a desired location.

If the BKOF input is on when the reference is requested and if the axis is on the
reference switch the axis will move in the opposite direction until the reference
switch opens, and will then move back onto the reference switch. If the BKOF
input is not on the axis will move in the specified direction until it sees an off to on
transition of the limit switch.

This function block is used to perform a ladder reference, immediately followed by
a position move to a selected home position. It should be executed every scan
unless a home cycle will only be performed when the machine is started. In that
case a normally closed contact of the output of HCMP may be used.

The inputs to this function block are similar to those of the FAST_REF function.
There are four additional inputs listed below.

The BKOF input selects the backoff reference switch option.

The HOME input selects the homing after referencing option.

The HDIM input assigns the home dimension to move to.

The RFSW input is the reference switch.

If the axis is sitting on the limit switch when the home cycle is requested, and the
BKOF input is on, the axis will move in the opposite direction of that indicated by
the PLUS input until the switch opens and then will complete the home cycle in
the normal manner.

The SWPO output is used to determine if the reference switch location will allow
for repeatable referencing. If the reference switch is not properly located in rela-
tionship to the index marker of an encoder or the null of a resolver it could possi-
 2-139

bly reference a revolution off. To prevent this, the value reported by this output
should be as follows:

• For an encoder system the value of this output should be greater than 25%
and less than 75% of the total counts (FUs) per revolution. Example: For
8000 FUs/Rev, the value should be >2000 and <6000.

• For a resolver system the value of this output should be less than 25% or
greater than 75% of the total counts (FUs) per revolution. Example: For
4000 FUs/Rev, the value should be <1000 or >3000.

If the value is out of range either the reference switch will have to be moved or the
transducer coupling shifted.

The ERR output indicates that invalid data was entered on one of the inputs. See
the table below for a description of ERR output values.

 ERR Description

0 No error
1 The queue was not empty when the reference was requested
2 An error occurred in backing off of the reference switch
3 An error occurred in referencing
4 An error occurred in homing
 2-140

M_LINCIR
Performs Linear and Circular Moves USER/M_MOVE

<<INSTANCE NAME>>:M_LINCIR(EN01 := <<BOOL>>, STRT :=
<<BOOL>>, INC := <<WORD>>, TIME := <<BOOL>>, RATE :=
<<DINT>>, CCW := <<BOOL>>, LIN := <<WORD>>, CIRC :=
<<WORD>>, DEP := <<WORD>>, NDPT := <<DINT>>, CEN1 :=
<<DINT>>, CEN2 := <<DINT>>, BNDW := <<DINT>>, OVRD :=
<<USINT>>, PATH := <<USINT>>, QUED => <<BOOL>>, ERR =>
<<INT>>);

⁄ƒ NAME ƒƒø
≥ M_LINCIR≥
≥ ≥
¥EN01 QUED√ƒ
≥ ≥
¥STRT ERR√ƒ
≥ ≥
¥INC ≥
≥ ≥
¥TIME ≥
≥ ≥
¥RATE ≥
≥ ≥
¥CCW ≥
≥ ≥
¥LIN ≥
≥ ≥
¥CIRC ≥
≥ ≥
¥DEP ≥
≥ ≥
¥NDPT ≥
≥ ≥
¥CEN1 ≥
≥ ≥
¥CEN2 ≥
≥ ≥
¥BNDW ≥
≥ ≥
¥OVRD ≥
≥ ≥
¥PATH ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

STRT (BOOL) - enables the coordinated move

INC (WORD) - defines incremental or absolute
mode (0=absolute, 1=incremental)

TIME (BOOL) - defines if move is feedrate or time
of move (0=feedrate, 1=time of move)

RATE (DINT) - feedrate or time of move

CCW (BOOL) - defines direction of circular move
(0=clockwise, 1=counter-clockwise)

LIN (WORD) - defines which axes to move in a
linear mode

CIRC (WORD) - defines which axes to move in
a circular mode

DEP (WORD) - defines which axes to move in a
simultaneous endpoint arrival mode

NDPT (DINT(0..16)) - endpoints or distances to
move

CEN1 (DINT) - circle center for lowest numbered
circular axis

CEN2 (DINT) - circle center for highest numbered
circular axis

BNDW (DINT) - circular endpoint bandwidth

OVRD (USINT) - feedrate override percentage

PATH (USINT) - path number

Outputs: QUED (BOOL) - move was queued without error

ERR (INT) - error number describing error that
occurred when the move was queued
 2-141

This function block performs linear, circular, or third axis departure (simultaneous
endpoint arrival) moves on a set of axes.

Before this function can be used, the axes must be initialized, the position loop
must be closed, and a queue must be available on all axes to be used in the move.

This function block provides the interface from the application .LDO to the
RATIO_RL and CORD2RL functions in order to perform linear coordinated, cir-
cular, and third axis departure (simultaneous endpoint arrival) motions.

Up to four separate paths of coordinated motion can be controlled. Each path of
motion requires a separate instantiation of the M_LINCIR function block. Each
path must control a unique set of axes. Only one M_LINCIR function block per
path can be used within the application .LDO.

This function block can control up to 16 axes.

The EN01 input of this function block must be set every scan.

The STRT input must be one-shot. When it is one-shot, the function block will
start the coordinated move, or enter it in the queue for the axes. It is the user's
responsibility to ensure that there is a queue available on all of the axes involved in
the move before pulsing this input.

The INC input defines whether each axis should move in the absolute or incremen-
tal mode. One bit of this WORD is reserved for each of the sixteen possible axes.
Bit 0 is set if axis 1 is incremental, or reset if axis 1 is absolute, bit 1 is set if axis 2
is incremental, reset if axis 2 is absolute, etc.

The TIME input defines whether the move should be executed as a path feedrate
move or a time of move. This input should be reset for path feedrate, or set for time
of move.

If the TIME input is reset, then the RATE input is the path feedrate for the move in
ladder units/minute. If the TIME input is set, then the RATE input is the time for
the move in milliseconds.

The CCW input is only used for circular moves. If it is reset, then the move is
clockwise, if it is set, then the move is counter-clockwise.

The LIN input defines which axes in the move are to be moved in a linear mode.
One bit of the WORD is reserved for each of the sixteen axes. The bit must be set
for the axis to do a linear move. Axes who have their bits set will be included in the
calculations for the path feedrate.

The CIRC input defines which axes in the move are to be moved in a circular
mode. One bit of the WORD is reserved for each of the sixteen axes. The bit must
be set for the axis to do a circular move. Axes who have their bits set will be
included in the calculations for the path feedrate.

The DEP input defines which axes in the move are to be moved in a simultaneous
endpoint arrival mode. One bit of the WORD is reserved for each of the sixteen
axes. The bit must be set for the axis to move. Axes who have their bits set will not
be included in the calculations for the path feedrate, but they will arrive at their
endpoints simultaneously with the axes that are.
 2-142

The LIN, CIRC, and DEP words may never have the same bits set in them at a
time. You must always set a bit for every axis ever used in the path, even if the axis
is not to move in this particular move. In this case, you would set either the LIN or
DEP bit for the axis, set the INC bit for the axis, and program an endpoint of zero
for the axis.

The NDPT array holds the endpoints for the axes used in the move. The 0th ele-
ment is not used. If the INC bit is set for the axis, this is the distance to move, if the
INC bit is reset for the axis, then this is the position to move to. The endpoints are
entered in ladder units.

The CEN1 and CEN2 inputs define the circle centers if a circular move is being
performed. The CEN1 input is the center for the lowest numbered circular axis,
and the CEN2 input is the center for the highest numbered circular axis. The cen-
ters are always programmed as an incremental distance from the starting point of
the circle, even if the INC bit for the axes is not set. The centers are entered in lad-
der units. For example, if a circle were being done with axes 4 and 6, then CEN1
would be the center for axis 4, and CEN2 would be the center for axis 6.

The BNDW input defines a bandwidth for circular moves. When a circular move is
requested, the distance from the start point to the center point and the distance
from the endpoint to the center point are compared for both axes. If these distances
differ by more than the bandwidth entered here, then the move will not execute and
error 14 will be returned on the ERR output. This bandwidth is entered in ladder
units.

The OVRD input defines the feedrate override value. This can be changed at any
time, even if the STRT input is not energized. This adjusts the actual feedrate or
time to be from 0 to 255 percent of the programmed feedrate or time.

The PATH input defines the number of the path. Up to four totally independent
paths of coordinated motion can be defined. This must be a number from 1 to 4.
This should not be changed once it is set. Each path uses a time axis. Path 1 uses
time axis 25. Path 2 uses time axis 26. Path 3 uses time axis 27. Path 4 uses time
axis 28.

The QUED output will be set for one scan when STRT is pulsed and the move has
been successfully queued on all axes defined. If an error occurred in queueing the
move, this output will be reset when STRT is pulsed, and an error code will be
stored in the ERR output.

The ERR output will be non-zero if an error occurs in queueing a move. A list of
error codes is shown on the following table.

Note: WRITE_SV variable 25 Fast Queuing is enabled for the selected axes when
STRT is set. Fast queuing will remain on for those axes until turned off by you.
 2-143

ERR Description
0 No error
1 No bits were set in the LIN, CIRC, or DEP WORDs
2 The same bit was set in the LIN and CIRC WORDs
3 The same bit was set in the DEP and CIRC WORDs
4 The same bit was set in the LIN and DEP WORDs
5 The number of bits set in the CIRC WORD was not 0 or 2
6 Not used
7 Not used
8 The time of move or feedrate was negative
9 The time of move or feedrate was zero
10 The feedrate was too high or the time was too low to calcu-

late
11 The feedrate was too low or the time was too high to calcu-

late
12 An axis that was selected was not initialized by the servo

setup function
13 The STRTSRV function has not been called
14 Endpoint not on circle

1XX When the distance to move was converted to feedback
units, it was too positive to fit into 32 bits. XX = Axis
number

2XX When the distance to move was converted to feedback
units, it was too negative to fit into 32 bits. XX = Axis
number

3XX The path feedrate or time entered causes an axis to exceed
its velocity limit from servo setup. XX = Axis number

32766 The time axis could not be started. NOTE: For PiCPro
13.0 and higher you need to add the time axes to your
servo setup.

32767 One of the OKs on the RATIO_RL functions did not get
set. NOTE: For PiCPro 13.0 and higher you need to add
the time axes to your servo setup.
 2-144

M_POSMV1
Performs and Monitors Position Moves USER/M_MOVE

<<INSTANCE NAME>>:M_POSMV1(ENxx := <<BOOL>>, AXIS :=
<<USINT>>, POSN := <<DINT>>, RATE := <<UDINT>>, WTIP :=
<<BOOL>>, OK => <<BOOL>>, DONE => <<BOOL>>, FAIL =>
<<BOOL>>, MVIP => <<BOOL>>, QUE => <<USINT>>, MVIQ =>
<<BOOL>>);

This block will initiate and track progress on a Position move for the specified
axis. It is mainly intended for use in sequential move applications where each
move is followed by another non motion or different axis action. In these situa-
tions, the move will typically become active immediately.

However, the block will queue a move as long as a queue is available and it will
start when the active move completes.

E-stops and C-stops will cause the motion being monitored by the block to end. In
these cases, the OK output will go off and the FAIL output will come on. The
DONE output will stay off.

Aborts will also cause the move to terminate. The block cannot tell that an Abort
has been done, and the OK and DONE outputs will come on in these cases. There
is also one specific case where the MVIQ output will stay on incorrectly. This will
occur if a move triggered by this block is in the queue and it is aborted and another
Position move is started before this block runs.

⁄ƒ NAME ƒƒø
≥ M_POSMV1≥
≥ ≥
¥ENxx OK√ƒ
≥ ≥
¥AXIS DONE√ƒ
≥ ≥
¥POSN FAIL√ƒ
≥ ≥
¥RATE MVIP√ƒ
≥ ≥
¥WTIP QUE√ƒ
≥ ≥
≥ MVIQ√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - Enables execution (one shot)

AXIS (USINT) - Axis number

POSN (DINT) - End point in LU

RATE (UDINT) - Feed rate in LU / minute

WTIP (BOOL) - Wait for In Position signal before
completing

Outputs: OK (BOOL) - Command was accepted

DONE (BOOL) - Position move is complete

FAIL (BOOL) - No queue available or move is E-
stopped or C-stopped

MVIP (BOOL) - Position move is in progress

QUE (USINT) - Queue number for move

MVIQ (BOOL) - Queued waiting for active move to
end
 2-145

INPUTS:

ENxx - (BOOL) one shot to trigger move

AXIS - (USINT) axis number to position

POSN - (DINT) end point for position move

RATE - (UDINT) feed rate for move in LU / Minute

WTIP - (BOOL) wait for in position. If this is on, the DONE output will not turn
on until the axis is within the in position band. If off, DONE will turn on when the
command position stops iterating. If a move is in the queue behind this move, then
this setting has no effect and the DONE will be on when the move stops iterating.

OUTPUTS:

OK - (BOOL) turns on if move is accepted and goes off if move does not complete
normally

DONE - (BOOL) turns on when move completes, turns off when new move started

FAIL - (BOOL) on if move stopped due to E or C stop or no queue is available
when EN turns on

MVIP - (BOOL) position move is in progress

QUE - (USINT) queue number for position move

MVIQ - (BOOL) move is in queue waiting for active move to end
 2-146

M_PRTCAM
Creates a RATIOCAM text file USER/M_DATA

<<INSTANCE NAME>>:M_PRTCAM(RQ00 := <<BOOL>>, CAM :=
<<MEMORY AREA>>, RAMD := <<BOOL>>, FILE := <<STRING>>
SDIR := <<STRING), DONE => <<BOOL>>, FAIL => <<BOOL>> ERR
=> <<INT>>);

This function block creates a text file for a RATIOCAM CAM structure. The
file can be created on either the RAMDISK in the PiC or on the PC running
PiCPro. A positive transition of RQ00 requests that the data specified by the
CAM input be converted to ASCII code, concatenated, and written to the
RAMDISK or to the PiCPro port. The CAM input is an array of structures and
must have the following members:

⁄ƒ NAME ƒƒø
≥ M_PRTCAM≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥STRT HACT√ƒ
≥ ≥
¥CAM FAIL√ƒ
≥ ≥
¥RAMD ERR√ƒ
≥ ≥
¥FILE ≥
≥ ≥
¥SDIR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - request file generation and write

CAM (STRUC 0..) - CAM structure input of the
RATIOCAM function

RAMD (BOOL) - If enabled, allows file to be
written to the RAMDISK. If disabled, file is written
to the PC running PiCPro.

FILE (STRING) - name of the file

SDIR (STRING) - identifies the subdirectory
where the file will be written to.

Outputs: DONE (BOOL) - set when the file is generated and
written, reset when RQ00 goes on.

FAIL (BOOL) - set if an error occurs and reset when
RQ00 goes on.

ERR (INT) - number of error that occurred. These
errors are defined in Appendix B.

Name Data Type Definition
CAM STRUCT

(0..998)
The structure of the RATIOCAM profile

.M INT Master segment size

.S INT Slave segment size
 2-147

The FILE input requires a string data type variable with the filename as an initial
value. The format is “FILENAME.EXT”.

The SDIR input requires a string data type. A subdirectory is not required if you
are writing the file to the RAMDISK. If you are writing the file to a PC running
PiCPro, then the SDIR is required. It must contain the drive and subdirectory path.
The following are examples showing the drive and subdirectory path:

C: indicates that the file will be written to C:Filename.ext.

C:\PRT_CAM indicates the file will be written to the directory
C:\PRT_CAM\Filename.ext.
 2-148

M_PRTREL
Creates a RATIO_RL text file USER/M_DATA

<<INSTANCE NAME>>:M_PRTREL(RQ00 := <<BOOL>>, REAL :=
<<MEMORY AREA>>, RAMD := <<BOOL>>, FILE := <<(STRING>>,
SDIR := <<STRING>>, DONE => <<BOOL>>, FAIL => <<BOOL>>,
ERR => <<INT>>);

This function block creates a text file for a RATIO_RL structure. The file can be
created on the RAMDISK in the PiC or on the PC running PiCPro. A positive tran-
sition of RQ00 requests that the data specified by the REAL input be converted to
ASCII code, concatenated, and written to the RAMDISK or to the PiCPro port.
The REAL input is an array of structures and must have these members:

⁄ƒ NAME ƒƒø
≥ M_PRTREL≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥REAL FAIL√ƒ
≥ ≥
¥RAMD ERR√ƒ
≥ ≥
¥FILE ≥
≥ ≥
¥SDIR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - request file generation and write

REAL (STRUC 0..) - REAL structure input of the
RATIO_RL function

RAMD (BOOL) - If enabled, allows file to be
written to the RAMDISK. If disabled, file is written
to the PC running PiCPro.

FILE (STRING) - name of the file

SDIR (STRING) - identifies the subdirectory
where the file will be written to.

Outputs: DONE (BOOL) - set when the file is generated and
written, reset when RQ00 goes on.

FAIL (BOOL) - set if an error occurs and reset when
RQ00 goes on.

ERR (INT) - number of error that occurred. These
errors are defined in Appendix B.

Name Data Type Definition

REAL STRUCT (0..998) The structure of the RATIO_RL profile

.M DINT Master segment size

.S DINT Slave segment size

.LEN LREAL Length or K1

.AMPL LREAL Amplitude or K2

.STANGL LREAL Start angle or K3

.SPARE LREAL Spare for future use

.FLAGS DWORD Flags
 2-149

The FILE input requires a string data type variable with the filename as an initial
value. The format is “FILENAME.EXT”. The SDIR input requires a string data
type. A subdirectory is not required if you are writing the file to the RAMDISK. If
you are writing the file to a PC running PiCPro, then the SDIR is required. It must
contain the drive and subdirectory path. The following are examples showing the
drive and subdirectory path:

C: indicates that the file will be written to C:Filename.ext.

C:\PRT_CAM indicates the file will be written to the directory C:\PRT_CAM\File-
name.ext.
 2-150

M_PRTSLP
Creates a RATIOSLP text file USER/M_DATA

<<INSTANCE NAME>>:M_PRTSLP(RQ00 := <<BOOL>>, SLPE :=
<<MEMORY AREA>> RAMD := <<BOOL>>, FILE := <<STRING>> SDIR
:= <<STRING>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<INT>>);

This function block creates a text file for a RATIOSLP structure. The file can be
created on either the RAMDISK in the PiC or on the PC running PiCPro.

A positive transition of RQ00 requests that the data specified by the SLPE input be
converted to ASCII code, concatenated, and written to the RAMDISK or to the
PiCPro port.

The REAL input is an array of structures and must have the following members:

⁄ƒ NAME ƒƒø
≥ M_PRTSLP≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥SLPE FAIL√ƒ
≥ ≥
¥RAMD ERR√ƒ
≥ ≥
¥FILE ≥
≥ ≥
¥SDIR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - request file generation and write

SLPE (STRUC 0..) - SLPE structure input of the
 RATIOSLP function

RAMD (BOOL) - If enabled, allows file to be
written to the RAMDISK. If disabled, file is written
to the PC running PiCPro.

FILE (STRING) - name of the file

SDIR (STRING) - identifies the subdirectory
where the file will be written to.

Outputs: DONE (BOOL) - set when the file is generated and
written, reset when RQ00 goes on.

FAIL (BOOL) - set if an error occurs and reset when
RQ00 goes on.

ERR (INT) - number of error that occurred. These
errors are defined in Appendix B.

Name Data Type Definition
SLPE STRUCT

(0..998)
The structure of the RATIOSLP profile

.M INT Master segment size

.S INT Slave segment size

.SLP DINT Slope of segment

.SR DINT Start ratio

.FLAGS DWORD Default flags
 2-151

The FILE input requires a string data type variable with the filename as an initial
value. The format is “FILENAME.EXT”. The SDIR input requires a string data
type. A subdirectory is not required if you are writing the file to the RAMDISK. If
you are writing the file to a PC running PiCPro, then the SDIR is required. It must
contain the drive and subdirectory path. The following are examples showing the
drive and subdirectory path:

C: indicates that the file will be written to C:Filename.ext.

C:\PRT_CAM indicates the file will be written to the directory C:\PRT_CAM\File-
name.ext.
 2-152

M_RATREL
Calculates Ending Ratio and Slope USER/M_DATA

<<INSTANCE NAME>>:M_RATREL(EN01 := <<BOOL>>, S :=
<<DINT>>, M := <<DINT>>, SR := <<LREAL>>, OK => <<BOOL>>, ER
=> <<LREAL>>, SLP => <<LREAL>>, K2 => <<LREAL>>);

This function block calculates the ending ratio, slope, and K2 (slope/2) used in the
ratio real structure from the master distance, slave distance, and starting ratio.

This function block calculates the ending ratio and slope to be used with the
RATIO_RL structure as one segment of the RATIO_RL profile. Refer to the
documentation in the PiCPro Online Help regarding RATIO_RL for more infor-
mation.

The slave and master segments (S and M) are entered in feedback units.

The starting ratio for the first segment of a RATIO_RL profile is normally zero.
The starting ratio is called LEN or K1 in the ratio real documentation.

The formulas used by this function for calculation are as follows:

ER = (2S / M) - SR

SLP = (ER - SR) / M

K2 = SLP / 2

where ER is the ending ratio, SR is the starting ratio, S is the slave distance, M is
the master distance, SLP is the slope, and K2 is the slope divided by 2. K2 is the
AMPL structure member of the RATIO_RL REAL structure for a linear move.

The ending ratio is not an input to the RATIO_RL structure. However the ending
ratio of one segment is normally used as the starting ratio of the next segment.

⁄ƒƒ NAME ƒø
≥M_RATREL ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥S ER√ƒ
≥ ≥
¥M SLP√ƒ
≥ ≥
¥SR K2√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

S (DINT) - slave distance

M (DINT) - master distance

SR (LREAL) - starting ratio

Outputs: OK (BOOL) - execution complete

ER (LREAL) - ending ratio

SLP (LREAL) - slope

K2 (LREAL) - slope output divided by 2
 2-153

M_RATSLP
Calculates Ending Ratio and Slope USER/M_DATA

<<INSTANCE NAME>>:M_RATREL(EN01 := <<BOOL>>, S := <<INT>>,
M := <<INT>>, SR := <<DINT>>, OK => <<BOOL>>, ERR => <<INT>>,
ER => <<DINT>>, SLP => <<DINT>>);

This function block calculates the ending ratio and slope used in the ratio slope
structure from the master distance, slave distance, and starting ratio.

This function block calculates the ending ratio and slope to be used with the
RATIOSLP structure as one segment of the RATIOSLP profile. Refer to the
documentation in the PiCPro Online Help regarding RATIOSLP for more informa-
tion. The slave and master segments (S and M) are entered in feedback units.

The starting ratio for the first segment of a slope profile is normally zero. Non zero
starting ratios must already be multiplied by the scaling factor of 16777216 before
being used as an input to this function.

The formulas used by this function for calculation are as follows:

ER = (2S / M) - SR

SLP = (ER - SR) / M

where ER is the ending ratio, SR is the starting ratio, S is the slave distance, M is
the master distance, and SLP is the slope.

⁄ƒƒ NAME ƒø
≥M_RATSLP ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥S ERR√ƒ
≥ ≥
¥M ER√ƒ
≥ ≥
¥SR SLP√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

S (INT) - slave distance

M (INT) - master distance

SR (DINT) - starting ratio

Outputs: OK (BOOL) - execution complete without error

ERR (INT) - error number

ER (DINT) - ending ratio

SLP (DINT) - slope
 2-154

The ending ratio and slope that are outputs of this function have been multiplied by
the scaling factor of 16777216. The ending ratio is not an input to the RATIOSLP
structure. However, the ending ratio of one segment is normally used as the
starting ratio of the next segment.

Note:An M value of zero results in an error due to an attempt to divide by 0. No master
distance can have a value of zero in a RATIOSLP profile.

ERR Description
1 The calculation for ER failed when S was between -64 and

+63 (inclusive)
2 The calculation for ER failed when S was less than -64 or

greater than +63
3 The calculation for SLP failed
 2-155

M_RDTUNE
Reads tuning parameters USER/M_DATA

<<INSTANCE NAME>>:M_RDTUNE(EN00 := <<BOOL>>, AXIS :=
<<USINT>>, OK => <<BOOL>>, P => <<DINT>>, I => <<DINT>>, D =>
<<DINT>>, DFST => <<DINT>>, FILT => <<DINT>>, FFWD =>
<<DINT>>);

This function block allows you to read all six tuning parameters from the
TUNEREAD function in a single function.

This function block requires the numeric processor or a 486 DX processor.

The proportional gain for AXIS will be returned in P. P is in ladder units per
minute per ladder unit of following error (LU / MIN / LUFE).

The integral gain for AXIS will be returned in I. I is in ladder units per minute per
ladder units of following error times minutes (LU / MIN / LUFE * MIN).

The derivative gain for AXIS will be returned in D. D is in ladder units per minute
per ladder unit of following error per minute (LU / MIN / LUFE / MIN).

The analog output offset voltage for AXIS will be returned in OFST. OFST is in
millivolts.

The slow speed filter value for AXIS will be returned in FILT. FILT is in millisec-
onds.

The feedforward percentage for AXIS will be returned in FFWD. FFWD will be
from 0 to 100.

⁄ƒƒ NAMEƒƒø
≥M_RDTUNE ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥AXIS P√ƒ
≥ ≥
≥ I√ƒ
≥ ≥
≥ D√ƒ
≥ ≥
≥ OFST√ƒ
≥ ≥
≥ FILT√ƒ
≥ ≥
≥ FFWD√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

AXIS (USINT) - identifies axis

Outputs: OK (BOOL) - execution complete

P (DINT) - proportional gain

I (DINT) - integral gain

D (DINT) - derivative gain

OFST (DINT) - analog output offset

FILT (DINT) - slow speed filter value

FFWD (DINT) - feedforward percentage

 2-156

M_REGMOV
Performs Registration Move USER/M_MOVE

<<INSTANCE NAME>>:M_REGMOV(ENxx := <<BOOL>>, Strt :=
<<BOOL>>, Stop := <<BOOL>>, Axis := <<USINT>>, Rate := <<UDINT>>,
Dist <<DINT>>, MaxD := <<DINT>>, Ignr := <<DINT>>, S_SV :=
<<WORD>>, Ok => <<BOOL>>, Fail => <<BOOL>>, Err => <<INT>>, Act =>
<<BOOL>>, ActQ => <<USINT>>, NoMk => <<BOOL>>);

This function block is used to perform an incremental distance / registration move.
It allows you to program the axis to travel an incremental distance past a registra-
tion mark. A sensor must be wired to the fast input for the axis to detect the regis-
tration mark.

⁄ƒƒ NAMEƒƒø
≥M_REGMOVE≥
≥ ≥
¥ENxx Ok√ƒ
≥ ≥
¥Strt Fail√ƒ
≥ ≥
¥Stop Err√ƒ
≥ ≥
¥Axis Act√ƒ
≥ ≥
¥Rate ActQ√ƒ
≥ ≥
¥Dist NoMk√ƒ
≥ ≥
¥MaxD ≥
≥ ≥
¥Ignr ≥
≥ ≥
¥S_SV ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - Enable FB - on at all times (xx indi-
cates revision #)

Strt (BOOL) - Starts Registration Move - one shot on
to start

Stop (BOOL) - Stops Registration Move - turn on to
stop

Axis (USINT) - Axis number

Rate (UDINT) - Velocity rate in LU per min

Dist (DINT) - Distance you want to go past the regis-
tration mark in LU

MaxD (DINT) - Maximum distance to travel in LU

Ignr (DINT) - Distance to ignore registration marks
in LU

S_SV (WORD) - Output of STATUSSV function

Outputs: Ok (BOOL) - Registration move was queued up

Fail (BOOL) - Registration move failed to execute

Err (INT) - Error code, see table below

Act (BOOL) - Registration move is active, axis is
moving

ActQ (USINT) - Queue number of active registration
move

NoMk (BOOL) - No Mark, no registration mark
occurred with the maximum distance
 2-157

 NOTE: The fast input that the registration sensor is wired to must not be
declared as an I/O point in the software declarations. The M_REGMOV uses
the FAST_QUE function which has control over the fast input. If you declare
it as an I/O, then you may miss registration marks.

Figure 1 below shows a typical setup for a cut to length application.

The feed rolls are used to index or move (MaxD) the material to cut. If the Sensor
detects the registration mark on the material, the move distance is adjusted so that
the registration mark is under the cutoff (Dist).

 Inputs

The ENxx input must be enabled every scan.

The Strt input must be a one shot. When it goes on, the function block will start
the registration move sequence as follows:

1. An incremental DISTANCE move of MaxD is queued up.

2. When the DISTANCE move is active and traveled past the Ignr distance,
and the fast input / sensor is off, the FAST_QUE function is called and a
second DISTANCE move of Dist is queued up.

3. If the fast input / sensor is triggered before the MaxD move is complete,
the first distance move is aborted and the second distance move becomes
active. The axis will stop the Dist past the registration mark sensor.

4. If no registration mark is detected before the MaxD. The axis will stop
at the MaxD distance and abort the FAST_QUE and second DISTANCE
move. The NoMK output will be turned on.
 2-158

The Stop input will abort the move sequence and the axis will decelerate to a stop.

The Axis input is the axis number of the axis to move. The registration sensor
must be wired to the fast input of this axis.

The Rate input is the maximum velocity or feedrate in LU/Min that the axis will
move.

The Dist input is the distance in LU the axis will travel past the registration sensor.

The MaxD input is the maximum distance in LU the axis will travel.

The Ignr input is the distance in LU from the start of the move that the function
will ignore any fast inputs.

The S_SV input is the STAT output of the STATUSSV function. This function
block uses the status bits to determine if the fast input is on and when the distance
move is started. You can not have more than one instance per axis of the STA-
TUSSV function in your ladder.

NOTE: Reference the "PiCPro Function/Function Block Reference Guide"
for details on the DISTANCE, FAST_QUE, and STATUSSV functions.

 Outputs

The OK output is on when the function block is enabled and no faults are active.

The Fail output is on when a fault is active and the registration move sequence
failed to execute.

The Err output is an error number that describes the error or fault that occurred.
See the error listings below.

The Act output is on when the registration move sequence is active, i.e. the axis is
in motion.

The ActQ output is the queue number of the active DISTANCE move.

The NoMk output is turned on when the MaxD distance was traveled without see-
ing a fast input.

Error Codes

1 Another move was active when the Strt Input went on. No moves
can be active when the function is called.

2 The first DISTANCE move failed, check MaxD and Rate inputs or
the WriteSV to enable Fast Queuing failed.

3 A move was queued up outside of the M_REGMOV ASFB. No
motion commands should be executed in the ladder when the reg-
istration move is active or started.

4 FAST_QUE function or second DISTANCE failed. Check Dist
and Rate inputs.
 2-159

If you have multiple marks on your material you can use the Ignr input to ignore
marks as show below in figure 2.

5 A move was queued up outside of the M_REGMOV ASFB when
the first DISTANCE move was active and before the FAST_QUE
and second DISTANCE moves were called. No motion commands
should be executed in the ladder when the registration move is
active or started.

6 The fast input for the Registration Sensor never went off.
 2-160

M_RGSTAT
Returns Registration Data USER/M_DATA

<<INSTANCE NAME>>:M_RGSTAT(EN00 := <<BOOL>>, AXIS :=
<<USINT>>, STAT := <<WORD>>, OK => <<BOOL>>, DIST =>
<<DINT>>, FPOS => <<DINT>>, CHNG => <<BOOL>>, DSTL =>
<<BOOL>>, FOCR => <<BOOL>>, FINP => <<BOOL>>, GDMK =>
<<BOOL>>, NMGD => <<DINT>>, BDMK => <<BOOL>>, NMBD =>
<<DINT>>, TOTL => <<DINT>>);

This function block obtains information about registration. The information gath-
ered is distance between fast inputs, fast input position, registration reference
change, number of good marks, number of bad marks, total number of marks, and
the state of STATUSSV flags.

This function block should be enabled every scan.

The input at AXIS determines which axis the output information is for. AXIS can
be a closed loop or digitizing axis.

⁄ƒƒ NAMEƒƒø
≥M_RGSTAT ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥AXIS DIST√ƒ
≥ ≥
¥STAT FPOS√ƒ
≥ ≥
≥ CHNG√ƒ
≥ ≥
≥ DSTL√ƒ
≥ ≥
≥ FOCR√ƒ
≥ ≥
≥ FINP√ƒ
≥ ≥
≥ GDMK√ƒ
≥ ≥
≥ NMGD√ƒ
≥ ≥
≥ BDMK√ƒ
≥ ≥
≥ NMBD√ƒ
≥ ≥
≥ TOTL√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

AXIS (USINT) - axis number

STAT (WORD) - status word from STATUSSV
function

Outputs: OK (BOOL) - execution complete

DIST (DINT) - fast input distance

FPOS (DINT) - fast input position

CHNG (DINT) - registration/referencing
position change

DSTL (BOOL) - indicates distance plus
tolerance has been exceeded

FOCR (BOOL) - fast input occurred

FINP (BOOL) - fast input on

GDMK (BOOL) - good mark detected

NMGD (DINT) - number of good registration marks

BDMK (BOOL) - bad mark detected

NMBD (DINT) - number of bad registration marks

TOTL (DINT) - total number of fast inputs that
have occurred
 2-161

The STAT input is the status word read from the STATUSSV function. STA-
TUSSV can only be called once per scan, so its output is used as an input to this
function.

The OK output will not be set if the axis has not been initialized.

The DIST output is the distance between the most recent fast input and the previ-
ous fast input in ladder units.

The FPOS output is the actual position of the axis at the point where the most
recent fast input occurred in ladder units.

The CHNG output is the amount the position of the axis has changed in ladder
units due to registration or the last machine reference.

The DSTL output will be set if the distance from the last mark exceeds the value of
DIST + TOLR whether or not a mark has occurred. It will be reset when any mark
occurs.

The FOCR output will be set if a fast input has occurred since the last time the
STATUSSV function was called.

The FINP output is set if the fast input is on, and reset if the fast input is off.

The GDMK output will be set if a good mark has been detected since the last time
the STATUSSV function was called.

The NMGD output holds the total number of good registration marks that have
been detected.

The BDMK output will be set if a bad mark has been detected since the last time
the STATUSSV function was called.

The BAD output holds the number of bad registration marks that have been
detected.

The TOTL output holds the total number of fast input transitions that have
occurred.
 2-162

M_RSET49
Reset Errors on Digitizing Axes 49 to 56 USER/M_INIT

<<INSTANCE NAME>>:M_RSET49(EN01 := <<BOOL>>, MSTR :=
<<BOOL>>, OK => <<BOOL>>);

This function block is used to reset the E-stop errors on digitizing axes 49 through
56 when the machine start input is pulsed.

This function block should be enabled every scan.

The machine start input must go through a positive transition (off to on) to reset
the errors.

On a positive transition of MSTR, this function will reset all E-stop errors on axes
49 through 56.

⁄ƒƒ NAME ƒø
≥M_RSET49 ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
¥MSTR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

MSTR (BOOL) - machine start input

Outputs: OK (BOOL) - execution complete
 2-163

M_RSET57
Reset Errors on Digitizing Axes 57 to 64 USER/M_INIT

<<INSTANCE NAME>>:M_RSET57(EN01 := <<BOOL>>, MSTR :=
<<BOOL>>, OK => <<BOOL>>);

This function block is used to reset the E-stop errors on digitizing axes 57 through
64 when the machine start input is pulsed.

This function block should be enabled every scan.

The machine start input must go through a positive transition (off to on) to reset
the errors.

On a positive transition of MSTR, this function will reset all E-stop errors on axes
57 through 64.

⁄ƒƒ NAME ƒø
≥M_RSET57 ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
¥MSTR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

MSTR (BOOL) - machine start input

Outputs: OK (BOOL) - execution complete
 2-164

M_RSET65
Reset Errors on Digitizing Axes 65 to 72 USER/M_INIT

<<INSTANCE NAME>>:M_RSET65(EN01 := <<BOOL>>, MSTR :=
<<BOOL>>, OK => <<BOOL>>);

This function block is used to reset the E-stop errors on digitizing axes 65 through
72 when the machine start input is pulsed.

This function block should be enabled every scan.

The machine start input must go through a positive transition (off to on) to reset
the errors.

On a positive transition of MSTR, this function will reset all E-stop errors on axes
65 through 72.

⁄ƒƒ NAME ƒø
≥M_RSET65 ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
¥MSTR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

MSTR (BOOL) - machine start input

Outputs: OK (BOOL) - execution complete
 2-165

M_RSET73
Reset Errors on Digitizing Axes 73 to 80 USER/M_INIT

<<INSTANCE NAME>>:M_RSET73(EN01 := <<BOOL>>, MSTR :=
<<BOOL>>, OK => <<BOOL>>);

This function block is used to reset the E-stop errors on digitizing axes 73 through
80 when the machine start input is pulsed.

This function block should be enabled every scan.

The machine start input must go through a positive transition (off to on) to reset
the errors.

On a positive transition of MSTR, this function will reset all E-stop errors on axes
73 through 80.

⁄ƒƒ NAME ƒø
≥M_RSET73 ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
¥MSTR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

MSTR (BOOL) - machine start input

Outputs: OK (BOOL) - execution complete
 2-166

M_SACC
Calculate ACC and JERK values with ACC_JERK USER/M_MOVE

<<INSTANCE NAME>>:M_SACC(EN00 := <<BOOL>>, VM :=
<<UDINT>>, TM :=<<REAL>>, S := <<USINT>>, OK => <<BOOL>>),
ACC => <<LREAL>>), JERK => <<LREAL>>);

This function block is used to calculate the ACC and JERK values to be used with
the ACC_JERK function.

Note: This function block is not intended to be used directly with the SCURVE or
M_SCRVLC because the units for those functions are different (e.g ACC is
Counts/min/min).

Inputs:

The EN00 input of this function block would normally be one-shot.

The VM input is set to the maximum velocity for the servo or time axis move to be
executed.

