NOTE

Progress is an ongoing commitment at Giddings & Lewis. We continually strive to offer the most advanced products in the industry; therefore, information in this document is subject to change without notice. The illustrations and specifications are not binding in detail. Giddings & Lewis shall not be liable for any technical or editorial omissions occurring in this document, nor for any consequential or incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any Giddings & Lewis product until the use of such product is completely understood. It is the responsibility of the user to make certain proper operation practices are understood. Giddings & Lewis products should be used only by qualified personnel and for the express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service Department, Giddings & Lewis, 660 South Military Road, P.O. Box 1658, Fond du Lac, WI 54936-1658. Giddings & Lewis can be reached by telephone at (920) 921–7100.

© 1996, 1998 Giddings & Lewis, LLC

Microsoft and MS-DOS are registered trademarks and Windows is a trademark of Microsoft Corporation. UL and cUL are registered trademarks of Underwriters Laboratories.
Centurion, PiC900, PiC90, PiC9 are trademarks of Giddings & Lewis.
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About This Manual.</td>
<td>15</td>
</tr>
<tr>
<td>Additional Instructions and Manuals</td>
<td>18</td>
</tr>
<tr>
<td>Host Commands and DSMPro</td>
<td>18</td>
</tr>
<tr>
<td>Touch Pad</td>
<td>18</td>
</tr>
<tr>
<td>Symbols and Conventions</td>
<td>19</td>
</tr>
<tr>
<td>Typographical and Wording Conventions</td>
<td>19</td>
</tr>
<tr>
<td>Graphical Symbols and Warning Classifications</td>
<td>20</td>
</tr>
<tr>
<td>CHAPTER 1 Safety</td>
<td></td>
</tr>
<tr>
<td>Installing and Using the Centurion DSM100 Drive</td>
<td>21</td>
</tr>
<tr>
<td>Safety Classifications</td>
<td>21</td>
</tr>
<tr>
<td>Potential Hazards</td>
<td>21</td>
</tr>
<tr>
<td>Voltage Potentials</td>
<td>22</td>
</tr>
<tr>
<td>Your Responsibilities</td>
<td>22</td>
</tr>
<tr>
<td>Safety Guidelines</td>
<td>23</td>
</tr>
<tr>
<td>CHAPTER 2 Selecting Other System Components</td>
<td></td>
</tr>
<tr>
<td>Centurion DSM100 Drive Overview</td>
<td>25</td>
</tr>
<tr>
<td>Drive Power Ratings</td>
<td>25</td>
</tr>
<tr>
<td>Interface Cables</td>
<td>25</td>
</tr>
<tr>
<td>Centurion DSM100 Drive Features</td>
<td>26</td>
</tr>
<tr>
<td>Stand-alone Design</td>
<td>26</td>
</tr>
<tr>
<td>High Performance Microcontroller Technology</td>
<td>26</td>
</tr>
<tr>
<td>IPM Technology</td>
<td>26</td>
</tr>
<tr>
<td>Analog and Digital Interfaces</td>
<td>26</td>
</tr>
<tr>
<td>Encoder Control</td>
<td>26</td>
</tr>
<tr>
<td>Encoder Output</td>
<td>26</td>
</tr>
<tr>
<td>Digital I/O</td>
<td>26</td>
</tr>
<tr>
<td>Analog I/O</td>
<td>27</td>
</tr>
<tr>
<td>AC Input Power</td>
<td>27</td>
</tr>
<tr>
<td>Personality Module</td>
<td>27</td>
</tr>
<tr>
<td>Multiple Protection Circuits</td>
<td>27</td>
</tr>
<tr>
<td>DSMPro Software</td>
<td>27</td>
</tr>
<tr>
<td>Communications</td>
<td>28</td>
</tr>
<tr>
<td>Autotuning</td>
<td>28</td>
</tr>
<tr>
<td>Agency Approvals</td>
<td>28</td>
</tr>
<tr>
<td>Options</td>
<td>28</td>
</tr>
<tr>
<td>Motors</td>
<td>29</td>
</tr>
<tr>
<td>European Union Requirements</td>
<td>30</td>
</tr>
<tr>
<td>CHAPTER 3 DSMPro Installation</td>
<td></td>
</tr>
<tr>
<td>Hardware and Software Requirements.</td>
<td>31</td>
</tr>
<tr>
<td>Installing DSMPro</td>
<td>32</td>
</tr>
<tr>
<td>Starting and Quitting DSMPro</td>
<td>33</td>
</tr>
<tr>
<td>Version Level</td>
<td>33</td>
</tr>
<tr>
<td>The DSMPro Start-Up Screen</td>
<td>33</td>
</tr>
<tr>
<td>The Readme File</td>
<td>34</td>
</tr>
<tr>
<td>Firmware Files</td>
<td>34</td>
</tr>
</tbody>
</table>
Table of Contents

Chapter 4: Unpacking, Inspecting and Storing
- Unpacking the Drive ..
- Inspection Procedure ..
- Testing the Unit ...
 - Hardware Set Up ..
 - Drive Checkout Test ..
- Storing the Unit ..

Chapter 5: Installation
- Mechanical Installation Requirements
- Interface Connections ..
 - Wiring ..
 - Electromagnetic Compatibility
 - Qualified AC Line Filters
 - Giddings & Lewis AC Line Filters

Chapter 6: Interfaces
- J1 – Controller ...
- Digital I/O Power ...
- Digital Inputs ...
- Digital Outputs ..
- Analog Inputs ...
- Analog Outputs ..
 - Motor Encoder Output Signals
- IOU8 Signal Generation
 - Auxiliary Encoder Inputs
 - Interface Cable Examples
 - J1 Terminal Strip/Breakout Board
- J2 – Encoder ..
- J2 Terminal Strip/Breakout Board
- J3 – Auxiliary Port ..
- J4 and J5 – Serial Port
 - Serial Communications Overview
 - RS-232 Connections
 - Four Wire RS-485 Connections
- A1, A2 and COM – Analog Outputs

Chapter 7: Power Connections
- TB1 – DC Bus and AC Power
 - Motor Power Cabling
 - Motor Overload Protection
 - Emergency Stop Wiring
 - DC Bus ...
 - AC Power Cabling ..
 - Auxiliary Power ..
- TB2 – Shunt Regulator
 - External Shunt Connection
Application and Configuration Examples

Analog Control
- Hardware Set Up: 105
- Connection Diagram: 105
- Configuration: 106
- Tuning: 107
- Operation: 108

Preset Controller
- Hardware Set Up: 109
- Connection Diagram: 110
- Configuration: 111
- Tuning: 112
- Operation: 113

Position Follower (Master Encoder)
- Hardware Set Up: 114
- Connection Diagram: 115
- Configuration: 115
- Tuning: 117
- Operation: 117

Position Follower (Step/Direction)
- Hardware Set Up: 119
- Connection Diagram: 120
- Configuration: 120
- Tuning: 122
- Operation: 122

Position Follower (Step Up/Step Down)
- Hardware Set Up: 123
- Connection Diagram: 124
- Configuration: 124
- Tuning: 126
- Operation: 126

Incremental Indexing
- Hardware Set Up: 127
- Connection Diagram: 128
- Configuration: 128
- Tuning: 130
- Operation: 130

Registration Indexing
- Hardware Set Up: 132
- Connection Diagram: 132
- Configuration: 133
- Tuning: 135
- Operation: 136

Absolute Indexing
- Hardware Set Up: 137
- Connection Diagram: 138
- Configuration: 138
- Tuning: 140
- Operation: 140

Modifying User Units
- Changing the Display Units Settings: 141
Tuning

- **Tuning Guidelines** .. 143
- **General Tuning Rules** ... 143
- **High Inertia Loads** ... 143
- **Mechanical Resonance** .. 143
- **Backlash** .. 144
- **Auto Tune Mode** .. 145
- **Auto Tuning** .. 146
- **Manual Tune Mode** ... 147
 - **Gains** .. 147
 - **Filters** .. 148
 - **Manual Tuning** .. 149
 - **Velocity Loop Tuning Examples** 151

Status Display

- **Operating Messages** ... 153
- **Error Messages** .. 154
 - **Run-Time Error Codes** 154
 - **Power-Up Error Codes** 155

Maintenance and Troubleshooting

- **Maintenance** ... 157
 - **Periodic Maintenance** 157
 - **Fuse Replacement** ... 157
 - **EEPROM Personality Module** 157
 - **Firmware Upgrading** .. 160
 - **Firmware Upgrade Procedure using DSMPro** 160
 - **Troubleshooting** ... 161
 - **Error Codes** .. 161
 - **RS-232 Communication Test** 166
 - **Testing Digital Outputs** 167
 - **Testing Digital Inputs** 168
 - **Testing Analog Outputs** 169
 - **Testing Positive and Negative Current Limits** 169
 - **Testing Encoder Inputs** 171

Options and Accessories

- **Centurion DSM100 Drives** 173
- **Fuses** .. 174
- **Options and Accessories** 174
 - **Interface Cables** .. 174
 - **Serial Interface Cables** 176
 - **Encoder Feedback Cables** 177
 - **Motor Power Cables** .. 178
 - **Connector Kits** .. 179
 - **Mating Connectors** .. 179

APPENDIX B

Cable Diagrams, Schematics and Examples

- **Interface Cables** ... 182
- **Serial Interface Cables** 189
- **Encoder Feedback Cables** 192
Table of Contents

Motor Power Cables 197
Cabling Examples ... 201

APPENDIX C

TouchPad Instructions

- Installation and Operation ... 205
- TouchPad Commands .. 207
- Supplemental Instructions ... 210
 - Motor Selection ... 210
 - Displays .. 210
- Motor Table ... 213
- TouchPad Options ... 213
- TouchPad Lists ... 214

APPENDIX D

Electromagnetic Compatibility Guidelines for Machine Design

- Filtering .. 220
 - AC Line Filter Selection ... 220
- Grounding .. 222
- Shielding and Segregation ... 223

APPENDIX E

Dynamic Braking Resistor Selection

- Dynamic Braking Equations ... 225
 - Sample Calculations .. 227

APPENDIX F

Specifications

- Power .. 233
- Power Dissipation .. 235
- DSM 007 and DSM 007P, DSM120 and DSM120P, DSM130 and DSM130P .. 243
- DSM175 and DSM175P .. 244
- DSM1150 and DSM1150P ... 245
- Interface Connections ... 246

EU Directives ... 247

DSM Drive Hardware and Installation Manual
List of Figures

CHAPTER 1 Safety

CHAPTER 2 Selecting Other System Components

CHAPTER 3 DSMPro Installation

CHAPTER 4 Unpacking, Inspecting and Storing
 Connection Diagram .. 38

CHAPTER 5 Installation
 DSM Mounting Dimensions .. 42
 MDF AC Line Filter Mounting Diagrams 46
 MIF Single Phase AC Line Filter Mounting Diagram 48
 Power Wiring Diagram for DSM110, 110P, 120, 120P, 130 and 130P 49
 Power Wiring Diagram for DSM175 and DSM175P 50
 Power Wiring Diagram for DSM1150 and DSM1150 51

CHAPTER 6 Interfaces
 Digital Input Circuit .. 55
 Drive Input Connected to a Switch/Relay Contact 58
 Drive Input Connected to an Opto-Isolator 58
 Drive Input Connected to an Active High Sourcing Transistor 58
 Drive Input Connected to Active Low Output using
 a Switch/Relay .. 58
 Drive Input Connected to Active Low Output using
 an Opto-Isolator ... 59
 Drive Input Connected to Sourcing Output 59
 READY and BRAKE Circuits .. 60
 Digital Output Circuit ... 61
 Drive Output Connected to an Opto-Isolator 62
 Drive Output Connected to an LED Indicator 62
 Drive Output Connected to a Resistive Load 63
 Drive Output Connected to a Switch/Relay 63
 Drive Output Connected to Active Low Input using
 a Switch/Relay .. 63
 Drive Output Connected to Active Low Input using
 an Opto-Isolator ... 63
 Drive Output Connected to Active High (Sinking) Input 63
 Positive and Negative Current Limit Circuits 64
 Analog COMMAND Input Circuit ... 65
 ANALOG 1 and ANALOG 2 Output Circuits 66
 Output Encoder Interface Circuit 67
 Unbuffered Encoder Signal Wiring 68
 Auxiliary Encoder Input Types ... 69
 Auxiliary Encoder Input Circuit 69
 External Encoder Interface via TTL Differential Line Drivers 71
 Complementary Encoder Interface via 7406 Line Drivers
 with Pull-up Resistors .. 71
 Complementary Encoder Interface via Standard TTL Logic 72
List of Figures

- Single-Ended Encoder Interface via Open Collector Transistor without Pull-up (not recommended) .. 72
- Single-Ended Encoder Interface via Standard TTL Signals (not recommended) ... 72
- Single-Ended Encoder Interface via Open Collector Transistor with 5 VDC to 12 VDC Pull-up (not recommended) 73
- Single-Ended Encoder Interface via Open Collector Transistor with 24 VDC Pull-up (not recommended) 73
- External Step/Direction Interface via TTL Differential Line Drivers ... 74
- External Step/Direction Interface via Single-Ended TTL Line Drivers (not recommended) .. 74
- External CW/CCW (Step Up/Step Down) Interface via TTL Differential Line Drivers .. 75
- External CW/CCW (Step Up/Step Down) Interface via Single-Ended Line Drivers (not recommended) 75
- Motor Encoder Interface Circuit .. 78
- Hall Effect Sensor Circuit .. 78
- Centurion DSM Motor Encoder Connections ... 79
- RS-232/485 Interface Circuit .. 85
- Sixteen Position Rotary Addressing Switch .. 86
- RS-232 Connection Diagrams ... 88
- RS-485/RS-422 Communication Comparison ... 89
- Four Wire RS-485 Daisy Chain Connection Diagram 91
- RS-232 to RS-485 Multi-Drop Connection Diagram 91
- ANALOG 1 and ANALOG 2 Output Circuits 92

CHAPTER 7 Power Connections

- Motor Power EMC Shield Connection .. 95
- YSM Series Pigtail Ground ... 95
- Emergency Stop Contactor Wiring ... 97
- External Shunt Wiring Examples ... 102
- External Shunt Mounting Diagram .. 103

CHAPTER 8 Application and Configuration Examples

- Analog Controller Connection Diagram 106
- Preset Controller Connection Diagram 110
- Master Encoder Connection Diagram 115
- Step/Direction Controller Connection Diagram 120
- Step Up/Step Down Controller Connection Diagram 124
- Incremental Indexing Examples ... 127
- Incremental Indexing Connection Diagram 128
- Registration Indexing Examples ... 132
- Registration Indexing Connection Diagram 133
- Absolute Indexing Examples .. 137
- Absolute Indexing Connection Diagram 138
- PC Display Units – Default Dialog .. 141

CHAPTER 9 Tuning

- Velocity Loop Structure .. 144
- Torque Current Conditioning Structure 145
Signal Nomenclature ... 151
Underdamped Signal ... 151
Overdamped Signal ... 152
Critically Damped Signal (Ideal Tuning) 152

CHAPTER 10 Status Display

CHAPTER 11 Maintenance and Troubleshooting
Fuse and Jumper Locations .. 159

APPENDIX A Options and Accessories

APPENDIX B Cable Diagrams, Schematics and Examples
J1 to J3 Interface Cable (P/N 401-34422) .. 182
J1 to No Connector Interface Cable (P/N 401-34411) 183
J3 to No Connector Interface Cable (P/N 401-34410) 184
J1 to 50-pin Terminal Block Kit Diagram (P/N 401-34409-00) 185
J1 to 50-pin D-Connector Cable (supplied with 401-34409 kit) 186
J2 to 25-pin Terminal Block Kit Diagram (P/N 401-34408-00) 187
J2 to 25-pin D-Connector Cable (supplied with kit 401-34408) 188
J5 to 9-pin D-Shell Interface Diagram (P/N 502-04020-XX) 189
J5 to J5 Serial Interface Cable (P/N 502-04021-XX) 190
J5 to No Connector Serial Interface Cable (P/N 401-34423-XX) 191
FSM, HSM or SSM Series Motors to No Connector Encoder Cable (P/N 401-34425-XX) ... 192
J2 to FSM, HSM or SSM Series Encoder Cable (P/N 401-34407-XX) 193
J2 to YSM Series Encoder Cable (P/N 401-30233-XX) 194
No Connector to YSM Series Encoder Cable (P/N 401-30253-XX) 195
J2 to No Connector Encoder Cable (P/N 401-34424-XX) 196
200 or 300 FSM, HSM or SSM Series Power Cable (P/N 401-34413-XX) 197
400 FSM, HSM or SSM -Series Power Cable (P/N 401-34414-XX) 197
610 or 620 FSM, HSM or SSM Series Power Cable (P/N 401-34415-XX) 198
630 SSM or HSM Series Power Cable (P/N 401-34416-XX) 198
800 FSM or HSM Series Power Cable (P/N 401-34417-XX) 199
YSM Series Power Cable (P/N 401-30232-XX) 199
DSM175 to 600 Motors (FSM, HSM or SSM Series)(Part number to be determined, contact factory) .. 200
FSM, HSM or SSM Series Motors to Centurion DSM100 Drive 201
FSM, HSM or SSM Series Motors to Centurion DSM100 Drive using P2 Terminal Strip ... 202
YSM Series Motors to Centurion DSM100 Drive 203
YSM Series Motors to Centurion DSM100 Drive using P2 Terminal Strip .. 204

APPENDIX C TouchPad Instructions
TouchPad Connection and Pinouts .. 205
TouchPad Version Number Display .. 206
TouchPad Command Tree ... 208
APPENDIX D Electromagnetic Compatibility Guidelines for Machine Design

EMI Source-Victim Model .. 219
AC Line Filter Installation ... 221
Single Point Ground Types .. 222

APPENDIX E Dynamic Braking Resistor Selection

APPENDIX F Specifications

DSM Interface Connection Diagram 246
List of Tables

CHAPTER 1
Safety

CHAPTER 2
Selecting Other System Components

CHAPTER 3
DSMPro Installation

CHAPTER 4
Unpacking, Inspecting and Storing

CHAPTER 5
Installation
Qualified AC Line Filters ... 45
MDF AC Line Filter Dimensions 47
MIF AC Line Filter Dimensions 48

CHAPTER 6
Interfaces
24 Volt Power Supply Specifications 55
5 Volt Power Supply Specifications 55
General and Dedicated Inputs 56
INPUT1, INPUT2, INPUT3, INPUT4 and FAULT RESET Functions 56
Digital Input Specifications .. 57
READY Output Specifications 60
BRAKE Output Specifications 60
General and Dedicated Outputs 61
OUTPUT1, OUTPUT2, OUTPUT3 and OUTPUT4 Functions 61
Transistor Output Specifications 62
Analog Inputs +I LIMIT and -I LIMIT 64
Positive and Negative Current Limit Input Specification 65
Analog Command Input ... 65
Analog Command Input Specifications 65
Analog Outputs: ANALOG 1 and ANALOG 2 66
Analog Output Specifications 66
Motor Encoder Output Signal 67
Motor Encoder Output Specifications 67
Auxiliary Encoder/Step and Direction/CW & CCW (Step Up & Down) Signals 70
Quadrature Interface Specifications 70
Step/Direction and CW/CCW (Step Up/Step Down) Interface Specifications 74
J2- Motor Encoder Connector Pin-Outs 78
J3 – Auxiliary Connector Pin-Outs 81
J4 and J5 – Serial Port Connector Pin-Outs 86
Drive Addressing ... 87
Analog outputs ANALOG 1 and ANALOG 2 92

CHAPTER 7
Power Connections
TB1 – Motor Power Terminals 94
Motor Power Contact and Wire Sizing Recommendations 96
TB1 – DC Bus Terminals ... 97
TB1 – AC Power Terminals ... 98
List of Tables

AC Input Power Sizing Requirements ... 98
Auxiliary Power Terminals ... 100
Auxiliary Power Sizing Requirements ... 100
TB2 – Shunt Regulator Terminals .. 101
Internal Shunt Power Ratings for Drive Models 102
Maximum External Shunt Power Ratings for Drive Models 102
Minimum Ratings for Customer Supplied External Shunt Resistor 102

CHAPTER 8 Application and Configuration Examples
Preset Binary Inputs ... 109

CHAPTER 9 Tuning
Velocity Loop Gains .. 147
Position Loop Gains ... 148

CHAPTER 10 Status Display
Run-Time Error Codes ... 154
Power-Up Error Codes .. 155

CHAPTER 11 Maintenance and Troubleshooting
Troubleshooting Guide 161

APPENDIX A Options and Accessories

APPENDIX B Cable Diagrams, Schematics and Examples

APPENDIX C TouchPad Instructions
TouchPad Fault/Error/Warning Displays ... 211
TouchPad Motor Table Identification by Motor Series 213
TouchPad Motor Table Identification by Motor ID 213
Option Selections for the TouchPad ... 213
Drive Communications Parameter List for the TouchPad 214
Baud Rate Parameter List for TouchPad ... 214
Encoder Output Parameter List for TouchPad 214
IO Mode Parameter List for TouchPad .. 214
Index Pointer Parameter List for TouchPad 214
Index Termination Parameter List for TouchPad 215
Home Type Parameter List for TouchPad 215
Homing Auto-Start Parameter List for TouchPad 215
Reverse Enable for Homing .. 215
Digital Input Parameter List for TouchPad 215
Digital Output Parameter List for TouchPad 216
Analog Output Parameter List for TouchPad 216
Drive Status List for TouchPad ... 216
Input Flags Parameter List for TouchPad 217
Output Flags Parameter List for TouchPad 217
APPENDIX D Electromagnetic Compatibility Guidelines for Machine Design

APPENDIX E Dynamic Braking Resistor Selection
Dynamic Braking Resistor Parameters .. 225

APPENDIX F Specifications
Centurion DSM100 Drive Power Ratings .. 233
List of Tables
Preface

This manual provides a step-by-step approach to building a servo system using a Centurion DSM100 Drive. The manual is divided into chapters that cover specific phases of the system design process; from ordering components that will complement the performance of the Centurion DSM100 Drive, to receiving, installing and verifying the drive’s functionality.

Chapters and appendices in the manual include:

- Safety
- Selecting Other System Components
- DSMPro Installation
- Unpacking, Inspecting and Storing
- Installation
- Interfaces
- Power Connections
- Application and Configuration Examples
- Tuning
- Status Display
- Maintenance and Troubleshooting
- Cable Diagrams, Schematics and Examples
- TouchPad Instructions
- Electromagnetic Compatibility Guidelines for Machine Design
- Dynamic Braking Resistor Selection
- Specifications
- Product Support

The intent of the manual is to assemble a high-performance servo system in a methodical manner. By making correct decisions and taking appropriate actions a servo system that performs “as designed” can be assured.

About This Manual

This manual provides instructions on how to setup and connect the Centurion DSM100 Drive to a controlling device and a motor. A Centurion DSM100 Drive may operate in one of several different functional modes. The hardware connections necessary to run the drive are explained and basic software instructions are provided for common set up procedures. For detailed explanation of software instructions, refer to the comprehensive on-line instructions available in the DSMPro software.

This manual explains how to install your Centurion DSM100 Drive using DSMPro software with a personal computer. If you are using a TouchPad device, abbreviated command titles are displayed but the setup steps remain the same. If you are using the serial Host Command Language to control the drive, comprehensive instructions are accessible through the Host Mode icon displayed in the DSMPro window.

This manual is organized into chapters and appendixes. The topics covered in each chapter and section are briefly described. Typographical conventions, warning and cautions specific to the drive, and complementary manuals are also described.
<table>
<thead>
<tr>
<th>Title</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safety</td>
<td>Lists general safety requirements that must be followed when installing or servicing the drive.</td>
</tr>
<tr>
<td>Selecting Other System</td>
<td>Reviews the major features of the Centurion DSM100 Drives and identifies motors and signal types that are compatible.</td>
</tr>
<tr>
<td>Components</td>
<td></td>
</tr>
<tr>
<td>DSMPro Installation</td>
<td>Explains how to install, access and exit DSMPro.</td>
</tr>
<tr>
<td>Unpacking, Inspecting and</td>
<td>Lists what should be included with your Centurion DSM100 Drive and instructs you on how to perform a basic functional test before installing or storing the drive.</td>
</tr>
<tr>
<td>Storing</td>
<td></td>
</tr>
<tr>
<td>Installation</td>
<td>Instructs you on how to physically install your Centurion DSM100 Drive.</td>
</tr>
<tr>
<td>Interfaces</td>
<td>Provides comprehensive information about the signals available on each connector. Each signal or set of signals is identified by:</td>
</tr>
<tr>
<td></td>
<td>• Power requirements for driving the signal.</td>
</tr>
<tr>
<td></td>
<td>• Functions performed by the signal.</td>
</tr>
<tr>
<td></td>
<td>• Specifications, including ON and OFF states.</td>
</tr>
<tr>
<td></td>
<td>• Schematic depictions of the circuit design for each signal type.</td>
</tr>
<tr>
<td></td>
<td>The signals are grouped under the following connectors.</td>
</tr>
<tr>
<td></td>
<td>• J1 – Controller</td>
</tr>
<tr>
<td></td>
<td>Diagrams show cable connections needed for common interfaces.</td>
</tr>
<tr>
<td></td>
<td>• J2 – Encoder</td>
</tr>
<tr>
<td></td>
<td>Details information about the encoder signals, Hall Effect switches and thermostat connections available through this connector.</td>
</tr>
<tr>
<td></td>
<td>• J3 – Auxiliary Port</td>
</tr>
<tr>
<td></td>
<td>Provides a second controller connection that duplicates the first 26 pins on J1, the Controller connector</td>
</tr>
<tr>
<td></td>
<td>• J4 and J5 – Serial Port</td>
</tr>
<tr>
<td></td>
<td>Diagrams and instructions detail how to connect one or more drives using RS-232 communications in a single or daisy-chain connection, or to connect several drives using Multi-Drop RS-485.</td>
</tr>
<tr>
<td></td>
<td>• A1, A2 and COM – Analog Outputs</td>
</tr>
<tr>
<td></td>
<td>Describes the connections that allow monitoring of the analog command signals with external equipment.</td>
</tr>
<tr>
<td>Power Connections</td>
<td>Provides information on making motor power, DC bus and AC Power connections.</td>
</tr>
<tr>
<td>Application and Configuration</td>
<td>Describes the hardware and software set up necessary to install the drive as one of the following types:</td>
</tr>
<tr>
<td>Examples</td>
<td>• Analog Control in velocity or torque mode</td>
</tr>
<tr>
<td></td>
<td>• Preset Controller in velocity or torque mode</td>
</tr>
<tr>
<td></td>
<td>• Position Follower (Master Encoder) in velocity mode</td>
</tr>
<tr>
<td></td>
<td>• Position Follower (Step/Direction) in velocity mode</td>
</tr>
<tr>
<td></td>
<td>• Position Follower (Step Up/Step Down) in velocity mode</td>
</tr>
<tr>
<td></td>
<td>• Incremental Indexing</td>
</tr>
<tr>
<td></td>
<td>• Registration Indexing</td>
</tr>
<tr>
<td></td>
<td>• Absolute Indexing</td>
</tr>
<tr>
<td></td>
<td>• Modifying User Units</td>
</tr>
<tr>
<td>Tuning</td>
<td>Provides instructions on how to tune a drive and motor combination using the autotuning or manual tuning features in DSMPro.</td>
</tr>
<tr>
<td>Status Display</td>
<td>Discusses the operator indicators available on the front panel. Operating or Error Messages are explained.</td>
</tr>
<tr>
<td>Maintenance and Troubleshooting</td>
<td>Describes the minimal maintenance necessary with the Centurion DSM100 Drives and provides a comprehensive troubleshooting chart of potential problems and their solutions.</td>
</tr>
<tr>
<td>Title</td>
<td>Description</td>
</tr>
<tr>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Cable Diagrams, Schematics and Examples</td>
<td>Provides schematics and cabling examples.</td>
</tr>
<tr>
<td>TouchPad Instructions</td>
<td>Describes how to program a Centurion DSM100 Drive using the optional TouchPad device. Tables reference the various motor types that are programmed to work with the Centurion DSM100 Drive. A copy of the TouchPad Command Tree Card for the current firmware version is bound into the manual.</td>
</tr>
<tr>
<td>Electromagnetic Compatibility Guidelines for Machine Design</td>
<td>Describes common electrical noise problems and suggests methods to ensure ElectroMagnetic Compatibility.</td>
</tr>
<tr>
<td>Dynamic Braking Resistor Selection</td>
<td>Provides equations to assist in sizing resistors for dynamic braking.</td>
</tr>
<tr>
<td>Specifications</td>
<td>Details the design and operational specifications for the Centurion DSM100 Drives in a tabular format.</td>
</tr>
<tr>
<td>Product Support</td>
<td>Describes the product assistance available from Giddings & Lewis. Telephone numbers for product assistance and on-line information are listed.</td>
</tr>
</tbody>
</table>
Additional Instructions and Manuals

Host Commands and DSMPro

All Centurion DSM100 Drives are setup through serial Host Commands. The drives may be configured directly through the Host Command language or indirectly through the DSMPro software. DSMPro is a graphical user interface that provides a visual method of accessing the Host Command language through the Microsoft Windows Operating System.

All documentation for both the Host Commands and DSMPro is on-line. Host Command information is available through a comprehensive on-line reference manual. DSMPro information is available through Help menus. The on-line documents provide in-depth explanations of the Host Command language as well as the menus, windows and dialog boxes that make DSMPro a convenient method for programming Centurion DSM100 Drives.

- To access the Host Command Reference
 Click on the Host Command Reference icon in the DSMPro program group.

- To access DSMPro Help
 Open DSMPro by clicking on the DSMPro icon in the DSMPro group, and
 Press the F1 key.

Touch Pad

The optional TouchPad may be used to monitor and configure the Centurion DSM100 Drive. The TouchPad command structure is similar to the structure of DSMPro, but operates through an abbreviated keypad interface. The card TouchPad Instructions is provided with the TouchPad. It describes the installation and operational instructions in a pocket-sized directory. The TouchPad Command Tree Card and additional instructions for the TouchPad are included in the section titled, “TouchPad Instructions” which begins on page C-205. The TouchPad Command Tree Card is a graphical presentation of both the operational instructions and the command structure for the Centurion DSM100 Drives. You may find it convenient to refer to the card when using the TouchPad with a drive.
Symbols and Conventions

Typographical and Wording Conventions

This manual uses the following typographical and wording conventions:

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
</table>
| » | Text preceded by right guillemet explains how to access the particular function in the preceding paragraph. For example, To Start DSMPro in Windows

 » Choose the icon DSMPro. |
| **Drive Set Up** | Text shown in this font and underlined indicates a Hot Key (keystroke combination) to quickly access a command. For example,

 Choose **Drive Set Up**.

 indicates typing ALT+D followed by ENTER accesses this command. |
| DSMPro | Text shown in this font is information to enter in a window or dialog box. For example,

 Choose the icon DSMPro. |
| win | Text in lower case bold is information to enter at a keyboard. For example,

 To start Windows from the DOS prompt, type **win** and then press ENTER. |
| ALT+F4a | Keys that should be pressed simultaneously are shown with a plus sign (+) between the key names. This example closes the active window. |
| ALT, F, N | Keys that should be pressed in sequence are shown with a comma (,) between the key names. This example opens the File menu and then opens a new file. |
| Choose | The wording indicates that an icon or a command is to be selected from a window or a command box. For example, the instruction for accessing the command icon Drive Set Up states:

 Choose **Drive Set Up**. |
| Select | The wording indicates that options are to be defined or selected from a list. For example, the instruction for accessing or entering information states:

 Select Drive Type and Motor Model from the respective list box. |
| Type | The wording indicates that commands are to be entered into a command box. For example, the instruction for loading DSMPro states:

 Type **a:setup** and then press ENTER. |
| **TIP** | Tips provide hints or shortcuts that are useful to know. For example,

 DSMPro always displays the Help menu - Quick Start - when it is first accessed. To disable this automatic display, choose the menu item **Show Quick Start** from the Help menu. |

a. Microsoft® Windows™ reserves certain multiple keystroke combinations to activate Windows commands.
Graphical Symbols and Warning Classifications

This manual uses the following graphical symbols and warning classifications. The use of a symbol and signal word is based on an estimation of the likelihood of exposure to the hazardous situation and what could happen as a result of exposure to the hazard.

<table>
<thead>
<tr>
<th>Example</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Protective conductor terminal (Earth ground)</td>
</tr>
<tr>
<td></td>
<td>Chassis terminal (not a protective ground)</td>
</tr>
<tr>
<td></td>
<td>Risk of electrical shock.</td>
</tr>
<tr>
<td></td>
<td>Symbol plus DANGER, WARNING or CAUTION: These notices provide information intended to prevent potential personal injury and equipment damage.</td>
</tr>
</tbody>
</table>
Installing and Using the Centurion DSM100 Drive

Read the complete manual before attempting to install or operate the Centurion DSM100 Drive. By reading the manual you will become familiar with practices and procedures that allow you to operate the Centurion DSM100 Drive safely and effectively.

Safety Classifications

Safety notices describe the likelihood of exposure to hazardous situations and what could happen as a result of exposure to the hazard. Following are symbols and words used to introduce the information that is intended to prevent potential personal injury and equipment damage.

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Words</th>
</tr>
</thead>
<tbody>
<tr>
<td>![DANGER]</td>
<td>DANGER: Indicates an imminently hazardous situation which, if not avoided, will result in death or serious injury. This signal word is limited to the most extreme situations.</td>
</tr>
<tr>
<td>or</td>
<td>WARNING: Indicates a potentially hazardous situation which, if not avoided, could result in death or serious injury.</td>
</tr>
<tr>
<td>![CAUTION]</td>
<td>CAUTION: Indicates a potentially hazardous situation which, if not avoided, may result in minor or moderate injury. It may be used for situations that cause property damage only. It may also be used to alert against unsafe practices.</td>
</tr>
</tbody>
</table>

Potential Hazards

The equipment described in this manual is intended for use in industrial drive systems. This equipment can endanger life through rotating machinery and high voltages, therefore it is essential that guards for both electrical and mechanical parts are not removed. The main hazards which can be encountered in the use of this equipment are:

- Electric shock hazards
- Electric fire hazards
- Mechanical hazards
- Stored energy hazards

These hazards must be controlled by suitable machine design, using the safety guidelines which follow. There are no chemical or ionizing radiation hazards.
Voltage Potentials

DANGER

DC bus capacitors may retain hazardous voltages for several minutes after input power has been removed, but will normally discharge in several seconds. Measure the DC bus voltage to verify it has reached a safe level each time power is removed before working on the drive; or wait for the time indicated in the warning on the front of the drive. Failure to observe this precaution could result in severe bodily injury or loss of life.

Voltage potentials for the internal drive circuitry vary from 325 Volts above to 325 Volts below earth ground for a 240 Volt input. Voltages can exceed 450 VDC or 240 VAC within the Centurion DSM100 Drive. All circuits, including the connections on the front panel, should be considered “hot” when main or auxiliary power is connected and for the time specified in the warning on the front of the drive after power is removed.

Your Responsibilities

As the user or person installing this drive, you are responsible for determining the suitability of the product for the intended application. Giddings & Lewis is neither responsible nor liable for indirect or consequential damage resulting from the inappropriate use of this product.

A qualified person is someone who is familiar with all safety notes and established safety practices, with the installation, operation and maintenance of this equipment and the hazards involved. For more detailed definitions, refer to IEC 364.

It is recommended that anyone who operates or maintains electrical or mechanical equipment should have a basic knowledge of First Aid. As a minimum, they should know where the First Aid equipment is kept and the identity of the official First Aiders.
Safety Guidelines

Electrical shock and fire hazards are avoided by using normal installation procedures for electrical power equipment in an industrial environment. Installation must be undertaken by suitably qualified personnel. Note that this amplifier must be installed in an industrial cabinet such that access is restricted to suitable qualified personnel.

Mechanical hazards are associated with potentially uncontrolled movement of the motor shaft. If this imposes a risk in the machine, then appropriate precautions must be made to electrically disconnect the motor from the drive when personnel have access to moving parts of the machine. Note also that the motor must be securely mounted at all times.

Stored energy hazards are both electrical and mechanical.

- Electrical hazards can be avoided by disconnecting the drive from its power source and measuring the DC bus voltage to verify it has reached a safe level or by waiting for the time indicated in the warning on the front of the drive prior to removing the protective covers or touching any connections.
- Mechanical hazards require a risk analysis on the effects of stored mechanical energy when the machine is running at speed, as well as the potential for the conversion of electrical energy stored in the drive being converted to mechanical energy. Electrical energy may be stored in drive for the time indicated in the warning on the front of the drive.

The following points should be observed for the safety of personnel. These safety notes do not represent a complete list of the steps necessary to ensure safe operation of the equipment. Contact your nearest Giddings & Lewis representative for additional information.

- Only qualified personnel familiar with the equipment are permitted to install, operate and maintain the device.
- System documentation must be available and observed at all times.
- All non-qualified personnel are kept at a safe distance from the equipment.
- The system must be installed in accordance with local regulations.
- The equipment is intended for permanent connection to a main power input. It is not intended for use with a portable power input.
- Do not power up the unit without the covers in place and the protective conductor connected.
- Do not operate the unit without connecting the motor conductor to the appropriate terminal on the drive.
- Always remove power before making or removing any connection on the unit.
- Before removing the cover of the unit, shut off the main and auxiliary power and measure the DC bus voltage to verify it has reached a safe level or wait for the time indicated in the warning on the front of the drive.
- Do not make any connections to the internal circuitry. Connections on the front panel are the only points where users should make connections.
- Be careful of the DC bus and shunt terminals. High voltage is present when power is applied to the Centurion DSM100 Drive.
- Never connect the DC- terminal to earth ground, the drive requires a floating DC bus.
- Do not use the ENABLE input as a safety shutdown. Always remove power to the Centurion DSM100 Drive before maintaining or repairing the unit.
- When operating a DSM-175 or DSM-175P with a single phase power input, the current limits must be set correctly.
- Motors without thermal protection devices require a valid thermal time constant. Otherwise the motor overload protection will not function properly.
Selecting Other System Components

The Giddings & Lewis Centurion DSM100 Drives are part of a family of digital drives that use micro-controllers to manage the current, velocity, and position. All system and application parameters are set in software, which ensures repeatability of all functions and prevents element drift.

This chapter reviews the Centurion DSM100 Drive and associated motors, command sources and interfaces. Selection of complementary servo components allows you to efficiently connect other devices to your Centurion DSM100 Drive. Pertinent information about each is provided to assist you in planning your servo system.

Centurion DSM100 Drive Overview

Drive Power Ratings
Several power levels of Centurion DSM100 Drives are available. All models have integral power supplies and shunt regulators and are functionally equivalent. They differ only in output power and physical size:

- DSM110 and DSM110P with continuous output power of 1000 Watts using a single phase power source
- DSM120 and DSM120P with continuous output power of 2000 Watts using a single phase power source
- DSM130 and DSM130P with continuous output power of 3000 Watts using a single phase power source
- DSM175 and DSM175P with continuous output power of 3000 Watts using a single phase power source
- DSM175 and DSM175P with continuous output power of 7500 Watts using a three phase power source
- DSM 1150 and DSM 1150P with continuous output power of 15000 watts using a three phase power source.

The Centurion DSM100 Drives, when combined with Giddings & Lewis brushless servomotors, provide continuous torque ranging from 0.34 Nm to 50.8 Nm (3 to 450 lb-in) and peak torque ranging from 1.02 Nm to 125 Nm (9 lb-in to 1100 lb-in).

Interface Cables
Standard Giddings & Lewis motor power and encoder feedback cables, as well as communications cables, are available to complete your motion control system and provide reliable, trouble free start-up. Refer to “” on page -173 for optional equipment. Use of these cables is required for compliance to the European Electromagnetic Compatibility (EMC) Directive and to protect your warranty rights.
Centurion DSM100 Drive Features

Stand-alone Design
A single unit fully encloses all electronics, including both the power supply and a built-in shunt regulator. An external transformer is not required on the main power line. All connectors and indicators are accessible and clearly marked on the front panel.

High Performance Microcontroller Technology
Dual microcontrollers perform all digital current, velocity and position loop calculations as well as the motor commutation calculation.

IPM Technology
IPM (Intelligent Power Module) technology in the output stage provides a high frequency, digital PWM (Pulse Width Modulation) sine wave that controls the current loop, including overcurrent, short circuit and overtemperature protection.

Analog and Digital Interfaces
All Centurion DSM100 Drives allow the user to select one of the following analog or digital command interfaces:
- ±10 Volt analog interface – position, velocity or torque control
- Presets (from one to eight binary inputs) – torque or velocity control
- Quadrature encoder digital interface – electronic gearing position follower
- Step/Direction digital interface – position control
- CW/CCW (step up/step down) interface – position control
- Indexing (available only on DSM110P, DSM120P, DSM130P, DSM175P and DSM 1150P).

Encoder Control
A single, motor mounted encoder provides complete commutation information and velocity feedback.

Encoder Output
A selectable output allows the encoder resolution to be specified for maximum performance without adding circuitry. Outputs are differential line drivers capable of dividing the motor encoder signal, PPR (pulses per revolution), by a factor of 1, 2, 4 or 8.

Digital I/O
Digital I/O channels allow the user to program the drive to fit the specific application. Selections include:
- Five selectable, 24 Volt, current sinking, optically isolated, active high inputs.
- One dedicated, control (ENABLE), current sinking, optically isolated, active high input.
- Four selectable, 24 Volt, current sourcing, optically isolated, active high outputs.
- Two dedicated (BRAKE and DRIVE READY), normally open relay outputs.
Analog I/O
Two analog inputs are dedicated to current limits and two analog outputs can be customized to fit the application:
- Two dedicated 10 bit, 0 – 10 Volt, analog inputs (+I LIMIT and -I LIMIT)
- Two selectable, ±10 Volt analog outputs, one 12-bit and one 8-bit (ANALOG1 and ANALOG2).

AC Input Power
Centurion DSM100 Drives are powered directly from a main 100-240 V AC line:
- DSM110, DSM110P, DSM120, DSM120P, DSM130 and DSM130P require single-phase main power
- DSM175 and DSM175P require either single phase or three-phase main power.
- DSM 1150 and DSM 1150P require three-phase main power.

Personality Module
EEPROM (electrically erasable programmable read-only memory) stores both motor and application specific settings and parameters for the drive in a removable personality module. This module simplifies installation, set up, maintenance and reduces spares requirements.

Multiple Protection Circuits
Device and circuit protection, and diagnostic information is provided by:
- Seven segment drive status display
- Overtemperature, short circuit and overcurrent protection for the power output
- I²T (power-time) protection
- Bus Overvoltage
- Bus Undervoltage
- Overspeed
- Fault diagnostics
- Fused power supply outputs
- Three watchdog timers provide fail-safe operation

DSMPro Software
A Windows based software interface provides start-up selections. Tasks are organized for efficient set up, control and maintenance. Context sensitive, on-line help provides immediate assistance.
- Set up is simplified by a series of logically arranged set up screens.
- Files can be stored and printed for on-line or off-line modification, and on-site or off-site back-up.
- Diagnostic and set up tools make system integration easy.
- Critical information is available with complete on-line help.
- User defined velocity, acceleration, position and torque parameters.
- Tuning and diagnosis is aided with an on-screen dual channel digital oscilloscope.
- On-screen meters and software tools provide rapid debugging and measurement.
Communications
One serial port, with two connectors, allows from 1 to 32 drives to be connected in parallel using either RS-232 or four-wire RS-485 communications. The serial interface allows the user to program a drive using any PC or host computer that permits RS-232 or four-wire RS-485 communications.

Autotuning
Digital auto tuning allows easy setup. All adjustments are made in software, which immediately sets the servo system compensation parameters. This eliminates the time-consuming adjustments required by potentiometers.

Agency Approvals
- UL listed
- cUL listed
- CE marked.

