AKD™, AKD™ BASIC, AKD™ PDMM

Manual de Instalação

Edição: AA, Outubro 2017

Válido para AKD, AKD BASIC Revisão do Hardware E Válido para AKD BASIC-Revisão do Hardware de E/S EA Válido para AKD PDMM Revisão do Hardware EB

Número de Peça 903-200003-09

Documento traduzido

Mantenha todos os manuais como um componente do produto durante a vida útil do produto. Passe todos os manuais para os futuros usuários e proprietários do produto.

KOLLMORGEN

Registro de Revisões de Documentos

Revisão	Observações		
	Para ver uma tabela com as informações do ciclo de vida deste documento, consulte (→ #215)		
	Dados técnicos do X7 (transmissão eletrônica) atualizados, LV e versão da Diretriz EMC atu-		
W, 08/2016	alizadas, Avisos atualizados, capítulo Manuseio transferido, conexão do freio do motor 48A cor-		
	rigida, valor de PFH alterado		
Y, 03/2017	Limite de freqüência EnDat 2.2 alterado, Links em capítulos de erros para KDN, tabela de		
1,03/2017	falhas atualizada (F120, F124, n179, n180, F471, n495, F631)		
AA, 10/2017	Fiação de saída digital X23 / X24 atualizada, tempo de reação STO adicionado (03 24A), fia-		
AA, 10/2017	ção 24V para controle STO 48A, conexão do freio do motor AKD48A corrigida		

Revisão do Hardware (HR)

AKD- B/P-NA	AKD- B/P-NB	AKD- M	AKD- T-IC	Firmware/ Workbench	KAS IDE	Classificação de exportação	Observações
А	-	-	-	a partir do 1.3	-	3A225	AKD Iniciar revisão, controle de exportação
С	-	-	-	a partir do 1.5	-	3A225	Certificado STO, liberado pelo PROFINET RT, controle de exportação
-	D	DB	DA	a partir do 1.6	a partir do 2.5	3A225	Revisão 9 da placa de controle, AKD PDMM Iniciar revisão, AKD BASIC-IC Iniciar revisão, controle de exportação
D	E	EB	EA	a partir do 1.13	a partir do 2.9	-	Revisão do hardware para fins de rastreabilidade de clas- sificação de exportação

Marcas registradas

- AKD é uma marca registrada da Kollmorgen Corporation
- EnDat é uma marca registrada do Dr. Johannes Heidenhain GmbH
- EtherCAT é uma marca registrada e uma tecnologia patenteada, licenciada pelo Beckhoff Automation GmbH
- Ethernet/IP é uma marca registrada do ODVA, Inc.
- Ethernet/IP Communication Stack: copyright (c) 2009, Rockwell Automation
- sercos® é uma marca registrada do sercos® international e.V.
- HIPERFACE é uma marca registrada do Max Stegmann GmbH
- PROFINET é uma marca registrada do PROFIBUS and PROFINET International (PI)
- SIMATIC é uma marca registrada do SIEMENS AG
- SyngNet è un marchio registrato di Motion Engineering Inc.
- Windows é uma marca registrada do Microsoft Corporation

Patentes atuais

- Patente dos EUA 8.154.228 (Frenagem dinâmica para motores elétricos)
- Patente dos EUA 8.214.063 (Ajuste automático do sistema de controle baseado na resposta da frequência)

Patentes referentes a funções de fieldbus estão relacionadas no manual de fieldbus correspondente.

Alterações técnicas que melhoram o desempenho do dispositivo podem ser feitos sem aviso prévio!

Este documento é uma propriedade intelectual da Kollmorgen. Todos os direitos reservados. Nenhuma parte deste trabalho pode ser reproduzida sob qualquer forma (por fotocópia, microfilme ou qualquer outro método) ou armazenado, processado, copiado ou distribuído por meios eletrônicos sem a permissão escrita da Kollmorgen.

1 Conteúdo

	Conteúdo	
2	Geral	
	2.1 Sobre este Manual	
	2.2 Usando o Formato PDF	
	2.3 Símbolos utilizados	
	2.4 Abreviações usadas	
	2.5 Padrões Usados	
3	Segurança	14
	3.1 Deve-se prestar atenção ao que se segue	15
	3.2 Use como Indicado	17
	3.3 Uso Proibido	18
	3.4 Avisos sobre o produto	18
4	Manuseio	19
	4.1 Transporte	20
	4.2 Embalagem	20
	4.3 Armazenamento	20
	4.4 Desativando	21
	4.5 Manutenção e limpeza	21
	4.6 Desinstalando	21
	4.7 Reparo	22
	4.8 Eliminação	22
5	Aprovações	23
	5.1 Conformidade UL/cUL	24
	5.1.1 UL Markings / Marquages UL	24
	5.2 Conformidade CE	26
	5.2.1 Diretivas e Padrões Europeus para os fabricantes de máquinas	27
	5.2.2 Conformidade com RoHS	27
	5.2.3 Conformidade com REACH	27
	5.3 Torque Seguro Desligado (STO, Safe Torque Off)	28
	5.4 Conformidade com EAC	28
6	Embalagem	29
	6.1 Embalagem Fornecida	
	6.2 Placa de identificação	
	6.3 Esquema de número da peça	
7	Descrição e dados técnicos	
•	7.1 A Família AKD de Drives Digitais	
	7.2 Condições Ambientais, Ventilação e Posição de Montagem	
	7.3 Dados Mecânicos	
	7.4 Entradas/Saídas	
	7.5 Sistema de Aterramento	
	7.6 Dados Elétricos AKD-xzzz06	
	7.7 Dados Elétricos AKD-xzzz07	
	7.8 Especificações	
	7.9 Torques de aperto recomendados	
	7.10 Fusíveis	
	7.10.1 Fusível do fonte de alimentação externa	
	7.10.2 Fusível do alimentação de 24 V externo	
	7.10.3 Fusível do resistor de regeneração externo	
	7.10.4 Fusível do link de barramento CC externo	
	7.10 Conectores	
		ті

	7.12 Requisitos de Fiação e Cabos	42
	7.12.1 Geral	42
	7.12.2 Requisitos e Seção Transversal do Cabo	42
	7.13 Frenagem Dinâmica	43
	7.13.1 Circuito de Regeneração	43
	7.13.1.1 Descrição funcional	43
	7.13.2 Dados Técnicos para o AKD-xzzz06	44
	7.13.3 Technical data for AKD-xzzz07	4
	7.14 Comportamento do Ligar/Desligar	46
	7.14.1 Comportamento de ligar em operação padrão	
	7.14.2 Comportamento do desligamento	
	7.14.2.1 Comportamento do desligamento usando o comando DRV.DIS	
	7.14.2.2 Comportamento do desligamento usando uma entrada digital (parada controlada)	
	7.14.2.3 Comportamento do desligamento usando uma entrada Enable HW (parada não controlada)	49
	7.14.2.4 Comportamento do desligamento em caso de uma falha	50
	7.15 Parar / Parada de Emergência / Desligamento de Emergência	5
	7.15.1 Parar	50
	7.15.2 Circuito de Parada	54
	7.15.3 Desligamento de Emergência	54
	7.16 Segurança de Torque Desligado (STO)	5
	7.16.1 Dados das características de segurança	5
	7.16.2 Instruções de segurança	56
	7.16.3 Use como indicado	57
	7.16.4 Uso Proibido	57
	7.16.5 Dados técnicos e Pinagem	57
	7.16.6 Compartimento, Fiação	59
	7.16.7 OSSD Pulsos de teste	59
	7.16.8 Descrição funcional	60
	7.16.8.1 Diagrama do sinal (sequência)	6
	7.16.8.2 Exemplos de fiação	62
	7.16.8.3 Teste funcional	64
	7.17 Proteção contra o risco de choques	66
	7.17.1 Corrente de fuga	
	7.17.2 Dispositivo de proteção de corrente residual (RCD)	
	7.17.3 Transformadores de isolamento	66
8	Instalação mecânica	
	8.1 Notas Importantes	
	8.2 Guia para instalação mecânica	68
	8.3 Dimensões padrão dos desenhos mecânicos	69
	8.3.1 Layout do Gabinete de Controle AKD-xzzz06, Dimensões Padrão	69
	8.3.2 Layout do Gabinete de Controle AKD-xzzz07, Dimensões Padrão	
	8.3.3 Dimensões AKD-xzzz06, Dimensões Padrão	
	8.3.4 Dimensões AKD-xzzz07, Dimensões Padrão	
	8.4 Dimensões estendidas dos desenhos mecânicos	
	8.4.1 Layout do Gabinete de Controle, Exemplo com AKD-M00306	
	8.4.2 Layout do Gabinete de Controle, Exemplo com AKD-M00307	
	8.4.3 Dimensões AKD-xzzz06, dimensões estendidas	
	8.4.4 Dimensões AKD-xzzz07, dimensões estendidas	
9	Instalação elétrica	
	9.1 Notas Importantes	
	9.2 Guia para a instalação elétrica	
	9.3 Fiação	
	9.4 Componentes de um sistema servo	
	9.5 Panorama de conexão AKD-B, AKD-P, AKD-T	83

9.5.1 Atribuição do conector AKD-x00306, AKD-x00606	
	83
9.5.2 Diagrama de Conexão AKD-x00306, AKD-x00606	84
9.5.3 Atribuição do conector AKD-x01206	85
9.5.4 Diagrama de conexão AKD-x01206	86
9.5.5 Atribuição do conector AKD-x02406 e AKD-x00307 a 02407	87
9.5.6 Diagrama de conexão AKD-x02406 e AKD-x00307 a 02407	88
9.5.7 Atribuição do conector AKD-x04807	89
9.5.8 Diagrama de Conexão AKD-x04807	90
9.6 Panorama de conexão AKD-M	
9.6.1 Atribuição do conector AKD-M00306, AKD-M00606	91
9.6.2 Diagrama de conexão AKD-M00306, AKD-M00606	
9.6.3 Atribuição do conector AKD-M01206	
9.6.4 Diagrama de conexão AKD-M01206	
9.6.5 Atribuição do conector AKD-M02406, AKD-M00307 a AKD-M02407	
9.6.6 Diagrama de conexão AKD-M02406, AKD-M00307 a AKD-M02407	
9.6.7 Atribuição do conector AKD-M04807	
9.6.8 Diagrama de conexão AKD-M04807	
9.7 Redução de ruído Interferência Eletromagnética (EMI)	
9.7.1 Recomendações para redução de ruído (EMI)	
9.7.2 Blindagem com Barramento Blindado Externo	
9.7.2.1 Conceito de Blindagem	
9.7.2.2 Conceito de Barramento	
9.7.3 Conexão de blindagem do drive	
9.7.3.1 Chapas de aterramento	
9.7.3.2 Abraçadeiras de conexão de blindagem	
9.7.3.3 Conector do motor X2 com conexão de blindagem	
9.8 Conexão com a rede elétrica	
9.8.1 Conexão a várias redes de alimentação AKD-xzzz06 (120V a 240V)	
9.8.2 Conexão a várias redes de alimentação AKD-xzzz00 (120 v a 240 v)	
9.8.3 Alimentação auxiliar de 24 V (X1)	
9.8.3.1 AKD-x003 to 024, conector X1	
9.8.3.2 AKD-x048, conector X1	
9.8.4 Conexão de alimentação de rede (X3, X4) 9.8.4.1 Conexão trifásica (todos os tipos de AKD)	
9.8.4.2 Conexão mono/duas-fásica (apenas de AKD-x00306 a AKD-x01206)	
9.9 Link de Barramento CC (X3, X14)	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A)	109
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora	109
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3)	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3 9.9.3.2 AKD-x048, conector X3	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3 9.9.3.2 AKD-x048, conector X3 9.9.4 Módulos capacitores (X3)	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3 9.9.3.2 AKD-x048, conector X3 9.9.4 Módulos capacitores (X3) 9.9.4.1 Dados técnicos	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3 9.9.3.2 AKD-x048, conector X3 9.9.4 Módulos capacitores (X3) 9.9.4.1 Dados técnicos 9.9.4.2 Instalação de exemplo com KCM-S e KCM-E	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3 9.9.3.2 AKD-x048, conector X3 9.9.4 Módulos capacitores (X3) 9.9.4.1 Dados técnicos 9.9.4.2 Instalação de exemplo com KCM-S e KCM-E 9.9.4.3 Exemplo de instalação com KCM-P e KCM-E	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3 9.9.3.2 AKD-x048, conector X3 9.9.4 Módulos capacitores (X3) 9.9.4.1 Dados técnicos 9.9.4.2 Instalação de exemplo com KCM-S e KCM-E 9.9.4.3 Exemplo de instalação com KCM-P e KCM-E	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3 9.9.3.2 AKD-x048, conector X3 9.9.4 Módulos capacitores (X3) 9.9.4.1 Dados técnicos 9.9.4.2 Instalação de exemplo com KCM-S e KCM-E 9.9.4.3 Exemplo de instalação com KCM-P e KCM-E 9.9.4.4 Descarregar módulos KCM	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3 9.9.3.2 AKD-x048, conector X3 9.9.4 Módulos capacitores (X3) 9.9.4.1 Dados técnicos 9.9.4.2 Instalação de exemplo com KCM-S e KCM-E 9.9.4.3 Exemplo de instalação com KCM-P e KCM-E 9.9.4.4 Descarregar módulos KCM 9.10 Conexão do potência do motor (X2) 9.10.1 AKD-x003 a 024, conector X2	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3 9.9.3.2 AKD-x048, conector X3 9.9.4 Módulos capacitores (X3) 9.9.4.1 Dados técnicos 9.9.4.2 Instalação de exemplo com KCM-S e KCM-E 9.9.4.3 Exemplo de instalação com KCM-P e KCM-E 9.9.4.4 Descarregar módulos KCM 9.10 Conexão do potência do motor (X2) 9.10.1 AKD-x003 a 024, conector X2 9.10.2 AKD-x048, conector X2	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3 9.9.3.2 AKD-x048, conector X3 9.9.4 Módulos capacitores (X3) 9.9.4.1 Dados técnicos 9.9.4.2 Instalação de exemplo com KCM-S e KCM-E 9.9.4.3 Exemplo de instalação com KCM-P e KCM-E 9.9.4.4 Descarregar módulos KCM 9.10 Conexão do potência do motor (X2) 9.10.1 AKD-x003 a 024, conector X2 9.10.2 AKD-x048, conector X2	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3 9.9.4 Módulos capacitores (X3) 9.9.4 Módulos capacitores (X3) 9.9.4.1 Dados técnicos 9.9.4.2 Instalação de exemplo com KCM-S e KCM-E 9.9.4.3 Exemplo de instalação com KCM-P e KCM-E 9.9.4.4 Descarregar módulos KCM 9.10 Conexão do potência do motor (X2) 9.10.1 AKD-x003 a 024, conector X2 9.11 Freio de retenção do motor (X2, X15, X16) 9.11.1 AKD-x003 a 024, conector X2	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3 9.9.3.2 AKD-x048, conector X3 9.9.4 Módulos capacitores (X3) 9.9.4.1 Dados técnicos 9.9.4.2 Instalação de exemplo com KCM-S e KCM-E 9.9.4.3 Exemplo de instalação com KCM-P e KCM-E 9.9.4.4 Descarregar módulos KCM 9.10 Conexão do potência do motor (X2) 9.10.1 AKD-x003 a 024, conector X2 9.11. Freio de retenção do motor (X2, X15, X16) 9.11.1 AKD-x003 a 024, conector X2 9.11.2 AKD-x048, conectores X15, X16	
9.9 Link de Barramento CC (X3, X14) 9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A) 9.9.2 Topologia de barramento DC com barra condutora 9.9.3 Resistor de regeneração externo (X3) 9.9.3.1 AKD-x003 a 024, conector X3 9.9.4 Módulos capacitores (X3) 9.9.4 Módulos capacitores (X3) 9.9.4.1 Dados técnicos 9.9.4.2 Instalação de exemplo com KCM-S e KCM-E 9.9.4.3 Exemplo de instalação com KCM-P e KCM-E 9.9.4.4 Descarregar módulos KCM 9.10 Conexão do potência do motor (X2) 9.10.1 AKD-x003 a 024, conector X2 9.11 Freio de retenção do motor (X2, X15, X16) 9.11.1 AKD-x003 a 024, conector X2	

9.12.1 Conector de feedback (X10)	122
9.12.2 Conector de feedback (X9)	123
9.12.3 Conector de feedback (X7)	123
9.12.4 Resolver	124
9.12.5 SFD	125
9.12.6 SFD3	126
9.12.7 Hiperface DSL	127
9.12.8 Encoder com BiSS	128
9.12.8.1 BiSS (Modo B) Analógico	128
9.12.8.2 BiSS (Modo C) Digital	129
9.12.9 Encoder Senoidal com EnDat 2.1	
9.12.10 Encoder com EnDat 2.2	131
9.12.10.1 Conexão ao X10	131
9.12.10.2 Conexão ao X9 e X8	132
9.12.11 Encoder Senoidal com Hiperface	
9.12.12 Encoder Senoidal	134
9.12.13 Encoder incremental	
9.12.14 Só Hall	
9.12.15 Encoder Tamagawa Smart Abs	
9.13 Engrenagem eletrônica, Operação mestre-escravo (X9, X7)	
9.13.1 Características técnicas e pinagem	
9.13.1.1 Conector de entrada X7	
9.13.1.2 Conector de entrada X9	
9.13.1.3 Conector de saída X9	139
9.13.2 Conexão de sinal do encoder de comando	140
9.13.2.1 Encoder incremental entrada 5 V (X9)	140
9.13.2.2 Encoder incremental entrada 24 V (X7)	140
9.13.2.3 Encoder com EnDat 2.2, entrada 5 V (X9)	141
9.13.3 Conexão do sinal de Pulso / Direção	142
9.13.3.1 Entrada de Pulso / Direção 5V (X9)	142
9.13.3.2 Entrada de Pulso / Direção 5V (X7)	142
9.13.4 Conexão de sinal para Cima/Baixo (CW / CCW)	143
9.13.4.1 Entrada CW / CCW 5 V (X9)	143
9.13.4.2 Entrada CW / CCW 24 V (X7)	143
9.13.5 Saída do encoder emulado (EEO)	144
9.13.6 Controle Mestre-Escravo	145
9.14 Conexão de E/S	146
9.14.1 Visão geral	146
9.14.1.1 Conectores de E/S X7 e X8 (todas as variantes do AKD)	146
9.14.1.2 Conectores de E/S X21, X22, X23 e X24 (Apenas drives com cartão de opção de E/S)	147
9.14.1.3 Conectores de E/S X35 e X36 (apenas (AKD-M)	149
9.14.2 Entrada analógica (X8, X24)	150
9.14.3 Saída analógica(X8, X23)	151
9.14.4 Entradas digitais (X7/X8)	152
9.14.4.1 Entradas digitais 1 e 2	153
9.14.4.2 Entradas digitais 3 a 7	154
9.14.4.3 Entrada digital 8 (ENABLE)	154
9.14.5 Entradas digitais com opção de E/S (X21, X22)	
9.14.6 Entradas digitais (X35/X36) com AKD-M	157
9.14.7 Saídas digitais (X7/X8)	159
9.14.7.1 Saídas digitais 1 e 2	159
9.14.7.2 Contatos de Relé de FALHA	160
9.14.8 Saídas digitais com opção de E/S (X23/X24)	161
9.14.8.1 Saídas digitais de 21 a 24, de 26 a 29	161