The TM input sets the total time to reach velocity VM if the axis starts from rest.
Typical values might be 0.1 seconds or 10 seconds. This value must be positive or
the OK will not be set.

The S input sets the percentage of time spent in constant jerk. A value of 80(%)
percent means 40% of the acceleration time spent in constant jerk, 20% in constant
acceleration and another 40% in constant jerk. This value must be set to 100 or less
or the OK will not be set.

⁄ƒƒ NAME ƒø
≥ M_SACC ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥VM ACC√ƒ
≥ ≥
¥TM JERK√ƒ
¥ ≥
¥S ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (one-shot)

VM (UDINT) - maximum velocity of move in ladder
units/min

TM (REAL) - total time to reach velocity VM if axis
starts from rest

S (USINT) - percentage of time spent in constant jerk

Outputs: OK (BOOL) - execution completed without error

ACC (LREAL) - maximum acceleration rate in lad-
der units or counts/min/sec

JERK (LREAL) - constant jerk in ladder units or

counts/min/sec2
 2-167

Outputs:

The OK is set if the input values are within range and the output values were calcu-
lated.

The ACC output is the maximum acceleration rate for the axis expressed in ladder
units/min/sec for a servo axis and counts/min/sec for a time axis.

The JERK output is the constant jerk in ladder units/min/sec for a servo axis and

counts/min/sec2 for a time axis.
 2-168

M_SCRVLC
Performs Linear and Circular Moves with S-Curve USER/M_MOVE

⁄ƒƒ NAMEƒƒø
≥ M_SCRVLC≥
≥ ≥
¥EN01 QUED√ƒ
≥ ≥
¥STRT ERR√ƒ
≥ ≥
¥INC MVZD√ƒ
≥ ≥
¥TIME FRST√ƒ
≥ ≥
¥RATE FQUE√ƒ
≥ ≥
¥CCW ≥
≥ ≥
¥LIN ≥
≥ ≥
¥CIRC ≥
≥ ≥
¥DEP ≥
≥ ≥
¥NDPT ≥
≥ ≥
¥CEN1 ≥
≥ ≥
¥CEN2 ≥
≥ ≥
¥BNDW ≥
≥ ≥
¥OVRD ≥
≥ ≥
¥PATH ≥
≥ ≥
¥ACCL ≥
≥ ≥
¥JERK ≥
≥ ≥
¥MAXF ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

STRT (BOOL) - enables the coordinated move

INC (WORD) - defines incremental or absolute
mode for up to 16 axes (0=absolute, 1=incremental)

TIME (BOOL) - defines if move is feedrate or time
of move (0=feedrate, 1=time of move)

RATE (DINT) - feedrate or time of move

CCW (BOOL) - defines direction of circular move
(0=clockwise, 1=counter-clockwise)

LIN (WORD) - defines which axes to move in a
linear mode

CIRC (WORD) - defines which axes to move in a
circular mode

DEP (WORD) - defines which axes to move in a
simultaneous endpoint arrival mode

NDPT (DINT(0..16)) - endpoints or distances to
move

CEN1 (DINT) - circle center for lowest numbered
circular axis

CEN2 (DINT) - circle center for highest numbered
circular axis

BNDW (DINT) - circular endpoint bandwidth

OVRD (USINT) - feedrate override percentage

PATH (USINT) - path number

ACCL (LREAL) - path acceleration in ladder
units/min2

JERK (LREAL) - path jerk in ladder units/min3

MAXF (DINT) - maximum path feedrate in ladder
units/minute
 2-169

<<INSTANCE NAME>>:M_SCRVLC(EN01 := <<BOOL>>, STRT :=
<<BOOL>>, INC := <<WORD>>, TIME := <<BOOL>>, RATE :=
<<DINT>>, CCW := <<BOOL>>, LIN := <<WORD>>, CIRC :=
<<WORD>>, DEP := <<WORD>>, NDPT := <<DINT (0..16)>>, CEN1 :=
<<DINT>>, CEN2 := <<DINT>>, BNDW := <<DINT>>, OVRD :=
<<USINT>>, PATH := <<USINT<<, ACCL := <<LREAL>>, JERK :=
<<LREAL>>, MAXF := <<DINT>>, QUED => <<BOOL>>, ERR =>
<<INT>>, MVZD => <<BOOL>>, FRST => <<USINT>>, FQUE =>
<<USINT>>);

The M_SCRVLC function block provides the interface from the application .LDO
to the RATIO_RL function in order to perform linear coordinated, circular, or third
axis departure (simultaneous endpoint arrival) moves with S-curve acceleration
and deceleration. Before this function can be used, the axes must be initialized, the
position loop must be closed, and a queue must be available on all axes to be used
in the move.

Up to four separate paths of coordinated motion can be controlled. Each path of
motion requires a separate instantiation of the M_SCRVLC function block. Each
path must control a unique set of axes. Only one M_SCRVLC function block per
path can be used with the application .LDO. Each path uses a time axis. Path 1 uses
time axis 25. Path 2 uses time axis 26. Path 3 uses time axis 27. Path 4 uses time
axis 28.

This function block can control up to 16 axes.

Note:This function block requires a numeric processor or a 486 DX
processor in the PiC900 and version 6.2 or higher of PiCPro.

Inputs

The EN01 input of this function block must be set every scan.

The STRT input must be one-shot. When it is one-shot, the function block will
start the coordinated move, or enter it in the queue for the axes. It is the user's

 Outputs: QUED (BOOL) - move was queued without error

ERR (INT) - error number describing error that
occurred when the move was queued

MVZD (BOOL) - linear move was queued with all
distances being zero

FRST (USINT) - axis number of the first axis in the
path

FQUE (USINT) - queue number for first axis in the
path
 2-170

responsibility to ensure that there is a queue available on all of the axes involved in
the move before pulsing this input.

The INC input defines whether each axis should move in the absolute or incremen-
tal mode. One bit of this WORD is reserved for each of the sixteen possible axes.
Bit 0 is set if axis 1 is incremental, or reset if axis 1 is absolute, bit 1 is set if axis 2
is incremental, reset if axis 2 is absolute, etc.

The TIME input defines whether the move should be executed as a path feedrate
move or a time of move. This input should be reset for path feedrate, or set for time
of move.

If the TIME input is reset, then the RATE input is the path feedrate for the move in
ladder units/minute. It the TIME input is set, then the RATE input is the time for
the move in milliseconds.

The RATE is the path feedrate or the time for the move to execute depending on
the TIME input.

The CCW input is only used for circular moves. If it is reset, then the move is
clockwise, if it is set, then the move is counter-clockwise.

The LIN input defines which axes in the move are to be moved in a linear mode.
One bit of the WORD is reserved for each of the sixteen axes. The bit must be set
for the axis to do a linear move. Axes who have their bits set will be included in the
calculations for the path feedrate.

The CIRC input defines which axes in the move are to be moved in a circular
mode. One bit of the WORD is reserved for each of the sixteen axes. The bit must
be set for the axis to do a circular move. Axes who have their bits set will be
included in the calculations for the path feedrate.

The DEP input defines which axes in the move are to be moved in a simultaneous
endpoint arrival mode. One bit of the WORD is reserved for each of the sixteen
axes. The bit must be set for the axis to move. Axes who have their bits set will not
be included in the calculations for the path feedrate, but they will arrive at their
endpoints simultaneously with the axes that are.

Note:The LIN, CIRC, and DEP words may never have the same bits set in them at a
time. You must always set a bit for every axis ever used in the path, even if the axis is
not to move in this particular move. In this case, you would set either the LIN or DEP
bit for the axis, set the INC bit for the axis, and program an endpoint of zero for the axis.

The NDPT array holds the endpoints for the axes used in the move. The 0th
element is not used. If the INC bit is set for the axis, this is the distance to move, if
the INC bit is reset for the axis, then this is the position to move to. The endpoints
are entered in ladder units.

The CEN1 and CEN2 inputs define the circle centers if a circular move is being
performed. The CEN1 input is the center for the lowest numbered circular axis,
and the CEN2 input is the center for the highest numbered circular axis. The cen-
ters are always programmed as an incremental distance from the starting point of
the circle, even if the INC bit for the axes is not set. The centers are entered in lad-
 2-171

der units. For example, if a circle were being done with axes 4 and 6, then CEN1
would be the center for axis 4, and CEN2 would be the center for axis 6.

The BNDW input defines a bandwidth for circular moves. When a circular move is
requested, the distance from the start point to the center point and the distance
from the endpoint to the center point are compared for both axes. If these distances
differ by more than the bandwidth entered here, then the move will not execute and
error 14 will be returned on the ERR output. This bandwidth is entered in ladder
units.

The OVRD input defines the feedrate override value. This can be changed at any
time, even if the STRT input is not energized. This adjusts the actual feedrate or
time to be from 0 to 255 percent of the programmed feedrate or time.

The PATH input defines the number of the path. Up to four totally independent
paths of coordinated motion can be defined. This must be a number from 1 to 4.
This should not be changed once it is set.

The ACCL is the path acceleration in ladder units/min2. The JERK is the path jerk
in ladder units/min3. The MAXF is the maximum path feedrate in ladder units/min.
This should not be changed once it is set.

Outputs

The QUED output will be set for one scan when STRT is pulsed and the move has
been successfully queued on all axes defined. If an error occurred in queueing the
move, this output will be reset when STRT is pulsed, and an error code will be
stored in the ERR output.

The ERR output will be non-zero if an error occurs in queueing a move. A list of
error codes is shown below:

ERR Description
0 No error
1 No bits were set in the LIN, CIRC, or DEP WORDs
2 The same bit was set in the LIN and CIRC WORDs
3 The same bit was set in the DEP and CIRC WORDs
4 The same bit was set in the LIN and DEP WORDs
5 The number of bits set in the CIRC WORD was not 0 or 2
6 Not used
7 Not used
8 The time of move or feedrate was negative
9 The time of move or feedrate was zero
10 The feedrate was too high or the time was too low to

calculate
 2-172

Calculating ACCL and JERK

This section explains how to calculate the ACCL and JERK inputs for the function
block.

The drawing below illustrates an S-curve acceleration.

From 0 to t1, the axis will be in constant jerk
From t1 to t2, the axis will be in constant acceleration.
From t2 to tm, the axis will again be in constant jerk.

The formulas below show the relationship between tm, t1, t2, and s.

11 The feedrate was too low or the time was too high to
calculate

12 An axis that was selected was not initialized by the servo
setup function

13 The STRTSRV function has not been called
14 Endpoint not on circle

1XX When the distance to move was converted to feedback units,
it was too positive to fit into 32 bits. XX = Axis number

2XX When the distance to move was converted to feedback units,
it was too negative to fit into 32 bits. XX = Axis number

3XX The path feedrate or time entered causes an axis to exceed
its velocity limit from servo setup. XX = Axis number

32766 The time axis could not be started. NOTE: For PiCPro 13.0
and higher you need to add the time axis to your servosetup.

32767 One of the OKs on the RATIO_RL functions did not get set
or the OK on the time axis distance move did not get set.
NOTE: For PiCPro 13.0 and higher you need to add the
time axis to your servosetup.

Vm = Maximum path velocity

tm = The total time it takes to get to velocity Vm if the axis starts
at 0.

s = The percentage of time (tm) spent in constant jerk.

�
�

�� ���
�

�
--- � ��××





� �
 2-173

For a 10% S-curve, 10% of the time (tm) is spent in constant jerk.
This means that s = 0.1.
For a 20% S-curve, 20% of the time (tm) is spent in constant jerk.
This means that s = 0.2, etc.

If you know Vm, tm, and s, then you can calculate jerk and acceleration using the
following formulas.

The units for JERK are ladder units per minute3; therefore, Vm is in ladder units

per minute and tm is in minutes. The units for ACCL are ladder units per minute2.

0

ta 0.5 tj0.5 tj

tm

V
el

oc
it

y
Vm

Time
��������������
�������������� = constant jerk

= constant acceleration

�� ��
�

�
--- � ��×× 

 
��

����
� ��×

� ��
� � ��� �)×�(×

---�

	

�
��

�� � ��� �)×�(×
---�
 2-174

M_SRCMON
Monitors up to five SERCOS IDNs USER/M_SERCOS

⁄ƒƒ NAMEƒƒø
≥M_SRCMON ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥SRS FAIL√ƒ
≥ ≥
¥IDNA MODA√ƒ
≥ ≥
¥P_A MODB√ƒ
≥ ≥
¥IDNB MODC√ƒ
≥ ≥
¥P_B MODD√ƒ
≥ ≥
¥IDNC MODE√ƒ
≥ ≥
¥P_C ERR√ƒ
≥ ≥
¥IDND SERR√ƒ
≥ ≥
¥P_D BSER√ƒ
≥ ≥
¥IDNE I_FL√ƒ
≥ ≥
¥P_E ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

SRS (STRUCT) - slot, ring, and slave to monitor

IDNA (UINT) - number of first IDN to monitor

P_A (BOOL) - set for Product IDN, reset for
System IDN

IDNB (UINT) - number of second IDN to monitor

P_B (BOOL) - set for Product IDN, reset for System
IDN

IDNC (UINT) - number of third IDN to monitor

P_C (BOOL) - set for Product IDN, reset for
System IDN

IDND (UINT) - number of fourth IDN to monitor

P_D (BOOL) - set for Product IDN, reset for
System IDN

IDNE (UINT) - number of fifth IDN to monitor

P_E (BOOL) - set for Product IDN, reset for
System IDN

Outputs: OK (BOOL) - execution complete

FAIL (BOOL) - execution failure

MODA (REAL) - value of first IDN

MODB (REAL) - value of second IDN

MODC (REAL) - value of third IDN

MODD (REAL) - value of fourth IDN

MODE (REAL) - value of fifth IDN

ERR (INT) - SERCOS error*

SERR (UINT) - SERCOS slave error*

BSER (INT) - SERCOS block specific error*

I_FL (UINT) - indicates the IDN that failed
(1 through 5 corresponding to A through E) if
an error occurs during a read

*See error tables at end of the M_SRCWTL function
block section.
 2-175

<<INSTANCE NAME>>:M_SRCMON(EN00 := <<BOOL>>, SRS :=
<<MEMORY AREA>>, IDNA := <<UINT>>, P_A := <<BOOL>>, IDNB
:= <<UINT>>, P_B := <<BOOL>>, IDNC := <<UINT>>, P_C :=
<<BOOL>>, IDND := <<UINT>>, P_D := <<BOOL>>, IDNE :=
<<UINT>>, P_E := <<BOOL>>, OK => <<BOOL>>, FAIL =>
<<BOOL>>, MODA => <<REAL>>, MODB => <<REAL>>, MODC =>
<<REAL>>, MODD => <<REAL>>, MODE => <<REAL>>, ERR =>
<<INT>>, SERR => <<UINT>>, BSER => <<INT>>, I_FL =>
<<UINT>>);

The M_SRCMON function block monitors up to five SERCOS IDNs for a single
SERCOS slave. The operation data for each IDN is continuously read as long as
the EN00 input is energized.

The IDNA through IDNE inputs can be used or left blank. When the EN00 input
transitions from off to on, the attributes of each IDN are read and saved in the
function block. These attributes are used to scale the data being monitored into
engineering units for the output. If the IDNA through IDNE inputs are changed
while monitoring, the EN00 input must be dropped and then re-energized so that
the attributes for each IDN are read again.

The SRS input is used to indicate which SERCOS slave to monitor. Slot, ring, and
slave are used instead of an axis number so that this function block can be used in
phase 2 initialization if desired. The SRS structure must be declared as follows:

If FAIL is set, ERR or BSER will be non-zero indicating the type of error. If
ERR = 128 indicating Slave Error, SERR will be non-zero indicating the type of
slave error.

Name Data Type Definition
SRS STRUCT
.SLOT UINT Slot number of the SERCOS

module
.RING UINT Ring number on the module
.SLAVE UINT Slave number on the ring

END_STRUCT
 2-176

M_SRCPRC
Executes SERCOS procedure command function USER/M_SERCOS

<<INSTANCE NAME>>:M_SRCPRC(RQ00 := <<BOOL>>, SRS :=
<<MEMORY AREA>>, IDN := <<UINT>>, PROD := <<BOOL>>, DONE
=> <<BOOL>>, ACTV => <<BOOL>>, ERR => <<INT>>, SERR =>
<<UINT>>, BSER => <<INT>>);

The M_SRCPRC function block executes a SERCOS procedure command func-
tion for a single SERCOS slave. The RQ00 input of this function block should be
one-shot to initiate the procedure command function. While the procedure com-
mand function is executing within the SERCOS slave, the ACTV output will be
set. If the procedure command function completes without error, the DONE output
will be set and the ACTV output will be reset. If the procedure command function
fails, the FAIL output will be set and the ACTV output will be reset. The DONE or
FAIL output will remain set until the RQ00 input is one-shot again.

The SRS input is used to indicate which SERCOS slave is to execute the procedure
command function. Slot, ring, and slave are used instead of an axis number so that
this function can be used in phase 2 initialization if desired. The SRS structure
must be declared as shown in the following table:

⁄ƒƒ NAMEƒƒø
≥ M_SRCPRC≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥SRS FAIL√ƒ
≥ ≥
¥IDN ACTV√ƒ
≥ ≥
¥PROD ERR√ƒ
≥ ≥
≥ SERR√ƒ
≥ ≥
≥ BSER√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - requests execution of a procedure
command function (one-shot)

SRS (STRUCT) - slot, ring, and slave number of the
SERCOS slave to execute the procedure command
function

IDN (UINT) - IDN number of procedure command
function

PROD (BOOL) - set for Product IDN, reset for
System IDN

Outputs: DONE (BOOL) - procedure command
function complete

FAIL (BOOL) - procedure command function failure

ACTV (BOOL) - set while the procedure command
function is active

ERR (INT) - SERCOS error*

SERR (UINT) - SERCOS slave error*

BSER (INT) - SERCOS block specific error*

*See error tables at end of the M_SRCWTL
function block section.
 2-177

If FAIL is set, ERR or BSER will be non-zero indicating the type of error.

If ERR = 128 indicating slave error, SERR will be non-zero indicating the type of
slave error.

Name Data Type Definition
SRS STRUCT
.SLOT UINT Slot number of the SERCOS module
.RING UINT Ring number on the module
.SLAVE UINT Slave number on the ring

END_STRUCT
 2-178

M_SRCRDL
Reads SERCOS IDNs USER/M_SERCOS

<<INSTANCE NAME>>:M_SRCRDL(RQ00 := <<BOOL>>, SRS :=
<<MEMORY AREA>>, IDN := <<UINT>>, PROD := <<BOOL>>, FILE
:= <<STRING>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ACTV =>
<<BOOL>>, ERR => <<INT>>, SERR => <<UINT>> BSER => <<INT>>,
IOER => <<INT>>, NUM => <<UINT>>, CURR => <<UINT>>);

The M_SRCRDL function block reads a list of up to 400 IDNs and saves the list to
the PiC RAMDISK or workstation as an ASCII file along with the name, units,
and operation data limits for each IDN in the list. Each IDN appears in a single line
in the file. The data for each IDN is separated by tabs. This function block can be
used in conjunction with M_SRCWTL to read and write lists of IDNs to and from
a SERCOS slave.

The IDN number specified with the IDN and PROD inputs must return a list of
IDNs in order to use this function block.

⁄ƒƒ NAMEƒƒø
≥ M_SRCRDL≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥SRS FAIL√ƒ
≥ ≥
¥IDN ACTV√ƒ
≥ ≥
¥PROD ERR√ƒ
≥ ≥
¥FILE SERR√ƒ
≥ ≥
≥ BSER√ƒ
≥ ≥
≥ IOER√ƒ
≥ ≥
≥ NUM√ƒ
≥ ≥
≥ CURR√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - requests execution (one-shot)

SRS (STRUCT) - slot, ring, and slave number

IDN (UINT) - IDN number that will return a list
of IDNs

PROD (BOOL) - set for Product IDN, reset for
System IDN

FILE (STRING [80]) - filename of the file to save to

Outputs: DONE (BOOL) - execution complete

FAIL (BOOL) - execution failed

ACTV (BOOL) - set while executing

ERR (INT) - SERCOS error*

SERR (UINT) - SERCOS slave error*

BSER (INT) - SERCOS block specific error*

IOER (INT) - I/O function block error (See
Appendix B in the online help.)

NUM (UINT) - number of IDNs in the list

CURR (UINT) - current member being read

*See error tables at end of the M_SRCWTL
function block section.
 2-179

The RQ00 input must be one-shot. While the function block is reading the list of
IDNs, the ACTV output will be set. If the read completes without error, the DONE
output will be set and the ACTV output will be reset. If an error occurs during
reading, the FAIL output will be set and the ACTV output will be reset. The
DONE or FAIL output will remain set until the RQ00 input is one-shot again.

The NUM output indicates the total number of IDNs that exist in the list being
read. The CURR output indicates the current member of the list being read and
will range from 0 to NUM.

The SRS input is used to indicate from which SERCOS slave the list of IDNs will
be read. Slot, ring, and slave are used instead of an axis number so that this func-
tion block can be used in phase 2 initialization if desired. The SRS structure must
be declared as follows:

FILE is a string containing the full file specification of the file in which the list of
IDNs is saved. This string must be terminated by the null character $00, (i.e.
RAMDISK:\IDNFILE.DAT$00).

If FAIL is set ERR, BSER, or IOER will be non-zero indicating the type of error. If
ERR = 128 indicating Slave Error, SERR will be non-zero indicating the type of
slave error.

Name Data Type Definition
SRS STRUCT
.SLOT UINT Slot number of the SERCOS module
.RING UINT Ring number on the module
.SLAVE UINT Slave number on the ring

END_STRUCT
 2-180

M_SRCWT
Writes and reads SERCOS IDNs USER/M_SERCOS

⁄ƒƒ NAMEƒƒø
≥ M_SRCWT ≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥SRS FAIL√ƒ
≥ ≥
¥IDNA ACTV√ƒ
≥ ≥
¥P_A ERR√ƒ
≥ ≥
¥WODA SERR√ƒ
≥ ≥
¥IDNB BSER√ƒ
≥ ≥
¥P_B FIDN√ƒ
≥ ≥
¥WODB RODA√ƒ
≥ ≥
¥IDNC RODB√ƒ
≥ ≥
¥P_C RODC√ƒ
≥ ≥
¥WODC RODD√ƒ
≥ ≥
¥IDND RODE√ƒ
≥ ≥
¥P_D ≥
≥ ≥
¥WODD ≥
≥ ≥
¥IDNE ≥
≥ ≥
¥P_E ≥
≥ ≥
¥WODE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - requests execution (one-shot)
SRS (STRUCT) - slot, ring, and slave number
IDNA (UINT) - number of first IDN to write
P_A (BOOL) - set for Product IDN, reset for
System IDN
WODA (REAL) - value of operation datum
for IDNA
IDNB (UINT) - number of second IDN to write
P_B (BOOL) - set for Product IDN, reset for
System IDN
WODB (REAL) - value of operation datum
for IDNB
IDNC (UINT) - number of third IDN to write
P_C (BOOL) - set for Product IDN, reset for
System IDN
WODC (REAL) - value of operation datum
for IDNC

IDND (UINT) - number of fourth IDN to write
P_D (BOOL) - set for Product IDN, reset for
System IDN
WODD (REAL) - value of operation datum
for IDND
IDNE (UINT) - number of fifth IDN to write
P_E (BOOL) - set for Product IDN, reset for
System IDN
WODE (REAL) - value of operation datum for IDNE

Outputs: DONE (BOOL) - set when the writes and reads
are complete
FAIL (BOOL) - set if write or read fails
ACTV (BOOL) - set when operation is in process
ERR (INT) - SERCOS error*
SERR (UINT) - SERCOS slave error*
BSER (INT) - SERCOS block specific error*
FIDN (UINT) - the IDN the operation failed on
RODA (REAL) - value of operation datum read
back from IDNA
RODB (REAL) - value of operation datum read
back from IDNB
RODC (REAL) - value of operation datum read back
from IDNC
RODD (REAL) - value of operation datum read back
from IDND
RODE (REAL) - value of operation datum read back
from IDNE
*See error tables at end of M_SRCWTL function
block section.
 2-181

<<INSTANCE NAME>>:M_SRCWT(RQ00 := <<BOOL>>, SRS :=
<<MEMORY AREA>>, IDNA := <<UINT>>, P_A := <<BOOL>>, WODA
:= <<REAL>>, IDNB := <<UINT>>, P_B := <<BOOL>>, WODB :=
<<REAL>>, IDNC := <<UINT>>, P_C := <<BOOL>> WODC :=
<<REAL>>, IDND := <<UINT>>, P_D := <<BOOL>>, WODD :=
<<REAL>>, IDNE := <<UINT>>, P_E := <<BOOL>>, WODE :=
<<REAL>>, DONE => <<BOOL>>, FAIL => <<BOOL>>, ACTV =>
<<BOOL>>, ERR => <<INT>>, SERR => <<UINT>> BSER => <<INT>>,
FIDN => <<UINT>>, RODA => <<REAL>>, RODB => <<REAL>>,
RODC => <<REAL>>, RODD => <<REAL>>, RODE => <<REAL>>);

The M_SRCWT function block writes and reads up to five SERCOS IDNs.

The M_SRCWT function block will write and read back operation data to a maxi-
mum of five IDNs on a SERCOS slave. The operation data for each IDN is written
and read once when the RQ00 input is energized.

The IDNA through IDNE inputs can be used or left blank. When the RQ00 input
transitions from off to on, the attributes of each IDN are read and saved in the
function block. These attributes are used to scale the data at the input to the correct
units for the SERCOS slave. After the attributes are read the operation data is writ-
ten and read back again to verify that the write was successful. While this process
is happening, the ACTV output will remain set. If the process completes without
error, the DONE output will be set and the ACTV output will be reset. If an error
occurs, the FAIL output will be set and the ACTV output will be reset.

The RQ00 input must be one-shot each time you wish to write data to the SERCOS
slave. A second request cannot be made while the first one is still active. If this
happens, the second request will be ignored.

The SRS input is used to indicate which SERCOS slave to write to. Slot, ring, and
slave are used instead of an axis number so that this function can be used in phase
2 initialization if desired. The SRS structure must be declared as follows:

If FAIL is set, ERR or BSER will be non-zero indicating the type of error. If ERR
= 128 indicating Slave Error, SERR will be non-zero indicating the type of slave
error.

Name Data Type Definition
SRS STRUCT
.SLOT UINT Slot number of the SERCOS module
.RING UINT Ring number on the module
.SLAVE UINT Slave number on the ring

END_STRUCT
 2-182

M_SRCWTL
Writes SERCOS IDNs USER/M_SERCOS

<<INSTANCE NAME>>:M_SRCWTL(RQ00 := <<BOOL>>, SRS := <<MEM-
ORY AREA>>, FILE := <<STRING>>, DONE => <<BOOL>>, FAIL =>
<<BOOL>>, ACTV => <<BOOL>>, ERR => <<INT>>, SERR => <<UINT>>
BSER => <<INT>>, IOER => <<INT>>, CURR => <<UINT>>);

The M_SRCWTL function block writes a list of SERCOS IDNs.

The M_SRCWTL function block reads a list of IDNs from an ASCII file on the
PiC RAMDISK or workstation and writes the operation data from the list to a
SERCOS slave. The ASCII file must be of the same format used for the
M_SRCRDL function block. M_SRCWTL can be used in conjunction with
M_SRCRDL to read and write lists of IDNs to and from a SERCOS slave.

The RQ00 input to this function must be one-shot. While the function block is
writing the list of IDNs, the ACTV output will be set. If the write completes with-
out error, the DONE output will be set and the ACTV output will be reset. If an
error occurs during the write, the FAIL output will be set and the ACTV output
will be reset. The DONE or FAIL output will remain set until the RQ00 input is
one-shot again.

The CURR output indicates the current IDN being written to the SERCOS slave.
This will continually update while the function block is active.

⁄ƒƒ NAMEƒƒø
≥M_SRCWTL ≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥SRS FAIL√ƒ
≥ ≥
¥FILE ACTV√ƒ
≥ ≥
≥ ERR√ƒ
≥ ≥
≥ SERR√ƒ
≥ ≥
≥ BSER√ƒ
≥ ≥
≥ IOER√ƒ
≥ ≥
≥ CURR√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - requests execution (one-shot)

SRS (STRUCT) - slot, ring, and slave number

FILE (STRING [80]) - filename

Outputs: DONE (BOOL) - execution complete

FAIL (BOOL) - execution failed

ACTV (BOOL) - execution active

ERR (INT) - SERCOS error*

SERR (UINT) - SERCOS slave error*

BSER (INT) - SERCOS block specific error*

IOER (INT) - I/O function block error (See Appendix B in the online
help.)

CURR (UINT) - current IDN being written

*See error tables at end of the this function block section.
 2-183

The SRS input is used to indicate which SERCOS slave the list of IDNs will be
written to. Slot, ring, and slave are used instead of an axis number so that this func-
tion can be used in phase 2 initialization if desired. The SRS structure must be
declared as shown in the following table:

FILE is a string containing the full file specification of the file in which the list of
IDNs is saved. This string must be terminated by the null character $00 (i.e. RAM-
DISK:\IDNFILE.DAT$00).

If FAIL is set ERR, BSER, or IOER will be non-zero indicating the type of error. If
ERR = 128 indicating Slave Error, SERR will be non-zero indicating the type of
slave error.

M_SERCOS Function Block Errors

There are three types of error outputs that can appear on the M_SERCOS function
blocks. They are described in the three tables that follow.

ERR Output

Table 1 contains the list of SERCOS errors that can appear at the ERR output of
the M_SERCOS function blocks.

Name Data Type Definition
SRS STRUCT
.SLOT UINT Slot number of the SERCOS module
.RING UINT Ring number on the module
.SLAVE UINT Slave number on the ring

END_STRUCT
 2-184

 Table 1 - List of ERR Codes

Err # Description
0 No error
1 IDN queue was busy when called.
2 Quantity specified in the .AVAIL structure member is not large enough for received

data.
3 Axis is not initialized, is not a SERCOS axis, or the slot/ring/slave specification is

incorrect.
4 Invalid data in DATA input structure
5 Error reset function could not be completed.
6 SERCOS ring 1 busy*
7 SERCOS ring 2 busy*
8 SERCOS ring 1 configuration size error**
9 SERCOS ring 2 configuration size error**
10 Function block enabled while already in process
11 Bit 3 or bit 8 set in the procedure command acknowledgment (data status) Either

operation data invalid or procedure command error
12 Not enough pool memory available
13 Change bit in status word was zero after reference complete.
14 The IDN queue was cleared during an IDN transfer, typically caused by calling the

SC_INIT function while an IDN is being read or written.
15 SERCOS module is unavailable for IDN transfer because the phase-to-phase

transition in progress is between phase 2 and phase 4.
16 Slave response timed out
17 The SERCOS module did not receive an expected AT response. SERCOS cable may

be disconnected.
18 Number of SERCOS slots equals zero.
19 The SERCOS module did not receive an expected MDT response. SERCOS cable

may be disconnected.
20 Phase 0 detected that the ring is not complete. The optic cable could be open or drive

turned off.
21 The SERCOS module firmware is outdated for the features requested from a newer

version of the motion library.
22 The SERCOS module firmware is a newer version and the motion library is outdated

and unable to interface.
23 The data (user function) is outdated for the features requested from the library or the

SERCOS module firmware.
24 The data is a newer version and the library is unable to interface.
25 A two-ring SERCOS module was specified in SERCOS setup but the module is a

one-ring SERCOS module.
30 The drive status word (bit 13=1) indicates an error.
 2-185

*This busy error may occur if the SC_INIT function is not one-shotted and a second store operation is attempted
before the first one is done.

**This size error will occur if too many IDNs are defined in the SERCOS setup data.

31 An E-stop condition exists for this axis in the PiC900.
32 Incorrect phase number, contact Danaher Motion
33 Incorrect address error, contact Danaher Motion
34 Incorrect AT number error, contact Danaher Motion
35 Variable 48 is set to 1 and you attempt to close the loop
36 OPTN input is invalid.
48 Service channel not ready when attempt to send/receive non-cyclic data
49 No data to send or receive
50 The value of the .SIZE member of the TASK input structure does not match the byte

count in the SERCOS module.
51 The value of the .SIZE member of the MAIN input structure does not match the byte

count in the SERCOS module.
65 Error occurred calculating when MDT should occur.
66 Error occurred calculating when drive data valid.
67 Error occurred calculating when feedback data valid.
68 Error occurred calculating total time required for communication cycle.
69 Error occurred calculating cyclic data memory for SERCON processor.
70 Error occurred calculating cyclic data memory for internal memory map.
71 Error occurred calculating service channel memory map.
72 Incorrect ring error, contact Danaher Motion
73 Incorrect AT count error, contact Danaher Motion
74 CPU on SERCOS module has too many tasks during update.
128 Slave error occurred. Read SERR output to identify error. The SLV output indicates

the slave number.
136 Slave will not respond in phase 1. The SLV output indicates the slave number.
144 Procedure command error - The slave number can be viewed at the SLV output and

the IDN number at the IDN output.
 2-186

SERR Output

Table 2 contains the list of slave errors that can appear at the SERR output of
M_SERCOS function blocks.

 Table 2 - List of SERR Error Codes

SERR # Description
0 No error

4097 This IDN does not exist.
4105 The data for this IDN may not be accessed.
8193 The name does not exist
8194 The name transmission is too short
8195 The name transmission is too long
8196 The name may not be changed
8197 The name is write-protected
12290 The attribute transmission is too short
12291 The attribute transmission is too long
12292 The attribute may not be changed
12293 The attribute is write-protected at this time
16385 The units do not exist
16386 The units transmission is too short
16387 The units transmission is too long
16388 The units may not be changed
16389 The units are write-protected at this time
20481 The minimum value does not exist
20482 The minimum value transmission is too short
20483 The minimum value transmission is too long
20484 The minimum value may not be changed
20485 The minimum value is write-protected
24577 The maximum value does not exist
24578 The maximum value transmission is too short
24579 The maximum value transmission is too long
24580 The maximum value may not be changed
24581 The maximum value is write-protected
28674 The data is too short.
28675 The data is too long
28676 The data may not be changed.
28677 The data is write-protected at this time.
28678 The data is smaller than the minimum value.
28679 The data is larger than the maximum value.
28680 The bit pattern for this IDN is invalid.
 2-187

BSER Output

Table 3 contains the list of block specific errors that can appear at the BSER output
of M_SERCOS function blocks.

 Table 3 - Block Specific Error Codes

BSER # Description
0 No error
1 Request to execute but not in phase 2 or 4
2 IDN is a procedure command
3 Data is variable length
4 Data is reserved
5 IDN is not a procedure command
 2-188

M_STATUS
Return Axis Data USER/M_DATA

<<INSTANCE NAME>>:M_STATUS(EN01 := <<BOOL>>, AXIS :=
<<USINT>>, OK => <<BOOL>>, INPS => <<BOOL>>, QAVL =>
<<BOOL>>, QUE => <<USINT>>, MVTP => <<DINT>> ACTL =>
<<DINT>>, COMD => <<DINT>>, PERR => <<DINT>>, FERR =>
<<DINT>>);

This function block obtains information for a digitizing, time, or closed loop axis.
It returns the in position flag, the queue available flag, the active queue number,
the active move type, the actual position, the commanded position, the position
error, and the filter error for the axis.This function block should be enabled every
scan.

The input at AXIS determines which axis the output information is for.

The INPS output is set whenever the following error of the axis is within the in
position limit entered in servo setup. It will be reset while the axis is in motion.

The QAVL output is set whenever the next queue or both the next and active
queues are empty. When set it means another move can be put in the axis queue.

The QUE output holds the queue number of the move in the active queue. The
queue number is assigned to each move when the move function is enabled. If no
moves are active, the QUE number will be 0.

⁄ƒƒ NAMEƒƒø
≥M_STATUS ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
¥AXIS INPS√ƒ
≥ ≥
≥ QAVL√ƒ
≥ ≥
≥ QUE√ƒ
≥ ≥
≥ MVTP√ƒ
≥ ≥
≥ ACTL√ƒ
≥ ≥
≥ COMD√ƒ
≥ ≥
≥ PERR√ƒ
≥ ≥
≥ FERR√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

AXIS (USINT) - axis number

Outputs: OK (BOOL) - execution completed without error

INPS (BOOL) - set when axis is in position

QAVL (BOOL) - set when next queue is empty

QUE (USINT) - queue number of move in
active queue

MVTP (DINT) - type of move in active queue

ACTL (DINT) - actual position of axis in ladder
units

COMD (DINT) - commanded position of axis in
ladder units

PERR (DINT) - position error of axis in ladder units

FERR (DINT) - filter error of axis in ladder units
 2-189

The MVTP output holds the type of the move in the active queue. If no move is
active, this will be 0. The moves types are defined below:

The ACTL output holds the actual position of the axis in ladder units.

The COMD output holds the commanded position of the axis in ladder units.

The PERR output holds the position error of the axis in ladder units.

The FERR output holds the filter error of the axis in ladder units.

This function block can be used for a digitizing axis, a time axis, or a closed loop
axis. If used for a digitizing axis only the ACTL and COMD outputs are used and
there is no need to enter variables for the INPS, QAVL, QUE, MVTP, PERR, or
FERR outputs. If used for a time axis, only the ACTL output is used and there is
no need to enter variables for the INPS, QAVL, QUE, MVTP, COMD, PERR, and
FERR outputs.

The OK output will not be set if the axis has not been initialized.

MVTP Description
11 POSITION
12 DISTANCE
14 VEL_STRT
16 FAST_REF or LAD_REF
18 RATIOPRO
20 RATIOSYN or RATIO_GR
22 RATIOCAM
23 RATIOSLP
24 RATIO_RL
 2-190

M_SUPMV
Add move to geared axis USER/M_MOVE

<<INSTANCE NAME>>:M_SUPMV(ENxx := <<BOOL>>, AXIS :=
<<USINT>>, SPAX := <<USINT>>, DIST := <<DINT>>, RATE :=
<<UDINT>>, OK => <<BOOL>>, FAIL => <<BOOL>>, ERR =>
<<USINT>>, DMIP => <<BOOL>>, SQUE => <<USINT>>);

This block will perform an incremental (Distance) move on a servo axis that
already has an active move in progress. It can be used to cause a phase shift
between master and slave. The shift may be determined by a registration eye or
other means. The move can cause motion reversal. It is up to the programmer to
determine that the effect of the move is acceptable in terms of speed and direction.