Options
- Power and feedback cables are potted and molded with 360 degree shielding.
- AC line filters.
- Breakout boards for I/O control and encoder interface.
- TouchPad – a compact and highly portable input and display device.
Motors

The Centurion DSM100 Drive is compatible with many motors, both Giddings & Lewis motors and motors from other manufacturers. Drive and motor parameters for all compatible Giddings & Lewis motors are programmed into each Centurion DSM100 Drive at the factory. Giddings & Lewis motors that are compatible with the Centurion DSM100 Drives include all:

- FSM Series
- HSM Series
- NSM Series
- SSM Series
- YSM Series.

DSMPro software speeds drive and motor set up by predefined parameters for each drive and motor combination.

Refer to the Torque/Speed curves in the Giddings & Lewis standard product catalog and handbook or contact your local Giddings & Lewis distributor for motor sizing and compatibility assistance.
European Union Requirements

Centurion DSM100 Drives conform to the following European Union Directives:

- Machinery Directive (89/392/EEC, Article 4.2 and Annex II, sub B)
 - Installation of AC line filters between the power source and the drive, and
 - Use of Giddings & Lewis cables to connect motors. See “European Union EMC Directives” on page 5-45; Appendix, “” lists the mentioned equipment and Giddings & Lewis part number.

Giddings & Lewis motors available for use with Centurion DSM100 Drives include all:

- FSM Series motors
- HSM Series motors
- SSM Series motors
- YSM Series motors
- NSM Series motors
Installation of DSMPro on a PC is covered in this chapter, which:

- Lists the minimum PC hardware and software necessary to run DSMPro.
- Provides step-by-step instructions on how to load DSMPro.
- Shows you how to start and quit DSMPro and introduces the Drive Window, the main command window for DSMPro.
- Instructs you on how to access on-line help.

Instructions for using the features available in DSMPro are detailed in on-line help. To access the Help menu, depress the F1 key.

Hardware and Software Requirements

The minimum personal computer (PC) requirements to run the software are:

- A DOS computer with a 286 microprocessor
- A hard disk, with 2.0 MB of free disk space
- 3½ inch, 1.44MB floppy disk drive
- 2 MB of RAM
- A Video Graphics Array (VGA) monitor
- Microsoft Windows version 3.1
- A mouse is recommended.

Windows must be installed on your PC. If Windows is *not* already installed, refer to the appropriate Microsoft manual to install Windows on your computer.
Installing DSMPro

To install DSMPro software on a hard drive:

1. Make a backup copy of the DSMPro disk in one of the following ways:
 - Copy the DSMPro disk using the disk menu in the Windows File Manager.
 - If your computer has only one floppy disk drive, type `diskcopy a: b:` and then press ENTER. The software will prompt you when to insert the SOURCE (DSMPro) disk and when to insert the TARGET (blank) disk.

2. If Windows is not running, type `win` at the DOS prompt (C:>).
 If Windows is already running, close any open applications.

3. Insert the DSMPro disk into a 1.44MB floppy disk drive, typically drive A:, and close the drive door.

4. Choose Run, from the File menu in Windows Program Manager.

5. Type `a:setup` and then press ENTER. A message box will appear saying that the setup is initializing. The message box may be present for up to 40 seconds, depending on the speed of the PC.

6. A dialog box requires you to confirm whether or not DSMPro should be installed on the hard drive (C: drive) of the PC.
 - To install DSMPro, choose Continue, or press ENTER, and continue with the next step.
 - To stop the installation, choose Exit. You are returned to Windows.

7. Setup then asks where you would like to install DSMPro.
 - To accept the path that Setup proposes in the Path: box (c:\dsmpro\...), choose Continue, or press ENTER, and continue with the next step.
 - To choose another directory, type a new path in the Path: box, and then choose Continue. You will not have the opportunity to confirm your entry so type carefully.
 - To return to the initial Setup window, choose Back.
 - To stop the installation, choose Exit. You will return to Windows.
 - To obtain on-line help with the installation, Choose Help.

8. A status bar will keep you informed of the installation progress. When Setup is complete, choose OK or press ENTER to return to Windows.
Starting and Quitting DSMPro

Version Level
The release level and date for DSMPro may be displayed by selecting About DSMPro from the Help menu. This information also appears in the initial DSMPro screen. The About DSMPro window includes additional data about system resources typically displayed in Windows Help.

The DSMPro Start-Up Screen
When DSMPro starts for the first time, its default instructions are:

- Display the Help menu - Quick Start.
- Present the Drive Select window. The Drive Select window offers Drive 0, which is the default drive address assigned at the factory.

The default DSMPro Start-up screen is shown below. The comments point out many of the Windows controls that are available in DSMPro.

DSMPro displays the Help menu – Quick Start – when it is first accessed. To disable this automatic display, deselect the menu item Show Quick Start from the Help menu.

Setup automatically creates the DSMPro program group and then returns you to Windows. The DSMPro program group provides access to the DSMPro application icon,
DSMPro Installation

From the C:> Prompt

1. Type `win c:\dsmpro\dsmpro.exe`.

This step assumes DSMPro was loaded into the `c:\dsmpro` directory during setup.

The DSMPro start-up screen will open.

From Windows

1. Choose the DSMPro program group from the Program Manager in Windows.

If the DSMPro window is not active, hold down ALT and press TAB (ALT+TAB) until the DSMPro title bar and icon are highlighted, or select DSMPro from the list in the Window menu.

2. Choose the DSMPro icon from the DSMPro program group.

The DSMPro start-up screen will open.

The Readme File

A file, titled README, may be included in the DSMPro directory. This file contains installation instructions, change notes from previous revisions, and information that became available after this manual was printed. After you install DSMPro you can access this file by choosing the Read Me icon in the DSMPro window or by using Microsoft Write or an equivalent application program to view the file `readme.wri` in the directory path where DSMPro is installed.

Firmware Files

Firmware files are supplied in the Miscellaneous directory on the DSMPro diskette.

The current revision level of drive firmware, excluding the TouchPad firmware, is displayed in the Drive Information window of DSMPro. The current revision level of TouchPad firmware is displayed as part of the TouchPad initialization when a TouchPad is connected to the drive.

The types of files and their functions are:

- Firmware – Main Operating firmware for the drive
- Boot Block – Drive Initialization firmware for the drive
This chapter describes four steps which should ensure that the drive functions correctly. The steps include:

- Unpacking the Centurion DSM100 Drive
- Inspecting the drive for shipping damage
- Testing the basic functionality of the drive
- Guidelines for storing the drive.

Unpacking the Drive

1. Remove the Centurion DSM100 Drive from the shipping carton and remove all packing materials from the unit. The materials and carton may be retained for storage or shipment of the drive.

2. Check all items against the packing list. A label located on the side of the unit identifies:
 - Model number
 - Serial number
 - Manufacturing date code.

Inspection Procedure

To protect your investment and ensure your rights under warranty, we recommend the following steps be performed upon receipt of the unit:

- Inspect the unit for any physical damage that may have been sustained during shipment.
- Perform the drive checkout test to verify the functionality of the unit.

If you find damage, either concealed or obvious, contact your buyer to make a claim with the shipper. If degraded performance is detected when testing the unit, contact your distributor or Giddings & Lewis to obtain a Return Material Authorization (RMA). Do this as soon as possible after receipt of the unit.
Testing the Unit

Drives are burned-in and individually tested before they leave the factory. However, damage may occur during shipping. Perform the procedures below to ensure the Centurion DSM100 Drive is operational and undamaged.

Abbreviated directions for connecting the drive to a motor and a PC are provided.

The test requires:
- Approximately 20 minutes to complete
- A motor with appropriate power and encoder cables
- A PC with the DSMPRO software package installed
- An RS-232 communications cable
- A single phase or three phase 100-240 VAC, 50/60 Hz power source. Standard wall outlet power is suitable for verification testing of Centurion DSM100 Drives, except the DSM1150 or DSM1150P, which require three phase power.
- A test cable constructed from two normally open switches, several pieces of 1.5 mm² (16 AWG) wire and a mating connector. Connectors are listed in “Mating Connectors” on page A-179. Appendix 3 lists the cables.

During the test, power is removed several times. Measure the DC bus voltage at TB1 to verify the bus capacitors are fully discharged, or wait for the time indicated in the warning on the front of the drive. The bus capacitors must be fully discharged for the subsequent steps to be valid.

If problems are encountered during this procedure, refer to “Fuse and Jumper Locations” on page 11-159, review other appropriate sections in this manual, or call your local Giddings & Lewis distributor.

WARNING

Perform the initial power-up with the motor shaft disconnected from a load and the shaft key removed. Improper wiring or undiscovered shipping damage could result in undesired motor motion. Be prepared to remove power if excessive motion occurs.
Hardware Set Up

Make the connections described below and shown in Figure 4.1.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the Centurion DSM100 Drive.
 - An Giddings & Lewis cable connects the 9-pin serial port of the Centurion DSM100 Drive to a 9-pin D-shell connector on a serial port of the PC. Giddings & Lewis cables are available in various lengths for connecting between J4 or J5 and a computer. The Appendix “” on page -173 lists the cables.
 - A three wire cable is shown in the figure below, solely for illustrative purposes.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the drive.

3. Connect a jumper wire with a toggle switch between J1-20 (ENABLE) and J1-26 (+24VDC).
 - This provides manual control for enabling or disabling the drive. Figure 4.1 shows the jumper, including its normally open toggle switch.

4. Connect a power cable between the external 100/240 V AC, 50/60 Hz power source:

 ![CAUTION](image)
 When operating the DSM175 or DSM175P with single-phase power the current limits must be set correctly.

 - A DSM110, DSM110P, DSM120, DSM120P, DSM130, DSM130P, DSM175 or DSM175P connects to the L1, L2/N and (Gnd) connections on TB-1 when using a single phase power source.
 - A DSM175, DSM175P, DSM 1150 or DSM 1150P connects to the L1, L2, L3 and (Gnd) connections on TB-1 when using a three phase power source.

Drive Checkout Test

This test sequentially verifies that:

- Drive power wiring is correct and start-up logic is functioning
- The drive and motor are correctly wired
- Drive serial communications are operational

![WARNING](image)
Be prepared to disable the drive or remove input power if excessive motor motion occurs while performing the following steps.

Before beginning “Initial Power-up”, please check the following:
- All wiring and mounting to verify correct installation
- Input voltages to ensure they do not exceed specifications for the drive or motor.
Unpacking, Inspecting and Storing

Initial Power-up

1. Verify the AC power is within specifications.

2. Switch the AC Power to ON and verify:
 - Green DC BUS LED is ON
 - Display is not flashing.

3. Switch the power OFF and wait until the DC Bus Voltage is below 30 Volts, to prevent electrical shock.

4. Connect the motor windings to:
 - R (TB1-1) for the Phase R winding
 - S (TB1-2) for the Phase S winding
 - T (TB1-3) for the Phase T winding
 - Motor Gnd (TB1-4) for the Ground connection.

5. Switch AC Power ON again and verify:
 - Green DC BUS LED is ON
 - Display is not flashing.

6. Switch the power OFF and wait until the DC Bus Voltage is below 30 Volts, to prevent electrical shock.

Connection Diagram

Initial Power-up

1. Verify the AC power is within specifications.

2. Switch the AC Power to ON and verify:
 - Green DC BUS LED is ON
 - Display is not flashing.

3. Switch the power OFF and wait until the DC Bus Voltage is below 30 Volts, to prevent electrical shock.

4. Connect the motor windings to:
 - R (TB1-1) for the Phase R winding
 - S (TB1-2) for the Phase S winding
 - T (TB1-3) for the Phase T winding
 - Motor Gnd (TB1-4) for the Ground connection.

5. Switch AC Power ON again and verify:
 - Green DC BUS LED is ON
 - Display is not flashing.

6. Switch the power OFF and wait until the DC Bus Voltage is below 30 Volts, to prevent electrical shock.
Communications Verification

7. Start DSMPro on the PC.

8. Close any windows that are open in DSMPro.

9. Select **PC Set Up** from the **Communications** menu in DSMPro.

10. Verify the communication port settings match those of the drive, then select **OK**. Factory default drive settings are:
 - Baud Rate: **9600**
 - Data Bits: **8**
 - Parity: **None**
 - Stop Bits: **1**
 - Serial Port: **COM1**

Assignment of communications ports on PCs varies between manufacturers. The COM port setting for the drive and PC must match. Refer to “Troubleshooting” on page 11-161 if communication problems are encountered.

11. Switch AC power ON.

12. Select **Read Drive Parameters** from the **Communications** menu in DSMPro.

13. Select **OK** in the Drive Select dialog box. A dialog box indicating that the PC is reading drive parameters should appear.

If this dialog box does *not* appear, a message appears that advises you to check the COM settings and the communication cable. If necessary, refer to “Troubleshooting” on page 11-161 for instructions on how to perform these checks.

Initial Drive Operation

14. When the message appears that a motor must be selected, choose **OK**. The Drive Select dialog box is selected with Motor Selection active.

15. Select the appropriate motor from the drop-down Motor Selection box.

16. Choose **OK** when the message appears advising that the drive must reset. A change in motor parameters requires a software reset.

17. Choose **Close** from the Drive Setup window.

18. Select the **Control Panel** icon from the Drive Window. The drive displays “H” (Control Panel mode). Refer to “Operating Messages” on page 10-153 for an explanation of drive displays.

19. Close the connection between J1-26 and J1-20 to enable the drive.

20. Holding torque should be sufficient so that the shaft is either immovable or very resistant to rotation.

21. Move the Slide Bar in the Control Panel window to the right and then to the left. Verify that the motor rotates:
 - CW as the Slide Bar is moved right of center, and
 - CCW as the Slide Bar is moved left of center.

If the motor rotates in the wrong direction (CCW when the slide bar is set to the right of center) or jumps and locks-up, motor phasing and encoder feedback phasing may be incorrect. If necessary, refer to Chapter 11, “Maintenance and Troubleshooting” for instructions on how to correct the motor power connections at TB1-1, -2, -3 and -4 or the encoder feedback connections at J2.
22. Choose **Set to Zero**. The motor will stop rotating.

23. Choose **Drive Disable** and verify the motor shaft can be rotated by hand.

24. Choose **Drive Enable** and verify the motor shaft has holding torque. (i.e., The shaft cannot be moved or moves with resistance.)

25. Open the connection between J1-26 and J1-20 to disable the drive.

26. Choose **Close** from the Control Panel window.

A drive completing these steps is functional. If the Centurion DSM100 Drive did not pass the steps above, refer to “Troubleshooting” on page 11-161.

TIP

Storing the Unit

Return the Centurion DSM100 Drive to its shipping carton using the original packing materials to enclose the unit.

Store the drive in a clean, dry place that will not exceed the following ranges:

- Humidity: 5% to 95%, non-condensing
- Storage temperature: -40° to 70° Celsius (-40° to 158° Fahrenheit).
Mechanical Installation Requirements

1. Mount the unit in an enclosure providing protection to IP54 (protected against dust and splashing water), or IP65 (dust free and protected against water jets) if the work environment is poor. Many NEMA (National Electrical Manufacturers Association) Type 4 cabinets provide this level of protection. Minimum cabinet requirements are:
 - Depth: 30.5 cm (12 inches).
 - Adequate sizing and/or ventilation to dissipate the heat generated by the Centurion DSM100 Drives. Refer to “Power Dissipation” on page F-235 for the amount of heat generated by a Centurion DSM100 Drive and enclosure sizing equations.

2. Minimum unobstructed surrounding space for cooling air intake and fan exhaust:
 - Above: 5 cm (2 inches)
 - Below: 5 cm (2 inches)
 - Sides: 1.25 cm (0.5 inches)
 - Front: 7.5 cm (3.0 inches) for cable clearance.

CAUTION: If the cabinet is ventilated, use filtered or conditioned air to prevent the accumulation of dust and dirt on electronic components. The air should be free of oil, corrosives, or electrically conductive contaminate.

3. Position the drive in a vertical position on a flat, solid surface that meets the mounting hardware should meet the following weight, vibration and shock, altitude and humidity, airflow clearance, and temperature requirements. Unit weights are:
 - DSM110 and DSM110P: 5.80 Kg (13.78 lbs)
 - DSM120 and DSM120P: 6.36 Kg (14.02 lbs)
 - DSM130 and DSM130P: 6.48 Kg (14.28 lbs)
 - DSM175 and DSM175P: 9.67 Kg (21.32 lbs)
 - DSM 1150 and DSM 1150P: 14.06 Kg (31.00 lbs)

Vibration and shock, altitude and humidity limits are:
 - Vibration: 2g at 10 to 2000 Hz
 - Shock: 15g 11 msec half sine
 - Altitude: 1500 meters (5000 feet), Derate power performance 3% for each 300 m above 1500 m (1000 ft above 5000 ft).
 - Humidity: 5% to 95% non-condensing

Ambient operating temperature range and airflow clearances are:
 - 0 ° to 55 ° Celsius (32° to 131° Fahrenheit).
 - 50.8 mm (2 inches) above and below unit for airflow.
4. Bolt the unit to the cabinet using the mounting slots in the drive. Mounting dimensions are shown in Figure 5.1. The recommended size of mounting hardware is:

- M5 Metric (1/4-20 equivalent), or
- #10 MS bolts.

Figure 5.1 DSM Mounting Dimensions (sheet 1 of 2)
Figure 5.1 DSM Mounting Dimensions (sheet 2 of 2)

<table>
<thead>
<tr>
<th>DSM 1150 and DSM 1150P</th>
<th>mm (in)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>360.7 (14.20)</td>
</tr>
<tr>
<td>A1</td>
<td>331.5 (13.05)</td>
</tr>
<tr>
<td>A2</td>
<td>349.0 (13.74)</td>
</tr>
<tr>
<td>A3</td>
<td>6.86 (0.27)</td>
</tr>
<tr>
<td>A4</td>
<td>33.02 (1.30)</td>
</tr>
<tr>
<td>A5</td>
<td>36.32 (1.43)</td>
</tr>
<tr>
<td>A6</td>
<td>26.92 (1.06)</td>
</tr>
<tr>
<td>A7</td>
<td>196.09 (7.72)</td>
</tr>
<tr>
<td>A8</td>
<td>12.95 (0.51)</td>
</tr>
<tr>
<td>B</td>
<td>203.20 (8.00)</td>
</tr>
<tr>
<td>B1</td>
<td>31.70 (1.25)</td>
</tr>
<tr>
<td>B4</td>
<td>69.80 (2.75)</td>
</tr>
<tr>
<td>B5</td>
<td>139.7 (5.50)</td>
</tr>
<tr>
<td>B6</td>
<td>31.70 (1.25)</td>
</tr>
<tr>
<td>B7</td>
<td>139.70 (5.50)</td>
</tr>
<tr>
<td>C</td>
<td>224.50 (8.84)</td>
</tr>
<tr>
<td>C1</td>
<td>18.29 (0.72)</td>
</tr>
</tbody>
</table>
Interface Connections

Input/output and power cables connect to the front panel of a Centurion DSM100 Drive, no internal connections are necessary.

DANGER

The user is responsible for conforming with all applicable local, national and international codes. Wiring practices, grounding, disconnects and overcurrent protection are of particular importance. Failure to observe this precaution could result in severe bodily injury or loss of life.

I/O Connections are fully described in the following sections:
- “J1 – Controller” on page 6-53 defines the controller connections
- “J2 – Encoder” on page 6-77 defines the motor encoder connections
- “J3 – Auxiliary Port” on page 6-81 defines the auxiliary controller connections
- “J4 and J5 – Serial Port” on page 6-85 defines the RS-232/RS-485 serial port connections

Power Connections are fully described in the following sections:
- “TB1 – DC Bus and AC Power” on page 7-93 defines the power connections.
- “TB2 – Shunt Regulator” on page 7-101 defines the internal and external shunt connections.

“DSM Interface Connection Diagram” on page -246 shows these inputs and outputs on a general level. Specific operational set ups are depicted in Figure 8.1 through Figure 8.12 (pages 8-106 through 8-141, respectively). These figures cover position, velocity and torque mode controls for:
- Analog Controllers,
- Preset Controllers,
- Position Followers, or
- Indexing controllers (available only on DSM110P, DSM120P, DSM130P, DSM175P and DSM 1150P).

Wiring

Wiring sizes and practices, as well as grounding and shielding techniques are described in the sections listed below. Refer to the “Power Wiring Diagrams” for graphic depictions and recommended wire gaging. The descriptions represent common wiring practices and should prove satisfactory in the majority of applications.

TIP

Cables, listed in Appendix, “,” are not rated for continuous flexing.

Minimum wire gages for power cables are listed in:
- “Motor Power Contact and Wire Sizing Recommendations” on page 7-96,
- “AC Input Power Sizing Requirements” on page 7-98, and
- “Auxiliary Power Sizing Requirements” on page 7-100.
Electromagnetic Compatibility

General Guidelines

European Union EMC Directives
The Centurion DSM100 Drives are designed and tested to meet the European EMC Directive. A Declaration of conformity, which enumerates the standards used, is located at the end of Appendix D. Two installation requirements are necessary to meet the directives:
1. Use of an external AC line filter on the main AC input, and
2. Use of Giddings & Lewis cables.

Qualified AC Line Filters
Listed below are AC line filters that have been qualified for use with Centurion DSM100 Drives. Filters equivalent to those listed are widely available, and Giddings & Lewis does not recommend one manufacturer over another. The machine builder is responsible for the suitability of the filter selection when using different filters. These filters can be used for distributing power to multiple drives, rather than using an individual filter for each drive. Further information is available from the manufacturer.

<table>
<thead>
<tr>
<th>Drive</th>
<th>Manufacturer and Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM110 and DSM110P</td>
<td>Schaffner (1-800-367-5566) FN 350-12, Roxburgh (01724-281770) MIF 10 or MDF 16</td>
</tr>
<tr>
<td>DSM120 and DSM120P</td>
<td>Schaffner (1-800-367-5566) FN 350-20, Roxburgh (01724-281770) MIF 23 or MDF 18</td>
</tr>
<tr>
<td>DSM130 and DSM130P</td>
<td>Schaffner (1-800-367-5566) FN 350-30, Roxburgh (01724-281770) MIF 32 or MDF 36</td>
</tr>
<tr>
<td>DSM175 and DSM175P</td>
<td>Schaffner (1-800-367-5566) FN 351-36, Roxburgh (01724-281770) MIF 330 or MDF 336</td>
</tr>
<tr>
<td>DSM 1150 and DSM 1150P</td>
<td>Roxburgh (011 44 1724 281770 from the USA) MDF 350</td>
</tr>
</tbody>
</table>

Giddings & Lewis AC Line Filters
An AC line filter is not required on the auxiliary line input, when it is used. Refer to Appendix A, “” for part numbers.

WARNING
Large leakage currents exist in AC line filters. They must be grounded properly before applying power. Filter capacitors retain high voltages after power removal. Before handling the equipment, voltages should be measured to determine safe levels prior to handling the equipment.
Failure to observe this precaution could result in severe bodily injury.

Mounting dimensions for single and three phase AC line filters available from Giddings & Lewis are illustrated in Figure 5.2 and Figure 5.3, with corresponding numbers in Table 5.2 and Table 5.3.
Wiring diagrams for Giddings & Lewis AC line filters follow in Figure 5-4.
FIGURE 5.2 MDF AC Line Filter Mounting Diagrams
TABLE 5.2 MDF AC Line Filter Dimensions

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>SINGLE PHASE 36 A and 50 A</th>
<th>THREE PHASE 36 A</th>
<th>THREE PHASE 50 A</th>
<th>THREE PHASE 70 A</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>174 (6.85) 230 (9.06) 230 (9.06) 238 (9.37)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>104 (4.09 (2) 110 (3) 4.33 (3) 110 (3) 4.33 (3) 150 (3) 5.91 (3)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>80 (3) 3.15 (2) 120 (3) 4.72 (3) 120 (3) 4.72 (3) 120 (2) 4.72 (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>20 0.79 – – – – – –</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>120 (4.74) 147 (5.79) 147 (5.79) 186 (7.32)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B1</td>
<td>101 (3.98 (2) 128 (2) 5.04 (2) 128 (2) 5.04 (2) 167 (2) 6.57 (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B2</td>
<td>86 3.39 113 4.45 113 4.45 152 5.98</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B3</td>
<td>60 (2) 2.36 (2) 25 0.98 25 0.98 40 1.57</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B4</td>
<td>– – 25 (2) 0.98 (2) 25 (2) 0.98 (2) 40 (2) 1.57 (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B5</td>
<td>– – 25 (2) 0.98 (2) 25 (2) 0.98 (2) 40 (2) 1.57 (2)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>77 3.03 77 3.03 77 3.03 114 4.49</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C1</td>
<td>55 2.17 55 2.17 55 2.17 85 3.35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C2</td>
<td>20 0.79 14 0.55 14 0.55 14 0.55</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C3</td>
<td>22 (4) 0.87 (4) 22 (6) 0.87 (6) 22 (6) 0.87 (6) 29 (6) 1.14 (6)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>12 0.47 12 0.47 12 0.47 12 0.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>6 0.24 6 0.24 6 0.24 6 0.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D3</td>
<td>12 0.47 12 0.47 12 0.47 12 0.47</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Connectors</td>
<td>M6 (5) M6 (7) M6 (7) M8 (6) and M6 (earth)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: Line filters are manufactured to millimeter dimensions (inches are approximate conversions).
Table 5.3 MIF Line Filter Dimensions

<table>
<thead>
<tr>
<th>DIMENSION</th>
<th>SINGLE PHASE 10 A</th>
<th>SINGLE PHASE 23 A</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>in</td>
</tr>
<tr>
<td>A</td>
<td>214</td>
<td>8.43</td>
</tr>
<tr>
<td>A1</td>
<td>192 (2)</td>
<td>7.56 (2)</td>
</tr>
<tr>
<td>A2</td>
<td>11 (2)</td>
<td>0.43 (2)</td>
</tr>
<tr>
<td>B</td>
<td>145</td>
<td>5.71</td>
</tr>
<tr>
<td>B1</td>
<td>20 (2)</td>
<td>0.79 (2)</td>
</tr>
<tr>
<td>B2</td>
<td>104 (2)</td>
<td>4.09 (2)</td>
</tr>
<tr>
<td>C</td>
<td>40</td>
<td>1.57</td>
</tr>
<tr>
<td>C1</td>
<td>16 (2)</td>
<td>0.63 (2)</td>
</tr>
<tr>
<td>D1</td>
<td>5 (4)</td>
<td>0.20 (4)</td>
</tr>
<tr>
<td>D2</td>
<td>7 (4)</td>
<td>0.28 (4)</td>
</tr>
</tbody>
</table>

Connectors: M4 M4

Note: Line filters are manufactured to millimeter dimensions (inches are approximate conversions).
FIGURE 5.4 Power Wiring Diagram for DSM110,110P, 120, 120P, 130 and 130P
FIGURE 5.5 Power Wiring Diagram for DSM175 and DSM175P
NOTES:

A. MAY BE USED TO KEEP LOGIC SECTION OF DRIVE MODULES POWERED AFTER MAIN MOTOR SUPPLY IS TURNED OFF AT L1, L2, L3 TERMINALS. SPECIFIC TO MOTOR INSTALLATION. DRIVES MIGHT REQUIRE POWER FROM L1, L2, L3 POWER SOURCES.

B. A SUPPLY DISCONNECTING DEVICE IS REQUIRED FOR MAINTENANCE & SAFETY. LOCAL REGULATIONS SHOULD BE OBSERVED. IF A GROUNDED NEUTRAL IS USED INSTEAD OF AC LINE FILTER AND SHIELDED MOTOR CABLE IS TO BE USED FOR IMPROVING THE DRIVE MODULES ELECTROMAGNETIC COMPATIBILITY, AND ARE REQUIRED TO MEET THE EUROPEAN ELECTROMAGNETIC COMPATIBILITY DIRECTIVE. CAUTION: AC LINE FILTERS HAVE LARGE LEAKAGE CURRENTS AND MAY REQUIRE DISCHARGE TIME UPON POWER REMOVAL.

C. THE AUX INPUT HAS AN INTERNAL FILTER. WIRING BETWEEN THE DRIVE MODULE AND FILTER SHOULD BE KEPT AS SHORT AS POSSIBLE. COMMON GROUND BUS BAR SHOULD BE AS CLOSE TO THE DRIVE AS POSSIBLE.

D. DO NOT DAISY CHAIN DRIVE MODULE POWER CONNECTIONS. MAKE SEPARATE CONNECTIONS DIRECTLY TO THE AC SUPPLY.

E. DRIVE RATED 100-240 VAC RMS (230 VAC STANDARD). CURRENT RATINGS ARE INDEPENDENT OF THE INPUT VOLTAGE. REDUCED VOLTAGE WILL RESULT IN A REDUCTION IN SPEED, BUT NOT TORQUE. DRIVE RATED 65/150 AMPS (PEAK) JUMPER INSTALLED AT FACTORY FOR INTERNAL SHUNT. SEE DRAWING 9101-1328 FOR TERMINAL WIRING OF EXTERNAL SHUNT OPTION TERMINALS.

F. WIRE SIZES ARE MINIMUM RECOMMENDED VALUES. THE REQUIREMENTS OF LOCAL REGULATIONS SHOULD BE OBSERVED.

G. MULTIPLE DRIVE MODULES MAY BE POWERED FROM ONE TRANSFORMER OR OTHER AC SUPPLY SOURCE. 8 AWG/10.0mm 2, 4 AWG/25.0mm 2, 6 AWG/16.0mm 2 ACCEPTABLE WIRE RANGE (GAUGE/mm).

H. THE MOTOR POWER WIRES R,S,T,GND ACCEPTABLE WIRE RANGE (GAUGE/mm).

I. MOTOR POWER CONTACT SIZE (GAUGE/mm) RECOMMENDED (GAUGE/mm) MINIMUM (GAUGE/mm) MINIMUM.

J. POWER INITIALIZATION REQUIRES A SHORT PERIOD OF INRUSH CURRENT OF 70A (PEAK) FOR THE MAIN INPUT AND 105A (PEAK) FOR THE LOCAL REGULATIONS.

K. NOTES: POWER INITIALIZATION REQUIRES A SHORT PERIOD OF INRUSH CURRENT OF 70A (PEAK) FOR THE MAIN INPUT AND 105A (PEAK) FOR THE LOCAL REGULATIONS. FUSE SIZES MUST BE SELECTED ACCORDING TO LOCAL REGULATIONS.

L. fuse sizes are recommended for use with the hsm/ssm series of motors. the following fuse sizes are recommended for the devices listed:

M. FOR THREE PHASE INPUT.

N. FOR THREE PHASE INPUT.

O. FOR THREE PHASE INPUT.

P. FOR THREE PHASE INPUT.

Q. FOR THREE PHASE INPUT.

R. FOR THREE PHASE INPUT.

S. FOR THREE PHASE INPUT.

T. FOR THREE PHASE INPUT.

U. FOR THREE PHASE INPUT.

V. FOR THREE PHASE INPUT.

W. FOR THREE PHASE INPUT.

X. FOR THREE PHASE INPUT.

Y. FOR THREE PHASE INPUT.

Z. FOR THREE PHASE INPUT.
This chapter provides information about:

- Interface signals available on the Centurion DSM100 Drive
- Commonly encountered interface cabling methods
- Optional signal extension kits and standard Giddings & Lewis cables.

J1 – Controller

J1 is a 50 pin female mini-D connector (AMP 2-178238-7) for connecting a host computer or controller to the Centurion DSM100 Drive. Contact between the connector’s shell and the grounded chassis provides shield termination. This section lists the connector pin-outs and provides signal specifications.

Giddings & Lewis cables are available in various lengths for connecting between J1 and a suitable controller. Appendix ‘‘ lists the cables. “J1 Terminal Strip/Breakout Board” on page 6-75 details the optional signal extension kit that is available.
Digital I/O Power

Centurion DSM100 Drives provide +24VDC and +5VDC to power external devices within the following specifications.

24 Volt I/O Power

One isolated 24 Volt power supply is accessible from the connector:

- The allowable load is $\leq 500 \text{ mA}$.
- The pin-outs are:

 +24VDC J1-5 J1-26 J3-5 J3-26
 24VCOM J1-6 J1-13 J3-6 J3-13

This supply is intended for powering the digital I/O circuitry.

The 24 VCOM is a floating ground. It must be grounded during installation to meet the European Low Voltage Directive (LVD).
The +24 Volt power supply is internally fused by F1, a 1 Amp, fast acting fuse. Refer to “Fuse and Jumper Locations” on page 11-159, for the location of F1.

If an external +24VDC power source will power the I/O, remove jumpers P5 and P6. Refer to “Fuse and Jumper Locations” on page 11-159, for the location of the jumpers.

TABLE 6.1

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage (VDC)</td>
<td>Voltage difference between +24VDC and 24VCOM</td>
<td>21.6</td>
<td>26.4</td>
</tr>
<tr>
<td>Output Current (mA)</td>
<td>Current flow</td>
<td>0</td>
<td>500</td>
</tr>
</tbody>
</table>

5 Volt I/O Power

One +5 Volt power supply is accessible from the connector:

- The allowable load is ≤250 mA.
- The pin-outs are:

 +5 VDC | J1-1 | J1-3 | J3-1 | J3-3
 ECOM | J1-2 | J1-4 | J3-2 | J3-4

This supply is intended for powering an auxiliary encoder.

The +5 Volt power supply is internally fused by F2, a 1 Amp, fast acting fuse. Refer to “Fuse and Jumper Locations” on page 11-159, for the location of F2.

TABLE 6.2

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output Voltage (VDC)</td>
<td>Voltage between +5VDC and +5VCOM</td>
<td>4.75</td>
<td>5.25</td>
</tr>
<tr>
<td>Output Current (mA)</td>
<td>Current flow</td>
<td>0</td>
<td>250</td>
</tr>
</tbody>
</table>

Digital Inputs

Centurion DSM100 Drives have active high, current sinking inputs, which prevent disconnects and ground faults from activating a drive.

FIGURE 6.1

Digital Input Circuit

Two discrete input circuits types are available on the J1 connector. Both circuits support logic type interfaces with 24 Volt, optically isolated, single ended and active high, current sinking characteristics.

Dedicated Control Circuits

The ENABLE input interfaces with switch closures or sourcing type outputs. The input channel sinks 4.5 mA nominal.
Selectable Circuits

INPUT 1, INPUT 2, INPUT 3, INPUT 4 and FAULT RESET operate with switch closures or sourcing type circuitry. Each input channel sinks 4.5 mA nominal. Selectable inputs are:

- Drive Mode Select
- Integrator Inhibit
- Follower Enable
- Forward Enable
- Reverse Enable
- Preset Select A
- Preset Select B
- Preset Select C
- Operation Mode Override
- Start Index
- Define Home
- Start Homing
- Remove COMMAND Offset

Refer to the I/O Configuration section of the DSMPro manual for information on choosing the input type for each channel.

Table 6.3 General and Dedicated Inputs

<table>
<thead>
<tr>
<th>Digital Input</th>
<th>Pin Number</th>
<th>Function/Description</th>
<th>Internal Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENABLE</td>
<td>J1-20</td>
<td>Enables and disables the drive. Motor torque cannot be applied unless the ENABLE input is active.</td>
<td>J3-20</td>
</tr>
<tr>
<td>FAULT RESET</td>
<td>J1-21</td>
<td>General purpose input selectable to one of several drive functions. Refer to Table 6.4 for I/O configuration.</td>
<td>J3-21</td>
</tr>
<tr>
<td>INPUT 1</td>
<td>J1-32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT 2</td>
<td>J1-33</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT 3</td>
<td>J1-34</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INPUT 4</td>
<td>J1-35</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.4 INPUT1, INPUT2, INPUT3, INPUT4 and FAULT RESET Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive Mode Select</td>
<td>Active^1 state configures the drive for Torque Mode. Inactive^2 state selects the personality EEPROM setting as the command source.</td>
</tr>
<tr>
<td>Integrator Inhibit</td>
<td>Active^1 state zeros the Velocity Loop Error Integrator.</td>
</tr>
<tr>
<td>Follower Enable</td>
<td>Active^1 state allows the position loop to track the AUXILIARY POSITION LOOP signal when in the Follower mode.</td>
</tr>
<tr>
<td>Forward Enable</td>
<td>Active^1 state allows forward commands in velocity mode only. If this input is inactive or not connected, no velocity command will be allowed in the forward direction. If motion is in progress when the input is pulled low or disconnected, the drive halts immediately without deceleration control. The COMMAND signal is clamped internally to 0 Volts.</td>
</tr>
<tr>
<td>Reverse Enable</td>
<td>Active^1 state allows reverse commands in velocity mode only. If this input is inactive or not connected, no velocity command will be allowed in the reverse direction. If motion is in progress when the input is pulled low or disconnected, the drive halts immediately without deceleration control. The COMMAND signal is clamped internally to 0 Volts.</td>
</tr>
</tbody>
</table>
The specifications for these inputs are as follows:

TABLE 6.4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON state Voltage</td>
<td>Voltage applied to the input to guarantee an ON state</td>
<td>20 VDC</td>
<td>28 VDC</td>
</tr>
<tr>
<td>ON state Current</td>
<td>Current flow into the input to guarantee an ON state.</td>
<td>3.5 mA</td>
<td>5.5 mA</td>
</tr>
<tr>
<td>OFF state Voltage</td>
<td>Voltage applied to the input to guarantee an OFF state.</td>
<td>-1 VDC</td>
<td>3 VDC</td>
</tr>
<tr>
<td>OFF state Current</td>
<td>External leakage current into the input to guarantee an OFF state.</td>
<td>-0.5 mA</td>
<td>0.5 mA</td>
</tr>
</tbody>
</table>

a. Active state indicates current flow through the input optocoupler.

b. Inactive state indicates no current flow.
Input Interface Circuit Examples

FIGURE 6.2 Drive Input Connected to a Switch/Relay Contact

![Drive Input Connected to a Switch/Relay Contact](image1)

FIGURE 6.3 Drive Input Connected to an Opto-Isolator

![Drive Input Connected to an Opto-Isolator](image2)

FIGURE 6.4 Drive Input Connected to an Active High Sourcing Transistor

![Drive Input Connected to an Active High Sourcing Transistor](image3)

FIGURE 6.5 Drive Input Connected to Active Low Output using a Switch/Relay

![Drive Input Connected to Active Low Output using a Switch/Relay](image4)
FIGURE 6.6 Drive Input Connected to Active Low Output using an Opto-Isolator

FIGURE 6.7 Drive Input Connected to Sourcing Output
Digital Outputs

Two types of discrete output circuits are available on the J1 connector:

- Dedicated relay outputs
- Selectable transistor based outputs

Both types support 24 VDC logic interfaces:

Dedicated Relay Outputs

BRAKE and DRIVE READY. Each output is a normally open relay. The brake contacts are rated for 1 Amp at 50 Volts. The Drive Ready contacts are rated for 100 mA at 50 Volts.

If an option, such as 90V brake, requires more power, a user provided relay may be driven by these outputs up to the specified levels.

Selectable Transistor Outputs

OUTPUT 1, OUTPUT 2, OUTPUT 3, and OUTPUT 4 are 24 VDC, optically isolated, active high, current sourcing, single ended transistor output channels. Each channel sources a maximum of 50 mA.

Ready and Brake Circuits

![Diagram of READY and BRAKE Circuits](image)

The specifications for these outputs are as follows:

TABLE 6.6

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON state resistance</td>
<td>Internal resistance between J1-24 (+) and J1-25 (-) when the contacts are closed.</td>
<td>1 Ohm</td>
</tr>
<tr>
<td>ON state current</td>
<td>Current flow through the relay when contacts are closed.</td>
<td>100 mA</td>
</tr>
<tr>
<td>OFF state current</td>
<td>Leakage current from either output when the relay contacts are open.</td>
<td>0.01 mA</td>
</tr>
<tr>
<td>OFF state Voltage</td>
<td>Voltage difference between the outputs with open relay contacts.</td>
<td>50 Volts</td>
</tr>
</tbody>
</table>

TABLE 6.7

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON state resistance</td>
<td>Internal resistance between J1-49 (+) and J1-50 (-) when the contacts are closed.</td>
<td>1 Ohm</td>
</tr>
<tr>
<td>ON state current</td>
<td>Current flow through the relay when contacts are closed.</td>
<td>1 A</td>
</tr>
<tr>
<td>OFF state current</td>
<td>Leakage current from either output when the relay contacts are open.</td>
<td>0.01 mA</td>
</tr>
<tr>
<td>OFF state Voltage</td>
<td>Voltage difference between the outputs with open relay contacts.</td>
<td>50 Volts</td>
</tr>
</tbody>
</table>
Selectable Output Circuits

TABLE 6.8 General and Dedicated Outputs

<table>
<thead>
<tr>
<th>Digital Output</th>
<th>Pin Number</th>
<th>Function/Description</th>
<th>Internal Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>READY</td>
<td>J1-24 (+)</td>
<td>Relay closure indicates the drive does not have a fault. (Refer to “READY Output Specifications” on page 6-60)</td>
<td>J3-24 (+) J3-25 (-)</td>
</tr>
<tr>
<td></td>
<td>J1-25 (-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BRAKE</td>
<td>J1-49 (+)</td>
<td>Relay closure releases the brake. Delay time is selectable. (Refer to “BRAKE Output Specifications” on page 6-60)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>J1-50 (-)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT 1</td>
<td>J1-42</td>
<td>General purpose output. Selectable from one of several drive functions. (Refer to Table 6.9)</td>
<td></td>
</tr>
<tr>
<td>OUTPUT 2</td>
<td>J1-43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT 3</td>
<td>J1-44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OUTPUT 4</td>
<td>J1-45</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 6.9 OUTPUT1, OUTPUT2, OUTPUT3 and OUTPUT4 Functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>In Position</td>
<td>An active state indicates the position window condition is satisfied, and the zero speed condition is satisfied. The position window and zero speed range are selectable settings.</td>
</tr>
<tr>
<td>Within Window</td>
<td>An active state indicates the position window condition is satisfied. The position window range is a selectable setting.</td>
</tr>
<tr>
<td>Zero Speed</td>
<td>An active state indicates the velocity loop zero speed signal is active. The zero speed limit is a selectable setting.</td>
</tr>
<tr>
<td>Speed Window</td>
<td>An active state indicates the velocity loop speed window is active. The speed window range is a selectable setting.</td>
</tr>
<tr>
<td>Current Limit</td>
<td>An active state indicates the torque current is limited.</td>
</tr>
<tr>
<td>Up To Speed</td>
<td>An active state indicates the velocity loop AT SPEED signal is active. The at speed level is a selectable setting.</td>
</tr>
<tr>
<td>Drive Enabled</td>
<td>An active state indicates the ENABLE signal is active and no fault is detected.</td>
</tr>
<tr>
<td>Bus Charged</td>
<td>An active state indicates the DC bus is energized.</td>
</tr>
<tr>
<td>Disabling Fault</td>
<td>An active state indicates a fault disabled the drive.</td>
</tr>
<tr>
<td>In Motion</td>
<td>An active state indicates the indexing sequence is in the motion portion.</td>
</tr>
<tr>
<td>In Dwell</td>
<td>An active state indicates the indexing sequence is in the dwell portion.</td>
</tr>
<tr>
<td>Sequence Complete</td>
<td>An active state indicates all batches of the indexing sequence are finished.</td>
</tr>
<tr>
<td>Registered</td>
<td>An active state indicates the indexing move has been adjusted after sensing the registration sensor.</td>
</tr>
<tr>
<td>At Home</td>
<td>An active state indicates the drive is at the home position.</td>
</tr>
<tr>
<td>Axis Homed</td>
<td>An active state indicates the drive has been homed.</td>
</tr>
</tbody>
</table>
Transistor Output Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON state Voltage</td>
<td>Voltage difference between the +24 VDC supply and the output when the transistor is ON.</td>
<td>0 VDC</td>
<td>1.5 VDC</td>
</tr>
<tr>
<td>ON state current</td>
<td>Current flow when the transistor is ON.</td>
<td>0 mA</td>
<td>50 mA</td>
</tr>
<tr>
<td>OFF state Voltage</td>
<td>Voltage difference between the +24 VDC supply and the output when the transistor is OFF.</td>
<td>0 Volts</td>
<td>50 Volts</td>
</tr>
<tr>
<td>OFF state current</td>
<td>Leakage current from the output when the transistor is OFF.</td>
<td>-0.1 mA</td>
<td>0.1 mA</td>
</tr>
</tbody>
</table>

Output Interface Circuit Examples

FIGURE 6.10 Drive Output Connected to an Opto-Isolator

FIGURE 6.11 Drive Output Connected to an LED Indicator
FIGURE 6.12 Drive Output Connected to a Resistive Load

FIGURE 6.13 Drive Output Connected to a Switch/Relay

FIGURE 6.14 Drive Output Connected to Active Low Input using a Switch/Relay

FIGURE 6.15 Drive Output Connected to Active Low Input using an Opto-Isolator
Analog Inputs

Two types of analog input circuits are available on the J1 connector:

- The current limiting inputs support 0 to +10 Volt signals
- The command input supports 0 to ±10 Volt signals.