9.14.8.2 Saídas de relé digitais 25, 30	163
9.14.9 Saídas digitais (X35/X36) com AKD-M	164
9.14.9.1 Saídas digitais 21 e 22	
9.15 Monitor de LED	
9.16 Interruptores rotativos (S1, S2, RS1)	
9.16.1 Interruptores rotativos S1 e S2 com AKD-B, -P, -T	
9.16.2 Interruptor rotativo RS1 com AKD-M	166
9.17 Botões (B1, B2, B3)	167
9.17.1 Botão B1 com AKD-B, -P, -T	167
9.17.2 Botões B1, B2, B3 com AKD-M	
9.18 Slot para cartão SD	
9.18.1 Slot para cartão SD - opção para cartão de E/S	
9.18.2 Slot para cartão SD com AKD-M	
9.19 Interface de serviço (X11, X32)	
9.19.1 Pinagem X11, X32	
9.19.2 Protocolos de barramento de serviço X11, X32	
9.19.3 Possíveis configurações da rede	
9.19.4 Configurando o Endereço AKD-B, AKD-P, AKD-T	
9.19.5 Configurando o endereço IP do AKD-M	
9.19.6 Modbus TCP	
9.20 Interface CAN-Bus (X12/X13)	
9.20.1 Ativação CAN-Bus com modelos AKD-CC	
9.20.2 Taxa de transmissão para CAN-Bus	
9.20.3 Endereço de nó para CAN-Bus	
9.20.4 Terminação CAN-Bus	
9.20.5 Cabo do CAN-Bus	
9.20.6 Fiação do CAN-Bus	
9.21 Interface de Barramento de Movimento (X5/X6/X11)	
9.21.1 Pinagem X5, X6, X11	
9.21.2 Protocolos de barramento X5, X6, X11	
9.21.3 EtherCAT	
9.21.3.1 Ativação do EtherCAT com modelos AKD-CC	
9.21.4 SynqNet	
9.21.5 PROFINET	
9.21.6 Ethernet/IP	
9.21.7 sercos® III	
10 Configuração	
10.1 Notas Importantes	
10.2 Configurar AKD-B, AKD-P, AKD-T	
10.2.1 Software para configuração WorkBench	
10.2.2 Use como indicado	
10.2.3 Descrição do software	
10.2.4 Requisitos de hardware	
10.2.5 Sistemas Operacionais	
10.2.6 Instalação no Windows 2000/XP/VISTA/7/8	
10.2.7 Teste inicial do driveAKD-B, AKD-P, AKD-T	
10.2.7.1 Abertura da embalagem, montagem e instalação elétrica do AKD	
10.2.7.2 Fiação mínima para teste do drive sem carga	
10.2.7.3 Configure endereço IP	
10.2.7.4 Confirmar conexões	
10.2.7.5 Instalar e iniciar o WorkBench	
10.2.7.6 Configurar o endereço IP do drive no WorkBench	
10.2.7.7 Habilite o drive usando o assistente de configuração	
10.3 Configurar AKD-M	

12	Revisões de Documentos	215
11	Índice	211
10	0.5 Resolução de problemas do AKD	210
	10.4.3.2 Erros	209
	10.4.3.1 Alarmes	208
	10.4.3 Mensagens de alarme e erro adicionais AKD-M	208
	10.4.2 Mensagens de falha adicionais AKD-T	207
	10.4.1 Mensagens de falha e advertência AKD	202
10	0.4 Mensagens de falha e advertência	202
	10.3.7.7 Iniciando um novo projeto	199
	10.3.7.6 Configurar o endereço IP do drive no KAS IDE	198
	10.3.7.5 Instalar e iniciar o KAS IDE	197
	10.3.7.4 Confirmar conexões	196
	10.3.7.3 Configure endereço IP	196
	10.3.7.2 Fiação mínima para teste do drive sem carga	195
	10.3.7.1 Abertura da embalagem, montagem e instalação elétrica do AKD PDMM	195
	10.3.7 Teste inicial do drive AKD-M	195
	10.3.6 Instalação com Windows XP/7	194
	10.3.5 Sistemas operacionais	193
	10.3.4 Requisitos de hardware	193
	10.3.3 Descrição do software	193
	10.3.2 Use como indicado	192
	10.3.1 Software para configuração KAS IDE	

2 Geral

2.1	Sobre este Manual	
2.2	Usando o Formato PDF	10
2.3	Símbolos utilizados	11
	Abreviações usadas	
	Padrões Usados	

2.1 Sobre este Manual

Este manual, *AKD Manual de Instalação*, descreve as características do drive digital da série AKD AKD e incluem as informações necessárias para instalar com segurança um AKD. Este documento cumpre todos os requisitos para um "Manual de Instalação" sob a Diretiva de Máquinas EC (2006/42/EC). Uma versão digital deste manual (em formato pdf) está disponível no DVD incluso na embalagem do seu drive. O download com as atualizações deste manual pode ser feito no site global da Kollmorgen (www.kollmorgen.com). Documentos adicionais a este manual:

- WorkBench Ajuda Online:. Este manual descreve como usar o seu drive em aplicações comuns. Ele também dá dicas para maximizar o desempenho do seu sistema com o AKD. O Ajuda Online inclui o Guia de Referência de Parâmetro e Comando. Este guia fornece a documentação para os parâmetros e comandos usados para programar o AKD.
- Comunicação CAN-BUS. Este manual descreve como usar o seu drive em aplicações CANopen.
- Comunicação EtherCAT. Este manual descreve como usar o seu drive em aplicações EtherCAT.
- Comunicação PROFINET RT. Este manual descreve como usar o seu drive em aplicações PROFINET RT.AKD
- Comunicação Ethernet/IP. Este manual descreve como usar o seu drive em aplicações Ethernet/IP.
- Comunicação SynqNet. Este manual descreve como usar o seu drive em aplicações SynqNet.AKD
- Comunicação sercos[®] III : Este manual descreve como usar o seu drive em aplicações sercos[®].
- Manual de Acessórios. Este manual fornece documentação para acessórios como cabos e resistores de regeneração usados com o AKD. Existem variantes regionais deste manual.

2.2 Usando o Formato PDF

Este documento inclui vários recursos para facilitar a navegação

Referências Cruzadas	O conteúdo e índice incluem referências cruzadas ativas.	
Conteúdo e índice	As linhas são as referências cruzadas ativas. Clique na	
	linha e a página apropriada é acessada.	
Números de página/capítulo	Os números de páginas/capítulos com referências cru-	
no texto	zadas são links ativos.	

2.3 Símbolos utilizados

Símbolos de Advertência

Símbolo	Indicação
▲ PERIGO	Indica uma situação de perigo que, se não for evitada, resultará em morte ou sérias lesões.
▲ ATENÇÃO	Indica uma situação de perigo que, se não for evitada, pode resultar em morte ou sérias lesões.
▲ CUIDADO	Indica uma situação de perigo que, se não for evitada, pode resultar em lesões pequenas ou moderadas.
AVISO	Indica situações que, se não forem evitadas, podem resultar em danos materiais.
INFORMAÇÃO	Este não é um símbolo de segurança. Este símbolo indica observações importantes.
	Aviso de perigo (geral). O tipo de perigo é especificado pelo texto próximo ao símbolo
4	Aviso de perigo de eletricidade e seus efeitos.
	Aviso de superfícies quentes.
	Aviso de cargas suspensas.
	Aviso de reinicializar automaticamente.

Símbolos dos desenhos

Símbolo	Descrição	Símbolo	Descrição
	Sinal de ater-		Diodo
	ramento	'	
	Aterramento do		Relé
<i></i>	chassi	<u> </u>	
	Aterramento de		Relé com acionamento
	proteção		retardado
ф	Resistor	\	Contato normal aberto
<u> </u>		<u> </u>	
	Fusível	}	Contato normal fechado
			<u> </u>

2.4 Abreviações usadas

Abreviação	Significado
(→ #53)	"veja página 53" neste documento
AGND	Aterramento analógico
CE	Comunidade Européia
СОМ	Interface serial para um computador pessoal
DCOMx	Linha de comunicações para entradas digitais (com x=7 ou 8)
Disco	Armazenamento magnético (disquete, disco rígido)
EEPROM	Memória programável apagável eletricamente
EMC	Compatibilidade eletromagnética
F-SMA	Cabo conector de fibra óptica em conformidade com IEC 60874-2
KAS	Kollmorgen Automation Suite
KAS IDE	Configuração do software (Kollmorgen Automation Suite no Ambiente para Desenvolvimento Integrado) usado para drives AKD PDMM
LED	Diodo emissor de luz
LSB	Byte significativamente baixo (ou bit)
MSB	Byte mais significativo (ou bit)
NI	Pulso zero
PC	Computador pessoal
PE	Aterramento de proteção
PLC	Controle lógico programável
PWM	Largura do pulso de modulação
RAM	Memória de acesso aleatório (memória volátil)
R _{Freio} /R _B	Resistor de regeneração (também chamado de resistor de freio)
RBext	Resistor de regeneração externo
RBint	Resistor de regeneração interno
RCD	Disjuntor diferencial residual
RES	Resolver
ROD	Codificador incremental (A quad B)
S1	Operação contínua
STO	Desligamento seguro de torque
Vca	Volts, corrente alternada
Vcc	Volts, corrente direta

2.5 Padrões Usados

Padrão	Conteúdo
ISO 4762	Parafusos de cabeça sextavada
ISO 11898	Veículos rodoviários — Controller area network (CAN)
ISO 12100	Segurança das máquinas: Conceitos básicos, princípios gerais para o design
ISO 13849	Segurança das máquinas: Peças relacionadas com a segurança dos sistemas de controle
IEC 60085	Isolamento elétrico - Avaliação térmica e designação de Manutenção
IEC 60204	Segurança das Máquinas: Equipamentos elétricos da máquina
IEC 60364	Instalações elétricas de baixa tensão
IEC 60439	Comutador de baixa tensão e Montagem de aparelhagem
IEC 60529	Classificação de proteção internacional (código IP)
IEC 60664	Coordenação de isolamento dos equipamentos nos sistemas de baixa tensão
IEC 60721	Classificação das condições ambientais
IEC 61000	Compatibilidade eletromagnética (EMC)
IEC 61131	Controladores programáveis
IEC 61491	Equipamentos elétricos de máquinas industriais – Ligação de dados em série para comunicações em tempo real entre os drives e os controles.
IEC 61508	Segurança funcional dos equipamentos elétricos/eletrônicos/eletrônicos programáveis relacionados com a segurança dos sistemas
IEC 61800	Sistemas de acionamento de energia elétrica de velocidade ajustável
IEC 62061	Segurança funcional dos equipamentos elétricos/eletrônicos/eletrônicos programáveis relacionados com a segurança dos sistemas
IEC 82079	Preparação de instruções para uso - Estrutura, conteúdo e apresentação
ANSI Z535	Segurança do produto (símbolos, cores, informação)
UL 840	Padrão UL de Segurança para Coordenação de Isolamento Incluindo Dis- tância de Isolamento e Linhas de Fuga para Equipamentos Elétricos
UL 508C	Norma UL para Segurança de Equipamentos de Conversão de Energia

ANSI - American National Standard Institute, Inc.(Instituto Americano Nacional de Padrões).

IEC - International Electrotechnical Commission (Comissão Eletrotécnica Internacional)

ISO - International Organization for Standardization (Organização Internacional para Padronização)

UL - Underwriters Laboratories

3 Segurança

3.1	Deve-se prestar atenção ao que se segue	15
	Use como Indicado	
3.3	Uso Proibido	18
	Avisos sobre o produto	

3.1 Deve-se prestar atenção ao que se segue

Profissional especialista exigido!

Apenas o pessoal apropriadamente qualificado pode executar atividades como transporte, instalação, comissionamento, e manutenção. Pessoas apropriadamente qualificadas são aquelas que estão familiarizadas com o transporte, montagem, instalação, comissionamento e operação do produto, e têm qualificações apropriadas para este trabalho:

- Transporte: apenas pelo pessoal com conhecimento em manuseio de componentes sensíveis eletrostaticamente.
- Desempacotamento: apenas pelo pessoal qualificado em eletrônica.
- Instalação: apenas pelo pessoal qualificado em eletrônica.
- Testes básicos: apenas pelo pessoal qualificado com conhecimento em engenharia elétrica e tecnologia de acionamento

O pessoal qualificado deve conhecer e observar os padrões IEC 60364 e IEC 60664 e regulamentos nacionais de prevenção de acidentes

Leia a documentação!

Leia este documento antes de instalar e comissionar o drive. O manuseio incorreto do drive pode ferir o pessoal ou danificar o material. O operador do sistema que usa o AKD deve exigir que todos os funcionários que trabalham com o drive leiam e entendam o manual antes de usar o drive.

Confira a Revisão de Hardware!

Verifique o número de Revisão do Hardware no produto (veja a etiqueta do produto). Esse número é a ligação entre seu produto e o manual; ele deve ser igual ao Número de Revisão do Hardware na capa do manual.

Preste atenção aos dados técnicos!

Confira os dados técnicos e especificações de conexão (plaqueta e documentação). Se os valores de tensão e corrente forem excedidos, o drive pode ser danificado. Motor inadequado ou fiação incorreta danificarão os componentes do sistema. Confira a combinação de drive e motor. Compare a tensão nominal e a corrente das unidades.

Faça avaliação de risco!

O fabricante da máquina deve produzir uma avaliação de riscos para a máquina e tomar medidas adequadas para garantir que movimentos imprevistos não resultem em lesões corporais ou em materiais danificados. Exigência adicional de profissional especialista pode resultar da avaliação de risco.

Reinicializar automaticamente!

O drive pode reinicializar automaticamente depois de ligar, queda de tensão ou interrupção da tensão de alimentação, dependendo da configuração de parâmetro. Risco de morte ou ferimento sério à humanos trabalhando na máquina.

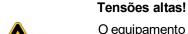
Se o parâmetro DRV.ENDEFAULT for configurado como 1, coloque um aviso na máquina (Cuidado: Reinicialização Automática na Ligação) e garanta, que ligar não seja possível, enquanto humanos estejam em uma área perigosa da máquina. Caso seja usado um dispositivo de proteção de subtensão veja a EN 60204-1:2006 capítulo 7.5.

Observe componentes sensíveis eletrostaticamente!

Os drives contêm componentes eletrostaticamente sensíveis, que podem ser danificados pelo manuseio incorreto. Descarregue eletrostaticamente seu corpo antes de tocar no drive. Evite o contato com materiais altamente isolantes (tecidos artificiais, filme plástico, etc.). Coloque o drive em uma superfície condutora.

Superfícies quentes!

Os drives podem ter superfícies quentes durante a operação. O dissipador de calor pode atingir temperaturas acima de 80°C. Risco de pequenas queimaduras! Meça a temperatura, e espere até que o dissipador de calor tenha esfriado abaixo de 40°C antes de tocá-lo.



Terra!

É vital que você garanta que o drive está aterrado com segurança no PE (Terra de Proteção) do barramento do painél. Risco de choque elétrico. Sem terra de baixa resistência não é possível garantir a segurança pessoal.

Corrente de Fuga!

Como a corrente de fuga para o PE é maior do que 3,5 mA, em conformidade com IEC 61800-5-1, a conexão PE deve ser ou duplicada ou um cabo de conexão com uma seção transversal >10 mm² deve ser usado. É possível que existam medidas diferentes, de acordo com os padrões regionais.

O equipamento produz altas tensões elétricas até 900V. Risco de choque elétrico. Não abra ou toque o equipamento durante a operação. Mantenha todas as coberturas e portas do painél fechadas.

Durante a operação, os drives podem ter partes vivas descobertas, de acordo com o nível de proteção de enclausuramento.

As partes energizadas do dispositivo apresentam perigo letal. Medidas de proteção integradas, como isolamento ou blindagem, não devem ser removidas. Todo o trabalho na instalação elétrica deve ser desempenhado apenas por funcionários treinados e qualificados, em conformidade com as normas de segurança no trabalho, e somente com as fontes principais desligadas, sem risco de reiniciar.

Nunca desfaça nenhuma conexão elétrica quando o drive ainda estiver ativo. O perigo de arco elétrico está presente. O arco elétrico pode danificar os contatos e ferir o pessoal. Espere pelo menos 7 minutos depois de desconectar o drive da fonte de alimentação principal, antes de tocar nas seções do equipamento ativas (como contatos) ou remover quaisquer conexões.

Meça sempre a tensão no link de barramento CC e espere até que a tensão esteja abaixo de 50 V antes de manusear os componentes.

Funções de segurança!

A implementação de segurança STO no AKD é certificada. A avaliação das funções de segurança, de acordo com EN 13849 ou EN 62061, deve ser feita pelo usuário.

Isolação Reforçada!

Os sensores térmicos, freio e feedback incorporados no motor têm isolação reforçada (de acordo com a IEC61800-5-1) contra componentes de sistemas com tensão, de acordo com a tensão de teste de aplicação requerida. Todos os componentes Kollmorgen atendem essas exigências.

Nunca modifique o drive!

Não é permitido modificar este dispositivo sem a permissão do fabricante. Abrir o drive causa perda de garantia.

3.2 Use como Indicado

A família de drives AKD é destinada exclusivamente para adequada direção de servomotores síncronos com controle de circuito fechado de torque, velocidade e/ou posição.

Drives AKD são componentes que são construídos em máquinas ou plantas elétricas e que só podem ser operados como componentes integrais destas plantas ou máquinas. O fabricante da máquina usada com um drive deve produzir uma avaliação de riscos para a máquina e tomar medidas adequadas para garantir que movimentos imprevistos não resultem em lesões corporais ou em danos materiais.

Quando os drives são incorporados a máquinas ou plantas, o drive não deve ser usado até que a máquina ou planta cumpra as exigências das diretivas locais.

Gabinete e fiação

Os drives só devem ser operados em um painél de controle fechado adequado para as condições ambientais (→ #35). Pode ser necessário ventilação ou resfriamento para manter a temperatura no gabinete abaixo de 40 °C.

Use apenas condutores de cobre para a fiação. O condutor de seções transversal pode ser derivado do padrão IEC 60204 (alternativa para as seções transversais AWG: Tabela NEC 310-16, coluna 75 °C).

Fornecimento de energia

Os drives na série AKD podem ser alimentados da seguinte forma:

- AKD-xzzz06: Redes de alimentação industrial 1~ ou 3~ (corrente nominal simétrica não superior a 200 kA em 120 V e 240 V).
- AKD-xzzz07: Redes de alimentação industrial 3~ (corrente nominal simétrica não superior a 200 kA em 240 V, 400 V e 480 V).

A conexão com outros tipos de tensão de redes de alimentação é possível com um transformador de isolamento adicional (** # 103).

AKD-x04807: Em caso de assimetria tensão de rede> 3% uma reatância 3L0,24-50-2 deve ser utilizada.

Sobretensões periódicas entre as fases (L1, L2, L3) e a carcaça do drive não devem exceder o pico de 1000 V. De acordo com a IEC 61800, os picos de tensão (< 50 µs) entre fases não devem exceder 1000 V. Os picos de tensão (< 50 µs) entre uma fase e a carcaça não devem exceder 2000 V.

As medidas de filtro EMC para o AKD-xzzz06 devem ser implementadas pelo usuário.

Para situações de instalação de grupo e unidades de alimentação CC

INFORMAÇÃO

O AKD não foi avaliado pela Kollmorgen, UL ou TÜV para instalações de grupo, nem a sua potência foi definida para tensão de entrada CC.

As instalações de grupo devem ser analisadas e avaliadas pelo usuário quanto à proteção de circuitos derivados*, tamanho do fio, tensão nominal do fio, proteção dos fusíveis, requisitos do sistema dielétrico e corrente nominal de entrada**.

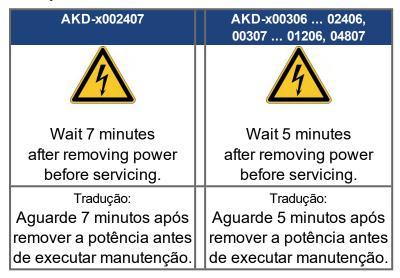
Em caso de utilização de unidades de alimentação CC o filtro EMC integrado não irá funcionar. O utilizador é responsável por manter as emissões conduzidas e a imunidade da unidade dentro dos níveis de ruído obrigatórios.

- * Deve ser tomada especial atenção com o desenho de circuitos derivados para unidades com potência variada de modo a evitar que as unidades mais pequenas acabem por cumprir a função de "fusível" em vez do fusível de proteção do circuito.
- ** O desenho do sistema de alimentação deve garantir a proteção contra corrente de partida limitando a corrente de entrada durante o arranque. A cablagem de polaridade da alimentação CC deve ser corretamente instalada. Caso a polaridade da alimentação CC seja incorreta esta vai danificar a unidade e invalidar a garantia.

Faixa de tensão do motor

A faixa de tensão do motor deve ser pelo menos tão alta quanto a tensão de barramento CC dividida por $\sqrt{2}$ produzida pelo drive (U_{nMotor} >= $U_{CC}/\sqrt{2}$).