The active move must be a Ratio_xxxx move type or a Velocity move type. See
the Help for READ_SV (WRITE_SV) variable 66 for more information. The
block requires the use of a Virtual axis and internally commands this Virtual axis
to move. The use of VAR66 causes the Virtual axis move to be added on top of the
servo axis motion. Make sure that the Virtual axis has the same servo setup param-
eters as the servo axis, including interrupt rate. The acceleration and deceleration
used will be those of the virtual axis. Also, make sure to close the loop on the vir-
tual axis, Estop it, reset faults etc exactly the same as the servo axis.

⁄ƒ NAME ƒƒø
≥ M_SUPMV ≥
≥ ≥
¥ENxx OK√ƒ
≥ ≥
¥AXIS FAIL√ƒ
≥ ≥
¥SPAX ERR√ƒ
≥ ≥
¥DIST DMIP√ƒ
≥ ≥
¥RATE SQUE√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - One Shot to start the motion

AXIS (USINT) - Servo axis on which move will be
performed.

SPAX (USINT) - Virtual axis used to effect superim-
posed move.

DIST (DINT) - Distance of superimposed move in
LU

RATE (UDINT) - Rate of superimposed move in LU
/ minute

Outputs: OK (BOOL) - Function block operation OK

FAIL (BOOL) - Command failed - see ERR for rea-
sons

ERR (USINT) - Error number showing reason for
FAIL

DMIP (BOOL) - Superimposed move in progress

SQUE (USINT) - Superimposed move queue number
 2-191

INPUTS:

ENxx - One shot to start motion

AXIS - Servo (Ratio slave) axis number

SPAX - Virtual axis used to effect superimposed move

DIST - Distance and sign of move in LU

RATE - Velocity of move in LU / minute

OUTPUTS:

OK - block executed ok

FAIL - an error occurred - see ERR for causes

ERR - error code indicating reason for FAIL - see below for detail

DMIP - superimposed move is in progress

SQUE - queue number of superimposed move

ERRORS:

1 - The virtual axis loop is not closed.

2 - The virtual axis was already in motion when ENxx was pulsed.

3 - The servo axis would not accept the VAR66 write. Servo and virtual interrupt
rates may be different.

4 - The servo axis does not have a valid move type active - RATIO_xxxx or Veloc-
ity.

10 - The axis motion was interrupted by an Estop or other event.
 2-192

M_WTTUNE
Writes tuning parameters USER/M_DATA

<<INSTANCE NAME>>:M_WTTUNE(EN00 := <<BOOL>>, AXIS :=
<<USINT>>, WT_P := <<BOOL>>, P := <<DINT>>, WT_1 := <<BOOL>>, I
:= <<DINT>>, WT_D := <<BOOL>> D := <<DINT>>, WTOF := <<BOOL>>,
OFST := <<DINT>>, WTFL := <<BOOL>>, FILT := <<DINT>>, WTFF :=
<<BOOL>>, FFWD := <<DINT>>, OK => <<BOOL>>, ERR => <<INT>>);

This function block allows you to write all six tuning parameters from the TUNE-
WRIT function in a single function.

This function block requires the numeric processor or a 486 DX processor.

The EN00 input of this function should be set every scan.

The AXIS input identifies which axis to write data to. It must be between 1 and 16
or between 101 and 116, inclusive.

Note: LU = ladder units, MIN = minutes, LUFE = ladder units of following error.

⁄ƒ NAME ƒƒø
≥ M_WTTUNE≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥AXIS ERR√ƒ
≥ ≥
¥WT_P ≥
≥ ≥
¥P ≥
≥ ≥
¥WT_I ≥
≥ ≥
¥I ≥
≥ ≥
¥WT_D ≥
≥ ≥
¥D ≥
≥ ≥
¥WTOF ≥
≥ ≥
¥OFST ≥
≥ ≥
¥WTFL ≥
≥ ≥
¥FILT ≥
≥ ≥
¥WTFF ≥
≥ ≥
¥FFWD ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

AXIS (USINT) - identifies axis

WT_P (BOOL) - enables write of proportional gain

P (DINT) - proportional gain

WT_I (BOOL) - enables write of integral gain

I (DINT) - integral gain

WT_D (BOOL) - enables write of derivative gain

D (DINT) - derivative gain

WTOF (BOOL) - enables write of analog output
offset

OFST (DINT) - analog output offset

WTFL (BOOL) - enables write of slow speed
filter value

FILT (DINT) - slow speed filter value

WTFF (BOOL) - enables write of feedforward
percentage

FFWD (DINT) - feedforward percentage

Outputs: OK (BOOL) - execution complete

ERR (INT) - error number
 2-193

When the WT_P input is set, the proportional gain of AXIS will be changed to the
value entered at P. P is in LU / MIN / LUFE and must be between 0 and 20000.

When the WT_I input is set, the integral gain of AXIS will be changed to the value
entered at I. I is in LU / MIN / LUFE * MIN. I must be from 0 to 32000.

When the WT_D input is set, the derivative gain of AXIS will be changed to the
value entered at D. D is in LU / MIN / LUFE / MIN.

When the WTOF input is set, the analog output offset voltage of AXIS will be
changed to the value entered at OFST. OFST must be from -10000 to +10000 mil-
livolts.

When the WTFL input is set, the slow speed filter value of AXIS will be changed
to the value entered at FILT. FILT must be from 0 to 10000 milliseconds.

When the WTFF input is set, the feedforward percentage of AXIS will be changed
to the value entered at FFWD. FFWD must be from 0 to 100%.

The WT_P, WT_I, WT_D, WTOF, WTFL and WTFF inputs can be one-shot. The
parameters will remain changed until the axis is re-initialized or until this function
block or the TUNEWRIT function is called again for AXIS.

The OK output will be set if the function executes without error. If an error occurs,
OK will not be set and ERR will hold a number describing the error that occurred.
A listing of errors is shown below:

ERR Description
0 No error
1 Tried to change P for AXIS number that was not initialized or is out

of range
3 Data for P is out of range or can not be calculated

101 Tried to change I for AXIS number that was not initialized or is out
of range

103 Data for I is out of range or can not be calculated
201 Tried to change D for AXIS number that was not initialized or is out

of range
203 Data for D is out of range or can not be calculated
301 Tried to change OFST for AXIS number that was not initialized or

is out of range
303 Data for OFST is out of range or can not be calculated
401 Tried to change FILT for AXIS number that was not initialized or is

out of range
403 Data for FILT is out of range or can not be calculated
501 Tried to change FFWD for AXIS number that was not initialized or

is out of range
503 Data for FFWD is out of range or can not be calculated
 2-194

M_XL2CM
Excel to Cam Profile USER/M_XL2CM

<<INSTANCE NAME>>:M_XL2CM(RQ00 := <<BOOL>>, FNAM :=
<<STRING>>, HEDR := <<STRUCT>>, CSTR := <<STRUCT>>, SSTR :=

⁄ƒ NAME ƒƒø
≥ M_XL2CM ≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥FNAM FAIL√ƒ
≥ ≥
¥HEDR FERR√ƒ
≥ ≥
¥CSTR OERR√ƒ
≥ ≥
¥SSTR MTOT√ƒ
≥ ≥
¥RSTR STOT√ƒ
≥ ≥
≥ CAMO√ƒ
≥ ≥
≥ SLPO√ƒ
≥ ≥
≥ RELO√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - one-shot to start conversion

FNAM (STRING) - file name of csv file that is to be
converted

HEDR (STRUCT) - structure containing information
about the
profile such as master axis, scaling

CSTR (STRUCT) - array of structures used to hold
RATIOCAM
profile data

SSTR (STRUCT) - array of structures used to hold
RATIOSLP
profile data

RSTR (STRUCT) - array of structures used to hold
RATIO_RL
profile data

Outputs: DONE (BOOL) - file conversion completed without
error

FAIL (BOOL) - file conversion failed

FERR (INT) - error number from OPEN, READ, or
CLOSE
functions

OERR (INT) - error number from operation of func-
tion

MTOT (DINT) - Total master distance moved in the
profile
(feedback units)

STOT (DINT) - Total slave distance moved in the
profile
(feedback units)

CAMO (BOOL) - set if the profile type is RATIO-
CAM

SLPO (BOOL) - set if the profile type is RATIOSLP

RELO (BOOL) - set if the profile type is RATIO_RL
 2-195

<<STRUCT>>, RSTR := <<STRUCT>>, DONE => <<BOOL>>, FAIL =>
<<BOOL>>, FERR => <<INT>>, OERR => <<INT>>, MTOT => <<DINT>>,
STOT => <<DINT>>, CAMO => <<BOOL>>, SLPO => <<BOOL>>, RELO
=> <<BOOL>>);

This Excel to Cam application specific function block is used to convert an ASCII
CSV file in the correct format to a data structure that can be called directly by
RATIOCAM, RATIOSLP or RATIO_RL.

The CSV files must be created using the Excel spreadsheet that is included with
this function (the default spreadsheet is called Cam Profile Design Tool.XLS).
Using Excel, enter profile information such as master axis, slave axis, and scaling.
You then select the profile type (RATIOCAM, RATIOSLP or RATIO_RL) and
enter the point pairs. The spreadsheet allows you to see a graph of the profile.
Once you have entered the data, you export the appropriate data to a CSV file.
Instructions on how to do this are included with the spreadsheet. The resulting
CSV file is copied to the control's RAMDISK so this function can read it.

The string specified at the FNAM input must include the entire file path (e.g.
RAMDISK:File.CSV$00).

The HEDR structure contains the following members, which are all read from the
csv file:

.VERSION STRING[8] - the version number

.COMMENT STRING[40] - the comment

.SLAVE_AXIS USINT - axis number of the slave

.SLAVE_LABEL STRING[32] - slave description

.MASTER_AXIS USINT - axis number of the master .MASTER_LABEL
STRING[32] - master description
.SLAVE_FU DINT - slave scaling info
.SLAVE_LU DINT - slave scaling info
.MASTER_FU DINT - master scaling info
.MASTER_LU DINT - master scaling info
.PROFILE_TYPE STRING[32] - cam, slope or real .NUMBER_OF_SEGS INT -
number of segments in the profile

The CSTR, SSTR and RSTR inputs are all arrays of structures. The structure for-
mat is the same as that specified by the associated function: RATIOCAM, RATIO-
SLP and RATIO_RL respectively. In the example program each data structure is
declared to be the maximum size so no data overruns occur. You can make the
structures smaller depending on your application.

Either the DONE or the FAIL output will be set when the conversion is complete.
If the FAIL output is set, either the FERR or the OERR output will indicate an
error number. The FERR output is used to indicate an error from the OPEN,
READ or CLOSE function and the error numbers can be found in Appendix B of
the online help. The OERR output indicates an error inside the function and the
codes are as follows:

The MTOT and STOT outputs indicate the total master and slave distance moved
over the entire profile.
 2-196

The CAMO, SLPO and RELO outputs are used to indicate the profile type. Only
one of them will be set when the DONE is set. CAMO indicates RATIOCAM,
SLPO indicates RATIOSLP and RELO indicates RATIO_RL. These outputs are
used in the example program to decide which function to call after the profile data
is read.

 OERR DESCRIPTION:

ERR Description
7001 Invalid version number in csv file
7002 Invalid comment line
7003 Invalid slave axis number and label
7004 Invalid master axis number and label
7005 Invalid slave scaling
7006 Invalid master scaling
7007 Invalid profile type found in file
7008 Invalid number of segments
7009 Invalid column labels line in csv file
 2-197

S_CLOS1
Close Loop on SERCOS Servo Axes 1 to 8 USER/S_ASFB

<<INSTANCE NAME>>:S_CLOS1(EN00 := <<BOOL>>, MSTR :=
<<BOOL>>, DELAY := <<TIME>>, CLSD => <<BOOL>>, A1C =>
<<INT>>, A2C => <<BOOL>>, A3C => <<BOOL>>, A4C => <<BOOL>>,
A5C => <<BOOL>>, A6C => <<BOOL>>, A7C => <<BOOL>>, A8C =>
<<BOOL>>);

This function block is a replacement for M_CLOS1 for SERCOS axes. It is not for
analog controlled axes.

This function block is used to reset the E-stop, C-stop, and programming errors on
SERCOS servo axes 1 through 8 when the machine start input is pulsed. It also
sends a class one diagnostics fault reset to the SERCOS drive. It closes the loop on
SERCOS servo axes 1 through 8 after the machine start input is pulsed and a pro-
grammable time delay has elapsed. If there are no E-stop faults and the drive is
enabled the loop will be closed and the closed output will be energized.

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the cur-
rent state of the electrical E-stop status as shown below.

⁄ NAME ƒƒø
≥ S_CLOS1 ≥
≥ ≥
¥EN00 CLSD√ƒ
≥ ≥
¥MSTR A1C√ƒ
≥ ≥
¥DELY A2C√ƒ
≥ ≥
≥ A3C√ƒ
≥ ≥
≥ A4C√ƒ
≥ ≥
≥ A5C√ƒ
≥ ≥
≥ A6C√ƒ
≥ ≥
≥ A7C√ƒ
≥ ≥
≥ A8C√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

MSTR (BOOL) - machine start input

DELY (TIME) - amount of time that will elapse after
a positive
transition of MSTR until the loops will be closed

Outputs: CLSD (BOOL) - one or more of axes 1 to 8
have their position loops closed

A1C (BOOL) - set when the loop is closed on axis 1

A2C (BOOL) - set when the loop is closed on axis 2

A3C (BOOL) - set when the loop is closed on axis 3

A4C (BOOL) - set when the loop is closed on axis 4

A5C (BOOL) - set when the loop is closed on axis 5

A6C (BOOL) - set when the loop is closed on axis 6

A7C (BOOL) - set when the loop is closed on axis 7

A8C (BOOL) - set when the loop is closed on axis 8
 2-198

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical E-
stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended ladder logic for the E-stop handling of
the S_CLOS1 application. Please refer to MMC4_SOI.LDO for an example of
S_CLOS1.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time DELY is normally in the range from 500 ms to 2 seconds.

On a positive transition of MSTR, this function will send a procedure command to
the SERCOS drive to reset class one diagnostic errors on axes 1 through 8.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, all E-stop, C-stop, and programming errors are reset on axes 1
through 8. If the E-stops are reset and the SERCOS drive is enabled, the loops will
be closed on axes 1 to 8. CLSD will be energized if one or more of axes 1 to 8 have
their position loops closed.

If an E-stop fault occurs on an axis 1 to 8, its loop closed output (A1 to A8) will be
dropped. CLSD is true as long as one or more of axes 1 to 8 have their position
loops closed.

ESTOPACT

MACHSTRT
 P ENxx
 2-199

S_CLOS9
Close Loop on SERCOS Servo Axes 9 to 16 USER/S_ASFB

<<INSTANCE NAME>>:S_CLOS9(EN00 := <<BOOL>>, MSTR :=
<<BOOL>>, DELAY := <<TIME>>, CLSD => <<BOOL>>, A9C =>
<<INT>>, A10C => <<BOOL>>, A11C => <<BOOL>>, A12C =>
<<BOOL>>, A13C => <<BOOL>>, A14C => <<BOOL>>, A15C =>
<<BOOL>>, A16C => <<BOOL>>);

This function block is a replacement for M_CLOS9 for SERCOS axes. It is not for
analog controlled axes.

This function block is used to reset the E-stop, C-stop, and programming errors on
SERCOS servo axes 9 through 16 when the machine start input is pulsed. It also
sends a class one diagnostics fault reset to the SERCOS drive. It closes the loop on
SERCOS servo axes 9 through 16 after the machine start input is pulsed and a pro-
grammable time delay has elapsed. If there are no E-stop faults and the drive is
enabled the loop will be closed and the closed output will be energized.

⁄ NAME ƒƒø
≥ S_CLOS9 ≥
≥ ≥
¥EN00 CLSD√ƒ
≥ ≥
¥MSTR A9C√ƒ
≥ ≥
¥DELY A10C√ƒ
≥ ≥
≥ A11C√ƒ
≥ ≥
≥ A12C√ƒ
≥ ≥
≥ A13C√ƒ
≥ ≥
≥ A14C√ƒ
≥ ≥
≥ A15C√ƒ
≥ ≥
≥ A16C√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

MSTR (BOOL) - machine start input

DELY (TIME) - amount of time that will elapse after
a positive
transition of MSTR until the loops will be closed

Outputs: CLSD (BOOL) - one or more of axes 9 to
16 have their position loops closed

A9C (BOOL) - set when the loop is closed on axis 9

A10C (BOOL) - set when the loop is closed on axis
10

A11C (BOOL) - set when the loop is closed on axis
11

A12C (BOOL) - set when the loop is closed on axis
12

A13C (BOOL) - set when the loop is closed on axis
13

A14C (BOOL) - set when the loop is closed on axis
14

A15C (BOOL) - set when the loop is closed on axis
15

A16C (BOOL) - set when the loop is closed on axis
16
 2-200

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the cur-
rent state of the electrical E-stop status as shown below.
 2-201

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical E-
stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended ladder logic for the E-stop handling of
the S_CLOSx application. Please refer to MMC4_SOI.LDO for an example of
S_CLOSx.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time DELY is normally in the range from 500 ms to 2 seconds.

On a positive transition of MSTR, this function will send a procedure command to
the SERCOS drive to reset class one diagnostic errors on axes 9 through 16.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, all E-stop, C-stop, and programming errors are reset on axes 9
through 16. If the E-stops are reset and the SERCOS drive is enabled, the loops
will be closed on axes 9 to 16. CLSD will be energized if one or more of axes 9 to
16 have their position loops closed.

If an E-stop fault occurs on an axis 9 to 16, its loop closed output (A9 to A16) will
be dropped. CLSD is true as long as one or more of axes 9 to 16 have their position
loops closed.

ESTOPACT

MACHSTRT
 P ENxx
 2-202

S_CLS101
Close Loop on SERCOS Servo Axes 101 to 108 USER/S_ASFB

<<INSTANCE NAME>>:S_CLOS101(EN00 := <<BOOL>>, MSTR :=
<<BOOL>>, DELAY := <<TIME>>, CLSD => <<BOOL>>, A101 =>
<<INT>>, A102 => <<BOOL>>, A103 => <<BOOL>>, A104 => <<BOOL>>,
A105 => <<BOOL>>, A106 => <<BOOL>>, A107 => <<BOOL>>, A108 =>
<<BOOL>>);

This function block is a replacement for M_CLS101 for SERCOS axes. It is not
for analog controlled axes.

This function block is used to reset the E-stop, C-stop, and programming errors on
SERCOS servo axes 101 through 108 when the machine start input is pulsed. It
also sends a class one diagnostics fault reset to the SERCOS drive. It closes the
loop on SERCOS servo axes 101 through 108 after the machine start input is
pulsed and a programmable time delay has elapsed. If there are no E-stop faults

⁄ NAME ƒƒø
≥ S_CLS101≥
≥ ≥
¥EN00 CLSD√ƒ
≥ ≥
¥MSTR A101√ƒ
≥ ≥
¥DELY A102√ƒ
≥ ≥
≥ A103√ƒ
≥ ≥
≥ A104√ƒ
≥ ≥
≥ A105√ƒ
≥ ≥
≥ A106√ƒ
≥ ≥
≥ A107√ƒ
≥ ≥
≥ A108√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

MSTR (BOOL) - machine start input

DELY (TIME) - amount of time that will elapse after
a positive
transition of MSTR until the loops will be closed

Outputs: CLSD (BOOL) - one or more of axes 101
to 108 have their position loops closed

A101 (BOOL) - set when the loop is closed on axis
101

A102 (BOOL) - set when the loop is closed on axis
102

A103 (BOOL) - set when the loop is closed on axis
103

A104 (BOOL) - set when the loop is closed on axis
104

A105 (BOOL) - set when the loop is closed on axis
105

A106 (BOOL) - set when the loop is closed on axis
106

A107 (BOOL) - set when the loop is closed on axis
107

A108 (BOOL) - set when the loop is closed on axis
108
 2-203

and the drive is enabled the loop will be closed and the closed output will be ener-
gized.

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the cur-
rent state of the electrical E-stop status as shown below.
 2-204

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical E-
stop condition).

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time DELY is normally in the range from 500 ms to 2 seconds.

On a positive transition of MSTR, this function will send a procedure command to
the SERCOS drive to reset class one diagnostic errors on axes 101 through 108.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, all E-stop, C-stop, and programming errors are reset on axes
101 through 108. If the E-stops are reset and the SERCOS drive is enabled, the
loops will be closed on axes 101 to 108. CLSD will be energized if one or more of
axes 101 to 108 have their position loops closed.

If an E-stop fault occurs on an axis 101 to 108, its loop closed output (A101 to
A108) will be dropped. CLSD is true as long as one or more of axes 101 to 108
have their position loops closed.

ESTOPACT

MACHSTRT
 P ENxx
 2-205

S_CLS109
Close Loop on SERCOS Servo Axes 109 to 116 USER/S_ASFB

<<INSTANCE NAME>>:S_CLOS109(EN00 := <<BOOL>>, MSTR :=
<<BOOL>>, DELAY := <<TIME>>, CLSD => <<BOOL>>, A109 =>
<<INT>>, A110 => <<BOOL>>, A111 => <<BOOL>>, A112 => <<BOOL>>,
A113 => <<BOOL>>, A114 => <<BOOL>>, A115 => <<BOOL>>, A116 =>
<<BOOL>>);

This function block is a replacement for M_CLS109 for SERCOS axes. It is not
for analog controlled axes.

This function block is used to reset the E-stop, C-stop, and programming errors on
SERCOS servo axes 109 through 116 when the machine start input is pulsed. It
also sends a class one diagnostics fault reset to the SERCOS drive. It closes the
loop on SERCOS servo axes 109 through 116 after the machine start input is
pulsed and a programmable time delay has elapsed. If there are no E-stop faults

⁄ NAME ƒƒø
≥S_CLS109 ≥
≥ ≥
¥EN00 CLSD√ƒ
≥ ≥
¥MSTR A109√ƒ
≥ ≥
¥DELY A110√ƒ
≥ ≥
≥ A111√ƒ
≥ ≥
≥ A112√ƒ
≥ ≥
≥ A113√ƒ
≥ ≥
≥ A114√ƒ
≥ ≥
≥ A115√ƒ
≥ ≥
≥ A116√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

MSTR (BOOL) - machine start input

DELY (TIME) - amount of time that will elapse after
a positive
transition of MSTR until the loops will be closed

Outputs: CLSD (BOOL) - one or more of axes 109
to 116 have their position loops closed

A109 (BOOL) - set when the loop is closed on axis
109

A110 (BOOL) - set when the loop is closed on axis
110

A111 (BOOL) - set when the loop is closed on axis
111

A112 (BOOL) - set when the loop is closed on axis
112

A113 (BOOL) - set when the loop is closed on axis
113

A114 (BOOL) - set when the loop is closed on axis
114

A115 (BOOL) - set when the loop is closed on axis
115

A116 (BOOL) - set when the loop is closed on axis
116
 2-206

and the drive is enabled the loop will be closed and the closed output will be ener-
gized.

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the cur-
rent state of the electrical E-stop status as shown below.
 2-207

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical E-
stop condition).

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time DELY is normally in the range from 500 ms to 2 seconds.

On a positive transition of MSTR, this function will send a procedure command to
the SERCOS drive to reset class one diagnostic errors on axes 109 through 116.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, all E-stop, C-stop, and programming errors are reset on axes
109 through 116. If the E-stops are reset and the SERCOS drive is enabled, the
loops will be closed on axes 109 to 116. CLSD will be energized if one or more of
axes 109 to 116 have their position loops closed.

If an E-stop fault occurs on an axis 109 to 116, its loop closed output (A109 to
A116) will be dropped. CLSD is true as long as one or more of axes 109 to 116
have their position loops closed.

ESTOPACT

MACHSTRT
 P ENxx
 2-208

S_ERRORC
Axis Error Checking Centurion SERCOS Drives USER/S_ASFB

<<INSTANCE NAME>>:S_ERRORC(EN00 := <<BOOL>>, AXIS :=
<<USINT>>, SLOT := <<USINT>>, RING := <<USINT>>, OK =>
<<BOOL>>, DSTA => <<USINT>>, ESTO => <<BOOL>>, RERR =>
<<BOOL>>, SV_E => <<BOOL>>, CSTO => <<BOOL>>, PSTO =>
<<BOOL>>, E_ER => <<WORD>>, RE_N => <<INT>>, SV_N
=><<UINT>>, C_ER => <<WORD>>, P_ER => <<WORD>>);

This function block is a replacement for M_ERROR for a SERCOS axis with a
Centurion drive. It is not for an analog controlled axis.

This function block is used to report errors that occur on a SERCOS servo axis.
The types of errors include ring errors, drive errors, E-stop, C-stop and program-
ming errors. These conditions may be caused by the SERCOS hardware, SERCOS
drive, servo software or the ladder programming. If defined by the programmer,
they will be triggered using the E-STOP or C_STOP functions. All of these errors
for the defined axis are reported by this one function block.

⁄ NAME ƒƒø
≥ S_ERRORC≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥AXIS DSTA√ƒ
≥ ≥
¥SLOT ESTO√ƒ
≥ ≥
¥RING RERR√ƒ
≥ ≥
≥ SV_E√ƒ
≥ ≥
≥ CSTO√ƒ
≥ ≥
≥ PSTO√ƒ
≥ ≥
≥ E_ER√ƒ
≥ ≥
≥ RE_N√ƒ
≥ ≥
≥ SV_N√ƒ
≥ ≥
≥ C_ER√ƒ
≥ ≥
≥ P_ER√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

AXIS (USINT) - identifies SERCOS axis

SLOT (USINT) - slot number for the SERCOS mod-
ule

RING (USINT) - ring the axis is connected to

Outputs: OK (BOOL) - execution complete

DSTA (USINT) - indicates the drive status

ESTO (BOOL) - indicates an E-stop is active when
set

RERR (BOOL) - indicates a ring error

SV_E (BOOL) - indicates a slave (drive) error

CSTO (BOOL) - indicates a C-stop is active when set

PSTO (BOOL) - indicates a programming error has
occurred

E_ER(WORD) - identifies E-stop errors

RE_N (INT) - identifies ring error number

SV_N (UINT) - identifies slave (drive) error number

C_ER (WORD) - identifies C-stop errors

P_ER (WORD) - identifies programming errors
 2-209

The enable input of this function should be directly connected to the rail with a
wire, causing this function block to be executed each scan.

The boolean outputs can be used as flags in the ladder to report error conditions.
 2-210

The E_ER, C_ER and P_ER word outputs can be converted to HEX display by
using the Module Monitor Edit View List command and inserting the variables.
Alternately, they can be given an initial value of 16#0 for a hex value during ani-
mation. After monitoring them in HEX, refer to the tables in the manual of
functions E_ERRORS, C_ERRORS and P_ERRORS to help identify the exact
problem. The RE_N value (ring error number) value can be identified by refering
to the SCR_ERR function in the Function/Function Block Reference Guide. Refer
to the SERCOS drive manual for the description of errors occuring on the SV_N
value (drive error number).

The DSTA, drive status output reflects the state the drive is currently at in decimal
format. It is defined by the upper two bits of the SERCOS drive status word. The
four possible states are:

0- drive not ready for power-up, internal checks not yet concluded success-
fully

1- drive logic OK and ready for main power

2 - drive ready and main power applied but not enabled, no torque to motor

3 - drive is enabled with torque applied to motor
 2-211

S_FHOME
Performs a SERCOS Home Cycle using a Fast Reference USER/S_ASFB

<<INSTANCE NAME>>:S_FHOME(EN00 := <<BOOL>>, STRT :=
<<BOOL>>, AXIS := <<USINT>>, PLUS := <<BOOL>>, RATE :=
<<UDINT>>, DIM := <<DINT>>, OPTN := <<WORD>>, BKOF :=
<<BOOL>>, HOME := <<BOOL>>, HDIM := <<DINT>>, HCMP =>
<<BOOL>>, HACT => <<BOOL>>, QUE => <<USINT>>, SWPO =>
<<DINT>>, ERR => <<BYTE>>);

⁄ NAME ƒƒø
≥ S_FHOME ≥
≥ ≥
¥EN00 HCMP√ƒ
≥ ≥
¥STRT HACT√ƒ
≥ ≥
¥AXIS QUE√ƒ
≥ ≥
¥PLUS SWPO√ƒ
≥ ≥
¥RATE ERR√ƒ
≥ ≥
¥DIM ≥
≥ ≥
¥OPTN ≥
≥ ≥
¥BKOF ≥
≥ ≥
¥HOME ≥
≥ ≥
¥HDIM ≥
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

STRT (BOOL) - enables the home cycle

AXIS (USINT) - identifies SERCOS axis

PLUS (BOOL) - indicates direction of home cycle

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

DIM (DINT) - reference dimension for the nearest
resolver null or the next encoder index mark when
the reference switch is set (entered in LUs)

OPTN (WORD) - provides referencing options (0 or
1) 0 = no option, 1 = Ignore index or null

BKOF (BOOL) - selects backoff of reference switch
option

HOME (BOOL) - selects homing after referencing
option

HDIM (DINT) - home location to move after refer-
ence is
complete

Outputs: HCMP (BOOL) - home cycle is complete

HACT (BOOL) - home cycle is being executed

QUE (USINT) - number of moves for queue

SWPO (DINT) - distance in feedback units (FUs)
from the
reference switch to the index mark of an encoder or
the null of a
resolver

ERR (BYTE) - report an error 1-4 if input data is
invalid
 2-212

This function block is a replacement for M_FHOME for a SERCOS axis. It is not
for an analog controlled axis.

This function block performs a fast reference cycle on a SERCOS axis, followed
by a homing (position) move to a designated location.

Before this function can be used, the SERCOS axis must be initialized and the
position loop must be closed.

The reference cycle will cause the selected SERCOS axis to move in the desig-
nated direction until the reference switch is sensed.

In the Centurion SERCOS drive the reference switch is wired to the input number
two of the selected axis on the Centurion drive. This function block uses
SCA_RFIT to initialize the SERCOS drive’s fast input for the reference cycle and
to direct the SERCOS drive to latch the position upon that input.

When the fast input occurs, the position of the axis is latched by the hardware in
the drive independent of the ladder scan.

When the reference switch is sensed, the axis will reference (assign a value) to the
next index mark of an encoder or the nearest null of a resolver. After the value is
assigned, the axis will decelerate to a stop and set the reference done flag.

If the HOME input is on when the reference done has been sensed, the home move
will automatically be triggered to position the axis at a desired location.

If the BKOF input is on when the reference is requested, and the axis is on the ref-
erence switch, the axis will move in the opposite direction of that indicated by the
PLUS input until the switch opens and then will complete the home cycle in the
normal manner. If the BKOF input is not on the axis will move in the specified
direction until it sees an off to on transition of the limit switch.

This function block is used to perform a fast reference, immediately followed by a
position move to a selected home position. It should be executed every scan unless
a home cycle will only be performed when the machine is started. In that case a
normally closed contact of the output of HCMP may be used.

The SWPO output is used to determine if the reference switch location will allow
for repeatable referencing. If the reference switch is not properly located in rela-
tionship to the index marker of an encoder or the null of a resolver it could possi-
bly reference a revolution off. To prevent this, the value reported by this output
should be as follows:

• For an encoder system the value of this output should be greater than 25%
and less than 75% of the total counts (FUs) per revolution. Example: For
8000 FUs/ Rev, the value should be >2000 and <6000.

• For a resolver system the value of this output should be less than 25% or
greater than 75% of the total counts (FUs) per revolution. Example: For
4000 FUs/ Rev, the value should be <1000 or >3000.
 2-213

If the value is out of range either the reference switch will have to be moved or the
transducer coupling shifted.The ERR output indicates that invalid data was entered
on one of the inputs. The possible errors are listed in the following table:

ERR Description
0 No error
1 The queue was not empty when the reference was requested
2 An error occurred in backing off of the reference switch
3 An error occurred in referencing
4 An error occurred in homing
5 An error occurred within the SERCOS drive, either during the ini-

tialization of the SERCOS drive (its probe input) or during the
monitoring of the SERCOS drive while it is referencing. The SER-
COS ring and slave error values can be obtained by animating this
function block after the error.
 2-214

S_IO_C
Inputs/Outputs Centurion DSM SERCOS Drive USER/S_ASFB

<<INSTANCE NAME>>:S_IO_C(EN00 := <<BOOL>>, AXIS := <<USINT>>,
FOT := <<BOOL>>, RDY1 := <<BOOL>>, BRK1 := <<BOOL>>, OUT1 :=
<<BOOL>>, OUT2 := <<BOOL>>, OUT3 := <<BOOL>>, OUT4 :=
<<BOOL>>, OK => <<BOOL>>, RST => <<BOOL>>, ENAB =>
<<BOOL>>, DIN1 => <<BOOL>>, DIN2 => <<BOOL>>, DIN3 =>
<<BOOL>>, DIN4 => <<BOOL>>, DRVR => <<BOOL>>, DRVB =>

⁄ NAME ƒƒø
≥ S_IO_C ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥AXIS RST√ƒ
≥ ≥
¥FOT ENAB√ƒ
≥ ≥
¥RDY1 DIN1√ƒ
≥ ≥
¥BRK1 DIN2√ƒ
≥ ≥
¥OUT1 DIN3√ƒ
≥ ≥
¥OUT2 DIN4√ƒ
≥ ≥
¥OUT3 DRVR√ƒ
≥ ≥
¥OUT4 DOT1√ƒ
≥ ≥
≥ DOT2√ƒ
≥ ≥
≥ DOT3√ƒ
≥ ≥
≥ DOT4√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

AXIS (USINT) - identifies SERCOS axis

FOT (BOOL) - force the desired output states to
drive outputs

RDY1 (BOOL) - desired state of the drive ready out-
put

BRK1 (BOOL) - desired state of the drive brake out-
put

OUT1 (BOOL) - desired state of the drive output one

OUT2 (BOOL) - desired state of the drive output two

OUT3 (BOOL) - desired state of the drive output
three

OUT4 (BOOL) - desired state of the drive output
four

Outputs: OK (BOOL) - execution complete

RST (BOOL) - state of the drive reset input

ENAB (BOOL) - state of the drive enable input

DIN1 (BOOL) - state of the drive input one

DIN2 (BOOL) - state of the drive input two

DIN3 (BOOL) - state of the drive input three

DIN4 (BOOL) - state of the drive input four

DRVR (BOOL) - state of the drive ready output

DRVB (BOOL) - state of the drive brake output

DOT1 (BOOL) - state of the drive output one

DOT2 (BOOL) - state of the drive output two

DOT3 (BOOL) - state of the drive output three

DOT4 (BOOL) - state of the drive output four
 2-215

<<BOOL>>, DOT1 => <<BOOL>>, DOT2 => <<BOOL>>, DOT3 =>
<<BOOL>>, DOT4 => <<BOOL>>);

The SERCOS drive I/O function block provides ladder access to the digital inputs
and outputs of a Centurion DSM SERCOS servo drive through the SERCOS ser-
vice channel. It is not intended for analog or non-Centurion DSM SERCOS drives.

The Digital Output Override IDN P0036 must be set in the drive to use this feature.
Refer to the Centurion SERCOS Drives IDN Manual.

The EN enable input should always be enabled allowing the function block to be
executed every ladder scan. When the input is enabled the function block will wait
until the SERCOS and Servo axis setup files have been initiated before any service
channel activity begins. Once initialized, the drive ID is read to verify it is a Centu-
rion SERCOS drive, and if so, the drive inputs and outputs are then continuously
read.

When the FOT is enabled the state of the function block RDY1, BRK1, OUT1,
OUT2, OUT3 and OUT4 inputs will be written to the drive. After a successful
write, the function block outputs will reflect the desired outputs. While the FOT is
enabled, the function block inputs are evaluated and any state change will be sent
to the drive. The new drive outputs will again be reflected at the function block
outputs.

The OK output will be energized only if the axis is initialized, the drive is of type
Centurion DSM SERCOS, and the drive I/O reads and writes are successful. If any
failures occur, the OK output will not be energized. If a failure occurs while read-
ing or writing I/O, the related function block outputs are set to zero.

NOTE

If the FOT input is disabled, all drive outputs are set to zero.

NOTE

If an I/O read or write failure occurs, the related function block out-
puts may not reflect the actual state of the drive inputs and outputs
 2-216

S_LHOME
Perform a SERCOS Home Cycle using a Ladder Reference USER/S_ASFB

<<INSTANCE NAME>>:S_LHOME(EN00 := <<BOOL>>,
STRT := <<DINT >> AXIS := <<USINT>>, PLUS := <<BOOL>>, RATE :=
<<UDINT>>, DIM := <<DINT>>, OPTN := <<WORD>>, BKOF :=
<<BOOL>>, HOME := <<BOOL>>, HDIM := <<DINT>>, RFSW :=
<<BOOL>>, HCMP => <<BOOL>>, HACT => <<BOOL>>, QUE =>
<<USINTL>>, SWPO => <<DINT>>, ERR => <<BYTE>>);

⁄ NAME ƒƒø
≥ S_LHOME ≥
≥ ≥
¥EN00 HCMP√ƒ
≥ ≥
¥STRT HACT√ƒ
≥ ≥
¥AXIS QUE√ƒ
≥ ≥
¥PLUS SWPO√ƒ
≥ ≥
¥RATE ERR√ƒ
≥ ≥
¥DIM ≥
≥ ≥
¥OPTN ≥
≥ ≥
¥BKOF ≥
≥ ≥
¥HOME ≥
≥ ≥
¥HDIM ≥
≥ ≥
¥RFSW ≥
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

STRT (DINT) - move from reference switch and move back to
home position after referencing.