Positive Current Limit (+I LIMIT) and Negative Current Limit (-I LIMIT)

The +I LIMIT and -I LIMIT are current limit inputs to the drive. They have a range of 0 to +10 Volts (where 10 Volts corresponds to maximum drive current). +I LIMIT limits current for producing positive torque, and -I LIMIT limits current for producing negative torque. The +I LIMIT and -I LIMIT are tied together for balanced current limiting. The analog +I LIMIT or -I LIMIT signals are converted into a digital word by a 10-bit ADC (analog to digital converter). If the +I LIMIT and -I LIMIT inputs are not connected, current is not limited.

Figure 6.16 Drive Output Connected to Active High (Sinking) Input

Figure 6.17 Positive and Negative Current Limit Circuits

Table 6.11 Analog Inputs +I LIMIT and -I LIMIT

<table>
<thead>
<tr>
<th>Analog Input</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Positive Current Limit (+I LIMIT)</td>
<td>J1-27</td>
<td>Limits the peak positive current command, which produces positive torque.</td>
</tr>
<tr>
<td>Negative Current Limit (-I LIMIT)</td>
<td>J1-29</td>
<td>Limits the peak negative current command, which produces negative torque.</td>
</tr>
</tbody>
</table>
The analog command signal to the drive has a range of ±10 Volts. The signal is either a torque, velocity or position command, depending on the software configuration of the drive. The differential input is processed by a 16 bit analog to digital converter (ADC) to produce a digital value.

TABLE 6.12 Positive and Negative Current Limit Input Specification

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>Number of units that the input voltage is converted to.</td>
<td>10 Bits</td>
<td></td>
</tr>
<tr>
<td>Maximum Current</td>
<td>Short circuit between the input and ground.</td>
<td>-1.5 mA</td>
<td></td>
</tr>
<tr>
<td>Input Signal Range</td>
<td>Allowable voltage applied to the input.</td>
<td>0 Volts</td>
<td>+10 Volts</td>
</tr>
</tbody>
</table>

Command Input

FIGURE 6.18 Analog COMMAND Input Circuit

The analog command signal to the drive has a range of ±10 Volts. The signal is either a torque, velocity or position command, depending on the software configuration of the drive. The differential input is processed by a 16 bit analog to digital converter (ADC) to produce a digital value.

TABLE 6.13 Analog Command Input

<table>
<thead>
<tr>
<th>Analog Input</th>
<th>Pin Number</th>
<th>Description</th>
<th>Internal Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMAND</td>
<td>J1-22 (+)</td>
<td>Analog command signal is a differential type signal to drive the servo controller. Separate scale and offset parameters are used for the input, depending on whether the signal is a position, velocity or torque command.</td>
<td>J3-22 (+) J3-23 (-)</td>
</tr>
<tr>
<td></td>
<td>J1-23 (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J-22 (+)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>J-23 (+)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE 6.14 Analog Command Input Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution (Bits)</td>
<td>Number of units that the input voltage is converted to.</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Input Impedance (kOhms)</td>
<td>Open circuit impedance measured between (+) and (-).</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>Input Signal Range (Volts)</td>
<td>Allowable voltage applied between (+) and (-) inputs.</td>
<td>0</td>
<td>±10</td>
</tr>
</tbody>
</table>
Analog Outputs

Two selectable outputs are available for monitoring by the user: ANALOG 1 (J1-30) and ANALOG 2 (J1-31). A 12 bit digital to analog converter (DAC) generates ANALOG 1. ANALOG 2 is a filtered PWM signal with 8 bit resolution and a carrier frequency of 32.8 kHz. Both outputs are scaled to a range of -10 to +10 Volts.

WARNING

The user may need to provide an external circuit to delay output of the analog signal when the signal is used to perform an operation. After reset both analog outputs may be in an indeterminate state for a short period before they stabilize at the setting stored in memory. Failure to observe this precaution could result in severe bodily injury.

TABLE 6.15 Analog Outputs: ANALOG 1 and ANALOG 2

<table>
<thead>
<tr>
<th>Analog Output</th>
<th>Pin Number</th>
<th>Description</th>
<th>Internal Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG 1</td>
<td>J1-30</td>
<td>Selectable analog output with 12 bit resolution. Displays the selected firmware variable along with selectable scale and offset (refer to the DSMPro – I/O Configuration section).</td>
<td>A1</td>
</tr>
<tr>
<td>ANALOG 2</td>
<td>J1-31</td>
<td>Selectable analog output with 8 bit resolution. Displays the selected firmware variable along with selectable scale and offset (refer to the DSMPro – I/O Configuration section).</td>
<td>A2</td>
</tr>
<tr>
<td>ACOM</td>
<td>J1-28</td>
<td>Analog Common (return).</td>
<td>COM</td>
</tr>
</tbody>
</table>

TABLE 6.16 Analog Output Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG 1 Output Resolution (Bits)</td>
<td>Number of units that the ANALOG1 output voltage is converted into.</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>ANALOG 2 Output Resolution (Bits)</td>
<td>Number of units that the ANALOG2 output voltage is converted into.</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Output Current (mA)</td>
<td>Allowable current draw of the load</td>
<td>-2</td>
<td>+2</td>
</tr>
<tr>
<td>Output Signal Range (Volts)</td>
<td>Voltage range of the signal</td>
<td>-10</td>
<td>+10</td>
</tr>
</tbody>
</table>
Motor Encoder Output Signals

The motor quadrature encoder signals are supplied to an external position controller. The signals are differential, quadrature, and TTL level. The output resolution is selectable and can be divided by 1, 2, 4 or 8.

The signal frequency \(f_{out} \) of the motor encoder output in Hertz (Hz) can be calculated with the equation:

\[
 f_{out} = \frac{V_m \cdot \text{linecount}}{60 \cdot N}
\]

where:
- \(V_m \) is the motor encoder velocity in rpm
- \(\text{linecount} \) is the number of encoder lines/revolution of the motor mounted encoder, and
- \(N \) is the output divider from the software selected parameter (1, 2, 4 or 8).

If the device connected to the motor encoder output counts all edges, the count frequency is four times \(f_{out} \).

For example, a motor with a 2000 line encoder is rotating at 3000 rpm, and the Motor Encoder Output signal is set to Divide by 1, the encoder signal frequency is:

\[
 f_{out} = \frac{3000 \cdot 2000}{60 \cdot 1} = 100k\text{Hz}
\]

A counter counting all edges registers 400 kHz for this example.

<table>
<thead>
<tr>
<th>Encoder Output</th>
<th>Pin Number</th>
<th>Description</th>
<th>Internal Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOUT (+)</td>
<td>J1-7 (+)</td>
<td>Motor Output Channels A(+) and A(-). Differential TTL levels from line driver. Signal resolution is selectable.</td>
<td>J3-7 (+)</td>
</tr>
<tr>
<td>AOUT (-)</td>
<td>J1-8 (-)</td>
<td></td>
<td>J3-8 (-)</td>
</tr>
<tr>
<td>BOUT (+)</td>
<td>J1-9 (+)</td>
<td>Motor Output Channels B(+) and B(-). Differential TTL levels from line driver. Signal resolution is selectable.</td>
<td>J3-9 (+)</td>
</tr>
<tr>
<td>BOUT (-)</td>
<td>J1-10 (-)</td>
<td></td>
<td>J3-10 (-)</td>
</tr>
<tr>
<td>IOUT (+)</td>
<td>J1-11 (+)</td>
<td>Motor Output Channels I(+) and I(-). Differential TTL levels from line driver. Output pulse occurs once per motor shaft revolution.</td>
<td>J3-11 (+)</td>
</tr>
<tr>
<td>IOUT (-)</td>
<td>J1-12 (-)</td>
<td></td>
<td>J3-12 (-)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential Output (Volts)</td>
<td>Voltage measured between the (+) and (-) pins with (R_L = 100 \text{ Ohm}).</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>Output Current (mA)</td>
<td>Current flowing out of the (+) or (-) pin.</td>
<td>-20</td>
<td>+20</td>
</tr>
</tbody>
</table>
IOUT Signal Generation

The Index output signal (IOUT) is not synchronized to a particular state of the A and B output signals (AOUT and BOUT). Some controllers, such as those used in the CNC industry, use the condition I=1, A=1, B=1 to indicate a home position. In such applications the encoder outputs from the drive cannot be used, since an active IOUT signal (IOUT=1) cannot be guaranteed during the state AOUT=1, BOUT=1. Instead, the unbuffered motor encoder signals can be used as shown below. The J2 Breakout Board assembly connects the motor encoder signals directly to the position feedback of the controller.

If a controller connected to the drive requires the Index Output (IOUT) signal to be synchronized to a particular state of the A and B Outputs (AOUT and BOUT) the unbuffered encoder outputs from the motor must be used.

Unbuffered Encoder Signal Wiring

Two options are available to achieve European Union EMC compliance when a Centurion DSM100 Drive uses the J2 Breakout Board Assembly to transfer an unbuffered encoder signal to a control device. Either method of installation reduces the radiated emissions to an acceptable level. Be aware that either installation option is in addition to the EMC requirements specified elsewhere in this manual.

Drives are tested using specific installation methods, and the information above is based on successful tests. If the drives are installed in this manner, then compliance with European EMC requirements may be expected, although it is impossible to guarantee that a specific installation will meet EMC requirements without testing it.

- Install the drive and J2 breakout board assembly (terminal block and cables) inside a grounded metal enclosure.
- or -
- Install ferrites of an appropriate rating at the specific locations:
 1. J2 Cable – 230 Ohm @ 100 MHz toroid (FerriShield P/N SS28B2032) immediately adjacent to the J2 connector on the drive.
 2. Pigtailed Motor Encoder Cable – 215 Ohm @ 100 MHz ribbon cable clamp (Fair-Rite P/N 2643164051 and clips Fair-Rite P/N 0199001401) over the unshielded conductors.
Auxiliary Encoder Inputs

The Centurion DSM100 Drive may be electronically geared by a remote signal. Electronic gearing may be driven by any of the following three signals:

- A master incremental encoder that generates quadrature encoder signals
- Step and direction signals, such as those created by indexers for step motors
- CW (Step Up)/CCW (Step Down) signals, typically used with stepper indexers.

The use of differential signals is strongly recommended. Single-ended signals are susceptible to noise, which may cause intermittent or continuous errors.

To improve noise immunity, terminate cable shields at both ends of the cable. Connect shields to the backshell of the connector with a complete circumferential (360°) termination. The cable connector should then connect to chassis ground (not signal ground.)

Auxiliary Encoder Input Circuit

The input circuits shown in the following diagrams support connections to differential TTL line drivers, single-ended TTL line drivers and open collector devices. These inputs are selectable under software control.
Table 6.19

<table>
<thead>
<tr>
<th>Auxiliary Encoder Input</th>
<th>Pin Number</th>
<th>Description</th>
<th>Internal Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>AX + and AX-, or Step + and Step-, or CW+ (Step Up+) and CW- (Step Up-)</td>
<td>J1-14 (+)</td>
<td>Auxiliary Channels A(+) and A(-). Differential, quadrature, or TTL level encoder input. The signal input and resolution are selectable. (Refer to DSMPro – Drive Setup.)</td>
<td>J3-14 (+)</td>
</tr>
<tr>
<td>J1-15 (-)</td>
<td></td>
<td></td>
<td>J3-15 (-)</td>
</tr>
<tr>
<td>BX (+) and BX(-), or DIR (+) and DIR(-), or CCW+ (Step Down+) and CCW- (Step Down-)</td>
<td>J1-16 (+)</td>
<td>Auxiliary Channels B(+) and B(-). Differential, quadrature, or TTL level encoder inputs. The signal input and resolution are selectable. (Refer to DSMPro – Drive Setup.)</td>
<td>J3-16 (+)</td>
</tr>
<tr>
<td>J1-17 (-)</td>
<td></td>
<td></td>
<td>J3-17 (-)</td>
</tr>
<tr>
<td>IX (+) and IX (-)</td>
<td>J1-18 (+)</td>
<td>Auxiliary Input Channels I(+) and I(-). Differential, quadrature, or TTL level encoder inputs.</td>
<td>J3-18 (+)</td>
</tr>
<tr>
<td>J1-19 (-)</td>
<td></td>
<td></td>
<td>J3-19 (-)</td>
</tr>
</tbody>
</table>

Table 6.20

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON State Voltage (Volts)</td>
<td>Voltage difference between the + and – inputs that indicate an ON state.</td>
<td>1.0</td>
<td>+15</td>
</tr>
<tr>
<td>OFF State Voltage (Volts)</td>
<td>Voltage difference between the + and – inputs that indicates an OFF state.</td>
<td>-1.0</td>
<td>-15</td>
</tr>
<tr>
<td>Common Mode Voltage (Volts)</td>
<td>Voltage difference between an encoder signal input and the reference ground of the drive.</td>
<td>-15</td>
<td>+15</td>
</tr>
<tr>
<td>Current Draw (mA)</td>
<td>Current draw into the + input or – input</td>
<td>-5</td>
<td>+5</td>
</tr>
<tr>
<td>A or B Signal Frequency (MHz)</td>
<td>Frequency of the A or B line inputs. Count frequency is 4 times this frequency, since the circuitry counts each of the four transitions in a single line.</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Index Pulse Width (nsec)</td>
<td>Pulse width of the index signal. The index signal is active for a percentage of the revolution, therefore the speed of the encoder dictates the pulse width.</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>
Interface Cable Examples

The use of differential signals is highly recommended. This is due to the immunity of differential signals to common mode interference. Single-ended encoder interface circuits are not recommended, and may result in system malfunction.

To improve noise immunity, a cable shield should terminate at both ends of the cable. Shields should connect to the backshell of the connectors with termination around the full circumference (360°). The connectors should attach to chassis ground (not signal common).

FIGURE 6.24 External Encoder Interface via TTL Differential Line Drivers

FIGURE 6.25 Complementary Encoder Interface via 7406 Line Drivers with Pull-up Resistors
FIGURE 6.26 Complementary Encoder Interface via Standard TTL Logic

FIGURE 6.27 Single-Ended Encoder Interface via Open Collector Transistor without Pull-up (not recommended)

FIGURE 6.28 Single-Ended Encoder Interface via Standard TTL Signals (not recommended)
FIGURE 6.29 Single-Ended Encoder Interface via Open Collector Transistor with 5 VDC to 12 VDC Pull-up (not recommended)

FIGURE 6.30 Single-Ended Encoder Interface via Open Collector Transistor with 24 VDC Pull-up (not recommended)
Table 6.21

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Signal frequency (MHz)</td>
<td>Frequency of the input signal.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Pulse Width (nsec)</td>
<td>Time interval the step (CW/CCW) signal must remain in a single state for detection.</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>Setup Time (nsec)</td>
<td>Time interval the direction (CW/CCW) signal must be stable before the corresponding step (CCW/CW) signal changes state.</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

The following diagram shows the relationship between STEP and DIRECTION inputs.

![Diagram showing the relationship between STEP and DIRECTION inputs.](image)

Figure 6.31

External Step/Direction Interface via TTL Differential Line Drivers

Figure 6.32

External Step/Direction Interface via Single-Ended TTL Line Drivers (not recommended)
J1 Terminal Strip/Breakout Board

A 50-pin terminal strip kit is available for extending the signals from the J1 connector. The kit includes a 1 meter (3-foot) interface cable, a 50-pin terminal strip and mounting hardware. Refer to “Cabling Examples” on page B-201 depicts the use of this kit to pass a cable through a bulkhead.
J2 – Encoder

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>EPWR</td>
<td>Encoder Power</td>
<td>11</td>
<td>I (+)</td>
<td>Motor Encoder Input Channel I(+)</td>
</tr>
<tr>
<td>2</td>
<td>ECOM</td>
<td>Encoder Common</td>
<td>12</td>
<td>I (-)</td>
<td>Motor Encoder Input Channel I(-)</td>
</tr>
<tr>
<td>3</td>
<td>EPWR</td>
<td>Encoder Power</td>
<td>13</td>
<td>HALL A</td>
<td>Hall Effect A</td>
</tr>
<tr>
<td>4</td>
<td>ECOM</td>
<td>Encoder Common</td>
<td>14</td>
<td>HALL B</td>
<td>Hall Effect B</td>
</tr>
<tr>
<td>5</td>
<td>SENSE (+)</td>
<td>Encoder Power Sense (+)</td>
<td>15</td>
<td>HALL C</td>
<td>Hall Effect C</td>
</tr>
<tr>
<td>6</td>
<td>SENSE (-)</td>
<td>Encoder Power Sense (-)</td>
<td>16</td>
<td>ABS</td>
<td>Absolute Position</td>
</tr>
<tr>
<td>7</td>
<td>A (+)</td>
<td>Motor Encoder Input Channel A(+)</td>
<td>17</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>A (-)</td>
<td>Motor Encoder Input Channel A(-)</td>
<td>18</td>
<td>Reserved</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>B (+)</td>
<td>Motor Encoder Input Channel B(+)</td>
<td>19</td>
<td>TS(+)</td>
<td>Thermal Switch (+)</td>
</tr>
<tr>
<td>10</td>
<td>B (-)</td>
<td>Motor Encoder Input Channel B(-)</td>
<td>20</td>
<td>TS(-)</td>
<td>Thermal Switch (-)</td>
</tr>
</tbody>
</table>

J2 is a 20 pin female mini-D ribbon connector (AMP 2-178238-2). It connects the motor encoder, hall effect switches, and the thermostat to the Centurion DSM100 Drive. Contact between the connector shell and a grounded chassis provides shield termination.

CAUTION: Ensure that the encoder signals are connected as shown in Figure 6.36. Incorrect connection of the encoder signals will result in improper rotor position, incorrect commutation and/or a runaway motor condition.

Giddings & Lewis cables are available in various lengths for connecting between J2 and an encoder. """" on page -173 lists the cables that are available. J2 Terminal Strip/Breakout Board” details the optional signal extension kit.
Motor Encoder Interface Circuit

![Motor Encoder Interface Circuit Diagram](image)

Hall Effect Sensor Circuit

![Hall Effect Sensor Circuit Diagram](image)

J2- Motor Encoder Connector Pin-Outs

<table>
<thead>
<tr>
<th>Motor Encoder</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPWR</td>
<td>J2-1</td>
<td>Encoder power</td>
</tr>
<tr>
<td></td>
<td>J2-3</td>
<td>Internally fused (F3) is 1A, fast acting.</td>
</tr>
<tr>
<td>ECOM</td>
<td>J2-2</td>
<td>Encoder common</td>
</tr>
<tr>
<td></td>
<td>J2-4</td>
<td></td>
</tr>
<tr>
<td>SENSE (+)</td>
<td>J2-5 (+)</td>
<td>Encoder power sense</td>
</tr>
<tr>
<td>SENSE (-)</td>
<td>J2-6 (-)</td>
<td>NOTE: The SENSE+ signal must be connected to the EPWR signal, and the SENSE- signal must be connected to the ECOM signal at the encoder for the motor encoder signals to be received properly by the drive.</td>
</tr>
<tr>
<td>A (+)</td>
<td>J2-7 (+)</td>
<td>Motor Encoder Input Channel A(+) and Channel A(-). Accepts TTL level signals from a line driver.</td>
</tr>
<tr>
<td>A (-)</td>
<td>J2-8 (-)</td>
<td></td>
</tr>
<tr>
<td>B (+)</td>
<td>J2-9 (+)</td>
<td>Motor Encoder Input Channel B(+) and Channel B(-). Accepts TTL level signals from a line driver.</td>
</tr>
<tr>
<td>B (-)</td>
<td>J2-10 (-)</td>
<td></td>
</tr>
<tr>
<td>I (+)</td>
<td>J2-11 (+)</td>
<td>Motor Encoder Input Channel I(+) and Channel I(-). Accepts TTL level signals from a line driver. Output pulse occurs once per motor shaft revolution.</td>
</tr>
<tr>
<td>I (-)</td>
<td>J2-12 (-)</td>
<td></td>
</tr>
<tr>
<td>HALL A</td>
<td>J2-13</td>
<td>Hall Effect A sensor logic level input. Internally pulled up to +5VDC through a 1 kOhm resistor. The input signal interfaces to both a differential and single-ended Hall effect sensor, using either a TTL level signal or open collector signal. A differential output connects only the (+) output to the drive. Software determines when the hall effect sensors are in an illegal state.</td>
</tr>
</tbody>
</table>
TABLE 6.22 J2- Motor Encoder Connector Pin-Outs (continued)

<table>
<thead>
<tr>
<th>Motor Encoder</th>
<th>Pin Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>HALL B</td>
<td>J2-14</td>
<td>Hall Effect B sensor logic level input. Internally pulled up to +5VDC through a 1 kOhm resistor. The input signal interfaces to both a differential and single-ended Hall effect sensor, using either a TTL level signal or open collector signal. A differential output connects only the (+) output to the drive. Software determines when the hall effect sensors are in an illegal state.</td>
</tr>
<tr>
<td>HALL C</td>
<td>J2-15</td>
<td>Hall Effect C sensor logic level input. Internally pulled up to +5VDC through a 1 kOhm resistor. The input signal interfaces to both a differential and single-ended Hall effect sensor, using either a TTL level signal or open collector signal. A differential output connects only the (+) output to the drive. Software determines when the hall effect sensors are in an illegal state.</td>
</tr>
<tr>
<td>ABS</td>
<td>J2-16</td>
<td>Absolute Position used on Giddings & Lewis motors for commutation.</td>
</tr>
<tr>
<td>J2-17 J2-18</td>
<td>Reserved.</td>
<td></td>
</tr>
<tr>
<td>TS (+)</td>
<td>J2-19</td>
<td>Thermal Switch (+) and Thermal Switch (-) are thermostat inputs, with an open condition indicating a motor overtemperature fault.</td>
</tr>
<tr>
<td>TS(-)</td>
<td>J2-20</td>
<td></td>
</tr>
</tbody>
</table>

NOTES:
1. For encoders with differential Hall outputs (A+, A-, B+, B-, C+ and C-) connect only the + outputs to the drive.
2. The ABS signal is only available on selected encoders.

FIGURE 6.37 Centurion DSM Motor Encoder Connections
J2 Terminal Strip/Breakout Board

A 25-pin terminal strip kit is available for extending the encoder signals from the J2 connector. The kit includes a 3-foot (1 meter) interface cable, a 25-pin terminal strip, and mounting hardware. Refer to “Options and Accessories”.

“Cabling Examples” on page B-24 depicts the use of this kit to pass a cable through a bulkhead.
J3 – Auxiliary Port

J3 is a 26 pin female mini-D ribbon connector (AMP 2-178238-4). It duplicates the first 26 pins of J1, the Controller connector, which are discussed in detail beginning on page 6-53. Contact between the connector shell and the grounded chassis provides shield termination.

Giddings & Lewis cables are available in various lengths for connecting between J3 and an auxiliary unit. *** on page -173 lists the cables that are available.

TABLE 6.23 J3 – Auxiliary Connector Pin-Outs

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+5VDC</td>
<td>Encoder +5 VDC</td>
<td>14</td>
<td>AX+</td>
<td>Auxiliary Channel A+</td>
</tr>
<tr>
<td>2</td>
<td>ECOM</td>
<td>Encoder Common</td>
<td>15</td>
<td>AX-</td>
<td>Auxiliary Channel A-</td>
</tr>
<tr>
<td>3</td>
<td>+5VDC</td>
<td>Encoder +5 VDC</td>
<td>16</td>
<td>BX+</td>
<td>Auxiliary Channel B+</td>
</tr>
<tr>
<td>4</td>
<td>ECOM</td>
<td>Encoder Common</td>
<td>17</td>
<td>BX-</td>
<td>Auxiliary Channel B-</td>
</tr>
<tr>
<td>5</td>
<td>+24VDC</td>
<td>Isolated +24 VDC</td>
<td>18</td>
<td>IX+</td>
<td>Auxiliary Channel I+</td>
</tr>
<tr>
<td>6</td>
<td>24VCOM</td>
<td>Isolated 24V Common</td>
<td>19</td>
<td>IX-</td>
<td>Auxiliary Channel I-</td>
</tr>
<tr>
<td>7</td>
<td>AOUT+</td>
<td>Motor Output Channel A+</td>
<td>20</td>
<td>ENABLE</td>
<td>ENABLE</td>
</tr>
<tr>
<td>8</td>
<td>AOUT-</td>
<td>Motor Output Channel A-</td>
<td>21</td>
<td>RESET</td>
<td>FAULT RESET</td>
</tr>
<tr>
<td>9</td>
<td>BOUT+</td>
<td>Motor Output Channel B+</td>
<td>22</td>
<td>COMMAND+</td>
<td>Analog Command+</td>
</tr>
<tr>
<td>10</td>
<td>BOUT-</td>
<td>Motor Output Channel B-</td>
<td>23</td>
<td>COMMAND-</td>
<td>Analog Command-</td>
</tr>
<tr>
<td>11</td>
<td>IOUT+</td>
<td>Motor Output Channel I+</td>
<td>24</td>
<td>READY+</td>
<td>READY+</td>
</tr>
<tr>
<td>12</td>
<td>IOUT-</td>
<td>Motor Output Channel I-</td>
<td>25</td>
<td>READY-</td>
<td>READY-</td>
</tr>
<tr>
<td>13</td>
<td>24VCOM</td>
<td>Isolated 24V Common</td>
<td>26</td>
<td>+24VDC</td>
<td>Isolated +24 VDC</td>
</tr>
</tbody>
</table>

J3 is a 26 pin female mini-D ribbon connector (AMP 2-178238-4). It duplicates the first 26 pins of J1, the Controller connector, which are discussed in detail beginning on page 6-53. Contact between the connector shell and the grounded chassis provides shield termination.

Giddings & Lewis cables are available in various lengths for connecting between J3 and an auxiliary unit. *** on page -173 lists the cables that are available.

TABLE 6.23 J3 – Auxiliary Connector Pin-Outs

<table>
<thead>
<tr>
<th>Motor Encoder</th>
<th>Pin Number</th>
<th>Description</th>
<th>Internal Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>+ 5V</td>
<td>J3-1</td>
<td>Encoder +5 VDC @ 250 mA power source for auxiliary encoder electronics. The output is fused internally by a 1 Amp fast acting fuse (F2). Refer to “5 Volt Power Supply Specifications” on page 6-55.</td>
<td>J1-1, J1-3 J3-1, J3-3</td>
</tr>
<tr>
<td></td>
<td>J3-3</td>
<td>Encoder +5 VDC @ 250 mA power source for auxiliary encoder electronics. The output is fused internally by a 1 Amp fast acting fuse (F2). Refer to “5 Volt Power Supply Specifications” on page 6-55.</td>
<td></td>
</tr>
<tr>
<td>ECOM</td>
<td>J3-2</td>
<td>Encoder common. Signal reference for the auxiliary encoder. Refer to “5 Volt Power Supply Specifications” on page 6-55.</td>
<td>J1-2, J1-4 J3-2, J3-4</td>
</tr>
<tr>
<td>+ 24V</td>
<td>J3-5</td>
<td>Isolated +24 VDC @ 500 mA power source for external I/O connection. This output is fused internally by a 1 Amp fast acting fuse (F1). Refer to “24 Volt Power Supply Specifications” on page 6-55.</td>
<td>J1-5 J1-26</td>
</tr>
<tr>
<td></td>
<td>J3-26</td>
<td>Isolated +24 VDC @ 500 mA power source for external I/O connection. This output is fused internally by a 1 Amp fast acting fuse (F1). Refer to “24 Volt Power Supply Specifications” on page 6-55.</td>
<td></td>
</tr>
</tbody>
</table>

DSM Drive Hardware and Installation Manual
J3 – Auxiliary Connector Pin-Outs (continued)

<table>
<thead>
<tr>
<th>Motor Encoder</th>
<th>Pin Number</th>
<th>Description</th>
<th>Internal Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOUT (+)</td>
<td>J3-7 (+)</td>
<td>Motor Output Channels A(+) and A(-). Differential TTL levels from line driver. Refer to “Motor Encoder Output Signal” on page 6-67 and Figure 6.20.</td>
<td>J1-7 (+)</td>
</tr>
<tr>
<td>AOUT (-)</td>
<td>J3-8 (-)</td>
<td></td>
<td>J1-8 (-)</td>
</tr>
<tr>
<td>BOUT (+)</td>
<td>J3-9 (+)</td>
<td>Motor Output Channels B(+) and B(-). Differential TTL levels from line driver. Refer to “Motor Encoder Output Signal” on page 6-67 and Figure 6.20.</td>
<td>J1-9 (+)</td>
</tr>
<tr>
<td>BOUT (-)</td>
<td>J3-10 (-)</td>
<td></td>
<td>J1-10 (-)</td>
</tr>
<tr>
<td>IOUT (+)</td>
<td>J3-11 (+)</td>
<td>Motor Output Channels I(+) and I(-). Differential TTL levels from line driver. Refer to “Motor Encoder Output Signal” on page 6-67 and Figure 6.20.</td>
<td>J1-11 (+)</td>
</tr>
<tr>
<td>IOUT (-)</td>
<td>J3-12 (-)</td>
<td></td>
<td>J1-12 (-)</td>
</tr>
<tr>
<td>AX+ and AX-,</td>
<td>J3-14 (+)</td>
<td>Auxiliary Channel A(+) and A(-). Differential, quadrature, or TTL level encoder input. The signals are selectable as AX+ and AX-, or Step+ and Step-, or CW (Step Up+) and CW (Step Up-). For encoder information refer to “Quadrature Interface Specifications” on page 6-70 and Figure 6.24, 6.25, 6.26, 6.27, 6.28, 6.29 and 6.30. For stepper information refer to “Step/Direction and CW/CCW (Step Up/Step Down) Interface Specifications” on page 6-74 and Figure 6.31, 6.32, 6.33 and 6.34.</td>
<td>J1-14 (+)</td>
</tr>
<tr>
<td>or Step+ and Step-, or CW (Step Up+) and CW (Step Up-)</td>
<td>J3-15 (-)</td>
<td></td>
<td>J1-15 (-)</td>
</tr>
<tr>
<td>BX+ and BX-,</td>
<td>J3-16 (+)</td>
<td>Auxiliary Channel B(+) and B(-). Differential, quadrature, or TTL level encoder input. The signals are selectable as BX+ and BX-, or DIR+ and DIR-, or CCW (Step Down+) and CCW (Step Down-). For encoder information refer to “Quadrature Interface Specifications” on page 6-70 and Figure 6.24, 6.25, 6.26, 6.27, 6.28, 6.29 and 6.30. For stepper information refer to “Step/Direction and CW/CCW (Step Up/Step Down) Interface Specifications” on page 6-74 and Figure 6.31, 6.32, 6.33 and 6.34.</td>
<td>J1-16 (+)</td>
</tr>
<tr>
<td>or DIR+ and DIR-, or CCW (Step Down+) and CCW (Step Down-)</td>
<td>J3-17 (-)</td>
<td></td>
<td>J1-17 (-)</td>
</tr>
<tr>
<td>IX (+)</td>
<td>J3-18 (+)</td>
<td>Differential, quadrature, or TTL level encoder input. The signals are selectable. For encoder information refer to “Quadrature Interface Specifications” on page 6-70 and Figure 6.24, 6.25, 6.26, 6.27, 6.28, 6.29 and 6.30.</td>
<td>J1-18 (+)</td>
</tr>
<tr>
<td>IX (-)</td>
<td>J3-19 (-)</td>
<td></td>
<td>J1-19 (-)</td>
</tr>
<tr>
<td>ENABLE</td>
<td>J3-20</td>
<td>Enables and disables the drive. Refer to “Digital Input Specifications” on page 6-57 and Figure 6.1.</td>
<td>J1-20</td>
</tr>
</tbody>
</table>
Table 6.23

<table>
<thead>
<tr>
<th>Motor Encoder</th>
<th>Pin Number</th>
<th>Description</th>
<th>Internal Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAULT RESET</td>
<td>J3-21</td>
<td>General purpose input, selectable to one of several drive functions. Refer to “Digital Input Specifications” on page 6-57 and Figure 6.1.</td>
<td>J1-21</td>
</tr>
<tr>
<td>COMMAND (+) COMMAND (-)</td>
<td>J3-22 (+)</td>
<td>Analog command signal is a differential type signal that drives the servo controller. Separate scale and offset parameters are used for the input, depending on whether the signal is a position, velocity or torque command. Refer to “Analog Command Input” on page 6-65 and Figure 6.18.</td>
<td>J1-22 (+) J1-23 (-)</td>
</tr>
<tr>
<td>READY (+) READY (-)</td>
<td>J3-24 (+)</td>
<td>Contact closure indicates the drive is ready to follow commands. Refer to “READY Output Specifications” on page 6-60 and Figure 6.8.</td>
<td>J1-24 (+) J1-25 (-)</td>
</tr>
</tbody>
</table>
J4 and J5 – Serial Port

<table>
<thead>
<tr>
<th>Pin</th>
<th>Signal</th>
<th>Description</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RCV(+)</td>
<td>Receive (+)</td>
<td>RS-485 (four wire)</td>
</tr>
<tr>
<td>2</td>
<td>RCV</td>
<td>Receive</td>
<td>RS-232</td>
</tr>
<tr>
<td>3</td>
<td>XMT</td>
<td>Transmit</td>
<td>RS-232</td>
</tr>
<tr>
<td>4</td>
<td>XMT(+)</td>
<td>Transmit (+)</td>
<td>RS-485 (four wire)</td>
</tr>
<tr>
<td>5</td>
<td>COM</td>
<td>+5 VDC Common</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>RCV(-)</td>
<td>Receive (-)</td>
<td>RS-485 (four wire)</td>
</tr>
<tr>
<td>8</td>
<td>XMT(-)</td>
<td>Transmit (-)</td>
<td>RS-485 (four wire)</td>
</tr>
<tr>
<td>9</td>
<td>Reserved</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a. Do not connect any device to J4-6, J5-6, J4-9 or J5-9 except an Giddings & Lewis TouchPad.

J4 and J5 are 9 pin female D-shell (AMP 205204-4, pins AMP 66506-3) connectors. Each connector is a serial interface that allows communication with another Centurion DSM100 Drive, a PC, a terminal, a host computer, a controller or an optional TouchPad. The signals on J4 and J5 are internally connected, which allows daisy-chain connection of several drives. The shell of the connector is grounded to the chassis for shield termination.

Figure 6.38 RS-232/485 Interface Circuit

The serial interface of the Centurion DSM100 Drive uses the standard NRZ asynchronous serial format, and supports both the RS-232 and the four wire RS-485 communications standards.

- Standard baud rates include 1200, 2400, 4800, 9600 and 19200 baud. 9600 is the factory default setting.
- Even, odd, and no parity generation/checking are supported. No parity is the factory default setting.
- The maximum number of Centurion DSM100 Drives allowable on an RS-485 bus is 32.
- The maximum length of an RS-232 cable is 15 meters (50 feet).
- The maximum length of an RS-485 cable is 1220 meters (4000 feet) with 0.20 mm² (24 AWG) wire.
Giddings & Lewis cables are available in various lengths for connecting to the serial port of an Centurion DSM100 Drive and a control unit, such as a PC. **Color** on page -173 lists the cables, and the male and female connectors for the cables.

The shell of the connector is grounded to the chassis for shield termination.

The following table lists the pin-outs for J4 and J5.

TABLE 6.24 J4 and J5 – Serial Port Connector Pin-Outs

<table>
<thead>
<tr>
<th>Signal</th>
<th>Pin Number</th>
<th>Description</th>
<th>Internal Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCV (+)</td>
<td>J4 - 1 (+)</td>
<td>RS-485 differential receiver input (to drive)</td>
<td>J5 - 1 (+)</td>
</tr>
<tr>
<td>RCV (-)</td>
<td>J4 - 7 (-)</td>
<td></td>
<td>J5 - 7 (-)</td>
</tr>
<tr>
<td>XMT (+)</td>
<td>J4 - 4 (+)</td>
<td>RS-485 differential transmitter output (from drive)</td>
<td>J5 - 4 (+)</td>
</tr>
<tr>
<td>XMT (-)</td>
<td>J4 - 8 (-)</td>
<td></td>
<td>J5 - 8 (-)</td>
</tr>
<tr>
<td>COM</td>
<td>J4 - 5</td>
<td>Common serial port interface</td>
<td>J5 - 5</td>
</tr>
<tr>
<td></td>
<td>J4 - 6</td>
<td>Reserved(^a)</td>
<td>J5 - 6</td>
</tr>
<tr>
<td>RCV</td>
<td>J4 - 2</td>
<td>RS-232 receiver input (to drive)</td>
<td>J5 - 2</td>
</tr>
<tr>
<td>XMT</td>
<td>J4 - 3</td>
<td>RS-232 transmitter output (from drive)</td>
<td>J5 - 3</td>
</tr>
<tr>
<td></td>
<td>J4 - 9</td>
<td>Reserved(^1)</td>
<td>J5 - 9</td>
</tr>
</tbody>
</table>

\(^a\) Do not connect any device to J4-6, J5-6, J4-9 or J5-9, except an Giddings & Lewis TouchPad.

Serial Communications Overview

Centurion DSM100 Drives communicate via a standard NRZ (non-return to zero) asynchronous serial format, which supports either RS-232 or four wire RS-485. The pin-out arrangement on the drive serial ports provides self-sensing of the communication standard. To change from RS-232 to four wire RS-485 requires a simple change of the cable.

In multiple drive installations, a unique address must be assigned to each drive, either through hardware (a physical address) or software. All physical addresses are set using the 16 position rotary switch on the front panel of the drive. Software based addresses are selected by setting the rotary switch to position F, as shown, which forces the drive to used the address stored in the personality module EEPROM of the drive.

Sixteen Position Rotary Addressing Switch

The following table shows the relationship between drive addresses, whether set by hardware or software. It also lists the communications settings, whether mandatory (default) settings or software selectable.

Addressing Examples:

- Setting the rotary switch to position 0 forces the drive to communicate using the factory default settings (refer to Table 6.25). The drive ignores any software address assigned to it. However, the drive
Each drive may be assigned a unique name of up to 32 characters in length; a name is often easier to remember than the address of a drive. DSMPro software automatically associates a drive name with the correct drive address.

RS-232 Connections

The physical address is set using the 16 position rotary switch on the front panel.

<table>
<thead>
<tr>
<th>Address Range</th>
<th>Communications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hardware(^1)</td>
<td>Software(^1)</td>
</tr>
<tr>
<td>0</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>1–A</td>
<td>N/A</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>B–E</td>
<td>N/A</td>
</tr>
<tr>
<td>F</td>
<td>1–32</td>
</tr>
</tbody>
</table>

1. Hardware (rotary address switch) and software (address and communications settings) changes are not immediate; they are logged but do not become active until after the drive is RESET.

This setting ensures that communications with the drive can be established at any time.

- Setting the rotary switch to position 1 assigns the drive to physical address 1. The communications parameters may be modified, but software addressing is not enabled.
- Setting the rotary switch to position F, as shown in Figure 6.39, forces the drive to read its address from EEPROM. DSMPro software supports the addressing range, 1 to 32, which is stored in EEPROM.

Each drive may be assigned a unique name of up to 32 characters in length; a name is often easier to remember than the address of a drive. DSMPro software automatically associates a drive name with the correct drive address.

TIP

Do not connect any device to J4-6, J5-6, J4-9 or J5-9 except an Giddings & Lewis TouchPad.
Single Axis RS-232 Set Up

A single Centurion DSM100 Drive may be selected using RS-232 communications. After cabling is attached to the unit and the drive address is assigned, configuration (i.e., communications with) the unit may proceed.

The following steps outline how to select the communications options:

1. Set the rotary switch to zero (0), which forces default communications with the drive.
2. Connect an RS-232 cable between the computer and a serial connector on the drive (J4 or J5).

3. Verify the computer can communicate with the drive by performing the following:
 - Switch drive power to ON
 - Start DSMPro on the attached PC
 - Choose CANCEL from the Drive Select window
 - Select Communications from the menu
 - Select PC Set Up from the pull down menu
 - Verify the port settings, and if necessary, change them, then choose OK.
 - Select Communications from the menu
 - Select Read Drive Parameters from the pull down menu
 - Choose OK in the Drive Select window.

4. Verify that DSMPro reads the drive parameters. If not, refer to “Troubleshooting” on page 11-161.

![RS-232 Connection Diagrams](image-url)

Figure 6.40 RS-232 Connection Diagrams

3. Verify the computer can communicate with the drive by performing the following:

- Switch drive power to ON
- Start DSMPro on the attached PC
- Choose CANCEL from the Drive Select window
- Select Communications from the menu
- Select PC Set Up from the pull down menu
- Verify the port settings, and if necessary, change them, then choose OK.
- Select Communications from the menu
- Select Read Drive Parameters from the pull down menu
- Choose OK in the Drive Select window.

4. Verify that DSMPro reads the drive parameters. If not, refer to “Troubleshooting” on page 11-161.
The cable diagrams provide wiring examples for both 9 pin and 25 pin serial ports from an IBM compatible personal computer to the drive. RS-232 pin-outs vary between computer manufacturers. Check the hardware reference manual of your machine to ensure correct signal connections between the computer and the drive.

Four Wire RS-485 Connections

The Centurion DSM100 Drives use a variation of the RS-485 standard, known as four wire RS-485. Four wire RS-485 uses one differential signal for host to drive transmissions, and another differential signal for drive to host transmissions. (The RS-485 standard specifies a single differential signal for transmissions in both directions.)

The four wire RS-485 configuration also allows the host to use a RS-422 type interface. Because the host is driving multiple receivers and receiving from multiple transmitters, RS-422 is limited to multiple axes connections with 10 or less drives. The figure below summarizes the four wire RS-485, RS-422, and RS-485 standards.

<table>
<thead>
<tr>
<th>Four Wire RS-485</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Differential</td>
<td></td>
</tr>
<tr>
<td>4 Wires</td>
<td></td>
</tr>
<tr>
<td>2 Signal Pairs</td>
<td>§</td>
</tr>
<tr>
<td>1 to 32 Transmitters</td>
<td>§</td>
</tr>
<tr>
<td>1 to 32 Receivers</td>
<td>§</td>
</tr>
</tbody>
</table>

NOTE: Not applicable to Centurion DSM100 Drives

FIGURE 6.41 RS-485/RS-422 Communication Comparison
Multiple Axes Four-Wire RS-485 Communications

1. Set the rotary address switch on each drive to an unassigned address:
 - If physical addressing is used, set the rotary switch to a previously unused address (1-A).
 - If software addressing is used, set the rotary switch to address F and then select a previously unused address (1 - 32) in DSMPro.

2. Connect cables between:
 - The host computer and the serial port on the initial drive (J4) in the multiple drive configuration.
 - The other serial port on the initial drive (J5) and the serial port on the next drive (J4) in the multiple drive configuration.

3. Verify the communication settings on the computer are correct:
 - Start DSMPro on the attached PC
 - Choose CANCEL from the Drive Select window
 - Select Communications from the menu
 - Select PC Set Up from the pull down menu.
 - Verify the port settings, and if necessary, change them, then choose OK.

4. Verify the ability to communicate between the computer and the connected drives by:
 - Switch drive power to ON
 - Select Communications from the menu
 - Select Read Drive Parameters from the pull down menu
 - Select the drive to communicate with from Drive Select window (the drive must have an address that matches one of the drive addresses in the chain)
 - Choose OK in the Drive Select window.

5. Verify that DSMPro loads the drive parameters. If not, refer to the troubleshooting section.

6. Repeat the preceding two steps for each additional drive.

Four wire RS-485 connections are shown below. The cable diagram provides a wiring example of a daisy chain connection in a typical installation. A multi-drop cable (Figure 6.43) may also be used.