Segurança de Torque Desligado


Analise a seção "Use como Indicado" no capítulo STO (→ #55) antes de usar esta função de segurança.

3.3 Uso Proibido

Outra utilização que não a descrita no capítulo "Use como Indicado" não é apropriada e pode causar lesões corporais e danos ao equipamento. O drive não deve ser usado com uma máquina que não esteja em conformidade com os padrões e diretivas nacionais apropriados. O uso do drive nos seguintes ambientes também é proibido:

- áreas com perigo de explosão
- ambientes com ácidos condutores de eletricidade e/ou corrosivos, soluções alcalinas, óleos, vapores, poeiras
- navios ou aplicações marítimas

3.4 Avisos sobre o produto

AVISO

Símbolos de aviso danificados devem ser substituídas imediatamente.

4 Manuseio

4.1	Transporte	20
	Participation	
4.3	Armazenamento	20
4.4	Desativando	21
	Manutenção e limpeza	
	Desinstalando	
	' Reparo	
	B Eliminação	

4.1 Transporte

Transporte o AKD em conformidade com a IEC 61800-2 da seguinte forma:

- O transporte deve ser feito apenas por pessoal qualificado no pacote reciclável original do fabricante. Evite impactos durante o transporte.
- Armazene abaixo ou na altura máxima da pilha. Consulte mais detalhes em "Armazenamento" (→ #20)
- Transporte apenas dentro dos intervalos de temperatura: -25 a +70 °C, máx. taxa de variação de 20 K/hora, classe 2K3.
- Transporte apenas na umidadeespecificada: máx. 95% de umidade relativa, sem condensação, classe 2K3.

AVISO

Os drives contêm componentes eletrostaticamente sensíveis, que podem ser danificados pelo manuseio incorreto. Descarregue-se eletrostaticamente antes de tocar no drive. Evite o contato com materiais altamente isolantes, como tecidos artificiais e filme plástico. Coloque o drive em uma superfície condutora.

Se a embalagem estiver danificada, verifique se a unidade apresenta danos visíveis. Informe ao transportador e ao fabricante sobre qualquer dano na embalagem ou no produto.

4.2 Embalagem

A embalagem do AKD consiste em uma caixa de papelão reciclável com encartes e uma etiqueta fora da caixa.

Modelo	Dimensões da Embalagem AxLxP (mm)	Peso Total AKD-B, -P, -T (kg)	Peso Total AKD-M (kg)
até AKD-x00606	113 x 250 x 222	1,7	1,9
AKD-x01206	158 x 394 x 292	3,4	3,6
AKD-x02406	158 x 394 x 292	5	5,2
AKD-x00307 e AKD-x00607	158 x 394 x 292	4,3	4,5
AKD-x01207	158 x 394 x 292	4,3	4,5
AKD-x02407	158 x 394 x 292	6,7	6,9
AKD-x04807	390 x 600 x 400	15,3	15,5

4.3 Armazenamento

Armazene o AKD em conformidade com IEC 61800-2 da seguinte forma:

- Armazene apenas na embalagem reciclável original do fabricante.
- Store at or below maximum stacking height :
 - ModelosAKD-x0306 a 0606: 8 caixas
 - ModelosAKD-x01206, x02406, x00307 a x02407 : 6 caixas,
 - ModelosAKD-x04807 models: 3 caixas.
- Armazene apenas dentro dos intervalos de temperatura: -25 a +55 °C, taxa de variação máx. de 20 K/hora, classe 1K4.
- Armazene apenas na umidade especificada: 5 a 95% de umidade relativa, sem condensação, classe 1K3.
- Armazene em conformidade com os seguintes requisitos de duração:
 - Menos de 1 ano: sem restrição.
 - Mais de 1 ano: os capacitores devem ser modificados antes de configurar e operar o drive. Os procedimentos de reforma são descritos na Kollmorgen Developer Network (Forming).

4.4 Desativando

AVISO

Apenas funcionários profissionais qualificados em engenharia elétrica estão habilitados a desativar partes do sistema de acionamento.

PERIGO: Tensão Letal! Há risco de lesão grave ou morte de choque elétrico ou de arco.

- Desligue a chave principal do armário de distribuição.
- Proteja o sistema contra uma ligação inadvertida.
- Bloqueie a chave principal.
- Espere pelo menos 7 minutos depois de desconectar o drive da fonte de alimentação principal.

4.5 Manutenção e limpeza

O dispositivo não precisa de manutenção. A abertura do dispositivo anula a garantia. A parte interna da unidade só pode ser limpa pelo fabricante.

AVISO

Não imergir ou pulverizar o dispositivo . Evite a infiltração de líquidos no aparelho.

Para limpar a parte externa do dispositivo:

- 1. Desativar o dispositivo (ver capítulo 4.4 "Desativando").
- 2. Revestimento: Limpar com isopropanol ou solução de limpeza semelhante.

CUIDADO: Facilmente inflamável! Risco de ferimentos por deflagração e incêndio.

- Tenha em atenção as indicações de segurança inscritas na embalagem do produto de limpeza.
- Após a limpeza, aguarde no mínimo 30 minutos antes de voltar a colocar o aparelho em funcionamento.
- 3. Grade de proteção do ventilador: Limpar com uma escova seca.

4.6 Desinstalando

AVISO

A substituição de componentes do sistema é de exclusiva responsabilidade de pessoal especializado, que detenham conhecimentos no domínio da eletrotecnia.

- 1. Desativar o dispositivo (ver capítulo 4.4 "Desativando").
- 2. Verifique a temperatura.

CUIDADO: Alta temperatura! Risco de pequenas queimaduras. Durante a operação, o dissipador de calor do drive pode atingir temperaturas acima de 80 °C (176 °F). Antes de tocar no dispositivo, verifique a temperatura e espere até que ela esfrie para menos de 40 °C (104 °F).

- 3. Remova os conectores. Desconecte a última conexão de aterramento potencial.
- 4. Desmontar: Desaperte os parafusos de fixação e retire o aparelho.

4.7 Reparo

AVISO

A substituição de componentes do sistema é da exclusiva responsabilidade de pessoal especializado, que detenham conhecimentos no domínio da eletrotecnia.

CUIDADO: Início Automático! Durante o procedimento de substituição, pode ocorrer uma combinação de riscos e múltiplos episódios.

Qualquer trabalho na instalação elétrica deve ser desempenhado apenas por funcionários treinados e qualificados, em conformidade com as normas de segurança no trabalho, e somente com o uso de equipamento de segurança individual recomendado.

Substituição AKD

Só o fabricante pode reparar o aparelho. A abertura do aparelho representa a perda da garantia.

- 1. Desativar o dispositivo (ver capítulo 4.4 "Desativando").
- 2. Desmontar o dispositivo (ver capítulo 4.6 "Desinstalando")
- 3. Envie o aparelho para o fabricante.
- 4. Instale um novo aparelho conforme a descrição que se encontra neste manual.
- 5. Coloque o sistema em funcionamento conforme a descrição que se encontra neste manual.

Substituição de outras peças do sistema de acionamento

Se for necessário substituir peças do sistema de acionamento (por exemplo, cabos), proceda da seguinte forma:

- 1. Desativar o dispositivo (ver capítulo 4.4 "Desativando").
- 2. Substitua as peças.
- 3. Verifique a fixação correta das uniões de encaixe.
- 4. Coloque o sistema em funcionamento conforme a descrição que se encontra neste manual.

4.8 Eliminação

AVISO

Para a eliminação do aparelho em conformidade com as normas técnicas entre em contacto com uma entidade certificada que se dedique à reciclagem ou reaproveitamento de componentes electrónicos.

Em conformidade com as Orientações WEEE-2002/96/EC e similares, o fabricante aceita devoluções de dispositivos e acessórios antigos para descarte profissional. Os custos de envio são da responsabilidade do remetente.

Envie os dispositivos, na embalagem original, para os endereços do fabricante mostrados na tabela abaixo.

North America	América do Sul
Kollmorgen	Kollmorgen
201 West Rock Road	Avenida Tamboré - 1077 Tamboré
Radford, VA 24141, USA	Barueri - SP Brasil
	CEP: 06460-000, Brazil
Europe	Ásia
Europe KOLLMORGEN Europe GmbH	Ásia KOLLMORGEN
KOLLMORGEN Europe GmbH	KOLLMORGEN

5 Aprovações

5.1	Conformidade UL/cUL	24
5.2	Conformidade CE	26
5.3	Torque Seguro Desligado (STO, Safe Torque Off)	28
	Conformidade com EAC	

5.1 Conformidade UL/cUL

Este drive está em conformidade com o UL (Underwriters Laboratories Inc.) número do arquivo **E141084**Vol.3 Seção 5.

USL, CNL – Equipamento de conversão de energia (NMMS, NMMS7) – Modelos AKD seguidos por B,P,T,M, seguidos por 003, 006, 012, 024 e 048, seguidos por 06 ou 07, seguidos por sufixos adicionais.

USL: Indica que foi Investigado pelo Padrão americano para Equipamentos de Conversão de Energia, UL 508C.

CNL: Indica que foi Investigado pelo Padrão canadense para Equipamentos de Controle Industrial, CAN/CSA - C22.2, No. 14-13.

5.1.1 UL Markings / Marquages UL

English	Français
 Identification of the terminals on the controller are coded so they may be identified in the ins- tructions. The instructions shall identify power connections for power supply, load, control, and ground. 	Les bornes de l'unité de contrôle sont codées pour faci- liter leur identification dans les instructions. Les instructions doivent identifier les raccordements d'alimentation, de charge, de commande et de terre.
 Integral solid state short circuit protection does not provide branch circuit protection. Branch cir- cuit protection must be provided in accordance with the National Electrical Code and any addi- tional local codes. 	 Une protection de court-circuit à semi-conducteur intégrale ne fournit pas de protection de la dérivation. Il convient de garantir une protection de la dérivation conforme au NEC (National Electrical Code) et aux réglementations locales en vigueur, ou aux directives équivalentes applicables.
This product is suitable for use on a circuit capable of delivering not more than 200,000 rms symmetrical amperes, 240 V (AKD-xzzz06) / 480 V (AKD-xzzz07) volts maximum, when protected by fuses.	Ce produit est conçu pour une utilisation sur un circuit capable de fournir 200 000 ampères symétriques (rms) maximum pour 240 V (AKD-xzzz06) / 480 V (AKD-xzzz07) maximum, s'il dispose de fusibles ou de protections équivalentes.
These drives provide solid state motor overload protection at 125% of the rated FLA Current.	Ces variateurs offrent une protection contre les sur- charges de moteur à semi-conducteur à 125 % du cou- rant FLA nominal.
These devices are intended to be used in a pollution degree 2 environment.	Ces appareils sont prévus pour une utilisation dans un environnement de pollution de niveau 2.
Maximum surrounding air temperature of 40°C.	La température de l'air ambiant doit être de 40 °C maximum ou une valeur équivalente.
Use minimum 75°C copper wire.	Utilisez un fil en cuivre 75 °C minimum.
These devices do not provide over temperature sensing.	Ces variateurs n'offrent pas de capteurs de tem- pérature excessive.
Use fuses only.	Utilisez uniquement des fusibles.
CAUTION Risk of Electrical Shock! Capacitors can have dangerous voltages present up to seven minutes after switching off the supply power. For increased safety, measure the voltage in the DC bus link and wait until the voltage is below 50 V.	ATTENTION: Risque de choc électrique! Des tensions dangereuses peuvent persister dans les condensateurs jusqu'à sept minutes après la mise hors tension. Pour plus de sécurité, mesurez la tension dans la liaison de bus CC et attendez qu'elle soit inférieure à 50 V.

The following fuse types are recommended /
 Les types de fusibles suivants sont recommandés :

Model Modèle	Class/ Classe	Rating/ Niveau	Max. Fuse Rating/ Niveau maximum
AKD-x00306	J	600 VAC, 200 kA	10 A
AKD-x00606	J	600 VAC, 200 kA	15 A
AKD-x01206	J	600 VAC, 200 kA	15 A
AKD-x02406	J	600 VAC, 200 kA	30 A
AKD-x00307	J	600 VAC, 200 kA	6 A
AKD-x00607	J	600 VAC, 200 kA	10 A
AKD-x01207	J	600 VAC, 200 kA	15 A
AKD-x02407	J	600 VAC, 200 kA	30 A
AKD-x04807	J	600 VAC, 200 kA	60 A

 The following table illustrates the torque requirements for the field wiring connectors / Le tableau suivant indique les spécifications de couple pour les connecteurs de câblage sur site:

Model/ Modèle	Mains Con- nector/ Con-	Motor Phase Connector/ Connecteur de phase	24 VDC Input Con- nector/ Connecteur
	necteur secteur	moteur	d'entrée 24Vcc
AKD-x00306	5-7 in-lbs	5-7 in-lbs	4 in-lbs
AKD-x00606	5-7 in-lbs	5-7 in-lbs	4 in-lbs
AKD-x01206	5-7 in-lbs	7 in-lbs	4 in-lbs
AKD-x02406	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x00307	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x00607	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x01207	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x02407	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x04807	13 in-lbs	13 in-lbs	4 in-lbs

5.2 Conformidade CE

Estar em conformidade com a Diretiva EMC da EC 2014/30/EC e com a Diretiva de Baixa Tensão 2014/35/EC é obrigatório para o fornecimento dos drives dentro da Comunidade Europeia.

INFORMAÇÃO

As Declarações de Conformidade EU podem ser encontradas no site da Kollmorgen.

Os drives foram testados por um laboratório de testes autorizado, usando os componentes do sistema que estão descritos neste documento. Qualquer divergência de configuração e instalação descrita neste documento significa que o usuário será responsável pela realização de novas medidas para garantir a conformidade com os requisitos reguladores.

A Kollmorgen declara a conformidade da série de produtos AKD com as seguintes diretivas:

- Diretiva de Máquinas EC (2006/42/EC)
 Padrão usado EN61800-5-2 (2007)
- Diretiva de Baixa Tensão EC (2014/35/EC)
 Padrão usado EN61800-5-1 (2007)
- Diretiva EMC da EC (2014/30/EC)
 Padrão usado EN 61800-3 (2004)

AVISO

Estes drives podem causar interferências de alta frequência e podem exigir medidas para a supressão de interferência (como filtros EMC externos adicionais).

AKD-xzzz06

INFORMAÇÃO

Os drivesAKD-xzzz06 não possuem filtros EMC integrados.

Com os filtros EMC externos para emissão de ruídos, os drives atendem aos requisitos de imunidade ao ruído da segunda categoria ambiental (ambiente industrial) para um produto da categoria C2 (cabo do motor < 10 m).

Com um comprimento do cabo do motor de 10 m ou mais e os filtros EMC externos, o drive atende aos requisitos da categoria C3.

AKD-xzzz07

INFORMAÇÃO

Os drivesAKD-xzzz07 possuem filtros EMC integrados.

O drive atende aos requisitos da segunda categoria ambiental (ambiente industrial). Para emissão de ruídos, o drive atende aos requisitos para um produto da Categoria C2 (cabo do motor < 10 m).

Com um comprimento do cabo do motor de 10 m ou mais, o servo drive atende aos requisitos da Categoria C3.

AKD-x04807: No caso de a assimetria da tensão da rede ser menor que 3%, um indutor de rede 3L0,24-50-2 deve ser usado.

5.2.1 Diretivas e Padrões Europeus para os fabricantes de máquinas

Drives são componentes que se destinam a ser incorporados em plantas elétricas e máquinas para uso industrial. Quando os drives são incorporados nas máquinas ou plantas, o drive não deve ser usado até ficar provado que a máquina ou equipamento cumpre os requisitos da

- Diretiva de Máquinas EC (2006/42/EC)
- Diretiva EMC da EC (2014/30/EC)
- Diretiva de Baixa Tensão EC (2014/35/EC)

Padrões a serem aplicados para a conformidade com a Diretiva de Máquinas EC (2006/42/EC)

- IEC 60204-1 (Segurança e Equipamentos Elétricos em Máquinas)
- ISO 12100 (Segurança das Máquinas)

AVISO

O fabricante da máquina deve produzir uma avaliação de riscos para a máquina, e deve tomar medidas adequadas para garantir que movimentos imprevistos não resultem em lesões ou em danos em nenhuma pessoa ou material.

Padrões a serem aplicados para a conformidade com a Diretiva de Baixa Tensão EC (2014/35/EC)

- IEC 60204-1 (Segurança e Equipamentos Elétricos em Máquinas)
- IEC 60439-1 (Comutador de baixa tensão e montagem de aparelhagem)

Padrões a serem aplicados para a conformidade com a Diretiva EMC da EC (2014/30/EC)

- IEC 61000-6-1/2 (Imunidade à interferência em Áreas Industriais e Residenciais)
- IEC 61000-6-3/4 (Gerência de Interferência em Áreas Industriais e Residenciais)

O fabricante da máquina/planta é responsável por garantir que ela atende aos limites exigidos pelos regulamentos EMC. Conselhos sobre a instalação correta da EMC (como proteção, aterramento, tratamento de conector e layout do cabo) são dados neste manual.

INFORMAÇÃO

O fabricante da máquina/planta deve verificar se outros padrões ou Diretivas da EC devem ser aplicados para a máquina/planta.

AKollmorgen só garante a conformidade do sistema servo com os padrões citados neste capítulo se os componentes (motor, cabos, bobinas, etc.) forem fornecidos pela Kollmorgen.

5.2.2 Conformidade com RoHS

Diretiva 2011/65/EC da União Europeia na restrição do uso de determinadas substâncias perigosas em equipamentos elétricos e eletrônicos (RoHS) torna-se vigente a partir de 3 de janeiro de 2013. As seguintes substâncias fazem parte da diretiva

Chumbo (Pb), Cádmio (Cd), Crômio hexavalente (CrVI), Polibromobifenilo (PBB), Éter de difenilo polibromado (PBDE), Mercúrio (Hq)

O AKD é fabricado em conformidade com RoHS.

5.2.3 Conformidade com REACH

Regulamentação da UE Nº 1907/2006 trata do registro, da avaliação, da autorização e da restrição de substâncias químicas 1 (abreviado como "REACH", em inglês).

AKD não contém quaisquer substâncias (substâncias CMR, substâncias PBT, substâncias vPvB e substâncias perigosas semelhantes estipuladas em casos individuais com base em critérios científicos) acima de 0,1 por cento de massa por produto que são incluídas na lista de candidatos.

5.3 Torque Seguro Desligado (STO, Safe Torque Off)

Uma entrada digital adicional (STO, **S**afe **T**orque **O**ff) libera a etapa de saída da energia do drive desde que seja aplicado um sinal de 24 V nesta entrada. Se a entrada do STO opera um circuito aberto, a energia não será mais alimentada pelo motor, e o drive perderá todo o torque e será reduzido até parar.

A implementação de segurança do STO na AKD é certificado. A implementação do circuito de segurança para efetuar a função de segurança do "Safe Torque Off" no drive é adequado para SIL2 em conformidade com IEC 62061 e PLd, Cat.3 em conformidade com a ISO 13849-1.

Com drives AKD-x04807 SIL3/PLe é possível, se ambas as entradas STO-ENABLE forem usadas com os sinais STO-STATUS correspondentes.

INFORMAÇÃO

Os certificados de segurança podem ser encontrados no site da Kollmorgen.

Os subsistemas (drives AKD) são totalmente descritos pelas técnicas de segurança com os dados característicos:

Dispositivo	Modo de	ISO	IEC	PFH	T _M	SFF
	Operação	13849-1	62061	[1/h]	[Anos]	[%]
AKD-x003024	canal único	PL d, CAT 3	SIL 2	1,50E-07	20	100
AKD-x048	canal único	PL d, CAT 2	SIL 2	1.88E-07	20	89
	canal duplo	PL d, CAT 3	SIL 2	5.64E-09	20	87
	canal duplo com	PL e, CAT 4	SIL 3	5.64E-09	20	87
	teste periódico					

5.4 Conformidade com EAC

EAC é a sigla de Conformidade Eurasiática. A marca usada nos Estados da União Aduaneira da Eurásia (Rússia, Belarus, Cazaquistão) semelhante à marca CE europeia.