AXIS (USINT) - identifies SERCOS axis

PLUS (BOOL) - indicates direction of home cycle

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

DIM (DINT) - reference dimension for the nearest resolver null
or the next encoder index mark when the reference
switch is set
(entered in LUs)

OPTN (WORD) - provides referencing options (0 or
1)
0 = No option, 1 = Ignore index or null

BKOF (BOOL) - selects backoff of reference switch option

HOME (BOOL) - selects homing after referencing option

HDIM (DINT) - home location to move to after reference is
complete

RFSW (BOOL) - references switch on axis

Outputs: HCMP (BOOL) - home cycle is complete

HACT (BOOL) - home cycle is being executed

QUE (USINT) - number of move for queue

SWP0 (DINT) - distance in feedback unit (FUs) from
the
reference switch to the index mark of an encoder or
the null of a resolver

ERR (BYTE) - report an error 1-4 if input data is invalid
 2-217

This function block is a replacement for M_LHOME for a SERCOS axis. It is not
for an analog controlled axis.

This function block performs a ladder reference cycle on a SERCOS axis, fol-
lowed by a homing (position) move to a designated location.

Before this function block can be used, the SERCOS axis must be initialized and
the position loop closed.

The reference cycle will cause the selected SERCOS axis to move in the desig-
nated direction until the reference switch is sensed. This function block uses
SCA_RFIT to direct the drive to ignore the fast input for the reference and to mon-
itor the position while the ladder checks for the reference switch. In a ladder refer-
ence, this reference switch is wired to an input in the MMC or in an input module
within the PiC rack and updated each scan of the ladder. When the reference
switch is sensed the SERCOS axis will reference (assign a value) to the next index
mark of an encoder or the nearest null of a resolver. After the value is assigned the
axis will decelerate to a stop and set the reference done flag.

If the HOME input is on when the reference done has been sensed the home move
will automatically be triggered to position the SERCOS axis at a desired location.

If the BKOF input is on when the reference is requested and if the axis is on the
reference switch, the axis will move in the opposite direction of that indicated by
the PLUS input until the reference switch opens, and then will complete the home
cycle in the normal manner. If the BKOF input is not on, the axis will move in the
specified direction until it sees an off to on transition of the limit switch.

This function block is used to perform a ladder reference, immediately followed by
a position move to a selected home position. It should be executed every scan
unless a home cycle will only be performed when the machine is started. In that
case a normally closed contact of the output of HCMP may be used.

The SWPO output is used to determine if the reference switch location will allow
for repeatable referencing. If the reference switch is not properly located in rela-
tionship to the index marker of an encoder or the null of a resolver it could possi-
bly reference a revolution off. To prevent this, the value reported by this output
should be as follows:

• For an encoder system the value of this output should be greater than 25%
and less than 75% of the total counts (FUs) per revolution. Example: For
8000 FUs/ Rev, the value should be >2000 and <6000.

• For a resolver system the value of this output should be less than 25% or
greater than 75% of the total counts (FUs) per revolution. Example: For
4000 FUs/ Rev, the value should be <1000 or >3000.

If the value is out of range either the reference switch will have to be moved or the
transducer coupling shifted.
 2-218

The ERR output indicates that invalid data was entered on one of the inputs. The
possible errors are listed below:

ERR Description
0 No error
1 The queue was not empty when the reference was requested
2 An error occurred in backing off of the reference switch
3 An error occurred in referencing
4 An error occurred in homing
5 An error occurred within the SERCOS drive, either during the ini-

tialization of the SERCOS drive (its probe input) or during the
monitoring of the SERCOS drive while it is referencing. The SER-
COS ring and slave error values can be obtained by animating this
function block after the error.
 2-219

SD_AXIS
Digital Smart Drive Axis and Drive Status, Loop Control, Home and Jog FunctionsUSER/SD_AXIS

<<INSTANCE NAME>>:SD_AXIS(ENxx := 1, Axis := <<USINT>>, Stat :=
<<MEMORY AREA>>, Flts := <<MEMORY AREA>>, Warn := <<MEMORY
AREA>>, DrIO := <<MEMORY AREA>>, STRT := <<MEMORY AREA>>,
Jdat := <<MEMORY AREA>>, HDat := <<MEMORY AREA>>, OK =>
<<BOOL>>, ERR => <<INT>>, HERR => <<INT>>);

This function block includes the SD_STAT1 function to provide axis and drive
faults and warnings and the SD_IO function to read and write drive I/O. It also
contains the position loop closing and opening logic as well as homing and jogging
functions.

⁄ NAME ƒƒø
≥ SD_AXIS ≥
≥ ≥
¥ENxx OK√ƒ
≥ ≥
¥Axis ERR√ƒ
≥ ≥
¥Stat HERR√ƒ
≥ ≥
¥Flts ≥
≥ ≥
¥Warn ≥
≥ ≥
¥DrIO ≥
≥ ≥
¥STRT ≥
≥ ≥
¥Jdat ≥
≥ ≥
¥HDat ≥
≥ ≥
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - enables the block and should be on
at all times once drive communications are estab-
lished. (xx indicates revision #)

Axis (USINT) - specifies the axis number

Stat (STRUCT) - axis and drive status information

Flts (STRUCT) - axis and drive fault information

Warn (STRUCT) - axis and drive warning informa-
tion

DrIO (STRUCT) - status of drive inputs and settings
for outputs

STRT (STRUCT) - signals to control the position
loop

Jdat (STRUCT) - Jog data, signals and status for the
jog functionality

HDat (STRUCT) - Home data, signals and status for
the home functionality

Outputs:

OK (BOOL) - function OK

ERR (INT) - error number from block

HERR (INT) - error number from home cycle
 2-220

 INPUTS:

 NAME DATA TYPE DESCRIPTION OR FUNCTION
USED FOR DATA

ENxx BOOL Enables Execution

Axis USINT Axis Number

Stat STRUCT Value written to drive output 1,
READ_SV variable 72

.InPosition BOOL IN_POS?

.QueAvailable BOOL Q_AVAIL?

.ActiveQue USINT Q_NUMBER

.MoveType DINT READ_SV variable 2

.Actual Position DINT READ_SV variable 1

.CommandedPosition DINT READ_SV variable 3

.PositionError DINT READ_SV variable 4

.FilterError DINT READ_SV variable 5

.MotorCurrent DINT READ_SV variable 73

.MotorAvgCurrent DINT READ_SV variable 74

.MotorTemp DINT READ_SV variable 77

.StartupCommutation Complete BOOL READ_SV variable 67 Bit 0

.AtZeroSpeed BOOL READ_SV variable 67 Bit 1

.InSpeedWindow BOOL READ_SV variable 67 Bit 2

.UpToSpeed BOOL READ_SV variable 67 Bit 3

.AtPlusCurrentLimit BOOL READ_SV variable 67 Bit 4

.AtMinusCurrentLimit BOOL READ_SV variable 67 Bit 5

.DriveBusCharged BOOL READ_SV variable 67 Bit 6

.DriveEnabled BOOL READ_SV variable 67 Bit 7

.DriveReady BOOL READ_SV variable 67 Bit 8

.BrakeReleased BOOL READ_SV variable 67 Bit 9

.DriveFault BOOL READ_SV variable 67 Bit 10

.DriveWarning BOOL READ_SV variable 67 Bit 11

.ShuntOn BOOL READ_SV variable 67 Bit 12

.DriveReadyAndBusCharged BOOL READ_SV variable 67 Bit 13

.Reserved BOOL (0..5) READ_SV variable 67 Bits 14-23

.HardwareEnableLine BOOL READ_SV variable 67 Bit 24

.AuxiliaryFeedbackLossOfFeedback BOOL READ_SV variable 67 Bit 25

.Reserved_26_31 BOOL (0..9) READ_SV variable 67 Bits 26-31

.StructureSize UINT Set to the Size of STAT Structure in
Bytes
 2-221

END_STUCT

 NAME DATA TYPE DESCRIPTION OR FUNCTION
USED FOR DATA

Flts STRUCT Axis and Drive Faults
.EstopActive BOOL E_STOP?
.EstopErr WORD E_ERRORS
.LossOfFeedbackEstop BOOL E_ERRORS Bit 0
.ExcessPositionErrorEstop BOOL E_ERRORS Bit 1
.SlaveOverflowDeltaEstop BOOL E_ERRORS Bit 2
.UserLadderEstop BOOL E_ERRORS Bit 3
.SERCOSDriveEstop BOOL E_ERRORS Bit 4
.SERCOSCycDataEstop BOOL E_ERRORS Bit 5
.ASIU_Timeout BOOL E_ERRORS Bit 6
.DriveFaultEstop BOOL E_ERRORS Bit 7
.DriveCommFaultEstop BOOL E_ERRORS Bit 8
.ReservedEstopbits BOOL (0..5) E_ERRORS Bits 9-14
.AnyEstopBitSet BOOL E_ERRORS Bit 15
.CstopActive BOOL C_STOP?
.CstopErr WORD C_ERRORS
.SWPositiveEndLimitCstop BOOL C_ERRORS Bit 0
.SWNegative EndLimitCstop BOOL C_ERRORS Bit 1
.UserLadderCstop BOOL C_ERRORS Bit 2
.MachRefDimCstop BOOL C_ERRORS Bit 3
.FeedrateCstop BOOL C_ERRORS Bit 4
.DistPosnDimCstop BOOL C_ERRORS Bit 5
.PartRefDimCstop BOOL C_ERRORS Bit 6
.PartRefCstop BOOL C_ERRORS Bit 7
.ReservedCstopbits BOOL (0..6) C_ERRORS Bits 8-14
.AnyCstopBitSet BOOL C_ERRORS Bit 15
.PstopActive BOOL P_STOP?
.PstopErr WORD P_ERRORS
.MasterStartPosnPstop BOOL P_ERRORS Bit 0
.ReservedBit1Pstop BOOL P_ERRORS Bit 1
.ReservedBit2Pstop BOOL P_ERRORS Bit 2
.ReservedBit3Pstop BOOL P_ERRORS Bit 3
.ReservedBit4Pstop BOOL P_ERRORS Bit 4
.MasterNotAvailPstop BOOL P_ERRORS Bit 5
.InvalidProfilePstop BOOL P_ERRORS Bit 6
.FastQuePstop BOOL P_ERRORS Bit 7
.SlaveDistPstop BOOL P_ERRORS Bit 8
 2-222

.MasterDistPstop BOOL P_ERRORS Bit 9

.SlaveBeyondStrtPointPstop BOOL P_ERRORS Bit 10

.MasterBeyondStrtPointPstop BOOL P_ERRORS Bit 11

.ReservedBit13Pstop BOOL P_ERRORS Bit 12

.ReservedBit14Pstop BOOL P_ERRORS Bit 13

.ReservedBit15Pstop BOOL P_ERRORS Bit 14

.AnyPstopBitSet BOOL P_ERRORS Bit 15

.DriveFaultDW DWORD READ_SV variable 68 converted to
a DWORD

.DFLT UINT Identifies Drive Fault Code, see the
MMC Smart Drive and Digital
MMC Control Hardware Manual for
detailed description

.NoDriveFaults BOOL Set when no drive fault is active

.DriveMemoryFault_11 BOOL READ_SV variable 68 Bit 0

.DriveBusOverVoltageFault_12 BOOL READ_SV variable 68 Bit 1

.DrivePM1OverCurrentFault_13 BOOL READ_SV variable 68 Bit 2

.DriveBusUnderVoltageFault_14 BOOL READ_SV variable 68 Bit 3

.MotorTempFault_15 BOOL READ_SV variable 68 Bit 4

.ContinuousCurrentFaul_16 BOOL READ_SV variable 68 Bit 5

.DriveHeatsinkTempFault_17 BOOL READ_SV variable 68 Bit 6

.DriveF2FeedbackFault_21 BOOL READ_SV variable 68 Bit 7

.DriveF1FeedbackFault_22 BOOL READ_SV variable 68 Bit 8

.DriveAmbientTempFault_23 BOOL READ_SV variable 68 Bit 9

.MotorCalculatedTempFault_24 BOOL READ_SV variable 68 Bit 10

.DriveTimingFault_25 BOOL READ_SV variable 68 Bit 11

.DriveInterfaceFault_26 BOOL READ_SV variable 68 Bit 12

.UserSetFault_27 BOOL READ_SV variable 68 Bit 13

.DriveF1CommunicationFault_31 BOOL READ_SV variable 68 Bit 14

.OverSpeedFault_32 BOOL READ_SV variable 68 Bit 15

.OverCurrentFault_33 BOOL READ_SV variable 68 Bit 16

.ControlPanelDisconnectFault_34 BOOL READ_SV variable 68 Bit 17

.DrivePowerModuleFault_35 BOOL READ_SV variable 68 Bit 18

.FeedbackTypeMismatchFault_36 BOOL READ_SV variable 68 Bit 19

.EndatFault_37 BOOL READ_SV variable 68 Bit 20

.DriveRelayFault_41 BOOL READ_SV variable 68 Bit 21

.DrivePM2OverCurrentFault_42 BOOL READ_SV variable 68 Bit 22

.DrivePMTempFault_43 BOOL READ_SV variable 68 Bit 23

.MotorGroundFault_44 BOOL READ_SV variable 68 Bit 24

.DriveACInputOverVoltageFault_45 BOOL READ_SV variable 68 Bit 25

.OvertravelPlusFault_46 BOOL READ_SV variable 68 Bit 26
 2-223

.OvertravelMinusFault_47 BOOL READ_SV variable 68 Bit 27

.DigitalLinkCommunicationError_51 BOOL READ_SV variable 68 Bit 28

.InvalidSwitchSettingFault_52 BOOL READ_SV variable 68 Bit 29

.HardwareFailureFault_53 BOOL READ_SV variable 68 Bit 30

.Reserved4 BOOL READ_SV variable 68 Bit 31

.StuctureSize UINT Set to the Size of Flts Structure in
Bytes

END_STUCT

NAME DATA TYPE DESCRIPTION OR FUNCTION
USED FOR DATA

Warn STRUCT Drive Warnings, see MMC Smart
Drive and Digital MMC Control
Hardware Manual for detailed
descriptions

.DriveWarnDW DWORD READ_SV variable 69 converted to
a DWORD

.DWRN UINT Same as DWRN output. Identifies
Drive Warning Code, see the MMC
Smart Drive and Digital

.Nowarnings BOOL Set when no drive warning is active

.DriveHeatsinkTempWarning_01 BOOL READ_SV variable 69 Bit 0

.DriveAmbientTempWarning_02 BOOL READ_SV variable 69 Bit 1

.MotorTempWarning_03 BOOL READ_SV variable 69 Bit 2

.MotorCalculatedTempWarning_04 BOOL READ_SV variable 69 Bit 3

.OvertravelPlusWarning_05 BOOL READ_SV variable 69 Bit 4

.OvertravelMinusWarning_06 BOOL READ_SV variable 69 Bit 5

.Reserved BOOL (0..25) READ_SV variable 69 Bits 6-31

.StructureSize UINT Set to the Size of Warn Structure in
Bytes
END STUCT
 2-224

NAME DATA TYPE DESCRIPTION OR FUNCTION
USED FOR DATA

DrIO STRUCT Status of drive inputs and settings
for outputs.

.A_In DINT Value of drive analog input,
READ_SV variable 71

.W_01 BOOL Value written to drive output 1,
READ_SV variable 72

.W_02 BOOL Value written to drive output 2,
READ_SV variable 72

.W_03 BOOL Value written to drive output 3,
READ_SV variable 72

.W_04 BOOL Value written to drive output 4,
READ_SV variable 72

.WBRK USINT Value written to drive brake output,
READ_SV variable 72

.R_01 BOOL Current state of drive output 1,
READ_SV variable 72

.R_02 BOOL Current state of drive output 2,
READ_SV variable 72

.R_03 BOOL Current state of drive output 3,
READ_SV variable 72

.R_04 BOOL Current state of drive output 4,
READ_SV variable 72

.RBRK BOOL Current state of drive brake output,
READ_SV variable 72

.In_1 BOOL Current state of drive input 1,
READ_SV variable 71

.In_2 BOOL Current state of drive input 2,
READ_SV variable 71

.In_3 BOOL Current state of drive input 3,
READ_SV variable 71

.In_4 BOOL Current state of drive input 4,
READ_SV variable 71

.In_5 BOOL Current state of drive input 5,
READ_SV variable 71

.In_6 BOOL Current state of drive input 6,
READ_SV variable 71

.In_7 BOOL Current state of drive input 7,
READ_SV variable 71

.In_8 BOOL Current state of drive input 8,
READ_SV variable 71
 2-225

The STRT structure input members are used as coils in the ladder diagram to trig-
ger the actions described above. The output members are used as contacts in the
ladder to carry out any interlocking or actions needed. See the example ladders
provided with PiCPro Applications for more detail

.StructureSize UINT used to test the external and internal
structures to ensure they are the
same size

END_STRUCT

 NAME DATA TYPE DESCRIPTION OR FUNCTION
USED FOR DATA

STRT STRUCT Signals to control the position loop
.MSTR BOOL input - clears axis and drive errors

and closes the position loop
.DELY TIME input - delay time after MSTR input

before position loop is closed
.ESTP BOOL input - activates a USER ESTOP if

no other E_ERROR active and
opens position loop

.CSTP BOOL input - activates a USER CSTOP if
no other C_ERROR active

.CLSD BOOL output - indicates state of position
loop

.NO_DC_BUS BOOL output - indicates an attempt was
made to close the loop with no dc
bus power available. Also puts a
999 fault in the drive faults code in
ladder

.StructureSize UINT used to test the external and internal
structures to ensure they are the
same size

END_STRUCT
 2-226

The JDAT structure input members are used as coils in the ladder diagram to trig-
ger the actions described above. Output members are used as contacts in the lad-
der as needed.

Three types of jog are possible - OktoJog must be on for all to work

• Continuous Jog - axis will move as long as the inputs are made

 NAME DATA TYPE DESCRIPTION OR FUNCTION
USED FOR DATA

Jdat STRUCT Controls jog
.JPLS BOOL input - jogs in a + direction at JRat

speed or moves incremental distance
.JMNS BOOL input -jogs in a - direction at JRat

speed or moves incremental distance
.JRate UDINT input - axis jog rate in LU / MIN
.JogActive BOOL output - velocity jog is active
.JogQue USINT output - velocity jog queue number #
.IncDistance DINT input - incremental jog distance
.IncMove BOOL input - causes incremental distance

move with JPLS or JMNS inputs
.IncQue USINT output -incremental distance move

queue #
.IncAct BOOL output - incremental move is active
.OKtoJog BOOL input - must be on to allow jog to

take place with JPLS and JMNS
.Hdwhl_jog BOOL input - when on, locks axis to hand

wheel (digitizing axis)
.Hdwhl_axis USINT input - axis number for hand wheel
.Axis_SDST DINT input - axis LU moved when hand

wheel moves its distance
.Hdwhl_MDST DINT input - hand wheel LU for axis to

move previous entry
.Hdwhl_que USINT output - queue number of hand

wheel move
.HdwhlAct BOOL output - on when hand wheel jog

active
.StructureSize UINT used to test external and internal

structures for the same size
END_STRUCT
 2-227

• Incremental Jog - axis will move the specified distance each time an input is
made

• Hand wheel Jog - axis is electronically geared to an encoder hand wheel

It is the responsibility of the main ladder to turn on ONLY one at a time.

See the example ladders provided with PiCPro Applications for more detail.
 2-228

 NAME DATA TYPE DESCRIPTION OR FUNCTION
USED FOR DATA

HDat STRUCT configures homing cycle options
.Strt_Home BOOL input - starts axis home cycle
.RFSW BOOL input - triggers end of home cycle

for ladder input applications only
.AutoStart BOOL input - starts home cycle on loop

closure if not already homed
.Mode INT input - chooses mode of homing -

see later list
.PlusDir BOOL input - chooses initial direction of

home motion
.Rate UDINT input - sets home rate in LU/Min
.DIM DINT input - position axis is set to once

home cycle reaches its final target
.BackOff BOOL input - causes axis to reverse off

switch if on it when cycle is started
.HDim DINT input - position axis will move to

after reference if move option cho-
sen

.MaxDist DINT input - Limit cycle motion will stop
if limit not seen before this point

.Target DINT input - value of drive current / fol-
lowing error used as hard stop detect

.FErrBW_Pct DINT input - following error limit is set to
this during Limit cycle

.Current_Limit_Pct DINT input - current limit is set to this dur-
ing Limit cycle

.HDne BOOL output - set when home cycle com-
plete

.HAct BOOL output - set when home cycle is
active

.HQue USINT output - queue number of home
cycle

.SPos DINT

.Herr INT output - error number - see below

.StructureSize UINT used to test external and internal
structures for the same size

END_STRUCT output - distance from home switch
to marker pulse
 2-229

Inputs must be provided from the ladder diagram. Many of these are fixed and can
be set in Initial Values in Software Declarations or through a MOVE block or a ST
Network, triggered by a one-shot on the first ladder scan. Others must be triggered
from the ladder diagram using coils or MOVE functions. BOOL outputs may be
used in the ladder diagram as contacts.

 Notes on Choosing Type of Homing

 Proximity Switch

Where axis travel is more than one revolution of the motor, use of either a proxim-
ity or limit switch is the most common arrangement. This can be connected to the
drive I/O fast or regular input, or to a General or Block input.

Fast home #1 will provide the most repeatable accuracy using only a target switch.
Its accuracy will be independent of speed and ladder scan time. Ladder home #11
allows the use of a General input point for the home switch but will vary in repeat-
ability due to ladder scan time. In cases where no other drive I/O is used, it may
save a breakout connection arrangement from the drive I/O connector.

The repeatability of both cycles can be improved by choosing to use the motor
marker pulse after the switch. However, if the motor or any of the drive train com-
ponents are replaced then the home offset value may need changing.

Where the switch used is an end of travel switch, use the reverse to marker option
#15 or 16, or the move to HDIM options to back off the switch at the end of the
home cycle.

 Marker Only

Where the axis travel is only one rev of the motor, a marker only reference is pos-
sible.

 Limit Setting

The axis may be moved against a mechanical stop to detect home. Doing this
causes the drive current to rise and the position loop following error will also
increase. Either one of these 2 quantities can be used to detect the stop mecha-
nism. Once detected, the command position will be ahead of the target position by
the amount of the following error. The equipment should not be left in this condi-
tion as it may cause damage. Always make sure that the axis is backed off the stop
using either the reverse to marker or move to HDIM option.
 2-230

 Operator Home

The operator can jog the axis to a known position and assign a value using #50.

 Homing Cycles using Fast Input on Drive

1 - Home to switch, preset DIM and stop

2 - Home to switch, continue to marker, preset DIM and stop

3 - Home to switch, preset DIM then move to HDIM

4 - Home to switch, continue to marker, preset DIM then move to HDIM

 Homing Cycles using non Fast Input (Ladder Home)

11 - Home to switch, preset DIM and stop

12 - Home to switch, continue to marker, preset DIM and stop

13 - Home to switch, preset DIM then move to HDIM

14 - Home to switch, continue to marker, preset DIM then move to HDIM

15 - Home to switch, back to 1st marker after leaving switch, preset DIM and stop

16 - Home to switch, back to 1st marker after leaving switch, preset DIM, move to
HDIM

 Homing Cycles using Motor Feedback Marker Only

21 - Home to marker, preset DIM and stop

22 - Home to marker, preset DIM and move to HDIM

 Homing Cycles to a Hard Mechanical Stop using Current

31 - Home to drive current target, preset DIM and stop

32 - Home to drive current target, reverse to marker, preset DIM and stop

33 - Home to drive current target, preset DIM, move to HDIM and stop

34 - Home to drive current target, rev to marker, preset DIM, move to HDIM and
stop

 Homing Cycles to a Hard Mechanical Stop using Following Error

41 - Home to following error target, preset DIM and stop

42 - Home to following error target, reverse to marker, preset DIM and stop

43 - Home to following error target, preset DIM, move to HDIM and stop
 2-231

44 - Home to following error target, rev to marker, preset DIM, move to HDIM
and stop

 Operator Established Home

50 - Part Reference to DIM on Home start - home complete immediately

 ERR Errors

These are ladder programming errors caused by mismatched structure sizes. The
table below describes the different errors that may occur.

ERR Description

1 Mismatch size in Stat structure between SD_STAT1 and
SD_AXIS

2 Mismatch size in Flts structure between SD_STAT1 and
SD_AXIS

3 Mismatch size in Warn structure between SD_STAT1
and SD_AXIS

4 Miscellaneous FB not OK conditions - SD_AXIS OK
will not be ON

10 Mismatch size in Stat structure between SD_AXIS and
main ladder

11 Mismatch size in Flts structure between SD_AXIS and
main ladder

12 Mismatch size in Warn structure between SD_AXIS and
main ladder

13 Mismatch size in DrIO structure between SD_AXIS and
main ladder

14 Mismatch size in Strt structure between SD_AXIS and
main ladder

15 Mismatch size in HDat structure between SD_AXIS and
main ladder

16 Mismatch size in JDat structure between SD_AXIS and
main ladder
 2-232

 HERR Errors

HERR Description

1 Final home move point is beyond hard stop

2 Invalid option selected

3 Active queue not available to start home move

4 Failed to read / write rollover or expanded following
error limit

5 Distance move did not start

6 Hard stop reached - no move in progress

7 Hard stop not reached - distance move ended first

8 Distance move abort failed

9 Part Reference failed

10 Move to index mark did not start

11 Reference End function not OK

12 Move to final position did not start

13 Home cycle stopped from Stop input

14 Axis C stop or P stop occurred during home cycle

15 Restore of original rollover or following error limit
failed

16 Operator Part Reference Failed
 2-233

SD_IO
Read I/O for an MMC Digital Smart Drive USER/SD_DATA

<<INSTANCE NAME>>:SD_10(ENXX=1,Axis:=<<W_01:=<<BOOOL>>,
W02:=<<BOOL>>,W_03:=<<BOOL>>,W_04:=<<BOOL>>,W_BRK:=<<BO
OL>>,OK=><<BOOL>>,A_In=><<DINT>>,R_01=><<BOOL>>,R_02=><<B
OOL>>,R_03=><<BOOL>>,R_04=><<BOOL>>,R_BRK=><<BOOL>>,In_1
=><<BOOL>>,In_2=><<BOOL>>,In_3=><<BOOL>>,In_4=><<BOOL>>,In_
5=><<BOOL>>,In_6=><<BOOL>>,In_7=><<BOOL>>,In_8=><<BOOL>>

This function block reads the current values of the analog and DC inputs and
reads/writes the outputs for the MMC Digital Smart Drive.

⁄ NAME ƒƒø
≥ SD1_IO ≥
≥ ≥
¥ENXX OK√ƒ
≥ ≥
¥AXIS A_In√ƒ
≥ ≥
¥W_01 R_01√ƒ
≥ ≥
¥W_02 R_02√ƒ
≥ ≥
¥W_03 R_03√ƒ
≥ ≥
≥W_04 R_03√ƒ
≥ ≥
¥WBRK RBRK√ƒ
≥ ≥
≥ IN_1√ƒ
≥ ≥
≥ IN_2√ƒ
≥ ≥
≥ IN_3√ƒ
≥ ≥
≥ IN_4√ƒ
≥ ≥
≥ IN_5√ƒ
≥ ≥
≥ IN_6√ƒ
≥ ≥
≥ IN_7√ƒ
≥ ≥
≥ IN_8√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - enables execution

AXIS (USINT) - identifies axis

W_01 (BOOL) - value written to drive output 1

W_02 (BOOL) - value written to drive output 2

W_03 (BOOL) - value written to drive output 3

W_04 (BOOL) - value written to drive output 4

WBRK (BOOL) - value written to drive brake output

Outputs:

OK (BOOL) - execution complete

A_IN (DINT) - value of drive analog input

R-01 (BOOL) - current state of drive output 1

R-02 (BOOL) - current state of drive output 2

R-03 (BOOL) - current state of drive output 3

R-04 (BOOL) - current state of drive output 4

R-BRK (BOOL) - current state of drive output brake

IN_1 (BOOL) - current state of drive input 1

IN_2 (BOOL) - current state of drive input 2

IN_3 (BOOL) - current state of drive input 3

IN_4 (BOOL) - current state of drive input 4

IN_5 (BOOL) - current state of drive input 5

IN_6 (BOOL) - current state of drive input 6

IN_7 (BOOL) - current state of drive input 7

IN_8 (BOOL) - current state of drive input 8
 2-234

NOTE: The MMC Application Input/Output assignment must be checked in the
drive setup for the inputs and outputs to be read/written by this function. See
READ_SV variables 70, 71, and 72 for more details.

INPUTS

OUTPUTS:

 Name Data Type Description or Function Used for Data
ENxx BOOL Enables Execution
Axis USINT Axis Number
W_01 BOOL Value written to drive output 1, READ_SV variable 72
W_02 BOOL Value written to drive output 2, READ_SV variable 72
W_03 BOOL Value written to drive output 3, READ_SV variable 72
W_04 BOOL Value written to drive output 4, READ_SV variable 72
WBRK USINT Value written to drive brake output, READ_SV variable 72

 Name Data Type Description or Function Used for Data
OK BOOL Execution complete without error
A_IN DINT Value of drive analog input, READ_SV variable 71
R_01 BOOL Current state of drive output 1, READ_SV variable 72
R_02 BOOL Current state of drive output 2, READ_SV variable 72
R_03 BOOL Current state of drive output 3, READ_SV variable 72
R_04 BOOL Current state of drive output 4, READ_SV variable 72
RBRK BOOL Current state of drive brake output, READ_SV variable 72
IN_1 BOOL Current state of drive input 1, READ_SV variable 71
IN_2 BOOL Current state of drive input 2, READ_SV variable 71
IN_3 BOOL Current state of drive input 3, READ_SV variable 71
IN_4 BOOL Current state of drive input 4, READ_SV variable 71
IN_5 BOOL Current state of drive input 5, READ_SV variable 71
IN_6 BOOL Current state of drive input 6, READ_SV variable 71
IN_7 BOOL Current state of drive input 7, READ_SV variable 71
IN_8 BOOL Current state of drive input 8, READ_SV variable 71
 2-235

SD_STAT
Axis/Drive Status, Fault/Warning Information for MMC Digital Smart Drive USER/SD_DATA

<<INSTANCE NAME>>:SD_STAT(ENXX:=1, Axis := <<USINT>>, Stat :=
<<MEMORY AREA>>, Flts := <<MEMORY AREA>>, Warn := <<MEMORY
AREA>>, OK => <<BOOL>, ERR => <<INT>>, ESTP => <<BOOL>>, E_ER
=> <<WORD>>, CSTP => <<BOOL>>, C_ER => <<WORD>>, PSTP =>
<<BOOL>>, P_ER => <<WORD>>, DFLT => <<UINT>>, DWRN =>
<<UINT>>);

This function block provides status and fault information using the READ_SV
variables and other common Motion functions for an MMC Digital Servo Axis.
The structure inputs for this ASFB are quite large and need to match the descrip-
tions below to function correctly. Instead of re-entering these declarations we sug-
gest that you either start with one of the Digital Smart Drive Examples included
with the PiCPro 15.0 or higher Applications CD or copy and paste the appropriate
networks from the example into your ladder.

⁄ NAME ƒƒø
≥ SD_STAT ≥
≥ ≥
¥ENxx OK√ƒ
≥ ≥
¥Axis ERR√ƒ
≥ ≥
¥Stat ESTP√ƒ
≥ ≥
¥Flts E_ER√ƒ
≥ ≥
¥Warn CSTP√ƒ
≥ ≥
≥ C_ER√ƒ
≥ ≥
≥ PSTP√ƒ
≥ ≥
≥ P_ER√ƒ
≥ ≥
≥ DFLT√ƒ
≥ ≥
≥ DWRN√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - enables execution

Axis (USINT) - identifies axis

Stat (STRUCT) - provides axis and drive status infor-
mation

Flts (STRUCT) - provides axis and drive fault infor-
mation

Warn (STRUCT) - provides axis and drive warning
information

Outputs:

OK (BOOL) - execution complete

ERR (INT) - reports an error number, see error listing
below

ESTP (BOOL) - indicates an E-Stop is active

E_ER (WORD) - identifies E-Stop errors

CSTP (BOOL) - indicates a C-Stop is active

C_ER (WORD) - identifies C-Stop errors

PSTP (BOOL) - indicates a P-Stop is active

P_ER (WORD) - identifies P-Stop errors

DFLT (UINT) - identifies Drive Fault Code

DWRN (UINT) - identifies Drive Warning Code
 2-236

NOTE: The Stat.StructureSize, Flts.StructureSize, and Warn.StructureSize vari-
ables must set to the size of the structures in bytes. Use the SIZEOF function to
determine the size of the data structure as shown in the example ladders. The
ASFB compares the sizes of the structures with the internal structures to make sure
that they match. If they don’t match an error will be reported and the function will
not execute.
 2-237

INPUTS:

 NAME DATA TYPE DESCRIPTION OR FUNCTION
USED FOR DATA

ENxx BOOL Enables Execution

Axis USINT Axis Number

Stat STRUCT Value written to drive output 1,
READ_SV variable 72

.InPosition BOOL IN_POS?

.QueAvailable BOOL Q_AVAIL?