RS-485 pin-outs vary between manufacturers. Check the hardware reference manual to ensure correct signal connections between the host computer and the drive.

Multiple axes systems may be controlled by a computer with an RS-232 serial port. An RS-232 serial communication port may be converted to four wire RS-485 communication by attaching an RS-232 to four wire RS-485 converter. The figure below depicts the use of such a device. A daisy chain wiring configuration may also be used as shown in Figure 6.42.
FIGURE 6.42

Four Wire RS-485 Daisy Chain Connection Diagram

FIGURE 6.43

RS-232 to RS-485 Multi-Drop Connection Diagram
A1, A2 and COM – Analog Outputs

Analog outputs may be monitored with external equipment, such as an oscilloscope, on the external output pins A1 (ANALOG 1), A2 (ANALOG 2) and COM (COMMON). These output signals are parallel connections to the analog command signals available on connector J1. Refer to “Analog Outputs” on page 6-66.

A 12-bit digital-to-analog converter (DAC) generates ANALOG 1. ANALOG 2 is a filtered PWM signal with 8 bit resolution and a carrier frequency of 32.8 kHz. Both outputs are scaled to a range of -10 to +10 Volts.

Table 6.16 on page 6-66 lists the output specifications for the signals.

ANALOG 1 and ANALOG 2 Output Circuits

A 12-bit digital-to-analog converter (DAC) generates ANALOG 1. ANALOG 2 is a filtered PWM signal with 8 bit resolution and a carrier frequency of 32.8 kHz. Both outputs are scaled to a range of -10 to +10 Volts.

Table 6.26 Analog outputs ANALOG 1 and ANALOG 2

<table>
<thead>
<tr>
<th>Analog Output</th>
<th>Pin Number</th>
<th>Description</th>
<th>Pin Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG 1</td>
<td>A1</td>
<td>Selectable analog output with 12 bit resolution. Displays any firmware variable with selectable scale and offset.</td>
<td>J1-30</td>
</tr>
<tr>
<td>ANALOG 2</td>
<td>A2</td>
<td>Selectable analog output with 8 bit resolution. Displays any firmware variable with selectable scale and offset.</td>
<td>J1-31</td>
</tr>
<tr>
<td>COMMON</td>
<td>COM</td>
<td>Analog Common return.</td>
<td>J1-28</td>
</tr>
</tbody>
</table>

Table 6.16 on page 6-66 lists the output specifications for the signals.
TB1 – DC Bus and AC Power

Refer to Figure 5.4 for power wiring connection diagrams for the drives.

<table>
<thead>
<tr>
<th>Description</th>
<th>Identifier</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>R phase power to motor</td>
<td>R</td>
<td>1</td>
</tr>
<tr>
<td>S phase power to motor</td>
<td>S</td>
<td>2</td>
</tr>
<tr>
<td>T phase power to motor</td>
<td>T</td>
<td>3</td>
</tr>
<tr>
<td>Motor case ground</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>DC Bus + voltage</td>
<td>DC BUS +</td>
<td>5</td>
</tr>
<tr>
<td>DC Bus - voltage</td>
<td>DC BUS -</td>
<td>6</td>
</tr>
<tr>
<td>100/240 VAC input power</td>
<td>L1 (Line 1)</td>
<td>7</td>
</tr>
<tr>
<td>100/240 VAC input power</td>
<td>L2 (Line 2)/N (Neutral)</td>
<td>8</td>
</tr>
<tr>
<td>Safety (earth) ground</td>
<td></td>
<td>9</td>
</tr>
<tr>
<td>Auxiliary 100/240 VAC input power</td>
<td>L1 AUX</td>
<td>10</td>
</tr>
<tr>
<td>Auxiliary 100/240 VAC input power</td>
<td>L2/N AUX</td>
<td>11</td>
</tr>
<tr>
<td>100/240 VAC input power</td>
<td>L3 (Line 3)</td>
<td>12</td>
</tr>
</tbody>
</table>

1. **CAUTION:** When operating DSM-075 with a single phase power input the current limits must be set correctly.

The DSM175 and DSM175P are rated for either single phase or three phase power inputs. When connected to a single phase input, the user must change the current limits of the drive. The following drive parameters must be set:

- Positive Current Limit: 50 A peak
- Negative Current Limit: 50 A peak
- Average Current: 15 A continuous
An explanation of how to set these values is contained in DSMPro on-line help.

DANGER
DC bus capacitors may retain hazardous voltages for several minutes after input power has been removed, but will normally discharge in several seconds. Measure the DC bus voltage to verify it has reached a safe level each time power is removed before working on the drive; or wait for the time indicated in the warning on the front of the drive. Failure to observe this precaution could result in severe bodily injury or loss of life.

WARNING
Motor power connectors are for assembly purposes only. They should not be connected or disconnected while the drive is powered.

CAUTION
Failure to set the current limits for single phase operation of the DSM175 or DSM175P can result in drive malfunction and potential damage.

Motor Power Cabling
Terminals 1 through 4 connect the drive to the windings of the motor.

TIP
Proper phasing of these outputs relative to the motor terminals is critical. Double check the connections after wiring the motor.

Table 7.1 lists the drive terminals and typical motor connections. Table 7.2 on page 7-96 lists the minimum wire size for making power wiring connections.

Table 7.1

<table>
<thead>
<tr>
<th>Motor Phase Signal</th>
<th>Description</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>R₁</td>
<td>R phase from drive</td>
<td>TB1-1</td>
</tr>
<tr>
<td>S₁</td>
<td>S phase from drive</td>
<td>TB1-2</td>
</tr>
<tr>
<td>T₁</td>
<td>T phase from drive</td>
<td>TB1-3</td>
</tr>
<tr>
<td>(±)₁</td>
<td>Ground for the motor case</td>
<td>TB1-4</td>
</tr>
</tbody>
</table>

NOTE: Torque all terminal connections to 1.25 Nm (11.0 lb-in).

1. The I-Series and V-Series motors require swapping of the R and S motor power leads when connecting to the drive.

Refer to “” on page -173 for a list of available Giddings & Lewis cables.
Shield Termination of Power Cables

DANGER

Shielded power cables must be grounded at a minimum of one point for safety. Failure to ground a shielded power cable will result in potentially lethal voltages on the shield and anything connected to it.

Giddings & Lewis motor power cables are shielded. The power cable is designed to be terminated at the drive during installation. A small portion of the cable jacket is stripped, which exposes the shield wires. The exposed area must be clamped at the left front of the drive chassis using the clamp provided near the bottom. It is critical for EMC performance that the shield wires be clamped against the area of the chassis which is not painted. This section of the chassis is labeled with the chassis ground symbol.

YSM Series Power Cables

YSM Series motors have a short “pigtail” cable which connects to the motor but is not shielded. The motor power cables have a 6 inch shield termination wire with a ring lug which should be connected to the closest earth ground. This shield termination may be extended to the full length of the motor pigtail if necessary, but it is best to connect the supplied wire directly to ground without lengthening.

WARNING

High voltage may be present on the terminals of the Centurion DSM100 Drive. Remove power and disconnect the power cable before making or removing any connection.

CAUTION

Do not tin (solder) the exposed leads on cables. Solder contracts over time and may loosen the connection.
Motor Overload Protection
The drive utilizes solid state motor overload protection which operates:
- Within 8 minutes at 200% overload
- Within 20 seconds at 600% overload.

Emergency Stop Wiring
An overlapping contactor may be inserted between the motor and the drive for emergency stop purposes. The contactor must not simply break the motor current, it also must switch a three phase resistive load in parallel with the motor windings.

The three resistors provide dynamic braking. In addition, they prevent continuous arcing at the main contacts when breaking DC currents, such as when the motor stalls. Simply breaking the motor current can result in high voltages due to motor inductance, which will cause prolonged arcing in the contactor. In extreme cases, the prolonged arcing could result in the contactor catching fire. An overlapping contactor provides the required timing by engaging the braking contactors before the drive contactors disengage.

Figure 7.3 depicts a contactor installation with resistive loads. Follow these guidelines:
- The resistor values should be one to four times the winding resistance for good braking performance. Refer to Appendix E, “Dynamic Braking Resistor Selection” for resistor sizing equations.
- Screen and ground cables should be connected as shown.
• Shields should be unbraided (not a drain wire soldered to the shield).
• Connection lengths should be minimized.
• Safety ground (GND) and shield connections are permanently connected. This is essential for electrical safety.
• EMC guidelines require connection of the shield at the point where the contactor is inserted.

FIGURE 7.3

Emergency Stop Contactor Wiring

DC Bus

Terminals 5 and 6 have voltage present when AC power is applied to the drive. The DC Bus LED also illuminates when voltage is present on the terminals.

TABLE 7.3 TB1 – DC Bus Terminals

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>DC Bus +</td>
<td>Positive DC Bus voltage signal</td>
<td>TB1-5</td>
</tr>
<tr>
<td>DC Bus -</td>
<td>Negative DC Bus voltage signal</td>
<td>TB1-6</td>
</tr>
</tbody>
</table>

NOTE: Torque all terminal connections to 1.25 Nm (11.0 lb-in).

AC Power Cabling

The Centurion DSM100 Drives require 100 to 240 VAC rms power with an input frequency of 47 - 63 Hz. The DSM110, DSM110P, DSM120, DSM120P, DSM130 and DSM130P require single phase input power. The DSM175 and DSM175P may use either single or three-phase input power, but the DSM 1150 and DSM 1150P require three-phase input power. “Centurion DSM100 Drive Power Ratings” on page F-233 lists the output power characteristics of the Centurion DSM100 Drives. The AC input supplies power to the motor and the drive logic as the default factory setting. An auxiliary power source may provide input power to the drive I/O independent of the motor power. Alternatively, the drive may be powered by an external DC power source.
Terminals 7, 8 and 9 are the single phase AC input power connections for the DSM110, DSM110P, DSM120, DSM120P, DSM130 and DSM130P. Terminals 7, 8 and 10 are the three phase AC input power connections for the three-phase DSM175, DSM175P, DSM 1150 and DSM 1150P. Terminals 7, 8 and 10 are the AC input power connections when the DSM175 and DSM175P are powered from a single-phase input.

DANGER

The user is responsible for conforming with all applicable local, national and international codes. Wiring practices, grounding, disconnects and overcurrent protection are of particular importance. Failure to observe this precaution could result in severe bodily injury or loss of life.

WARNING

High voltage may be present on the terminals of the Centurion DSM100 Drive. Ensure that the drive is connected to a safety (earth) ground.

CAUTION

Do not tin (solder) the exposed leads on cables. Solder contracts over time and may loosen the connection.

TABLE 7.4

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>100/240 Volts AC Line 1 input power.</td>
<td>TB1-7, TB1-7</td>
</tr>
<tr>
<td>L2/N</td>
<td>100/240 Volts AC Line 2 input power. (Neutral on single-phase drive: DSM110, 120, 130, 175 and DSM 1150)</td>
<td>TB1-8, TB1-8</td>
</tr>
<tr>
<td>L3</td>
<td>240 Volts AC Line 3 input power. Available only on three-phase drives: DSM175 and DSM 1150.</td>
<td>not used, TB1-9</td>
</tr>
<tr>
<td>(±)</td>
<td>Safety (earth) ground</td>
<td>TB1-9, TB1-10</td>
</tr>
</tbody>
</table>

NOTE: Torque all terminal connections to 1.25 Nm (11.0 lb-in).

The inputs to the main (logic and motor supply) and the auxiliary (logic supply only) power sources are separated. This permits independent powering of the control power and the motor power. This dual power sourcing is useful for troubleshooting and diagnostics.

TABLE 7.5

AC Input Power Sizing Requirements

<table>
<thead>
<tr>
<th>Model</th>
<th>Current</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input¹</td>
<td>Inrush (peak Amps)</td>
</tr>
<tr>
<td>DSM110, DSM110P</td>
<td>10</td>
<td>50</td>
</tr>
<tr>
<td>DSM120, DSM120P</td>
<td>19</td>
<td>50</td>
</tr>
<tr>
<td>DSM130, DSM130P</td>
<td>28</td>
<td>50</td>
</tr>
</tbody>
</table>
The inputs to the main (logic and motor supply) and the auxiliary (logic supply only) power sources are separated. This permits the logic power to operate independently of the motor. This dual power sourcing is useful for troubleshooting and diagnostics.

Auxiliary Power

Auxiliary AC (Terminals 10 and 11) supplies power to the logic/control circuits and fault logic. The main and auxiliary power must be connected in phase.

AUX power is supplied to a switching power supply. This input accepts Voltages from 100 to 240 VAC rms single phase with an input frequency 47-63 Hz.
The auxiliary (logic supply only) and the main (logic and motor supply) power sources are separated. This permits the logic power to operate independently of the motor. This dual power sourcing is useful for troubleshooting and diagnostics.

Table 7.6 Auxiliary Power Terminals

<table>
<thead>
<tr>
<th>Signal</th>
<th>Description</th>
<th>Terminal</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1 AUX</td>
<td>Auxiliary 100/240 Volts AC Line 1 input</td>
<td>TB1-10 TB1-11</td>
</tr>
<tr>
<td>L2 AUX IN</td>
<td>Auxiliary 100/240 Volts AC Line 2 input (or neutral)</td>
<td>TB1-11 TB1-12</td>
</tr>
</tbody>
</table>

NOTE: Torque all terminal connections to 1.25 Nm (11.0 lb-in).

Table 7.7 Auxiliary Power Sizing Requirements

<table>
<thead>
<tr>
<th>Voltage Input (Volts AC)</th>
<th>Current</th>
<th>Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Input¹</td>
<td>Inrush</td>
</tr>
<tr>
<td></td>
<td>(Amps AC)</td>
<td>(Amps peak)</td>
</tr>
<tr>
<td>100</td>
<td>1.0</td>
<td>47</td>
</tr>
<tr>
<td>240</td>
<td>0.5</td>
<td>95</td>
</tr>
</tbody>
</table>

¹. Dual element, time delay (slow acting) fuses are required to accommodate inrush current at the auxiliary terminals during power-up. Local regulations must be observed when selecting fuses.

². The Centurion DSM100 Drives do not require an isolation transformer. The recommended transformer sizes are the minimum that is adequate for most servo applications. Larger transformers provide an additional safety factor. The additional safety factor may occur in applications that require minimum bus voltage sag when the motor must accelerate to high speed in minimum time or in applications with high continuous power requirements.
TB2 – Shunt Regulator

The Centurion DSM100 Drive has a built-in shunt regulator. The figure depicts the internal shunt selection with a factory installed jumper between terminals TB-1 and TB-2. Removal of the internal shunt jumper and installation of an external shunt between terminals TB-1 and TB-3 allows voltage to be dissipated at a faster rate than possible with the internal shunt.

The shunt regulator is enabled when the DC bus increases to a specific value (420 VDC). An increase in DC bus voltage always occurs when the drive decelerates the motor and its load. This is due to the current flow from the motor to the DC bus. When the energy transferred from the rotating inertia causes the DC bus voltage to exceed 420 VDC the shunt is enabled and the excess energy (>420 VDC) is dissipated as heat.

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Identifier</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB2-1</td>
<td>1 (Internal or External)</td>
<td>Positive DC bus</td>
</tr>
<tr>
<td>TB2-2</td>
<td>2 (Internal)</td>
<td>Internal shunt regulator resistor</td>
</tr>
<tr>
<td>TB2-3</td>
<td>3 (External)</td>
<td>Shunt regulator transistor collector</td>
</tr>
</tbody>
</table>

NOTE: Torque all terminal connections to 11.0 lb-in.

WARNING

High voltage is present on the terminals of the Centurion DSM100 Drive. Remove power and disconnect the power cable before making or removing any connection. Failure to observe this precaution could result in severe bodily injury or loss of life.

WARNING

DC bus capacitors may retain hazardous voltages for several minutes after input power has been removed, but will normally discharge in several seconds. Measure the DC bus voltage to verify it has reached a safe level each time power is removed before working on the drive; or wait for the time indicated in the warning on the front of the drive. Failure to observe this precaution could result in severe bodily injury or loss of life.

WARNING

External shunt resistors connect directly to the power bus. For safety reasons, an external shunt resistor must be enclosed.

CAUTION

Do not tin (solder) the exposed leads on cables. Solder contracts over time and may loosen the connection.

TABLE 7.8 TB2 – Shunt Regulator Terminals

<table>
<thead>
<tr>
<th>Terminal</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TB2-1</td>
<td>Positive DC bus</td>
</tr>
<tr>
<td>TB2-2</td>
<td>Internal shunt regulator resistor</td>
</tr>
<tr>
<td>TB2-3</td>
<td>Shunt regulator transistor collector</td>
</tr>
</tbody>
</table>

NOTE: Torque all terminal connections to 11.0 lb-in.
If the application requires a higher continuous power dissipation, the Centurion DSM100 Drive provides easy access to an external shunt connection. Connecting an external resistor requires disabling of the internal shunt resistor. Figure 7.4 depicts the use of one or more shunt resistors to provide 1X, 4X or 9X resistance (200 Watts to 2.4 kWatts).

Table 7.9: Internal Shunt Power Ratings for Drive Models

<table>
<thead>
<tr>
<th>Drive Model</th>
<th>DSM110, DSM110P</th>
<th>DSM120, DSM120P</th>
<th>DSM130, DSM130P</th>
<th>DSM175, DSM175P</th>
<th>DSM 1150, DSM 1150P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Shunt Power (Watts)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>180</td>
</tr>
<tr>
<td>Peak Shunt Power (kWatts)</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>10.0</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Table 7.10: Maximum External Shunt Power Ratings for Drive Models

<table>
<thead>
<tr>
<th>Drive Model</th>
<th>DSM110, DSM110P</th>
<th>DSM120, DSM120P</th>
<th>DSM130, DSM130P</th>
<th>DSM175, DSM175P</th>
<th>DSM 1150, DSM 1150P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Continuous Shunt Power (kWatts)</td>
<td>2.4</td>
<td>2.4</td>
<td>2.4</td>
<td>4.0</td>
<td>8.0</td>
</tr>
<tr>
<td>Peak Shunt Power (kWatts)</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>10.0</td>
<td>19.0</td>
</tr>
</tbody>
</table>

Table 7.11: Minimum Ratings for Customer Supplied External Shunt Resistor

<table>
<thead>
<tr>
<th>Drive Model</th>
<th>DSM110, DSM110P</th>
<th>DSM120, DSM120P</th>
<th>DSM130, DSM130P</th>
<th>DSM175, DSM175P</th>
<th>DSM 1150, DSM 1150P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum Resistance ± 10% (Ohms)</td>
<td>30</td>
<td>30</td>
<td>30</td>
<td>16.5</td>
<td>9</td>
</tr>
<tr>
<td>Wire size mm² (AWG)</td>
<td>2.5 (14)</td>
<td>2.5 (14)</td>
<td>2.5 (14)</td>
<td>2.5 (14)</td>
<td>6.0 (10)</td>
</tr>
</tbody>
</table>

1X Shunt Resistance up to 200 Watts
4X Shunt Resistance up to 1000 Watts
9X Shunt Resistance up to 2.4 kWatts

NOTES: A single resistor of equivalent total resistance may replace multiple resistors.
Dissipation uses approximately 50% of total resistance value.
External Shunt Connection

The following procedure outlines the installation of an external shunt resistor.

1. Remove jumper between TB1-1 and TB1-2, the internal shunt connection. The jumper is supplied with the drive.

2. Wire an external shunt resistor between TB1-1 and TB1-3, the external shunt connections. Use wire of the size recommended in “Minimum Ratings for Customer Supplied External Shunt Resistor” on page 7-102.

3. Torque all terminals to 11.0 lb-in.

A fan may increase the dissipation capability of the shunt resistor.
This section explains how to install and verify the Centurion DSM100 Drive for various modes of operation. The procedures verify the installation by:

- Showing how the power and logic wiring is connected.
- Selecting the Operation Mode setup for the drive.
- Tuning the drive for a particular motor type and size.
- Verifying the basic functionality of the drive and motor combination.

How to modify the units of measurement for DSMPro displays is explained on page 8-141.

Analog Control

The Centurion DSM100 Drive can be set up as an analog drive in either the Velocity or Torque mode by making the hardware connections and performing the software setup and tuning described below. The connection diagram depicts the minimum hardware necessary. Interfacing the drive to an external controller requires similar circuitry from the controller to J1. Instructions are provided to configure the drive using a PC with DSMPro software, but the optional TouchPad also may be used.

Hardware Set Up

Make the connections described below and shown in the figure.

1. Connect a ±10VDC power source between J1-22 and J1-23 (ANALOG CMND +/-) to provide the analog speed or torque command.
2. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the drive. A simple 3 wire cable is depicted in the figure below.
3. Connect a Motor/Feedback cable from the motor to the J2 connector on the drive.
5. Connect a jumper wire with a toggle switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-21 (FAULT RESET) and J1-26 (I/O PWR).

These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.

6. Connect the drive to a 100/240 V AC, 50/60 Hz power source appropriate to the drive:
 - Single Phase: DSM110, DSM110P, DSM120, DSM120P, DSM130, DSM130P, DSM175 or DSM175P
 - Three Phase: DSM175, DSM175P, DSM 1150 or DSM 1150P
Connection Diagram

FIGURE 8.1 Analog Controller Connection Diagram

Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Green DC BUS LED is ON
 - Display shows an operational status: A, F or P (Analog, Follower or Preset mode of operation). Refer to “Operating Messages” on page 10-153 for an explanation of the display codes.

2. Start DSMPro on the PC.

3. Choose **Cancel** from the Drive Select dialog box.

4. Select **PC Set Up** from the Communications menu in DSMPro to display the personal computer’s communication settings.

5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select **OK** in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

Factory default communications Port – Settings for the drive are:
- Baud Rate: **9600**
- Data Bits: **8**
- Parity: **None**
- Stop Bits: **1**
6. Select **Read Drive Parameters** from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose **OK** to load the drive parameters.

9. If the message box appears that a motor must be selected, select **OK**. The Drive Set Up window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose **Yes**.

12. Select the Operation Mode parameters for the drive:

 - **Velocity Mode Settings**:
 - **Analog Velocity Input** as the Operation Mode
 - **Torque Mode Settings**:
 - **Analog Torque Input** as the Operation Mode

13. Choose **Close** to exit the Drive Set Up window.

14. Choose the **Drive Parameters** icon from the Drive window and then select the **Analog** tab.

15. Enter appropriate **Scale** and **Offset** values for the input.

Tuning

TIP

Do not attempt to Tune a drive with the Command mode set for Analog Torque Input. If the drive is set to Torque mode, continue with the Operation section below.

TIP

Do not attempt to Auto Tune systems that have gravitational effects. The Centurion DSM100 Drive will not hold initial position.

1. Choose the **Tuning** command icon from the Drive window. The drive must be configured in Velocity mode for tuning to be effective.

2. Select **AutoTune** from the Tuning mode group.

3. Select the appropriate values for the following Auto Tune commands:

 - **Distance** and
 - **Step Current**.

4. Select the appropriate entry for the Motor Direction:

 - **BiDirectional**.
 - **Forward Only** or
 - **Reverse Only**.
5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

WARNING

Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

6. Choose **Start** from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then DSMPro displays the calculated gains and disables the drive.

7. Open the switch between J1-26 and J1-20 to disable the drive.

8. Choose **Normal Drive Operation** from the Tuning window.

9. Choose **Close** to exit the Tuning windows.

10. Close any open windows or dialogs.

Operation

The drive is now configured as an Analog Controller in either the velocity or torque mode.

- The current loop is compensated properly for the selected motor.
- The servo parameters have been setup with an unloaded motor.
- The motor speed or current is commanded through the analog input.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:

1. Close the switch between J1-26 and J1-20 to enable the drive.
Preset Controller

The Centurion DSM100 Drive can be set up as a preset controller in the Velocity or Torque mode by making the connections described below. Three discrete digital inputs provide the programmable speed or torque control. Up to eight different preset speed or torque settings can be selected by using the three digital inputs in various binary combinations, as shown in the table below. The connection diagram depicts the minimum hardware necessary. Interfacing the drive to a controller requires similar circuitry from the controller to J1. Instructions are provided to configure the drive using a PC with DSMPro software, but the optional TouchPad also may be used.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the drive. A simple 3 wire cable is depicted in the figure below.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the drive.

4. Connect a jumper wire with a toggle switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-33 (INPUT2) and J1-26 (I/O PWR)

 TABLE 8.1 Preset Binary Inputs

<table>
<thead>
<tr>
<th>Inputs</th>
<th>C</th>
<th>B</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preset 0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Preset 1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Preset 2</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Preset 3</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Preset 4</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Preset 5</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Preset 6</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Preset 7</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

1. A preset input signal that is OFF is inactive, which means no current flows through the optocoupler.
2. A preset input signal that is ON is active, which means current flows through the optocoupler.

Hardware Set Up

Make the connections described below and shown in Figure 8.2. The appendix “” on page -173 lists the interconnect cables available from the factory.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the drive. A simple 3 wire cable is depicted in the figure below.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the drive.

4. Connect a jumper wire with a toggle switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-33 (INPUT2) and J1-26 (I/O PWR)

DSM Drive Hardware and Installation Manual
- J1-34 (INPUT3) and J1-26 (I/O PWR)
- Connect a switch between J1-21 (FAULT RESET) and J1-26 (I/O PWR).

These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.

5. Connect the drive to a 100/240 VAC, 50/60 Hz power source appropriate to the drive:
 - Single Phase: DSM110, DSM110P, DSM120, DSM120P, DSM130, DSM130P, DSM175 or DSM175P
 - Three Phase: DSM175, DSM175P, DSM 1150 or DSM 1150P

Connection Diagram

![Diagram of Preset Controller Connection Diagram](image-url)
Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Green DC BUS LED is ON
 - Display shows an operational status: A, F or P (Analog, Follower or Preset mode of operation). Refer to “Operating Messages” on page 10-153 for an explanation of the display codes.

2. Start DSMPro on the PC.

3. Choose Cancel from the Drive Select dialog box.

4. Select PC Set Up from the Communications menu in DSMPro to display the personal computer’s communication settings.

5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select OK in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.
 Factory default communications Port – Settings for the drive are:
 – Baud Rate: 9600
 – Data Bits: 8
 – Parity: None
 – Stop Bits: 1
 – Serial Port: COM1
 Refer to the section “RS-232 Communication Test” on page 11-166 for troubleshooting instructions.

6. Select Read Drive Parameters from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose OK to load the drive parameters.

9. If the message box appears that a motor must be selected, select OK. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose Yes.

12. Select the Operation Mode parameter for the drive:

<table>
<thead>
<tr>
<th>Velocity Mode Settings</th>
<th>Torque Mode Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preset Velocities as the Mode</td>
<td>Preset Torques as the Mode</td>
</tr>
</tbody>
</table>

13. Choose Close from the Drive Setup window.

14. Choose the Drive Parameters command icon from the Drive window and then select the Preset tab.
15. Enter the appropriate parameters for the Command mode in which the drive will operate:

Velocity Mode Settings
- Enter the appropriate velocity value for each speed required

Torque Mode Settings
- Enter the appropriate current value for each torque required

Up to eight presets (0-7) may be programmed.

16. Choose **Close** to exit the Drive Parameters window.

17. Select the **I/O Configuration** command icon from the Drive window.

18. Assign one of the three Preset Selects (A, B and C) to each of the Digital Input Assignments. For example, the following selects three presets:

- **Input 1** to **Preset Select A**
- **Input 2** to **Preset Select B**
- **Input 3** to **Preset Select C**
- **Input 4** to **Not Assigned**

The presets provide up to eight binary combinations of speed or current. Unassigned preset inputs should be set to **Not Assigned**, which forces an OFF state.

19. Verify all Digital Output Assignments are **Not Assigned**.

20. Choose **Close** to exit the I/O Configuration window.

Tuning

Do not attempt to Tune a drive with the Command mode set for Preset Torques. If the drive is set to Torque mode, continue with the Operation section below.

- Do not attempt to Auto Tune systems that have gravitational effects. The Centurion DSM100 Drive will not hold initial position.

1. Choose the **Tuning** command icon from the Drive window. The drive must be configured in Velocity mode for tuning to be effective.

2. Select **AutoTune** from the Tuning mode group.

3. Select the appropriate values for the following Auto Tune commands:

- **Distance** and
- **Step Current**.

4. Select the appropriate entry for the Motor Direction:

- **BiDirectional**,
- **Forward Only** or
- **Reverse Only**.

5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

WARNING
Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.
6. Choose **Start** from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then DSMPro displays the calculated gains and disables the drive.

7. Choose **Normal Drive Operation** from the Tuning window.

8. Open the switch between J1-26 and J1-20 to disable the drive.

9. Choose **Close** to exit the Tuning window.

10. Close any open windows or dialog boxes.

Operation

The drive is now configured as a Preset Controller in Velocity or Torque mode.

- The servo parameters have been setup with the unloaded motor.
- The motor speed or current is controlled through the digital inputs.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:

1. Close the switch between J1-26 and J1-20 to enable the drive.

Close any of the switches for INPUT1, INPUT2 or INPUT3 to run the drive at the programmed preset speed or torque. Application and Configuration Examples
Position Follower (Master Encoder)

The Centurion DSM100 Drive can be electronically geared to a master incremental encoder generating quadrature encoder signals by making the hardware connections and performing the software setup and tuning described below. The connection diagram depicts the minimum hardware necessary. Interfacing the drive to an external controller requires similar circuitry from the controller to J1. Instructions are provided to configure the drive using a PC with DSMPro software, but the optional TouchPad also may be used.

Hardware Set Up

Make the connections described below and shown in Figure 8.3. The appendix “” on page -173 lists the interconnect cables available from the factory.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the Centurion DSM100 Drive. A simple 3 wire cable is depicted in the figure below.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the drive.

4. Connect the Master Encoder to the drive as shown in the diagram.

5. Connect a jumper wire with a switches between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-21 (FAULT RESET) and J1-26 (I/O PWR).
 These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.

6. Connect the drive to a 100/240 VAC, 50/60 Hz power source appropriate to the drive:
 - Single Phase: DSM110, DSM110P, DSM120, DSM120P, DSM130, DSM130P, DSM175 or DSM175P
 - Three Phase: DSM175, DSM175P, DSM 1150 or DSM 1150P
Connection Diagram

Master Encoder Connection Diagram

Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Green DC BUS LED is ON
 - Display shows an operational status: A, F or P (Analog, Follower or Preset mode of operation). Refer to “Operating Messages” on page 10-153 for an explanation of the display codes.

2. Start DSMPro on the PC.

3. Choose **Cancel** from the Drive Select dialog box.

4. Select **PC Set Up** from the Communications menu in DSMPro to display the personal computer’s communication settings.

5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select **OK** in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

Factory default communications Port – Settings for the drive are:
- **Baud Rate:** 9600
- **Data Bits:** 8
- **Parity:** None

Note 1. Refer to Figure 6.24, 6.25, 6.26, 6.27, 6.28, 6.29 and 6.30 for additional details on the Control Interface Cable.
– Stop Bits: 1
– Serial Port: COM1

Refer to the section “RS-232 Communication Test” on page 11-166 for troubleshooting instructions.

6. Select **Read Drive Parameters** from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose **OK** to load the drive parameters.

TIP

A motor must be selected for the parameters to load.

9. If the message box appears that a motor must be selected, select **OK**. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose **Yes**.

12. Select **Follower: Master Encoder** as the Operation Mode for the drive.

13. Choose **Close** from the Drive Setup window.

14. Choose the **Drive Parameter** command icon from the Drive window, then select the **Follower** tab.

15. Enter an appropriate **Gear Ratio** as the Follower Input. The default Gear Ratio is 1:1 (motor encoder pulses:master pulses). If a Gear Ratio of 3:1 is entered, the motor is moved 3 encoder pulses for every incoming master pulse.

16. Choose **Close** to exit the Drive Parameters window.

17. Verify the Status indicator is green.

18. Select the **I/O Configuration** command icon from the Drive Window.

19. Select an appropriate digital input from the pull-down lists available as Digital Input Assignments in the I/O Configuration window.

 For example:

 - **Follower Enable** as Input 1
 - **Not Assigned** as Inputs 2 through 4.
 - **Not Assigned** as Outputs 1 through 4.

20. Choose **Close** to exit the I/O Configuration window.
Tuning

Do not attempt to Auto Tune systems that have gravitational effects. The Century DSM100 Drive will not hold initial position.

1. Choose the Tuning command icon from the Drive window.
2. Select AutoTune from the Tuning mode group.
3. Select the appropriate values for the following Auto Tune commands:
 • Distance
 • Step Current.
4. Select the appropriate entry for the Motor Direction:
 • BiDirectional,
 • Forward Only or
 • Reverse Only.
5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

WARNING Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

6. Choose Start from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then DSMPro displays the calculated gains and disables the drive.
7. Choose Normal Drive Operation from the Tuning window.
8. Open the switch between J1-26 and J1-20 to disable the drive.
9. Choose Close to exit the Tuning window.
10. Close any open windows or dialog boxes.

Operation

The drive is now configured as a Position Follower (Master Encoder).
• The current loop is compensated properly for the selected motor.
• The servo parameters have been setup with the unloaded motor.
• The motor position is controlled by the master encoder input.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:
1. Close the switch between J1-26 and J1-20 to enable the drive.
2. Close the switch between J1-26 and J1-32 to enable following.
Position Follower (Step/Direction)

The Centurion DSM100 Drive can be set up as a Position Follower using Step/Direction commands by making the hardware connections and performing the software setup and tuning described below. This configuration allows the Centurion DSM100 Drive to electronically gear or drive a servo motor using step and direction signals that typically control a stepper drive. The connection diagram depicts the minimum hardware necessary. Interfacing the drive to a stepper indexer requires similar circuitry from the stepper indexer to J1. Instructions are provided to configure the drive using a PC with DSMPro software, but the optional TouchPad may also may be used.

Hardware Set Up

Make the connections described below and shown in Figure 8.4. The appendix “” on page -173 lists the interconnect cables available from the factory.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the drive. A simple 3 wire cable is depicted in the figure below.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the drive.

4. Connect the Step/Direction signals to the drive as shown in the diagram.

5. Connect a jumper wire with a switches between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-21 (FAULT RESET) and J1-26 (I/O PWR).
 These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.

6. Connect the drive to a 100/240 VDC, 50/60 Hz power source appropriate to the drive:
 - Single Phase: DSM110, DSM110P, DSM120, DSM120P, DSM130, DSM130P, DSM175 or DSM175P
 - Three Phase: DSM175, DSM175P, DSM 1150 or DSM 1150P
Connection Diagram

Note 1. Refer to Figure 6.31 and 6.32 for additional details on the Control Interface Cable.

FIGURE 8.4 Step/Direction Controller Connection Diagram

Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Green DC BUS LED is ON
 - Seven segment display shows an operational status: A, F or P (Analog, Follower or Preset mode of operation). Refer to “Operating Messages” on page 10-153 for an explanation of the display codes.

2. Start DSMPro on the PC.

3. Choose **Cancel** from the Drive Select dialog box.

4. Select **PC Set Up** from the Communications menu in DSMPro to display the personal computer’s communication settings.

5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select **OK** in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

Factory default communications Port – Settings for the drive are:
- Baud Rate: **9600**
- Data Bits: **8**
- Parity: **None**
– Stop Bits: 1
– Serial Port: COM1

Refer to the section “RS-232 Communication Test” on page 11-166 for troubleshooting instructions.

6. Select **Read Drive Parameters** from the Communications menu.
7. Verify the Drive Name and Address are correct for the drive that is being addressed.
8. Choose **OK** to load the drive parameters.

TIP

A motor must be selected for the parameters to load.

9. If the message box appears that a motor must be selected, select **OK**. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose **Yes**.

12. Select **Follower: Step/Direction** as the Operation Mode for the drive.

13. Choose **Close** to exit the Drive Set Up window.

14. Choose the **Drive Parameters** command icon from the Drive window and then select the **Follower** tab.

15. Enter an appropriate **Gear Ratio** as the Follower Input. The default Gear Ratio is 1:1 (motor encoder pulses:master pulses). If a Gear Ratio of 3:1 is entered, the motor is moved 3 encoder pulses for every incoming step pulse.

16. Choose **Close** to exit the Drive Parameters window.

17. Select the **I/O Configuration** command icon from the Drive Window.

18. Select an appropriate digital input from the pull-down lists available as Digital Input Assignments in the I/O Configuration window.

For example:

- **Follower Enable** as Input 1
- **Not Assigned** as Inputs 2 through 4.
- **Not Assigned** as Outputs 1 through 4.

19. Choose **Close** to exit the I/O Configuration window.
Tuning

Do not attempt to Auto Tune systems that have gravitational effects. The Centurion DSM100 Drive will not hold initial position.

1. Choose the Tuning command icon from the Drive window.
2. Select AutoTune from the Tuning mode group.
3. Select the appropriate values for the following Auto Tune commands:
 - **Distance** and
 - **Step Current**.
4. Select the appropriate entry for the Motor Direction:
 - **BiDirectional**,
 - **Forward Only** or
 - **Reverse Only**.
5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

WARNING

Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

6. Choose **Start** from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then DSMPro displays the calculated gains and disables the drive.
7. Choose **Normal Drive Operation** from the Tuning window.
8. Open the switch between J1-26 and J1-20 to disable the drive.
9. Choose **Close** to exit the Tuning window.
10. Close any open windows or dialog boxes.

Operation

The drive is now configured as a Position Follower (Step/Direction).
- The servo parameters have been setup with the unloaded motor.
- The motor position is controlled by the step/direction inputs.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:
1. Close the switch between J1-26 and J1-20 to enable the drive.
2. Close the toggle switch between J1-26 and J1-32 to enable following.
Position Follower (Step Up/Step Down)

The Centurion DSM100 Drive can be set up as a Position Following using Step Up and Step Down signals typically used to control stepper drives. The connection diagram depicts the minimum hardware necessary. Interfacing the drive to a controller requires similar circuitry from the indexer to J1. Instructions are provided to configure the drive with DSMPro software.

Hardware Set Up

Make the connections described below and shown in Figure 8.5. The appendix “” on page 173 lists the interconnect cables available from the factory.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the Centurion DSM100 Drive. A simple 3 wire cable is depicted in the figure below.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the Centurion DSM100 Drive.

4. Connect the Stepper Indexer to the drive as shown in the diagram.

5. Connect a jumper wire with a toggle switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-21 (FAULT RESET) and J1-26 (I/O PWR).
 These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.

6. Connect the drive to a 100/240 V AC, 50/60 Hz power source appropriate to the drive:
 - Single Phase: DSM110, DSM110P, DSM120, DSM120P, DSM130, DSM130P, DSM175 or DSM175P
 - Three Phase: DSM175, DSM175P, DSM1150 or DSM1150P
Connection Diagram

![Connection Diagram](image)

Note 1. Refer to Figure 6.33 and 6.34 for additional details on the Control Interface Cable.

Step Up/Step Down Controller Connection Diagram

Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Green DC BUS LED is ON
 - Display shows an operational status: A, F or P (Analog, Follower or Preset mode of operation). Refer to “Operating Messages” on page 10-153 for an explanation of the display codes.

2. Start DSMPro on the PC.

3. Choose **Cancel** from the Drive Select dialog box.

4. Select **PC Set Up** from the Communications menu in DSMPro to display the personal computer’s communication settings.

5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select **OK** in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

Factory default communications Port – Settings for the drive are:
- Baud Rate: **9600**
- Data Bits: **8**
– Parity: **None**
– Stop Bits: **1**
– Serial Port: **COM1**

Refer to the section “RS-232 Communication Test” on page 11-166 for troubleshooting instructions.

6. Select **Read Drive Parameters** from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose **OK** to load the drive parameters.

TIP

A motor must be selected for the parameters to load.

9. If the message box appears that a motor must be selected, select **OK**. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose **Yes**.

12. Select **Follower: Step Up/Step Down** as the Operation Mode for the drive.

13. Choose **Close** to exit the Drive Set Up window.

14. Choose the **Drive Parameters** command icon from the Drive window and then select the **Follower** tab.

15. Enter an appropriate **Gear Ratio** as the Follower Input. The default Gear Ratio is 1:1 (motor encoder pulses:master pulses). If a Gear Ratio of 3:1 is entered, the motor is moved 3 encoder pulses for every incoming step pulse.

16. Choose **Close** to exit the Drive Parameters window.

17. Select the **I/O Configuration** command icon from the Drive Window.

18. Select an appropriate digital input from the pull-down lists available as Digital Input Assignments in the I/O Configuration window.

 For example:

 - **Follower Enable** as Input 1
 - **Not Assigned** as Inputs 2 through 4.
 - **Not Assigned** as Outputs 1 through 4.

19. Choose **Close** to exit the I/O Configuration window.
Tuning

Do not attempt to Auto Tune systems that have gravitational effects. The Centurion DSM100 Drive will not hold initial position.

1. Choose the Tuning command icon from the Drive window.
2. Select AutoTune from the Tuning mode group.
3. Select the appropriate values for the following Auto Tune commands:
 - Distance
 - Step Current.
4. Select the appropriate entry for the Motor Direction:
 - BiDirectional,
 - Forward Only or
 - Reverse Only.
5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

6. Choose Start from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then DSMPro displays the calculated gains and disables the drive.
7. Choose Normal Drive Operation from the Tuning window.
8. Open the switch between J1-26 and J1-20 to disable the drive.
9. Choose Close to exit the Tuning window.
10. Close any open windows or dialog boxes.

Operation

The drive is now configured as either a Position Follower (Step Up/Step Down).
- The servo parameters have been setup with the unloaded motor.
- The motor position is controlled by the step indexer.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:
1. Close the switch between J1-26 and J1-20 to enable the drive.
2. Close the toggle switch between J1-26 and J1-32 to enable following.
Incremental Indexing

This feature is available only on drives capable of indexing: DSM110P, DSM120P, DSM130P, DSM175P and DSM 1150P.

The Centurion DSM100 Drive can be set up as an incremental indexer by making the hardware connections and performing the software setup and tuning described below. A connection diagram depicts the minimum hardware necessary. Interfacing the drive to an external controller requires similar circuitry from the controller to J1, refer to “J1 – Controller” on page 6-53. Instructions are provided to configure the drive using a PC with DSMPro software, but the optional TouchPad also may be used.

The following examples depict a simple incremental index move and a batched (multiple) move using incremental indexing.

INCREMENTAL INDEXING

Batch count = 1

INCREMENTAL INDEXING – BATCHED

Batch count = 3

Figure 8.6 Incremental Indexing Examples
Hardware Set Up

Make the connections described below and shown in the Figure 8.7. The appendix “” on page -173 lists the interconnect cables available from the factory.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the Centurion DSM100 Drive. A simple 3 wire cable is depicted in the figure below.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the Centurion DSM100 Drive.

3. Connect a Power cable from the motor to TB1 (terminals R, S, T and \(\pm \)) on the drive.

4. Connect a jumper wire with a toggle switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-21 (FAULT RESET) and J1-26 (I/O PWR).

 These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.

5. Connect the drive to a 100/240 V AC, 50/50 Hz power source appropriate to the drive:
 - Single Phase: DSM110, DSM110P, DSM120, DSM120P, DSM130, DSM130P, DSM175 or DSM175P
 - Three Phase: DSM175, DSM175P, DSM 1150 or DSM 1150P

Connection Diagram

![Incremental Indexing Connection Diagram](image-url)
Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Green DC BUS LED is ON
 - Display shows an operational status: A, F or P (Analog, Follower or Preset mode of operation). Refer to “Operating Messages” on page 10-153 for an explanation of the display codes.

2. Start DSMPro on the PC.

3. Choose **Cancel** from the Drive Select dialog box.

4. Select **PC Set Up** from the Communications menu in DSMPro to display the personal computer’s communication settings.

5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select **OK** in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.
 Factory default communications Port – Settings for the drive are:
 - Baud Rate: **9600**
 - Data Bits: **8**
 - Parity: **None**
 - Stop Bits: **1**
 - Serial Port: **COM1**
 Refer to the section “RS-232 Communication Test” on page 11-166 for troubleshooting instructions.

6. Select **Read Drive Parameters** from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose **OK** to load the drive parameters.