A Kollmorgen declara que o AKD passou por todos os procedimentos de conformidade obrigatórios em um Estado membro da União Aduaneira da Eurásia e que o AKD atende a todos os requisitos técnicos solicitados pelos Estados membros da União Aduaneira da Eurásia:

- Baixa tensão (TP TC 020/2011)
- Compatibilidade eletromagnética (TP TC 004/2011)

Contato: Intelisys LLC., Bakuninskaya Str. d 14, Building 10, RU-105005 Moskau

6 Embalagem

6.1	Embalagem Fornecida	30
6.2	Placa de identificação	30
6.3	Esquema de número da peça	31

6.1 Embalagem Fornecida

Quando um drive da série AKD é encomendado, os seguintes itens devem estar incluídos na embalagem do drive:

- AKD
- Uma cópia impressa do AKD Safety Guide
- Um DVD contendo o Manual de Instalação AKD, todos os manuais de fieldbus, software de configuração do WorkBench e outras documentações do produto no formato digital.
- Conectores de acoplamento (se necessário): X1, X2, X3, X4, X7, X8, X14, X15, X16, X21, X22, X23, X24, X35, X36
- Chapa de aterramento, com AKD de voltagem 07, com voltagem 06 apenas para UE

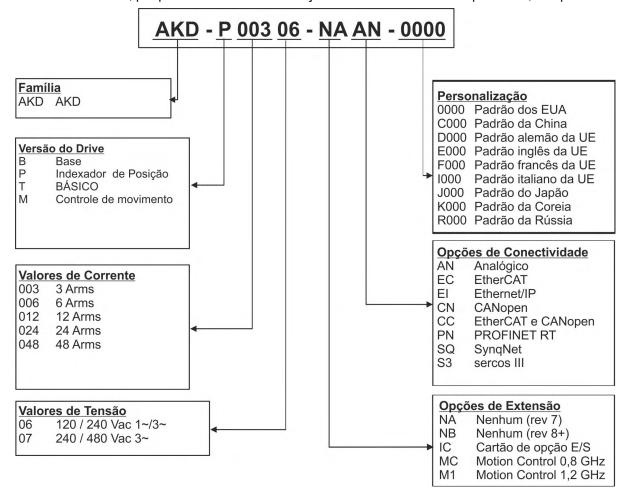
INFORMAÇÃO

Os conectores de acoplamento SubD e RJ45 não estão incluídos na embalagem.

Acessórios Vendidos Separadamente

Os acessórios devem ser pedidos separadamente se necessário; consulte o seu manual regional de acessórios:

- Filtros EMC de 24 V e tensão de alimentação da rede, categorias C2 ou C3
- Resistor de regeneração externo
- Cabo do motor. Cabos de motor montado estão disponíveis em todas as regiões.
- Cabo de feedback. Cabos de feedback montado estão disponíveis em todas as regiões.
- Bobina motora, para cabos de motor maiores de 25 m
- Terminação do conector CAN (somente com drives CAN)
- Cabo de serviço para a rede
- Cabo de alimentação e cabos de controle e de rede (como comprimentos de corte)


6.2 Placa de identificação

A identificação ilustrada abaixo está anexada na lateral do drive, são entradas de dados da amostra para um tipo de 12 A. Imagem semelhante a placa de identificação originais.

6.3 Esquema de número da peça

Use para número de etiqueta somente para identificação do produto, não para outros processos, porque nem todas as combinações de funcionalidades são possíveis, sempre.

Personalização: este código inclui a versão do idioma do material impresso e ofertas especiais para o cliente.

Opções de Conectividade: Os modelos do drive com opção de conectividade CC são montados com conectores de rede EtherCAT (X5 e X6) e CANopen (X12 e X13). Um parâmetro de software (DRV.TYPE) permite que você selecione que recursos o drive suporta; você não pode usar o EtherCAT e o CANopen ao mesmo tempo.

7 Descrição e dados técnicos

7.1 A Família AKD de Drives Digitais	33
7.2 Condições Ambientais, Ventilação e Posição de Montagem	35
7.3 Dados Mecânicos	35
7.4 Entradas/Saídas	36
7.5 Sistema de Aterramento	36
7.6 Dados Elétricos AKD-xzzz06	
7.7 Dados Elétricos AKD-xzzz07	38
7.8 Especificações	39
7.9 Torques de aperto recomendados	39
7.10 Fusíveis	40
7.11 Conectores	41
7.12 Requisitos de Fiação e Cabos	42
7.13 Frenagem Dinâmica	43
7.14 Comportamento do Ligar/Desligar	46
7.15 Parar / Parada de Emergência / Desligamento de Emergência	53
7.16 Segurança de Torque Desligado (STO)	55
7.17 Proteção contra o risco de choques	66

7.1 A Família AKD de Drives Digitais

Versões AKD disponíveis

Variante	Descrição	Carcaça	Conectividade
AKD-B***	O drive básico é controlado pelo comando analógico de torque e velocidade (engre- nagem eletrônica).	Padrão	Analógica, SynqNet
AKD-P**	O drive indexador de posição adiciona a habilidade para comandar os diversos movimentos, processo de E/S, tomar decisões, adicionar tempos de atraso e modificar as variáveis do processo do drive para o drive básico.	Padrão	Analógica, CANo- pen, EtherCAT, PROFINET RT, Ethernet/IP, ser- cos [®] III
AKD-M***	Drive master Controlador de Movimentos PDMM/EtherCAT. Inclui todos os cinco idi- omas de acordo com IEC 61131, PLC Open e Pipes Network. Esta variante do drive é chamada de AKD PDMM.	Dimensões padrão	EtherCAT
AKD-T***	Programação BASIC simples adicionada ao drive Básico. Esta variante do drive é chamada de AKD BASIC.	Padrão	Analógica
AKD-T***-IC	AKD BASIC com expansão E/S.	Dimensões padrão	Analógica, expan- são E/S

Recursos padrões

- Faixa de tensão de alimentação 120 V a 480 V ±10% (AKD-x04807 única 240 V a 480 V)
- Carcaças de várias dimensões, dependendo da corrente e das opções do hardware.
- Barramento de movimento incorporado, canal de serviços TCP/IP incorporado.
- SFD, Hiperface DSL, Tamagawa Smart Abs, Resolver, Comcoder, encoders 1Vp-p Sen-Cos, suporte para encoders incrementais incorporado.
- Suporte para protocolos ENDAT 2.1 e 2.2, BiSS ou HIPERFACE incorporados.
- Emulação de encoder incorporado e suporte para segundo feedback.
- Torque Seguro Desligado (STO) em conformidade com IEC 62061 SIL 2 incorporado.
- Podem ser usados com servomotores síncronos, motores lineares e máquinas de indução.

Seção de Energia

- Alimentação monofásica ou trifásica, faixa de tensão de 120 a 480 V ±10%, 50 a 400 Hz ±5% ou CC. A conexão à tensão de rede mais alta só deve ser feita por um transformador de isolamento, (→ # 104)
- Ponte retificadora B6, circuito de arranque suave integral.
- Fusíveis fornecidos pelo usuário.
- Faixa da tensão do link de barramento CC de 170 a 680 Vcc, pode ser conectada paralelamente.
- Etapa de saída do módulo IGBT com medição da corrente flutuante.
- Circuito de regeneração com distribuição dinâmica da potência gerada entre vários drives no mesmo circuito do link de barramento CC.
- Resistor de regeneração interno para todos os modelos da AKD (excepto AKD-x00306, AKD-x00606 e AKD-x04807), resistores de regeneração externo, se necessário.

Segurança integrada

- Linhas de fuga/isolamento adequado e isolamento elétrico para separação elétrica segura, conforme IEC 61800-5-1, entre as conexões do motor/potência de entrada e os sinais eletrônicos.
- Arranque suave, detecção de sobretensões, proteção contra curto-circuito, monitoramento de falha das fases.
- Monitoramento da temperatura do drive e do motor.
- Proteção para sobrecarga do motor: mecanismo de realimentação
- Torque Seguro Desligado SIL 2 em conformidade com IEC 61508, (→ #55).

Tensão de alimentação auxiliar de 24 VCC

• De uma fonte de alimentação externa de 24 V ±10%, de segurança aprovada.

Configuração de parâmetro e operação

 Usar o software de configuração WorkBench para configurar através de TCP/IP ou KAS IDE para configuração do AKD PDMM.

Controle digital completo

- Controlador digital da corrente (670 ns)
- Controlador digital de velocidade ajustável (62.5 µs)
- Opções de posição do software controlador (250 µs)

Entradas/Saídas

- 1 entrada analógica programável (→ #150)
- 1 saída analógica programável (→ # 151)
- 7 entradas digitais programáveis (→ # 152)
- 2 saídas digitais programáveis (→ # 159)
- 1 entrada habilitada (→ # 152)
- 1 entrada STO (→ #55)
- entradas e saídas digitais adicionais dependendo das variantes (por exemplo AKD PDMM)

Cartões de Opção

Cartões de opção integrados afetam a largura do dispositivo.

- IC: entradas e saídas digitais adicionais.
- MC/M1: Cartão Controlador de Movimento com entradas e saídas digitais adicionais.
 Estende o AKD para o tipo AKD PDMM (esquema de número da peça: AKD-M), um drive mestre para sistemas de drive sincronizado e de vários eixos.

Conectividade

- Entradas/Saídas (→ # 146)
- Saída de feedback do encoder (→ # 144)
- Interface de serviço (→ # 171)
- CANopen (→ # 175), opcional
- Interface de Barramento de Movimento (→ # 180)
 - SynqNet (→ # 182), opcional
 - EtherCAT (→ #181), opcional
 - PROFINET RT (→ # 182), opcional
 - Ethernet/IP (→ #183), opcional
 - sercos[®] III (→ #183), opcional

7.2 Condições Ambientais, Ventilação e Posição de Montagem

Armazenamento	(→ #20)
Transporte	(→ #20)
Temperatura ambiental	0 a +40 °C em condições nominais
em operação	+40 a +55 °C com redução da corrente contínua de 4 % con-
	forme Kelvin
Umidade em operação	5 a 85% de umidade relativa, sem condensação, classe 3K3.
Altitude local	Até 1000 metros acima do nível médio do mar sem restrição 1.000 a 2.500 metros acima do nível médio do mar com redução
	de potência de 1,5%/100 m
Nível de poluição	Nível de poluição 2 conforme IEC 60664-1
Vibrações	Classe 3M1 de acordo com IEC 60721-3-3
Proteção do com-	IP 20 em conformidade com IEC 60529
partimento	
Posição de Montagem	Vertical, (→ #69)
Ventilação	Ventilador integrado (excepto AKD-x00306 type)
AVISO	O drive desliga (falha F234, (→ # 202), motor sem torque) em
7,17,00	caso de temperatura muito alta no gabinete de controle. Cer-
	tifique-se de que há suficiente ventilação obrigatória dentro do gabinete de controle.

7.3 Dados Mecânicos

Dados mecânicos	Uni- dades	AKD- x00306	AKD- x00606	AKD- x01206	AKD- x02406		
Peso (dim. padrão)	kg	1,1		2	3,7		
Peso (dim. estendidas)	kg	1,3		2,2	4		
Altura, sem conectores	mm	168		196	248		
Altura, com conectores	mm	200		225	280		
Dim. padrão dianteira/traseira	mm	54/59		72/78,4	96/100		
Dim. padrão dianteira/traseira	mm	84/89		91/96	96/100		
Profundidade, sem conectores	mm	156		187	228		
Profundidade, com conectores	mm	185		185		< 215	<265

Dados mecânicos	Uni-	AKD-	AKD-	AKD-	AKD-	AKD-
	dades	x00307	x00607	x01207	x02407	x04807
Peso (dim. padrão)	kg	2,7		5,3	11,5	
Peso (dim. estendidas)	kg	2,9		5,5	11,7	
Altura, sem conectores	mm	256		306	385	
Altura, com conectores	mm	290		340	526	
Dim. padrão dianteira/traseira	mm	65/70		99/105	185/185	
Dim. padrão dianteira/traseira	mm	95/100		99/105	-	
Profundidade, sem conectores	mm	185		228	225	
Profundidade, com conectores	mm	<225		<265	<265	

7.4 Entradas/Saídas

Interface	Dados Elétricos
Entradas analógicas	 ±12 Vcc Relação de Rejeição do Modo Comum: > 30 dB a 60 Hz resolução de 16 bit e totalmente monotônica taxa de atualização: 16 kHz não-linearidade < 0,1% de escala real desvio ajustável máx. 250µV/°C Impedância de entrada > 13 kOhms
Saídas analógicas	 ±10 Vcc máx. 20mA resolução de 16 bit e totalmente monotônica taxa de atualização: 4 kHz não-linearidade < 0,1% de escala real desvio ajustável máx. 250µV/°C curto-circuito protegido para AGND Impedância de saída de 110 Ohms
Entradas digitais	 Ligadas: 3,5 Vcc a 30 Vcc, 2 mA a 15 mA Desligadas: -2 Vcc a 2 Vcc, máx.15 mA Isolamento galvânico para 250 Vcc
Saídas digitais	 máx. 30 Vcc, 100 mA à prova de curto-circuitos Isolamento galvânico para 250 Vcc
Saídas de Relé	 máx. 30 Vcc, 1A máx. 42 Vca, 1 A tempo para abrir/fechar de 10ms isolamento de 400 Vcc do contato/bobina

7.5 Sistema de Aterramento

AGND	aterramento analógico
DCOM7/8	linha comum para entradas digitais no conector X7, X8
DCOM21.x/22.x	linha comum para entradas digitais no conector X21, X22 (AKD-T-IC)
DCOM35/36	linha comum para entradas digitais no conector X35, X36 (AKD-M)
GND	alimentação de 24 V, entrada STO (para AKD-x024), freio de retenção
STO-GND	entradas STO-Enable (AKD-x048)
0 V	aterramento digital interno, saída da emulação do encoder, canal de ser-
	viço

7.6 Dados Elétricos AKD-xzzz06

Dados Elétricos	Uni-	AKD-	AKD-	AKD-	AKD-
	dades	x00306	x00606 20 V a 240 V :	x01206	x02406 3x240 V
Tensão de alimentação nominal (L1,L2,L3)	V	I	20 V a 240 V : 20 V a 240 V :		±10%
Frequência de entrada da alimentação nominal	Hz	ļ	50 Hz a 400 H	łz ±5% ou D0)
Potência de entrada nominal para operação S1	kVA	1,2 2,38 3,82		3,82	7,6
Corrente de entrada nominal					
em 1x120 V	А	5,0	9,9	12	-
em 1x240 V	А	5,0	9,9	12	-
em 3x120 V	А	2,3	4,6	9,2	-
em 3x240 V	А	2,3	4,6	9,2	18,3
Permitido ligar/desligar frequência	1/h		3	0	
Corrente máxima de ativação	А	10	10	10	20
Tensão do link de barramento nominal CC (Volta do Barramento em Atraso 3ph 1 seg)	V		170 a	a 340	
Corrente de saída contínua (±3%), 1x ou 3x					
em 120 V	Arms	3	6	12	-
em 240 V	Arms	3	6	12	24
Pico da corrente de saída (para 5 s, ± 3%)	Arms	9	18	30	48
Potência de saída contínua em corrente de entra	da nominal				
em 1x120 V	VA	312,5	625	1250	-
em 1x240 V	VA	625	1250	2500	-
em 3x120 V	VA	312,5	625	1250	-
em 3x240 V	VA	625	1250	2500	5000
Pico da potência de saída (para 1 s)		-			
em 1x120 V	kVA	0,937	1,875	3,125	-
em 1x240 V	kVA	1,875	3,750	6,250	-
em 3x120 V	kVA	0,937	1,875	3,125	-
em 3x240 V	kVA	1,875	3,750	6,250	10
Dados técnicos para circuito de regeneração	_		(→ ;	# 43)	
Indutância do motor mín.		4			
em 120 V	mH	1,3	0,6	0,5	0,3
em 240 V	mH	2,5	1,3	1	0,6
Indutância do motor máx.	mH	250	125	100	60
Dissipação térmica, etapa de saída desabilitada	W	máx. 20	máx. 20	máx. 20	máx. 25
Dissipação térmica na corrente nominal	W	31	57	137	175
Emissão de ruídos (ventilador de baixa/alta velocidade)	dB(A)	-	33/39	37/43	41/56
Fornecimento de energia aux.	V	24 V (±	10%, verifiqu	e a queda de	tensão)
-correntes tipo B, P, T com/sem freio no motor	А	0,5 / 1,7	0,6 / 1,8	0,7 / 1,9	1,0 / 2,5
-corrente tipo M com/sem freio no motor	Α	0,8 / 2,0	0,9 / 2,1	1,0 / 2,2	1,3 / 2,8

7.7 Dados Elétricos AKD-xzzz07

Dados Elétricos	Uni- dades	AKD- x00307	AKD- x00607	AKD- x01207	AKD- x02407	AKD- x04807
Tensão de alimentação nominal (L1,L2,L3)	V			0 V a 480 V		
Frequência de entrada da alimentação nominal	Hz		AC, 50 Hz	a 400 Hz ±	5% ou DC	
Potência de entrada nominal para operação S1	kVA	2,24	4,49	7,65	15,2	40,9
Corrente de entrada nominal						
em 3x240 V	Α	2,7	5,4	9,2	18,3	49,3
em 3x400 V	Α	2,7	5,4	9,2	18,3	49,3
em 3x480 V	Α	2,7	5,4	9,2	18,3	49,3
Permitido ligar/desligar frequência	1/h			30		
Corrente máxima de ativação (em 480V, 20°C)	Α	9	9	9	9	9
Tensão do link de barramento nominal CC (Volta do Barramento em Atraso 3ph 1 seg)	V=			340 a 680		
Corrente de saída contínua (±3%), 1x ou 3x						
em 240 V	Arms	3	6	12	24	48
em 400 V	Arms	3	6	12	24	48
em 480 V	Arms	3	6	12	24	48
Pico da corrente de saída (para 5 s, ± 3%)	Arms	9	18	30	48	96
Potência de saída contínua em corrente de entra	da nomin	al				
em 3x240 V	kVA	0,6	1,25	2,5	5	10
em 3x400 V	kVA	1	2	4,2	8,3	16,6
em 3x480 V	kVA	1,2	2,5	5	10	20
Pico da potência de saída (para 1 s)						
em 3x240 V	kVA	1,8	3,75	6,25	10	20
em 3x400 V	kVA	3	6,75	10,4	16,7	33
em 3x480 V	kVA	3,6	7,5	12,5	20	40
Dados técnicos para circuito de regeneração	_		(→ ₹	4 43)		
Indutância do motor mín.						
em 240 V	mH	3,2	1,6	1,3	0,6	0,3
em 400 V	mH	5,3	2,6	2,1	1	0,5
em 480 V	mH	6,3	3,2	2,5	1,2	0,6
Indutância do motor máx.	mH	600	300	250	120	60
Dissipação térmica, etapa de saída desabilitada	W	máx. 20	máx. 20	máx. 20	máx. 25	máx. 25
Dissipação térmica na corrente nominal	W	102	129	153	237	640
Emissão de ruídos (ventilador de baixa/alta velocidade)	dB(A)	34/43	34/43	44/52	48/58	48/72
Fornecimento de energia aux.	V=	24 V	′ (±10%, ve	rifique a qu	ieda de ten	são)
-correntes tipo B, P, T com/sem freio no motor	A=	1 / 2,5	1 / 2,5	1 / 2,5	2/4	2/*
-corrente tipo M com/sem freio no motor	A=	1,3 / 2,8	1,3 / 2,8	1,3 / 2,8	2,3 / 4,3	2,3 / *

^{* =} o freio de retenção do motor é fornecido com uma tensão auxiliar separada de 24 V ±10% (→ # 118).