.ActiveQue USINT Q_NUMBER

.MoveType DINT READ_SV variable 2

.Actual Position DINT READ_SV variable 1

.CommandedPosition DINT READ_SV variable 3

.PositionError DINT READ_SV variable 4

.FilterError DINT READ_SV variable 5

.MotorCurrent DINT READ_SV variable 73

.MotorAvgCurrent DINT READ_SV variable 74

.MotorTemp DINT READ_SV variable 77

.StartupCommutationComplete BOOL READ_SV variable 67 Bit 0

.AtZeroSpeed BOOL READ_SV variable 67 Bit 1

.InSpeedWindow BOOL READ_SV variable 67 Bit 2

.UpToSpeed BOOL READ_SV variable 67 Bit 3

.AtPlusCurrentLimit BOOL READ_SV variable 67 Bit 4

.AtMinusCurrentLimit BOOL READ_SV variable 67 Bit 5

.BusCharged BOOL READ_SV variable 67 Bit 6

.DriveEnabled BOOL READ_SV variable 67 Bit 7

.DriveReady BOOL READ_SV variable 67 Bit 8

.BrakeReleased BOOL READ_SV variable 67 Bit 9

.DriveFault BOOL READ_SV variable 67 Bit 10

.DriveWarning BOOL READ_SV variable 67 Bit 11

.ShuntOn BOOL READ_SV variable 67 Bit 12

.DriveReadyAndBusCharged BOOL READ_SV variable 67 Bit 13

.Reserved BOOL (0..5) READ_SV variable 67 Bits 14-23

.HardwareEnableLine BOOL READ_SV variable 67 Bit 24

.AuxiliaryFeedbackLossOfFeedback BOOL READ_SV variable 67 Bit 25

.Reserved_26_31 BOOL (0..9) READ_SV variable 67 Bits 26-31
 2-238

StructureSize UINT Set to the Size of STAT Structure in
Bytes
END_STUCT

 NAME DATA TYPE DESCRIPTION OR FUNCTION
USED FOR DATA

Flts STRUCT Axis and Drive Faults
.EstopActive BOOL E_STOP?
.EstopErr WORD E_ERRORS
.LossOfFeedbackEstop BOOL E_ERRORS Bit 0
.ExcessPositionErrorEstop BOOL E_ERRORS Bit 1
.SlaveOverflowDeltaEstop BOOL E_ERRORS Bit 2
.UserLadderEstop BOOL E_ERRORS Bit 3
.SERCOSDriveEstop BOOL E_ERRORS Bit 4
.SERCOSCycDataEstop BOOL E_ERRORS Bit 5
.ASIU_Timeout BOOL E_ERRORS Bit 6
.DriveFaultEstop BOOL E_ERRORS Bit 7
.DriveCommFaultEstop BOOL E_ERRORS Bit 8
.ReservedEstopbits BOOL (0..5) E_ERRORS Bits 9-14
.AnyEstopBitSet BOOL E_ERRORS Bit 15
.CstopActive BOOL C_STOP?
.CstopErr WORD C_ERRORS
.SWPositiveEndlimitCstop BOOL C_ERRORS Bit 0
.SWNegativeEndlimitCstop BOOL C_ERRORS Bit 1
.UserLadderCstop BOOL C_ERRORS Bit 2
.MachRefDimCstop BOOL C_ERRORS Bit 3
.FeedrateCstop BOOL C_ERRORS Bit 4
.DistPosnDimCstop BOOL C_ERRORS Bit 5
.PartRefDimCstop BOOL C_ERRORS Bit 6
.PartRefCstop BOOL C_ERRORS Bit 7
.ReservedCstopbits BOOL (0..6) C_ERRORS Bits 8-14
.AnyCstopBitSet BOOL C_ERRORS Bit 15
.PstopActive BOOL P_STOP?
.PstopErr WORD P_ERRORS
.MasterStartPosnPstop BOOL P_ERRORS Bit 0
.ReservedBit1Pstop BOOL P_ERRORS Bit 1
.ReservedBit2Pstop BOOL P_ERRORS Bit 2
.ReservedBit3Pstop BOOL P_ERRORS Bit 3
.ReservedBit4Pstop BOOL P_ERRORS Bit 4
.MasterNotAvailPstop BOOL P_ERRORS Bit 5
 2-239

.InvalidProfilePstop BOOL P_ERRORS Bit 6

.FastQuePstop BOOL P_ERRORS Bit 7

.SlaveDistPstop BOOL P_ERRORS Bit 8

.MasterDistPstop BOOL P_ERRORS Bit 9

.SlaveBeyondStrtPointPstop BOOL P_ERRORS Bit 10

.MasterBeyondStrtPointPstop BOOL P_ERRORS Bit 11

.ReservedBit13Pstop BOOL P_ERRORS Bit 12

.Reserved Bit14Pstop BOOL P_ERRORS Bit 13

.Reserved Bit15Pstop BOOL P_ERRORS Bit 14

.AnyPstopBitSet BOOL P_ERRORS Bit 15

.NoDriveFaults BOOL Set when no drive fault is active

.DriveMemoryFault_11 BOOL READ_SV variable 68 Bit 0

.DriveBusOverVoltageFault_12 BOOL READ_SV variable 68 Bit 1

.DrivePM1OverCurrentFault_13 BOOL READ_SV variable 68 Bit 2

.DriveOverPowerFault_14 BOOL READ_SV variable 68 Bit 3

.MotorTempFault_15 BOOL READ_SV variable 68 Bit 4

.ContinuousCurrentFault_16 BOOL READ_SV variable 68 Bit 5

.DriveHeatsinkTempFault_17 BOOL READ_SV variable 68 Bit 6

.Reserved1 BOOL READ_SV variable 68 Bit 7

.DriveF1FeedbackFault_22 BOOL READ_SV variable 68 Bit 8

.DriveAmbientTempFault_23 BOOL READ_SV variable 68 Bit 9

.MotorCalculatedTempFault_24 BOOL READ_SV variable 68 Bit 10

.DriveTimingFault_25 BOOL READ_SV variable 68 Bit 11

.DriveInterfaceFault_26 BOOL READ_SV variable 68 Bit 12

.UserSetFault_27 BOOL READ_SV variable 68 Bit 13

.DriveF1CommunicationFault_31 BOOL READ_SV variable 68 Bit 14

.OverSpeedFault_32 BOOL READ_SV variable 68 Bit 15

.OverCurrentFault_33 BOOL READ_SV variable 68 Bit 16

.ControlPanelDisconnectFault_34 BOOL READ_SV variable 68 Bit 17

.DrivePowerModuleFault_35 BOOL READ_SV variable 68 Bit 18

.DriveSetupDataFault_36 BOOL READ_SV variable 68 Bit 19

.Reserved2 BOOL READ_SV variable 68 Bit 20

.DriveRelayFault_41 BOOL READ_SV variable 68 Bit 21

.DrivePM2OverCurrentFault_42 BOOL READ_SV variable 68 Bit 22

.DrivePMTempFault_43 BOOL READ_SV variable 68 Bit 23

.MotorGroundFault_44 BOOL READ_SV variable 68 Bit 24

.DriveACInputOverVoltageFault_45 BOOL READ_SV variable 68 Bit 25

.OvertravelPlusFault_46 BOOL READ_SV variable 68 Bit 26

.OvertravelMinusFault_47 BOOL READ_SV variable 68 Bit 27

.DigitalLinkCommunicationError_5
1

BOOL READ_SV variable 68 Bit 28
 2-240

.InvalidSwitchSettingFault_52 BOOL READ_SV variable 68 Bit 29

.Reserved3 BOOL READ_SV variable 68 Bit 30

.Reserved4 BOOL READ_SV variable 68 Bit 31

.StuctureSize UINT Set to the Size of Flts Structure in
Bytes

END_STUCT
 2-241

OUTPUTS:

NAME DATA TYPE DESCRIPTION OR FUNCTION
USED FOR DATA

Warn STRUCT Drive Warnings, see MMC Smart
Drive and Digital MMC Control
Hardware Manual for detailed
descriptions

.Nowarnings BOOL Set when no drive warning is active

.DriveHeatsinkTempWarning_01 BOOL READ_SV variable 69 Bit 0

.DriveAmbientTempWarning_02 BOOL READ_SV variable 69 Bit 1

.MotorTempWarning_03 BOOL READ_SV variable 69 Bit 2

.MotorCalculatedTempWarning_04 BOOL READ_SV variable 69 Bit 3

.LossofFeedbackonAuxWarning_05 BOOL READ_SV variable 69 Bit 4

.Reserved BOOL (0..26) READ_SV variable 69 Bits 5-31

.StructureSize UINT Set to the Size of Warn Structure in
Bytes

END STUCT

 NAME DATA
TYPE

DESCRIPTION OR FUNCTION
USED FOR DATA

OK BOOL Execution complete without error
ERR INT Reports error number, see error list-

ing below
ESTP BOOL Indicates an E-Stop is active
E_ER WORD Identifies E-Stop errors, see

E_ERRORS
CSTP BOOL Indicates a C-Stop is active
C_ER WORD Identifies C-Stop errors; see

C_ERRORS
PSTP BOOL Indicates a P-Stop is active
P_ER WORD Identifies P-Stop errors, see

P_ERRORS
DFLT UINT Identifies Drive Fault Code, see the

MMC Smart Drive and Digital
MMC Control Hardware Manual for
detailed descriptions

DWRN UINT Identifies Drive Warning Code, see
the MMC Smart Drive and Digital
MMC Control Hardware Manual for
detailed description
 2-242

ERROR CODES FOR ERR:

ERR Error Description
1 Invalid value for Stat.StructureSize, the Stat structure has the

wrong number of elements and/or the wrong data types
2 Invalid value for Flts.StructureSize, the Flts structure has the

wrong number of elements and/or the wrong data types
3 Invalid value for Warn.StructureSize, the Warn structure has the

wrong number of elements and/or the wrong data types
4 One or more of the internal motion functions failed, check to

make sure that the axis has been initialized
 2-243

SD_STAT1
Axis/Drive Status, Fault/Warning Information for MMC Digital Smart Drive USER/SD_DATA

<<INSTANCE NAME>>:SD_STAT1(ENxx :=1, Axis := <<USINT>>, Stat :=
<<MEMORY AREA>>, Flts := <<MEMORY AREA>>, Warn := <<MEMORY
AREA>>, OK => <<BOOL>, ERR => <<INT>>, ESTP => <<BOOL>>, E_ER
=> <<WORD>>, CSTP => <<BOOL>>, C_ER => <<WORD>>, PSTP =>
<<BOOL>>, P_ER => <<WORD>>, DFLT => <<UINT>>, DWRN =>
<<UINT>>);

This function block provides status and fault information using the READ_SV
variables and other common Motion functions for an MMC Digital Servo Axis.
The structure inputs for this ASFB are quite large and need to match the descrip-
tions below to function correctly. Instead of re-entering these declarations we sug-
gest that you either start with one of the Digital Smart Drive Examples included
with the PiCPro 16.0 or higher Applications CD or copy and paste the appropriate
networks from the example into your ladder.

⁄ NAME ƒƒø
≥ SD_STAT1≥
≥ ≥
¥ENxx OK√ƒ
≥ ≥
¥Axis ERR√ƒ
≥ ≥
¥Stat ESTP√ƒ
≥ ≥
¥Flts E_ER√ƒ
≥ ≥
¥Warn CSTP√ƒ
≥ ≥
≥ C_ER√ƒ
≥ ≥
≥ PSTP√ƒ
≥ ≥
≥ P_ER√ƒ
≥ ≥
≥ DFLT√ƒ
≥ ≥
≥ DWRN√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: ENxx (BOOL) - enables execution (xx indicates revi-
sion #)

Axis (USINT) - identifies axis

Stat (STRUCT) - provides axis and drive status infor-
mation

Flts (STRUCT) - provides axis and drive fault infor-
mation

Warn (STRUCT) - provides axis and drive warning
information

Outputs:

OK (BOOL) - execution complete

ERR (INT) - reports an error number, see error listing
below

ESTP (BOOL) - indicates an E-Stop is active

E_ER (WORD) - identifies E-Stop errors

CSTP (BOOL) - indicates a C-Stop is active

C_ER (WORD) - identifies C-Stop errors

PSTP (BOOL) - indicates a P-Stop is active

P_ER (WORD) - identifies P-Stop errors

DFLT (UINT) - identifies Drive Fault Code

DWRN (UINT) - identifies Drive Warning Code
 2-244

NOTE: The Stat.StructureSize, Flts.StructureSize, and Warn.StructureSize vari-
ables must set to the size of the structures in bytes. Use the SIZEOF function to
determine the size of the data structure as shown in the example ladders. The
ASFB compares the sizes of the structures with the internal structures to make sure
that they match. If they don’t match an error will be reported and the function will
not execute.

INPUTS:

 NAME DATA TYPE DESCRIPTION OR FUNCTION
USED FOR DATA

ENxx BOOL Enables Execution

Axis USINT Axis Number

Stat STRUCT Value written to drive output 1,
READ_SV variable 72

.InPosition BOOL IN_POS?

.QueAvailable BOOL Q_AVAIL?

.ActiveQue USINT Q_NUMBER

.MoveType DINT READ_SV variable 2

.Actual Position DINT READ_SV variable 1

.CommandedPosition DINT READ_SV variable 3

.PositionError DINT READ_SV variable 4

.FilterError DINT READ_SV variable 5

.MotorCurrent DINT READ_SV variable 73

.MotorAvgCurrent DINT READ_SV variable 74

.MotorTemp DINT READ_SV variable 77

.StartupCommutationComplete BOOL READ_SV variable 67 Bit 0

.AtZeroSpeed BOOL READ_SV variable 67 Bit 1

.InSpeedWindow BOOL READ_SV variable 67 Bit 2

.UpToSpeed BOOL READ_SV variable 67 Bit 3

.AtPlusCurrentLimit BOOL READ_SV variable 67 Bit 4

.AtMinusCurrentLimit BOOL READ_SV variable 67 Bit 5

.BusCharged BOOL READ_SV variable 67 Bit 6

.DriveEnabled BOOL READ_SV variable 67 Bit 7

.DriveReady BOOL READ_SV variable 67 Bit 8

.BrakeReleased BOOL READ_SV variable 67 Bit 9

.DriveFault BOOL READ_SV variable 67 Bit 10

.DriveWarning BOOL READ_SV variable 67 Bit 11
 2-245

.ShuntOn BOOL READ_SV variable 67 Bit 12

.DriveReadyAndBusCharged BOOL READ_SV variable 67 Bit 13

.Reserved BOOL (0..5) READ_SV variable 67 Bits 14-23

.HardwareEnableLine BOOL READ_SV variable 67 Bit 24
AuxiliaryFeedbackLossOfFeedback BOOL READ_SV variable 67 Bit 25
.Reserved_26_31 BOOL (0..9) READ_SV variable 67 Bits 26-31
StructureSize UINT Set to the Size of STAT Structure in

Bytes
END_STRUCT

 NAME DATA TYPE DESCRIPTION OR FUNCTION
USED FOR DATA

Flts STRUCT Axis and Drive Faults
.EstopActive BOOL E_STOP?
.EstopErr WORD E_ERRORS
.LossOfFeedbackEstop BOOL E_ERRORS Bit 0
.ExcessPositionErrorEstop BOOL E_ERRORS Bit 1
.SlaveOverflowDeltaEstop BOOL E_ERRORS Bit 2
.UserLadderEstop BOOL E_ERRORS Bit 3
.SERCOSDriveEstop BOOL E_ERRORS Bit 4
.SERCOSCycDataEstop BOOL E_ERRORS Bit 5
.ASIU_Timeout BOOL E_ERRORS Bit 6
.DriveFaultEstop BOOL E_ERRORS Bit 7
.DriveCommFaultEstop BOOL E_ERRORS Bit 8
.ReservedEstopbits BOOL (0..5) E_ERRORS Bits 9-14
.AnyEstopBitSet BOOL E_ERRORS Bit 15
.CstopActive BOOL C_STOP?
.CstopErr WORD C_ERRORS
.SWPositiveEndlimitCstop BOOL C_ERRORS Bit 0
.SWNegative EndlimitCstop BOOL C_ERRORS Bit 1
.UserLadderCstop BOOL C_ERRORS Bit 2
.MachRefDimCstop BOOL C_ERRORS Bit 3
.FeedrateCstop BOOL C_ERRORS Bit 4
.DistPosnDimCstop BOOL C_ERRORS Bit 5
.PartRefDimCstop BOOL C_ERRORS Bit 6
.PartRefCstop BOOL C_ERRORS Bit 7
.ReservedCstopbits BOOL (0..6) C_ERRORS Bits 8-14
.AnyCstopBitSet BOOL C_ERRORS Bit 15
.PstopActive BOOL P_STOP?
.PstopErr WORD P_ERRORS
 2-246

.MasterStartPosnPstop BOOL P_ERRORS Bit 0

.ReservedBit1Pstop BOOL P_ERRORS Bit 1

.ReservedBit2Pstop BOOL P_ERRORS Bit 2

.ReservedBit3Pstop BOOL P_ERRORS Bit 3

.ReservedBit4Pstop BOOL P_ERRORS Bit 4

.MasterNotAvailPstop BOOL P_ERRORS Bit 5

.InvalidProfilePstop BOOL P_ERRORS Bit 6

.FastQuePstop BOOL P_ERRORS Bit 7

.SlaveDistPstop BOOL P_ERRORS Bit 8

.MasterDistPstop BOOL P_ERRORS Bit 9

.SlaveBeyondStrtPointPstop BOOL P_ERRORS Bit 10

.MasterBeyondStrtPointPstop BOOL P_ERRORS Bit 11

.ReservedBit13Pstop BOOL P_ERRORS Bit 12

.ReservedBit14Pstop BOOL P_ERRORS Bit 13

.ReservedBit15Pstop BOOL P_ERRORS Bit 14

.AnyPstopBitSet BOOL P_ERRORS Bit 15

.DriveFaultDW DWORD READ_SV variable 68 converted to
a DWORD

.DFLT UINT Identifies Drive Fault Code, see the
MMC Smart Drive and Digital
MMC Control Hardware Manual for
detailed description

.NoDriveFaults BOOL Set when no drive fault is active

.DriveMemoryFault_11 BOOL READ_SV variable 68 Bit 0

.DriveBusOverVoltageFault_12 BOOL READ_SV variable 68 Bit 1

.DrivePM1OverCurrentFault_13 BOOL READ_SV variable 68 Bit 2

.DriveBusUnderVoltageFault_14 BOOL READ_SV variable 68 Bit 3

.MotorTempFault_15 BOOL READ_SV variable 68 Bit 4

.ContinuousCurrentFault_16 BOOL READ_SV variable 68 Bit 5

.DriveHeatsinkTempFault_17 BOOL READ_SV variable 68 Bit 6

.DriveF2FeedbackFault_21 BOOL READ_SV variable 68 Bit 7

.DriveF1FeedbackFault_22 BOOL READ_SV variable 68 Bit 8

.DriveAmbientTempFault_23 BOOL READ_SV variable 68 Bit 9

.MotorCalculatedTempFault_24 BOOL READ_SV variable 68 Bit 10

.DriveTimingFault_25 BOOL READ_SV variable 68 Bit 11

.DriveInterfaceFault_26 BOOL READ_SV variable 68 Bit 12

.UserSetFault_27 BOOL READ_SV variable 68 Bit 13

.DriveF1CommunicationFault_31 BOOL READ_SV variable 68 Bit 14

.OverSpeedFault_32 BOOL READ_SV variable 68 Bit 15

.OverCurrentFault_33 BOOL READ_SV variable 68 Bit 16

.ControlPanelDisconnectFault_34 BOOL READ_SV variable 68 Bit 17
 2-247

.DrivePowerModuleFault_35 BOOL READ_SV variable 68 Bit 18

.FeedbackTypeMismatchFault_36 BOOL READ_SV variable 68 Bit 19

.EndatFault_37 BOOL READ_SV variable 68 Bit 20

.DriveRelayFault_41 BOOL READ_SV variable 68 Bit 21

.DrivePM2OverCurrentFault_42 BOOL READ_SV variable 68 Bit 22

.DrivePMTempFault_43 BOOL READ_SV variable 68 Bit 23

.MotorGroundFault_44 BOOL READ_SV variable 68 Bit 24

.DriveACInputOverVoltageFault_45 BOOL READ_SV variable 68 Bit 25

.OvertravelPlusFault_46 BOOL READ_SV variable 68 Bit 26

.OvertravelMinusFault_47 BOOL READ_SV variable 68 Bit 27

.DigitalLinkCommunicationError_51 BOOL READ_SV variable 68 Bit 28

.InvalidSwitchSettingFault_52 BOOL READ_SV variable 68 Bit 29

.HardwareFailureFault_53 BOOL READ_SV variable 68 Bit 30

.Reserved4 BOOL READ_SV variable 68 Bit 31

.StuctureSize UINT Set to the Size of Flts Structure in
Bytes

END_STRUCT
 2-248

NAME DATA TYPE DESCRIPTION OR FUNCTION
USED FOR DATA

Warn STRUCT Drive Warnings, see MMC Smart
Drive and Digital MMC Control
Hardware Manual for detailed
descriptions

.DriveWarnDW DWORD READ_SV variable 69 converted to
a DWORD

.DWRN UINT Same as DWRN output. Identifies
Drive Warning Code, see the MMC
Smart Drive and Digital

.Nowarnings BOOL Set when no drive warning is active

.DriveHeatsinkTempWarning_01 BOOL READ_SV variable 69 Bit 0

.DriveAmbientTempWarning_02 BOOL READ_SV variable 69 Bit 1

.MotorTempWarning_03 BOOL READ_SV variable 69 Bit 2

.MotorCalculatedTempWarning_04 BOOL READ_SV variable 69 Bit 3

.OvertravelPlusWarning_05 BOOL READ_SV variable 69 Bit 4

.OvertravelMinusWarning_06 BOOL READ_SV variable 69 Bit 5

.Reserved BOOL (0..25) READ_SV variable 69 Bits 6-31

.StructureSize UINT Set to the Size of Warn Structure in
Bytes

END_STRUCT
 2-249

OUTPUTS:

ERROR CODES FOR ERR:

 NAME DATA
TYPE

DESCRIPTION OR FUNCTION
USED FOR DATA

OK BOOL Execution complete without error
ERR INT Reports error number, see error list-

ing below
ESTP BOOL Indicates an E-Stop is active
E_ER WORD Identifies E-Stop errors, see

E_ERRORS
CSTP BOOL Indicates a C-Stop is active
C_ER WORD Identifies C-Stop errors; see

C_ERRORS
PSTP BOOL Indicates a P-Stop is active
P_ER WORD Identifies P-Stop errors, see

P_ERRORS
DFLT UINT Identifies Drive Fault Code, see the

MMC Smart Drive and Digital
MMC Control Hardware Manual for
detailed descriptions

DWRN UINT Identifies Drive Warning Code, see
the MMC Smart Drive and Digital
MMC Control Hardware Manual for
detailed description

ERR Error Description
1 Invalid value for Stat.StructureSize, the Stat structure has the

wrong number of elements and/or the wrong data types
2 Invalid value for Flts.StructureSize, the Flts structure has the

wrong number of elements and/or the wrong data types
3 Invalid value for Warn.StructureSize, the Warn structure has the

wrong number of elements and/or the wrong data types
4 One or more of the internal motion functions failed, check to

make sure that the axis has been initialized
 2-250

WORD2HEX
Converts a word to a hex value USER/M_COMMON

<<INSTANCE NAME>>:WORD2HEX(EN00 := <<BOOL>>, WORD := <<
WORD>> STRG := <<STRING>>, OK => <<BOOL>>);

This function block places the hexadecimal notation of the value at WORD into
the string at STRG.

Example: If 26,854 is entered at the WORD input, 68E6 will be reported at STRG.

⁄ƒƒ NAME ƒø
≥ WORD2HEX≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥WOR ≥
≥ ≥
¥STRG ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

WORD (WORD) - value to convert

STRG (STRING) - Converted value

Outputs: OK (BOOL) - execution complete
 2-251

NOTES
 2-252

APPENDIX A M_DSMCOM Commands
This appendix contains the commands that can be entered at the CMD input of the
M_DSMCOM function block. These commands allow you to communicate with
the DSM100 drive over the communications port. The tables that follow contain
detailed descriptions of the commands, applicable values, responses, and excep-
tions.

Exception Responses

If a command is received by the drive without a communication error, but cannot
be processed normally, an exception response is generated. The table below lists
the possible exception responses.

Response

Data

Exception

Type

Description Applicable Commands

01 Invalid Data The command data parameter was unacceptable, and the
parameter was not changed in the drive.

Non-Range Variable Commands,
Low Level Commands

02 Command Not Enabled The command is disabled and is dependent on another
command for enabling.

Manufacturing,
Firmware Upgrades

03 EEPROM Write Error The command required a write to EEPROM, and the
data was not able to be written.

All

04 Data Accepted After Limiting
to Minimum

The command data was out of range, but was modified
to the minimum value.

Range Variable Commands

05 Data Accepted After Limiting
to Maximum

The command data was out of range, but was modified
to the maximum value.

Range Variable Commands

06 Command Disabled When
Drive is Enabled

The command cannot be complied with, because the
drive is enabled.

All

07 Flash Programming Error The command required the flash memory to be altered
and an error occurred.

Flash Memory Altering Commands

08 Invalid Function Code The master function code was not recognized by the
drive.

All

09 Command Disabled When
Drive is Disabled

The command cannot be complied with, because the
drive is disabled.

All
 A-1

Host Command Set

The tables below use the following symbols to specify data widths.

Note: Every byte in the specified data field is sent in the command encoded as
two ASCII-hex characters):

On numeric parameters, the Range of Data Values field contains the range of val-
ues in user units and the resolution [denoted by (ε: xxxxxx)]. The field also con-
tains the range of command hexadecimal values expected for the parameter.

In addition, the Units field contains the multiplier for converting the user units to
the command hexadecimal values. These multipliers are presented in hexadecimal
also.

Data Signed Unsigned
8-bit data [c1]..[cn] [b1]..[bn]

16-bit data [s1]..[sn] [w1]..[wn]

32-bit data [L1]..[Ln] [d1]..[dn]
 A-2

Common Product Line Commands

These commands will remain consistent across product lines. The bit definitions
on the Powerup Status command may change between products, but the command
must return zero (00) on a successful
powerup.

Parameter Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Product Type
Identifies the type of product.

[b1] - Type
0- BCM-03

- Read 000 - [b1]

Currently only the BCM-03 is known. but is
provided for future expansion.

Write - - -

Powerup Status
The status of the drive during power up
testing. The bit definitions of the READ
Powerup Status command may change
between products, but the command will
always return zero (00) on a successful
powerup.

[b1] - Status
00 - Successful Power-Up
51 - Boot Block Checksum Error
52 - Non-Boot Block Checksum Error
53 - Uninitialized Personality EEPROM Error
54 - Personality EEPROM Read Error
55 - Personality EEPROM Data Corruption
Error
56 - Main Processor Watchdog Error
57 - Sub Processor Watchdog Error
58 - Main Processor RAM Error
59 - Sub Processor RAM Error
60 - Uninitialized Service EEPROM Error
61 - Service EEPROM Read Error
62 - Service EEPROM Data Corruption Error
63 - Main Processor A/D Converter Error
64 - Sub Processor A/D Converter Error

- Read 001 - [b1]

65 - Analog1 Output Error
66 - Gate Array Error
67 - Analog2 Output Error
68 - Inter-Processor Communication Error
69 - Sub Processor Initialization Error
70 - Sub Processor SRAM Error
71 - Sub Processor Code Loading Error
72 - Sub Processor Startup Error
73 - Sub Processor Checksum Error
74 - Personality EEPROM Write Error
75 - Service EEPROM Write Error
76 - Software Clock Error
77 - Sub Processor Communication Checksum
Error
78 - Sub Processor Sine Table Generation Error
79 - Personality Data Out Of Range
80 - Service Data Out Of Range
81 - Motor Block Checksum Error

Write - - -

Main Firmware Version
The version number of the drive’s main
firmware.

[b1] - Major Version
0..255
(00..ff)

- Read 002 - [b1] [b2]

[b2] - Minor Revision
0..255
(00..ff)

Write - - -

Boot Firmware Version
The version number of the drive’s boot
firmware.

[b1] - Major Version
0..255
(00..ff)

- Read 003 - [b1] [b2]

[b2] - Minor Revision
0..255
(00..ff)

Write - - -
 A-3

General Commands

Parameter Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Reset Personality EEPROM
Resets the personality EEPROM to its fac-
tory settings.

[No Data] - Read - - -

Write 010 - - 03, 06

Drive Name
Identifies the drive in a multidrop system.

[b1]..[b32] - Name
Name is a 32-character string.

- Read 011 - [b1]..[b32]

Write 012 [b1]..[b32] - 03

Position Scale Value
The position scale used by the host com-
puter for scaling position variables. This
information is not necessary for drive oper-
ation. The scale is a 32 bit IEEE floating
point value.

[d1] - Value
-3.4e+38..3.4e+38 (ε: 1.19e-7)

units / count Read 013 - [d1]

(80000000..7fffffff) Write 014 [d1] - 03

Position Scale Text
The position scale text used by the host
computer to identify the units of the posi-
tion scale.

[b1]..[b8] - Name
Name is an 8-character string.

- Read 015 - [b1]..[b8]

Write 016 [b1]..[b8] - 03

Velocity Scale Value
The velocity scale used by the host com-
puter for scaling velocity variables. This
information is not necessary for drive opera-
tion. The scale is a 32 bit IEEE floating
point value.

[d1] - Value
-3.4e+38..3.4e+38 (ε: 1.19e-7)

units / RPM Read 017 - [d1]

(80000000..7fffffff) Write 018 [d1] - 03

Velocity Scale Text
The velocity scale text used by the host
computer to identify the units of the

[b1]..[b8] - Name
Name is an 8-character string.

- Read 019 - [b1]..[b8]

velocity scale. Write 01a [b1]..[b8] - 03

Acceleration Scale Value
The acceleration scale used by the host com-
puter for scaling acceleration variables. This
information is not necessary for drive opera-
tion. The scale is a 32 bit IEEE floating
point value.

[d1] - Value
-3.4e+38..3.4e+38 (ε: 1.19e-7)

units /RPM
/second

Read 01b - [d1]

(80000000..7fffffff) Write 01c [d1] - 03

Acceleration Scale Text
The acceleration scale text used by the host
computer to identify the units of the accel-
eration scale.

[b1]..[b8] - Name
Name is an 8-character string.

- Read 01d - [b1]..[b8]

Write 01e [b1]..[b8] - 03

Torque Scale Value
The torque scale used by the host computer
for scaling torque variables. This informa-
tion is not necessary for drive operation.

[d1] - Value
-3.4e+38..3.4e+38 (ε: 1.19e-7)

units / Amp Read 01f - [d1]

The scale is a 32 bit IEEE floating point
value.

(80000000..7fffffff) Write 020 [d1] - 03

Torque Scale Text
The torque scale text used by the host com-
puter to identify the units of the torque scale.

[b1]..[b8] - Name
Name is an 8-character string.

- Read 021 - [b1]..[b8]

Write 022 [b1]..[b8] - 03
 A-4

Position Loop Commands

Parameter Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Position Loop Proportional Gain [w1] - Gain
0.0..31.98 (ε: 7.8e-3)

in/min/mil Read 030 - [w1]

(0000..0fff) (× 0080) Write 031 [w1] - 03, 05

Position Loop Integral Gain [w1] - Gain
0..31.98 (ε: 7.8e-3)

- Read 032 - [w1]

(0000..0fff) (× 0080) Write 033 [w1] - 03, 05

Position Loop Derivative Gain [w1] - Gain
0..31.98 (ε: 7.8e-3)

- Read 034 - [w1]

(0000..0fff) (× 0080) Write 035 [w1] - 03, 05

Position Loop Feedforward Gain [w1] - Gain
0..200 (ε: 1)

- Read 036 - [w1]

(0000..00c8) (× 0001) Write 037 [w1] - 03, 05

Integrator Zone
Maximum position error which the integra-
tor is still active. If the position error is
greater than the I Zone, the integrator is
reset

[w1] - Zone
0..32767 (ε: 1)

counts Read 038 - [w1]

(0000..7fff) (× 0001) Write 039 [w1] - 03, 05

Position Window Size
Maximum position error which allows the
In Position flag to remain set.

[w1] - Size
0..32767 (ε: 1)

counts Read 03a - [w1]

(0000..7fff) (× 0001) Write 03b [w1] - 03, 05

Position Window Time
The minimum time which the position error
must be less than the Position Window Size
to set the In Position flag.

[b1] - Time
0..255 (ε: 1)

millisec-
onds

Read 03c - [b1]

(00..ff) (× 01) Write 03d [b1] - 03

Position Error Limit
Minimum position error which allows the
excess Position Error flag to remain clear

[d1] - Limit
1..2147483647 (ε: 1)

counts Read 03e - [d1]

(00000001..7fffffff) (×
00000001)

Write 03f [d1] - 03, 04, 05

Position Error Time
The minimum time which the position error
must be greater than the Position Error
Limit to cause an Excess Position Error
fault.

[w1] - Time
0..65535 (ε: 1)

millisec-
onds

Read 040 - [w1]

(00..ffff) (× 0001) Write 041 [w1] - 03

Gear Ratio
The ratio between the motor and master
counts for following.

[s1] - Motor
-32767..32767 (ε: 1)
(8001..7fff)

counts

(× 0001)

Read 042 - [s1] [s2]

[s2] - Master
1..32767 (ε: 1)
(0001..7fff)

master
counts

(× 0001)

Write 043 [s1] [s2] - 03, 04

Master Rotation
The rotation direction of the master
encoder in follower mode, and the polarity
of the direction input in the step/direction
mode.

[b1] - Direction
0 - forward direction (TP: Normal)

- Read 044 - [b1]

1 - reverse direction (TP: Reverse) Write 045 [b1] - 01, 03, 06

Slew Rate
The acceleration limit for the motor when
used in a follower mode.

[d1] - Rate
0..2147483647 (ε: 1)

RPM/sec Read 046 - [d1]

(00000000..7fffffff) (×
00000001)

Write 047 [d1] - 03, 05

Slew Enable
Determines if the slew rate is used in fol-
lower mode

[b1] - Flag
0 - Disabled (TP: Off)
1 - Enabled (TP: On)

- Read 048 - [b1]

Write 049 [b1] - 01, 03
 A-5

Velocity Loop Commands

Parameter Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Velocity Loop Proportional Gain [w1] - Gain
0..1000 (ε: 1)

- Read 04a - [w1]

(0000..03e8) (× 0001) Write 04b [w1] - 03, 05

Velocity Loop Integral Gain [w1] - Gain
0..1000 (ε: 1)

- Read 04c - [w1]

(0000..03e8) (× 0001) Write 04d [w1] - 03, 05

Velocity Loop Derivative Gain [s1] - Gain
-1000..1000 (ε: 1)

- Read 04e - [s1]

(fc18..03e8) (× 0001) Write 04f [s1] - 03, 04, 05

Zero Speed Limit
Maximum motor velocity which allows the
ZeroSpeed flag to remain set.

[d1] - Limit
0..32767.99998 (ε: 1.53e-5)

RPM Read 050 - [d1]

(00000000..7fffffff) (×
00010000)

Write 051 [d1] - 03, 05

Speed Window Size
Maximum motor velocity error which
allows the Speed Window flag to remain
set.

[d1] - Limit
0..32767.99998 (ε: 1.53e-5)

RPM Read 052 - [d1]

(00000000..7fffffff) (×
00010000)

Write 053 [d1] - 03, 05

Over Speed Limit
Minimum motor velocity which causes the
Overspeed fault to occur.

[d1] - Limit
0..32767.99998 (ε: 1.53e-5)

RPM Read 054 - [d1]

(00000000..7fffffff) (×
00010000)

Write 055 [d1] - 03, 05

At Speed Limit
Minimum motor velocity which causes the
At Speed flag to be set

[d1] - Limit
0..32767.99998 (ε: 1.53e-5)

RPM Read 056 - [d1]

(00000000..7fffffff) (×
00010000)

Write 057 [d1] - 03, 05

Velocity Loop Update Period
Velocity control loop execution period.

[b1] - Period
0 - 200 µsecond
1 - 400 µsecond
2 - 600 µsecond
3 - 800 µsecond

- Read 058 - [b1]

4 - 1000 µsecond
5 - 1200 µsecond
6 - 1400 µsecond
7 - 1600 µsecond

Write 059 [b1] - 01, 03, 06

Velocity Error Limit

Sets or returns the minimum velocity error
which allows the Excess Velocity Error flag
to remain clear.

[d1] - limit

0..32767.99998 (ε: 1.53e-5)

RPM Read 05A - [d1] 03, 05

(00000000..7fffffff) (×
00010000)

Write 05B [d1] -

Velocity Error Time

Sets or returns the minimum time which the
velocity error must be greater than the
Velocity Error Limit to cause an Excess
Velocity Error fault

[w1] - time

0..65535 (ε: 1.53e-5)

millisecond Read 05C - [w1] 03

(00.. ffff) (x0001) Write 05D [w1] -
 A-6

Torque Current Conditioning Commands

Parameter Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Low Pass Filter Bandwidth
Cutoff frequency of the low pass filter.

[w1] - Bandwidth
1..992 (ε: 1)

Hz Read 070 - [w1]

(0001..03e0) (× 0001) Write 071 [w1] - 03, 04, 05

Low Pass Filter Enable
Determines if the low pass filter is used in
the control loop.

[b1] - Flag
0 - Disabled (TP: Off)

- Read 076 - [b1]

1 - Enabled (TP: On) Write 077 [b1] - 01, 03

Software Positive Current Limit
User specified positive current limit for the
drive.

[w1] - Limit
0..255.992 (ε: 7.8e-3)

Amps Read 07a - [w1]

The minimum of this value, the peak rating
of the drive, the peak rating of the motor,
and the +ILIMIT analog input is used as the
limiting value.

(0000..7fff) (× 0080) Write 07b [w1] - 03, 05

Software Negative Current Limit
User specified negative current limit for the
drive.

[w1] - Limit
0..255.992 (ε: 7.8e-3)

Amps Read 07c - [w1]

The minimum of this value, the peak rating
of the drive, the peak rating of the motor,
and the -ILIMIT analog input is used as the
limiting value.

(0000..7fff) (× 0080) Write 07d [w1] - 03, 05

Continuous Current Limit
User specified current faulting value.

[w1] - Limit
0..255.992 (ε: 7.8e-3)

Amps Read 07e - [w1]

This parameter is provided to allow a fault-
ing current value which is less than the
capacity of the drive and motor.

(0000..7fff) (× 0080) Write 07f [w1] - 03, 05

PWM Frequency Switching Disable

Sets or returns the flag which indicates if the
PWM frequency changes with the speed and
current demands of the motor.

[b1] - Flag

00 - Enabled

- Read 1A8 - [b1]

01 - Disabled - Write 1A9 [b1] - 01, 03
 A-7

Motor Commands

Note: All Motor Commands other than Motor ID are disabled and return the exception
response 02 unless Motor ID is set to 65535 (ffff).

Parameter (Motor Commands) Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Motor ID
Identifies the motor in the drive’s motor
parameter table currently being used.

The word is separated into various groups of
bit fields to specify the encoder resolution,
motor, type, and table ID.

[w1] - Number
0..65535
(0000..ffff)

BITS USAGE

- Read 090 - [w1]

The setting 0 (0000) indicates that no motor
has been selected, and the setting 65535
(ffff) indicates motor parameters were set
Individually and not read from the drive’s
motor parameter table.

15..12 Table ID
11..8 Encoder Resolution
7 Type (0 = synch., 1 = induct.)
6..0 Motor Number

Write 091 [w1] - 03, 06

Encoder Lines
The number of lines on the motor encoder.

[w1] - Lines
100..15000 (ε: 1)

lines/rev Read 092 - [w1]

(0064..3a98) (× 0001) Write 093 [w1] - 01, 02, 03,
06

Maximum Motor Speed
The minimum speed of the motor which
causes an Overspeed fault.

[d1] - Speed
0..32767.99998 (ε: 1.53e-5)

RPM Read 094 - [d1]

(00000000..7fffffff) (×
00010000)

Write 095 [d1] - 01, 02, 03,
06

Motor Peak Current
The peak current which the motor can han-
dle.

[w1] - Current
0..255.992 (ε: 7.8e-3)

Amps Read 096 - [w1]

(0000..7fff) (× 0080) Write 097 [w1] - 01, 02, 03,
06

Motor Continuous Current
The continuous current which the motor can
handle.

[w1] - Current
0..255.992 (ε: 7.8e-3)

Amps Read 098 - [w1]

(0000..7fff) (× 0080) Write 099 [w1] - 01, 02, 03,
06

Torque Constant
The sine wave torque constant of the motor.

[w1] - Kt

0.00024..15.9998 (ε: 2.44e-4)
N-m/Amp Read 09a - [w1]

(0001..ffff) (× 1000) Write 09b [w1] - 01, 02, 03,
06

Rotor Inertia
Jm

[w1] - Jm

0.0156..1023.98 (ε: 1.56e-2)
kg-cm2 Read 09c - [w1]

(0001..ffff) (× 0040) Write 09d [w1] - 01, 02, 03,
06

Back EMF Constant
Ke

[w1] - Ke

0.0039..255.996 (ε: 3.91e-3)
Volts /
1000 RPM

Read 09e - [w1]

(0001..ffff) (× 0100) Write 09f [w1] - 01, 02, 03,
06

Winding Resistance
The phase to phase resistance of the motor
windings at 25° C.

[w1] - Resistance
0.0039..255.996 (ε: 3.91e-3)

Ohms Read 0a0 - [w1]

(0001..ffff) (× 0100) Write 0a1 [w1] - 01, 02, 03,
06

Winding Inductance
The phase to phase inductance of the motor

windings.

[w1] - Inductance
0.0039..255.996 (ε: 3.91e-3)

mH Read 0a2 - [w1]

(0001..ffff) (× 0100) Write 0a3 [w1] - 01, 02, 03,
06

Thermostat Flag
Indicates if the motor contains a thermostat.

[b1] - Flag
0 - no thermostat present

- Read 0a4 - [b1]

1 - thermostat is present Write 0a5 [b1] - 01, 02, 03,
06
 A-8

Motor Commands (Continued)

Parameter (Motor Commands) Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Commutation Type [b1] - Type
0 - induction motor
1 - 6-step ABS/Index

- Read 0a6 - [b1]

2 - 8-step ABS/Index
3 - Hall/Index

4 - Hall/Hall

Write 0a7 [b1] - 01, 02, 03,
06

Current Feedforward [s1] - Value
-127.996..127.996 (ε: 3.91e-3)

degrees/
kRPM

Read 0a8 - [s1]

(8001..7fff) (× 0100) Write 0a9 [s1] - 02, 03, 04,
06

Thermal Time Constant
The thermal time constant for protecting
the motor.