9. If the message box appears that a motor must be selected, select **OK**. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose **Yes**.

12. Select **Indexing** as the Operation Mode for the drive.

13. Choose **Close** to exit the Drive Set Up window.

14. Choose the **Drive Parameters** command icon from the Drive window and then select the **Indexing tab**.

15. Enter the following values for Index 0. Refer to “Incremental Indexing Examples” on page 8-127 for examples of Single and Batched Incremental Indexing profiles.
<table>
<thead>
<tr>
<th>Single Move Settings</th>
<th>Batched Move Settings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incremental as Mode</td>
<td>Incremental as Mode</td>
</tr>
<tr>
<td>8000 as Distance</td>
<td>8000 as Distance</td>
</tr>
<tr>
<td>1 as the Batch Count</td>
<td>3 as the Batch Count</td>
</tr>
<tr>
<td>0 as Dwell</td>
<td>1000 as Dwell</td>
</tr>
<tr>
<td>Appropriate values for Acceleration and Deceleration</td>
<td>Appropriate values for Acceleration and Deceleration</td>
</tr>
</tbody>
</table>

16. Choose **Close** to exit the Drive Parameters window.

17. Select the **I/O Configuration** command icon from the Drive Window.

18. Select an appropriate digital input from the pull-down lists available as Digital Input Assignments in the I/O Configuration window. For example:
 - **Start Index** as Input 1
 - **Not Assigned** as Inputs 2 through 4.
 - **Not Assigned** as Outputs 1 through 4.

19. Choose **Close** to exit the I/O Configuration window.

Tuning

TIP
Do not attempt to Auto Tune systems that have gravitational effects. The Centurion DSM100 Drive will **not** hold initial position.

1. Choose the **Tuning** command icon from the Drive window.

2. Select **AutoTune** from the Tuning mode group.

3. Select the appropriate values for the following Auto Tune commands:
 - **Distance**
 - **Step Current**.

4. Select the appropriate entry for the Motor Direction:
 - **BiDirectional**,
 - **Forward Only** or
 - **Reverse Only**.

5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

WARNING
Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

6. Choose **Start** from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then DSMP reveals the calculated gains and disables the drive.

7. Choose **Normal Drive Operation** from the Tuning window.

8. Open the switch between J1-26 and J1-20 to disable the drive.

9. Choose **Close** to exit the Tuning window.
10. Close any open windows or dialog boxes.

Operation

The drive is now configured as an Incremental Indexing controller.

- The servo parameters have been setup with the unloaded motor.
- Motion is commanded through the inputs.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:

1. Close the switch between J1-26 and J1-20 to enable the drive.

2. Close the toggle switch between J1-26 and J1-32 to start Index 0.
Registration Indexing

This feature is available only on drives capable of indexing: DSM110P, DSM120P, DSM130P, DSM175P and DSM 1150P.

The Centurion DSM100 Drive can be set up as a registration indexer by making the hardware connections and performing the software setup and tuning described below. A connection diagram depicts the minimum hardware necessary. Interfacing the drive to an external controller requires similar circuitry from the controller to J1, refer to “J1 – Controller” on page 6-53. Instructions are provided to configure the drive using a PC with DSMPro software, but the optional TouchPad also may be used.

The following example depicts a batched (multiple) move using registration indexing.

![Figure 8.8 Registration Indexing Examples](image)

Hardware Set Up

Make the connections described below and shown in the Figure 8.7. The appendix “” on page -173 lists the interconnect cables available from the factory.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the Centurion DSM100 Drive. A simple 3 wire cable is depicted in the figure below.

2. Connect a Motor/Feedback cable from the motor to the J2 connector on the Centurion DSM100 Drive.

4. Connect the Index Sensor to the drive as shown in the diagram.

5. Connect a jumper wire with a toggle switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-33 (INPUT2) and J1-26 (I/O PWR)
 - J1-21 (FAULT RESET) and J1-26 (I/O PWR).

These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.
6. Connect the drive to a 100/240 VAC, 50/50 Hz power source appropriate to the drive:

- Single Phase: DSM110, DSM110P, DSM120, DSM120P, DSM130, DSM130P, DSM175 or DSM175P
- Three Phase: DSM175, DSM175P, DSM 1150 or DSM 1150P

Connection Diagram

![Connection Diagram](image)

Registration Indexing Connection Diagram

Configuration

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Green DC BUS LED is ON
 - Display shows an operational status: A, F or P (Analog, Follower or Preset mode of operation). Refer to “Operating Messages” on page 10-153 for an explanation of the display codes.

2. Start DSMPro on the PC.

3. Choose **Cancel** from the Drive Select dialog box.

4. Select **PC Set Up** from the Communications menu in DSMPro to display the personal computer’s communication settings.
5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select **OK** in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

 Factory default communications Port – Settings for the drive are:
 - Baud Rate: **9600**
 - Data Bits: **8**
 - Parity: **None**
 - Stop Bits: **1**
 - Serial Port: **COM1**

 Refer to the section “RS-232 Communication Test” on page 11-166 for troubleshooting instructions.

6. Select **Read Drive Parameters** from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose **OK** to load the drive parameters.

TIP
A motor must be selected for the parameters to load.

9. If the message box appears that a motor must be selected, select **OK**. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose **Yes**.

12. Select **Indexing** as the Operation Mode for the drive.

13. Choose **Close** to exit the Drive Set Up window.

14. Choose the **Drive Parameters** command icon from the Drive window and then select the **Indexing** tab.

15. Enter the following values for **Index 0**.

 Single Move Settings
 - **Registration** as Mode
 - **8000** as Distance
 - **1** as the Batch Count
 - **0** as Dwell
 - Appropriate values for Acceleration and Deceleration

 Batched Move Settings
 - **Registration** as Mode
 - **8000** as Distance
 - **8000** as Registration Distance
 - **3** as the Batch Count
 - **1000** as Dwell
 - Appropriate values for Acceleration and Deceleration

TIP
The Registration Distance must be longer than the Deceleration Distance or the move will not be registered.
16. Choose Close to exit the Drive Parameters window.

17. Select the I/O Configuration command icon from the Drive Window.

18. Select an appropriate digital input from the pull-down lists available as Digital Input Assignments in the I/O Configuration window. For example:
 - Start Index as Input 1
 - Registration Sensor as Input 2.
 - Not Assigned as Inputs 3 and 4.
 - Not Assigned as Outputs 1 through 4.

19. Choose Close to exit the I/O Configuration window.

Tuning

TIP

Do not attempt to Auto Tune systems that have gravitational effects. The Centurion DSM100 Drive will not hold initial position.

1. Choose the Tuning command icon from the Drive window.

2. Select AutoTune from the Tuning mode group.

3. Select the appropriate values for the following Auto Tune commands:
 - Distance
 - Step Current.

4. Select the appropriate entry for the Motor Direction:
 - BiDirectional,
 - Forward Only or
 - Reverse Only.

5. Close the toggle switch between J1-26 and J1-20 to enable the drive.

WARNING

Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

6. Choose Start from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then DSMPro displays the calculated gains and disables the drive.

7. Choose Normal Drive Operation from the Tuning window.

8. Open the switch between J1-26 and J1-20 to disable the drive.

9. Choose Close to exit the Tuning window.

10. Close any open windows or dialog boxes.
Operation

The drive is now configured as a Registration Indexing controller.

- The servo parameters have been setup with the unloaded motor.
- Motion is commanded through the inputs.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:

1. Close the switch between J1-26 and J1-20 to enable the drive.
2. Close the toggle switch between J1-26 and J1-32 to start Index 0.
3. Close the toggle switch between J1-26 and J1-33 to simulate registration.
Absolute Indexing

The Centurion DSM100 Drive can be set up as an absolute indexer by making the hardware connections and performing the software setup and tuning described below. A connection diagram depicts the minimum hardware necessary. Interfacing the drive to an external controller requires similar circuitry from the controller to J1, refer to “J1 – Controller” on page 6-53. Instructions are provided to configure the drive using a PC with DSMPro software, but the optional TouchPad also may be used.

The following example depicts a simple move from a home position.

<table>
<thead>
<tr>
<th>Velocity</th>
<th>Defined Velocity</th>
<th>Defined Deceleration</th>
<th>Defined Acceleration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Outputs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>In Motion</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TIP

This feature is available only on drives capable of indexing: DSM110P, DSM120P, DSM130P, DSM175P and DSM 1150P.

The following example depicts a simple move from a home position.

1. Connect an RS-232 cable between the serial port on the PC and the J4 connector on the Centurion DSM100 Drive. A simple 3 wire cable is depicted in the figure below.
2. Connect a Motor/Feedback cable from the motor to the J2 connector on the Centurion DSM100 Drive.
4. Connect a jumper wire with a toggle switch between the following pins:
 - J1-20 (ENABLE) and J1-26 (I/O PWR)
 - J1-32 (INPUT1) and J1-26 (I/O PWR)
 - J1-33 (INPUT2) and J1-26 (I/O PWR)
 - J1-21 (FAULT RESET) and J1-26 (I/O PWR).
 These connections provide manual control for enabling or disabling the drive and resetting faults. The figure below shows the jumper, including normally open toggle switches.
5. Connect the drive to a 100/240 VAC, 50/60 Hz power source appropriate to the drive:
 - Single Phase: DSM110, DSM110P, DSM120, DSM120P, DSM130, DSM130P, DSM175 or DSM175P
 - Three Phase: DSM175, DSM175P, DSM 1150 or DSM 1150P
Connection Diagram

Carefully check all connections before entering these parameters.

1. Switch the AC Power to ON and verify:
 - Green DC BUS LED is ON
 - Display shows an operational status: A, F or P (Analog, Follower or Preset mode of operation). Refer to “Operating Messages” on page 10-153 for an explanation of the display codes.

2. Start DSMPro on the PC.

3. Choose **Cancel** from the Drive Select dialog box.

4. Select **PC Set Up** from the Communications menu in DSMPro to display the personal computer’s communication settings.

5. Verify the communications port settings of the PC match those of the drive.
 - If the settings are correct, select **OK** in the Port – Settings dialog box.
 - If the settings are different, correct the Port – Settings to allow communications with the drive.

Factory default communications Port – Settings for the drive are:
- Baud Rate: **9600**
- Data Bits: **8**
- Parity: **None**
- Stop Bits: **1**
- Serial Port: **COM1**
Refer to the section “RS-232 Communication Test” on page 11-166 for troubleshooting instructions.

6. Select **Read Drive Parameters** from the Communications menu.

7. Verify the Drive Name and Address are correct for the drive that is being addressed.

8. Choose **OK** to load the drive parameters.

A motor must be selected for the parameters to load.

9. If the message box appears that a motor must be selected, select **OK**. The Drive Setup window is displayed with Motor Model selection parameter active. The motor may be selected from the drop down box. If this message box does not appear, the motor displayed in the Motor Model box was previously selected.

10. Select or verify the correct motor model number from the drop down Motor Model list.

11. If a message advises that the drive must be reset, choose **Yes**.

12. Select **Indexing** as the Operation Mode for the drive.

13. Choose **Close** to exit the Drive Set Up window.

14. Choose the **Drive Parameters** command icon from the Drive window and then select the **Indexing** tab.

15. Select the following values for Index 0:

 - **Absolute** as Mode
 - **8000** as Position
 - **1** as Batch Count
 - **0** as Dwell

 Appropriate values for Velocity, Acceleration and Deceleration

16. Choose **Close** to exit the Drive Parameters window.

17. Select the **I/O Configuration** command icon from the Drive Window.

18. Select an appropriate digital input from the pull-down lists available as Digital Input Assignments in the I/O Configuration window.

 For example:

 - **Start Index** as Input 1.
 - **Define Home** as Input 2.
 - **Not Assigned** as Inputs 3 and 4.
 - **Not Assigned** as Outputs 1 through 4.

19. Choose **Close** to exit the I/O Configuration window.
Tuning

Do not attempt to Auto Tune systems that have gravitational effects. The Centurion DSM100 Drive will not hold initial position.

1. Choose the Tuning command icon from the Drive window.
2. Select AutoTune from the Tuning mode group.
3. Select the appropriate values for the following Auto Tune commands:
 - Distance
 - Step Current.
4. Select the appropriate entry for the Motor Direction:
 - BiDirectional,
 - Forward Only or
 - Reverse Only.
5. Close the toggle switch between J1-26 and J1-20 to enable the drive.
6. Choose Start from the Tuning window. The drive powers the motor shaft for a short period and then motion will cease. Then DSMPro displays the calculated gains and disables the drive.
7. Choose Normal Drive Operation from the Tuning window.
8. Open the switch between J1-26 and J1-20 to disable the drive.
9. Choose Close to exit the Tuning window.
10. Close any open windows or dialog boxes.

Operation

The drive is now configured as an Absolute Indexing controller.
- The servo parameters have been setup with the unloaded motor.
- Motion is commanded through the inputs.

The firmware saves the parameters in EEPROM memory. Thus the drive can be power cycled and, after power-up, will use the parameters selected in the steps above.

When motion is required:
1. Close the switch between J1-20 and J1-26 to enable the drive.
2. Close the toggle switch between J1-32 and J1-26 to start Index 0.
3. Close the switch between J1-33 and J1-26 to define the Home position.

WARNING
Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and installation.

TIP
Do not attempt to Auto Tune systems that have gravitational effects. The Centurion DSM100 Drive will not hold initial position.
Modifying User Units

The units displayed for any Centurion DSM100 Drive may be modified using a PC with DSMPRO software. The PC Display Units help menu defines the various parameters displayed by DSMPRO. Default settings for Units are shown in Figure 8.12.

Changing the Display Units Settings

The following example changes the Label and Conversion Factor for the Position and Acceleration parameters. This example assumes a 2000 line encoder (8000 pulses/revolution).

- **Position** – from Counts to Motor Revolutions
- **Acceleration** – from RPM/sec\(^2\) to Revs/sec\(^2\)

1. Choose the **Drive Parameters** command icon from the Drive window and then select the **Units** button. The PC Display Units dialog appears with default settings as shown.

2. Select the Position Label cell, and change **Counts** to **Mtr Revs**.

3. Select the Position Conversion Factor cell, and change **1000** to **0.125**.
 Mathematically \(1/8\) (0.125) of a motor revolution is 1000 counts, given that the motor has a 2000 line (8000 count) encoder.

4. Select the Acceleration Label cell, and change **RPM/sec** to **Revs/sec**.

5. Select the Acceleration Conversion Factor cell, and change **1.** to **0.016**.
 Mathematically \(1.6 \times 10^{-2}\) revs/sec\(^2\) is 1 RPM/sec, given the motor has a 2000 line (8000 count) encoder.

6. Choose **OK** to exit the PC Display Units dialog.
The modified units will be displayed where appropriate within the DSMPro windows. For example, these changes cause the Indexing tab in the Drive Parameters window to display:

- Distance in Mtr Revs
- Acceleration in Revs/sec2
- Deceleration in Revs/sec2

The following units were not effected by the changes:

- Dwell in msec
- Velocity in RPM
Centurion DSM100 Drives are tuned quickly and easily for a wide variety of applications. Two tuning modes are available through the software:

- Auto Tune
- Manual Tune

Tuning Guidelines

The following tuning guidelines briefly describe the tuning adjustments. These guidelines provide you with a basic reference point should the application require additional adjustments.

General Tuning Rules

1. Tune the velocity loop first and then, if the drive uses following or step/direction commands, tune the position loop.

2. To widen the velocity loop bandwidth, increase the P-gain setting, decrease the I-gain setting or increase the low-pass filter bandwidth. This provides a faster rise time and increases drive response.

3. To increase stiffness, increase the I-gain setting. It rejects load disturbance and compensates for system friction.

4. To reduce velocity loop overshoot, increase P-gain or D-gain, or decrease I-gain.

5. To reduce mechanical resonance, use a stiffer mechanical coupling or select a negative (−) D-gain value. Alternatively, decrease the low-pass filter value and the velocity loop update rate.

6. If the motor oscillates, decrease either individually or together the:
 - P-gain
 - I-gain
 - low-pass filter bandwidth.

High Inertia Loads

Proper compensation of load inertia may not be simply a matter of increasing the P-gain and I-gain settings. Problems are often encountered when tuning systems with a high load to motor inertia ratio.

Mechanical Resonance

Mechanical resonance between the motor and the load occurs when the motor and load are oscillating with the same frequency but opposite phase: when the motor is moving clockwise the load is moving counter clockwise. The amplitude of the motor and load oscillations is such that the total momentum of the oscillating system is zero. In the case of a high load to motor inertia ratio this means that the motor may be moving quite a lot while the load is not moving nearly as much. Mechanical resonance occurs as a result of compliance (springiness) between the motor inertia and load inertia. It may result from belts, flexible couplings or the finite torsional stiffness of shafts. In general, the stiffer the couplings, the higher the resonant frequency and lower the amplitude. If the motor shaft is directly coupled to the load, a mechanically resonating system usually emits a buzz or squeal at the motor.
There are several ways of dealing with this problem but they fall into two groups: change the mechanical system or change the servo-motor response. Changing the mechanical system might involve reducing the inertia ratio via gearboxes or pulleys, or by increasing the stiffness of the couplings. For very high performance systems and systems with low resonance frequencies the mechanics may require changing to effectively deal with the resonance.

The second way of dealing with mechanical resonance is by changing the servo-motor response. This may be done by using a negative D-gain value and by reducing the P-gain, I-gain, velocity loop update rate or low-pass filter value. The D-term of the PID velocity regulator (see the velocity and torque current conditioning structure) subtracts (or adds) a proportion of the motor acceleration from the velocity error. The D-gain has the effect of increasing the acceleration current if the motor is accelerating in the wrong direction, but reducing the acceleration current if the motor is already accelerating in the right direction. When used in this way the D-gain dampens an oscillating or ringing system. In the case of motor-load mechanical resonance, a positive D-gain actually worsens the situation. When a negative D-gain value is used in a mechanically resonating system it may be thought of as subtracting the load acceleration (the opposite sign of the motor acceleration since the system is resonating). This tends to bring the motor and load back into phase with each other and therefore reduces or eliminates mechanical resonance.

Reducing the value of the P-gain, low-pass filter frequency and the update frequency all have the effect of reducing the servo-motor bandwidth. As long as the resonating frequency is fairly high this will likely be acceptable, but if the resonating frequency is low it may be necessary to modify the mechanics of the system.

Backlash

Backlash between the motor and load effectively unloads the motor over a small angle. Within this small angle, the increased bandwidth can result in oscillations. Some backlash may be unavoidable, especially with gear reduction. If backlash is present, the inertia match between the load and motor must be properly sized for good servo performance (load inertia should roughly equal motor inertia). Gearing reduces the inertia reflected to the motor by the square of the gear reduction from motor to load. Therefore, the gear ratio must provide the required match.
Auto Tune Mode

The Auto Tune mode uses a “self-tuning” algorithm that automatically adjusts the drive’s velocity loop gain parameters. Adjustments do not require special equipment. This mode will tune a drive for constant velocity loop response across different applications. The results will often provide acceptable response but in general should be considered a starting point.

Tuning parameters adjustments are set to achieve a reasonable bandwidth and servo response based on the system inertia and friction. Auto tune may be used when a significant amount of compliance or backlash exists (for example, belt systems) in the mechanical load, but precise tuning requires the load be fully coupled to the motor. Instability problems occur when the load is not fully coupled to the motor.

TIP

The autotune algorithm will not provide satisfactory results in systems with significant gravitational effects.
Auto Tuning

A PC running DSMPro is required to perform tuning on a Centurion DSM100 Drive. The optional TouchPad does not support tuning.

Before auto tuning is invoked, three autotuning parameters must be set:

- **Distance** sets the rotation limit of the motor. This is the maximum distance the motor is allowed to move during any one test. (Note: a test in the bi-directional mode includes two different tests.)
- **Step Current** sets the amount of current given to the motor during the test. If this is set too low, a system may not move enough to gather sufficient data, if it is set too high the test will be too short and very jerky.
- **Motor Direction** (Forward Only/Reverse Only/Bi-directional) sets the rotational direction for the test. The bi-directional test does the same test in both directions, with the forward rotation first.

Auto tune procedures are explained for each drive configuration in “Application and Configuration Examples” starting on page 8-105. The following steps generalize these procedures.

When autotuning is selected, the drive rotates the motor shaft for a short time interval, typically a few seconds. Motor movement should *not* exceed 30 seconds.

1. Choose the **Tuning** command icon from the Drive window.

2. Choose **Auto Tune** from the Tuning window. This activates the Auto Tune Command and Motor Direction boxes within the Tuning window. Then enter or select:
 - appropriate values for **Distance** in the Auto Tune Command box,
 - appropriate values for **Step Current** in the Auto Tune Command box, and
 - an appropriate motor rotation in the Motor Direction box, either:
 - **BiDirectional**, if the motor will be powered in both the forward and reverse directions.
 - **Forward Only**, if the machinery is designed to operate only in the forward direction.
 - **Reverse Only**, if the motor will be powered only in the reverse direction.

Use the default settings if you are uncertain about what values to enter. The default settings are set to values appropriate to the drive and motor combination selected during drive initialization.

3. Enable the drive.

4. Choose **Start** from the Tuning window. The drive rotates the motor shaft and then motion will cease. The calculated gains are displayed and the drive is disabled.

5. Disable the drive manually.

6. Choose **Normal Drive Operation** from the Tuning window.

7. Enable the drive.

8. Choose **Close** to exit the Tuning window.

WARNING Rotating motor shafts can cause extensive damage and injury. Motors must be properly guarded during testing and final installation.

TIP Auto tuning does not have a velocity limit, but it does adhere to the motor Overspeed setting in the Drive Parameters window.
Manual Tune Mode

Manual tuning may be used to adjust the gain settings and filter frequency of the velocity regulator. The following sections briefly explain these settings. An understanding of the function for each type of gain and filtering will allow you to effectively tune the system.

Two types of manual tuning are available:

- Velocity tuning
- Position tuning.

Before manual tuning is invoked, the Velocity, Distance and Motor Direction parameters must be set. Refer to “Auto Tune Mode” on page 9-145 for information on setting these parameters.

The velocity loop should always be tuned before the position loop, as velocity loop tuning affects the position loop response.

Gain settings and signal filtering are the primary methods to electrically tune a system. A understanding of the types of gain and their purposes, as well as a general understanding of filtering, are essential background knowledge to properly tune a servo system.

Gains

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>P-gain</td>
<td>Proportional gain of the velocity regulator. P-gain controls the bandwidth of the velocity regulator by adjusting the control response proportional to the error. The P term of the velocity regulator commands an acceleration current that is proportional to the velocity error.</td>
</tr>
<tr>
<td>I-gain</td>
<td>Integral gain of the velocity regulator. Integration in the velocity regulator forces the motor velocity to precisely follow the commanded velocity. This assumes operation under steady state conditions (velocity command or load does not change). I-gain controls: The stiffness or the ability to reject load torque disturbance. The amount of velocity overshoot, which may cause the system to become unstable or oscillate. The I term of the velocity regulator commands an acceleration current proportional to the integral of the velocity error.</td>
</tr>
<tr>
<td>D-gain</td>
<td>Differential gain of the velocity regulator. Positive D-gain decreases the amount of overshoot caused by the I-gain. Negative D-gain decreases the torsional resonance between the motor and the load.</td>
</tr>
</tbody>
</table>
Filters

The velocity regulator has one low pass filter. The filter bandwidth range is from 1 Hz to 992 Hz. The filter serves two purposes:

- Adjust the frequency range to remove (filter) the noise produced by encoder resolution.
- Reduce the amount of the mechanical resonance in the mechanical system (e.g., belt systems).

Similar results may often be achieved by reducing the update rate of the velocity loop.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| Kp-gain | Proportional gain of the position loop.
 Kp-gain changes:
 • The position loop bandwidth.
 • The settling time of the position loop.
 In general, the higher the value of Kp-gain the faster the settling time. However, a high value of Kp-gain with inadequate velocity loop bandwidth results in overshoot and ringing.
 Note: Kp-gain is only for use with the position following mode. |
| Kd-gain | Differential gain of the position loop.
 Provides position loop damping and reduces overshoot caused by Kp or Ki gain. |
| Kff-gain | Feedforward gain of the position loop.
 Kff-gain reduces following error. However, a high value of Kff-gain can result in position overshoot. A reduction in following error allows the system to more closely approximate gear driven systems. |
| Ki-gain | Integral gain of the position loop.
 Ki-gain decreases the time period for the error to decay.
 A non-zero value of Ki allows integration in the position loop which eliminates the steady state following error. However, a non-zero value for Ki may introduce overshoot and ringing, which cause system instability (oscillation).
 Note: Ki-gain is used in conjunction with the Ki Zone-value.
 Ki Zone - is the area around the commanded position where Ki - gain is active. |
Manual Tuning

Manual tuning may be used to adjust the gain control parameters P, I, D and the filters. A square wave is generated by the drive to assist in the adjustment. Manual velocity tuning requires the following:

- Step Period value to be specified
- Step Velocity value to be specified.

Always tune the velocity loop before the position loop, as Velocity loop tuning affects the position loop response.

Tuning the Velocity Loop

The Auto Tune procedure provides a starting point for velocity loop tuning. Manual tuning is desirable when very precise adjustments are required.

The following steps describe how to manually tune the velocity loop. These steps precede the manual position loop tuning procedure, which should follow velocity loop tuning.

1. Disable the drive.
2. Choose Manual Tune (Velocity Step) from the Tuning window.
3. Enter the desired step Velocity (rpm) of the internal square wave generator.
4. Enter the desired Time to complete one cycle of the square wave of the internal step velocity.
5. Select the desired Motor Direction (Forward Only, Reverse Only, or Bi-Directional).
6. Select the Oscilloscope.
7. Enable the drive.
8. Choose Start. The motor should start moving and the oscilloscope will display the commanded velocity and the motor velocity.
9. While monitoring the motor velocity waveform, increase P-gain until the desired rise time is achieved.
10. While monitoring the motor velocity waveform, increase I-gain until an acceptable amount of overshoot is reached.
11. Apply filtering by selecting Filters, and then select Filter Enable.
12. While monitoring the motor velocity waveform, decrease the filter Bandwidth until the overshoot begins to increase (in many applications the filter is not necessary).
13. Choose Stop.
14. Disable the drive.
15. Choose Normal Drive Operation.
17. Enable the drive.

The drive’s velocity loop is tuned.
Tuning the Position Loop

Specify the step period and step position values, and then input a square wave to the position loop. Adjust the gain controls parameters Kp, Kd, Kff, Ki, and Ki Zone Filters to tune the system.

1. Disable the drive.
2. Choose **Manual Tune (Position Step)** from the tuning window.
3. Enter an appropriate **Distance count** (step position) for the internal square wave.
4. Enter an appropriate time to complete one cycle of the square wave for the internal step position.
5. Select the desired Motor Direction (**Bidirectional**, **Forward Only** or **Reverse Only**).
6. Select the **Oscilloscope**.
7. Enable the drive.
8. Choose **Start**. The motor will move and the oscilloscope will display the Position Motor Feedback signal.
9. Increase the **Kp** gain while monitoring the signal on the scope. The Kp gain should be adjusted until the desired rise time is achieved, with no overshoot. Refer to Figure 9.3.
10. Increase **Ki** very slowly until the signal begins to overshoot.
11. Increase **Kd** very slowly to remove the overshoot caused by **KI**.
12. In general you may leave the **Kff** gain set to 100.
13. Choose **Stop**.
14. Disable the drive.
15. Choose **Normal Drive Operation**.
16. Choose **Close**.
17. Enable the drive.

The position loop has been tuned. The drive may be operated as a master encoder, step/direction or step up/down configuration.

TIP

Tune the velocity loop before attempting to tune the position loop. The bandwidth of the velocity loop must be set before position loop tuning is attempted.
Velocity Loop Tuning Examples

Signal Nomenclature

FIGURE 9.3

FIGURE 9.4

UNDERDAMPED

Motor Velocity consistently overshoots the Velocity Command. To correct:
- Decrease P-gain
- Decrease I-gain

Underdamped Signal
OVERDAMPED
Motor Velocity consistently undershoots the Velocity Command. To correct:
- Increase I-gain
- Increase P-gain

FIGURE 9.5
Overdamped Signal

CRITICALLY DAMPED
Motor Velocity quickly settles to the Velocity Command.

FIGURE 9.6
Critically Damped Signal (Ideal Tuning)
Two front panel indicators display the status of the drive on a continuous basis:

- The Status display shows the operating mode of the drive.
- The DC Bus LED lights whenever the bus is energized.

The 7-segment Status display indicates the drive status and operating mode. After power-up or reset the operating mode is indicated by a single letter message. In the event of a fault, a flashing code is displayed.

Operating Messages

The drive operates in one of five command modes. The mode of operation is displayed by the 7-segment display whenever the drive is powered-up and operational. The Analog mode of operation, “A”, is the default mode of operation. A sixth mode, “L”, indicates a firmware modification routine is in progress.

The displays and their meaning are:

- **A** = Analog
- **F** = Follower, Master Encoder, Step/Direction, or Step Up/Down
- **H** = Control Panel mode (controlled through the serial port.)
- **L** = Load Firmware (the in-process state, “L” [loading] is indicated by a flashing period.)
- **P** = Preset or Indexing
- **–** = Tuning mode (the Tuning mode in DSMPro is active.)

Refer to “Application and Configuration Examples” beginning on page 8-105 for information on configuring the Centurion DSM100 Drives in any of these command modes.
Error Messages

If there is a fault, the drive provides specific error messages. Faults are detected by the drive in two ways: power-up hardware and run-time faults. A power-up fault usually requires servicing of the hardware, while a run-time fault can be cleared by resetting the drive.

The Status display indicates faults by flashing the letter “E”, followed by additional digits to indicate the error. The error display repeats until the drive is reset or powered down. For example, “E....0....9........E....0....9........E....0....9...” indicates an Bus Undervoltage fault. When an error occurs, the error code and the service time of the error is logged into a Fault History record stored in EEPROM.

Run Time fault handling executes every 1 millisecond (1 kHz rate). Thus the maximum time interval between an error occurring and the fault action is 1 millisecond.

The following errors are only available when the drive is in a specific configuration:

- Auxiliary Encoder State and Excessive Following errors require the drive to be in the position follower mode.
- Illegal Hall State error requires the motor to be configured as having a hall switch input signal.

Run-Time Error Codes

“Maintaining and Troubleshooting the Centurion DSM100 Drive” lists the error codes and possible actions or solutions to take when resolving the error condition.

<table>
<thead>
<tr>
<th>Run-Time Error Codes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status Display</td>
</tr>
<tr>
<td>E....0....1</td>
</tr>
<tr>
<td>E....0....2</td>
</tr>
<tr>
<td>E....0....3</td>
</tr>
<tr>
<td>E....0....4</td>
</tr>
<tr>
<td>E....0....5</td>
</tr>
<tr>
<td>E....0....6</td>
</tr>
<tr>
<td>E....0....7</td>
</tr>
<tr>
<td>E....0....8</td>
</tr>
<tr>
<td>E....0....9</td>
</tr>
<tr>
<td>E....1....0</td>
</tr>
<tr>
<td>E....1....1</td>
</tr>
<tr>
<td>E....1....2</td>
</tr>
<tr>
<td>E....1....3</td>
</tr>
<tr>
<td>E....1....4</td>
</tr>
<tr>
<td>E....1....5</td>
</tr>
<tr>
<td>E....1....6</td>
</tr>
<tr>
<td>E....1....7</td>
</tr>
<tr>
<td>E....1....8</td>
</tr>
<tr>
<td>E....1....9</td>
</tr>
<tr>
<td>E....2....0</td>
</tr>
<tr>
<td>E....2....1</td>
</tr>
<tr>
<td>E....2....2</td>
</tr>
<tr>
<td>E....2....3</td>
</tr>
<tr>
<td>E....2....4</td>
</tr>
<tr>
<td>E....2....5</td>
</tr>
<tr>
<td>E....2....6</td>
</tr>
<tr>
<td>E....2....7</td>
</tr>
<tr>
<td>E....2....8</td>
</tr>
</tbody>
</table>
Power-Up Error Codes

A power-up error indicates in almost all cases that the drive should be returned to the factory for service. In general, any occurrence of a Power-up error should be treated with extreme caution. It may indicate the hardware is marginal.

Situations that may cause drive hardware errors, and which can be remedied outside the factory include:

- The drive is powered-down while a firmware upgrade is loading into flash memory. A program memory error occurs when power is reapplied. To remedy the problem, reload the firmware using DSMPro.
- A watchdog time-out error may result from electrical “noise” (electromagnetic interference - EMI), a firmware error, or a hardware malfunction. The context of the watchdog error needs to be investigated to determine the source of the problem.
- A personality EEPROM error results when a personality module is not installed or is improperly installed in the drive. Installation of the personality EEPROM will fix this error.

The following table lists the Power-Up Error Codes.

<table>
<thead>
<tr>
<th>Status Display</th>
<th>Error Code</th>
<th>Fault Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E....2....9</td>
<td>29</td>
<td>Motor Selection not in Table</td>
</tr>
<tr>
<td>E....3....0</td>
<td>30</td>
<td>Personality Write Error</td>
</tr>
<tr>
<td>E....3....1</td>
<td>31</td>
<td>Service Write Error</td>
</tr>
<tr>
<td>E....3....2</td>
<td>32</td>
<td>CPU Communications Error</td>
</tr>
</tbody>
</table>

Run-Time Error Codes (continued)

<table>
<thead>
<tr>
<th>Status Display</th>
<th>Error Code</th>
<th>Fault Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E....5....1</td>
<td>51</td>
<td>Program Memory Boot Block Error</td>
</tr>
<tr>
<td>E....5....2</td>
<td>52</td>
<td>Program Memory Main Block Error</td>
</tr>
<tr>
<td>E....5....3</td>
<td>53</td>
<td>Uninitialized Personality EEPROM Error</td>
</tr>
<tr>
<td>E....5....4</td>
<td>54</td>
<td>Personality EEPROM Read Error</td>
</tr>
<tr>
<td>E....5....5</td>
<td>55</td>
<td>Personality EEPROM Data Corruption</td>
</tr>
<tr>
<td>E....5....6</td>
<td>56</td>
<td>Main Processor Watchdog Error</td>
</tr>
<tr>
<td>E....5....7</td>
<td>57</td>
<td>Sub Processor Watchdog Error</td>
</tr>
<tr>
<td>E....5....8</td>
<td>58</td>
<td>Main Processor RAM Error</td>
</tr>
<tr>
<td>E....5....9</td>
<td>59</td>
<td>Sub Processor RAM Error</td>
</tr>
<tr>
<td>E....6....0</td>
<td>60</td>
<td>Uninitialized Service EEPROM Error</td>
</tr>
<tr>
<td>E....6....1</td>
<td>61</td>
<td>Service EEPROM Read Error</td>
</tr>
<tr>
<td>E....6....2</td>
<td>62</td>
<td>Service EEPROM Data Corruption Error</td>
</tr>
<tr>
<td>E....6....3</td>
<td>63</td>
<td>Main Processor A/D Converter Error</td>
</tr>
<tr>
<td>E....6....4</td>
<td>64</td>
<td>Sub Processor A/D Converter Error</td>
</tr>
<tr>
<td>E....6....5</td>
<td>65</td>
<td>ANALOG1 Output Error</td>
</tr>
<tr>
<td>E....6....6</td>
<td>66</td>
<td>Gate Array Error</td>
</tr>
<tr>
<td>E....6....7</td>
<td>67</td>
<td>ANALOG2 Output Error</td>
</tr>
<tr>
<td>E....6....8</td>
<td>68</td>
<td>Inter-Processor Communication Error</td>
</tr>
<tr>
<td>E....6....9</td>
<td>69</td>
<td>Sub Processor Initialization Error</td>
</tr>
<tr>
<td>E....7....0</td>
<td>70</td>
<td>Sub Processor SRAM Error</td>
</tr>
<tr>
<td>E....7....1</td>
<td>71</td>
<td>Sub Processor Code Loading Error</td>
</tr>
<tr>
<td>E....7....2</td>
<td>72</td>
<td>Sub Processor Start-up Error</td>
</tr>
<tr>
<td>E....7....3</td>
<td>73</td>
<td>Sub Processor Checksum Error</td>
</tr>
<tr>
<td>E....7....4</td>
<td>74</td>
<td>Personality EEPROM Write Error</td>
</tr>
<tr>
<td>E....7....5</td>
<td>75</td>
<td>Service EEPROM Write Error</td>
</tr>
</tbody>
</table>

TABLE 10.2 Run-Time Error Codes
Table 10.2: Power-Up Error Codes (continued)

<table>
<thead>
<tr>
<th>Status Display</th>
<th>Error Code</th>
<th>Fault Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>E....7....6</td>
<td>76</td>
<td>Software Clock Error</td>
</tr>
<tr>
<td>E....7....7</td>
<td>77</td>
<td>Sub Processor Communication Checksum Error</td>
</tr>
<tr>
<td>E....7....8</td>
<td>78</td>
<td>Sine Table Generation Error</td>
</tr>
<tr>
<td>E....7....9....n</td>
<td>79-n</td>
<td>Personality Data Out of Range</td>
</tr>
<tr>
<td></td>
<td></td>
<td>where n = suberror parameter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 - Serial baud rate selection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 - Serial stop bits/parity selection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 - Position Loop Kp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4 - Position Loop Ki</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5 - Position Loop Kff</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 - Position Loop Kd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 - Gear ratio</td>
</tr>
<tr>
<td></td>
<td></td>
<td>8 - Encoder Output Divider</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9 - Velocity Loop Update Period</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 - Velocity Loop P Gain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>11 - Velocity Loop I Gain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>12 - Velocity Loop D Gain</td>
</tr>
<tr>
<td></td>
<td></td>
<td>13 - Reserved</td>
</tr>
<tr>
<td></td>
<td></td>
<td>14 - Analog Command Velocity Offset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>15 - Analog Command Torque Offset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>16 - User D/A Variable Selection</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17 - Command Source</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 - Drive Mode (Torque/Velocity)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>19 - Tuning Direction</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 - Motor/Encoder User Alignment Offset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>21 - Encoder Size</td>
</tr>
<tr>
<td></td>
<td></td>
<td>22 - Motor Torque Constant</td>
</tr>
<tr>
<td></td>
<td></td>
<td>23 - Motor Inertia</td>
</tr>
<tr>
<td></td>
<td></td>
<td>24 - Motor Back EMF</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 - Motor Resistance per Phase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>26 - Motor Inductance per Phase</td>
</tr>
<tr>
<td></td>
<td></td>
<td>27 - Motor Commutation Type</td>
</tr>
<tr>
<td></td>
<td></td>
<td>28 - Motor Encoder Hall Offset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29 - Motor Encoder Index Offset</td>
</tr>
<tr>
<td></td>
<td></td>
<td>30 - Motor Pole Count</td>
</tr>
<tr>
<td>E....8....0....1</td>
<td>80-1</td>
<td>Service Data Out of Range (Drive Type)</td>
</tr>
<tr>
<td>E....8....1</td>
<td>81</td>
<td>Motor Block Checksum Error</td>
</tr>
<tr>
<td>E....8....2</td>
<td>82</td>
<td>Mask ROM Checksum Error</td>
</tr>
<tr>
<td>E....8....3</td>
<td>83</td>
<td>Personality EEPROM Incompatibility</td>
</tr>
<tr>
<td>E....8....4</td>
<td>84</td>
<td>Service EEPROM Incompatibility</td>
</tr>
</tbody>
</table>
Maintenance

The Centurion DSM100 Drive is designed to function with minimum maintenance.

Periodic Maintenance

Normally the only maintenance required is removal of superficial dust and dirt from the drive and a quick check of cable insulation and connections.

Cleaning

To clean the drive, use an OSHA approved nozzle that provides compressed air under low pressure ≤ 20 kPa (30 psi) to blow the exterior surface and the vents clean.

Cable Inspection

Inspect the connections, particularly the power connections, to ensure their tightness.

- All power connections should be torqued to 1.4 Nm (12 lb-in).
- D-shell signal connectors can be inspected for proper seating.
- Visually inspect all cables for abrasion.

CAUTION

DC bus capacitors may retain hazardous voltages for several minutes after input power has been removed, but will normally discharge in several seconds. Measure the DC bus voltage to verify it has reached a safe level each time power is removed before working on the drive; or wait for the time indicated in the warning on the front of the drive. Failure to observe this precaution could result in severe bodily injury or loss of life.

Fuse Replacement

The +24VDC, +5VDC and Motor Encoder power lines are fused for protection. All fuses are 1A fast acting fuses. Refer to “” on page -173 for the part number and Figure 11.1 for fuse locations. A spare fuse, F4, is included on the circuit board for convenience.

EEPROM Personality Module

The serial EEPROM, or personality module, stores all the drive setup parameters. The setup parameters configure the drive to match a particular motor and operate in a particular mode of operation.

The personality module may be removed from a Centurion DSM100 Drive and installed in another drive. By transferring the personality module from a drive to another drive, the drive’s “personality” is moved to the new drive. Alternatively, the data stored in the EEPROM may be transferred using DSMPro software to a peripheral device, such as diskette or tape.

The only time you may need to remove the personality module is if you do not have a PC available and your drive is down.
EEPROM Removal/Replacement

To remove the EEPROM from a drive:

1. Remove all power from the drive.
2. Disconnect all connections to the front of the drive.
3. Remove the protective cover by removing the screws attaching the right-side cover to the chassis.
4. Refer to Figure 11.1 for the location of the personality module.
5. Grasp the EEPROM with an IC chip puller to remove the personality module.

To install the EEPROM on a drive:

1. Remove all power from the drive.
2. Remove all connections to the front of the drive.
3. Remove the protective cover by removing the screws attaching the right-side cover to the chassis.
4. Refer to Figure 11.1 for the location of the personality module.
5. Align the notch on the front of the personality module and the matching notch on the socket.
6. Place the properly orientated personality module in the IC chip insertion tool. Ensure the chip and socket notches are aligned.
7. Push the personality module firmly into the socket.
8. Install the protective cover and tighten the screws.
9. Reconnect the cables to the front of the drive.
10. Reapply power to the drive.

WARNING
The circuits in the drive are potential sources of severe electrical shock. Follow the safety guidelines to avoid shock.

CAUTION
Electronic components are subject to damage by static electricity. Follow Electrostatic Discharge (ESD) practices while handling components.

TIP
Some combinations of firmware and personality modules are incompatible; they will generate an error message after replacement. Consult “Error Codes” on page 11-161 for the recommended action/solution.
Data Transfer

After you have configured the drive and tuned the drive, the data stored in the EEPROM personality module should be saved off-line. Saving the parameters off line will allow you to clone several machines with the same mechanics and provides an emergency backup of the drive data.

To transfer the data from the drive to a PC:

1. While on-line with a drive, click on **File** in the toolbar menu.
2. Select **Save As...**, the Save As window will appear.
3. Enter the file name and press ENTER or choose OK to save.

To transfer the data from a PC to a drive:

1. Close all windows in DSMPro.
2. Choose **File** in the toolbar menu.
3. Choose **Open**.
4. Select the desired file name or enter the file name to be loaded and press ENTER or choose OK. If you do not know the name of the file to be loaded, select the correct directory from the **Directories** box and select the file name from the displayed list of file names.
 The DSMPro Off-Line Drive window appears, along with the selected file name.
5. Select **Communications** from the toolbar menu.
6. Select **Overwrite Drive Parameters**.
 The Drive Select window will appear.
7. Select the drive to be configured, and then press **ENTER** or choose **OK** to load the parameters into the personality module.

![Fuse and Jumper Locations](image.png)
Firmware Upgrading

Centurion DSM100 Drives may be upgraded in the field to the latest version of firmware. Firmware versions are available from the Giddings & Lewis Product Support group. The procedure describes how to reload the firmware installed in your drive using the Upgrade Firmware command available in DSMPro software.

DSMPro provides extensive checks and controls through message boxes which ensure that the loading of firmware is performed properly. Messages ensure that:

- The drive is off-line
- The correct firmware file is used.