7.8 Especificações

AKD-xzzz06

Especificações	Uni- -dades	até AKD- x00606	AKD- x01206	AKD- x02406
Frequência de comutação da etapa de saída	kHz	10	8	8
Velocidade de aumento da tensão dU/dt	kV/μs	2.	5 4.3	
Largura de banda do controlador da cor- rente	kHz	2,5 a 4	2 a 3	
Largura de banda do controlador de velo- cidade (escalável)	Hz	0 a 1000	0 a 800	0 a 600
Largura de banda do controlador de posição (escalável)	Hz		1 a 250	

AKD-xzzz07

Especificações	Uni- dades	AKD- x00307	AKD- x00607	AKD- x01207	AKD- x02407	AKD- x04807
Frequência de comutação da etapa de saída	kHz	8	8	6	8	8
Velocidade de aumento da tensão dU/dt	kV/µs	7,2				
Largura de banda do controlador da corrente	kHz	2.5	2.5 to 4 2 to 3		2 to 3	
Largura de banda do controlador de velocidade (escalável)	Hz	0 to 800 0 to 600 0 t		0 to 600		
Largura de banda do controlador de posição (escalável)	Hz	1 to 250				

7.9 Torques de aperto recomendados

	Torque de Aperto/Nm (in-lbs (→ #25))				
Conector	a AKD-x00606	AKD-x01206	AKD-x02406, AKD-x00307 a AKD-x02407	AKD-x04807	
X1	0,2 a 0,25	0,2 a 0,25	0,2 a 0,25	0,2 a 0,25	
X2	0,5 a 0,6	0,7 a 0,8	0,7 a 0,8	0,7 a 0,8	
X3	0,5 a 0,6	0,5 a 0,6	0,7 a 0,8	0,7 a 0,8	
X4	-	-	0,7 a 0,8	0,7 a 0,8	
X7, X8 ,X21, X22, X23, X24, X35, X36	0,2 a 0,25	0,2 a 0,25	0,2 a 0,25	0,2 a 0,25	
X14	-	-	1,7 a 1,8	1,7 a 1,8	
X15, X16	-	-	0,2 a 0,25	0,2 a 0,25	
bloco PE	1,7	1,7	1,7	1,7	

7.10 Fusíveis

ĺ	Fusíveis da UE	Fusíveis dos EUA
		Classe J, 600 Vca 200 kA, tempo de atraso. Os
ı		fusíveis devem ser aprovados pela UL e CSA

Suportes dos fusíveis: Combinados com os blocos do fusível padrão, os suportes de fusível de manuseio seguro devem ser usados em conformidade com IEC 60529.

Exemplo Bussmann: CH Series Modular Fuse Holders, class J, 3 poles: CH30J3, CH14J3

Exemplo Ferraz: Ultrasafe Fuse holders, class J, 3 poles: US3J3I

7.10.1 Fusível do fonte de alimentação externa

Modelo do	Máx. valores de Ampe-		Exemplos Ferraz Shaw-
Drive	res	mann, da classe J	mut, classe J
AKD-x00306	10A (Tempo de Atraso)	LPJ10SP/DFJ10	AJT10/HSJ10
AKD-x00606	15A (Tempo de Atraso)	LPJ15SP/DFJ15	AJT15/HSJ15
AKD-x01206	15A (Tempo de Atraso)	LPJ15SP/DFJ15	AJT15/HSJ15
AKD-x02406	30A (Tempo de Atraso)	LPJ30SP/DFJ30	AJT30/HSJ30
AKD-x00307	6A (Tempo de Atraso)	LPJ6SP/DFJ6	AJT6/HSJ6
AKD-x00607	10A (Tempo de Atraso)	LPJ10SP/DFJ10	AJT10/HSJ10
AKD-x01207	15A (Tempo de Atraso)	LPJ15SP/DFJ15	AJT15/HSJ15
AKD-x02407	30A (Tempo de Atraso)	LPJ30SP/DFJ30	AJT30/HSJ30
AKD-x04807	60A (Tempo de Atraso)	LPJ60SP/DFJ60	AJT60/HSJ60

7.10.2 Fusível do alimentação de 24 V externo

Modelo do	Máx. valores de Ampe-	Exemplos Buss-	Exemplos Ferraz Shaw
Drive	res	mann, da classe J	mut, classe J
todos AKD	8A (Tempo de Atraso)	LPJ8SP/DFJ8	AJT8

7.10.3 Fusível do resistor de regeneração externo

Modelo do Drive	Máx. Amperes @240V	Máx. Amperes @480V	Região UL examplo Bussmann:	Região CE examplo Siba:		
AKD-x003 a 012	10A	40A	FWP-xxA14F	110V a 400V: gRL xxA (gS)		
AKD-x024	15A	50A		400V a 480V: aR xxA		
AKD-x048	-	Fritzlen DC Powerswitch FPS (→ #111)				

7.10.4 Fusível do link de barramento CC externo

Modelo do	Máx. valores de	Região UL	Região CE
Drive	Amperes	examplo Bussmann:	examplo Siba:
AKD-x003 a 024	50A	1	110V a 400V: gRL 50A (gS) 400V a 480V: aR 50A
AKD-x048	125A	FWP-125A14F	400V a 480V: aR 125A

7.11 Conectores

Tipos AKD-xzzz06 e tipos AKD-xzzz07

Conector	Tipo	Máx. Seção	Corrente	Tensão
		transversal ¹	- 2	5 2
			Permitida ²	Permitida ³
Sinais de contr. X7/X8	Con. terminal, 10 pin.	1,5 mm², 16 awg	10 A	250 V
Sinais de contr. X21/X22*	Con. terminal, 8 pin.	1,5 mm², 16 awg	10 A	250 V
Sinais de contr. X23/X24*	Con.terminal, 14 pin.	1,5 mm², 16 awg	10 A	250 V
Sinais de contr. X35/X36**	Con. terminal, 8 pin.	1,5 mm², 16 awg	10 A	250 V
Feedback X10	SubD 15 pin. HD	0,5 mm ² , 21 awg	1 A	<100 V
	(fêmea)			
Porta Serviço X11,X32**	RJ45	0,5 mm², 21 awg	1 A	<100 V
Barram. de Mov. X5,X6	RJ45	0,5 mm², 21 awg	1 A	<100 V
CAN E/S X12/13	RJ25	0,5 mm², 21 awg	1 A	<100 V
Emulação de Encoder X9	SubD 9 pin.	0,5 mm², 21 awg	1 A	<100 V
	(macho)			

^{*} somente com cartão de opção E/S "IC", ** somente com variante AKD-M

Tipos AKD-xzzz06 (Tensão de Alimentação da Rede de 120V a 240V)

Conector	Tipo	Máx. Seção transversal ¹	Corrente Per- mitida ²	Tensão Per- mitida ³
24V/STO X1 (03 a 24A)	Con. terminal, 3 pin.	1,5 mm², 16 awg	8 A	160 V
Motor X2 (3 a 6 A)	Con. terminal, 6 pin.	2,5 mm ² , 14 awg	10 A	320 V
Motor X2 (12 a 24 A)	Con. terminal, 6 pin.	10 mm², 8 awg	30 A	1000 V
Potência /Regen X3 (3 a 6A)	Con. terminal, 7 pin.	2,5 mm², 14 awg	10 A	320 V
Potência /Regen X3 (12 A)	Con.terminal, 8 pin.	2,5 mm², 14 awg	16 A	320 V
Regen X3 (24 A)	Con. terminal, 4 pin.	10 mm², 8 awg	30 A	1000 V
Potência X4 (24 A)	Con. terminal, 4 pin.	10 mm², 8 awg	30 A	1000 V

Tipos AKD-xzzz07 (Tensão de Alimentação da Rede de 240V a 480V)

Conector	Tipo	Máx. Seção transversal ¹	Corrente Per- mitida ²	Tensão Per- mitida ³
24V/STO X1 (03 a 24A)	Con. terminal, 3 pin.	1,5 mm², 16 awg	8 A	160 V
24V/STO X1 (48A)	Con. terminal, 8 pin.	1,5 mm², 16 awg	8 A	160 V
Motor X2 (03 a 24A)	Con. terminal, 6 pin.	10 mm², 8 awg	30 A	1000 V
Motor X2 (48A)	Con. terminal, 4 pin.	16 mm², 6 awg	54 A	1000 V
Regen X3 (03 a 24A)	Con. terminal, 4 pin.	10 mm², 8 awg	30 A	1000 V
Regen X3 (48A)	Con. terminal, 3 pin.	16 mm², 6 awg	54 A	1000 V
Potência X4 (03 a 24A)	Con. terminal, 4 pin.	10 mm², 8 awg	30 A	1000 V
Potência X4 (48A)	Con. terminal, 4 pin.	16 mm², 6 awg	54 A	1000 V
Link de barram. CC X14 (48A)	Con. terminal, 3 pin.	16 mm², 6 awg	54 A	1000 V
24V Freio X15 (48A)	Con. terminal, 2 pin.	1,5 mm², 16 awg	8 A	160 V
Freio X16 (48A)	Con. terminal, 2 pin.	1,5 mm², 16 awg	8 A	160 V

¹conexão de uma linha

²conexão de uma linha com condutor de seção transversal recomendado (→ #42)

³tensão nominal com nível de poluição 2 (menores valores de acordo com UL840 e IEC60664)

7.12 Requisitos de Fiação e Cabos

7.12.1 Geral

Para informações sobre as características químicas, mecânicas e elétricas dos cabos, consulte o manual de acessórios ou entre em contato com o apoio ao cliente.

INFORMAÇÃO

Para alcançar o máximo comprimento de cabo permitido, você deve usar material de cabo com os seguintes requisitos de capacitância (fase à blindagem):

- Cabo do motor: menos de 150 pF/m
- Cabo do Resolver/Encoder: menos de 120 pF/m

Cabos de motor com mais de 25 m podem exigir o uso de uma bobina motora.

7.12.2 Requisitos e Seção Transversal do Cabo

A tabela abaixo descreve a interface recomendada dos requisitos e seções transversais do cabo para sistemas de um eixo de acordo com IEC 60204. Para sistemas multieixos, observe as condições de operação específicas para o seu sistema.

Interface	Seção transversal	Requisitos do Cabo
Conexão CA	até AKD-x006: 1.5 mm² (16 awg) AKD-x012: 2.5 mm² (14 awg) AKD-x024: 4 mm² (12 awg) AKD-x048: 16 mm² (6 awg)	600 V, mínimo de 75°C
Link de barramento CC, resistor de regeneração	AKD-x006: 1.5 mm² (16 awg) AKD-x012 to 24: 2.5 mm² (14 awg) AKD-x048: 4 mm² (12 awg)	1000 V, mínimo de 75°C, blindado para com- primentos >0,20 m
Cabos de motor sem bobina, máx. 25 m	até AKD-x006: 1.5 mm² (16 awg) AKD-x012: 2.5 mm² (14 awg) AKD-x024: 4 mm² (12 awg) AKD-x048: 16 mm² (6 awg)	600 V, mínimo de 75°C, blindado, capacitância <150 pF/m
Cabos de motor com bobina, 25 - 50 m	até AKD-x006: 1.5 mm² (16 awg) AKD-x012: 2.5 mm² (14 awg) AKD-x024: 4 mm² (12 awg)	600 V,mínimo de 75°C, blindado, capacitância <150 pF/m
Resolver, máx.100 m	4x2x0.25 mm² (24 awg)	pares trançados, blindado, capacitância <120 pF/m
SFD, máx. 50 m	1x2x0.25 mm² (24 awg) 1x2x0.50 mm² (21 awg)	pares trançados, blindado
SFD3/DSL, máx. 25 m	1x2x0.50 mm² (21 awg)	pares trançados, blindado
Encoder, máx. 50 m	7x2x0.25 mm² (24 awg)	pares trançados, blindado
ComCoder, máx. 25 m	8x2x0.25 mm² (24 awg)	pares trançados, blindado
E/S analógicas, máx. 30 m	0.25 mm² (24 awg)	pares trançados, blindado
E/S digitais, máx. 30 m	0.5 mm² (21 awg)	única linha
Freio de retenção (motor)	mín. 0.75 mm² (19 awg)	600 V,mínimo de 75°C, blindado
+24 V / GND, max 30 m	máx. 2.5 mm² (14 awg)	única linha

7.13 Frenagem Dinâmica

Frenagem dinâmica é um método de diminuição de um sistema servo pela dissipação de energia mecânica acionada pela parte de trás do motor EMF. The AKD possui um modo de frenagem dinâmica embutido que opera totalmente no hardware. Quando ativado, o drive interrompe os terminais do motor em sintonia com a parte de trás do EMF (eixo q), mas continua a operar o circuito da corrente sem produzir força (eixo d) com corrente 0. Isso força todas as correntes de frenagem dinâmica a serem correntes de parada e garante a parada/amp mais rápida da corrente de terminal do motor.

- Quando a corrente não está sendo limitada, a energia mecânica está sendo dissipada na resistência do motor.
- Quando a corrente está sendo limitada, a energia é devolvida aos capacitores de barramento do drive.
- O drive também limita a corrente do terminal do motor de frenagem dinâmica através do parâmetro DRV.DBILIMIT para garantir que o drive, motor e a carga do cliente não encontre correntes/forças excessivas.

Se e como o AKD usa a frenagem dinâmica depende do modo desabilitar (DRV.DISMODE).

7.13.1 Circuito de Regeneração

Quando a quantidade de energia devolvida desenvolve suficientemente a tensão do capacitor, o drive ativa o circuito de regeneração para começar a esvaziar a energia devolvida no resistor de regeneração (também chamado de resistor de freio). Esse resistor pode ser conectado interna ou externamente ao drive, dependendo do modelo ou fiação do drive.

AKD-x00306 a AKD-x00606, AKD-x04807: Sem resistor de regeneração interno. Dependendo dos requisitos da aplicação, um resistor externo pode ser conectado.

AKD-x01206 a AKD-x02406 e AKD-x00307 a AKD-x02407: Com resistor interno e ainda a capacidade de conectar um resistor externo dependendo dos requisitos de aplicação.

Resistores de regeneração externos são descritos no Manual de Acessórios do AKD.

7.13.1.1 Descrição funcional

Quando a quantidade de energia devolvida desenvolve suficientemente a tensão do capacitor, o drive ativa o chopper de frenagem para começar a esvaziar a energia devolvida no resistor de regeneração.

1. Drives individuais, não acoplados pelo circuito do link de barramento CC

Quando a energia realimentada do motor tem uma média ou pico de potência que excede o nível pré-configurado pela taxa de energia de regeneração, o drive gera uma advertência"n521 Sobrealimentação de Regeneração". Depois de emitida a advertência, se a potência aumentar além do nível da falha, o circuito de regeneração será desligado.

Com o circuito de regeneração desligado, a tensão do link de barramento CC interna do drive é supervisionada. O drive relata uma falha de sobretensão se o limiar de barramento CC for excedido. A etapa de energia do drive é desabilitada e a carga é reduzida até parar com a mensagem de falha "F501 Sobretensão do barramento" (→ # 202). O contato de Falha (terminais X8/9-10) é aberto (→ # 160) devido a esta falha.

2. Vários drives acoplados pelo link de barramento CC

Usando o circuito de regeneração embutido, vários drives da mesma série podem ser operados com um link de barramento CC comum (→ # 108), sem nenhuma medida adicional. 90% da potência combinada de todos os drives acoplados está sempre disponível para potência contínua e de pico. O desligamento em sobretensão irá decorrer como descrito no item 1. (acima) para o drive com o limite de ativação mais baixo (resultante das tolerâncias).

INFORMAÇÃO

Observe o tempo de regeneração (alguns minutos) para o circuito de freio dinâmico após a carga estar completa com pico de potência de regeneração.

7.13.2 Dados Técnicos para o AKD-xzzz06

Os dados técnicos para o circuito de regeneração dependem do tipo do drive e da tensão da rede. Tensões de alimentação, capacitâncias e tensões de ativação são todas valores nominais.

Circuito de freio				
Tino	Dados nominais	امنطا	mentação 120 V / 240 V	
Tipo AKD-xzzz06	Limiar de ativação do circuito de regeneração	V	380	
todos os	Limite de sobretensão	V	420	
tipos	Ciclo de trabalho de regeneração máximo	%	15*	
-	·			
Tipo	Dados nominais		120 V / 240 V	
AKD-x00106	Resistor de regeneração externo	Ohm	33	
	Potência de regeneração contínua máxima, resistor externo	kW	0,48	
	Pico da potência de regeneração, externa (1s)	kW	5,4	
	Energia de absorção em capacitores (+/- 20%)	Ws	60 / 20	
11/5 2222	Capacitância de Barramento CC	μF	940	
AKD-x00306	Resistor de regeneração externo	Ohm	33	
	Potência de regeneração contínua máxima, resistor externo	kW	0,77	
	Pico da potência de regeneração, externa (1s)	kW	5,4	
	Energia de absorção em capacitores (+/- 20%)	Ws	60 / 20	
	Capacitância de Barramento CC	μF	940	
AKD-x00606	Resistor de regeneração externo	Ohm	33	
	Potência de regeneração contínua máxima, resistor externo	kW	1,5	
	Pico da potência de regeneração, externa (1s)	kW	5.4	
	Energia de absorção em capacitores (+/- 20%)	Ws	60 / 20	
	Capacitância de Barramento CC	μF	940	
AKD-x01206	Resistor de regeneração interno	Ohm	15	
	Potência contínua, resistor interno	W	100	
	Pico de potência de regeneração, resistor interno (0,5s)	kW	11,7	
	Resistor de regeneração externo	Ohm	15	
	Potência de regeneração contínua máxima, resistor externo	kW	3	
	Absorção da potência de regeneração, resistor externo (1s)	kW	5,4	
	Energia armazenável em capacitores (+/- 20%)	Ws	160 / 55	
	Capacitância de Barramento CC	μF	2460	
AKD-x02406	Resistor de regeneração interno	Ohm	8	
	Potência contínua, resistor interno	W	200	
	Pico de potência de regeneração, resistor interno (0,5s)	kW	22	
	Resistor de regeneração externo	Ohm	15	
	Potência de regeneração contínua máxima, resistor externo	kW	6	
	Absorção da potência de regeneração, resistor externo (1s)	kW	11,8	
	Energia armazenável em capacitores (+/- 20%)	Ws	180 / 60	
	Capacitância de Barramento CC	μF	2720	

^{*} depende da potência do resistor de regeneração conectado

7.13.3 Technical data for AKD-xzzz07

Os dados técnicos para o circuito de regeneração dependem do tipo do drive e da tensão da rede. Tensões de alimentação, capacitâncias e tensões de ativação são todas valores nominais.

Circuito de frei	Circuito de freio Tensão de alimentação					
Tipo	Dados nominais	Unid.	240 V	400 V / 480 V		
AKD-xzzz07	Limiar de ativação do circuito de regeneração	V	380	760		
todos os	Limite de sobretensão	V	420	840		
tipos	Ciclo de trabalho de regeneração máximo	%		15*		
Tipo	Dados nominais	Unid.	240 V	400 V / 480 V		
AKD-x00307	Resistor de regeneração interno	Ohm		33		
	Potência contínua, resistor interno	W		80		
	Pico de potência de regeneração, resistor interno (0,5s)	kW	5,5	22,1		
	Resistor de regeneração externo	Ohm		33		
	Potência de regeneração contínua máxima, resistor externo	kW	0,77	1,5		
	Pico da potência de regeneração, externa (1s)	kW	5,4	21,4		
	Energia de absorção em capacitores (+/- 20%)	Ws	5	35 / 20		
	Capacitância de Barramento CC	μF		235		
AKD-x00607	Resistor de regeneração interno	Ohm		33		
	Potência contínua, resistor interno	W		100		
	Pico de potência de regeneração, resistor interno (0,5s)	kW	5,4	21,4		
	Resistor de regeneração externo	Ohm		33		
	Potência de regeneração contínua máxima, resistor externo	kW	1,5	3		
	Pico da potência de regeneração, externa (1s)	kW	5,4	21,4		
	Energia de absorção em capacitores (+/- 20%)	Ws	5	35 / 20		
	Capacitância de Barramento CC	μF		235		
AKD-x01207	Resistor de regeneração interno	Ohm		33		
	Potência contínua, resistor interno	W		100		
	Pico de potência de regeneração, resistor interno (0,5s)	kW	5,4	21,4		
	Resistor de regeneração externo	Ohm		33		
	Potência de regeneração contínua máxima, resistor externo	kW	3	6		
	Pico da potência de regeneração, externa (1s)	kW	5,4	21,4		
	Energia de absorção em capacitores (+/- 20%)	Ws	10	70 / 40		
	Capacitância de Barramento CC	μF		470		
AKD-x02407	Resistor de regeneração interno	Ohm		23		
	Potência contínua, resistor interno	W		200		
	Pico de potência de regeneração, resistor interno (0,5s)	kW	7.7	30.6		
	Resistor de regeneração externo	Ohm		23		
	Potência de regeneração contínua máxima, resistor externo	kW	6	12		
	Pico da potência de regeneração, externa (1s)	kW	7.7	30.6		
	Energia de absorção em capacitores (+/- 20%)	Ws	15	110 / 60		
	Capacitância de Barramento CC	μF		680		
AKD-x04807	Resistor de regeneração externo	Ohm		10		
	Potência de regeneração contínua máxima, resistor externo	kW	6	12		
	Pico da potência de regeneração, externa (1s)	kW	17.6	70.5		
	Energia de absorção em capacitores (+/- 20%)	Ws	20	146 / 80		
	Capacitância de Barramento CC	μF		900		
	<u> </u>	1 '				

^{*} depende da potência do resistor de regeneração conectado

7.14 Comportamento do Ligar/Desligar

Este capítulo descreve o comportamento do ligar/desligar do AKD.