[w1] - Time
0..65535 (ε: 1)

seconds Read 0aa - [w1]

(0000..ffff) (× 0001) Write 0ab [w1] - 02, 03, 06

Pole Count
Number of poles.

[b1] - Poles
0 - 2 Poles
1 - 4 Poles

- Read 0ac - [b1]

2 - 6 Poles
3 - 8 Poles

Write 0ad [b1] - 01, 02, 03,
06

Hall Offset
The offset of the Hall-effect sensor relative
to the rotor.

[w1] - Offset
0..359 (ε: 1)

electrical
degrees

Read 0ae - [w1]

(0000..0167) (× 0001) Write 0af [w1] - 01, 02, 03,
06

Index Offset
The offset of the motor encoder relative to
the rotor.

[w1] - Offset
0..359 (ε: 1)

electrical
degrees

Read 0b0 - [w1]

(0000..0167) (× 0001) Write 0b1 [w1] - 01, 02, 03,
06

Motor Table Information
Information about the Motor Table in the
drive. The information returned includes the
number of synchronous motors and induc-
tion motors in the table, and the table ID
number.

[b1] - Sync. Records
0..255
(00..ff)

[b2] - Induction Records
0..255

Read 0b2 - [b1] ..[b3]

(00..ff)

[b3] - Table ID
0..31
(00..1f)

Write - - -

Motor Table Record Size
Information about the Motor Table records
in the drive. The information returned
includes the synchronous motor and induc-
tion motor record sizes.

[w1] - Sync. Record Size
0..65535
(0000..ffff)

Read 0b3 - [w1] ..[w2]

[w2] - Induction Record Size
0..65535
(0000..ffff)

Write - - -

Motor Table Version
Version of the Motor Table in the drive.

[b1] - Major Version
0..255
(00..ff)

Read 0b4 - [b1]..[b2]

[b2] - Minor Revision
0..255
(00..ff)

Write - - -

Thermal Time Constant Enable

Sets or returns the flag which indicates if the
Thermal Time Constant is used for protect-
ing the motor.

[b1] - Flag

00 - Disabled
01 - Enabled

- Read 1A6 - [b1]

Write 1A7 [b1] - 02, 03, 06
 A-9

Motor Commands (Continued)

Parameter Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Motor Forward Direction Flag

Sets or returns the motor’s forward direction
when viewed from the shaft end.

[b1] - Flag

00 - clockwise

01 - counterclockwise

Read 1AA - [b1]

Write 1AB [b1] - 01, 02, 03,
06
 A-10

Digital I/O Commands

Parameter Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Digital Input Configuration Register
Determines which flag is (or flags are) con-
trolled by the specified digital input. If no
bits are set for an input, it is unassigned.

The Preset Select lines can be used together
or separately to select the desired preset.
Unassigned select lines are set to 0. The
select codes are as follows:

[b1] - Input Number
0 - Input1
1 - Input2
2 - Input3
3 - Input4

[w2] - Flag Number
Bit 0 - Torque Override (TP: TrqMode)
Bit 1 - Integrator Inhibit (TP: IntInh)
Bit 2 - Follower Enable (TP: FolEnab)

Read 0c0 [b1] [w2]

Preset C B A
 0 0 0 0
 1 0 0 1
 2 0 1 0
 3 0 1 1
 4 1 0 0
 5 1 0 1
 6 1 1 0
 7 1 1 1

Bit 3 - Forward Enable (TP: FClamp)
Bit 4 - Reverse Enable (TP: RClamp)
Bit 5 - Analog Override (TP: Overide)
Bit 6 - Preset Select Line A (TP: PreSelA)
Bit 7 - Preset Select Line B (TP: PreSelB)
Bit 8 - Preset Select Line C (TP: PreSelC)

Write 0c1 [b1] [w2] 01, 03, 06

Digital Output Configuration Register
Determines which flag is (or flags are) mon-
itored on the specified digital output. I f no
bits are set for an input, it is unassigned.

[b1] - Output Number
0 - Output1
1 - Output2
2 - Output3
3 - Output4

[w2] - Flag Number
Bit 0 - In-Position (TP: InPos)
Bit 1 - Within Position Window (TP: PosWin)
Bit 2 - Zero Speed (TP: 0 Speed)

Read 0c2 [b1] [w2]

Bit 3 - Within Speed Window (TP: SpdWin)
Bit 4 - Positive ILimit (TP: +ILimit)
Bit 5 - Negative ILimit (TP: -ILimit)
Bit 6 - At Speed (TP: AtSpeed)
Bit 7 - Drive Enabled (TP: DrvEnab)
Bit 8 - DC Bus Charged (TP: BusChg)
Bit 9 - Disabling Fault

Write 0c3 [b1] [w2] 01, 03, 06

Override Digital Output
Overrides the digital output control to allow
the user to write the output bits directly.

[b1] - State
0 - Normal

- Read 0c4 - [b1]

1 - Override Write 0c5 [b1] - 01

Digital Output Write Mask
Contains the bit pattern to write to the digi-
tal outputs when in override control.

[w1] - States
Bit 0 - READY Output State
Bit 1 - BRAKE Output State
Bit 2 - OUTPUT1 Output State

- Read 0c6 - [w1]

Bit 3 - OUTPUT2 Output State
Bit 4 - OUTPUT3 Output State
Bit 5 - OUTPUT4 Output State

Write 0c7 [w1] - 01

BRAKE Active Delay
The time delay between disabling the drive,
and activating the BRAKE output. Nega-
tive values indicate the time that the
BRAKE is active before disabling the drive.

[s1] - Delay
-32767..32767 (ε: 1)

(8001..7fff)

millisec-
onds

(× 0001)

Read

Write

0c8

0c9

-

[s1]

[s1]

- 03, 04

BRAKE Inactive Delay
The time delay between enabling the drive
and deactivating the BRAKE output. Neg-
ative values indicate the time that the
BRAKE is inactive before enabling the
drive.

[s1] - Delay
-32767..32767 (ε: 1)

millisec-
onds

Read 0ca - [s1]

(8001..7fff) (× 0001) Write 0cb [s1] - 03, 04
 A-11

Analog I/O Commands

Parameter (Analog I/O Com-
mands)

Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

COMMAND Velocity Offset
The offset applied to the COM-
MAND analog input when being
used for velocity command.

[s1] - Offset
-10000..10000 (ε: 1)

millivolts Read 0cc - [s1]

(d8f0..2710) (× 0001) Write 0cd [s1] - 03, 04

COMMAND Velocity Scale
The scale applied to the COM-
MAND analog input when being
used for velocity command.

[s1] - Scale
-32767..32767 (ε: 1)

RPM / Volt Read 0ce - [s1]

(8001..7fff) (× 0001) Write 0cf [s1] - 03, 04

COMMAND Torque Offset
The offset applied to the COM-
MAND analog input when being
used for torque command.

[s1] - Offset
-10000..10000 (ε: 1)

millivolts Read 0d0 - [s1]

(d8f0..2710) (× 0001) Write 0d1 [s1] - 03, 04

COMMAND Torque Scale
The scale applied to the COM-
MAND analog input when being
used for torque command.

[s1] - Scale
-127.996..127.996 (ε: 3.91e-3)

Amps / Volt Read 0d2 - [s1]

(8001..7fff) (× 0100) Write 0d3 [s1] - 03, 04

Analog Output Configuration
Register
Determines which signal is moni-
tored on the specified analog output.

[b1] - Output Number
0 - Output1
1 - Output2

[b2] - Signal Number
0 - Current Command (TP: I Cmd)
1 - Current Average Command (TP: Avg I)
2 - Current Positive Peak (TP: +IPeak)
3 - Current Negative Peak (TP: -IPeak)
4 - Positive ILimit (TP: +ILimit)
5 - Negative ILimit (TP: -ILimit)
6 - Motor Velocity (TP: MtrVel)
7 - Velocity Command (TP: VelCmd)
8 - Velocity Error (TP: VelErr)
9 - Motor Position (TP: MtrPos)
10 - Position Command Slewed (TP: PosCmd)

Read 0d4 [b1] [b2]

11 - Position Error (TP: PosErr)
12 - Position Peak Positive Error (TP: +PosEPk)
13 - Position Peak Negative Error (TP: -PosEPk)
20 - Master Position (TP: MstrPos)
21 - Position Loop Output (TP: [not avail])
22 - Velocity Loop Output (TP: [not avail])
23 - Filter Output (TP: [not avail])
24 - Notch Output (TP: [not avail])
25 - R Phase Current (TP: [not avail])
26 - T Phase Current (TP: [not avail])
27 - Torque Current (TP: [not avail])
28 - Field Current (TP: [not avail])
29 - Torque Voltage (TP: [not avail])
30 - Field Voltage (TP: [not avail])
31 - Scaled A/D Command Value (TP: [not avail])
32 - Bus Voltage (TP: [not avail])

Write 0d5 [b1] [b2] 01, 03

Analog Offset
The offset applied to the specified
Analog output.

[b1] - Output Number
0 - Output1
1 - Output2

Read 0d6 [b1] [s2]

[s2] - Offset
-32767..32767 (ε: 1)
(8001..7fff)

millivolts

(× 0001)

Write 0d7 [b1] [s2] - 01, 03, 04
 A-12

Analog I/O Commands (Continued)

Parameter (Analog I/O Com-
mands)

Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Analog Scale
The scale applied to the specified
Analog output.

[b1] - Output Number
0 - Output1
1 - Output2

Drive Inter-
nal Units

Read 0d8 [b1] [s2]

[s2] - Scale
-32767..32767 (ε: 1)
(8001..7fff)

(Dependent
on selected
signal)

Write 0d9 [b1] [s2] - 01, 03, 04

Override Analog Outputs

Overrides the analog output control
to write the outputs directly.

[b1] - State

0 - Normal

1 - Override

 - Read 0da - [b1]

Write 0db [b1] - 01

Analog Output Write Value
Contains the value to write to the
analog outputs when in override
cotrol

[b1] - Output Number
0 - Output1
1 - Output2

 - Read 0dc [b1] [s2]

[s2] - Value
-10000..10000 (ε: 1)
(d8f00.2710)

millivolts

(x 0001)

Write 0dd [b1] [s2] - 01
 A-13

Serial Port Commands

Parameter Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Serial Port Baud Rate
The drive’s serial port baud rate. If the baud
rate is changed, it will not take effect until
the drive is reset.

[b1] - Rate
0 - 1200 (TP: 1200)
1 - 2400 (TP: 2400)

- Read 0de - [b1]

2 - 4800 (TP: 4800)
3 - 9600 (TP: 9600)
4 - 19200 (TP: 19200)

Write 0df [b1] - 01, 03

Serial Port Frame Format
The drive’s serial port baud rate. If the baud
rate is changed, it will not take effect until
the drive is reset.

[b1] - Frame
0 - 7 data bits, even parity, 1 stop bit (TP:
7D1SEP)
1 - 7 data bits, odd parity, 1 stop bit (TP:
7D1SOP)

- Read 0e0 - [b1]

2 - 8 data bits, no parity, 1 stop bit (TP:
8D1SNP)
3 - 8 data bits, even parity, 1 stop bit (TP:
8D1SEP)
4 - 8 data bits, odd parity, 1 stop bit (TP:
8D1SOP)

Write 0e1 [b1] - 01, 03

Software Drive ID
The ID used for drive addressing when the
rotary DIP switch is set to position “F”.

[b1] - ID
0..255

- Read 0e2 - [b1]

(00..ff) Write 0e3 [b1] - 03
 A-14

Operating Mode Commands

Parameter (Operating Mode Commands) Range of Data Values Units Command Command
Data

Response
Data

Excep-
tion
Responses

Encoder Output Configuration Register
The divisor for the motor encoder quadra-
ture output.

[b1] - Divisor
0 - Divide by 1 (TP: ÷ by 1)
1 - Divide by 2 (TP: ÷ by 2)

- Read 0f0 - [b1]

2 - Divide by 4 (TP: ÷ by 4)
3 - Divide by 8 (TP: ÷ by 8)

Write 0f1 [b1] - 01, 03

Command Source
The signal used for the drive’s command
source.

[b1] - Source
0 - Analog COMMAND Input (TP: Analog)
1 - Presets (TP: Presets)

Read 0f2 - [b1]

2 - Master Encoder (TP: AuxEnc)
3 - Step/Direction (TP: StepDir)
4 - Step+/Step- (TP: Step+/-)

Write 0f3 [b1] 01, 03, 06

Drive Mode
The flag which determines if the velocity
control loop is active.

[b1] - Mode
0 - Velocity (TP: Velocity)

Read 0f4 - [b1]

1 - Torque (TP: Torque) Write 0f5 [b1] 01, 03, 06

Velocity Preset
The command velocity levels used when the
drive is configured with Presets as the Com-
mand Source, and Velocity as the drive
mode.

[b1] - Preset
0..7
(00..07)

[L2] - Velocity

-

RPM

Read 0f6 [b1] [L2]

-32767.99998..32767.99998 (ε: 1.53e-5)
(80000001..7fffffff) (×

00010000)

Write 0f7 [b1] [L2] - 01, 03, 04

Torque Preset
The command torque levels used when the
drive is configured with Presets as the Com-
mand Source, and Torque as the drive mode.

[b1] - Preset
0..7
(00..07)

[s2] - Torque

-

Amps

Read 0f8 [b1] [s2]

-255.992..255.992 (ε: 7.81e-3)
(8001..7fff) (× 0080)

Write 0f9 [b1] [s2] - 01, 03, 04

Analog Input Acceleration Limit
The acceleration value used when the ana-
log command input changes while the drive
is in velocity mode.

[d1] - Rate
0..2147483647 (ε: 1)

RPM/sec Read 0fa - [w1]

(00000000..7fffffff) (×
00000001)

Write 0fb [w1] - 03, 05

Analog Input Deceleration Limit
The deceleration value used when the ana-
log command input changes while the drive
is in velocity mode.

[d1] - Rate
0..2147483647 (ε: 1)

RPM/sec Read 0fc - [d1]

(00000000..7fffffff) (×
00000001)

Write 0fd [d1] - 03, 05

Preset Input Acceleration Limit
The acceleration value used when changing
between velocity presets. This limit is only
used while the drive is in velocity mode and
the Command Source is set to Preset input.

[d1] - Rate
0..2147483647 (ε: 1)

RPM/sec Read 0fe - [d1]

(00000000..7fffffff) (×
00000001)

Write 0ff [d1] - 03, 05

Preset Input Deceleration Limit
The deceleration value used when changing
between velocity presets. This limit is only
used while the drive is in velocity mode and
the Command Source is set to Preset input.

[d1] - Rate
0..2147483647 (ε: 1)

RPM/sec Read 100 - [d1]

 (00000000..7fffffff) (×
00000001)

Write 101 [d1] - 03, 05

Tuning Direction Flag

Sets or returns the flag which indicates the
direction the motor rotates during tuning.

[b1] - Flag

00 - Bi-directional

Read 1A0 - [b1]

01 - Forward

02 - Reverse

Write 1A1 [b1] - 01, 03, 06
 A-15

Operating Mode Commands (Continued)

Parameter (Operating Mode Commands) Range of Data Values Units Command Command
Data

Response
Data

Excep-
tion
Responses

Analog Input Acceleration Limits Enable

Sets or returns the flag which indicates that
acceleration limits are enabled. This flag is
only used while the drive is in velocity
mode and the Command Source is set to
analog COMMAND input.

[b1] - Flag

00 - Disabled

01 - Enabled

Read 1A2 - [b1]

Write 1A3 [b1] - 01,03

Preset Acceleration Limits Enable

Sets or returns the flag which indicates that
acceleration limits are enabled. This flag is
only used while the drive is in velocity
mode and the Command Source is set to
Preset input.

[b1] - Flag

00 - Disabled

01 - Enabled

Read 1A4 - [b1]

Write 1A5 [b1] - 01, 03

Change Direction Flag

Sets or returns the flag which indicates if the
normal direction has been changed
(reversed).

[b1] - Flag

00 - Normal

01 - Reversed

Read 1AC - [b1]

Write 1AD [b1] - 01, 03, 06
 A-16

Alternative Operating Mode Commands

Parameter (Operating Mode Commands) Range of Data Values Units Command Command
Data

Response
Data

Excep-
tion
Responses

Operating Mode
The operating mode for the drive. Usually,
the drive is in Normal mode. The mode can
be changed for tuning, encoder alignment,
and encoder resolution detection.

[b1] - Mode
0 - Normal (TP: Normal)
1 - AutoTuning (TP: Auto)

Read 102 - [b1]

2 - Manual Tuning (Velocity Step) (TP: Man
Vel)
3 - Manual Tuning (Position Step) (TP: Man
Pos)
4 - Encoder Alignment (TP: Align)
5 - Encoder Resolution Detection (TP: [not
avail])

Write 103 [b1] 01, 06

Operating Mode Status
Contains status bits for above alternative
operating modes.

[w1] - Status
Bit 0 - AutoTuning Complete
Bit 1 - Encoder Alignment Complete
Bit 2 - Motor Index Detected

Read 104 - [w1]

Bit 3 - Master Index Detected
Bit 4 - Motor Encoder Resolution Determined
Bit 5 - Master Encoder Resolution Determined

Bit 6 - AutoTune Failed

Write - - -

Autotune Maximum Current
The maximum current used in the autotun-
ing algorithm.

[w1] - Current
0.0078..255.992 (ε: 7.81e-3)

Amps Read 105 - [w1]

(0001..7fff) (× 0080) Write 106 [w1] - 03, 04, 05

Autotune Maximum Distance
The maximum distance the motor can travel
in the autotuning algorithm.

[d1] - Distance
1..2147483647 (ε: 1)

Counts Read 107 - [d1]

(00000001..7fffffff) (× 0001) Write 108 [d1] - 03, 04, 05

Manual Tune Position Period
The period of the square wave used in the
position step manual tuning mode.

[w1] - Period
1..32767 (ε: 1)

millisec-
onds

Read 109 - [w1]

(0001..7fff) (× 0001) Write 10a [w1] - 03, 04, 05

Manual Tune Position Step
The amplitude of the square wave used in
the position step manual tuning mode.

[w1] - Amplitude
1..32767 (ε: 1)

Counts Read 10b - [w1]

(0001..7fff) (× 0001) Write 10c [w1] - 03, 04, 05

Manual Tune Velocity Period
The period of the square wave used in the
velocity step manual tuning mode.

[w1] - Period
1..32767 (ε: 1)

millisec-
onds

Read 10d - [w1]

(0001..7fff) (× 0001) Write 10e [w1] - 03, 04, 05

Manual Tune Velocity Step
The amplitude of the square wave used in
the velocity step manual tuning mode.

[d1] - Amplitude
0.000015..32767.99998 (ε: 1.53e-5)

RPM Read 10f - [d1]

(00000001..7fffffff) (×
00010000)

Write 110 [d1] - 03, 04, 05

Encoder Alignment Offset
The offset of the motor encoder index pulse
relative to the rotor phase location. This
value is determined automatically in the
Encoder Alignment Operating Mode and
continually updates while in that mode. It
can also be set when not in the Encoder

[s1] - Offset
-180..179 (ε: 1)
(ff4c..00b3)

electrical
degrees

(× 0001)

Read 111 - [s1]

Alignment Operating Mode by using the
write command. (Note: The value in this
parameter does not affect the commutation.
It has to be set by using the Remove Align-
ment Offset command)

Write 112 [s1] - 01
 A-17

Alternative Operating Mode Commands (Continued)

Parameter (Alternative Operating Mode
Com)

Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Save Alignment Offset

Corrects the encoder alignment by copying
the Encoder Alignment Offset value into an
encoder alignment compensation parameter.
The alignment compensation parameter
value is used in correcting the motor
encoder input for commutation.

[No Data] (TP: ↑ to Rmv) Read - - -

Write 113 - - 03

Motor Encoder Resolution
The measured motor encoder counts
between index pulses when in the

[w1] - Resolution
0..32767 (ε: 1)

counts Read 114 - [w1]

Encoder Resolution Detection Operating
Mode.

(0000..7fff) (× 0001) Write - - -

Master Encoder Resolution
The measured master encoder counts
between index pulses when in the Encoder
Resolution Detection Operating Mode.

[w1] - Resolution
0..32767 (ε: 1)

counts Read 115 - [w1]

(0000..7fff) (× 0001) Write - - -

Motor Index Position
The last recorded position of the motor
encoder index.

[w1] - Position
0..65535 (ε: 1)

counts Read 116 - [w1]

(0000..ffff) (× 0001) Write - - -

Master Index Position
The last recorded position of the master
encoder index.

[w1] - Position
0..65535 (ε: 1)

master
counts

Read 117 - [w1]

(0000..ffff) (× 0001) Write - - -
 A-18

Runtime Command and Control Commands

Parameter Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Reset Drive
Resets the drive hardware and reboots the
drive’s processors.

[No Data] (TP: ↑ to Reset) - Read - - -

Write 120 - - 06

Software Drive Enable/Disable
If set to Enable Drive and the ENABLE
input is active, the drive is enabled. If set to
Disable Drive or the ENABLE input is not
active, the drive is disabled.

[b1] - State
0 - Disable Drive (TP: Disable)

- Read 121 - [b1]

1 - Enable Drive (TP: Enable) Write 122 [b1] - 01

Torque Setpoint
The torque command value used when the
Drive Mode is Torque, and the Setpoint
Control is Enabled.

[s1] - Torque
-255.992..255.992 (ε: 7.81e-3)

Amps Read 123 - [s1]

(8001..7fff) (× 0080) Write 124 [s1] - 04

Velocity Setpoint
The velocity command value used when the
Drive Mode is Velocity, and the Setpoint
Control is Enabled.

[L1] - Velocity
-32767.99998..32767.99998 (ε: 1.53e-5)

RPM Read 125 - [L1]

(80000001..7fffffff) (×
00010000)

Write 126 [L1] - 04

Setpoint Acceleration
The acceleration value used when the
Velocity Setpoint changes, and the Setpoint
Control is Enabled.

[d1] - Rate
0..2147483647 (ε: 1)

RPM/sec Read 127 - [d1]

(00000000..7fffffff) (×
00000001)

Write 128 [d1] - 03, 05

Setpoint Control
Enables or disables the setpoint control.

[b1] - State
0 - Disable Setpoint Control (TP: Normal)

- Read 129 - [b1]

1 - Enable Setpoint Control (TP: CtlPanl) Write 12a [b1] - 01

Reset Faults
Resets the fault detection circuitry.

[No Data] (TP: ↑ toReset) Read - - -

Write 12b - -
 A-19

Runtime Status Commands

Parameter (Runtime Status Commands) Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Packed Drive Status
The status of various flags in the drive. This
status is repeatedly updated.

[d1] - Status
Bit 0 - In-Position
Bit 1 - Within Position Window
Bit 2 - Zero Speed
Bit 3 - Within Speed Window
Bit 4 - Positive ILimit
Bit 5 - Negative ILimit
Bit 6 - At Speed
Bit 7 - Drive Enabled
Bit 8 - DC Bus Charged
Bit 9 - Fault Disable
Bit 10 - Fault Decel/Disable
Bit 11 - Latched Fault Warning
Bit 12 - Unlatched Fault Warning

- Read 134 - [d1]

Bit 14 - Brake Active
Bit 15 - Drive Ready
Bit 16 - Torque Mode
Bit 17- Integrator Inhibit
Bit 18 - Follower Enable
Bit 19 - Forward Clamp
Bit 20 - Reverse Clamp
Bit 21 - Analog Override
Bit 22 - Preset Select Line A
Bit 23 - Preset Select Line B
Bit 24 - Preset Select Line C
Bit 30 - Reset Faults
Bit 31 - Enable Active

Write - - -

Fault Status
Identifies the present state of the possible
fault conditions.

If a specific Fault Group Mask Is set to
unlatched warning, the appropriate bit is not
latched in this register and may clear when
the condition is removed.

If the specific Fault Group Mask is not set to
unlatched warning, the appropriate bit is
latched in this register and will remain set
until the drive is reset.

[d1] - Status
Bit 0 - +24VDC Fuse Blown
Bit 1 - +5VDC Fuse Blown
Bit 2 - Encoder Power Fuse Blown
Bit 3 - Motor Overtemperature
Bit 4 - IPM Fault (Overtemperature/Overcur-
rent/Short Circuit)
Bit 5 - Channel IM Line Break
Bit 6 - Channel BM Line Break
Bit 7 - Channel AM Line Break
Bit 8 - Bus Undervoltage
Bit 9 - Bus Overvoltage
Bit 10 - Illegal Hall State
Bit 11 - Sub processor Unused Interrupt

- Read 135 - [d1]

Bit 12 - Main processor Unused Interrupt
Bit 16 - Excessive Average Current
Bit 17 - Overspeed
Bit 18 - Excess Following Error
Bit 19 - Motor Encoder State Error
Bit 20 - Master Encoder State Error
Bit 21 - Motor Thermal Protection
Bit 22 - IPM Thermal Protection
Bit 27 - Enabled with No Motor Selected
Bit 28 - Motor Selection not in Table
Bit 29 - Personality Write Error
Bit 30 - Service Write Error
Bit 31 - CPU Communications Error

Write - - -
 A-20

Runtime Status Commands (Continued)

Parameter (Runtime Status Commands) Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Run State
Identifies the present state of the drive and
possible fault conditions. The reported
faults are only ones with Fault Mask values
set to Disable Drive or Decel, Then Disable
Drive.

This command is added to support Touch-
Pad background status polling operation.
This implies that other products which use
the touchpad will need to adhere to the fol-
lowing format.

The state values 1..127 are reserved for fault
indications. These values will cause the
fault to be shown on the touchpad.

[c1] - State
-01 - Drive Enabled
00 - Drive Ready
01 - +24VDC Fuse Blown
02 - +5VDC Fuse Blown
03 - Encoder Power Fuse Blown
04 - Motor Overtemperature
05 - IPM Fault (Overtemperature/Overcurrent/
Short Circuit)
06 - Channel IM Line Break
07 - Channel BM Line Break
08 - Channel AM Line Break
09 - Bus Undervoltage
10 - Bus Overvoltage
11 - Illegal Hall State

- Read 136 - [c1]

The values 0..-128 are reserved for non-
fault state information which is to be indi-
cated, but not shown as a fault by the touch-
pad.

12 - Sub processor Unused Interrupt
13 - Main processor Unused Interrupt
17 - Excessive Average Current
18 - Overspeed
19 - Excess Following Error
20 - Motor Encoder State Error
21 - Master Encoder State Error
22 - Motor Thermal Protection
23 - IPM Thermal Protection
28 - Enabled with No Motor Selected
29 - Motor Selection not in Table
30 - Personality Write Error
31 - Service Write Error
32 - CPU Communications Error

Write - - -

Digital Input States
Identifies the present state of the digital
inputs.

[w1] - States
Bit 0 - RESET FAULTS Input State
Bit 1 - ENABLE Input State
Bit 2 - INPUT1 Input State

- Read 137 - [w1]

Bit 3 - INPUT2 Input State
Bit 4 - INPUT3 Input State
Bit 5 - INPUT4 Input State

Write - - -

Digital Output States
Identifies the present state of the digital out-
puts.

[w1] - States
Bit 0 - READY Output State
Bit 1 - BRAKE Output State
Bit 2 - OUTPUT1 Output State

- Read 138 - [w1]

Bit 3 - OUTPUT2 Output State
Bit 4 - OUTPUT3 Output State
Bit 5 - OUTPUT4 Output State

Write - - - -
 A-21

Runtime Data Commands

Parameter (Runtime Data Commands) Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Reset Peaks
Resets the peak detection firmware for posi-
tive position error peak, negative position
error peak, positive torque current, and neg-
ative current.

[No Data] (TP: ↑ toReset) - Read - - -

Write 140 - -

COMMAND Input
The command input value before scaling
and offsetting.

[s1] - Value
-10000.. 10000 (ε: 1)

millivolts Read 141 - [s1]

(d8f0..2710) (× 0001) Write - - -

Positive ILimit Input
The +ILimit input value.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 142 - [s1]

(8001..7fff) (× 0080) Write - - -

Negative ILimit Input
The -ILimit input value.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 143 - [s1]

(8001..7fff) (× 0080) Write - - -

Analog Output
The analog output values.

[b1] - Number
0 - Output 1
1 - Output 2

Read 144 [b1] [s2]

[s2] - Value
-10000..10000 (ε: 1)
(d8f0..2710)

millivolts

(× 0001)

Write - - -

Motor Position
The value of the motor encoder register.

[L1] - Value
-2147483647..2147483647 (ε: 1)

Counts Read 145 - [L1]

(80000001..7fffffff) (×
00000001)

Write - - -

Master Position
The value of the master input register.

[L1] - Value
-2147483647..2147483647 (ε: 1)

Master
Counts

Read 146 - [L1]

(80000001..7fffffff) (×
00000001)

Write - - -

Position Command
The position command input to the position
loop, which is the master position, after
gearing and slew rate limiting.

[L1] - Value
-2147483647..2147483647 (ε: 1)

Counts Read 147 - [L1]

(80000001..7fffffff) (×
00000001)

Write - - -

Position Error
The difference between the Position Com-
mand and the Motor Position.

[L1] - Value
-2147483647..2147483647 (ε: 1)

Counts Read 148 - [L1]

(80000001..7fffffff) (×
00000001)

Write - - -

Position Positive Peak Error
The maximum amount the Position Com-
mand lead the Motor Position.

[L1] - Value
0..2147483647 (ε: 1)

Counts Read 149 - [L1]

(00000000..7fffffff) (×
00000001)

Write - - -

Position Negative Peak Error
The maximum amount the Position Com-
mand lagged the Motor Position.

[L1] - Value
-2147483647..0 (ε: 1)

Counts Read 14a - [L1]

(80000001..00000000) (×
00000001)

Write - - -

Velocity Command
The command value to the velocity loop.

[L1] - Value
-32767.99998..32767.99998 (ε: 1.53e-5)

RPM Read 14b - [L1]

(80000001..7fffffff) (×
00010000)

Write - - -

Motor Velocity
The feedback value to the velocity loop.

[L1] - Value
-32767.99998..32767.99998 (ε: 1.53e-5)

RPM Read 14c - [L1]

(80000001..7fffffff) (×
00010000)

Write - - -
 A-22

Runtime Data Commands (Continued)

Parameter (Runtime Data Commands) Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Velocity Error
The difference between Velocity Command
and Motor Velocity.

[L1] - Value
-32767.99998..32767.99998 (ε: 1.53e-5)

RPM Read 14d - [L1]

(80000001..7fffffff) (×
00010000)

Write - -

Current Command
The command value to the current loop.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 14e - [s1]

(8001..7fff) (× 0080) Write - - -

Average Current
The average value of the Current Com-
mand(?).

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 14f - [s1]

(8001..7fff) (× 0080) Write - - -

Current Positive Peak
The largest positive value of the Current
Command(?).

[s1] - Value
0.0..255.992 (ε: 7.81e-3)

Amps Read 150 - [s1]

(0000..7fff) (× 0080) Write - - -

Current Negative Peak
The largest negative value of the Current
Command(?).

[s1] - Value
-255.992..0.0 (ε: 7.81e-3)

Amps Read 151 - [s1]

(8001..0000) (× 0080) Write - - -

Bus Voltage
The measured voltage of the DC bus.

[w1] - Value
0..32767 (ε: 1)

Volts Read 152 - [w1]

(0000..7fff) (× 0001) Write - - -

Field Current
The calculated field current for induction
motors.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 153 - [s1]

(8001..7fff) (× 0080) Write - - -

Torque Current
The calculated torque current.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 154 - [s1]

(8001..7fff) (× 0080) Write - - -

R-Phase Current
The calculated R-Phase current.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 155 - [s1]

(8001..7fff) (× 0080) Write - - -

T-Phase Current
The calculated T-Phase current.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 156 - [s1]

(8001..7fff) (× 0080) Write - - -

Field Voltage Command
The field voltage command for induction
motors.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Volts Read 157 - [s1]

(8001..7fff) (× 0080) Write - - -

Torque Voltage Command
The torque voltage command.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Volts Read 158 - [s1]

(8001..7fff) (× 0080) Write - - -

Average Motor Current
The average current seen by the motor.

[s1] - Value
0.0..255.992 (ε: 7.81e-3)

Amps Read 159 - [s1]

(0000..7fff) (× 0080) Write - - -
 A-23

Runtime Data Collection Commands

Parameter (Runtime Data Collection
Commands)

Range of Data Values Units Command Command
Data

Response
Data

Exception
Responses

Channel 1 Source
The signal values returned in channel 1 of
Collected Data.

[b1] - Signal Number
0 - Current Command
1 - Current Average Command
2 - Current Positive Peak
3 - Current Negative Peak
4 - Positive ILimit
5 - Negative ILimit
6 - Motor Velocity
7 - Velocity Command
8 - Velocity Error
9 - Motor Position
10 - Position Command Slewed
11 - Position Error
12 - Position Peak Positive Error
13 - Position Peak Negative Error

Read 160 - [b1]

20 - Master Position
21 - Position Loop Output
22 - Velocity Loop Output
23 - Filter Output
24 - Notch Output
25 - R Phase Current
26 - T Phase Current
27 - Torque Current
28 - Field Current
29 - Torque Voltage
30 - Field Voltage
31 - Scaled A/D Command Value
32 - Bus Voltage

Write 161 [b1] 01

Channel 2 Source
The signal values returned in channel 2 of
Collected Data.

[b1] - Signal Number
See Channel 1 Source for selections

Read 162 - [b1]

Write 163 [b1] 01

Trigger Source
The signal used to trigger the data collec-
tion depending on the Trigger Mode.

[b1] - Signal Number
See Channel 1 Source for selections

Read 164 - [b1]

Write 165 [b1] 01

Timebase
The time between samples returned in
Collected Data.

[w1] - Value
0.0..13107.0 (ε: 0.2)

millisec-
onds

Read 166 - [w1]

(0000..ffff) (× 0005) Write 167 [w1] -

Trigger Mode
Determines how data is collected when
Arm Triggering command is sent.

[b1] - Mode
0 - Trigger immediately

Read 168 - [b1]

1 - Trigger on positive transition of trigger
source
2 - Trigger on negative transition of trigger
source.

Write 169 [b1] - 01

Trigger Threshold
The value which must be crossed on the
Trigger Source when the Trigger Mode is
set to trigger in a transition.

[s1] - Value Drive Inter-
nal Units

Read 16a - [s1]

(8001..7fff) (Dependent
on selected
trigger
source)

Write 16b [s1] - 04

Arm Triggering
Arms the data collection to begin collecting
data when the next trigger event occurs.

[No Data] Read - - -

Write 16c - -

Trigger Status
The status of the data collection process.

[b1] - Status
0 - Waiting for Trigger to Occur

Read 16d - [b1]

1 - Triggered, Collecting Data
2 - Data Collection Complete

Write - - -
 A-24

Runtime Data Collection Commands (Continued)

Collected Data
The data collected from the last trigger
event.

[b1] - Group
0 - Channel 1, Samples 1 through 16
1 - Channel 1, Samples 17 through 32
2 - Channel 1, Samples 33 through 48
3 - Channel 1, Samples 49 through 64
4 - Channel 1, Samples 65 through 80
5 - Channel 1, Samples 81 through 96
6 - Channel 1, Samples 97 through 112
7 - Channel 1, Samples 113 through 128

Read 16e [b1] [s2].. [s17]

8 - Channel 2, Samples 1 through 16
9 - Channel 2, Samples 17 through 32
a - Channel 2, Samples 33 through 48
b - Channel 2, Samples 49 through 64
c - Channel 2, Samples 65 through 80
d - Channel 2, Samples 81 through 96
e - Channel 2, Samples 97 through 112
f - Channel 2, Samples 113 through 128

[s2]..[s17]
Requested data

Error Code

4 - Data Accepted After Limiting to Minimum.

Write - - - 04
 A-25

NOTES
 A-26

APPENDIX B Press Transfer ASFBs

Introduction

This set of Application Specific Function Blocks (ASFBs) is designed to generate
a profile for a slave axis in a press application. As the master axis moves, the slave
axis moves in, dwells, and moves out in one master rotation (i.e., 360 degrees). A
variation that could be supported as well would be for the slave axis to move in
and dwell for each master rotation and that motion is repeated several times before
the slave moves out to its initial position.

This profile can have different shapes. It can be triangular (the slave accelerates
and decelerates without achieving a constant velocity) or trapezoidal (the slave
accelerates to a maximum velocity for a portion of its motion before it deceler-
ates). The acceleration and deceleration can also be configured for an ‘scurve’
where the corners of the motion transitions are smoothed.

To obtain a slave axis profile for two slave moves for one master axis rotation, the
M_PRF2MV function block is called from the main application ladder. This func-
tion block has a number of inputs to direct the profile generation:

• RR - an array of structures configured in the format required by the
RATIO_RL function block. This set of functions blocks is designed for a
RATIO_RL application. RATIO_RL usage is detailed in the PiCPro func-
tion block reference guide. This structure has the following format:

• MAST_DIS - the distance of the master motion in this segment (in FU).

• SLAV_DIS - the distance of the slave motion in this segment (in FU).

• K1 - the K1 coefficient in the polynomial equation for RATIO_RL.

• K2 - the K2 coefficient in the polynomial equation for RATIO_RL.

• K3 - the K3 coefficient in the polynomial equation for RATIO_RL.

• SPARE - reserved for future use.

• FLAGS - indicate the execution of the polynomial function of RATIO_RL.

This RR input to the function block must be defined as an array of struc-
tures in the calling function (which is usually the main application ladder).
The actual size required for this array will depend upon the type of profile
required; an scurve profile will have more segments than a simpler con-
stant acceleration profile. The number of segments within the profile will
be as follows for each move: acceleration portion (1 for no scurve, 3 with
scurve), constant velocity portion (0 or triangular, 1 for trapezoidal), decel-
eration portion (1 for no scurve, 3 with scurve), and dwell portion (1 if a
dwell is required). For example, for the application of M_PRF2MV, the
size of the RR array must be at least 17 to encompass the various combi-
nations because 16 segments will be required.
B-1

The sizing of this array is very important. If the array is sized too small,
run-time errors within the application are likely to occur (because other
variables in PiC memory will be written during the calculations since the
internal function blocks will assume enough memory has been allocated by
the main application ladder).