Firmware Upgrade Procedure using DSMPro

1. Copy the new firmware into the Firmware subdirectory of the DSMPro application directory.

2. Start DSMPro.

3. When the Drive Select window appears, select Cancel. The Drive Select window closes without connecting to the drive.

4. Choose **Upgrade Firmware** from the File menu. The Drive Select window will appear.

5. Select the drive to upgrade, and then select **OK**. The Select Firmware File window will appear.

6. The Select Firmware File window contains a list of firmware files identified by version information. Only the files that can be applied to the connected drive are displayed, which minimizes the danger of transferring an incorrect file. To select the firmware files:
 - Select the appropriate file to upgrade the drive firmware.
 - Select **OK** when the file is highlighted.
 A visual indicator traces the progress of the firmware upgrade.

7. When the upgrade is complete a dialog box confirms completion of the upgrade and reminds you that the drive must be reset at this time.
 - Select **Yes** if you want to perform a software reset of the drive.
 - Select **No** if you wish to reset the drive by removing power.

TIP

Do not remove power or reset either the drive or the PC during the upgrade. Any interruption of the firmware upgrade could cause the drive to become inoperable.
Troubleshooting

Two front panel indicators display the status of the drive on a continuous basis:

- The Status display indicates the operating mode of the drive (A, F, P, etc.).
- The DC Bus LED lights whenever the main AC input is connected to line voltage.

A table of problems, potential causes, and appropriate actions to take to resolve the problem is included below.

Error Codes

If problems persist after attempting to carefully troubleshoot the system, please contact your local distributor for further assistance.

<table>
<thead>
<tr>
<th>Problem or Symptom</th>
<th>Error Code</th>
<th>Possible Cause(s)</th>
<th>Action/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Status display not lit.</td>
<td>No AC power</td>
<td>Verify power (115/230VAC single phase or 230 VAC three phase) is applied to the drive.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blown power fuse(s)</td>
<td>Check for open circuits in the AC line fuses.</td>
</tr>
<tr>
<td>DC BUS LED not lit.</td>
<td>No Bus power</td>
<td>Verify AC power is applied to the drive</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Check for open circuit breakers in AC line.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blown power fuse(s)</td>
<td>Check fuses.</td>
</tr>
<tr>
<td>Motor jumps when first enabled</td>
<td>Motor encoder wiring error</td>
<td>Check motor encoder wiring. See Figure 6.37 to verify connection of encoder power sense signals.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Incorrect motor chosen in personality module</td>
<td>Select the proper motor in DSMPro.</td>
<td></td>
</tr>
<tr>
<td>Digital I/O not working correctly</td>
<td>24V power supply disconnected</td>
<td>Verify P5/P6 jumper settings are correct.</td>
<td></td>
</tr>
<tr>
<td>+24V Fuse Blown</td>
<td>01</td>
<td>F1 Blown</td>
<td>The fuse on the I/O isolated +24 VDC power supply has tripped.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check/replace fuse F1 if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check for shorts on I/O or +24VDC output</td>
</tr>
<tr>
<td>+5V Fuse Blown</td>
<td>02</td>
<td>F2 Blown</td>
<td>The fuse on the encoder power output for the +5 VDC power supply has tripped.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check/replace fuse F2 if necessary.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check for shorts on Encoder output signals or +5V output.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check that J4 pin 9 or J5 pin 9 is not connected to an external circuit.</td>
</tr>
</tbody>
</table>
Troubleshooting Guide

<table>
<thead>
<tr>
<th>Problem or Symptom</th>
<th>Error Code</th>
<th>Possible Cause(s)</th>
<th>Action/Solution</th>
</tr>
</thead>
</table>
| Encoder Fuse Blown | 03 | F3 blown | Check for shorts on motor Encoder signals and cable wiring.
Check/replace fuse F3 if necessary. |
| | | Bad encoder | Replace encoder and or motor. |
| Motor Overtemperature | 04 | Motor TS+ (J2-19) and TS- (J2-20) pins open | Verify TS+ (J2-19) and TS- (J2-20) connections for continuity. |
| | | Motor thermostat trips due to: | Lower ambient temperature. Operate within (not above) the continuous torque rating for the ambient temperature (40°C maximum). |
| | | High motor ambient temperature, and/or | |
| | | Excessive RMS torque | |
| IPM Fault | 05 | Motor cables shorted | Verify continuity of motor power cable and connector. |
| | | Motor winding shorted internally | Check for short on motor’s R,S,T and Gnd windings. |
| | | Drive temperature too high | Check for clogged or defective fan.
Ensure cooling is not restricted by insufficient space around the unit. |
| | | Operation above continuous power rating | Verify ambient temperature is not too high (above 60°C).
Operate within the continuous power rating. |
| | | Output short circuit or over-current | Drive has a bad IPM, replace drive. |
| Channel IM line | 06 | Bad connections | Verify continuity of the encoder cable.
Verify continuity of the IM+ and IM- wiring signals. |
| | | Bad Encoder | Replace the motor or the wiring signals. |
| Channel BM line | 07 | Bad connections | Verify continuity of the encoder cable and connect-ors.
Verify continuity of the BM+ and BM- wiring signals. |
| | | Bad Encoder | Replace the motor or the encoder. |
Troubleshooting Guide (continued)

<table>
<thead>
<tr>
<th>Problem or Symptom</th>
<th>Error Code</th>
<th>Possible Cause(s)</th>
<th>Action/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel AM line</td>
<td>08</td>
<td>Bad connections</td>
<td>Verify continuity of the encoder cable. Verify continuity of the AM+ and AM- wiring signals.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bad Encoder</td>
<td>Replace the motor or the encoder.</td>
</tr>
<tr>
<td>Bus Undervoltage</td>
<td>09</td>
<td>Low AC line/AC power input (100 V AC minimum for safe drive operation)</td>
<td>Verify voltage level of the incoming VAC power. Check main VAC power source for glitches or line drop (below 90 VAC). Install an uninterruptible power supply (UPS) on your VAC input.</td>
</tr>
<tr>
<td>Bus Overvoltage</td>
<td>10</td>
<td>Excessive regeneration of power When the drive is driven by an external mechanical power source, it may regenerate too much peak energy through the drive’s power supply. The system faults to save itself from an overload.</td>
<td>Change the deceleration or motion profile and/or reduce the reflected inertia of your mechanical system. Use a larger system (motor and drive). Verify input is below 264 VAC.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Excessive AC input voltage</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Output short circuit</td>
<td>Check for shorts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Motor cabling wires shorted together</td>
<td>Check for shorts.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Internal motor winding short circuit</td>
<td>Check for shorts.</td>
</tr>
<tr>
<td>Illegal Hall State</td>
<td>11</td>
<td>Incorrect phasing</td>
<td>Check the Hall phasing.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bad connections</td>
<td>Verify the Hall wiring.</td>
</tr>
<tr>
<td>RESERVED</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td>14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESERVED</td>
<td>16</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Troubleshooting Guide (continued)

<table>
<thead>
<tr>
<th>Problem or Symptom</th>
<th>Error Code</th>
<th>Possible Cause(s)</th>
<th>Action/Solution</th>
</tr>
</thead>
</table>
| Excessive Average Current| 17 | Excessive time at peak current | Reduce acceleration rates.
Reduce duty cycle (ON/OFF) of commanded motion.
Increase time permitted for motion.
User larger drive and motor. |
| | | Software parameter set too low | Increase Average Current parameter to a less restrictive setting. |
| | | Insufficient bus voltage | Correct the under voltage condition or intermittent AC power or install a larger size transformer. |
| Motor Overspeed | 18 | OVERSPEED parameter in the drive set to low for the application | Using DSMPro (refer to Drive Parameters section) set Overspeed parameter to an acceptable range for the application. |
| | | Motor commanded to run above Overspeed setting | Reduce command from position controller or change velocity parameter in the position controller. |
| | | Motor Phasing is incorrect | Check motor phasing. |
| | | Motor encoder phasing is incorrect | Check encoder phasing. |
| Excess Following Error | 19 | Software position error limit was exceeded | Increase the feed forward gain to 100%.
Increase the following error window (refer to DSMPro Drive Parameters section).
Retune the drive to reduce the following error.
Increase the slew limit window (refer to DSMPro Drive Parameters). |
| Motor Encoder State Error| 20 | Motor encoder encountered an illegal transition | Replace the motor/encoder
Use shielded cables with twisted pair wires.
Route the feedback away from potential noise sources.
Check the system grounds. |
| | | Bad encoder | Replace motor/encoder. |
TABLE 11.1 Troubleshooting Guide (continued)

<table>
<thead>
<tr>
<th>Problem or Symptom</th>
<th>Error Code</th>
<th>Possible Cause(s)</th>
<th>Action/Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary Encoder state error</td>
<td>21</td>
<td>Auxiliary encoder encountered an illegal transition</td>
<td>Use shielded cables with twisted pair wires.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Route the encoder cable away from potential noise sources.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bad encoder - replace encoder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check the ground connections</td>
</tr>
<tr>
<td>Motor Thermal Protection Fault</td>
<td>22</td>
<td>Internal filter protecting the motor from overheating has tripped.</td>
<td>Reduce acceleration rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduce duty cycle (ON/OFF) of commanded motion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increase time permitted for motion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>User larger drive and motor.</td>
</tr>
<tr>
<td>IPM Thermal Protection Fault</td>
<td>23</td>
<td>Internal filter protecting the IPM at slow speed has tripped.</td>
<td>Reduce acceleration rates</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Reduce duty cycle (ON/OFF) of commanded motion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Increase time permitted for motion.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>User larger drive and motor.</td>
</tr>
<tr>
<td>Velocity Error</td>
<td>24</td>
<td>Velocity error exceeded the specified limit and time parameters.</td>
<td>Increase time or size of allowable error.</td>
</tr>
<tr>
<td>Commutation Angle Error</td>
<td>25</td>
<td>Encoder index location is inconsistent.</td>
<td>Replace encoder.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Check encoder and motor power wiring.</td>
</tr>
<tr>
<td>RESERVED</td>
<td>26</td>
<td>An absolute indexing move was attempted without first homing the axis.</td>
<td>Home the drive before attempting an absolute indexing profile.</td>
</tr>
<tr>
<td>Axis not Homed</td>
<td>27</td>
<td>No motor was selected when the drive was enabled.</td>
<td>Select a motor before enabling the drive.</td>
</tr>
<tr>
<td>No Motor Selected</td>
<td>28</td>
<td>Motor number is referencing a motor that is not currently in the drive.</td>
<td>Select a motor that is in the drive.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Update the motor tables in the drive (contact the factory).</td>
</tr>
<tr>
<td>RESERVED</td>
<td>30-53</td>
<td>Call the factory.</td>
<td></td>
</tr>
<tr>
<td>Personality EEPROM Read Error</td>
<td>54</td>
<td>Personality EEPROM is incompatible with the drive firmware</td>
<td>Upgrade firmware.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hardware is malfunctioning.</td>
<td>Call the factory.</td>
</tr>
<tr>
<td>RESERVED</td>
<td>55-82</td>
<td>Call the factory.</td>
<td></td>
</tr>
<tr>
<td>Personality EEPROM Incompatibility</td>
<td>83</td>
<td>Personality EEPROM cannot be used with an indexing drive.</td>
<td>Use a non-indexing drive.</td>
</tr>
</tbody>
</table>
RS-232 Communication Test

This test verifies the functionality of the communications port on an MS-DOS® based personal computer. The test uses the Terminal mode available in Microsoft® Windows™.

1. Close all DSMPro windows.

2. Select Communication from DSMPro and verify your communication settings.

3. Verify the communication cable pin out and check cable continuity. Refer to “RS-232 Connection Diagrams” on page 6-88.

4. If the communication cable is OK, do the following:
 a. Disconnect the communication cable from the drive.
 (1) Jumper pin 2 and 3 on the D connector of the communication cable.
 (2) Close and exit from DSMPro
 b. Select the Terminal from the Program Manager (Terminal is usually is in the Accessories group)
 c. Select Settings from the Main menu
 (1) Select Terminal Emulation from the drop down menu
 (2) Choose DEC VT-100
 (3) Choose OK to close the dialog box
 d. Select Settings from the Main menu
 (1) Select Communications from the drop down menu
 (2) Choose COM1 (or the number of the communication port the drive is connected to) from the Connections sliding list.
 (3) Set Baud Rate to 9600
 (4) Set Data Bits to 8
 (5) Set Stop Bits to 1
 (6) Set Parity to NONE
 (7) Set Flow Control to XON/XOFF
 (8) Choose OK to close the dialog box.

5. Type any character on the keyboard. The character should echo back on the screen.
 a. If you see the character on the screen swap pins 2 and 3, close the Windows Terminal and restart DSMPro.
 b. If the character does not echo back on the screen, do the following:
 (1) Disconnect the cable from your PC.
 (2) Jumper Pins 2 and 3 on the communication port of the PC.
 (3) Type any character on the keyboard.
 (a) If the character echoes back, the communication port is OK and the cable or the connectors are defective. Replace the communication cable assembly.
 (b) If the character did not echo back, the communication port is defective. Replace the communication port.
Testing Digital Outputs

This test verifies the functionality of the selectable outputs.

Test equipment requirements are:
- A PC running DSMPro
- A multimeter.

It assumes there are no error codes displayed, and the 24V power supply is connected correctly.

Disconnect the outputs from any external hardware while performing this test.

1. Disable the drive by opening the switch connecting J1-26 and J1-20.
2. From the Drive Window select the **Output Diagnostics** command icon.
3. Verify each of the digital Outputs in the Output Diagnostics window registers the following values when it is selected or deselected:
 a. Drive Ready box, then measure the resistance between J1-24 and J1-25.
 (1) If the box is checked, the resistance should read approximately 1 Ohm.
 (2) If the box is not checked, the resistance should read very high (> 1 MOhm).
 b. Brake Enable box, then measure the resistance between J1-49 and J1-50.
 (1) If the box is checked, the resistance should read approximately 10Ohm.
 (2) If the box is not checked, the resistance should be very high (> 1 MOhm).

A load is necessary to test the transistor outputs listed below. A 1 kOhm resistor may be connected from the transistor output (J1-42, J1-43, J1-44 or J1-45) to the 24 VCOM (J1-6).
 c. Digital Output 1, then measure the voltage between J1-42 and J1-13.
 (1) If the box is checked, the voltmeter should read approximately +24 VDC.
 (2) If the box is not checked, the voltmeter should read approximately 0 VDC.
 d. Digital Output 2, then measure the voltage between J1-43 and J1-13.
 (1) If the box is checked, the voltmeter should read approximately +24 VDC.
 (2) If the box is not checked, the voltmeter should read approximately 0 VDC.
 e. Digital Output 3, then measure the voltage between J1-44 and J1-13.
 (1) If the box is checked, the voltmeter should read approximately +24 VDC.
 (2) If the box is not checked, the voltmeter should read approximately 0 VDC.
 f. Digital Output 4, then measure the voltage between J1-45 and J1-13.
 (1) If the box is checked, the voltmeter should read approximately +24 VDC.
 (2) If the box is not checked, the voltmeter should read approximately 0 VDC.
4. After the test has been completed you may select Close to exit Output Diagnostics window.
Testing Digital Inputs
This test verifies the functionality of the selectable inputs.
Test equipment requirements are:
• A PC running DSMPro
• A jumper wire.
It assumes there are no error codes displayed, and the 24V power supply is connected correctly.
1. Enable the drive by closing the switch connecting J1-26 and J1-20.

2. Choose the I/O Display command icon from the Drive Window.
 e. Connect J1-33 to J1-26. The Input 3 indicator activates.

3. Choose Close to exit the I/O Display window.
Testing Analog Outputs

The following tests verify the functionality of the analog outputs.

Test equipment requirements are:

- A PC running DSMPro
- A voltmeter.

Testing Analog Output 1

1. Disable the drive, by opening the connections between the ENABLE input and the + 24 VDC.
2. Disconnect the connections to J1-30.
3. From the Output Diagnostics window select **Analog Output 1**.
4. Enter 1000 in the D/A level box.
5. Connect a DC voltmeter across analog test points A1 and COM. The meter should read approximately 1 Vdc.
6. Repeat step 11.1 using different positive or negative values for the D/A Level. Verify the meter reads the values you enter.

Testing Analog Output 2

1. Disable the drive, by opening the connections between the ENABLE input and the + 24 VDC.
2. Disconnect the connections to J1-31.
3. Select **Output Diagnostics** icon from the Drive Window.
4. From the Output Diagnostics window select **Analog Output 2**.
5. Enter 1000 in the D/A level box.
6. Connect a DC voltmeter across analog test points A2 and COM. The meter should read approximately 1 VDC.
7. Repeat step 11.1 using different positive or negative values for the D/A Level. Verify the meter reads the values you enter.

Testing Positive and Negative Current Limits

The following tests verify the functionality of the analog +I LIMIT and -I LIMIT inputs.

The tests require:

- A PC running DSMPro, and
- A 10 kOhm potentiometer.
Testing Positive Current Limit

1. Verify the accuracy of the potentiometer with an ohmmeter before installing.
2. Disable the drive by opening the connections between the ENABLE input and +24VDC.
3. Disconnect the connections to J1-27 and J1-28.
 Refer to “J1 – Controller” on page 6-53 for a diagram showing the location of the pins and “Interface Connections” for an interconnect diagram.
5. Choose the Drive Signals command icon from DSMPro.
6. Choose Set Up, if the Drive Signals Set Up window is not already active.
7. Choose Current - Input Limit + as the analog signal.
8. Choose OK to close the Set Up window and activate the Drive Signals window.
9. Slowly adjust the potentiometer while viewing the Drive Signals window. The Current - Input Limit + value should update as the potentiometer is adjusted.

Testing Negative Current Limit

1. Verify the accuracy of the potentiometer with an ohmmeter before installing.
2. Disable the drive by opening the connections between the ENABLE input and +24VDC.
3. Disconnect the connections to J1-29 and J1-28.
 Refer to “J1 – Controller” on page 6-53 for a diagram showing the location of the pins and “Interface Connections” for an interconnect diagram.
5. Choose the Drive Signals command icon from DSMPro.
6. Choose Set Up, if the Drive Signals Set Up window is not already active.
7. Choose Current - Input Limit – as the analog signal.
8. Choose OK to close the Set Up window and activate the Drive Signals window.
9. Slowly adjust the potentiometer while viewing the Drive Signals window. The Current - Input Limit - value should update as the potentiometer is adjusted.
Testing Encoder Inputs
The following test verifies both reception and transmission of the line count from an encoder by the drive.
The tests require:
- A PC running DSMPro, and
- A motor encoder.
To test encoder inputs:
1. Disable the drive by opening the connections between the ENABLE input and +24VDC.
2. Choose the **Drive Parameters** command icon from DSMPro.
3. Choose **Master Encoder** as the Command Source.
4. Choose the **Drive Set Up** command icon from DSMPro.
5. Choose **Divide by 1** as the Master Encoder Command Input.
6. Make the following hardware connections:
 - Disconnect all connections to J3.
 - Connect the motor encoder to J2.
 - Jumper the Encoder Inputs to the Encoder Outputs by connecting the following pins:
 - J1-7 to J1-14
 - J1-8 to J1-15
 - J1-9 to J1-16
 - J1-10 to J1-17
 - J1-11 to J1-18
 - J1-12 to J1-19
7. Choose the **Encoder Diagnostics** command icon from DSMPro.
8. Choose **Zero Count** for both the Motor Encoder and Master Position Input.
9. Slowly rotate the encoder shaft by hand while observing the counts for both the Motor Encoder and Master Position Input. The Motor Encoder and Master Position Input line counts should be equal.
Centurion DSM100 Drives conformance to the European Union Directives is contingent on:

- Installation of AC line filters between the power source and the drive, and
- Use of Giddings & Lewis cables to connect FSM, HSM, NSM, SSM, or YSM Series motors to a DSM110, DSM110P, DSM120, DSM120P, DSM130, DSM130P, DSM175, DSM175P, DSM1150 or DSM1150P drive. Diagrams and schematics for all Giddings & Lewis cables are shown in Appendix B, “Cable Diagrams, Schematics and Examples”.

Centurion DSM100 Drives

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM007</td>
<td>500 Watt Universal Drive, single phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM007P</td>
<td>500 Watt Universal Indexing Drive, single phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM015</td>
<td>1000 Watt Universal Drive, single phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM015P</td>
<td>1000 Watt Universal Indexing Drive, single phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM110</td>
<td>1000 Watt Universal Drive, single phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM110P</td>
<td>1000 Watt Universal Indexing Drive, single phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM030</td>
<td>2000 Watt Universal Drive, single phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM030P</td>
<td>2000 Watt Universal Indexing Drive, single phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM120</td>
<td>2000 Watt Universal Drive, single phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM120P</td>
<td>2000 Watt Universal Indexing Drive, single phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM130</td>
<td>3000 Watt Universal Drive, single phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM130P</td>
<td>3000 Watt Universal Indexing Drive, single phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM175</td>
<td>7500 Watt Universal Drive, single or three phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM175P</td>
<td>7500 Watt Universal Indexing Drive, single or three phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM1150</td>
<td>15000 Watt Universal Drive, three phase 100-240 V AC @ 50/60 Hz</td>
</tr>
<tr>
<td>DSM1150P</td>
<td>15000 Watt Universal Indexing Drive, three phase 100-240 V AC @ 50/60 Hz</td>
</tr>
</tbody>
</table>
A-174 Options and Accessories

Fuses

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Ampere, fast acting, inline (Littlefuse R451001, or equivalent) for DSM110 or DSM110P,</td>
<td></td>
</tr>
<tr>
<td>DSM120 or DSM120P, DSM130 or DSM130P, DSM175 or DSM175P, DSM1150 or DSM1150P</td>
<td></td>
</tr>
<tr>
<td>To be determined.</td>
<td></td>
</tr>
<tr>
<td>Contact factory.</td>
<td></td>
</tr>
</tbody>
</table>

Options and Accessories

<table>
<thead>
<tr>
<th>Description</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>TouchPad</td>
<td>401-34405-00</td>
</tr>
<tr>
<td>AC Line Filter (6 A_{rms} Continuous, Single Phase) for DSM007 or DSM007P</td>
<td>401-30222-00</td>
</tr>
<tr>
<td>AC Line Filter (10 A_{rms} Continuous, Single Phase) for DSM015 or DSM015P, DSM110X or DSM110P</td>
<td>401-30216-00</td>
</tr>
<tr>
<td>AC Line Filter (23 A_{rms} Continuous, Single Phase) for DSM030 or DSM030P, DSM120 or DSM120P</td>
<td>401-30217-00</td>
</tr>
<tr>
<td>AC Line Filter (30 A_{rms} Continuous, Single Phase) for DSM130 or DSM130P</td>
<td>401-34418-00</td>
</tr>
<tr>
<td>AC Line Filter (55 A_{rms} Continuous, Single Phase) for DSM175 or DSM175P</td>
<td></td>
</tr>
<tr>
<td>AC Line Filter (36 A_{rms} Continuous, Three Phase) for DSM175 or DSM175P</td>
<td>401-34420-00</td>
</tr>
<tr>
<td>J1 to 50-pin Terminal Strip (Breakout Board), includes 1m (3ft) cable and mounting hardware</td>
<td></td>
</tr>
<tr>
<td>J2 to 25-pin Terminal Strip (Breakout Board), includes 1m (3ft) cable and mounting hardware</td>
<td></td>
</tr>
<tr>
<td>External Shunt Resistor for DSM110 or DSM110P, DSM120 or DSM120P, DSM130 or DSM130P</td>
<td></td>
</tr>
<tr>
<td>Manuals</td>
<td></td>
</tr>
<tr>
<td>• TouchPad Instructions</td>
<td>108-31019-00</td>
</tr>
<tr>
<td>• Installation Manual</td>
<td>108-30083-00</td>
</tr>
<tr>
<td>DSM110 or DSM110P, DSM120 or DSM120P, DSM130 or DSM130P, DSM175 or DSM175P, DSM1150 or DSM1150P</td>
<td></td>
</tr>
<tr>
<td>• Installation Manual</td>
<td></td>
</tr>
<tr>
<td>DSM-007 or DSM007P, DSM015 or DSM015P, DSM030 or DSM030P</td>
<td>108-31019-00</td>
</tr>
</tbody>
</table>

Interface Cables

Diagram and schematics for cables listed below are shown in Appendix B, “Interface Cables”, beginning on page B-182.
<table>
<thead>
<tr>
<th>Description</th>
<th>m (ft)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1 to customer supplied connector (no connector)</td>
<td>3 (10)</td>
<td>401-34411-10</td>
</tr>
<tr>
<td></td>
<td>7.6 (25)</td>
<td>401-34411-25</td>
</tr>
<tr>
<td></td>
<td>15 (50)</td>
<td>401-34411-50</td>
</tr>
<tr>
<td></td>
<td>23 (75)</td>
<td>401-34411-75</td>
</tr>
<tr>
<td>J3 to customer supplied connector (no connector)</td>
<td>3 (10)</td>
<td>401-34410-10</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>7.6 (25)</td>
<td>401-34410-25</td>
</tr>
<tr>
<td></td>
<td>15 (50)</td>
<td>401-34410-50</td>
</tr>
<tr>
<td></td>
<td>23 (75)</td>
<td>401-34410-75</td>
</tr>
</tbody>
</table>
Serial Interface Cables

Diagrams and schematics for cables listed below are shown in Appendix B “Interface Cables.”.

<table>
<thead>
<tr>
<th>Description</th>
<th>m (ft)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>J4/J5 to PC [RS-232] (9 pin D-shell connector)</td>
<td>3 (10)</td>
<td>502-04020-10</td>
</tr>
<tr>
<td></td>
<td>7.6 (25)</td>
<td>502-04020-25</td>
</tr>
<tr>
<td></td>
<td>15 (50)</td>
<td>502-04020-50</td>
</tr>
<tr>
<td>J4/J5 to customer supplied connector (no connector)</td>
<td>3 (10)</td>
<td>401-34423-10</td>
</tr>
<tr>
<td></td>
<td>7.6 (25)</td>
<td>401-34423-25</td>
</tr>
<tr>
<td></td>
<td>15 (50)</td>
<td>401-34423-50</td>
</tr>
<tr>
<td>J4/J5 to J4/J5 four wire RS-485 communications</td>
<td>1 (3)</td>
<td>502-04021-01</td>
</tr>
</tbody>
</table>
Encoder Feedback Cables

Diagrams and schematics for cables listed below are shown in Appendix B, “Interface Cables”, beginning on page B-192.

<table>
<thead>
<tr>
<th>Description</th>
<th>m (ft)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSM, HSM or SSM Series Motor to customer supplied connector</td>
<td>3 (10)</td>
<td>401-34425-10</td>
</tr>
<tr>
<td>(i.e., no connector)</td>
<td>7.6 (25)</td>
<td>401-34425-25</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>15 (50)</td>
<td>401-34425-50</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>23 (75)</td>
<td>401-34425-75</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>30 (100)</td>
<td>401-34425-00</td>
</tr>
<tr>
<td>J2 to FSM, HSM or SSM Series Motor</td>
<td>3 (10)</td>
<td>401-34407-10</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>7.6 (25)</td>
<td>401-34407-25</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>15 (50)</td>
<td>401-34407-50</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>23 (75)</td>
<td>401-34407-75</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>30 (100)</td>
<td>401-34407-00</td>
</tr>
<tr>
<td>NSM Series Motor to customer supplied connector (i.e., no connector)</td>
<td>3 (10)</td>
<td>401-30252-10</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>7.6 (25)</td>
<td>401-30252-25</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>15 (50)</td>
<td>401-30252-50</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>23 (75)</td>
<td>401-30252-75</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>30 (100)</td>
<td>401-30252-00</td>
</tr>
<tr>
<td>J2 to NSM Series Motor</td>
<td>3 (10)</td>
<td>401-30231-10</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>7.6 (25)</td>
<td>401-30231-25</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>15 (50)</td>
<td>401-30231-50</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>23 (75)</td>
<td>401-30231-75</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>30 (100)</td>
<td>401-30231-00</td>
</tr>
<tr>
<td>YSM Series Motor to customer supplied connector (i.e., no connector)</td>
<td>3 (10)</td>
<td>401-30253-10</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>7.6 (25)</td>
<td>401-30253-25</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>15 (50)</td>
<td>401-30253-50</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>23 (75)</td>
<td>401-30253-75</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>30 (100)</td>
<td>401-30253-00</td>
</tr>
<tr>
<td>J2 to YSM Series Motor</td>
<td>3 (10)</td>
<td>401-30233-10</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>7.6 (25)</td>
<td>401-30233-25</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>15 (50)</td>
<td>401-30233-50</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>23 (75)</td>
<td>401-30233-75</td>
</tr>
<tr>
<td>J2 to customer supplied connector (i.e., no connector)</td>
<td>3 (10)</td>
<td>401-34424-10</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>7.6 (25)</td>
<td>401-34424-25</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>15 (50)</td>
<td>401-34424-50</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>23 (75)</td>
<td>401-34424-75</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>30 (100)</td>
<td>401-34424-00</td>
</tr>
</tbody>
</table>
Motor Power Cables

Diagrams and schematics for cables listed below are shown in Appendix B, “Interface Cables”, beginning on page B-197.

<table>
<thead>
<tr>
<th>Description</th>
<th>m (ft)</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drive to 200 or 300 Motors (FSM, HSM or SSM Series)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive to 400 Motors (FSM, HSM or SSM Series)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive to 610 or 620 Motors (FSM, HSM or SSM Series) for DSM130 or DSM130P, DSM175 or DSM175P</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drive to 610 or 620 Motors (FSM, HSM or SSM Series) for DSM175 or DSM175P</td>
<td>3 (10)</td>
<td>401-34415-10</td>
</tr>
<tr>
<td>NOTE: This cable is not CE marked.</td>
<td>7.6 (25)</td>
<td>401-34415-25</td>
</tr>
<tr>
<td>NOTE: This cable is not CE marked.</td>
<td>15 (50)</td>
<td>401-34415-50</td>
</tr>
<tr>
<td>NOTE: This cable is not CE marked.</td>
<td>23 (75)</td>
<td>401-34415-75</td>
</tr>
<tr>
<td>NOTE: This cable is not CE marked.</td>
<td>30 (100)</td>
<td>401-34415-00</td>
</tr>
<tr>
<td>Drive to 610 or 620 Motors (FSM, HSM or SSM Series) for DSM1150 or DSM1150P</td>
<td>3 (10)</td>
<td>Part number to be</td>
</tr>
<tr>
<td>NOTE: This cable is not CE marked.</td>
<td>7.6 (25)</td>
<td>determined.</td>
</tr>
<tr>
<td>NOTE: This cable is not CE marked.</td>
<td>15 (50)</td>
<td>Contact factory.</td>
</tr>
<tr>
<td>NOTE: This cable is not CE marked.</td>
<td>23 (75)</td>
<td></td>
</tr>
<tr>
<td>Drive to 800 Motors (FSM, HSM or SSM Series) for DSM1150 or DSM1150P</td>
<td>3 (10)</td>
<td>401-34417-10</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>7.6 (25)</td>
<td>401-34417-25</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>15 (50)</td>
<td>401-34417-50</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>23 (75)</td>
<td>401-34417-75</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>30 (100)</td>
<td>401-34417-00</td>
</tr>
<tr>
<td>Drive to 630 Motors (FSM, HSM or SSM Series) for DSM1150 or DSM1150P</td>
<td>3 (10)</td>
<td>401-34416-10</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>7.6 (25)</td>
<td>401-34416-25</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>15 (50)</td>
<td>401-34416-50</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>23 (75)</td>
<td>401-34416-75</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>30 (100)</td>
<td>401-34416-00</td>
</tr>
<tr>
<td>Drive to NSN Series Motors</td>
<td>3 (10)</td>
<td>401-30230-10</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>7.6 (25)</td>
<td>401-30230-25</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>15 (50)</td>
<td>401-30230-50</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>23 (75)</td>
<td>401-30230-75</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>30 (100)</td>
<td>401-30230-00</td>
</tr>
<tr>
<td>Drive to YSN Series Motors</td>
<td>3 (10)</td>
<td>401-30232-10</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>7.6 (25)</td>
<td>401-30232-25</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>15 (50)</td>
<td>401-30232-50</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>23 (75)</td>
<td>401-30232-75</td>
</tr>
<tr>
<td>(Standard sized drives only)</td>
<td>30 (100)</td>
<td>401-30232-00</td>
</tr>
</tbody>
</table>
Connector Kits

Connector kits provide the ability to construct custom length cables. Kits are available for all Centurion DSM100 Drive connectors. Each kit consists of the appropriate 3M connector with the corresponding plastic backshell, and instructions.

<table>
<thead>
<tr>
<th>Connector</th>
<th>Type</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>50 pin mini D-shell, 24-30 AWG ribbon cable solder cup, squeeze latch</td>
<td>401-56489-00</td>
</tr>
<tr>
<td>J2</td>
<td>20 pin mini D-shell, 24-30 AWG ribbon cable solder cup, squeeze latch</td>
<td>401-56490-00</td>
</tr>
<tr>
<td>J3</td>
<td>26 pin mini D-shell, 24-30 AWG ribbon cable solder cup, squeeze latch</td>
<td>401-56491-00</td>
</tr>
<tr>
<td>J4 or J5</td>
<td>50 pin D-shell solder cup for RS-232 or RS-485</td>
<td>401-56492-00</td>
</tr>
</tbody>
</table>

Mating Connectors

The following connectors are listed solely to provide a cross-reference of mating connectors for the J1, J2 or J3 connectors on the Centurion DSM100 Drives. The connectors are not available from Giddings & Lewis. Please contact the manufacturer or a distributor for additional information. Manufacturer phone numbers are:

- 3M: 1-800-225-5373,
- AMP: 1-800-522-6752

Centurion DSM100 Drive conformance to the European EMC Directive is contingent on the use of Giddings & Lewis cables.

<table>
<thead>
<tr>
<th>DDM</th>
<th>Mating Connector</th>
<th>Mating Backshell</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J1</td>
<td>AMP 2-175677-7</td>
<td>AMP 176793-7</td>
<td>50-pin Mini D Ribbon, 28-30 AWG, Insulation Displacement, Plastic Backshell, Squeeze Latch</td>
</tr>
<tr>
<td></td>
<td>3M 10150-6000EC1</td>
<td>3M 10350-A200-00</td>
<td>50-pin Mini D Ribbon, 28-30 AWG, Insulation Displacement, Metal Backshell, Squeeze Latch</td>
</tr>
<tr>
<td></td>
<td>3M 10150-3000VE</td>
<td>3M 10350-52F0-008</td>
<td>50-pin Mini D Ribbon, 24-30 AWG, Solder Cup, Plastic Backshell, Squeeze Latch</td>
</tr>
<tr>
<td>J2</td>
<td>AMP 2-175677-2</td>
<td>AMP 176793-2</td>
<td>20-pin Mini D Ribbon, 28-30 AWG, Insulation Displacement, Plastic Backshell, Squeeze Latch</td>
</tr>
<tr>
<td></td>
<td>3M 10120-6000EC1</td>
<td>3M 10320-A200-00</td>
<td>20-pin Mini D Ribbon, 28-30 AWG, Insulation Displacement, Metal Backshell, Squeeze Latch</td>
</tr>
<tr>
<td></td>
<td>3M 10120-3000VE</td>
<td>3M 10320-52F0-008</td>
<td>20-pin Mini D Ribbon, 24-30 AWG, Solder Cup, Plastic Backshell, Squeeze Latch</td>
</tr>
<tr>
<td>J3</td>
<td>AMP 2-175677-4</td>
<td>AMP 176793-4</td>
<td>26-pin Mini D Ribbon, 28-30 AWG, Insulation Displacement, Plastic Backshell, Squeeze Latch</td>
</tr>
<tr>
<td></td>
<td>3M 10126-6000EC1</td>
<td>3M 10326-A200-00</td>
<td>26-pin Mini D Ribbon, 28-30 AWG, Insulation Displacement, Metal Backshell, Squeeze Latch</td>
</tr>
<tr>
<td></td>
<td>3M 10126-3000VE</td>
<td>3M 10326-52F0-008</td>
<td>26-pin Mini D Ribbon, 24-30 AWG, Solder Cup, Plastic Backshell, Squeeze Latch</td>
</tr>
</tbody>
</table>

1. For use with MDR Hand Press Tool Kit, 3M part number 3829
Factory supplied cables allow Centurion DSM100 Drives to conform to the European Union Directives when connecting the drive to motors, controllers or computers. The following diagrams provide information on the cables available from the factory.

Refer to Appendix , “” for ordering information.

The information below applies to all factory supplied cables.

- Wire Insulation Type: Polyvinyl Chloride
- Conductor size: 0.08 mm² (28 AWG) tinned copper, except as noted below.
 - [0.25 mm² (24 AWG) on 502-04020, 502-04021 and 401-34423]
 - [1.5 mm² (16 AWG) on 401-34413 and 401-30232]
 - [2.5 mm² (14 AWG) on 401-34414]
 - [6 mm² (10 AWG) on 401-34415]
- Braid Shield Coverage: 85% minimum
- Jacket Material: Thermoplastic elastomer
- Moldings: 105°C (221°F) Black PVC
- Minimum Bend Radius

Control Cables

<table>
<thead>
<tr>
<th>Connector</th>
<th>mm (in.)</th>
<th>Cable</th>
<th>mm (in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Controller (J1)</td>
<td>171.45 (6.75)</td>
<td>401-34413</td>
<td>50.80 (2.0)</td>
</tr>
<tr>
<td>Encoder (J2)</td>
<td>129.54 (5.10)</td>
<td>401-34414</td>
<td>57.15 (2.25)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>401-34415</td>
<td>76.20 (3.0)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>401-30232</td>
<td>63.50 (2.50)</td>
</tr>
</tbody>
</table>

- Cables are manufactured to inch dimensions. Millimeter dimensions are approximate conversions from inches.
- Alternate field wiring diagram for FSM, HSM, or NSM Series encoder cables is shown below:

![Diagram](image-url)
Interface Cables

FIGURE B.1 J1 to J3 Interface Cable (P/N 401-34422)
FIGURE B.2 J1 to No Connector Interface Cable (P/N 401-34411)
FIGURE B.3

J3 to No Connector Interface Cable (P/N 401-34410)
NOTES:
The terminal block and cable provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block.
The cabling examples beginning on page B-201 depict the use of this kit to pass a cable through a restricted bulkhead.

Figure B.4 J1 to 50-pin Terminal Block Kit Diagram
(P/N 401-34409-00)
FIGURE B.5 J1 to 50-pin D-Connector Cable (supplied with 401-34409 kit)
Mounting bracket (shown) and cable (next page) supplied with kit 401-34408.

NOTES:

The terminal block and cable provide a one-to-one transfer of the signals from the connector to the respective pin(s) on the terminal block.

The cabling examples beginning on page B-201 depict the use of this kit to pass a cable through a restricted bulkhead.

Figure B.6

J2 to 25-pin Terminal Block Kit Diagram (P/N 401-34408-00)
FIGURE B.7

J2 to 25-pin D-Connector Cable (supplied with kit 401-34408)
Serial Interface Cables

Figure B.8 J5 to 9-pin D-Shell Interface Diagram (P/N 502-04020-XX)
FIGURE B.9 J5 to J5 Serial Interface Cable (P/N 502-04021-XX)
FIGURE B.10

J5 to No Connector Serial Interface Cable (P/N 401-34423-XX)
Encoder Feedback Cables

Figure B.11 FSM, HSM or SSM Series Motors to No Connector Encoder Cable (P/N 401-34425-XX)
FIGURE B.12 J2 to FSM, HSM or SSM Series Encoder Cable (P/N 401-34407-XX)
FIGURE B.13 J2 to YSM Series Encoder Cable (P/N 401-30233-XX)
FIGURE B.14
No Connector to YSM Series Encoder Cable (P/N 401-30253-XX)
Figure B.15 J2 to No Connector Encoder Cable (P/N 401-34424-XX)
Motor Power Cables

CAUTION

Shielded power cables must be grounded at a minimum of one point for safety. Failure to ground a shielded power cable will result in potentially lethal voltages on the shield and anything connected to it.

FIGURE B.16
200 or 300 FSM, HSM or SSM Series Power Cable (P/N 401-34413-XX)

FIGURE B.17
400 FSM, HSM or SSM -Series Power Cable (P/N 401-34414-XX)
610 or 620 FSM, HSM or SSM Series Power Cable (P/N 401-34415-XX)

630 SSM or HSM Series Power Cable (P/N 401-34416-XX)
FIGURE B.20
800 SSM or HSM Series Power Cable (P/N 401-34417-XX)

FIGURE B.21
YSM Series Power Cable (P/N 401-30232-XX)
NOTE: This cable is not CE marked.

FIGURE B.22

DSM175 to 600 Motors (FSM, HSM or SSM Series) (Part number to be determined, contact factory)
Cabling Examples

FIGURE B.23 FSM, HSM or SSM Series Motors to Centurion DSM100 Drive

NOTES:
This wiring method should be used to run cables through a bulkhead or enclosure without removing the connectors.
Cable 401-34407-XXX has connectors on both ends. The connectors are molded and potted to the cable and may not be disassembled.
Adaptor Kit 401-34409 includes the 3 foot cable, screw terminal strip and mounting bracket. The cable has a 50-pin Mini D ribbon connector at the drive end and a 50-pin D connector at the terminal strip end.
Motor Power Cables - Use Centurion DSM100 Drive cables if the CE Mark is required. Other cables may be used if the CE Mark is not an issue. In either case, the shield on the motor power cable must be properly grounded at both ends; the shield is grounded at the motor end when the MS connector is mated.
NOTES:
This wiring method provides the option to run cables through a restrictive bulkhead or enclosure.
Cable 401-34425-XXX has a connectors on the motor end only. The cable connector is molded and potted to the cable and may not be disassembled. Refer to the schematic for cable 401-34407-XXX for information on wiring this cable to the J2 Terminal Strip.
Adaptor Kit 401-34409 includes the 3 foot cable, screw terminal strip and mounting bracket. The cable has a 50-pin Mini D ribbon connector at the drive end and a 50-pin D connector at the terminal strip end.
Adaptor Kit 401-34408 includes the 3 foot cable, screw terminal strip and mounting bracket. The cable has a 20-pin Mini D Ribbon connector at the drive end and a 20-pin D connector at the terminal strip end.
Motor Power Cables - Use Centurion DSM100 Drive cables if the CE Mark is required. Other cables may be used if the CE Mark is not an issue. In either case, the shield on the motor power cable must be properly grounded at both ends; the shield is grounded at the motor end when the MS connector is mated.

FIGURE B.24 FSM, HSM or SSM Series Motors to Centurion DSM100 Drive using P2 Terminal Strip
NOTES:
This wiring method should be used to run cables through a bulkhead or enclosure without removing the connectors. Cable 401-30233-XXX has connectors on both ends. The connectors are molded and potted to the cable and may not be disassembled. Adaptor Kit 401-34409 includes the 3 foot cable, screw terminal strip and mounting bracket. The cable has a 50-pin Mini D ribbon connector at the drive end and a 50-pin D connector at the terminal strip end.

FIGURE B.25 YSM Series Motors to Centurion DSM100 Drive
NOTES:
This wiring method provides the option to run cables through a restrictive bulkhead or enclosure.
Cable 401-30253-XXX has a connector on the motor end only. The cable connector is molded and potted to the cable and may not be disassembled.
Refer to the schematic for cable 401-30233-XXX for information on wiring this cable to the J2 Terminal Strip.
Adaptor Kit 401-34409 includes the 3 foot cable, screw terminal strip and mounting bracket. The cable has a 50-pin Mini D ribbon connector at the drive end and a 50-pin D connector at the terminal strip end.
Adaptor Kit 401-34408 includes the 3 foot cable, screw terminal strip and mounting bracket. The cable has a 20-pin Mini D Ribbon connector at the drive end and a 20-pin D connector at the terminal strip end.

FIGURE B.26
YSM Series Motors to Centurion DSM100 Drive
using P2 Terminal Strip
The optional TouchPad is a compact and rugged device for interfacing with Centurion DSM100 Drives. It provides the operator with a convenient device for accessing status information, program variables, and control functions, plus message display capabilities on any Centurion DSM100 Drive.