Comportamento da função "freio de retenção"

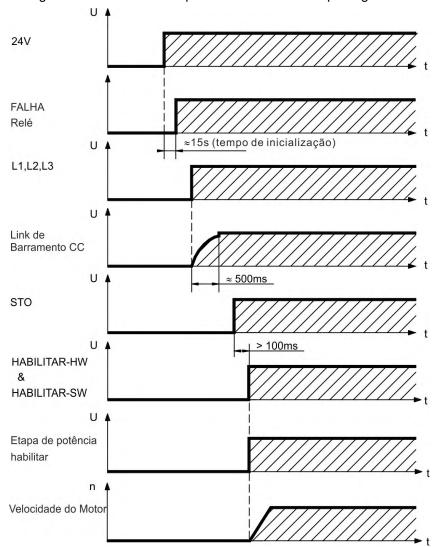
Drives com uma função de freio de retenção habilitada possuem um tempo especial para ligar e desligar a etapa de saída (→ #118). Eventos que removem o sinal DRV.ACTIVE acionam a aplicação do freio de retenção. Como em todos os circuitos eletrônicos, a regra geral determina que existe uma possibilidade do módulo de freio de retenção interno falhar.

Segurança funcional, por ex., com carga suspensa (eixos verticais), requer um freio mecânico adicional que deve ser operado com segurança, por exemplo por um controle de segurança.

Se a velocidade fica abaixo do limiar *CS.VTHRESH* ou esgotar o tempo durante um procedimento de parada, o freio é aplicado. Defina o parâmetro MOTOR.BRAKEIMM para 1 com eixos verticais, para aplicar o freio de retenção (→ #118) imediatamente após falhas ou a opção Hardware desabilitado.

O comportamento na condição de sobretensão está presente

O comportamento na condição de sobretensão depende da configuração VBUS.UVMODE.


VBUS.UVMODE	Modo de Sobretensão de Barramento CC. Consulte a ajuda do WorkBench para configurar o parâmetro.
0	O drive relatará uma falha de sobretensão F502 sempre que uma condição de sobretensão ocorrer.
1 (padrão)	O drive relatará uma advertência n502 se não estiver habilitado. O drive relatará uma falha se estiver habilitado quando a condição ocorrer, ou é feita uma tentativa de habilitação durante uma condição de sobretensão.

Função de segurança do STO

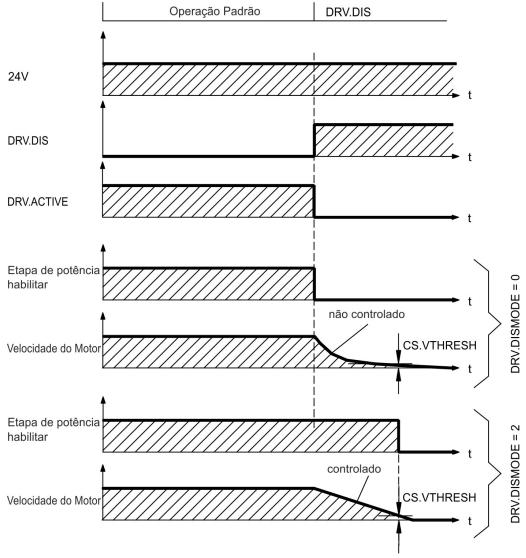
Com a função de segurança pessoal do STO, o drive pode ser protegido contra interrupção usando seus eletrônicos internos para que mesmo quando a potência estiver sendo alimentada, o eixo do drive está protegido contra reiniciação involuntária. O capítulo "Torque Seguro Desligado (STO)" descreve como usar a função STO (→ #55).

7.14.1 Comportamento de ligar em operação padrão

O diagrama abaixo ilustra a sequência funcional correta para ligar o drive.

A falha F602 ocorre quando o STO (→ #55) não possui corrente quando o habilitar HW é ativado.

7.14.2 Comportamento do desligamento

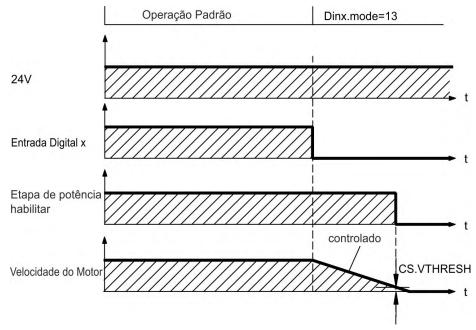

INFORMAÇÃO

A alimentação de 24 V do drive deve permanecer constante. A entrada de Hardware habilitado desabilita imediatamente a etapa de energia. Entradas Digitais Configuradas e comandos de rede podem ser usados para realizar paradas controladas.

7.14.2.1 Comportamento do desligamento usando o comando DRV.DIS

O botão habilitar/desabilitar no WorkBench envia um comando *drv.dis* internamente para o drive. Consulte a ajuda do WorkBench para configurar as entradas e os comandos do software. Às vezes este sinal de habilitar é chamado de "Software Enable" (SW-Enable).

DRV.DISMODE	O DRV.DISMODE controla o comportamento do comando <i>drv.dis</i> emitido pelo WorkBench, ou terminal, ou rede. Consulte a ajuda do WorkBench para configuração.
0	Desabilite o eixo imediatamente, se a velocidade ficar abaixo do limiar CS.VTHRESH ou se esgotar o tempo, o freio é aplicado. A categoria 0 para em conformidade com IEC 60204 (→ #53).
2	Use a parada controlada para desabilitar o drive, se a velocidade ficar abaixo do limiar <i>CS.VTHRESH</i> ou se esgotar o tempo, o freio é aplicado. A categoria 1 para em conformidade com IEC 60204 (→ # 53).

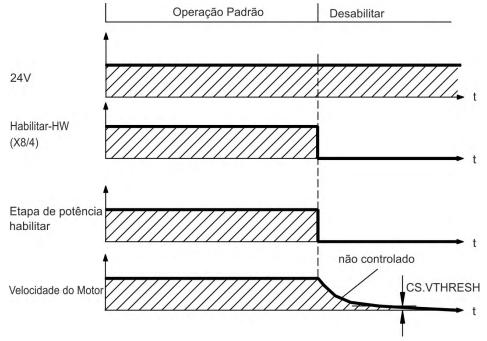


Se a velocidade ficar abaixo do limiar *CS.VTHRESH* ou esgotar o tempo, o freio é aplicado (→ #118).

7.14.2.2 Comportamento do desligamento usando uma entrada digital (parada controlada)

Esta é uma categoria de parada 2 em conformidade com IEC 60204 (→ #53).

Uma entrada digital pode ser configurada para levar o motor até uma parada controlada e depois desabilitar o drive e aplicar o freio de retenção.(se presente). Consulte a ajuda do WorkBench para obter informações sobre a configuração das Entradas Digitais.



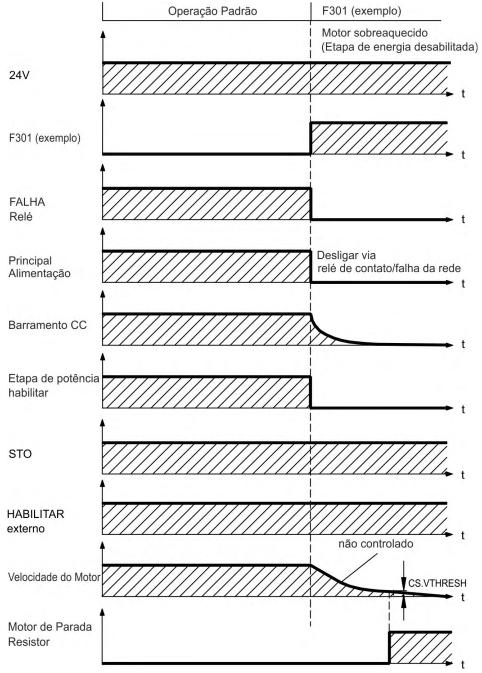
Se a velocidade ficar abaixo do limiar *CS.VTHRESH* ou esgotar o tempo, o freio é aplicado (→ #118).

7.14.2.3 Comportamento do desligamento usando uma entrada Enable HW (parada não controlada)

Esta é a categoria 0 em conformidade com IEC 60204 (→ #53).

A entrada habilitar do hardware desabilita o estágio da energia imediatamente

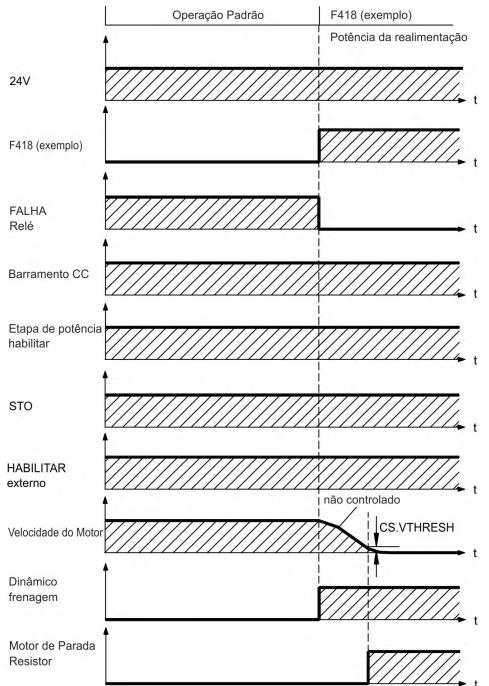
Se a velocidade fica abaixo do limiar *CS.VTHRESH* ou esgotar o tempo o freio de retenção do motor é aplicado (→ # 118). Defina o parâmetro MOTOR.BRAKEIMM para 1 com eixos verticais, para aplicar o freio de retenção do motor imediatamente após Desabilitar o Hardware.


7.14.2.4 Comportamento do desligamento em caso de uma falha

O comportamento do drive depende sempre do tipo de falha e da configuração de um número de parâmetros diferentes (DRV.DISMODE, VBUS.UVFTHRESH, CS.VTHRESH, e outros; consulte a ajuda do WorkBench para mais detalhes). Consulte a seção *Mensagens de Falha e Advertência e Soluções* do ajuda do WorkBench em uma tabela que descreve o comportamento específico de cada falha.

As páginas seguintes mostram exemplos de possíveis comportamentos de falhas.

Comportamento do desligamento para falhas que causam uma desabilitação imediata na etapa da energia


Esta é uma categoria de parada 0 em conformidade com IEC 60204 (→ #53).

Se a velocidade fica abaixo do limiar *CS.VTHRESH* ou esgotar o tempo, o freio de retenção do motor é aplicado (→ #118). Defina o parâmetro MOTOR.BRAKEIMM para 1 com eixos verticais, para aplicar o freio de retenção do motor imediatamente após as falhas.

Comportamento do desligamento para falhas que causam frenagem dinâmica

Esta é uma categoria de parada 0 em conformidade com IEC 60204 (→ #53).

Se a velocidade ficar abaixo do limiar *CS.VTHRESH* ou esgotar o tempo, o freio é aplicado (→ #118).

Comportamento do desligamento para falhas que causam uma parada controlada

Esta é uma categoria de parada 0 em conformidade com IEC 60204 (→ #53).

Se a velocidade ficar abaixo do limiar *CS.VTHRESH* ou esgotar o tempo, o freio é aplicado (→ # 118).

7.15 Parar / Parada de Emergência / Desligamento de Emergência

As funções de controle Parar, Parada de Emergência e Desligamento de Emergência são definidas pela IEC 60204. Observações sobre os aspectos de segurança dessas funções podem ser encontradas na ISO 13849 e IEC 62061.

INFORMAÇÃO

O parâmetro DRV.DISMODE deve ser definido para 2 para implementar as diferentes categorias de parada. Consulte a ajuda do WorkBench para configurar o parâmetro.

Nenhuma segurança funcional!

Se a carga não está bloqueado com segurança, isso pode resultar em ferimentos graves. Para carga vertical a carga poderia cair.

- Segurança funcional, por ex., com carga suspensa (eixos verticais), requer um freio mecânico adicional que deve ser operado com segurança, por exemplo por um controle de segurança.
- Defina o parâmetro MOTOR.BRAKEIMM para 1 com eixos verticais, para aplicar o freio de retenção (→ # 118) imediatamente após falhas ou a opção Hardware desabilitado.

7.15.1 Parar

A função de parada desliga a máquina em uma operação normal. A função de parada é definida pela IEC 60204.

INFORMAÇÃO

A Categoria de Parada deve ser determinada por uma avaliação de riso da máquina.

A função de parada deve ter prioridade sobre as funções de início designadas. As seguintes categorias de parada são definidas:

Categoria de Parada 0

Desligamento do desligamento imediato do fornecimento de energia para a máquina do drive (isso é um desligamento controlado). Com a função de segurança aprovada STO (→ # 55) o drive pode ser parado usando seus eletrônicos internos (IEC 61508 SIL2).

Categoria de Parada 1

Um desligamento controlado, em que o fornecimento de energia para a máquina do drive é mantido para realizar o desligamento e o fornecimento de energia somente sera interrompido quando o desligamento tiver sido concluído.

Categoria de Parada 2

Um desligamento controlado, em que o fornecimento de energia para a máquina do drive é mantido.

As paradas Categoria de Parada 0 e Categoria de Parada 1 devem ser operadas de forma independente do modo de operação, sendo que a parada de Categoria 0 deve ter prioridade.

Se necessário deve ser feita a conexão de dispositivos de proteção e lock-outs. Se aplicável, a função de parada deve sinalizar o seu status para o controle lógico. Uma redefinição da função de parada não deve criar uma situação de perigo

7.15.2 Circuito de Parada

A função Parada de Emergência é usada para o desligamento mais rápido possível da máquina em situação de perigo. A função de Parada de Emergência é definida pelo IEC 60204. Os princípios dos dispositivos de parada de emergência e aspectos funcionais são definidos pela ISO 13850.

A função de parada de emergência será acionada por ações manuais de uma única pessoa. Deve ser totalmente funcional e disponível em todos os momentos. O usuário deve entender instantaneamente como operar este mecanismo (sem consultar referências ou instruções).

INFORMAÇÃO

A Categoria de Parada para Parada de Emergência deve ser determinada por uma avaliação de riso da máquina.

Além dos requisitos de parada, a Parada de Emergência deve preencher os seguintes requisitos:

- A Parada de emergência deve ter prioridade sobre todas as outras funções e controles em todos os modos de operação.
- A energia alimentada para qualquer drive que possa causar situações de perigo deve ser desligada o mais rápido possível, sem causar maiores riscos(Categoria de parada 0) ou deve ser controlada de tal forma que nenhum movimento cause perigo, e seja parado o mais rápido possível (Categoria de Parada 1).
- A redefinição não deve iniciar um reinício.

7.15.3 Desligamento de Emergência

A função Desligamento de Emergência é usada para fornecer energia elétrica para a máquina. Isto é feito para prevenir que os usuários contra qualquer risco de energia elétrica (por exemplo impacto elétrico). Os aspectos funcionais do Desligamento de Energia são definidos no IEC 60364-5-53.

A função de desligamento de emergência será acionada por ações manuais de uma única pessoa.

INFORMAÇÃO

O resultado de uma avaliação de risco da máquina determina a necessidade de uma função de Desligamento de Emergência.

O Desligamento de Emergência é feito desligando o fornecimento de energia pelos dispositivos de comutação eletromecânicos. Isto resulta em uma parada de categoria 0. Se esta categoria de parada não é possível na aplicação, então o Desligamento de Emergência deve ser substituído por outras medidas (por exemplo proteção contra toque direto).

7.16 Segurança de Torque Desligado (STO)

A implementação de segurança do STO no AKD é certificada. A implementação do circuito de segurança usada para a função de segurança do "Segurança de Torque" no drive é adequada para SIL 2 em conformidade com IEC 62061 e PLd / CAT3 em conformidadecom a ISO 13849-1. É possível SIL3/PLe com drives AKD-x04807, se ambas as entradas STO-Enable e os correspondentes sinais STO-Status forem usados.

AKD-x003 até AKD-x024

Uma entrada digital adicional (STO) libera a etapa de saída da energia do drive desde que seja aplicado um sinal de 24 V nesta entrada. Se a entrada do STO opera um circuito aberto, a energia não será mais alimentada pelo motor, e o drive perderá todo o torque e será reduzido até parar.

INFORMAÇÃO

Esta entrada não é compatível com IEC 61131-2. Assim, você pode alcançar uma parada de categoria 0 (→ #53) usando a entrada de STO sem alterar um contator de rede.

AKD-x048

Duas entradas digitais adicionais (STO-Enable 1 e STO-Enable 2) liberam o estágio de potência de saída do drive enquanto 24 V for aplicado à essas entradas. Se uma das entradas STO opera um circuito aberto, a energia não será mais alimentada pelo motor, e o drive perderá todo o torque e será reduzido até parar.

INFORMAÇÃO

Essas entradas não são compatíveis com IEC 61131-2. Assim, você pode alcançar uma parada de categoria 0 (→ #53) usando as entradas de STO sem alterar um contator de rede.

7.16.1 Dados das características de segurança

Os subsistemas (KC1) são descritos com os seguintes dados das características:

AKD-x003 up to AKD-x024

Dispositivo	Dispositivo Modo de Ope- ISO ração 13849-1		IEC 62061	PFH [1/h]	T _M [Anos]	SFF [%]
STO	canal único	PLd, CAT 3	SIL 2	1,50E-07	20	100

AKD-x048

Dispositivo	Modo de Ope- ração	ISO 13849-1	IEC 62061	PFH [1/h]	T _M [Anos]	SFF [%]
STO	canal único	PL d, CAT 2	SIL 2	1,88E-07	20	89
STO	canal duplo	PLd, CAT 3	SIL 2	5,64E-09	20	87
STO	canal duplo com teste periódico	PL e, CAT 4	SIL 3	5,64E-09	20	87

AVISO

Embora raro, é possível que um evento ocorra se, dentro de um curto período de tempo, 2 IGBTs não adjacentes sofram um curto-circuito. Nesse caso, um movimento de ângulo máximo de 120° (elétrico) pode ocorrer. Esse efeito só pode acontecer se o drive estiver na função de STO. Se a taxa total de falha do IGBT for um encaixe de 120, normalmente um circuito pequeno de encaixe 60 será válido (modelo 50:50). Em tal evento, 2 IGBTs específicos precisarão falhar ao mesmo tempo. O cálculo mostra a probabilidade de 1,5 x* 10⁻¹⁵ por hora (sem causa comum de falha). Mesmo se a função de STO for emitida por um ano todo, esse evento só ocorrerá a cada 100 bilhões de anos.

7.16.2 Instruções de segurança

▲ ATENÇÃO

Sem poder de travagem!

Podem resultar em lesões sérias quando a carga não está travada adequadamente. O drive não pode manter a carga enquanto o STO está ativo.

 Use uma trava mecânica de segurança adicional (por exemplo, por um freio de retenção do motor).

▲ ATENÇÃO

Início automático!

Risco de morte ou ferimento sério à humanos trabalhando na máquina. O drive pode reinicializar automaticamente depois de ligar, queda de tensão ou interrupção da tensão de alimentação, dependendo da configuração de parâmetro. Se o parâmetro DRV.ENDEFAULT for configurado como 1,

- coloque um aviso na máquina ("ATENÇÃO: Início automático possível" ou similar) e
- garanta, que ligar não seja possível, enquanto humanos estejam em uma área perigosa da máquina.