• MOV1 and MOV2 - an input structure describes each of the two slave
moves required. This structure provides the following information for each
move:

• STRT_ANG - the angle of the master axis at the start of the slave’s move (in
degrees).

• STOP_ANG - the angle of the master axis at the end of the slave’s move (in
degrees).

• SLV_MOVE - the distance of the slave move (specified in input units that
can be scaled).

• MAX_V - the maximum velocity that can be allowed for this slave move
(specified as a ratio of slave FU to master FU).

• PCT_J - the percent of maximum possible jerk to be used for this slave
move (in a range of 0.0 to 100.0). A value of zero means no jerk, and there-
fore, no scurve.

• PCT_A - the percent of maximum possible acceleration to be used for this
slave move (in a range of 0.0 to 100.0).

• TRI_ONLY - a boolean flag to indicate a triangular profile is desired.

• SCURVE - a boolean flag to indicate the smoothed scurve accel/decel is
desired.

• MDST - the number of master feedback units in one cycle or rotation.

• MSCL - the number of master feedback units per input unit in the input
MOVx structure (i.e., the start and stop angles).

• SSCL - the number of slave feedback units per input unit in the input
MOVx structure (i.e., the slave distance moved between two master
angles).

• VLIM - the maximum allowable velocity for this master/slave application
(specified as a ratio of slave FU to master FU). This limit is one that would
reflect the inherent machine limitations. The individual move structures
specify the maximum velocity that is desired for that specific move; that
velocity for a move cannot exceed this VLIM value. This VLIM value
would be one that is entered once for the application; the velocities for the
individual moves could be specified via the user interface.
B-2

The input move structure can indicate the intent of a triangular slave move
(TRI_ONLY). However, if the other parameters result in a trapezoidal profile
achieving the required slave motion, this function block will generate the appropri-
ate trapezoidal profile and it will set a boolean output that indicates this change in
behavior. If the main ladder must get a triangular profile then it can take the appro-
priate actions, such as providing the user interface with a signal that the move
parameters must be specified again. If the main ladder will tolerate either triangu-
lar or trapezoidal profile but it prefers the triangular profile then this is supported.

If the combination of parameters prevents the generation of a profile then the func-
tion block returns an appropriate error indicator. The main ladder must make sure
that no errors were detected before trying to apply the generated profile.

The input move structure can direct the profile shape by specifying the percent of
maximum acceleration (PCT_A). 100% of maximum acceleration would approxi-
mate a step function - immediately get to the maximum velocity for the slave’s
move (in most cases an unacceptable response for the slave). 0% of maximum
acceleration would obtain the minimum slope for the slave’s acceleration and still
achieve the required slave motion. Values within this range obtain an intermediate
behavior.

There is no separate deceleration rate provided as an input, so the deceleration por-
tion of the profile will use the same parameters as the acceleration portion. How-
ever, there is an internal function block to generate the deceleration portion of the
profile so it could be possible (but not supported at this time) for the generated pro-
file to contain different acceleration and deceleration configurations.

The input move structure can indicate the intent of smoothed scurve acceleration
and deceleration portions of the slave profile (SCURVE). This also requires a per-
centage of jerk to be specified (PCT_J). Maximum jerk (100%) would obtain no
scurve behavior because there would be only constant acceleration. Minimum jerk
(0.1%) would obtain the smoothest acceleration portion of the profile with no con-
stant acceleration but with the highest peak acceleration rate.
B-3

This is the set of function blocks whose purpose is to generate a slave profile for a
press application.

• M_PRF2MV - this function block generates a slave axis profile for two
slave moves for one master axis rotation. It will in turn call the
M_PRFERR, M_PROFL and M_PRFDWL function blocks for each of the
two slave axis moves in the profile.

• M_PRF1MV - this function block generates a slave axis profile for one
slave move for one master axis rotation. It will in turn call the
M_PRFERR, M_PROFL and M_PRFDWL function blocks to generate the
profile. The M_PRF1MV function block has the same inputs as
M_PRF2MV except that only one move is handled in the profile rather
than two.

• M_PRFERR - this function block checks the validity of the input move’s
parameters.

• M_PROFL - this function block generates the portion of the profile when
the slave is moving. It will in turn call the M_SETVAJ, M_SC_ACC,
M_CNST_V and M_SC_DEC function blocks.

• M_PRFDWL - this function block generates the portion of the profile
when the master axis is moving but the slave is not. This block is required
because the RATIO_RL profile must account for all the master counts so
that the profile can be repeated (i.e., for each master rotation, the slave per-
forms the same profile). Therefore if the slave is moving only part of the
time (which will occur in many press applications), then a portion of the
profile contains the master’s motion that has no corresponding slave
motion. Also, because the real to integer calculations being performed dur-
ing the generation of the profile might result in rounding, there could be a
few counts of master or slave axis motion that could not be incorporated
into the main part of the profile. Those remaining counts, if any, can be
accounted for during this portion of the profile.

• M_SETVAJ - this function block calculates the acceleration, velocity and
jerk to be used for this move. This function block also determines whether
the move’s parameters can support a triangular profile or whether it must
be a trapezoidal profile.

• M_SC_ACC - this function block adds the acceleration portion of the pro-
file into the main structure (for a RATIO_RL). Depending on the move’s
parameters, the acceleration will be constant acceleration or it will be an
scurve (i.e., smoothed acceleration).

• M_CNST_V - this function block adds the constant velocity portion of the
trapezoidal profile into the main structure (for a RATIO_RL). The constant
velocity portion is the ‘flat top’ of the profile. A triangular profile does not
have a constant velocity portion.
B-4

• M_SC_DEC - this function block adds the deceleration portion of the pro-
file into the main structure (for a RATIO_RL). Depending on the move’s
parameters, the deceleration will be constant deceleration or it will be an
scurve (i.e., smoothed deceleration).

If a specific application requires a different combination of slave moves for one (or
more) master moves, these function blocks are the ‘building blocks’ for that appli-
cation. The M_PRF1MV function block illustrates how to convert a defined move
of a slave axis (i.e., the move structure) into a profile for RATIO_RL. Its contents
can be merged into your application and then modified to concatenate other slave
moves, each with its own definition specified in a move structure, into the single
profile. Note that if a longer profile is to be generated you must make sure that the
array of structures for the profile in the application is adequately sized.

The following flow chart shows the relationship of the function blocks to each
other.

Note: The M_PRF2MV function block contains two each of M_PRFERR, M_PROFL,
and M_PRFDWL. There is one of these function blocks for each of the two moves.

M_PRF2MV
(for two moves)

M_PRFERR
(profile error checks for a move)

M_PROFL
(profile data for a move)

M_PRFDWL
(profile dwell)

M_SC_ACC
(s curve
acceleration)

M_SETVAJ
(set velocity,
acceleration,
and jerk)

M_SC_DEC
(s curve
deceleration)

M_CNST_V
(constant
velocity
move)

M_PRF1MV
(for one move)
B-5

M_PRF2MV
2 slave moves for master USER/M_PROFL

<<INSTANCE NAME>>:M_PRF2MV(EN00 := <<BOOL>>, RR := <<MEM-
ORY AREA>> MOV1 := <<MEMORY AREA>>, MOV2 := <<MEMORY
AREA>>, MDST := <<DINT>>, MSCL := <<REAL>>, SSCL := <<REAL>>,
VLIM := <<REAL>>, OK => <<BOOL>>, ERR1 => <<BYTE>>, TRP1 =>
<<BOOL>>, AMX1 => <<REAL>>, VMX1 => <<REAL>>, ERR2 =>

⁄ NAME ƒø
≥M_PRF2MV ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥RR ERR1√
≥ ≥
¥MOV1 TRP1√
≥ ≥
¥MOV2 AMX1√
≥ ≥
¥MDST VMX1√
≥ ≥
¥MSCL ERR2√
≥ ≥
¥SSCL TRP2√
≥ ≥
¥VLIM AMX2√
≥ ≥
≥ VMX2√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution
(Typically one-shot)

RR (STRUCTURE) - array of structures to be used for
RATIO_RL profile.

MOV1 (STRUCTURE) - structure containing input
data for first move

MOV2 (STRUCTURE) - structure containing input
data for second move

MDST (DINT) - master feedback units/cycle where
cycle is divided into 360 degrees

MSCL (REAL) - master feedback units/input unit,
typically set to 1.0

SSCL (REAL) - Slave feedback units/input unit

VLIM (REAL) - Maximum allowable velocity

Outputs: OK (BOOL) - execution completed without error

ERR1 (BYTE) - error number for first move

TRP1 (BOOL) - move 1 changed to a trapezoid to
achieve move

AMX1 (REAL) - maximum acceleration rate calcu-
lated for move 1

VMX1 (REAL) - maximum velocity rate calculated for
move 1

ERR2 (BYTE) - error number for second move.

TRP2 (BOOL) - move 2 changed to a trapezoid to
achieve move

AMX2 (REAL) - maximum acceleration rate calcu-
lated for move 2

VMX2 (REAL) - maximum velocity rate calculated for
move 2
B-6

<<BYTE>>, TRP2 => <<BOOL>>, AMX2 => <<REAL>>, VMX2 =>
<<REAL>>);

The M_PRF2MV and M_PRF1MV application specific function blocks are used
for applications where there is a cyclic master moving in one direction and the
slave is performing a distance move (or two distance moves) and an optional dwell
during the master cycle. The function blocks take as inputs the distance the slave
should move and over what portion of the master cycle it should move and con-
verts that information into a RATIO_RL profile structure. M_PRF1MV is used if
there is one move (with or without a dwell) during a master cycle. M_PRF2MV is
used if there are two moves (with or without dwell) during a master cycle. The
slave moves can be different directions or the same. The slave moves can be trape-
zoidal or triangular, and the functions allow a move to be smoothed with an “S-
Curve” -like acceleration by input selection.

The information given to the function about the move such as slave distance and
portion of the master cycle to move is converted to an array of structures that is
used as an input to the RATIO_RL function. The structure must be formatted as
shown in Table 2-1 and must have an array size of at least 17 (0..16) because the
function clears out the structure data before it calculates the profile. This structure
is filled in by the function block so it is not necessary for you to enter any data into
it.

Table 2-1. Ratio Real Structure

The function assumes a rotary cyclic master moving in a single direction. The
value at the MDST input indicates the number of master feedback units for the
cycle. This is divided into 360 degrees for a cycle. The master information for the
profile is entered in degrees. The MSCL input is typically set to 1.

Name Data Type Definition
RR STRUCTURE Array of Structures to be used

for profile
.MAST_DIS DINT Master move distance in

feedback units
.SLAV_DIS DINT Slave move distance relative to

Master in feedback units
.K1 LREAL VELOCITY co-efficient for

polynomial
.K2 LREAL ACCELERATION co-efficient

for polynomial (A/2)
.K3 LREAL JERK co-efficient for polyno-

mial (J/6)
.SPARE LREAL Spare
.FLAGS DWORD Move type flags. Bits 2 & 3 = 0

for polynomial
B-7

The slave information for the profile is entered in slave input units. The SSCL
input defines the number of slave feedback units per slave input unit. For example,
if you want to enter slave data in revolutions and there are 8000 feedback units per
revolution, you would enter a value of 8000.0 at the SSCL input and a value of
0.25 for slave distance in the move structure to move one quarter of a rev.

The shape of the slave profile is determined by the input parameters at MOV1 and
MOV2. Each slave move can have a zero-speed dwell after it. The format for the
MOV1 and MOV2 structures is shown in Table 2-2. MOV2 has the same structure
format as MOV1.

The VLIM input to the function block is used as a limit on the master/slave ratio
that is allowed. This value is compared with the individual MAX_V inputs in the
move structures and an error is set if the individual MAX_V inputs exceed VLIM.
The maximum ratio can be multiplied by the speed of the master to find the maxi-
mum velocity of the slave axis. Using master/slave ratio as opposed to velocity is a
better method for applications where the master can run at variable speeds - in this
case if the master is moving slower the slave will do so as well.

Table 2-2. Move Structure

The profile will be calculated as a triangle if possible. If it is not possible to
achieve a triangular profile because of the limit on ratio (MAX_V) then the profile
will become trapezoidal in shape with MAX_V as the limit for master/slave ratio.

Regardless of the value of STRT_ANG, the slave move will be put in the first seg-
ment of the RATIO_RL profile. Therefore, if you want the slave to start its move at
a specific master position, you should use the MSTR input of the RATIO_RL pro-
file.

The acceleration parameter for the move is set to a value between 0 and 100%. 0%
acceleration is the slowest amount and the move will be as close to triangular as
possible. 100% acceleration is the fastest amount and the move will be almost rect-
angular in shape.

 Any profile can be “smoothed” by adjusting the percent jerk. This will not change
the basic shape of the profile, but will change the acceleration and deceleration

Name Data Type Definition
MOV1 STRUCTURE Structure containing move's input data
.STRT_ANG REAL Angle of master axis at start of slave move
.STOP_ANG REAL Angle of master axis at end of slave move
.SLV_MOVE REAL Distance of slave move
.MAX_V REAL Maximum desired velocity of the slave axis
.PCT_J REAL Percent of maximum possible jerk to be used
.PCT_A REAL Percent of maximum possible accel to be used
.TRI_ONLY BOOL Triangular profile desired
.SCURVE BOOL Smoothed scurve acc/dec desired
B-8

portions of the move to resemble an “S-Curve”. The percent jerk parameter deter-
mines how much the acceleration (or deceleration) segment of the move will be
smoothed. A 0% value is the most smoothing, and a 100% value will yield no
smoothing. The maximum velocity of the move is not affected by “smoothing” nor
is the average acceleration. It only affects how the acceleration (and deceleration)
will be applied to obtain this velocity.

The ASFB checks the input data for errors. If an error is detected the profile will
not be generated and the OK output will not be set. ERR1 and ERR2 are byte val-
ues. Each error that can occur is assigned a bit number in the byte. It is possible for
more than one error to be set at a time. The bit assignments for ERR1 and ERR2
are shown in Table 2-3. The function BYT2BOOL is helpful in checking for spe-
cific errors.

Maximum velocity can be limited to allow an automatically adjusting profile
which will be triangular until the maximum velocity is reached. It will then spread
into a trapezoid using the minimum acceleration to achieve the move.

It is also possible to set up each move as a constant accel/decel triangular move or
a trapezoidal move using operator inputs for the desired shape. Acceleration can be
adjusted to change the shape from triangular to nearly rectangular by increasing
the acceleration percent.

For any such profile, the acceleration can be "smoothed" by adjusting the jerk per-
cent. This will not change the basic shape of the profile, but will change the accel-
eration and deceleration portions of the move to resemble an "S-Curve".

The percentage of jerk corresponds inversely to the portion of the Acceleration (or
Deceleration) segment of the move which will be smoothed, until 100% equals no
S-Curve. At minimum jerk, there is no constant accel portion. This will correspond
to the highest acceleration rate. Maximum velocity during a move is not affected
by “smoothing” or jerk, nor is the average acceleration. It only affects how the
acceleration (and deceleration) will be applied to obtain this velocity.

The first portion of the ASFB checks the input data for any detectable errors. The
bit assignments for ERR1 and ERR2 are shown in Table 2-3. The function
BYT2BOOL is helpful in checking for specific errors.
B-9

Table 2-3. Error Definitions

Example Profiles

The following four examples illustrate the effects of jerk on a triangular profile.
As can be seen, the lower the jerk percentage the smoother the profile.

1.Triangular profile with no scurve (and 50% acceleration).

2. Triangular profile with scurve and 5% jerk.

3. Triangular profile with scurve and 50% jerk.

4. Triangular profile with scurve and 95% jerk.

Fault Bit Number Description
0 Starting angle is not within -180 to 360 degrees
1 Ending angle is not within -180 to 360 degrees
2 Acceleration percent value not within 0.0 to 100.0
3 Jerk percentage value not within 0.0 to 100.0
4 Desired velocity limit higher than allowed
5 Desired velocity limit is zero
6 Master Move 1 overlaps Master Move 2
7 Cannot set-up move with input parameters given
B-10

Figure 2-1. Triangular no scurve, 50% accel

0

20

40

60

80

100

120

140

160

1 6
8

1
3

5

2
0

2

2
6

9

3
3

6

4
0

3

4
7

0

5
3

7

6
0

4

6
7

1

7
3

8

8
0

5

8
7

2

9
3

9

1
0

0
6

1
0

7
3

1
1

4
0

1
2

0
7

1
2

7
4

time

o
u

tp
u

t

output

Triangular scurve, 50% accel, 5% jerk

0

20

40

60

80

100

120

140

160

1 6
8

1
3

5

2
0

2

2
6

9

3
3

6

4
0

3

4
7

0

5
3

7

6
0

4

6
7

1

7
3

8

8
0

5

8
7

2

9
3

9

1
0

0
6

1
0

7
3

1
1

4
0

1
2

0
7

1
2

7
4

time

o
u

tp
u

t

output
B-11

Triangular scurve, 50% accel, 50% jerk

0

20

40

60

80

100

120

140

160

1 6
8

1
3

5

2
0

2

2
6

9

3
3

6

4
0

3

4
7

0

5
3

7

6
0

4

6
7

1

7
3

8

8
0

5

8
7

2

9
3

9

1
0

0
6

1
0

7
3

1
1

4
0

1
2

0
7

1
2

7
4

time

o
u

tp
u

t

output

Triangular scurve, 50% accel, 95% jerk

0

20

40

60

80

100

120

140

160

1 6
8

1
3

5

2
0

2

2
6

9

3
3

6

4
0

3

4
7

0

5
3

7

6
0

4

6
7

1

7
3

8

8
0

5

8
7

2

9
3

9

1
0

0
6

1
0

7
3

1
1

4
0

1
2

0
7

1
2

7
4

time

o
u

tp
u

t

output
B-12

The following six examples illustrate the effects of acceleration and jerk on a trap-
ezoidal profile. As can be seen, the higher the acceleration percentage the steeper
the acceleration curve. Also, just as for the triangular profile, the lower the jerk
percentage the smoother the profile.

1. Trapezoidal profile with no scurve and 50% acceleration.

2. Trapezoidal profile with scurve, 50% acceleration and 5% jerk.

3. Trapezoidal profile with scurve, 50% acceleration and 50% jerk.

4. Trapezoidal profile with scurve, 50% acceleration and 95% jerk.

5. Trapezoidal profile with scurve, 10% acceleration and 50% jerk.

6. Trapezoidal profile with scurve, 90% acceleration and 50% jerk.
B-13

Trapezoidal no scurve, 50% accel

0

20

40

60

80

100

120

1 6
8

1
3

5

2
0

2

2
6

9

3
3

6

4
0

3

4
7

0

5
3

7

6
0

4

6
7

1

7
3

8

8
0

5

8
7

2

9
3

9

1
0

0
6

1
0

7
3

1
1

4
0

1
2

0
7

1
2

7
4

time

o
u

tp
u

t

output

Trapezoidal scurve, 50% accel 5% jerk

0

20

40

60

80

100

120

1 6
8

1
3

5

2
0

2

2
6

9

3
3

6

4
0

3

4
7

0

5
3

7

6
0

4

6
7

1

7
3

8

8
0

5

8
7

2

9
3

9

1
0

0
6

1
0

7
3

1
1

4
0

1
2

0
7

1
2

7
4

time

o
u

tp
u

t

output
B-14

Trapezoidal scuve, 50% accel 50% jerk

0

20

40

60

80

100

120

1 6
8

1
3

5

2
0

2

2
6

9

3
3

6

4
0

3

4
7

0

5
3

7

6
0

4

6
7

1

7
3

8

8
0

5

8
7

2

9
3

9

1
0

0
6

1
0

7
3

1
1

4
0

1
2

0
7

1
2

7
4

time

o
u

tp
u

t

output

output

12
74

12
07

11
40

10
73

10
06

87
2

80
5

73
8

67
1

60
4

53
7

47
0

40
3

33
6

26
9

20
2

13
5

681

0

20

40

60

80

100

120

Trapezoidal scurve, 50% accel 95% jerk

o
u

tp
u

t

B-15

Trapezoidal scurve, 10% accel 50% jerk

0

20

40

60

80

100

120

140

160

1 6
8

1
3

5

2
0

2

2
6

9

3
3

6

4
0

3

4
7

0

5
3

7

6
0

4

6
7

1

7
3

8

8
0

5

8
7

2

9
3

9

1
0

0
6

1
0

7
3

1
1

4
0

1
2

0
7

1
2

7
4

time

o
u

tp
u

t

output

Trapezoidal scurve, 90% accel, 50% jerk

0

10

20

30

40

50

60

70

80

90

1 6
7

1
3

3

1
9

9

2
6

5

3
3

1

3
9

7

4
6

3

5
2

9

5
9

5

6
6

1

7
2

7

7
9

3

8
5

9

9
2

5

9
9

1

1
0

5
7

1
1

2
3

1
1

8
9

1
2

5
5

time

o
u

tp
u

t

output
B-16

M_PRF1MV
One slave move for master USER/M_PROFL

<<INSTANCE NAME>>:M_PRF1MV(EN00 := <<BOOL>>, RR := <<MEM-
ORY AREA>> MOV1 := <<MEMORY AREA>>, MDST := <<DINT>>,
MCSL := <<REAL>>, SSCL := <<REAL>>, VLIM := <<REAL>>, OK =>
<<BOOL>>, ERR1 => <<BYTE>>, TRP1 => <<BOOL>>, AMX1 =>
<<REAL>>, VMX1 => <<REAL>>);

The M_PRF1MV function block sets up a single slave move in the master cycle.

The M_PRF1MV function block does the same processing as M_PRF2MV except
that it processes only one slave move for the master cycle rather than two slave
moves. Refer to the M_PRF2MV description for more information.

Note: Fault bit number 6 (Table 2-3: Error Definitions) is not used by M_PRF1MV.

⁄ NAME ƒø
≥M_PRF1MV ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥RR ERR1√
≥ ≥
¥MOV1 TRP1√
≥ ≥
¥MDST AMX1√
≥ ≥
¥MSCL VMX1√
≥ ≥
¥SSCL ≥
≥ ≥
¥VLIM ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

RR (STRUCTURE) - Array of Structures to be used
for profile.
MOV1 (STRUCTURE) - Structure containing 1st
move’s input data.

MDST (DINT) - Master feedback units/cycle.

MSCL (REAL) - Master feedback units/input unit.

SSCL (REAL) - Slave feedback units/input unit..

VLIM (REAL) - Maximum allowable velocity.

Outputs: OK (BOOL) - execution completed without error.

ERR1 (BYTE) - Error number for move.

TRP1 (BOOL) - Move changed to a trapezoid to
achieve move.

AMX1 (REAL) - Maximum acceleration rate calcu-
lated for move.

VMX1 (REAL) - Maximum velocity rate calculated
for move.
B-17

M_PRFERR
Check for profile errors USER/M_PROFL

<<INSTANCE NAME>>:M_PRFERR(EN00 := <<BOOL>>, MOVE :=
<<MEMORY AREA>> VLIM := <<REAL>>, OK => <<BOOL>>, ERR =>
<<BOOL>>, ENUM => <<BYTE>>);

The M_PRFERR function block checks the validity of the move’s parameters that
have been passed into a function block.

This function block checks the validity of the move’s parameters which have been
passed into a function block. It is originally designed specifically for a rotary mas-
ter and a linear slave axis. The format for the MOVE structure is shown in
Table 2-4.

⁄ NAME ƒø
≥M_PRFERR ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥MOVE ERR√
≥ ≥
¥VLIM ENUM√
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

MOVE (STRUCT) - Structure containing 1st move’s
input data.

VLIM (REAL) - Maximum allowable velocity.

Outputs: OK (BOOL) - execution completed without error.

ERR (BOOL) - Error flag.

ENUM (BYTE) - Error number.
B-18

Table 2-4. MOVE Structure

If any of the values are invalid, then a fault is flagged (ERR). All faults found are
coded into a byte which is passed to the calling ladder. Use BYT2BOOL to decode
faults. Only the first 6 bits are set in this function block. The upper 2 bits are used
and set in the calling ladder. The Error Definitions are shown in Table 2-5.

Table 2-5. Error Definitions

Name Data Type Definition
 MOVE STRUCT Structure of input data for

move
.STRT_ANG REAL Angle of master axis at start

of slave move
.STOP_ANG REAL Angle of master axis at end

of slave move
.SLV_MOVE REAL Distance of slave move
.MAX_V REAL Maximum desired velocity

of the slave axis
.PCT_J REAL Percent of maximum possi-

ble jerk to be used
.PCT_A REAL Percent of maximum possi-

ble accel to be used
.TRI_ONLY BOOL Triangular profile desired
.SCURVE BOOL Smoothed scurve acc/dec

desired

Fault Bit Number Description
0 Starting angle is not within -180 to 360 degrees
1 Ending angle is not within -180 to 360 degrees
2 Acceleration percent value not within 0.0 to 100.0
3 Jerk percentage value not within 0.0 to 100.0
4 Desired velocity limit higher than allowed
5 Desired velocity limit is zero
B-19

M_PROFL
Make profile for 1 move USER/M_PROFL

⁄ NAME ƒø
≥ M_PROFL ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥MDST TRPZ√
≥ ≥
¥SDST SEGS√
≥ ≥
¥RR MRND√
≥ ≥
¥MAXV SRND√
≥ ≥
¥MSCL ERR√
≥ ≥
¥SSCL AMAX√
≥ ≥
¥ACCP VMAX√
≥ ≥
¥JERK MAST√
≥ ≥
≥ SLAV√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

MDST (REAL) - Master distance for this move.

SDST (REAL) - Slave distance for this move.

RR (STRUCT) - Array of structures to be used for pro-
file.

MAXV (REAL) - Maximum desired velocity.

MSCL (REAL) - Master feedback units/input unit.

SSCL (REAL) - Slave feedback units/input unit.

ACCP (REAL) - Percent of maximum possible accel to
be used.

JERK (REAL) - Percent of maximum possible jerk to
be used

Outputs: OK (BOOL) - execution completed without error.

TRPZ (BOOL) - Move changed to a trapezoid to
achieve move.

SEGS (USINT) - Total number of structures used for
this move.

MRND (DINT) - Master move rounding error detected
in FUs.

SRND (DINT) - Slave move rounding error detected in
FUs.

ERR (BOOL) - Cannot achieve the move with the
given inputs.

AMAX (REAL) - Maximum acceleration rate calcu-
lated for move.

VMAX (REAL) - Maximum velocity rate calculated
for move.

MAST (DINT) - Number of master feedback units
used in move.

SLAV (DINT) - Number of Master feedback units used
in move.
B-20

<<INSTANCE NAME>>:M_PROFL(EN00 := <<BOOL>>, MDST :=
<<REAL>>, SDST := <<REAL>> RR := <<MEMORY AREA>>, MAXV :=
<<REAL>>, MSCL := <<REAL>>, SSCL := <<REAL>>, ACCP :=
<<REAL>>, JERK := <<REAL>>, OK => <<BOOL>>, TRPZ => <<BOOL>>,
SEGS => <<USINT>>, MRND => <<DINT>>, SRND => <<SRND>>, ERR
=> <<BOOL>>, AMAX => <<REAL>>, VMAX => <<REAL>>, MAST =>
<<DIST>>, SLAV => <<DINT>>);

The M_PROFL function block sets up one move

Maximum velocity can be limited to allow an automatically adjusting profile
which will be triangular until the maximum velocity is reached. It will then spread
into a trapezoid using the minimum acceleration to achieve the move.

It is also possible to set up each move as a constant accel/decel triangular move or
a trapezoidal move using operator inputs for the desired shape. Acceleration can be
adjusted to change the shape from triangular to nearly rectangular by increasing
the acceleration percent.

For any such profile, the acceleration can be “smoothed” by adjusting the jerk per-
cent. This will not change the basic shape of the profile, but will change the accel-
eration and deceleration portions of the move to resemble an “S-Curve”. The
percentage of jerk corresponds inversely to the portion of the Acceleration (or
Deceleration) segment of the move which will be smoothed, until 100% equals no
S-Curve. At minimum jerk, there is no constant accel portion. This will correspond
to the highest acceleration rate. Maximum velocity during a move is not affected
by “smoothing” or jerk, nor is the average acceleration. It only affects how the
acceleration (and deceleration) will be applied to obtain this velocity.

The format for the RATIO_RL structure is shown in Table 2-1.
B-21

M_PRFDWL
Slave dwell in profile USER/M_PROFL

<<INSTANCE NAME>>:M_PRFDWL(EN00 := <<BOOL>>, MDST :=
<<REAL>>, MSCL := <<REAL>> RR := <<MEMORY AREA>>, MEXT :=
<<DINT>>, SEXT := <<DINT>>, OK => <<BOOL>>, SEGS =>
<<USINT>>);

This M_PRFDWL function block takes the array of structures pointer and fills the
next structure with the necessary data for a Slave dwell in the profile. The Master
distance will be adjusted by any rounding errors detected when the preceding
move was calculated. The only slave motion will be any slave rounding errors
detected. These will be applied at the end of the dwell.

There is no acceleration or jerk or initial velocity in a dwell move.

⁄ NAME ƒø
≥M_PRFDWL ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥MDST SEGS√
≥ ≥
¥MSCL ≥
≥ ≥
¥RR ≥
≥ ≥
¥MEXT ≥
≥ ≥
¥SEXT ≥
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

MDST (REAL) - Master distance for dwell.

MSCL (REAL) - Master scale factor.

RR (STRUCTURE) - Array of structures used for the
profile.

MEXT (DINT) - Extra master feedback units.

SEXT (DINT) - Extra slave feedback units.

Outputs: OK (BOOL) - execution completed without error

SEGS (USINT) - Total number of structures used for
move.
B-22

M_SETVAJ
Set vel, acc, jerk values USER/M_PROFL

<<INSTANCE NAME>>:M_SETVAJ(EN00 := <<BOOL>>, VLMT :=
<<REAL>>, MDST := <<REAL>> SDST := <<REAL>>, ACCP :=
<<REAL>>, JERK := <<REAL>>, OK => <<BOOL>>, MAXV =>
<<USINT>>, MAXJ => <<LREAL>>, MACC => <<LREAL>>, TRPZ =>
<<BOOL>>);

The M_SETVAJ function block calculates the acceleration, maximum velocity,
and jerk to be used for this move.

The M_SETVAJ ASFB calculates the acceleration, maximum velocity, and jerk to
be used for this move. Separate calls can be used if acceleration and deceleration
are to be different. The distance that the master will move during the acceleration
(and deceleration) is also calculated. If Accel is not the same as decel, care must be
used to avoid invalid setup of the Ratio Real. Use MAXV for K1 of Decel. It is
easy to have s-curve on either the acceleration or deceleration rather than both. The
value of this is to allow the axis to accel or decel faster when inertia is lower, and
allow more time for critical moves (i.e., a larger portion of a triangular move for

⁄ NAME ƒø
≥M_SETVAJ ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥VLMT MAXV√
≥ ≥
¥MDST MAXA√
≥ ≥
¥SDST MAXJ√
≥ ≥
¥ACCP MACC√
≥ ≥
¥JERK TRPZ√
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

 VLMT (REAL) - Maximum desired velocity.

MDST (REAL) - Master distance for this move.

SDST (REAL) - Slave distance for this move.

ACCP (REAL) - Percent of maximum possible accel to
be used.

JERK (REAL) - Percent of maximum possible jerk to
be used.

Outputs: OK (BOOL) - execution completed without error.

MAXV (USINT) - Maximum velocity calculated for
move.

MAXA (LREAL) - Maximum acceleration rate calcu-
lated for move.

MAXJ (LREAL) - Maximum jerk calculated for move.

MACC (LREAL) - Master distance during acceleration
(and deceleration).

TRPZ (BOOL) - Move changed to a trapezoid to
achieve move.
B-23

the decel when concerned with a loaded part slipping out of the holding mecha-
nism while the accel has no such concern).

MAXV is the maximum velocity that the profile will reach, and is the ending
velocity for the accel portion of the move.

MACC is the distance that the Master axis will move during the accel.

For any such move profile, the acceleration can be "smoothed" by adjusting the
jerk percent. This will change the acceleration (and deceleration) portions of the
move to resemble an "S-Curve".

The percentage of jerk corresponds inversely to the portion of the Acceleration (or
Deceleration) segment of the move which will be smoothed, until 100% equals no
S-Curve. At minimum jerk, there is no constant accel portion. This will correspond
to the highest acceleration rate. Maximum velocity during a move is not affected
by “smoothing” or jerk, nor is the average acceleration. It only affects how the
acceleration (and deceleration) will be applied to obtain this velocity.
B-24

M_SC_ACC
Acceleration segment USER/M_PROFL

<<INSTANCE NAME>>:M__SC_ACC(EN00 := <<BOOL>>, AMAX :=
<<LREAL>>, VMAX := <<LREAL>> JERK := <<LREAL>>, MDST :=
<<LREAL>>, RR := <<MEMORY AREA>>, OK => <<BOOL>>, SDST =>
<<DINT>>, SEGS => <<USINT>>, SCUR => <<BOOL>>, AERR =>
<<BOOL>>, VERR => <<BOOL>>);

The M_SC_ACC function block adds the acceleration portion of the move to the
profile.

The M_SC_ACC ASFB adds the necessary segments for the acceleration portion
of the profile. If the JERK input is not equal to zero, there will be three segments
for the acceleration. If the JERK input is zero, there will be one segment required.

⁄ NAME ƒø
≥M_SC_ACC ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥AMAX SDST√
≥ ≥
¥VMAX SEGS√
≥ ≥
¥JERK SCUR√
≥ ≥
¥MDST AERR√
≥ ≥
¥RR VERR√
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

 AMAX (LREAL) - Maximum acceleration rate calcu-
lated for the move.

VMAX (LREAL) - Maximum velocity calculated for
the move.

JERK (LREAL) - Maximum jerk calculated for this
move.

MDST (LREAL) - Master distance during accelera-
tion.

RR (STRUCTURE) - Array of structures to be used for
profile.

Outputs: OK (BOOL) - Execution of function completed with-
out error.

SDST (DINT) - Slave distance during acceleration.

SEGS (USINT) - Total number of segments used for
acceleration.

SCUR (BOOL) - If set, acceleration uses an S curve
move.

AERR (BOOL) - If set, acceleration equals 0.

VERR (BOOL) - If set, velocity equals 0..
B-25

M_CNST_V
Constant velocity segment USER/M_PROFL

<<INSTANCE NAME>>:M__CNST_V(EN00 := <<BOOL>>, MDST :=
<<REAL>>, RR := <<MEMORY AREA>> OK => <<BOOL>>, SEGS =>
<<USINT>>, CVSG => <<BOOL>>);

The M_CNST_V function block fills a Ratio Real structure with the necessary dis-
tances and polynomial co-efficients for a Constant Velocity move. The initial
velocity is filled by an earlier function call.

A constant velocity move requires the initial velocity, K1 to be non-zero, and the
initial and final values of both acceleration, K2/2, and Jerk, K3/6, to be zero.

The Master Move Distance cannot be zero for a RATIO_RL segment, therefore if
this would be the case, then no constant velocity move is set up.

⁄ NAME ƒø
≥M_CNST_V ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥MDST SEGS√
≥ ≥
¥RR CVSG√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

 MDST (REAL) - Master distance for this move.

RR (STRUCT) - Array of Structures to be used for pro-
file.

Outputs: OK (BOOL) - Execution of function completed with-
out error.

SEGS (USINT) - Total number of segments used for
profile.

CVSG (BOOL) - A valid Constant Velocity structure
was used flag.
B-26

M_SC_DEC
Deceleration segment USER/M_PROFL

<<INSTANCE NAME>>:M__SC_DEC(EN00 := <<BOOL>>, DMAX :=
<<LREAL>>, VMAX := <<LREAL>> JERK := <<LREAL>>, MDST :=
<<LREAL>>, RR := <<MEMORY AREA>>, OK => <<BOOL>>, SDST =>
<<DINT>>, SEGS => <<USINT>>, SCUR => <<BOOL>>, DERR =>
<<BOOL>>, VERR => <<BOOL>>);

The M_SC_DEC function block adds the deceleration portion of the move to the
profile.

The M_SC_DEC ASFB adds the necessary segments for the deceleration portion
of the profile. If the JERK input is not equal to zero, there will be three segments
for the deceleration. If the JERK input is zero, there will be one segment required.

⁄ NAME ƒø
≥M_SC_DEC ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥DMAX SDST√
≥ ≥
¥VMAX SEGS√
≥ ≥
¥JERK SCUR√
≥ ≥
¥MDST DERR√
≥ ≥
¥RR VERR√
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

 DMAX (LREAL) - Maximum acceleration rate calcu-
lated for the move.

VMAX (LREAL) - Maximum velocity calculated for
the move.

JERK (LREAL) - Maximum jerk calculated for this
move.

MDST (LREAL) - Master distance during accelera-
tion.

RR (STRUCTURE) - Array of structures to be used for
profile.

Outputs: OK (BOOL) - Execution of function completed with-
out error.

SDST (DINT) - Slave distance during acceleration.

SEGS (USINT) - Total number of segments used for
acceleration.

SCUR (BOOL) - If set, acceleration uses an S curve
move.

DERR (BOOL) - If set, acceleration equals 0.

VERR (BOOL) - If set, velocity equals 0.
B-27

NOTES
B-28

APPENDIX C Contents of the Applications CD
The Applications CD contains the Motion ASFBs, General ASFBs, Ethernet
ASFBs and Example Applications for the Standalone MMC and the MMC for PC.

The following manuals can be found in the folder Manuals on your CD: Motion
ASFB Manual, General Purpose ASFB Manual and Ethernet ASFB Manual. They
are PDF files and can be opened, read, and printed using Adobe Acrobat Reader.
Acrobat Reader can be downloaded free of charge from Adobe at http://
www.adobe.com/supportservice/custsupport/download.html.