An 8-character dot matrix display and a sealed-membrane type keyboard are housed in a compact case. A locking tab and a single 9-pin D shell serial connector on the backpanel connects the TouchPad to any Centurion DSM100 Drive via four-wire RS-485 communications.

Four cursor keys and a Mode/Enter key provide access to the TouchPad menus and enable the user to select and change parameters, activate commands, and monitor drive variables. The TouchPad also allows the user to display drive status and diagnostic information, and to control functions, such as distances, speeds, and other alphanumeric data.

Installation and Operation

1. Power down the drive.

2. Plug the TouchPad into the serial port on the Centurion DSM100 Drive by latching the tab into the drive and then mating the connector as shown.

3. Power-up the drive. Installing the TouchPad defaults the drive to the following settings:
 - Address 0
 - 19200 Baud
 - 8 Data bits
 - No Parity bit
 - 1 Stop bit

 The personality module settings stored in the drive are not affected by the installation or removal of the TouchPad.

4. Verify the Ver##.## displayed is correct at power-up. The version number designates the type of drive and its firmware level. Figure C.2 explains this display.

 If you are referring to the TouchPad Command Tree card, verify the version number display and the Drive Type and Firmware Version of the card are the same.

5. After self-test is completed, the TouchPad display defaults to the branch title DRVSETUP.
6. Horizontal and vertical movement through the TouchPad Command Tree and parameter modification is explained below. The “TouchPad Command Tree” on page C-208 illustrates the structure.
TouchPad Commands

Commands are entered by pressing a single key or combination of keys. Two modes of operation are available. Parameter mode allows you to move through the TouchPad Command Tree to each parameter. Modify mode allows you to monitor and change each parameter, often while the drive is operational.

<table>
<thead>
<tr>
<th>Key</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>← Mode/Enter</td>
<td>Toggles the parameter display between the two operating modes. Parameter mode shows the abbreviated command name of the selected parameter. Refer to the TouchPad Command Tree Chart for a full text definition. Modify mode shows the setting, often a number, for the selected parameter. Key functions in each mode are explained below.</td>
</tr>
</tbody>
</table>

The Parameter mode displays for the TouchPad Command Tree are explained in the “Supplemental Instructions” on page C-210.

Mode of Operation

<table>
<thead>
<tr>
<th>Key</th>
<th>Parameter</th>
<th>Modify</th>
</tr>
</thead>
<tbody>
<tr>
<td>← Left Arrow</td>
<td>Previous Branch/Decrement #</td>
<td>Move Left</td>
</tr>
<tr>
<td></td>
<td>Selects the previous branch in the command tree, or Decreases the Preset number when in Preset Drive Parameter mode.</td>
<td>Moves the flashing character selection to the left, advancing the level of the cursor setting. For example: 0005200 → 0005200</td>
</tr>
<tr>
<td>→ Right Arrow</td>
<td>Next Branch/Increment #</td>
<td>Move Right</td>
</tr>
<tr>
<td></td>
<td>Selects the next branch in the command tree, or Increases the Preset number when in Preset Drive Parameter mode.</td>
<td>Moves the flashing character selection to the right, lowering the level of the cursor setting. For example: 0005200 → 0005200</td>
</tr>
<tr>
<td>▼ Down Arrow</td>
<td>Next Parameter</td>
<td>Decrement Character</td>
</tr>
<tr>
<td></td>
<td>Selects the next parameter down the branch of the command tree.</td>
<td>Decreases the selected character(s). For example: 2 → 1, or B → A</td>
</tr>
<tr>
<td>▲ Up Arrow</td>
<td>Previous Parameter</td>
<td>Increment Character</td>
</tr>
<tr>
<td></td>
<td>Selects the next parameter up the branch of the command tree.</td>
<td>Increases the selected character(s). For example: 1 → 2, or A → B</td>
</tr>
<tr>
<td>▲ ▼ Up & Down Arrows</td>
<td>Not functional in this mode.</td>
<td>Undo Change/Escape</td>
</tr>
<tr>
<td></td>
<td>Press both keys at the same time</td>
<td>Restores a changed parameter to its original setting. NOTE: This command must be performed before moving to another parameter or branch.</td>
</tr>
<tr>
<td>← Mode/Enter</td>
<td>Next Mode/Last Parameter</td>
<td>Next Mode</td>
</tr>
<tr>
<td></td>
<td>When displaying a parameter, enters the Modify mode of operation.</td>
<td>Returns the display to the Parameter mode of operation.</td>
</tr>
<tr>
<td></td>
<td>When displaying a branch title, selects the last parameter modified in branch.</td>
<td></td>
</tr>
</tbody>
</table>
Figure C.3 TouchPad Command Tree (sheet 2 of 2)
Supplemental Instructions

Motor Selection
Enter a Motor Identification number to load the correct motor parameters into the drive. Table C.2 and Table C.3 list the motors available in the motor table directory.

Displays
Selection of a motor defines default operating parameters for the drive and motor combination.

Text
A drive name longer than eight characters may require scrolling with the Left, ▼, and Right, ▲, arrow keys. Drive names may be up to 32 characters in length.

Flashing characters in the Modify mode display are the characters that are active.
- Change the cursor position and resolution using the ▼ and ▲ keys. For example: If the Drv Name in the Modify mode displays InFeed with the F flashing, pressing the ▼ key causes the first e to flash.
- Press the ▼ or ▲ keys to increment or decrement a character by scrolling through the list of valid ASCII characters. For example, If the Drv Name in the Modify mode displays InFfed with the lowercase f is flashing, pressing the ▼ key causes the flashing character to decrement to e.

Numeric
Flashing characters in the Modify mode display are the numbers that are active.
- Change the cursor position and resolution using the ▼ or ▲ key. For example: If the Over Spd in the Modify mode displays 5200 and 52 is flashing, pressing the ▼ key causes 520 to flash.
- Press the ▼ or ▲ key to increment or decrement these numbers. For example: If the Over Spd value is 5200 and 52 is flashing, pressing the ▼ key causes the setting to increment by 100 rpm each time the key is pressed.
- Parameter values may not exceed the maximum or minimum limits, regardless of the cursor position. For example: If the SpeedWin setting is 5000 rpm and the Maximum Speed in the motor table is 5200, pressing the ▼ key increases the parameter to 5200 (the upper limit), but pressing the ▲ key decrements the parameter to 4000.

The most significant digit is reserved when a parameter allows a negative (-) setting or the parameter provides a list of possible selections. The ▼ or ▲ key toggles the minus sign.
List

The most significant digit is reserved for an active/inactive selection marker when a parameter provides a list of possible selections.

- A filled arrow, ▶️, in the most significant digit indicates the active setting from a list of possible settings. Inactive settings are indicated by an unfilled arrow, ◊️.

 For example: If the drive is functioning as Preset Controller in the Velocity mode, pressing the ▶️ key from DRVPARAM scrolls through the CmdSrc list which includes Presets, AuxEnc, StepDir, StepU/D, and Analog.

- The Mode/Enter, ➝◂, key selects a parameter from the list.

- List selections that are undefined are indicated by Unknown. This display indicates the TouchPad data table is incompatible with the drive.

Lists are associated with all parameters, except DISPLAY and DRVINFO. Refer to page C-214 for items in each list. Table C.17, “Drive Status List for TouchPad” on page C-216 is read-only; all other lists contain possible parameter selections. After an option is selected, the display reverts to the parameter from which the option was selected. For example: Selection of the EncAlign parameter under STATUS provides the options Normal and Align. Selection of either option returns you to the EncAlign display.

Ratio

A FolRatio (gear ratio) longer than eight characters may require scrolling with the ▶️ and ◊️ keys. The ratios are numeric values that increment or decrement by 1 each time the ▶️ or ◊️ key is pressed.

The method of display is dependent on the length of the ratios:

- If the ratio is eight characters or less, it is displayed in full.

 For example, a Master to Follower ratio of one-thousand to nine-hundred is displayed as 1000:900.

- If the ratio requires more than eight characters the ratio is displayed in two parts: a Master Ratio and a Follower Ratio. The position of the colon (:) after or before each numeric value indicates Master or Follower for these larger ratios.

 The ▶️ and ◊️ keys toggle between the Master Ratio and the Follower Ratio.

 For example: A Master to Follower ratio on 1001:1000 is displayed in two separate displays. The Master Ratio is displayed as 1001: and pressing ▶️ displays the Follower Ratio:1000.

Fault/Error/Warning

Table C.1 lists the possible fault, error and warning messages that may appear on the TouchPad. The items below describe the different types of messages.

- The TouchPad displays Fault and a description. A Fault message requires additional troubleshooting of the drive.

 Clear the fault display by depressing the ▶️ and ◊️ keys simultaneously.

 Fault codes are stored in the TouchPad parameter DrvStat and are explained with troubleshooting guidelines in Table 11.1 on page 11-161.

- The TouchPad alternately displays Error and the error name. Clear an error by pressing the ➝◂ key.

- The TouchPad momentarily displays and then clears a warning when an invalid entry is made.

<table>
<thead>
<tr>
<th>Display</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BufOvFlo</td>
<td>Error</td>
<td>Communications buffer overflowed.</td>
</tr>
<tr>
<td>Can’tDo</td>
<td>Error</td>
<td>An invalid function type encountered in the TouchPad data table. The TouchPad data table is incorrect for the drive.</td>
</tr>
<tr>
<td>Checksum</td>
<td>Error</td>
<td>The checksum of the command is in error. Information is corrupted.</td>
</tr>
<tr>
<td>CmdNoEnb</td>
<td>Error</td>
<td>The command is not enabled.</td>
</tr>
</tbody>
</table>
TouchPad Fault/Error/Warning Displays (continued)

<table>
<thead>
<tr>
<th>Display</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataDisp</td>
<td>Warning</td>
<td>The parameter is a live data display and cannot be modified.</td>
</tr>
<tr>
<td>DrvEnabl</td>
<td>Warning</td>
<td>The parameter cannot be changed while the drive is enabled.</td>
</tr>
<tr>
<td>Fault</td>
<td>Fault</td>
<td>Drive fault detected.</td>
</tr>
<tr>
<td>InvData</td>
<td>Warning</td>
<td>Invalid data was entered for the parameter.</td>
</tr>
<tr>
<td>InvidFn</td>
<td>Error</td>
<td>Illegal function code received by drive. The TouchPad data table is incorrect for the drive.</td>
</tr>
<tr>
<td>InvldRsp</td>
<td>Error</td>
<td>Invalid Response received from drive. Received code did not match transmitted code.</td>
</tr>
<tr>
<td>Lower Lim</td>
<td>Warning</td>
<td>The lower limit of the parameter has been reached.</td>
</tr>
<tr>
<td>NoMemory</td>
<td>Error</td>
<td>TouchPad memory has been exhausted.</td>
</tr>
<tr>
<td>NoRetSel</td>
<td>Warning</td>
<td>Mode/Enter key incorrectly pressed.</td>
</tr>
<tr>
<td>OverRng</td>
<td>Error</td>
<td>Value from drive is too large to display.</td>
</tr>
<tr>
<td>RAMWrite</td>
<td>Error</td>
<td>An error was detected while writing the drive’s parameter memory.</td>
</tr>
<tr>
<td>ReadOnly</td>
<td>Warning</td>
<td>The parameter is Read Only and cannot be modified.</td>
</tr>
<tr>
<td>Timeout</td>
<td>Error</td>
<td>The communications port timed out.</td>
</tr>
<tr>
<td>UnxpChar</td>
<td>Error</td>
<td>The communications port received an unexpected character.</td>
</tr>
<tr>
<td>UpperLim</td>
<td>Warning</td>
<td>The upper limit of the parameter has been reached.</td>
</tr>
</tbody>
</table>
Motor Table

TABLE C.2 TouchPad Motor Table Identification by Motor Series

<table>
<thead>
<tr>
<th>Motor ID</th>
<th>Motor ID</th>
<th>Motor ID</th>
<th>Motor ID</th>
<th>Motor ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSM430 B24 15</td>
<td>FSM610 27</td>
<td>FSM4220 E5000 852</td>
<td>FSM620 12</td>
<td></td>
</tr>
<tr>
<td>FSM460 B24 3</td>
<td>FSM620 28</td>
<td>FSM5630 85</td>
<td>FSM630 6</td>
<td></td>
</tr>
<tr>
<td>FSM490 B24 16</td>
<td>FSM630 29</td>
<td>FSM5630 E5000 853</td>
<td>FSM635 13</td>
<td></td>
</tr>
<tr>
<td>FSM610 B24 17</td>
<td>FSM635 30</td>
<td>FSM637 86</td>
<td>FSM645 14</td>
<td></td>
</tr>
<tr>
<td>FSM620 B24 18</td>
<td>FSM645 31</td>
<td>FSM637 E5000 854</td>
<td>FSM650 69</td>
<td></td>
</tr>
<tr>
<td>FSM620 E5000 7</td>
<td>FSM650 33</td>
<td>FSM647 855</td>
<td>FSM650 68</td>
<td></td>
</tr>
<tr>
<td>FSM630 19</td>
<td>FSM650 336</td>
<td>FSM650 855</td>
<td>FSM650 71</td>
<td></td>
</tr>
<tr>
<td>FSM630 20</td>
<td>FSM660 85</td>
<td>FSM650 74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSM630 21</td>
<td>FSM660 851</td>
<td>FSM650 77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSM630 22</td>
<td>FSM660 84</td>
<td>FSM650 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSM630 23</td>
<td>FSM660 83</td>
<td>FSM650 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSM630 24</td>
<td>FSM660 82</td>
<td>FSM660 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSM630 25</td>
<td>FSM660 81</td>
<td>FSM660 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSM630 26</td>
<td>FSM660 80</td>
<td>FSM660 71</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FSM630 27</td>
<td>FSM660 79</td>
<td>FSM660 71</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE C.3 TouchPad Motor Table Identification by Motor ID

<table>
<thead>
<tr>
<th>ID</th>
<th>Motor ID</th>
<th>Motor ID</th>
<th>Motor ID</th>
<th>Motor ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SSM460</td>
<td>17</td>
<td>FSM610 B24</td>
<td>68</td>
</tr>
<tr>
<td>2</td>
<td>SSM460</td>
<td>18</td>
<td>FSM620 B24</td>
<td>69</td>
</tr>
<tr>
<td>3</td>
<td>FSM460 B24</td>
<td>19</td>
<td>FSM630</td>
<td>70</td>
</tr>
<tr>
<td>4</td>
<td>FSM460 B24</td>
<td>20</td>
<td>FSM630</td>
<td>71</td>
</tr>
<tr>
<td>5</td>
<td>FSM460 B24</td>
<td>21</td>
<td>FSM630</td>
<td>72</td>
</tr>
<tr>
<td>6</td>
<td>FSM460 B24</td>
<td>22</td>
<td>FSM630</td>
<td>73</td>
</tr>
<tr>
<td>7</td>
<td>FSM460 B24</td>
<td>23</td>
<td>FSM630</td>
<td>74</td>
</tr>
<tr>
<td>8</td>
<td>FSM460 B24</td>
<td>24</td>
<td>FSM630</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>FSM460 B24</td>
<td>25</td>
<td>FSM630</td>
<td>76</td>
</tr>
<tr>
<td>10</td>
<td>FSM460 B24</td>
<td>26</td>
<td>FSM630</td>
<td>77</td>
</tr>
<tr>
<td>11</td>
<td>FSM460 B24</td>
<td>27</td>
<td>FSM630</td>
<td>78</td>
</tr>
<tr>
<td>12</td>
<td>FSM460 B24</td>
<td>28</td>
<td>FSM630</td>
<td>79</td>
</tr>
<tr>
<td>13</td>
<td>FSM460 B24</td>
<td>29</td>
<td>FSM630</td>
<td>80</td>
</tr>
<tr>
<td>14</td>
<td>FSM460 B24</td>
<td>30</td>
<td>FSM630</td>
<td>81</td>
</tr>
<tr>
<td>15</td>
<td>FSM460 B24</td>
<td>31</td>
<td>FSM630</td>
<td>82</td>
</tr>
<tr>
<td>16</td>
<td>FSM460 B24</td>
<td>32</td>
<td>FSM630</td>
<td>83</td>
</tr>
</tbody>
</table>

TouchPad Options

TABLE C.4 Option Selections for the TouchPad

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Options</th>
<th>Parameter</th>
<th>Options</th>
<th>Parameter</th>
<th>Options</th>
<th>Parameter</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>TUNING</td>
<td></td>
<td>STATUS</td>
<td>CTLPANEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DRVPARM</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AccelEn</td>
<td>Enable/Disable</td>
<td>SWEnable</td>
<td>Enable/Disable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SlewEnab</td>
<td>Enable/Disable</td>
<td>SWEnable</td>
<td>Enable/Disable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I OverRd</td>
<td>Enable/Disable</td>
<td>SWEnable</td>
<td>Enable/Disable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SWEnable</td>
<td>Enable/Disable</td>
<td>SWEnable</td>
<td>Enable/Disable</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EncAlign</td>
<td>Normal/Align</td>
<td>Start</td>
<td>Normal/CtlPanel</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RmvOfst</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TouchPad Lists

Drive Communications Parameter List for the TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>7 Data Bits, 1 Stop Bit, Even Parity</td>
</tr>
<tr>
<td>01</td>
<td>7 Data Bits, 1 Stop Bit, Odd Parity</td>
</tr>
<tr>
<td>02</td>
<td>8 Data Bits, 1 Stop Bit, No Parity</td>
</tr>
<tr>
<td>03</td>
<td>8 Data Bits, 1 Stop Bit, Even Parity</td>
</tr>
<tr>
<td>04</td>
<td>8 Data Bits, 1 Stop Bit, Odd Parity</td>
</tr>
</tbody>
</table>

Baud Rate Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>1200 Baud</td>
</tr>
<tr>
<td>01</td>
<td>2400 Baud</td>
</tr>
<tr>
<td>02</td>
<td>4800 Baud</td>
</tr>
<tr>
<td>03</td>
<td>9600 Baud</td>
</tr>
<tr>
<td>04</td>
<td>19200 Baud</td>
</tr>
</tbody>
</table>

Encoder Output Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>÷ by 1</td>
<td>Divide Encoder counts by 1</td>
</tr>
<tr>
<td>÷ by 2</td>
<td>Divide Encoder counts by 2</td>
</tr>
<tr>
<td>÷ by 4</td>
<td>Divide Encoder counts by 4</td>
</tr>
<tr>
<td>÷ by 8</td>
<td>Divide Encoder counts by 8</td>
</tr>
</tbody>
</table>

IO Mode Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inc</td>
<td>Incremental Indexing</td>
</tr>
<tr>
<td>Abs</td>
<td>Absolute Indexing</td>
</tr>
<tr>
<td>Reg</td>
<td>Registration Indexing</td>
</tr>
</tbody>
</table>

^a Parameters available only if the drive supports Indexing.

Index Pointer Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>Index 0</td>
</tr>
<tr>
<td>01</td>
<td>Index 1</td>
</tr>
<tr>
<td>02</td>
<td>Index 2</td>
</tr>
<tr>
<td>03</td>
<td>Index 3</td>
</tr>
<tr>
<td>04</td>
<td>Index 4</td>
</tr>
<tr>
<td>05</td>
<td>Index 5</td>
</tr>
<tr>
<td>06</td>
<td>Index 6</td>
</tr>
<tr>
<td>07</td>
<td>Index 7</td>
</tr>
<tr>
<td>08</td>
<td>RAM Index</td>
</tr>
</tbody>
</table>

^a Parameters available only if the drive supports Indexing.
TABLE C.10 Index Termination Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stop</td>
<td>Stop</td>
</tr>
<tr>
<td>NxtNow</td>
<td>Start another Index immediately</td>
</tr>
<tr>
<td>NxtWt</td>
<td>Start another Index at next Start Index transition</td>
</tr>
</tbody>
</table>

a. Parameters available only if the drive supports Indexing.

TABLE C.11 Home Type Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sns/Mrk</td>
<td>Home to Sensor, then to Marker</td>
</tr>
<tr>
<td>Marker</td>
<td>Home to Marker</td>
</tr>
<tr>
<td>Sensor</td>
<td>Home to Sensor</td>
</tr>
</tbody>
</table>

a. Parameters available only if the drive supports Indexing.

TABLE C.12 Homing Auto-Start Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disable</td>
<td>Auto-Start Homing inactive</td>
</tr>
<tr>
<td>Enb/Rst</td>
<td>Auto-Start Homing if not already Homed</td>
</tr>
<tr>
<td>Enable</td>
<td>Auto-Start on every Enable</td>
</tr>
</tbody>
</table>

a. Parameters available only if the drive supports Indexing.

TABLE C.13 Reverse Enable for Homing

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inactive</td>
<td>No reversing if started on Sensor</td>
</tr>
<tr>
<td>Active</td>
<td>Reverse if started on Sensor</td>
</tr>
</tbody>
</table>

a. Parameters available only if the drive supports Indexing.

TABLE C.14 Digital Input Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Asgn</td>
<td>Not Assigned (not used)</td>
</tr>
<tr>
<td>DrvMode</td>
<td>Drive Mode</td>
</tr>
<tr>
<td>IntInh</td>
<td>Integrator Inhibit</td>
</tr>
<tr>
<td>FolEnab</td>
<td>Follower Enable</td>
</tr>
<tr>
<td>FwdEnab</td>
<td>Forward Enable</td>
</tr>
<tr>
<td>RevEnab</td>
<td>Reverse Enable</td>
</tr>
<tr>
<td>CMD Ovrd</td>
<td>Analog COMMAND Input Override</td>
</tr>
<tr>
<td>PreSelA</td>
<td>Preset Select Line A</td>
</tr>
<tr>
<td>PreSelB</td>
<td>Preset Select Line B</td>
</tr>
<tr>
<td>PreSelC</td>
<td>Preset Select Line C</td>
</tr>
<tr>
<td>StrtInd</td>
<td>Start Index</td>
</tr>
<tr>
<td>DefHome</td>
<td>Define Home</td>
</tr>
<tr>
<td>Registr</td>
<td>Registration/Sensor</td>
</tr>
<tr>
<td>-CmdOfs</td>
<td>Remove Command Offset</td>
</tr>
<tr>
<td>Home</td>
<td>Start Homing</td>
</tr>
<tr>
<td>FailRst</td>
<td>Fault Reset</td>
</tr>
</tbody>
</table>

a. Parameters available only if the drive supports Indexing.
Digital Output Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Asgn</td>
<td>Not Assigned (not used)</td>
</tr>
<tr>
<td>InPos</td>
<td>In Position</td>
</tr>
<tr>
<td>PosWin</td>
<td>Within Position</td>
</tr>
<tr>
<td>0 Speed</td>
<td>Zero Speed</td>
</tr>
<tr>
<td>SpdWin</td>
<td>Speed Window</td>
</tr>
<tr>
<td>+ILimit</td>
<td>Positive Current Limit</td>
</tr>
<tr>
<td>-ILimit</td>
<td>Negative Current Limit</td>
</tr>
<tr>
<td>UpToSpd</td>
<td>Up to Speed</td>
</tr>
<tr>
<td>DrvEnab</td>
<td>Drive Enable</td>
</tr>
<tr>
<td>BusChg</td>
<td>Bus Charged</td>
</tr>
<tr>
<td>Fault</td>
<td>Disabling Fault</td>
</tr>
<tr>
<td>AtHome</td>
<td>At Home</td>
</tr>
<tr>
<td>SeqEnd</td>
<td>Sequence Complete</td>
</tr>
<tr>
<td>Moving</td>
<td>In Motion</td>
</tr>
<tr>
<td>InDwell</td>
<td>In Dwell</td>
</tr>
<tr>
<td>Homed</td>
<td>Axis Homed</td>
</tr>
</tbody>
</table>

Analog Output Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Cmd</td>
<td>Current Command</td>
</tr>
<tr>
<td>I Avg</td>
<td>Average Current Command</td>
</tr>
<tr>
<td>IPeak+</td>
<td>Positive Current Peak</td>
</tr>
<tr>
<td>IPeak-</td>
<td>Negative Current Peak</td>
</tr>
<tr>
<td>ILimit+</td>
<td>Positive Current Limit</td>
</tr>
<tr>
<td>ILimit-</td>
<td>Negative Current Limit</td>
</tr>
<tr>
<td>VelMtr</td>
<td>Motor Velocity</td>
</tr>
<tr>
<td>VelCmd</td>
<td>Velocity Command</td>
</tr>
<tr>
<td>VelErr</td>
<td>Velocity Error</td>
</tr>
<tr>
<td>PosMtr</td>
<td>Motor Position</td>
</tr>
<tr>
<td>PosCmd</td>
<td>Position Command Slewed</td>
</tr>
<tr>
<td>PosErr</td>
<td>Position Error</td>
</tr>
<tr>
<td>PosEPk+</td>
<td>Positive Position Peak Error</td>
</tr>
<tr>
<td>PosEPk-</td>
<td>Negative Position Peak Error</td>
</tr>
<tr>
<td>PosMstr</td>
<td>Master Position</td>
</tr>
</tbody>
</table>

Drive Status List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>DrvEnab</td>
<td>Drive Enabled</td>
</tr>
<tr>
<td>DrvRdy</td>
<td>Drive Ready</td>
</tr>
<tr>
<td>+24 Fuse</td>
<td>+24 VDC Fuse blown</td>
</tr>
<tr>
<td>5v Fuse</td>
<td>+5 VDC Fuse blown</td>
</tr>
<tr>
<td>EncFuse</td>
<td>Encoder Power Fuse blown</td>
</tr>
<tr>
<td>MtrOvT</td>
<td>Motor Thermostat Overtemperature</td>
</tr>
<tr>
<td>IPMFalt</td>
<td>IPM Fault (Overtemperature/Overcurrent/Short Circuit)</td>
</tr>
<tr>
<td>IMLinBk</td>
<td>Channel IM Line Break</td>
</tr>
<tr>
<td>BMLinBk</td>
<td>Channel BM Line Break</td>
</tr>
<tr>
<td>AMLinBk</td>
<td>Channel AM Line Break</td>
</tr>
</tbody>
</table>
TABLE C.17 Drive Status List for TouchPad (continued)

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>BusOvV</td>
<td>Bus Undervoltage</td>
</tr>
<tr>
<td>BusUndV</td>
<td>Bus Overvoltage</td>
</tr>
<tr>
<td>llglHal</td>
<td>Illegal Hall State</td>
</tr>
<tr>
<td>SubIntr</td>
<td>Unused Interrupt - sub processor</td>
</tr>
<tr>
<td>MainInt</td>
<td>Unused Interrupt - main processor</td>
</tr>
<tr>
<td>ExsAvgI</td>
<td>Excessive Average Current</td>
</tr>
<tr>
<td>OvSpeed</td>
<td>Motor Overspeed</td>
</tr>
<tr>
<td>ExsFErr</td>
<td>Excessive Following Error</td>
</tr>
<tr>
<td>MtrEnc</td>
<td>Motor Encoder State Error</td>
</tr>
<tr>
<td>MstrEnc</td>
<td>Auxiliary Encoder State Error</td>
</tr>
<tr>
<td>MtrThrm</td>
<td>Motor Thermal Protection</td>
</tr>
<tr>
<td>IPMThrm</td>
<td>IPM Thermal Protection</td>
</tr>
<tr>
<td>EnNoMtr</td>
<td>No Motor Selected while enabling drive</td>
</tr>
<tr>
<td>MtrType</td>
<td>Motor Selection not in Table</td>
</tr>
<tr>
<td>PersWrt</td>
<td>Personality Write Error</td>
</tr>
<tr>
<td>ServWrt</td>
<td>Service Write Error</td>
</tr>
<tr>
<td>CPUComm</td>
<td>CPU Communications Error</td>
</tr>
<tr>
<td>MtrOvt</td>
<td>Motor Overtemperature</td>
</tr>
<tr>
<td>IPMFalt</td>
<td>IPM Fault</td>
</tr>
<tr>
<td>ExsVErr</td>
<td>Excess Velocity Error</td>
</tr>
<tr>
<td>Comutat</td>
<td>Commutation Angle Error</td>
</tr>
<tr>
<td>Not Homd</td>
<td>Axis Not Homed</td>
</tr>
</tbody>
</table>

NOTE: The Drive Status display is read-only. DrvEnab and DrvRdy indicate the drive is functional. The other displays indicate an error condition.

TABLE C.18 Input Flags Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>FltRst</td>
<td>Fault Reset Input Flag</td>
</tr>
<tr>
<td>ENABLE</td>
<td>Drive Enable Input Flag</td>
</tr>
<tr>
<td>Input1</td>
<td>Input 1 Input Flag</td>
</tr>
<tr>
<td>Input2</td>
<td>Input 2 Input Flag</td>
</tr>
<tr>
<td>Input3</td>
<td>Input 3 Input Flag</td>
</tr>
<tr>
<td>Input4</td>
<td>Input 4 Input Flag</td>
</tr>
</tbody>
</table>

TABLE C.19 Output Flags Parameter List for TouchPad

<table>
<thead>
<tr>
<th>Display</th>
<th>Parameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>READY</td>
<td>Ready Output Flag</td>
</tr>
<tr>
<td>BRAKE</td>
<td>Brake Output Flag</td>
</tr>
<tr>
<td>Outpt1</td>
<td>Output 1 Flag</td>
</tr>
<tr>
<td>Outpt2</td>
<td>Output 2 Flag</td>
</tr>
<tr>
<td>Outpt3</td>
<td>Output 3 Flag</td>
</tr>
<tr>
<td>Outpt4</td>
<td>Output 4 Flag</td>
</tr>
</tbody>
</table>
This appendix provides background information about Electromagnetic Interference (EMI) and machine design guidelines for Electromagnetic Compatibility (EMC). The Centurion DSM100 Drive installation requirements for compliance to the European Electromagnetic Compatibility Directive are specified in “European Union Requirements” on page 2-30. AC Line Filters necessary for European EMC compliance are listed in Chapter 5, “Installation”.

Perhaps no other subject related to the installation of industrial electronic equipment is so misunderstood as electrical noise. The subject is complex and the theory easily fills a book. This section provides guidelines that can minimize noise problems.

The majority of installations do not exhibit noise problems. However, the filtering and shielding guidelines are provided as counter measures. The grounding guidelines provided below are simply good grounding practices. They should be followed in all installations.

Electrical noise has two characteristics: the generation or emission of electromagnetic interference (EMI), and response or immunity to EMI. The degree to which a device does not emit EMI, and is immune to EMI is called the device’s Electromagnetic Compatibility (EMC).

“EMI Source-Victim Model” shows the commonly used EMI model. The model consists of an EMI source, a coupling mechanism and an EMI victim. Devices such as servo drives and computers, which contain switching power supplies and microprocessors, are EMI sources. The mechanisms for the coupling of energy between the source and victim are conduction and radiation. Victim equipment can be any electromagnetic device that is adversely affected by the EMI coupled to it.

![EMI Source-Victim Model](image-url)
Immunity to EMI is primarily determined by equipment design, but how you wire and ground the device is also critical to achieving EMI immunity. Therefore, it is important to select equipment that has been designed and tested for industrial environments. The EMI standards for industrial equipment include the EN61000-4 series (IEC 1000-4 and IEC801), EN55011 (LISDR11), ANSI C62 and C63 and MIL-STD-461. Also, in industrial environments, you should use encoders with differential driver outputs rather than single ended outputs, and digital inputs/outputs with electrical isolation, such as those provided with optocouplers.

The EMI model provides only three options for eliminating the EMC problem:

- Reduce the EMI at the source,
- Increase the victim’s immunity to EMI (harden the victim), or
- Reduce or eliminate the coupling mechanism.

In the case of servo drives, reducing the EMI source requires slowing power semiconductor switching speeds. However, this adversely affects drive performance with respect to heat dissipation and speed/torque regulation. Hardening the victim equipment may not be possible, or practical. The final, and often the most realistic solution is to reduce the coupling mechanism between the source and victim. This can be achieved by filtering, shielding and grounding.

Filtering

As mentioned above, high frequency energy can be coupled between circuits via radiation or conduction. The AC power wiring is one of the most important paths for both types of coupling mechanisms. The AC line can conduct noise into the drive from other devices, or it can conduct noise directly from the drive into other devices. It can also act as an antenna and transmit or receive radiated noise between the drive and other devices.

One method to improve the EMC characteristics of a drive is to use an isolation AC power transformer to feed the amplifier its input power. This minimizes inrush currents on power-up and provides electrical isolation. In addition, it provides common mode filtering, although the effect is limited in frequency by the interwinding capacitance. Use of a Faraday shield between the windings can increase the common mode rejection bandwidth, (shield terminated to ground) or provide differential mode shielding (shield terminated to the winding).

One alternative to AC line filters to reduce the conducted EMI emitting from the drive. This allows nearby equipment to operate undisturbed. In most cases an AC line filter will not be required unless other sensitive circuits are powered off the same AC branch circuit. The basic operating principle is to minimize the high frequency power transfer through the filter. An effective filter achieves this by using capacitors and inductors to mismatch the source impedance (AC line) and the load impedance (drive) at high frequencies.

AC Line Filter Selection

Selection of the proper filter is only the first step in reducing conducted emissions. Correct filter installation is crucial to achieving both EMI attenuation and to ensure safety. All of the following guidelines should be met for effective filter use.

1. The filter should be mounted to a grounded conductive surface.
2. The filter must be mounted close to the drive input terminals. If the distance exceeds 1 foot, then a strap should be used to connect the drive and filter, rather than a wire.
3. The wires connecting the AC source to the filter should be shielded from, or at least separated from the wires (or strap) connecting the drive to the filter. If the connections are not segregated from each other, then the EMI on the drive side of the filter can couple over to the source side of the filter, thereby reducing, or eliminating the filter effectiveness. The coupling mechanism can
be radiation, or stray capacitance between the wires. The best method of achieving this is to mount the filter where the AC power enters the enclosure. “AC Line Filter Installation” shows a good installation and a poor installation.

WARNING

Before applying power, the filter must be safety grounded. Without a proper ground, current leakage could build to a hazardous level.

The only reasonable filtering at the drive output terminals is the use of inductance. Capacitors would slow the output switching and deteriorate the drive performance. A common mode choke, as is used in the Centurion DSM100 Drive, can be used to reduce the HF voltage at the drive output. This will reduce emission coupling through the drive back to the AC line. However, the motor cable still carries a large HF voltage and current. Therefore, it is very important to segregate the motor cable from the AC power cable. More information on cable shielding and segregation is contained in the section on shielding.

AC Line Filter Installation

When multiple power cables enter an enclosure, an unfiltered line can contaminate a filtered line external to the enclosure. Therefore, all lines must be filtered to be effective. The situation is similar to a leaky boat. All the holes must be plugged to prevent sinking.

FIGURE 11.2 AC Line Filter Installation

![Diagram showing AC Line Filter Installation with a good and poor example.]

WARNING

Before applying power, the filter must be safety grounded. Without a proper ground, current leakage could build to a hazardous level.
Grounding

High frequency (HF) grounding is different from safety grounding. A long wire is sufficient for a safety ground, but is completely ineffective as an HF ground due to the wire inductance. As a rule of thumb, a wire has an inductance of 20 nH/in regardless of diameter. At low frequencies, it acts as a constant impedance, at intermediate frequencies as an inductor, and at high frequencies as an antenna. The use of ground straps is a better alternative to wires. However, the length to width ratio must be 5:1, or better yet 3:1, to remain a good high frequency connection.

The ground system’s primary purpose is to function as a return current path. It is commonly thought of as an equipotential circuit reference point, but different locations in a ground system may be at different potentials. This is due to the return current flowing through the ground system’s finite impedance. In a sense, ground systems are the sewer systems of electronics and as such are sometimes neglected.

The primary objective of a high frequency ground system is to provide a well-defined path for HF currents and to minimize the loop area of the HF current paths. It is also important to separate HF grounds from sensitive circuit grounds. “Single Point Ground Types” shows single point grounds for both series (daisy chain) and parallel (separate) connections. A single point, parallel connected ground system is recommended.

![Ground Bus Bar](image)

Figure 11.3

Single Point Ground Types

A ground bus bar or plane should be used as the “single point” where circuits are grounded. This will minimize common (ground) impedance noise coupling. The ground bus bar (GBB) should be connected to the AC ground, and if necessary, to the enclosure. All circuits or subsystems should be connected to the GBB by separate connections. These connections should be as short as possible, and straps should be used when possible. The motor ground conductor must return to the ground terminal on the drive, not the GBB.
Shielding and Segregation

The EMI radiating from the drive enclosure drops off very quickly over distance. Mounting the drive in an enclosure, such as an industrial cabinet, further reduces the radiated emissions.

The primary propagation route for EMI emissions from a drive is through cabling. The cables conduct the EMI to other devices, and can also radiate the EMI. For this reason, cable segregation and shielding are important factors in reducing emissions. Cable shielding can also increase the level of immunity for a drive.

The following suggestions are recommended for all installations, especially since they are inexpensive.

1. Signal cables (encoder, serial, analog) should be routed away from the motor cable and power wiring. Separate steel conduit can be used to provide shielding between the signal and power wiring. Do not route signal and power wiring through common junctions or raceways.

2. Signal cables from other circuits should not pass within 1 foot of the drive.

3. The length or parallel runs between other circuit cables and the motor or power cable should be minimized. A rule of thumb is 1 foot of separation for each 30 feet of parallel run. The 1 foot separation can be reduced if the parallel run is less than 3 feet.

4. Cable intersections should always occur at right angles to minimize magnetic coupling.

5. Do not route any cables connected to the drive directly over the drive vent openings. Otherwise the cables will pick up the emissions leaked through the vent slots.

6. The encoder mounted on the brushless servo motor should be connected to the amplifier with a cable using multiple twisted wire pairs and an overall cable shield. Giddings & Lewis offers encoder cables in various lengths that have special terminations.

Following these guidelines can minimize noise problems. However, equipment EMC performance must meet regulatory requirements in various parts of the world, specifically the European Union. Ultimately, it is the responsibility of the machine builder to ensure that the machine meets the appropriate requirements as installed.
This appendix provides equations to assist in sizing resistors for dynamic braking.

A properly sized resistive load may be required to dynamically brake the system by dissipating the energy stored in a motor. The section “Emergency Stop Wiring” on page 7-96 depicts the necessary circuitry.

Winding inductance is ignored in this analysis, which allows the load on the motor winding to be considered as purely resistive when dynamic braking occurs. This simplifies the evaluation to a scalar analysis, instead of a vector analysis. For simplicity, friction, damping and load torque also are ignored in the equations.

Dynamic Braking Equations

Equations for the magnitude of instantaneous velocity, and per phase current, energy and power are derived by solving the differential equation governing the motor velocity. The equations are shown below.

Table E.1 Dynamic Braking Resistor Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>i(t)</td>
<td>Phase Current</td>
<td>R_L</td>
<td>Line-Neutral Dynamic Braking Resistance</td>
</tr>
<tr>
<td>E(t)</td>
<td>Per Phase Energy</td>
<td>K_E</td>
<td>Peak Line-to-Line Back EMF</td>
</tr>
<tr>
<td>J_m</td>
<td>Motor Inertia</td>
<td>K_T</td>
<td>Peak Line-to-Line Torque Constant</td>
</tr>
<tr>
<td>J_L</td>
<td>Load Inertia</td>
<td>w</td>
<td>Initial Angular Velocity</td>
</tr>
<tr>
<td>P(t)</td>
<td>Per Phase Power</td>
<td>t</td>
<td>Time</td>
</tr>
</tbody>
</table>

| R | Motor Line-to-Line Resistance |

\[
\omega(t) = \omega_0 e^{-t/\tau}
\]

where

\[
\tau = 0.866 \left(\frac{(R + 2R_L)(J_M + J_L)}{K_EK_T} \right)
\]

\[
i(t) = \frac{K_E\omega_0 e^{-t/\tau}}{0.866(R + 2R_L)}
\]

\[
E(t) = \frac{1}{2}(J_L + J_M)\omega_0^2 e^{-2t/\tau}
\]

\[
P(t) = \left[\frac{(J_L + J_M)\omega_0^2}{2\tau} \right] e^{-2t/\tau} = 1.154 \left[\frac{K_EK_T\omega_0^2}{(R + 2R_L)} \right] e^{-2t/\tau}
\]
For this type of response, 98% of the energy will be dissipated in 4 time constants. Therefore the average power for each dynamic braking event can be calculated as:

\[P_{AVE} = \frac{1}{2} (J_M + J_L) \omega^2_0 \left(\frac{1}{4 \tau} \right) = 0.144 \frac{K_p K_T \omega^2_0}{(R + 2R_L)} \]

Equation 1 is used in equation 2 and 3 to put the power in terms of the motor parameters and the dynamic braking resistance (i.e., independent of the load inertia).
Sample Calculations

The following example uses an HSM475 motor with a 10 times inertia mismatch and dynamic braking resistors sized at four times the motor winding resistance. The average power of the motor is 1116 Watts for the selected parameters, but it is unlikely that a resistor with this Wattage is required. Pulse type currents, such as this example, require sufficient thermal mass to absorb the energy and to dissipate or accommodate the peak Voltage. Adequate information for intermittent duty cycle and surge current applications is seldom provided by resistor manufacturers. However, often they will assist in resistor selection when supplied with the current profile.

Note: The equations using the symbol ":=" are "assigned" in Mathcad®.

H4075 Motor Parameters in MKS Units:

\[K_T := 0.74 \quad R := 0.9 \quad J_m := 0.00068 \]

\[K_E := 90 \quad K_E := \frac{K_E \cdot 60}{2 \cdot \pi \cdot 1000} \quad K_E = 0.859 \]

Load Inertia, Dynamic Braking Resistance and Velocity in MKS Units:

\[R_L := 4 \cdot R \quad J_L := 10 \cdot J_m \quad \omega_o := \frac{3000 \cdot 2 \cdot \pi}{60} \quad \omega_o = 314.159 \]

Time vector:

\[t := 0, 0.01, \ldots 0.5 \]

Time Constant (seconds):

\[\tau = \frac{0.866(R + 2 \cdot R_L) \cdot (J_m + J_L)}{K_E \cdot K_T} \quad \tau = 0.083 \]

Current Calculation (Amps):

\[i(t) := \frac{K_E \cdot \omega_o \cdot e^\frac{-t}{\tau}}{0.866(R + 2 \cdot R_L)} \]

Instantaneous Power Calculation (Watts):

\[P(t) := \left[\frac{1.154 \cdot K_E \cdot K_T \cdot \omega_o^2}{(R + 2 \cdot R_L)} \right] \cdot e^\frac{-2 \cdot t}{\tau} \]
Average Power (Watts):

\[P_{ave} = 0.144 \frac{K_E \cdot K_T \cdot \omega_0^2}{R + 2 \cdot R_L} \]

\[P_{ave} = 1116 \]
<table>
<thead>
<tr>
<th>Specification</th>
<th>Agency Approvals</th>
<th>Environmental</th>
<th>Motor Encoder Interface</th>
<th>User Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>UL and cUL</td>
<td>UL508C File E145959</td>
<td>Ultrasound</td>
<td>Power Output: 5 to 7 Volts DC, Adjustable, Automatic Sensing, Fused</td>
<td>Serial Port: RS-232 or four wire RS-485, 1200 to 19200 baud</td>
</tr>
<tr>
<td>Spec</td>
<td>Certificate of Conformity from TUV Product Service</td>
<td>Temperature</td>
<td>Thermostat Inputs: Normally closed</td>
<td>Status Display: 7 segment LED</td>
</tr>
<tr>
<td>DSU</td>
<td></td>
<td>-40°C to 70°C (-40°F to 158°F)</td>
<td>Hall Inputs: Single-ended, 5 Volt Logic</td>
<td>Address Switch: 16-position Rotary DIP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Humidity</td>
<td>ABS Input: 0 to 5 Volt, 10-bit</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Altitude</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vibration</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Shock</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Weight</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE: EMI filter capacitors on Aux AC require VDC tests.
F-230 Specifications

Digital Inputs

- Selectable (5) 24 Volt, Optically Isolated, Single ended, Active High, Current Sinking, 4.5 mA nominal
- ENABLE 24 Volt, Optically Isolated, Single ended, Active High, Current Sinking, 4.5 mA nominal

Digital Outputs

- Selectable (4) 24 Volt, Optically Isolated, Single-ended, Active High, Current Sourcing, 50 mA maximum
- BRAKE 24 Volt, Normally Open Relay, 1 A
- READY 24 Volt, Normally Open Relay, 100 mA
- Digital I/O Power Supply Isolated 24V @ 250 mA, fused

Analog Inputs

- Positive Current Limit (+I LIMIT) 0 to 10 Volt, 10-bit, single-ended, 5 kOhm input Impedance
- Negative Current Limit (-I LIMIT) 0 to 10 Volt, 10-bit, single-ended, 5 kOhm input Impedance
- COMMAND ±10 Volt, Differential, 16-bit, 13 kOhm input Impedance, offset software adjustable

Analog Outputs

- ANALOG1 0 to 10 Volt, 12-bit, 2 mA maximum
- ANALOG2 0 to 10 Volt, 8-bit, 2 mA maximum

Auxiliary Encoder Signal Input

- 26LS33 Input, 4 MHz Count Frequency
- Differential/Single-ended
- A/B
- Step/Direction
- CW/CCW

5 Volt Power Supply

- 5V @ 250 mA, fused

Motor Encoder Output

- AM26C31 or AM26LS31 Differential Driver; Divide by 1, 2, 4, or 8
- Differential output is 2.0 Vdc across a 100 Ohm load

CPU/Memory

- Parameter Data Retention 20 years
- Microcontrollers (2) Motorola 68HC16
- EPROM 128 kB Flash Memory
- RAM 34 kB
- User Parameter Memory (2) 512 kB Serial EEPROM

Motor Overload Protection

- Motor overload protection operates within 8 minutes at 200% overload, and within 20 seconds at 600% overload.