▲ CUIDADO

Alta tensão!

Há risco de choques elétricos e lesões. A função STO não fornece uma separação elétrica da saída de potência. Se for necessário acesso aos terminais de potência do motor,

- o drive deve ser desconectado da alimentação de rede considerando
- o tempo de descarga do circuito intermediário.

AVISO

Se a função de segurança STO for ativada automaticamente por um sistema de controle, então certifique-se de que a saída do controle é monitorado para possível mau funcionamento. O monitoramento pode ser usado para evitar uma saída com falha por ativar sem intenção a função STO. Já que a função STO é um sistema de um canal, engates errados não serão reconhecidos.

AVISO

Não é possível realizar um freio controlado se a função "Enable STO" controlado pelo drive estiver desligada. Se for necessário freio controlado antes do uso da função STO, o drive deve ser freado e a STO de entrada deve ser atrasada separadamente do +24 V.

AVISO

No caso de uma falha dupla específica num muito curto período de tempo (→ #55) num movimento único de máximo pode ocorrer um ângulo de 120° (elétrico). Este efeito apenas pode ocorrer se a unidade estiver na função STO. Mesmo se a função de STO for emitida por um ano todo, esse evento só ocorrerá a cada 100 bilhões de anos.

7.16.3 Use como indicado

A função STO é destinada exclusivamente ao fornecimento de uma parada segura funcional do sistema de movimento. Para alcançar esta segurança funcional, a fiação dos circuitos de segurança deve atender aos requerimentos de segurança da IEC 60204, ISO 12100 e ISO 13849.

AVISO

Use a seguinte sequência funcional quando a função STO for usada:

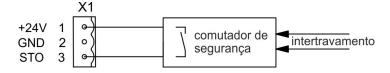
- 1. Freie o drive de uma maneira controlada (regulagem da velocidade = 0 V).
- 2. Quando a velocidade for igual a 0 rpm, desabilite o drive (enable = 0 V).
- 3. Se houver uma carga suspensa, trave o drive mecanicamente.
- 4. Ative a função STO.

7.16.4 Uso Proibido

A função STO não deve ser usada se o drive for desativado pelas seguintes razões:

- Operações de limpeza, manutenção e reparo, longos períodos inoperante. Em tais casos, todo o sistema deve ser desconectados da alimentação e protegidos (interruptor principal).
- Situações de desligamento de emergência. Em uma situação de desligamento de emergência, o contator principal é desligado (pelo botão de desligamento de emergência).

7.16.5 Dados técnicos e Pinagem


AKD-x003 até AKD-x024

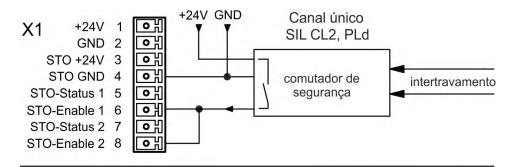
Entrada STO (X1)

- Linha comum de referência é a GND
- 24 V ±10%, 45 mA
- Isolamento galvânico para 250 Vcc
- Tempo de reação < 10 ms

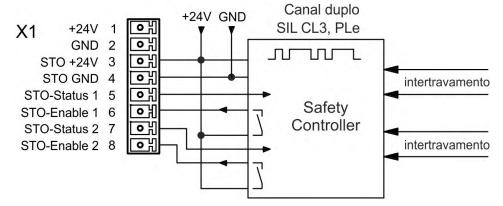
Pino	Sinal	Descrição
1	+24	Tensão auxiliar de +24 Vcc
2	GND	GND de alimentação de 24V
3	STO	STO habilitado (Torque seguro desligado)

AKD-x048

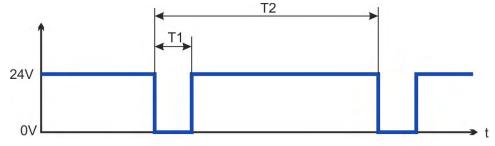
Entradas STO-Enable 1/2 (X1)


- Linha de referência é a STO GND
- Ligadas: 24 V ±10%, 16 to 25 mA
- Desligadas: 0...5 VDC
- Tempo de reação < 10 ms
- Isolamento galvânico para 250 Vcc

Saídas STO-Status 1/2 (X1)


- Linha de referência é a STO GND
- EN61131-2 tipo 1
- máx. 30 VDC (PELV), máx. 100mA
- PELV, EN 60204-1
- Isolamento galvânico para 250 Vcc

Pino	Descrição	Pino	Descrição
1	+24 VDC Tensão auxiliar	5	STO-Status 1
2	GND de alimentação de 24V	6	STO-Enable 1
3	STO +24 VDC Tensão auxiliar	7	STO-Status 2
4	STO GND	8	STO-Enable 2


7.16.6 Compartimento, Fiação

Como o drive atende à IP20, você deve selecionar um compartimento que permita operação segura do drive. O compartimento deve, pelo menos, atender à IP54. A fiação que permanecer dentro do compartimento especificado deve atender aos requerimentos do padrão IEC 60204-1 e ISO 13849-2 (Table D.4).

Se você estiver ligando condutores que estão fora do compartimento específico (IP54), os cabos devem ser colocados firmemente, protegidos de danos externos (por exemplo, colocando o cabo em uma canaleta), colocados em diferentes cabos revestidos ou protegidos individualmente por conexão de aterramento.

7.16.7 OSSD Pulsos de teste

Em geral, os controladores de segurança verificam as saídas periodicamente durante uma operação normal. Esses procedimentos de teste criam pulsos para a entrada STO-Enable.

INFORMAÇÃO

Pulsos de teste T1 ≤ 300 μs e T2 ≥ 200 ms não terão influência alguma para a função STO de segurança relevante.

Os pulsos de teste, que estão fora do escopo dessa especificação, mudarão a função STO, mas não criarão uma situação de perigo.

7.16.8 Descrição funcional

Quando a função STO (Torque Seguro Desligado) não for necessária, então o STO da entrada deve ser conectada diretamente ao +24 V. A função é então desviada e não pode ser usada. Se a função STO estiver em uso, então o STO de entrada deve ser conectado à saída de um controle de segurança ou um relé de segurança, que atenda, pelo menos, aos requerimentos de PLd, CAT 3 de acordo com a ISO 13849 (diagrama de conexão: (→ #62)).

Controle de canal único SIL2/PLd

Com o controle de canal único da função de segurança STO (SIL2/PLd), o STO será trocado por uma saída de um dispositivo interruptor de segurança (por exemplo, relé de segurança). Acionamento errôneo não será reconhecido. Assim, a saída do controle deve ser supervisionada para possível mau funcionamento.

STO	ENABLE	Monitor	Motor possui torque	Safety
0 V	0 V	n602	não	sim
0 V	+24 V	F602	não	sim
+24 V	0 V	modo de op	não	não
+24 V	+24 V	modo de op com 'ponto'	sim	não

Quando a função STO está engatada durante a operação separando o STO de entrada do 24 V, o motor desacelera sem controle e o drive exibe a falha F602.

Controle de canal duplo SIL2/PLd (somente com AKD-x048)

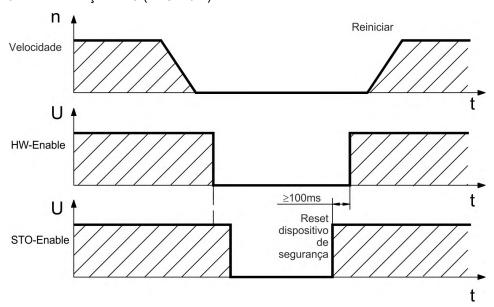
Com o controle de canal duplo da função de segurança STO (SIL2/PLd), os caminhos de desativação STO-Enable1 e STO-Enable2 são trocados separadamente por duas saídas de um dispositivo interruptor de segurança (por exemplo, relé de segurança).

STO-Enable1	STO-Enable2	ENABLE	Monitor	Motor possui torque	Safety
0 V	0 V	0 V	n602	não	sim
0 V	0 V	+24 V	F602	não	sim
+24 V	+24 V	0 V	modo de op	não	não
+24 V	+24 V	+24 V	modo de op com	sim	não
			'ponto'		
+24 V	0 V	0 V	n602	não	não
+24 V	0 V	+24 V	F602	não	não
0 V	+24 V	0 V	n602	não	não
0 V	+24 V	+24 V	F602	não	não

Controle de canal duplo SIL3/PLe (somente com AKD-x048)

Com o controle de canal duplo da função de segurança STO, os caminhos de desativação STO-Enable1 e STO-Enable2 são trocados separadamente por duas saídas de um controle de segurança (consulte a tabela acima para ver os estados lógicos).

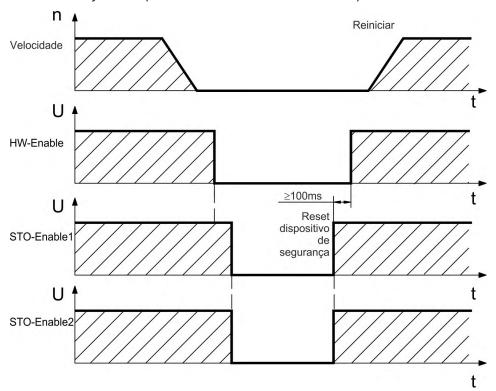
INFORMAÇÃO


Para alcançar PL e ou SIL CL3, o interruptor de segurança do inibidor de pulso deve ser testado periodicamente analisando os sinais STO-Status (→ #64).

7.16.8.1 Diagrama do sinal (sequência)

Canal único, AKD-x003 até AKD-x024

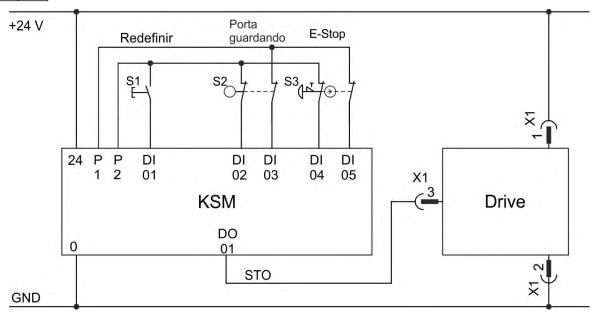
O diagrama abaixo mostra como usar a função STO para uma parada de drive segura e operação sem falhas do drive.


- 1. Freie o drive de uma maneira controlada (regulagem da velocidade = 0 V).
- 2. Quando a velocidade for igual a 0 rpm, desabilite o drive (Enable = 0 V).
- 3. Ative a função STO (STO = 0 V).

Dois canais, AKD-x048

O diagrama abaixo mostra como usar a função STO para uma parada de drive segura e operação sem falhas do drive.

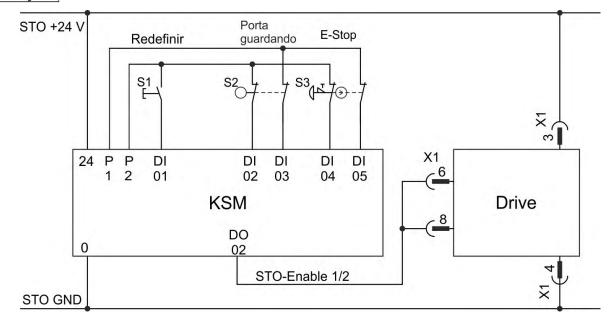
- 1. Freie o drive de uma maneira controlada (regulagem da velocidade = 0 V).
- 2. Quando a velocidade for igual a 0 rpm, desabilite o drive (Enable = 0 V).
- 3. Ative a função STO (STO-Enable 1 e STO-Enable 2 = 0 V)



7.16.8.2 Exemplos de fiação

Canal único SIL2/PLd com AKD-x003 para 024

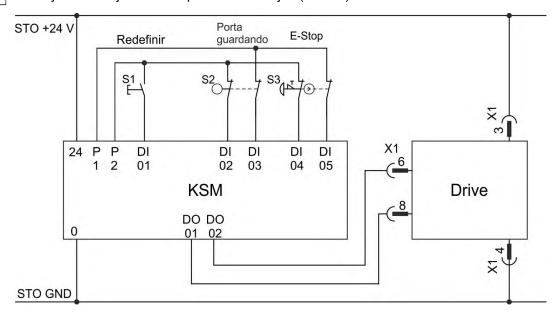
A aplicação de amostra abaixo mostra a proteção da porta e o interruptor de emergência, controlados pelo módulo de segurança KSM da Kollmorgen para mudar a entrada STO-Enable de um AKD-x003 para 024 para SIL2, PLd.


INFORMAÇÃO Reveja as instruções de compartimento e fiação (→ #59).

Canal único SIL2/PLd com AKD-x048

A aplicação de amostra abaixo mostra a proteção da porta e o interruptor de emergência, controlados pelo módulo de segurança KSM da Kollmorgen para mudar a entrada STO-Enable de um dispositivo AKD-x048 para SIL2, PLd. Sinais STO-Status não precisam ser usados.

INFORMAÇÃO Reveja as instruções de compartimento e fiação (→ #59).

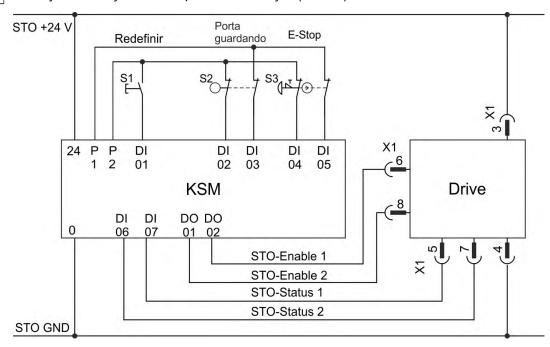


Canal duplo SIL2/PLd somente com AKD-x048

A aplicação de amostra abaixo mostra a proteção da porta e o interruptor de emergência, controlados pelo módulo de segurança KSM da Kollmorgen para mudar as entradas STO-Enable de um dispositivo AKD-x048 para SIL2, PLd. Sinais STO-Status não precisam ser usados.

INFORMAÇÃO

Reveja as instruções de compartimento e fiação (→ #59).



Canal duplo SIL3/PLe somente com AKD-x048

A aplicação de amostra abaixo mostra a proteção da porta e o interruptor de emergência, controlados pelo módulo de segurança KSM da Kollmorgen para mudar as entradas STO-Enable de um dispositivo AKD-x048 para SIL3, PLe. O interruptor de segurança do inibidor de pulso deve ser testado periodicamente analisando STO-Status no controle de segurança.

INFORMAÇÃO

Reveja as instruções de compartimento e fiação (→ #59).

7.16.8.3 Teste funcional

Controlo de canal duplo/único, SIL CL2 / PLd

AVISO

Deve testar a função de STO após um arranque inicial da unidade, após cada interferência nas ligações elétricas da unidade ou após a troca de um ou vários componentes da unidade.

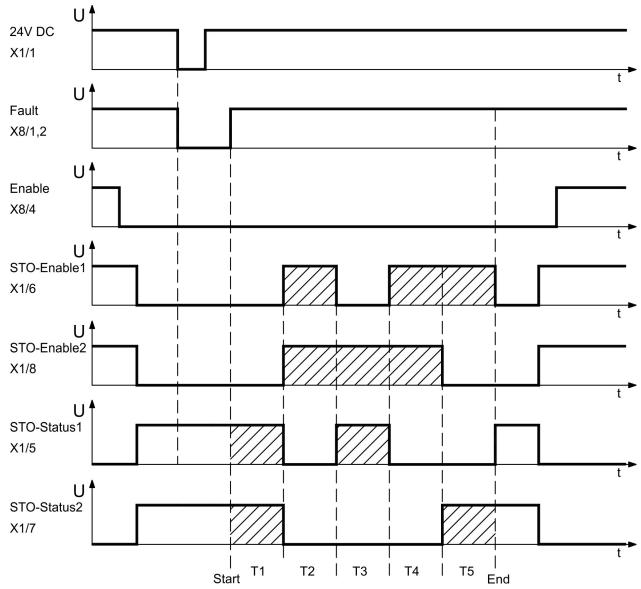
Método 1, unidade restante ativada		Método 2, unidade desativada			
1.	Pare a unidade, com ponto de regulação de 0V.	1.	Pare todas as unidades, com ponto		
	Mantenha a unidade ativada.		de regulação de 0V, desative a uni-		
	PERIGO: Não entre na área perigosa!		dade (Ativar=0 V).		
2.	Ative a função de STO, por exemplo, abrindo o	2.	Ative a função de STO, por exem-		
	filtro de proteção.		plo, abrindo o filtro de proteção.		
3.	O contacto de falha abre, o conector de rede	3.	A unidade apresenta o aviso n602.		
	solta-se e a unidade apresenta falha F602.				

Controlo de canal duplo, SIL CL3 / PLe

AVISO

Para atingir PL e ou SIL CL3, a comutação segura do inibidor de impulsos deve ser testada periodicamente, analisando os sinais de STO-Status:

- na inicialização do sistema,
- na reinicialização após acionar um dispositivo de proteção,
- pelo menos a cada 8 horas pelo operador.


As entradas STO-ENABLE 1 e STO-ENABLE 2 são acionadas em estágios de acordo com a sequência de teste definida. O estado de comutação do inibidor de impulsos está disponível numa STO-Status de AKDe deve ser analisado para atingir uma relação de cobertura de diagnóstico suficiente:

- Diagnóstico com controlador não seguro externo, teste com sequência dinâmica:
 - ciclo de teste: com cada início do dispositivo, mínimo uma vez por dia.
 - relação de cobertura de diagnóstico: 60 %
- Diagnose mit externem, sicheren Controller, Test mit dynamischer Sequenz:
 - ciclo de teste: com cada início do dispositivo, mínimo uma vez por dia.
 - relação de cobertura de diagnóstico: 90 %

Uma descrição de sequência de teste pode ser encontrada no Manual de instruções AKD.

Inicie as condições da sequência de teste:

- Prontidão operacional FAULT = "1"
- Ativar sinal ENABLE = "0"
- STO-ENABLE 1 = "0" e STO-ENABLE 2 = "0"

Legenda:

FAULT: saída do relé, 1=pronto para operar

STO-ENABLE 1: entrada digital, 1° caminho de desligamento STO-ENABLE 2: entrada digital, 2° caminho de desligamento

STO-STATUS 1: saída digital, estado de mudança do 1º inibidor de pulso STO-STATUS 2: saída digital, estado de mudança do 2º inibidor de pulso

T1 ... T5: Sequência de teste Start: Início da sequência de teste End: Fim da sequência de teste

7.17 Proteção contra o risco de choques

7.17.1 Corrente de fuga

A corrente de fuga através do condutor PE resulta de uma combinação de correntes de fuga de equipamento e cabo. O padrão de frequência da corrente de fuga inclui um número de frequências, sendo que os disjuntores de corrente residual avaliam definitivamente a corrente de 50 Hz. Por esta razão, a corrente de fuga não pode ser medida usando um multímetro convencional. Como regra, a seguinte suposição pode ser feita para corrente de fuga em nossos cabos de baixa capacidade em uma tensão de rede de 400 V, dependendo da frequência do relógio da etapa de saída:

c_{fuga} = **n x 20 mA + L x 1 mA/m** a 8 kHz de frequência do relógio na etapa de saída a_{fuga} = **n x 20 mA + L x 2 mA/m** a 16 kHz de frequência do relógio na etapa de saída (onde cfuga=corrente de fuga, n=quantidade de drives, L=comprimento do cabo do motor) Em outras faixas de tensão de rede, a corrente de fuga varia em proporção à tensão.

Exemplo: 2 x drives + um cabo de motor de 25m a uma frequência de relógio de 8 kHz: 2 x 20 mA + 25 m x 1 mA/m = 65 mA de corrente de fuga.

INFORMAÇÃO

Como a corrente de fuga para o PE é maior que 3,5 mA, em conformidade com IEC61800-5-1, a conexão PE deve ser ou dobrada ou um cabo de conexão com uma seção transversal >10 mm² deve ser usado. Use o terminal de PE e os parafusos de conexão do PE para atender a este requerimento.