Note: You MUST use Acrobat Reader 4.0 or newer to view these manuals.

The PiCPro Applications can be used with either PiCPro Professional Edition or
MMC-Limited Edition. The Examples folder has example projects for each edi-
tion of PiCPro.

The default folders when installing the Applications CD are (where Vxx.x.x repre-
sents the version of the applications software) :

• C:\G&L Motion Control Data\Applications Vxx.x.x\ASFB

• C:\G&L Motion Control Data\Applications Vxx.x.x\Examples

• C:\G&L Motion Control Data\Applications Vxx.x.x\Tools

• C:\G&L Motion Control Data\Applications Vxx.x.x\QuickStart

Note:You should not put any other files or applications into these folders.

The ASFB folder contains the Motion, General and Ethernet ASFBs.

The Tools folder contains the ServoSetupAssistant spreadsheet.

The Examples folder contains 8 Standalone MMC examples or starter ladders and
several simple examples for the Motion, General and Ethernet ASFBs. There are
also 3 MMC for PC examples or starter ladders included, although these cannot be
downloaded using the MMC-Limited Edition.

The following is a description of how the examples are named.

• MMCxxxxx Standalone MMC Application Example.

• MPCxxxxx MMC for PC Application Example.

• SRCxxxxx SERCOS Setup Example.

• SRVxxxxx Standalone MMC Servo Setup Example.

• SRVPxxxx MMC for PC Servo Setup Example.

• ZSRCMMC SERCOS Setup Example Library.

• ZSRVMMC Servo Setup Example Library.

• xxxxxx.CPA Cimrex Operator Interface Application Example.

• xxxxxx.GLC G&L DeviceNet Scanner Configuration Example.

• M_xxxxxx Motion ASFB Example.

• G_xxxxxx General ASFB Example.

• E_xxxxxx Ethernet ASFB Example.
C-1

• U_xxxxxx MMC Application Example UDFB.

The following are brief descriptions of each Standalone MMC example (see
Appendix D for more information).

• M_C2M_EX. The Cad2Motion ASFB, translates an M and G code format
ASCII file into servo motion. Many applications require description of
their motion path using CAD software. Third party packages (such as
Gcode2000) will convert the CAD package DXF output to M and G code
text files. M_C2M will translate the M and G code file to servo motion.
Examples of applications include glue laying and textiles cutting. The
Cad2Motion ASFB is not intended for applications that involve metal cut-
ting machine tools such as lathes and mills and therefore does not support
features required by CNC applications such as cutter radius compensation,
tool offsets and constant surface speed.

• MMC4_EX. This example can be used as a starting point for a 4 axis appli-
cation. It contains the logic required to initialize the servo axes, close the
servo loops, jog an axis, and home an axis. It also contains basic E-Stop
and C-Stop logic. This example does not have any operator interface sup-
port. All of the machine functions are performed with discrete I/O.

• MMC2_EX. This example can be used as a starting point for a 2 axis appli-
cation. It contains the logic required to initialize the servo axes, close the
servo loops, jog an axis, and home an axis. It also contains basic E-Stop
and C-Stop logic. This example does not have any operator interface sup-
port. All of the machine functions are performed with discrete I/O.

• MMC4_OI. This example can be used as a starting point for a 4 axis appli-
cation. It contains the logic required to initialize the servo axes, close the
servo loops, jog an axis, and home an axis. It also contains basic E-Stop
and C-Stop logic. This example uses a Cimrex 30 as an operator interface.
The Cimrex application is called MMC4_C30.

• MMC2_OI. This example can be used as a starting point for a 2 axis appli-
cation. It contains the logic required to initialize the servo axes, close the
servo loops, jog an axis, and home an axis. It also contains basic E-Stop
and C-Stop logic. This example uses a Cimrex 30 or Cimrex 20 as an oper-
ator interface. The Cimrex applications are called MMC2_C30 and
MMC2_C20 (for the Cimrex 30 or Cimrex 20 units respectively).
C-2

• MMC4_SOI. This example can be used as a starting point for a SERCOS
application having an operator interface device. It contains the logic
required to initialize the SERCOS configuration, initialize the servo axes,
close the servo loops, jog an axis, and home an axis. It also contains basic
E-Stop and C-Stop logic. This example uses a Cimrex 30 as an operator
interface. The Cimrex application is called MMC4_SC30.

• MMC4_PT. This example shows how to apply the press transfer applica-
tion specific function blocks. It contains the logic required to initialize the
servo axes, close the servo loops, jog an axis, and home an axis. It also con-
tains basic E-Stop and C-Stop logic. It also contains logic to configure and
run the specified slave profile(s). This example uses a Cimrex 30 as an
operator interface. The Cimrex application is called M4PT_C30.

• MMC_STEP. This example shows how to apply the stepper block I/O
module. It contains the logic required to initialize the stepper block and to
control it. A single UDFB (U_STPRC) provides the control logic for a
stepper axis. The features supported by the UDFB include home (zero ref-
erence), jog, move a distance, move to a position, control-stop, emergency-
stop and c-stop/e-stop reset.

MMC_DND. This example shows how to apply the Centurion DeviceNet
Positioning MicroDSM drive. It contains the logic required to initialize and
run the DeviceNet network. Two UDFBs provides the control logic for a
DeviceNet axis to jog, move a distance or move to a position. A third
UDFB provides the DeviceNet scanner status details. This example ladder
and DeviceNet configuration are both referenced in the MicroDSM with
DeviceNet installation manual.

The following is a brief description of each MMC for PC example (or starter lad-
der).

• MPC4_EX. This example can be used as a starting point for a 4 axis appli-
cation. It contains the logic required to initialize the servo axes, close the
servo loops, jog an axis, and home an axis. It also contains basic E-Stop
and C-Stop logic. This example does not have any operator interface sup-
port. All of the machine functions are performed with discrete I/O. This
example is almost identical to MMC4_EX.

• MPC4_OI. This example can be used as a starting point for a 4 axis appli-
cation. It contains the logic required to initialize the servo axes, close the
servo loops, jog an axis, and home an axis. It also contains basic E-Stop
and C-Stop logic. This example uses a Cimrex C30 with an Ethernet mod-
ule as an operator interface. The Cimrex application is called MPC4_C30.
This example is almost identical to MMC4_OI.
C-3

• MPC4_SOI. This example can be used as a starting point for a SERCOS
application having an operator interface device. It contains the logic
required to initialize the SERCOS configuration, initialize the servo axes,
close the servo loops, jog an axis, and home an axis. It also contains basic
E-Stop and C-Stop logic. This example uses a Cimrex C30 with an Ether-
net module as an operator interface. The Cimrex application is called
MPC4_SC30. This example is almost identical to MMC4_SOI.

Note:For both of the MMC for PC with Cimrex examples, there will usually be a con-
figuration change required before either works. The Cimrex configuration file calls out
the Ethernet connection to the MMC for PC. However, the correct TCP/IP address of
the PC hosting the MMC for PC is unknown. The actual host address must be verified
in the Cimrex configuration before it is downloaded to the Cimrex unit.
C-4

Descriptions of the Standalone MMC Examples
APPENDIX D Standalone MMC Examples

Descriptions of the Standalone MMC Examples

The following is a description of the functionality provided with each Standalone
MMC example.

The purpose of each example is to provide a foundation for a customer's own
application. Each example provides all the basic features of most applications:

• Loading the servo configuration

• Closing the servo position loops

• Handling emergency stop and control stop conditions

• Jogging the axes

• Referencing (or homing) the axes

Typically, the ladder logic required for a specific application can be added to the
end of an example.

Which example is the best starting point depends on the specific application (e.g.
how many servo axes are required and will an operator interface device be used?).

Basic Application Examples

The following is a description of the two examples that lack an operator interface.
They are MMC2_EX for a 2 axis MMC and MMC4_EX for a 4 axis MMC.

• The initial network with the STRTSERV function loads the servo setup
configuration. Each example ladder includes a servo setup example (such
as SRV2_EX for a 2 axis MMC or SRV4_EX for a 4 axis MMC). Each
application must have its own servo setup configuration. Typically, this
configuration is unique for every application as each could have different
ratios of programming units (i.e., inches, millimeters, degrees, etc.) to the
servo feedback units, different travel limits, different servo PID gains, etc.

• The M_CHK1 and M_CHK49 function blocks check which axes are con-
figured within the loaded servo setup. These blocks make it easier to write
sections of ladder code that support different numbers of axes; by checking
the Booleans set here, the appropriate actions can be taken based on the
axes that are configured.

• The M_CLOS1 function blocks will close the position loops for the config-
ured servo axes. This action also includes resetting any internal e-stop or c-
stop servo conditions (a servo e-stop will open the position loop).

• The M_STATUS and M_ERROR function blocks provide all the signifi-
cant data for the servos in one place within the ladder. If the application is
using the digitizing axis available with the MMC, there is a network that
checks that axis for an e-stop condition (that can result from a 'loss of feed-
back' hardware error).
D-1

• The STATUSSV functions provide the ladder with information regarding
the state of the respective servo fast inputs. Each axis has a DC input pro-
vided with a 'fast input' capability - so that (when enabled) the axis can
latch the axis position at the instant the DC input occurs, based solely on
the input condition rather than on the ladder scan time.

• The network with the ESTOPACT coil monitors for an emergency stop (or
e-stop) condition. The purpose for this network is to ensure that if an e-stop
condition is detected, all the servo axes will be e-stopped immediately.

• The network with the CSTOPACT coil monitors for a controlled stop (or c-
stop) condition. The purpose for this network is to ensure that if a c-stop
condition is detected, all the servo axes will be c-stopped immediately.

• The networks with the GEN_IO and AUX_IO labels provide a simple way
to view all the MMC discrete input and output conditions using the ladder
animation.

• The subsequent networks provide support for jogging and homing the axes.
When jogging, only one axis can be selected and it can jog in one of three
modes: at a constant velocity, to a specific incremental distance, or as a fol-
lower to a handwheel. Note that jogging will stop when a travel limit is
reached because an e-stop will occur (in the ESTOPACT's coil network).
However, if the Machine Start push-button is being pushed at the same
time as the jog button, the operator can jog off a specific over-travel. For
instance when in velocity mode, if the axis is on the plus over-travel
switch, the axis cannot jog in the plus direction but it can jog in the minus
direction.

The last networks in the basic examples provide support for the referencing (or
homing) of the servo axes. The M_FHOME function block supports a homing
sequence for the axis using the axis fast input as the reference switch. The
M_LHOME function block supports a homing sequence for the axis using a spe-
cific discrete input as the reference switch. Both function blocks are provided for
each servo axis in the ladder with M_FHOME actually connected to the rail. If the
M_LHOME functionality is desired, then its code fragment (the function block
and the surrounding elements) can be cut and pasted over the M_FHOME area.

Operator Interface Application Examples

The examples having operator interface support (MMC2_OI and MMC4_OI) have
more ladder logic than the basic examples. Early in the ladder, the OI_SER func-
tion block enables the MMC variables (in the main ladder) that are given the G
(global) attribute to be shared with the operator interface device (typically a Cim-
rex terminal) connected via an RS232 serial connection. Note that the global
attribute is also used when the MMC is connected to an external PC via the Ether-
net module and the MMC shares its data with the PC using the OPC Server tech-
nology.

There are a number of networks that update the state of the ALARM() Boolean
array. This array is used to provide immediate indicators to the operator interface
device regarding specific ladder conditions.
D-2

Descriptions of the Standalone MMC Examples
After the axis jogging and homing section of the ladder, there are several networks
involved with the saving and retrieval of the axis setup data using a RAMDISK
file. Rather than having the various motion rates or reference positions hard coded
within the ladder logic, they can be set by the operator and saved in a RAMDISK
file, AXSETUP.DAT.

The examples conclude with a few networks that are the basis for supporting other
Cimrex features: trending or graphing and the control of the LEDs.

SERCOS Drive Interface Application Example

There is an example provided for the 8 axis SERCOS MMC unit. This example
(MMC4_SOI) is an extension of the 4 axis MMC example with an operator inter-
face. For the support of the SERCOS drives, several different ASFBs are used.

At the start of the ladder logic, the SC_INIT function initializes the SERCOS ring
connected to the MMC. Each SERCOS application must have its own SERCOS
setup configuration. The example uses SRC_MMC4 for its 4 SERCOS axis con-
figuration. For an actual application, this SERCOS setup function must be
replaced with the actual SERCOS setup configuration. The programmer's steps to
do that are very similar to those for replacing the servo setup, except that steps 7
through 10 in the above procedure (when STARTING A NEW APPLICATION
FROM AN EXAMPLE) are done with SERCOS setup, not servo setup. The exam-
ple uses SRV_MMC4 for its servo setup configuration. For an actual application,
this servo setup function must be replaced with the actual servo setup configura-
tion, as previously described.

The S_CLOS1 function block will close the position loop for the configured SER-
COS axes. This ASFB is different for SERCOS axes because the SERCOS drive
itself might have error conditions to reset before the position loop can be closed.

The S_ERRORC function block provides all the significant error information for a
specific SERCOS axis. This ASFB is different than M_ERROR because a SER-
COS axis has additional error information.

The S_FHOME and S_LHOME function blocks provide support for the referenc-
ing of the SERCOS axes. They are different than M_FHOME and M_LHOME
because the latching of the reference position is done within the SERCOS drive.

The S_IO_C function block is unique to a Centurion SERCOS drive application
because the additional discrete input and output points at the SERCOS drive can
be made available to the ladder.

Press Transfer Application Example

There is an example provided for the press transfer ASFB set within the motion
ASFB package. This example (MMC4_PT) is an extension of the 4 axis MMC
example with an operator interface. There is a detailed 'readme' file for this exam-
ple's user interface and the accompanying ladder logic; that file is
MMC4_PT.TXT.
D-3

Stepper Application Example

There is an example provided for the stepper block I/O module. This example
(MMC_STEP) is a simple ladder to illustrate the control logic for a stepper mod-
ule.

The UDFB U_STPRC handles the overhead required for a stepper control. This
UDFB handles the stepper home or zero reference, jog, move a distance, move to a
position, controlled-stop, emergency stop, and a reset of a c-stop or e-stop.

Centurion DeviceNet Positioning MicroDSM Drive Application Example

There is an example provided for the Centurion DeviceNet MicroDSM drive. This
example (MMC_DND) is a simple example to illustrate the logic to control the
DeviceNet scanner and to control the DeviceNet drive over DeviceNet.

The ASFB M_DNJOGC handles the overhead required for the jog motion. The
ASFB M_DNPOSC handles the overhead required for the motion of either a move
of an incremental distance or a move to an absolute position. Note that both of
these ASFBs are for the Centurion DeviceNet MicroDSM drive. Other DeviceNet
drives will have their own unique DeviceNet interface (i.e., the respective boolean,
byte and long-word tag name assignments in the scanner's memory map).

The ASFB M_DNSTAT extracts the details for the DeviceNet module status into
individual bytes and booleans.

This example ladder is referenced in the MicroDSM with DeviceNet installation
manual. It serves as the programming example for the MicroDSM with DeviceNet
drive. The MMC_DND.GLC DeviceNet scanner's configuration data file is also
referenced in the same drive manual to illustrate how to define the tag names for
the DeviceNet drive's input and output data.

Starting a New MMC Application from a
Standalone MMC Example

The following is a description of how to start a new application from a Standalone
MMC example.

To use one of the examples as a starting point for your application follow the steps
below. The following procedure will use the MMC4_EX Professional Edition
Project as the starting point. The target application will be called NEW_APPL and
the servo setup library will be ZNEWAPPL; other appropriate names can replace
these used in this procedure. The same steps can be followed with the PiCPro
MMC Limited Edition.

Note:In the instructions below, xx.x and xx.x.x represent the current version of the soft-
ware.

1. Start PiCPro Vxx.x Professional Edition.

2. File | Open, MMC4_EX Pro Edition.PRJ. This will open up the project.
D-4

Starting a New MMC Application from a Standa-
3. Once the project is open, do a File | Save As and fill in the following fields:

• Destination PRJ
C:\G&L Motion Control Data\Applications
Vxx.x.x\New_Appl\New_Appl.prj
This will be the name and folder for the new project.

• Destination G&L
C:\G&L Motion Control Data\Applications
Vxx.x.x\New_Appl\New_Appl.G&L.
This is the file name of the compressed project. The compressed file can be
stored on the MMC Flashdisk. This allows the end user the ability to open
the project from the MMC without having the original source code.

4. Change the destination folders for Main LDO, Lib Path, UDFB Source, Servo
Source, and Servo Lib's from:

C:\G&L Motion Control Data\Applications Vxx.x.x\Examples
To:
C:\G&L Motion Control Data\Applications Vxx.x.x\New_Appl

5. Close the Save As Project by clicking OK.

6. Expand the Main .LDO and double click on MMC4_EX.LDO. This will open
the main ladder and do a File | Save As with the new file name
NEW_APPL.ldo.

7. In network 5 (the network with the STRTSERV function), right click on
SRV4_EX and then View Servo Setup. Do a File | Save As to SRV4_NEW.

8. Make any necessary changes to the servo setup and then do a Compile | Make
Function. When prompted for the library name for the servo function, change
the name to ZNEWAPPL.

9. Close servo setup.

10.Replace the SRV4_EX function with the new servo setup function you just cre-
ated by clicking on Ladder |Functions | ZNEWAPPL | SRV4_NEW.

11. Close the NEW_APPL ladder window and save the changes when prompted.

12.Go to back to the project window and delete MMC4_EX from the MAIN
.LDO and add NEW_APPL.ldo.

13.Do a File | Update Project Tree to update the project.

14.Close the project. When prompted to compress the application select No. You
do not need to compress the project until you are ready to store it on the flash
disk.

15.Using Windows Explorer delete the MMC4_*.* files, the SRV4*.* files and
ZSRVMMC.LIB file from the new project folder:
C:\G&L Motion Control Data\Applications Vxx.x.x\New_Appl

Note: If the application is using SERCOS-controlled servos, the above procedure
is followed starting with MMC4_SOI with additional steps to replace the
example SERCOS setup file.
D-5

NOTES
D-6

APPENDIX E Digital Smart Drive Examples

Introduction

This document provides instructions on how to select and modify the best example
ladder diagram for your application. Prior to doing so, you should have most of
the following information worked out and available.

• Number of servo axes

• Number of digitizing axes

• Inputs and assignments used in application

• Outputs and assignments used in application

• Power On and Emergency Stop Methods

• Position Loop Closure Method

• Manual Features - jog

• Homing methods and sequence

The example ladders include the above areas. You will need to configure them
according to your requirements.

You will also require information on the following to complete the application.

• Operator Interface

• Automatic Motions and Sequence of Operations

These are not part of the example ladders.

Purpose

Example ladders are provided as a starting base for customer applications. They
include the basic functions needed for all applications in a recommended order and
format and are the simplest way to get an application up and running.

The example ladders assign some input and output points to features only to illus-
trate techniques. You can stay with these assignments or change them as you wish.
A specific configuration of features such as homing and jogging are set up. You
will need to change these according to your requirements. This document contains
information on how to do some of this. Other information can be found in the net-
work comments and PiCPro Online Help or the Function Block manual. Other
information may be found in the Application Notes on the Danaher Motion web
site.

 The following examples are provided in their own folders

• 1 Axis using the D1 Resident MMC Digital Smart Drive Module

• 2 Axis using the D2 Resident MMC Digital Smart Drive Module

• 4 Axis using the D4 Resident Digital Smart Drive Module

• 16 Axis using the D16 Resident Digital Smart Drive Module
E-1

• 32 Axis using the D32 Standalone MMC Digital Smart Drive Module

• 64 Axis using the D64 Standalone MMC Digital Smart Drive Module

In each folder are

• Ladder diagram (LDO) and network comments (REM) files

• Servo setup (SRV) and library (LIB) files

• Project (PRJ) file

The PRJ file can be used to open the example applications so they can be viewed.
However, the examples should be left intact and not modified in place for an appli-
cation.

Getting Started with PiCPro

The first step is to choose the example closest to the target application that uses the
same MMC Digital Smart Drive Module. Since it is easier to remove axes than to
add them, choose one with more axes if the exact number is not there. Copy
ONLY the LDO, REM and SRV files to the working folder for the application.
Rename the 3 files to what you want them called in the application using Windows
Explorer.

Set up the PiCPro Libraries pointers to include Applications /ASFB and the work-
ing application folder.

Open the SRV file and by subtracting any unused axes. Then modify the remain-
ing axes for the application and do a Compile / Make Function to create a library
(LIB) file. See the notes on the SRV file later for more information on the settings
in the example files.

Open the renamed LDO. It will give a message about a missing servo function.
Put your own servo function in its place in the appropriate network.

If necessary, delete the 4 networks for any unused axes - see below.

At this point, do a Compile Only on the ladder to check for any errors. There
should not be any. If there are, either correct them or start over.

Save the ladder and then do a File - New - Project. PiCPro will build a project tree
showing the folders and files needed by the ladder diagram. Do a File Save when
complete. You will be saving the newly created project (PRJ) file and from now
on should open that file when starting a new PiCPro session.

Modifying the Ladders

A number of comment networks are provided at the beginning of the ladder. Some
of these contain specific G&L information. You should read and understand the
Warranty and Revision History network headers before proceeding. They contain
important information.
E-2

You should adapt the contents to your specific situation. You are free to add more
comment networks if you wish.

Network 1 - Danaher Motion Warranty Statement

Network 2 - comment network only for application information, revision history
etc.

Network ….

Network Label SRV_INIT - Servo Setup Initialize reads the specific axis informa-
tion from the servo setup file. Your own file is now in here.

Network Label AXES_CHK - Calculates information on axes that are initialized.
See the MCHKALL ASFB Help for detail.

AXES_CNT - Axis and other data are stored in memory arrangements called
Structures and are passed from the main ladder into function blocks that perform
operations on them. It is critically important that the structures are the same in
both places. This network calculates the sizes of the structures declared in the
main ladder. They will be used later by the function blocks to compare with their
own internally declared sizes. If the 2 differ, an error code will be output by the
function block and it will not run.

Network Label GEN_IN - Shows contacts of all available inputs based on the
hardware declarations. We recommend you connect coils of internal relays that
you declare and name per the functionality and use contacts of the coil throughout
the ladder. As a more conventional alternative, it is also possible to rename the
point in Software Declarations and use the input point contacts in the ladder.

Network Label ESTPALL - The example ladders E stop and C stop all axes if any
one has a stop of that type. This network makes sure that all axes see the signal by
making sure it lasts for one full ladder scan. The network also contains logic to do
the same thing for Drive Warnings.

Network Label DRVPWR - Energizes a coil to be used to energize a general output
point for use with a starter that switches the main ac input to the drives. This is an
important safety feature and should be included on all applications.

Network Label GEN_OUT - Takes contacts of coils energized in the ladder and
turns on output points. You need to configure this network according to your
application.

Network Label AX1INIT sets up initial data for axes features such as homing and
jogging. This is only one way of doing this. It is also possible to place these val-
ues in the Initial Values column of Software Declarations. If the Software Declara-
tions method is chosen, this network can be deleted. It is done here to highlight the
options that need to be chosen. It is done in Structured Text format so that each
line can be commented. It could also be done using a MOVE function block in
ladder diagram format enabled by a positive transition contact of the First Scan
coil. If a feature is not being used, then the data for it need not be set up. Be par-
ticularly careful with the last IF - END_IF statement. This contains code to write
drive current limits on start up. The values there are for a specific drive type and
need to be changed for the type being used. The statements are included to cover a
E-3

possible but unlikely situation. The drive current limit can be reduced from the
ladder while certain home operations are running. It will be restored at the end of
the home cycle, but if the power was to fail and the ladder stopped scanning during
that cycle, it would not be. Therefore some mechanism for restoring it without
using PiCPro is needed. If you don't intend to use the current reduction feature,
delete the lines completely.

Network Label - AX1DRIO provides drive input and output signals and control.
These should be handled by the same methods described for general inputs and
outputs. If drive I/O is not used for an axis, this network can be deleted for that
axis.

Network Label - AX1_CTL provides the logic for closing the position loop as well
as emergency and controlled stops. Also provides the logic for jogging and hom-
ing. You need to implement the logic for all the coils in this network per your
application. If a feature such as jogging is not used, you can delete the coils and
logic feeding them.

Network Label - AX1_FN contains the function block SD_AXIS that controls the
axis position loop, errors and warning information, jogging and homing features.

Subsequent networks will repeat the functions of networks these 4 networks for
the other included axes. They will take the same names as these networks modi-
fied by the axis number i.e. AX1INIT becomes AX2INIT and so on.

If you do not need 1 or more axes, then delete the 4 networks related to those axes.
E-4

APPENDIX F Servo Setup Assistant
The ServoSetupAssistant is an Excel spreadsheet tool that makes creating your
servo setup information a little bit easier. You specify machine parameters such as
time base and precision in the ServoSetupAssistant spreadsheet. Based on these
parameters the servo setup information for an axis is automatically calculated and
can be imported into PiCPro using the Import button that is provided under the
'Axis Data' tab. The Servo Setup Assistant spreadsheet (ServoSetup Assistant.xls)
is part of the Applications Software CD installation. It can be found in the Tools
folder (C:\G&L Motion Control Data\Applications Vxx.x.x\Tools, where xx.x.x
represents the current version of the software). To use this spreadsheet:

1. Do a File Save As to save this spreadsheet as a different name to maintain
the original. A different .XLS file should be made for each axis in your
application.

2. Two sheets are provided for each type of axis that is allowed: Closed loop
servo, Digitizing, and Closed loop SERCOS. The first sheet is used to
input data, the second sheet holds the servo setup data that will be imported
into PiCPro. You may delete the sheets for axes that are not being used.
Double click on the tab for a sheet to change the name of the sheet to match
the description of the axis.

3. Enter the data for the axis. The setup information is being automatically
calculated on the next sheet as you enter. Enter only information with pull
down boxes or data that appears in blue. When you are ready to save the
information for an axis select the sheet called 'PiCPro 'X' Setup Data'
(where X is Servo, Digitizing or SERCOS Servo). NOTE: Before you save
the file in .CSV format, you must save the entire workbook by doing a File
Save to keep your edits. If you do not do this, all formulas and changes will
be lost when you save the file in .CSV format.

4. From the File menu select Save As and save the sheet under a different
name, with file type .CSV (comma delimited variable). Excel will prompt
you through the save process. All other sheets in the workbook and all for-
mulas will be deleted in the .CSV file.

5. Close the files in Excel.

6. Start PiCPro. Import the data from the .CSV file by selecting the Import
button under axis data.
F-1

NOTES
F-2

Index
A

Acceleration Scale Text A-4
Acceleration Scale Value A-4
ADDCKSUM 2-6
Alternative Mode Status A-17
Analog Input Acceleration Limit A-15
Analog Input Acceleration Limits Enable A-

16
Analog Input Deceleration Limit A-15
Analog Offset A-12
Analog Output A-22
Analog Output Configuration Register A-12
Analog Scale A-13
Applications CD

contents C-1
Arm Triggering A-24
ASFB 1-1

using 1-3
At Speed Limit A-6
Autotune Maximum Current A-17
Autotune Maximum Distance A-17
Average Current A-23
Average Motor Current A-23
Average Time Constant A-9

B

Back EMF Constant A-8
Boot Firmware Version A-3
BRAKE Active Delay A-11
BRAKE Inactive Delay A-11
Bus Voltage A-23
BYTE2HEX 2-6

C

Change Direction Flag A-16
Channel 1 Source A-24
Channel 2 Source A-24
CHKCKSUM 2-7
Collected Data A-25
COMMAND Input A-22
Command Source A-15
COMMAND Torque Offset A-12
COMMAND Torque Scale A-12

COMMAND Velocity Offset A-12
COMMAND Velocity Scale A-12
Commands, Common Product Line A-3
Commutation Type A-9
Continuous Current Limit A-7
Current Command A-23
Current Feedforward A-9
Current Negative Peak A-23
Current Positive Peak A-23

D

Digital Input Configuration Register A-11
Digital Input States A-21
Digital Output Configuration Register A-11
Digital Output States A-21
Digital Output Write Mask A-11
Digital Smart Drive Examples E-1
Drive Mode A-15
Drive Name A-4
DWOR2HEX 2-7

E

Encoder Alignment Offset A-17
Encoder Lines A-8
Encoder Output Configuration Register A-15
exception responses A-1

F

Fault Status A-20
Field Current A-23
Field Voltage Command A-23
Firmware, Main Version A-3

G

Gear Ratio A-5

H

Hall Offset A-9
HEX2BYTE 2-8
HEX2DWORD 2-9
HEX2WORD 2-9

I

Index Offset A-9
Installation 1-1
Integrator Zone A-5
Index-1

L

Low Pass Filter Bandwidth A-7
Low Pass Filter Enable A-7

M

M_C2M_1 2-10
M_CHK1 2-37
M_CHK101 2-38
M_CHK109 2-39
M_CHK49 2-40
M_CHK57 2-41
M_CHK65 2-42
M_CHK73 2-43
M_CHK9 2-44, 2-45
M_CHKALL 2-45
M_CHOME 2-47
M_CLOS9 2-52
M_CLS101 2-54
M_CLS109 2-56
M_CLSALL 2-58
M_CNST_V B-26
M_CRSFIN 2-60
M_DATCAP 2-62
M_DATCPT 2-66
M_DISMV1 2-70
M_DNJOGC 2-72
M_DNPOSC 2-74
M_DNSTAT 2-76
M_DSMCOM commands A-1

alternative operating mode A-17
analog I/O A-12
common product line A-3
digital I/O A-11
exception response A-1
general A-4
host command set A-2
motor A-8
operating mode A-15
position loop A-5
runtime command and control A-19
runtime data A-22
runtime data collection A-24
runtime status A-20
serial port A-14
torque current conditioning A-7
velocity loop A-6

M_DW2BOO 2-83
M_ERROR 2-85
M_FHOME 2-86
M_INCPTR 2-88
M_INDEX 2-89
M_JOG 2-137
M_LHOME 2-138
M_LINCIR 2-141
M_POSMV1 2-145
M_PRF1MV B-17
M_PRF2MV B-6
M_PRFDWL B-22
M_PRFERR B-18
M_PROFL B-20
M_PRTCAM 2-147
M_PRTREL 2-149
M_PRTSLP 2-151
M_RATREL 2-153
M_RATSLP 2-154
M_RDTUNE 2-156
M_REGMOV 2-157
M_RGSTAT 2-161
M_RSET49 2-163
M_RSET57 2-164
M_RSET65 2-165
M_RSET73 2-166
M_SACC 2-167
M_SC_ACC B-25
M_SC_DEC B-27
M_SCRVLC 2-169
M_SETVAJ B-23
M_SRCMON 2-175
M_SRCPRC 2-177
M_SRCRDL 2-179
M_SRCWT 2-181
M_SRCWTL 2-183
M_STATUS 2-189
M_SUPMV 2-191
M_WTTUNE 2-193
M_XL2CM 2-195
Manual Tune Position Period A-17
Manual Tune Position Step A-17
Manual Tune Velocity Period A-17
Manual Tune Velocity Step A-17
Master Encoder Resolution A-18
Master Index Position A-18
Index-2

Master Position A-22
Maximum Motor Speed A-8
MMC application

new from standalone MMC example D-4
Motor Continuous Current A-8
Motor Encoder Resolution A-18
Motor Forward Direction Flag A-10
Motor ID A-8
Motor Index Position A-18
Motor Peak Current A-8
Motor Position A-22
Motor Table Information A-9
Motor Table Record Size A-9
Motor Table Version A-9
Motor Velocity A-22

N

Negative Current Limit Input A-22

O

Operating Mode A-17
Over Speed Limit A-6
Override Analog Outputs A-13
Override Digital Output A-11

P

Packed Drive Status A-20
Pole Count A-9
Position Command A-22
Position Error A-22
Position Error Limit A-5
Position Error Time A-5
Position Loop Derivative Gain A-5
Position Loop Feedforward Gain A-5
Position Loop Integral Gain A-5
Position Loop Proportional Gain A-5
Position Negative Peak Error A-22
Position Positive Peak Error A-22
Position Scale Text A-4
Position Scale Value A-4
Position Window Size A-5
Position Window Time A-5
Positive Current Limit Input A-22
Powerup Status A-3
Preset Acceleration Limits Enable A-16
Preset Input Acceleration Limit A-15

Preset Input Deceleration Limit A-15
press transfer asfbs B-1
Product Type A-3

R

Reset Drive A-19
Reset Faults A-19
Reset Peaks A-22
Reset Personality NVRAM A-4
revision

history 1-2
range 1-2

Rotor Inertia A-8
R-Phase Current A-23
Run State A-21

S

S_CLOS9 2-200
S_CLS101 2-203
S_CLS109 2-206
S_ERRORC 2-209
S_FHOME 2-212
S_IO_C 2-215
S_LHOME 2-217
Save Alignment Offset A-18
SD_AXIS 2-220
SD_IO 2-234
SD_STAT 2-236
SD_STAT1 2-244
Serial Port Baud Rate A-14
Serial Port Frame Format A-14
servo setup assistant spreadsheet F-1
Setpoint Acceleration A-19
Setpoint Control A-19
Slew Enable A-5
Slew Rate A-5
Software Drive Enable/Disable A-19
Software Drive ID A-14
Software Negative Current Limit A-7
Software Positive Current Limit A-7
Speed Window Size A-6
standalone MMC examples D-1

basic application D-1
Centurion DeviceNet positioning Mi-

coDSM drive application D-4
descriptions D-1
Index-3

operator interface application D-2
press transfer application D-3
SERCOS drive interface application D-3
stepper application D-4

T

Thermal Time Constant Enable A-9
Thermostat Flag A-8
Timebase A-24
Torque Constant A-8
Torque Current A-23
Torque Preset A-15
Torque Scale Text A-4
Torque Scale Value A-4
Torque Setpoint A-19
Torque Voltage Command A-23
T-Phase Current A-23
Trigger Mode A-24
Trigger Source A-24
Trigger Status A-24
Trigger Threshold A-24

Tuning Direction Flag A-15

V

Velocity Command A-22
Velocity Error A-23
Velocity Loop Derivative Gain A-6
Velocity Loop Integral Gain A-6
Velocity Loop Proportional Gain A-6
Velocity Loop Update Period A-6
Velocity Preset A-15
Velocity Scale Text A-4
Velocity Scale Value A-4
Velocity Setpoint A-19

W

Winding Inductance A-8
Winding Resistance A-8
WORD2HEX 2-251

Z

Zero Speed Limit A-6
Index-4

	Table of Contents: Motion ASFB Manual
	CHAPTER 1 Application Specific Function Block Guidelines
	Installation
	Revisions
	Network 1
	Network 2
	Network 3
	Network 4

	Using ASFBs

	CHAPTER 2 Motion ASFBs
	ADDCKSUM
	BYTE2HEX
	CHKCKSUM
	DWOR2HEX
	HEX2BYTE
	HEX2DWOR
	HEX2WORD
	M_C2M_1
	M_CHK1
	M_CHK101
	M_CHK109
	M_CHK49
	M_CHK57
	M_CHK65
	M_CHK73
	M_CHK9
	M_CHKALL
	M_CHOME
	M_CLOS1
	M_CLOS9
	M_CLS101
	M_CLS109
	M_CLSALL
	M_CRSFIN
	M_DATCAP
	M_DATCPT
	M_DISMV1
	M_DNJOGC
	M_DNPOSC
	M_DNSTAT
	M_DSMCOM
	RS232 Connections
	RS422/RS485 Connections
	M_DW2BOO
	M_ERROR
	M_FHOME
	M_INCPTR
	M_INDEX
	M_JOG
	M_LHOME
	M_LINCIR
	M_POSMV1
	M_PRTCAM
	M_PRTREL
	M_PRTSLP
	M_RATREL
	M_RATSLP
	M_RDTUNE
	M_REGMOV
	M_RGSTAT
	M_RSET49
	M_RSET57
	M_RSET65
	M_RSET73
	M_SACC
	M_SCRVLC
	M_SRCMON
	M_SRCPRC
	M_SRCRDL
	M_SRCWT
	M_SRCWTL
	ERR Output
	SERR Output
	BSER Output
	M_STATUS
	M_SUPMV
	M_WTTUNE
	M_XL2CM
	S_CLOS1
	S_CLOS9
	S_CLS101
	S_CLS109
	S_ERRORC
	S_FHOME
	S_IO_C
	S_LHOME
	SD_AXIS
	SD_IO
	SD_STAT
	SD_STAT1
	WORD2HEX

	APPENDIX A M_DSMCOM Commands
	Exception Responses
	Host Command Set
	Common Product Line Commands
	General Commands
	Position Loop Commands
	Velocity Loop Commands
	Torque Current Conditioning Commands
	Motor Commands
	Motor Commands (Continued)
	Motor Commands (Continued)
	Digital I/O Commands
	Analog I/O Commands
	Analog I/O Commands (Continued)
	Serial Port Commands
	Operating Mode Commands
	Operating Mode Commands (Continued)
	Alternative Operating Mode Commands
	Alternative Operating Mode Commands (Continued)
	Runtime Command and Control Commands
	Runtime Status Commands
	Runtime Status Commands (Continued)
	Runtime Data Commands
	Runtime Data Commands (Continued)
	Runtime Data Collection Commands
	Runtime Data Collection Commands (Continued)

	APPENDIX B Press Transfer ASFBs
	Introduction
	M_PRF2MV
	M_PRF1MV
	M_PRFERR
	M_PROFL
	M_PRFDWL
	M_SETVAJ
	M_SC_ACC
	M_CNST_V
	M_SC_DEC

	APPENDIX C Contents of the Applications CD
	APPENDIX D Standalone MMC Examples
	Descriptions of the Standalone MMC Examples
	Basic Application Examples
	Operator Interface Application Examples
	SERCOS Drive Interface Application Example
	Press Transfer Application Example
	Stepper Application Example
	Centurion DeviceNet Positioning MicroDSM Drive Application Example

	Starting a New MMC Application from a Standalone MMC Example

	APPENDIX E Digital Smart Drive Examples
	APPENDIX F Servo Setup Assistant
	Index