PWM Carrier Frequency

- DSM110 or DSM110P, 10 kHz/5 kHz
- DSM120 or DSM120P, 10 kHz/5 kHz
- DSM130 or DSM130P, 10 kHz/5 kHz
- DSM175 or DSM175P, 10 kHz/5 kHz
- DSM 1150 or DSM 1150P 5 kHz

Current Regulation

- Type Digital, PI with Back-EMF compensation, Synchronous
- -3dB Bandwidth 1.2 kHz
- -45° Bandwidth 600 Hz
<table>
<thead>
<tr>
<th>Item</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resolution</td>
<td>10-bit</td>
</tr>
<tr>
<td>Speed Regulation</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Digital, PID</td>
</tr>
<tr>
<td>Update Rate</td>
<td>5 kHz</td>
</tr>
<tr>
<td>-3dB Bandwidth</td>
<td>150 Hz</td>
</tr>
<tr>
<td>-45° Bandwidth</td>
<td>50 Hz</td>
</tr>
<tr>
<td>Ripple</td>
<td>±2 RPM @ 1000 RPM</td>
</tr>
<tr>
<td>Resolution</td>
<td>16-bit</td>
</tr>
<tr>
<td>Position Regulation</td>
<td></td>
</tr>
<tr>
<td>Type</td>
<td>Digital, PID with Feedforward</td>
</tr>
<tr>
<td>Filters</td>
<td></td>
</tr>
<tr>
<td>Low Pass</td>
<td>Digital, 0 - 1000 Hz, -3 dB Bandwidth, Selectable</td>
</tr>
<tr>
<td>Software Controls</td>
<td></td>
</tr>
<tr>
<td>Data Collection (2)</td>
<td>128 samples @ 5 kHz Sample Rate</td>
</tr>
<tr>
<td>Firmware</td>
<td>Field Upgradeable via Flash Memory</td>
</tr>
<tr>
<td>Operating Modes</td>
<td>Torque or Velocity</td>
</tr>
<tr>
<td>Command Sources</td>
<td>Analog, Auxiliary Encoder, Presets, Step/Direction, CW/CCW, Indexing</td>
</tr>
<tr>
<td>Autotuning</td>
<td>Position and Velocity Loop</td>
</tr>
<tr>
<td>Manual Tuning</td>
<td>Position or Velocity Loop</td>
</tr>
<tr>
<td>User Set-up</td>
<td>DSMPro or TouchPad</td>
</tr>
<tr>
<td>Diagnostics</td>
<td>Motor or Auxiliary Encoder Checks, Digital Output Override, Analog Output Override</td>
</tr>
<tr>
<td>Serial Protocol</td>
<td>7-bit ASCII, Checksum, Active Response</td>
</tr>
<tr>
<td>Power-Up Faults</td>
<td>EPROM Checksum, EEPROM Checksum, SRAM Write/Read, Watchdog Reset, A/D Conversion, D/A Conversion, Interprocessor Communication</td>
</tr>
</tbody>
</table>
Item Specifications

Run-Time Faults
- Motor Overtemperature
- Bus Overvoltage
- IPM Fault
- Overspeed
- Excess Error
- Encoder State Change
- Encoder Line Break
- Fuse
- Illegal Hall State

Selectable Digital Inputs
- Drive Mode Select
- Integrator Inhibit
- Follower Enable
- Forward Enable
- Reverse Enable
- Operation Mode Override
- Preset Selects
- Start Index
- Define Home
- Remove Command Offset
- Start Homing
- Sensor

Selectable Digital Outputs
- In-Position
- Within Window
- Zero Speed
- Speed Window
- ± Current Limit
- Up To Speed
- Drive Enabled
- Bus Charged
- Disabling Motion
- In Motion
- In Dwell
- Sequence Complete
- Registered
- At Home
- Axis Homed

Speed Control Command
- **Range**: 0 to ±32,767 RPM

 (actual maximum speed depends on the motor/drive combination)
Power

Centurion DSM100 Drive Power Ratings

<table>
<thead>
<tr>
<th></th>
<th>DSM110, DSM110P</th>
<th>DSM120, DSM120P</th>
<th>DSM130, DSM130P</th>
<th>DSM175, DSM175P</th>
<th>DSM1150, DSM 1150P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auxiliary AC Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage (rms Volts nominal)</td>
<td>100 to 240</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>47 - 63</td>
</tr>
<tr>
<td>Current (Arms @ 100 Vrms)</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Current (Arms @ 240 Vrms)</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Main AC Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voltage (rms Volts nominal)</td>
<td>100 to 240, 1∅</td>
<td>100 to 240, 1∅</td>
<td>100 to 240, 1∅</td>
<td>100 to 240, 1∅</td>
<td>100 to 240, 1∅ or 3∅</td>
</tr>
<tr>
<td>Frequency (Hz)</td>
<td>47 - 63</td>
</tr>
<tr>
<td>Current (rms Amps)</td>
<td>10</td>
<td>19</td>
<td>28</td>
<td>30</td>
<td>46</td>
</tr>
<tr>
<td>Bus Voltage (Volts DC)</td>
<td>141-339</td>
<td>141-339</td>
<td>141-339</td>
<td>141-339</td>
<td>141-339</td>
</tr>
<tr>
<td>Peak Output Current</td>
<td>10</td>
<td>20</td>
<td>30</td>
<td>50, 1∅</td>
<td>150</td>
</tr>
<tr>
<td>(Amps)</td>
<td></td>
<td></td>
<td></td>
<td>75, 3∅</td>
<td></td>
</tr>
<tr>
<td>Continuous Output Current</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>15, 1∅</td>
<td>65</td>
</tr>
<tr>
<td>(Amps)</td>
<td></td>
<td></td>
<td></td>
<td>35, 3∅</td>
<td></td>
</tr>
<tr>
<td>Peak Shunt Power (built in resistor) (kWatts)</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
<td>10.0</td>
<td>18.0</td>
</tr>
<tr>
<td>Continuous Shunt Power (built in resistor) (Watts)</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>50</td>
<td>180</td>
</tr>
<tr>
<td>Peak Shunt Power (external resistor) (kWatts)</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>10.0</td>
<td>19.0</td>
</tr>
<tr>
<td>Continuous Shunt Power (external resistor) (kWatts)</td>
<td>6.0</td>
<td>6.0</td>
<td>6.0</td>
<td>10.0</td>
<td>19.0</td>
</tr>
<tr>
<td>Bus Capacitance Energy Absorption (from 325-420 Vdc Bus) (Joules)</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>8.0</td>
</tr>
</tbody>
</table>

* Specifications F-233

DSM Drive Hardware and Installation Manual
Centurion DSM100 Drive Power Ratings (continued)

<table>
<thead>
<tr>
<th></th>
<th>DSM110, DSM110P</th>
<th>DSM120, DSM120P</th>
<th>DSM130, DSM130P</th>
<th>DSM175, DSM175P</th>
<th>DSM1150, DSM 1150P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bus Capacitance (µF)</td>
<td>1170</td>
<td>1950</td>
<td>2730</td>
<td>4290</td>
<td>7520</td>
</tr>
<tr>
<td>Peak Power Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kWatts @ 120 V<sub>rms</sub>)</td>
<td>1.25</td>
<td>2.5</td>
<td>3.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kWatts @ 240 V<sub>rms</sub>)</td>
<td>2.5</td>
<td>5</td>
<td>7.5</td>
<td>14, 1Ø</td>
<td>36</td>
</tr>
<tr>
<td>Continuous Power Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(kWatts @ 120 V<sub>rms</sub>)</td>
<td>0.6</td>
<td>1.2</td>
<td>1.8</td>
<td>3.5</td>
<td></td>
</tr>
<tr>
<td>(kWatts @ 240 V<sub>rms</sub>)</td>
<td>1.0</td>
<td>2.0</td>
<td>3</td>
<td>7.5, 3Ø</td>
<td>15, 3Ø</td>
</tr>
</tbody>
</table>

a. Bus capacitance energy absorption is based on the following equations:

\[
e = \frac{1}{2} C(V_j^2) - \frac{1}{2} C(V_i^2)
\]

\[
e = \frac{1}{2} C(420^2) - \frac{1}{2} C(325)^2
\]

\[
\frac{1}{2} C \cdot (420^2 - 325^2) = C(35387)
\]

if \(C = 7520 \mu F\), \(e = 266\)

b. Power outputs are based on the following equation:

\[
\text{Output Power (in Watts)} = \left(\frac{I}{\sqrt{2}} \right)(0.85)(\text{input rms Volts})(\text{output Amps})
\]
Power Dissipation

The Centurion DSM100 Drive controller dissipates power that results in cabinet heating. The following table lists power dissipation values for the Centurion DSM100 Drives. Calculate the cabinet cooling requirements using the power dissipation information and formulas below.

<table>
<thead>
<tr>
<th>Current as % of Rated Continuous Current</th>
<th>DSM110, DSM110P</th>
<th>DSM120, DSM120P</th>
<th>DSM130, DSM130P</th>
<th>DSM175, DSM175P</th>
<th>DSM 1150, DSM 1150P</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>75 W</td>
<td>100 W</td>
<td>150W</td>
<td>300 W</td>
<td>500 W</td>
</tr>
</tbody>
</table>

NOTE: These values do not include internal or external shunt regulator power (regenerated power). To “TB2 – Shunt Regulator” on page 7-101 for shunt regulator dissipation values.

Maximum power losses are shown to help size a NEMA 12 or equivalent enclosure and to ensure the required ventilation. Typical power losses are about one-half maximum power losses.

When sizing an enclosure with no active method of heat dissipation, the following equation approximates the size of enclosure necessary:

\[
T_F = 4.08 \times \left(\frac{Q}{A} \right) + 1.1
\]

or

\[
T_C = 2.27 \times \left(\frac{Q}{A} \right) + 0.61
\]

where:

- \(T_F \) = Temperature difference between inside air and outside ambient (°F)
- \(T_C \) = Temperature difference between inside air and outside ambient (°C)
- \(Q \) = Heat generated in enclosure (watts)
- \(A \) = Enclosure surface area in \(\text{ft}^2 \) = \(\frac{(2dw + 2dh + 2wh)}{144} \)
- \(d \) = Depth in inches
- \(h \) = Height in inches
- \(w \) = Width in inches
Index

A
ABS Input 229
Absolute Indexing 137
AC
Bus 97
Line Filters 45
Power 97
see also Power
Accessories 173
Address Switch 229
Agency Approvals 229
Altitude 229
AM Line 163
Analog 92
Connections 92
Controller 105
Inputs 230
COMMAND signal 230
Current Limit 64
Outputs 169, 230
Analog Controller 105
Application Example, see Example
Auto Tune
Guidelines 145
Overspeed Parameter 146
Procedure 146
Auxiliary Encoder Error, see Troubleshooting
Auxiliary Encoder Signal Inputs 230
Auxiliary Power, see Power

B
Backlash 144
Bandwidth, see Specifications
BM Line, see Troubleshooting
BRAKE, see Specifications
Breakout Board
J1 (50 pin) 75
Bus
Capitance 233
Overvoltage 163
Undervoltage 163
Voltage 233
see also Troubleshooting

C
Cabling
European Union Directives 45
Examples 201
Schematics and Diagrams 182
Caution, defined 20
Command Mode, display 153
COMMAND signal 230
Command Source 231
Command Summary 207
Common Mode Choke 221
Configuration Example, see Example
Connection Diagram
Absolute Indexing 138
Analog Controller 106
Incremental Indexing 128
Position Follower
Master Encoder 115
Step Up/Down 124
Step/Direction 120
Preset Controller 110
Registration Indexing 133
Current
Limit 64, 230
Regulation 230

D
Danger, defined 20
Data
Collection 231
Retention 230
DC Bus
Connections 97
LED 97, 153, 161
Power 97
Terminals 93
Default Parameters
Drive 235
Motor 235
D-gain, defined 147
Dielectric Withstanding Voltage 229
Digital Inputs
ENABLE 230
Selectable 230
Troubleshooting 168
Digital Outputs
BRAKE 230
READY 230
Selectable 230
Troubleshooting 167
Display of Status 153
Display User Units, see User Units
Drive
Addressing
Serial Communications 86
TouchPad Defaults 205
Default Parameters 235
Installation
Interface Connections 44
Mechanical Requirements 41
Storage 40
Dynamic Braking Resistors 225

E
EEPROM 230
Electromagnetic Compatibility (EMC)
AC Line Filters 220
European Union Directives 45
Filtering 220
Grounding 222
Guidelines
- Design 223
- General 45
- System 219
Shielding and Segregation 223
Electromagnetic Interference (EMI) 219
EMC, see Electromagnetic Compatibility
EMI Source-Victim Model 219
ENABLE, see Specifications
Encoder
- Cabling 192
- Inputs 171
- Overcurrent 161, 162
- Troubleshooting 161, 162, 171
EPROM 230
Error Codes, Messages 154
- Power-Up 155
- Run-Time 154
European Union Directives
- AC Line Filters 45
- Electromagnetic Compatibility 45
Example
- Absolute Indexing 137
- Analog Controller 105
- Incremental Indexing 127
- Modifying User Units 141
- Position Follower
 - Master Encoder 114
 - Step Up/Down 123
 - Step/Direction 119
- Preset Controller 109
- Registration Indexing 132
Excess Error, see Troubleshooting
Excessive Average Current, see Troubleshooting
External Shunt Regulator 103
External Testing 92

F
Firmware 34
- Displaying Revision Level 34
- Hexadecimal Files 34
- Upgrading 34
- Fuses 174
- Inrush Current 100
- Replacement 157

G
Gains
- D-gain, defined 147
- Effect on Tuning 147
- I-gain, defined 147
- Kd-gain, defined 148
- Kff-gain, defined 148
- Ki-gain, defined 148
- Kp-gain, defined 148
- P-gain, defined 147
- Position Loop 148
- Velocity Loop 147
Gear Ratios
Selecting via TouchPad 211
Graphical Symbols 20
Gravitational Effects
- Tuning 145
Grounding Types
- Single Point 222
Guidelines
- Electromagnetic Compatibility 219
- Manual Tune 147

H
Hall Inputs 229
Hardware Requirements 31
Hi-Pot Testing 229
Humidity 229

I
I LIMIT, see Current
I/O Connections
- Analog
 - Command Signal 65
 - Inputs 64
 - Outputs 66, 92
- Auxiliary Encoder Inputs 69
- Circuit Examples 58
- Dedicated Relay Outputs 60
- Digital
 - Inputs 55
 - Outputs 60
- Drive 44
- European Union Directives 45
- J1 53
- J2 77
- J3 81
- J4 and J5 85
- Motor Encoder Signal 67
- Output Circuit Examples 62
- Power 54
- Selectable Outputs 60
- Wiring 44
see also Troubleshooting
I/O Connectors
- Auxiliary Port 81
- Controller 53
- Encoder 77
- Interface Cable Examples 71
- J1 75
- J2 77
- J3 81
- J4 and J5 85
- I/O Power, see Power
- I-gain, defined 147
- Illegal Hall State 163
- IM Line, see Troubleshooting
- Incremental Indexing 127
Indexing
- Absolute 137
- Incremental 127
- Registration 132
Indicators
 DC Bus 153
 Status 153
 Inertia 143

Input
 Frequency 97
 Power 98

Inrush Current
 Fusing 100

Inspection Procedures
 Checkout Test 37
 Communications Verification 39
 Hardware Set Up 37
 Initial Drive Operation 39
 Initial Power-up 38
 Shipping Damage 35

Installing
 External Shunt Regulator 103
 Software 32
 TouchPad 205

Instructions, see Software

Interconnect Cables
 European Union Directives 45
 Schematics and Diagrams 182

Interface
 Connections 44
 Signals 53
 IOUT Signal Generation 68
 IPM, see Troubleshooting
 Isolation Transformer 99, 100

J

J1
 Analog
 Command Signal 65
 Inputs 64
 Outputs 66
 Auxiliary Encoder Inputs 69
 Circuit Examples 58
 Dedicated Relay Outputs 60
 Digital
 Inputs 55
 Outputs 60
 Interface Cable Examples 71
 Motor Encoder Signal 67
 Output Circuit Examples 62
 Pin-outs 53
 Power 54
 Selectable Outputs 60

J2
 Pin-outs 77

J3
 Pin-outs 81

J4
 Pin-outs 85

J5
 Pin-outs 85
 Jumper Locations 157

K
 Kd-gain 148
 Kff-gain 148
 Ki-gain 148
 Kp-gain 148

L
 LED
 DC Bus 97, 153
 Status 153
 Line
 Filters 45
 Location of
 Fuses 157
 Jumpers 157
 Low Pass Filter 231

M
 Main Power, see Power
 Maintenance 157
 Cleaning 157
 Fuses 157

Manual Tune
 Filter Adjustment 148
 Guidelines 147
 Procedure
 Position Loop 150
 Velocity Loop 149
 Velocity Loop Examples 151

Mechanical Installation 41

Mechanical Resonance
 Possible Causes 143
 Tuning Guidelines 143

Microcontroller Type 230

Modifying User Units, see User Units

Motor
 Cabling 94, 197–200
 Default Parameters 235
 Identification Table 213
 Information Missing 165
 Overload Protection 230
 Overspeed 164
 Overtemperature 162
 Phase Connections 94
 Thermal Protection 165
 see also Troubleshooting

Motor Encoder
 Error 164
 Interface 229
 Input 229
 Power 229
 Output 230
 see also Troubleshooting

Mounting Requirements 41

N
 Negative Current, see Current
O
Operating Temperature 229
Options 173
Output Current
Continuous (peak) 233
Peak 233

P
Part Numbers 173
AC Line Filters 174
Cables 182
Connector Kits 179
Drives 173
Encoder Cables 177, 192
Fuses 174
Interface Cables 174
Manulans 174
Mating Connectors 179
Motor Cables 178
Motor Power Cables 197
Serial Interface Cables 176, 191
Shunt Resistor 174
Terminal Strip 174
TouchPad 174
PC Display Units Dialog 141
P-gain, defined 147
Position Follower
Master Encoder 114
Step Up/Down 123
Step/Direction 119
Position Regulation 231
Positive Current, see Current
Power
AC
Cabling 97
Sizing 98
Terminals 93, 98
Auxiliary 99, 233
Sizing 100
Terminals 100
Connections 94
I/O
24 Volt 54
5 Volt 55
Input Frequency 97
Main 233
Output
Continuous 234
Peak 234
Ratings 233
Source Separation 98, 99
Supply
5 Volt 230
Power-Up
Error Codes 155
Faults 231
Preset Binary Inputs
Programmable Speed Inputs 109
Preset Controller 109
Procedure
Manual Mode
Position Loop 150
Velocity Loop 149
Product Support ccxlix
PWM Carrier Frequency 230

R
RAM 230
Readme File 34
READY, see Specifications
Registration Indexing 132
Requirements
Input Power 98
Transformer 98, 100
Wire Size 98, 100
Resolution, see Specifications
Revision Level
Software 33
Ripple, see Specifications
RS-232
Communication Test 166
Single Axis Set-up 88
RS-485 Multiple Axes Set-up 90
Run-Time
Error Codes 154
Faults 232

S
Safety Guidelines 21
Sample Application, see Example
Selectable I/O
Digital Inputs 232
Digital Outputs 232
Selectabe, see Specifications
Self-Test 205
Separation of Power Sources 98, 99
Serial Communications
Drive Addressing 86, 88
RS-232 Single Axis Set-up 88
RS-485 Multiple Axes Set-up 90
Hardware Addressing 86
Ports J4 and J5 85
Serial Interface Cables
Schematics and Diagrams 191
Serial Ports 229
Serial Protocol 231
Shock 229
Shunt Power
Continuous 233
Peak 233
Shunt Regulator 101
Connecting External 103
Minimum Resistance 102
Power Ratings
External 102
Internal 102
Terminals 101
Signal Extension Kits 53
Single Point Ground
Example 222
Types 222
Software
 Installation 32
 Instructions 15
 Readme File 34
 Requirements 31
 Starting and Quitting 33
 Version Level 33
Space Requirements 41
Specifications 229
 ABS Input 229
 Address Switch 229
 Agency Approvals 229
 Altitude 229
 Analog
 Inputs 230
 Outputs 230
 Auxiliary Encoder Signal Inputs 230
 Auxiliary Power
 Current 233
 Frequency 233
 Voltage 233
 Bus
 Capacitance 233
 Voltage 233
 COMMAND 230
 Command Source 231
 Current
 Limit 230
 Regulation
 Bandwidth 230
 Resolution 231
 Data
 Collection 231
 Retention 230
 Dielectric Withstanding Voltage 229
 Digital Inputs
 ENABLE 230
 Selectable 230
 Digital Outputs
 BRAKE 230
 READY 230
 Selectable 230
 EEPROM 230
 EPROM 230
 Hall Inputs 229
 Hi-Pot Testing 229
 Humidity 229
 Low Pass Filter 231
 Main Power
 Current 233
 Frequency 233
 Voltage 233
 Microcontroller Type 230
 Motor Encoder
 Interface 229
 Input 229
 Power 229
 Output 230
 Operating Temperature 229
 Output Current
 Continuous (peak) 233
 Peak 233
 Position Regulation 231
 Power Output
 Continuous 234
 Peak 234
 Power Ratings 233
 Power Supply
 5 Volt 230
 Power-Up Faults 231
 PWM Carrier Frequency 230
 RAM 230
 Run-Time Faults 232
 Selectable Digital Inputs 232
 Selectable Digital Outputs 232
 Serial Ports 229
 Serial Protocol 231
 Shock 229
 Shunt Power
 Continuous 233
 Peak 233
 Speed Control Command 232
 Speed Regulation
 Bandwidth 231
 Resolution 231
 Ripple 231
 Update Rate 231
 Status Display 229
 Storage Temperature 229
 Thermostat Inputs 229
 Vibration 229
 Weight 229
 Speed Control Command 232
 Starting and Quitting
 Software 33
 Status Display 229
 Status LED 153
 Storage Temperature 229
 Storing the Drive 40
 Support cxxix
 Symbols and Conventions 19

T

TB-1 97
 AC Power Terminals 93
 Auxiliary Power 99
 DC Bus Terminals 93, 97
 Power Terminals 94
TB-2 101
 Technical Assistance cxxix
 Terminal Strip
 J1 (50 pin) 75
 Terminal Strip/Breakout Board 75
 Testing the Drive 36
 Thermostat Inputs 229
 Timing Diagram
 Absolute Indexing 137
 Incremental Indexing 127
 Registration Indexing 132
 Torque (Current) Loop Diagram 145
 TouchPad 205, 207
<table>
<thead>
<tr>
<th>Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Character Selection</td>
<td>210</td>
</tr>
<tr>
<td>Cursor Movements</td>
<td>210</td>
</tr>
<tr>
<td>Default Settings</td>
<td>205</td>
</tr>
<tr>
<td>Drive Addressing Defaults</td>
<td>205</td>
</tr>
<tr>
<td>Error Display</td>
<td>211</td>
</tr>
<tr>
<td>Gear Ratios</td>
<td>211</td>
</tr>
<tr>
<td>Installation and Operation</td>
<td>205</td>
</tr>
<tr>
<td>Instructions</td>
<td>15</td>
</tr>
<tr>
<td>Lists</td>
<td></td>
</tr>
<tr>
<td>Baud Rate</td>
<td>214</td>
</tr>
<tr>
<td>Drive Communications</td>
<td>214</td>
</tr>
<tr>
<td>Motor Table</td>
<td>213</td>
</tr>
<tr>
<td>Selections</td>
<td>211</td>
</tr>
<tr>
<td>Modes of Operation</td>
<td>207</td>
</tr>
<tr>
<td>Motor Selection</td>
<td>210</td>
</tr>
<tr>
<td>Motor Table Identification</td>
<td>213</td>
</tr>
<tr>
<td>Revision Level</td>
<td>34</td>
</tr>
<tr>
<td>Text Selection</td>
<td>210</td>
</tr>
<tr>
<td>Version Display</td>
<td>205</td>
</tr>
<tr>
<td>Transformer</td>
<td></td>
</tr>
<tr>
<td>Isolation</td>
<td>99, 100</td>
</tr>
<tr>
<td>Size</td>
<td>98, 100</td>
</tr>
<tr>
<td>Troubleshooting</td>
<td>157</td>
</tr>
<tr>
<td>AM Line</td>
<td>163</td>
</tr>
<tr>
<td>Analog Outputs</td>
<td>169</td>
</tr>
<tr>
<td>Auxiliary Encoder Error</td>
<td>165</td>
</tr>
<tr>
<td>BM Line</td>
<td>162</td>
</tr>
<tr>
<td>Bus</td>
<td></td>
</tr>
<tr>
<td>Overvoltage</td>
<td>163</td>
</tr>
<tr>
<td>Undervoltage</td>
<td>163</td>
</tr>
<tr>
<td>Digital</td>
<td></td>
</tr>
<tr>
<td>Inputs</td>
<td>168</td>
</tr>
<tr>
<td>Outputs</td>
<td>167</td>
</tr>
<tr>
<td>Encoder</td>
<td></td>
</tr>
<tr>
<td>Inputs</td>
<td>171</td>
</tr>
<tr>
<td>Overcurrent</td>
<td>161, 162</td>
</tr>
<tr>
<td>Excess Error</td>
<td>164</td>
</tr>
<tr>
<td>Excessive Average Current</td>
<td>164</td>
</tr>
<tr>
<td>Fuses</td>
<td>157</td>
</tr>
<tr>
<td>Gain Adjustments</td>
<td>144</td>
</tr>
<tr>
<td>I/O Overcurrent</td>
<td>161</td>
</tr>
<tr>
<td>IM Line</td>
<td>162</td>
</tr>
<tr>
<td>IPM</td>
<td></td>
</tr>
<tr>
<td>Short</td>
<td>162</td>
</tr>
<tr>
<td>Thermal Protection Fault</td>
<td>165</td>
</tr>
<tr>
<td>Motor</td>
<td></td>
</tr>
<tr>
<td>Buzz or Squeal</td>
<td>143</td>
</tr>
<tr>
<td>Information Missing</td>
<td>165</td>
</tr>
<tr>
<td>Overspeed</td>
<td>164</td>
</tr>
<tr>
<td>Overtemperature</td>
<td>162</td>
</tr>
<tr>
<td>Thermal Protection</td>
<td>165</td>
</tr>
<tr>
<td>Motor Encoder Error</td>
<td>164</td>
</tr>
<tr>
<td>RS-232 Communications</td>
<td>166</td>
</tr>
<tr>
<td>Status Display</td>
<td>161</td>
</tr>
<tr>
<td>Tuning</td>
<td></td>
</tr>
<tr>
<td>Backlash</td>
<td>144</td>
</tr>
<tr>
<td>Gravitational Effects</td>
<td>145</td>
</tr>
<tr>
<td>Tuning Guidelines</td>
<td>143</td>
</tr>
<tr>
<td>Auto Tune</td>
<td>145</td>
</tr>
<tr>
<td>Effect of Gain Settings</td>
<td>147</td>
</tr>
<tr>
<td>General</td>
<td>143</td>
</tr>
<tr>
<td>High Inertia Loads</td>
<td>143</td>
</tr>
<tr>
<td>Mechanical Resonance</td>
<td>143</td>
</tr>
<tr>
<td>Tuning Procedure</td>
<td></td>
</tr>
<tr>
<td>Auto Tune</td>
<td>146</td>
</tr>
<tr>
<td>Filter for Velocity Loop</td>
<td>148</td>
</tr>
<tr>
<td>Overspeed Parameter</td>
<td>146</td>
</tr>
<tr>
<td>Velocity Loop Examples</td>
<td>151</td>
</tr>
<tr>
<td>Typographical Conventions</td>
<td>19</td>
</tr>
<tr>
<td>U</td>
<td></td>
</tr>
<tr>
<td>Unpacking the Drive</td>
<td>35</td>
</tr>
<tr>
<td>Update Rate, see Specifications</td>
<td></td>
</tr>
<tr>
<td>User Units</td>
<td>141</td>
</tr>
<tr>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Velocity Loop Diagram</td>
<td>144</td>
</tr>
<tr>
<td>Version Level</td>
<td></td>
</tr>
<tr>
<td>Firmware</td>
<td>34</td>
</tr>
<tr>
<td>Software</td>
<td>33</td>
</tr>
<tr>
<td>Version Level, TouchPad</td>
<td>205</td>
</tr>
<tr>
<td>Vibration</td>
<td>229</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>Warning</td>
<td></td>
</tr>
<tr>
<td>Classifications</td>
<td>20</td>
</tr>
<tr>
<td>Defined</td>
<td>20</td>
</tr>
<tr>
<td>Weight</td>
<td>229</td>
</tr>
<tr>
<td>Wire Size</td>
<td>98, 100</td>
</tr>
<tr>
<td>Wiring I/O</td>
<td>44</td>
</tr>
<tr>
<td>Wording Conventions</td>
<td>19</td>
</tr>
</tbody>
</table>

Transformer
- Isolation: 99, 100
- Size: 98, 100

Troubleshooting
- AM Line: 163
- Analog Outputs: 169
- Auxiliary Encoder Error: 165
- BM Line: 162
- Bus: 163
- Overvoltage: 163
- Undervoltage: 163

Digital
- Inputs: 168
- Outputs: 167

Encoder
- Inputs: 171
- Overcurrent: 161, 162
- Excess Error: 164
- Excessive Average Current: 164
- Fuses: 157
- Gain Adjustments: 144
- I/O Overcurrent: 161
- IM Line: 162

IPM
- Short: 162
- Thermal Protection Fault: 165

Motor
- Buzz or Squeal: 143
- Information Missing: 165
- Overspeed: 164
- Overtemperature: 162
- Thermal Protection: 165
- Motor Encoder Error: 164
- RS-232 Communications: 166
- Status Display: 161

Tuning
- Backlash: 144
- Gravitational Effects: 145

Tuning Guidelines
- Auto Tune: 145
- Effect of Gain Settings: 147
- General: 143
- High Inertia Loads: 143
Pictorial Index

DSM 007 and DSM 007P, DSM120 and DSM120P, DSM130 and DSM130P

<table>
<thead>
<tr>
<th>J4 and J5 – Serial Port</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 RCV +</td>
<td>RS-485</td>
</tr>
<tr>
<td>2 RCV</td>
<td>RS-232</td>
</tr>
<tr>
<td>3 XMT</td>
<td>RS-232</td>
</tr>
<tr>
<td>4 XMT +</td>
<td>RS-485</td>
</tr>
<tr>
<td>5 COM</td>
<td></td>
</tr>
<tr>
<td>6 RSV</td>
<td></td>
</tr>
<tr>
<td>7 RCV -</td>
<td>RS-485</td>
</tr>
<tr>
<td>8 XMT -</td>
<td>RS-485</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J3 – Auxiliary Port</th>
<th>Duplicates J1 pins 1 – 26</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>J2 – Encoder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Encoder Pwr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Encoder Com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Encoder Pwr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Encoder Com</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Encoder Pwr Sense +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Encoder Pwr Sense -</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Mtr Encdr Input Chnl A+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Mtr Encdr Input Chnl A-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Mtr Encdr Input Chnl B+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Mtr Encdr Input Chnl B-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Mtr Encdr Input Chnl I+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12 Mtr Encdr Input Chnl I-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13 Hall Effect A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14 Hall Effect B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15 Hall Effect C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16 Absolute Position</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17 RSV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18 RSV</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19 Thermal Switch +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20 Thermal Switch -</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J1 – Controller</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Encoder +5V DC</td>
<td></td>
</tr>
<tr>
<td>2 Encoder Com</td>
<td></td>
</tr>
<tr>
<td>3 Encoder +5V DC</td>
<td></td>
</tr>
<tr>
<td>4 Encoder Com</td>
<td></td>
</tr>
<tr>
<td>5 Isolated +24 VDC</td>
<td></td>
</tr>
<tr>
<td>6 Isolated 24V Com</td>
<td></td>
</tr>
<tr>
<td>7 Mtr Output Chnl A+</td>
<td></td>
</tr>
<tr>
<td>8 Mtr Output Chnl A-</td>
<td></td>
</tr>
<tr>
<td>9 Mtr Output Chnl B+</td>
<td></td>
</tr>
<tr>
<td>10 Mtr Output Chnl B-</td>
<td></td>
</tr>
<tr>
<td>11 Mtr Output Chnl I+</td>
<td></td>
</tr>
<tr>
<td>12 Mtr Output Chnl I-</td>
<td></td>
</tr>
<tr>
<td>13 Isolated 24V Com</td>
<td></td>
</tr>
<tr>
<td>14 Auxiliary Chnl A+</td>
<td></td>
</tr>
<tr>
<td>15 Auxiliary Chnl A-</td>
<td></td>
</tr>
<tr>
<td>16 Auxiliary Chnl B+</td>
<td></td>
</tr>
<tr>
<td>17 Auxiliary Chnl B-</td>
<td></td>
</tr>
<tr>
<td>18 Auxiliary Chnl I+</td>
<td></td>
</tr>
<tr>
<td>19 Auxiliary Chnl I-</td>
<td></td>
</tr>
<tr>
<td>20 Drive Enable</td>
<td></td>
</tr>
<tr>
<td>21 Fault Reset</td>
<td></td>
</tr>
<tr>
<td>22 Analog Cmnd +</td>
<td></td>
</tr>
<tr>
<td>23 Analog Cmnd -</td>
<td></td>
</tr>
<tr>
<td>24 Drive Ready +</td>
<td></td>
</tr>
<tr>
<td>25 Drive Ready -</td>
<td></td>
</tr>
<tr>
<td>26 Isolated +24 VDC</td>
<td>31 Analog Output 2</td>
</tr>
<tr>
<td>27 +I Limit</td>
<td>32 Selectable Input 1</td>
</tr>
<tr>
<td>28 Analog Com</td>
<td>33 Selectable Input 2</td>
</tr>
<tr>
<td>29 -I Limit</td>
<td>34 Selectable Input 3</td>
</tr>
<tr>
<td>30 Analog Output 1</td>
<td>35 Selectable Input 4</td>
</tr>
</tbody>
</table>

WARNING: HIGH VOLTAGE MAY EXIST FOR UP TO FIVE MINUTES AFTER REMOVING POWER.
DSM175 and DSM175P

<table>
<thead>
<tr>
<th>J4 and J5 – Serial Port</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>RCV +</td>
</tr>
<tr>
<td>2</td>
<td>RCV</td>
</tr>
<tr>
<td>3</td>
<td>XMT</td>
</tr>
<tr>
<td>4</td>
<td>XMT +</td>
</tr>
<tr>
<td>5</td>
<td>COM</td>
</tr>
<tr>
<td>6</td>
<td>RSVD</td>
</tr>
<tr>
<td>7</td>
<td>RCV -</td>
</tr>
<tr>
<td>8</td>
<td>XMT -</td>
</tr>
<tr>
<td>9</td>
<td>RSVD</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J3 – Auxiliary Port</th>
<th>Duplicates J1 pins 1 – 26</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Encoder Pwr</td>
</tr>
<tr>
<td>2</td>
<td>Encoder Com</td>
</tr>
<tr>
<td>3</td>
<td>Encoder Pwr</td>
</tr>
<tr>
<td>4</td>
<td>Encoder Com</td>
</tr>
<tr>
<td>5</td>
<td>Encoder Pwr Sense +</td>
</tr>
<tr>
<td>6</td>
<td>Encoder Pwr Sense -</td>
</tr>
<tr>
<td>7</td>
<td>Mtr Encdr Input Chnl A+</td>
</tr>
<tr>
<td>8</td>
<td>Mtr Encdr Input Chnl A-</td>
</tr>
<tr>
<td>9</td>
<td>Mtr Encdr Input Chnl B+</td>
</tr>
<tr>
<td>10</td>
<td>Mtr Encdr Input Chnl B-</td>
</tr>
<tr>
<td>11</td>
<td>Mtr Encdr Input Chnl I+</td>
</tr>
<tr>
<td>12</td>
<td>Mtr Encdr Input Chnl I-</td>
</tr>
<tr>
<td>13</td>
<td>Hall Effect A</td>
</tr>
<tr>
<td>14</td>
<td>Hall Effect B</td>
</tr>
<tr>
<td>15</td>
<td>Hall Effect C</td>
</tr>
<tr>
<td>16</td>
<td>Absolute Position</td>
</tr>
<tr>
<td>17</td>
<td>RSVD</td>
</tr>
<tr>
<td>18</td>
<td>RSVD</td>
</tr>
<tr>
<td>19</td>
<td>Thermal Switch +</td>
</tr>
<tr>
<td>20</td>
<td>Thermal Switch -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>J1-Controller</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Encoder +5V DC</td>
</tr>
<tr>
<td>2</td>
<td>Encoder Com</td>
</tr>
<tr>
<td>3</td>
<td>Encoder +5V DC</td>
</tr>
<tr>
<td>4</td>
<td>Encoder Com</td>
</tr>
<tr>
<td>5</td>
<td>Isolated +24 VDC</td>
</tr>
<tr>
<td>6</td>
<td>Isolated 24V Com</td>
</tr>
<tr>
<td>7</td>
<td>Mtr Output Chnl A+</td>
</tr>
<tr>
<td>8</td>
<td>Mtr Output Chnl A-</td>
</tr>
<tr>
<td>9</td>
<td>Mtr Output Chnl B+</td>
</tr>
<tr>
<td>10</td>
<td>Mtr Output Chnl B-</td>
</tr>
<tr>
<td>11</td>
<td>Mtr Output Chnl I+</td>
</tr>
<tr>
<td>12</td>
<td>Mtr Output Chnl I-</td>
</tr>
<tr>
<td>13</td>
<td>Isolated 24V Com</td>
</tr>
<tr>
<td>14</td>
<td>Auxiliary Chnl A+</td>
</tr>
<tr>
<td>15</td>
<td>Auxiliary Chnl A-</td>
</tr>
<tr>
<td>16</td>
<td>Auxiliary Chnl B+</td>
</tr>
<tr>
<td>17</td>
<td>Auxiliary Chnl B-</td>
</tr>
<tr>
<td>18</td>
<td>Auxiliary Chnl I+</td>
</tr>
<tr>
<td>19</td>
<td>Auxiliary Chnl I-</td>
</tr>
<tr>
<td>20</td>
<td>Drive Enable</td>
</tr>
<tr>
<td>21</td>
<td>Fault Reset</td>
</tr>
<tr>
<td>22</td>
<td>Analog Cmnd+</td>
</tr>
<tr>
<td>23</td>
<td>Analog Cmnd-</td>
</tr>
<tr>
<td>24</td>
<td>Drive Ready+</td>
</tr>
<tr>
<td>25</td>
<td>Drive Ready-</td>
</tr>
</tbody>
</table>

26	Isolated +24 VDC	
27	+I Limit	
28	Analog Com	
29	-I Limit	
30	Analog Output 1	
31	Analog Output 2	
32	Selectable Input 1	
33	Selectable Input 2	
34	Selectable Input 3	
35	Selectable Input 4	
36	RSVD	
37	RSVD	
38	RSVD	
39	RSVD	
40	RSVD	
41	Selectable Output 1	
42	Selectable Output 2	
43	Selectable Output 3	
44	Selectable Output 4	
45	Brake Enable +	
46	Brake Enable -	

WARNING: HIGH VOLTAGE MAY EXIST FOR UP TO EIGHT MINUTES AFTER REMOVING POWER.
Interface Connections

Shown here are typical components and connections for a Centurion DSM100 Drive.
Declaration of Conformity

EMC
DECLARATION OF CONFORMITY

Manufacturer’s Name: Giddings & Lewis
Manufacturer’s Address: 666 South Military Road
Fond du Lac, Wisconsin 54936-1658

European Representative Name: Giddings & Lewis
European Representative Address: Randles Road, Knowsley Industrial Park
Prescot, Merseyside L34 9EZ England

Herewith declares that all servo drives listed below,

<table>
<thead>
<tr>
<th>Model Name</th>
<th>Part Number</th>
<th>Model Name</th>
<th>Part Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSM110</td>
<td>401-34400-00</td>
<td>DSM130</td>
<td>401-34402-00</td>
</tr>
<tr>
<td>DSM120</td>
<td>401-34401-00</td>
<td>DSM175</td>
<td>401-34403-00</td>
</tr>
</tbody>
</table>

when operating any of the following motor families,
- SSM, HSM, and FSM
when operating with or without the optional Touch Pad,
P/N 401-34405-00
and when installed in accordance with the installation instructions contained in the “Centurion DSM100 Drive Hardware and Installation Manual,”
P/N 108-30083-00
conform to the following generic and basic standards.

EN 55011:1993 (CISPR 1) Group 1 class A
EN 50082-2:1995 EN 61000-4-2, ENV 50140, ENV 50204, EN 61000-4-4, ENV 50141, EN 61000-4-8

We, the undersigned, hereby declare that the equipment specified above conforms to the above directive(s).

Manufacturer

Signature

Full Name Douglas B. Vonderhaar
Position Vice President and General Manager
Place Giddings & Lewis Automation Control
Date 29 MAR 96

Legal Representative in Europe

Signature

Full Name ROGER MICHAEL COLLINS
Position FINANCE DIRECTOR
Place Giddings & Lewis Knowsley
Date APRIL 4 96

DSM Drive Hardware and Installation Manual
Product Support

Giddings & Lewis Automation Control product support is available over the phone. When you call, you should be at your computer and have the hardware and software manuals at hand. Be prepared to give the following information:

- The version numbers of the Giddings & Lewis Automation Control hardware and software products.
- The type of hardware that you are using.
- The fault indicators and the exact wording of any messages that appears on your screen.
- How you have tried to solve the problem.

Distributor & Representative Network

Giddings & Lewis Automation Control has a wide network of distributors that are trained to support our products. If you encounter problems, call the distributor or representative where you purchased the product before contacting the factory.

Applications Engineers and Field Service

In the United States you can reach the Giddings & Lewis Automation Control factory based support staff by phone 24 hours a day, 365 days a year at 1-800-558-4808. The applications engineers can assist you with programming difficulties as well as ideas for how to approach your automation task. Should your problem require on-site assistance, field service is available.

The applications engineers can also be reached via fax at 1-920-929-4669. The fax machine is open 24 hours 7 days a week. Faxes will be answered during regular business hours only.

In Europe, support can be obtained through Giddings & Lewis. The support staff may be reached by telephone between 8:30 and 17:30 local time, Monday through Friday at [44] 151-546-2010, or via fax at 011 [44] 151-547-2801.

Bulletin Board Service (BBS)

If you have a modem, you can reach the Giddings & Lewis Automation Control BBS 24 hours a day, 7 days a week at 1-920-929-4682. The following services are available through the BBS:

- Example application programs.
- Leave messages and files for the application engineers.
- Help with your application.
NOTES