As seguintes medidas podem ser usadas para minimizar correntes de fuga:

- Reduza o comprimento do cabo do motor.
- Use cabos de baixa capacidade (→ #42).

7.17.2 Dispositivo de proteção de corrente residual (RCD)

Em conformidade com IEC 60364-4-41 – Regulamentos para instalação e IEC 60204 – Equipamento elétrico de maquinário, dispositivos de proteção de corrente residual (RCDs) podem ser usados dado que os regulamentos requisitados são atendidos. O AKD é um sistema trifásico com uma ponte B6. Portanto, os RCDs que são sensíveis a todas as correntes devem ser usados para detectar qualquer falha de corrente CC. Consulte o capítulo acima para mais informações sobre a regra geral para determinar a corrente de fuga.

Correntes residuais nominais nos RCDs:

10 a 30 mA	Proteção contra "contato indireto" (proteção pessoal contra incêndios) equipamentos fixos e móveis, assim como para "contato direto".					
50 a 300 mA	Proteção contra "contato indireto" (proteção pessoal contra incêndios) para equipamentos fixos					

INFORMAÇÃO

Recomendação: Para proteger contra contato direto (com cabos de motor menores que 5 m) Kollmorgen recomenda-se que cada drive seja protegido individualmente usando um RCD de 30 mA sensível a todas as correntes.

Se usar um RCD seletivo, o processo de avaliação mais inteligente irá prevenir disparos espúrios do RCD.

7.17.3 Transformadores de isolamento

Quando a proteção contra contato indireto for absolutamente essencial, apesar de uma corrente de fuga maior, ou quando uma forma alternativa de proteção contra riscos de choque é procurada, o AKD também pode ser operado através de um transformador de isolamento (conexão esquemática (→ # 103)).

Um monitor de fuga à terra pode ser usado para monitorar curtos-circuitos.

INFORMAÇÃO

Mantenha o comprimento da fiação entre o transformador e o drive o mais curto possível.

8 Instalação mecânica

8.1	Notas Importantes	68
	Guia para instalação mecânica	
	Dimensões padrão dos desenhos mecânicos	
8.4	Dimensões estendidas dos desenhos mecânicos	.73

8.1 Notas Importantes

Alta corrente de fuga!

Há o perigo de ocorrer um choque elétrico por conta do alto nível de EMC que poderia resultar em lesões se o drive (ou o motor) não estiver aterrado contra EMC de forma adequada.

- Não use chapas de montagem pintadas (ou seja, não condutivas).
- Em circunstâncias desfavoráveis, use fita de malha de cobre entre os parafusos de ligação à terra e potencial de terra para desviar correntes.

AVISO

Proteja o drive de tensões inadmissíveis. Principalmente, não permita que quaisquer componentes sejam dobrados ou que quaisquer distâncias de isolamento sejam alteradas durante o transporte e manuseio. Evite contato com componentes eletrônicos e contatos.

AVISO

O drive irá alterar-se sozinho no caso de superaquecimento. Certifique-se de que há um fluxo adequado de ar frio e filtrado para a parte inferior do gabinete de controle, ou use um trocador de calor (\Rightarrow # 35).

AVISO

Não monte dispositivos que produzem campos magnéticos diretamente ao lado do drive. Campos magnéticos fortes podem afetar diretamente os componentes internos. Instale dispositivos que produzem campos magnéticos distante dos drives e/ou blinde os campos magnéticos.

8.2 Guia para instalação mecânica

As seguintes ferramentas são necessárias (no mínimo) para instalar o AKD; sua instalação em específico pode requerer ferramentas adicionais:

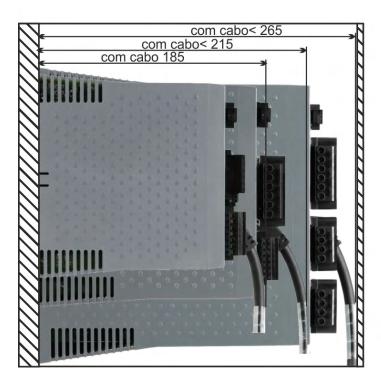
Parafusos de cabeça sextavada M4 (ISO 4762),

chave Allen em T de 3 mm, chave de fenda Phillips N° 2, chave de fenda pequena.

As dimensões e as posições do orifícios de montagem dependem da variante do drive:

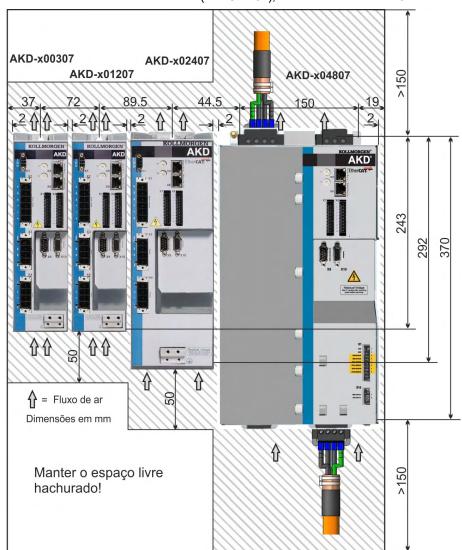
Variante do drive	Carcaça			
AKD-B, -P, -T	Dimensões padrão, (→ #69)			
AKD-T-IC, -M-MC, -M-M1	Dimensões padrão, (→ #73)			

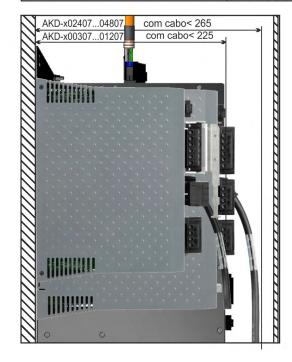
Instale a unidade do drive da seguinte forma:

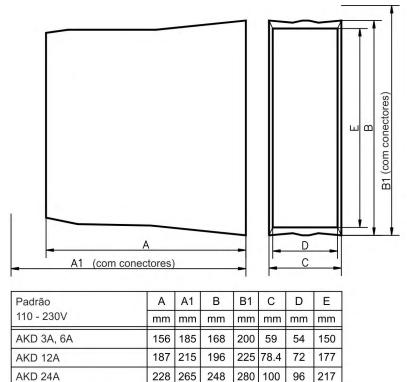

- Prepare o local. Monte o drive em um gabinete de controle fechado (→ #35). O local não deve ter materiais condutivos ou corrosivos. Para a posição de montagem no gabinete (→ #69)ff respectivamente (→ #73)ff..
- Verifique a ventilação. Verifique se a ventilação do drive está livre e mantenha-o dentro da temperatura ambiente permitida (→ #35). Mantenha o espaço livre necessário acima e abaixo do drive (→ #69)ff respectivamente (→ #73)ff.
- Verifique o sistema de arrefecimento. Se forem usados sistemas de arrefecimento para o gabinete de controle, posicione-os de tal modo que a água condensada não caia sobre o drive ou sobre os dispositivos periféricos.
- 4. **Monte o drive.** Monte o drive e a fonte de alimentação próximos um do outro na chapa condutiva de montagem de aterramento no gabinete.
- Aterre o drive. Para blindagem e aterramento em conformidade com o EMC, (→ #99).
 Aterre a chapa de montagem, a carcaça do motor e o CNC-GND do sistema de controle.

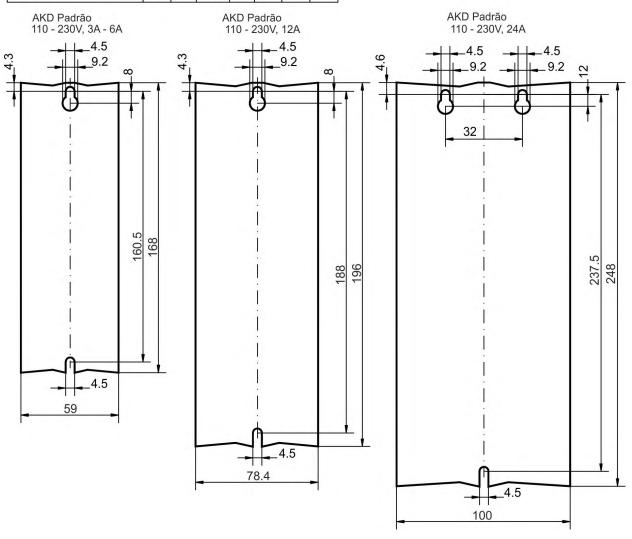
8.3 Dimensões padrão dos desenhos mecânicos

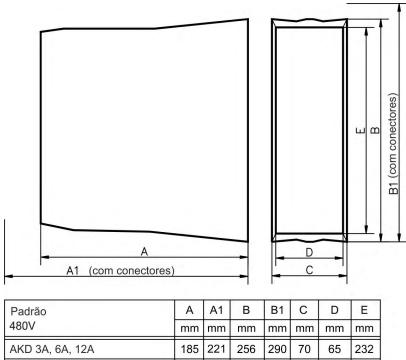
8.3.1 Layout do Gabinete de Controle AKD-xzzz06, Dimensões Padrão


Material: Parafusos sextavados M4 (a ISO 4762), chave Allen em T de 3 mm

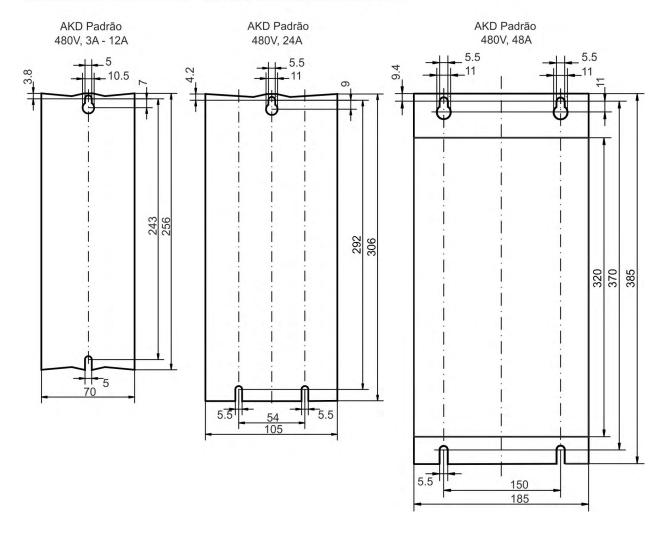



8.3.2 Layout do Gabinete de Controle AKD-xzzz07, Dimensões Padrão

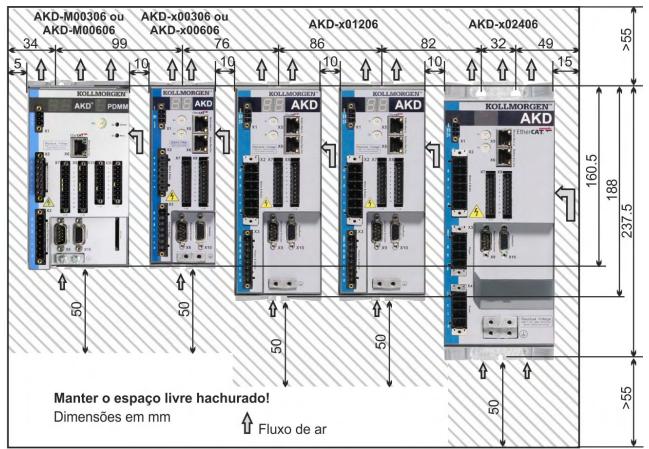

Material: Parafusos sextavados M4 (a ISO 4762), chave Allen em T de 3 mm

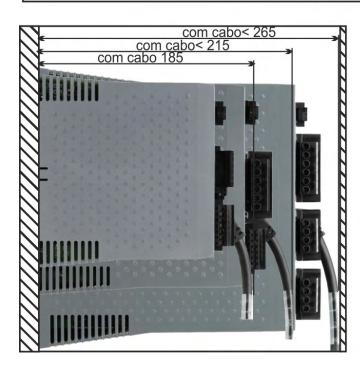


8.3.3 Dimensões AKD-xzzz06, Dimensões Padrão



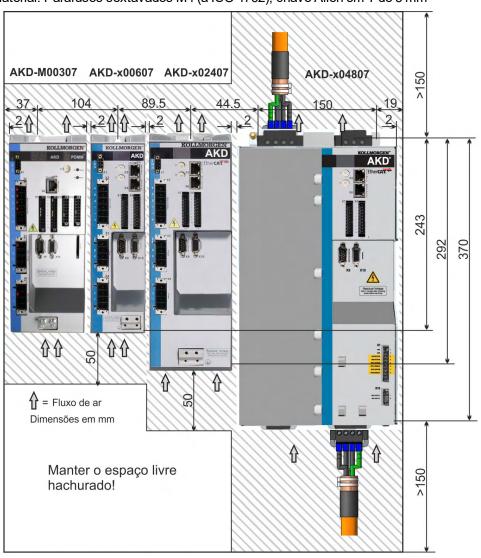
8.3.4 Dimensões AKD-xzzz07, Dimensões Padrão

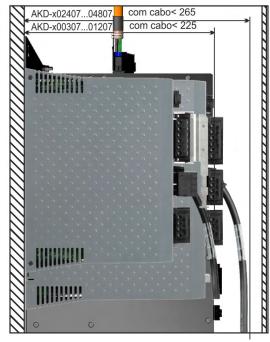

Padrão	Α	A1	В	В1	С	D	Е
480V	mm						
AKD 3A, 6A, 12A	185	221	256	290	70	65	232
AKD 24A	228	264	306	340	105	99	273
AKD 48A	225	264	385	526	185	181	320



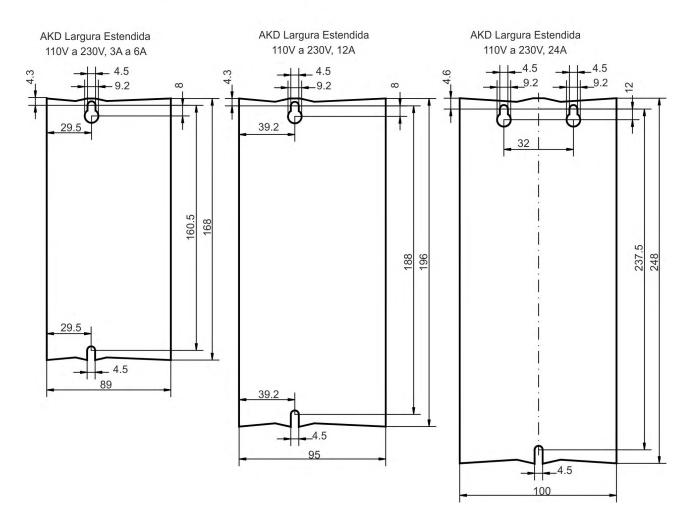
8.4 Dimensões estendidas dos desenhos mecânicos

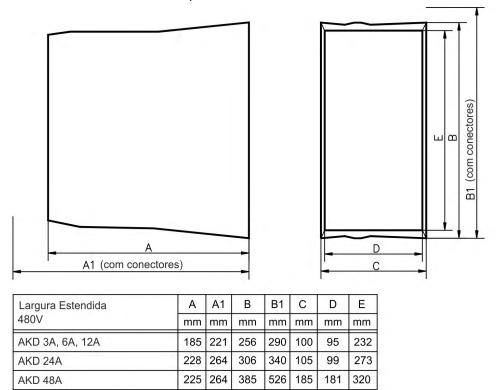
8.4.1 Layout do Gabinete de Controle, Exemplo com AKD-M00306

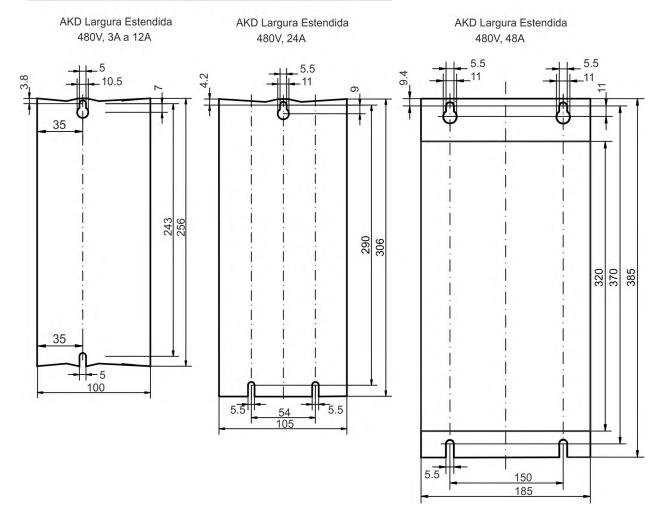

Material: Parafusos sextavados M4 (a ISO 4762), chave Allen em T de 3 mm




8.4.2 Layout do Gabinete de Controle, Exemplo com AKD-M00307


Material: Parafusos sextavados M4 (a ISO 4762), chave Allen em T de 3 mm




8.4.3 Dimensões AKD-xzzz06, dimensões estendidas

8.4.4 Dimensões AKD-xzzz07, dimensões estendidas

9 Instalação elétrica

9.1 Notas	Importantes	78
9.2 Guia p	oara a instalação elétrica	79
9.3 Fiação	o	80
9.4 Comp	onentes de um sistema servo	81
_	rama de conexão AKD-B, AKD-P, AKD-T	
9.6 Panor	rama de conexão AKD-M	91
	ção de ruído Interferência Eletromagnética (EMI)	
9.8 Conex	xão com a rede elétrica	103
9.9 Link d	le Barramento CC (X3, X14)	108
9.10 Cone	exão do potência do motor (X2)	
9.11 Freio	o de retenção do motor (X2, X15, X16)	118
	exão de feedback (X10, X9, X7)	
	renagem eletrônica, Operação mestre-escravo (X9, X7)	
_	exão de E/S	
9.15 Moni	itor de LED	165
9.16 Interi	ruptores rotativos (S1, S2, RS1)	
	es (B1, B2, B3)	
	para cartão SD	
	face de serviço (X11, X32)	
	face CAN-Bus (X12/X13)	
	face de Barramento de Movimento (X5/X6/X11)	

9.1 Notas Importantes

AVISO

Uma tensão de rede errada, um motor inadequado ou uma fiação errada vai danificar o drive. Verifique a combinação do drive e do motor. Compare a tensão nominal e a corrente das unidades. Implemente a fiação de acordo com o diagrama de conexão *Manual de Instalação*.

Alta tensão até 900 V!

Há um risco de lesão grave ou morte por choque elétrico ou por arco. Os capacitores podem ter tensões perigosas presentes até 7 minutos depois da fonte de alimentação estar desligada. Conexões de potência e controle podem estar ativas, mesmo que o motor não esteja em rotação.

- Somente instale ou ligue o equipamento quando desligado.
- Certifique-se de que o painél esteja desconectado com segurança (por exemplo, com um lock-out e sinais de aviso).
- Nunca remova conexões elétricas quando o drive ainda estiver ativo.
- Espere pelo menos 7 minutos depois de desconectar o drive da fonte de alimentação principal, antes de tocar nas seções do equipamento ativas ou desfazer quaisquer conexões.
- Para ter certeza, meça a tensão no link de barramento CC e espere até que a tensão esteja abaixo de 50 V.

AVISO

Uma tensão de rede errada, um motor inadequado ou uma fiação errada vai danificar o drive. Verifique a combinação do drive e do motor. Compare a tensão nominal e a corrente das unidades. Implemente a fiação de acordo com o diagrama de conexão: (→ #84). Certifique-se de que a máxima tensão nominal permitida nos terminais L1, L2, L3 ou +DC, − DC não é excedido em mais de 10%, mesmo nas condições mais desfavoráveis (consulte IEC 60204-1).

AVISO

Fusíveis externos excessivamente elevados vão colocar em risco cabos e dispositivos. Os fusíveis da entrada de alimentação CA e do fornecimento de 24 V devem ser instalados pelo usuário, para os melhores valores (→ #40). Dicas para o uso de disjuntores de corrente residual (RCD) (→ #66).

AVISO

Como a corrente de fuga para o PE é maior do que 3,5 mA, em conformidade com IEC61800-5-1, a conexão PE deve ser ou duplicada ou um cabo de conexão com uma seção transversal >10 mm² deve ser usado. É possível que existam medidas diferentes, de acordo com os padrões regionais.

AVISO

O status do drive deve ser monitorado pelo PLC para reconhecer situações críticas. Ligue o contato de FALHA em série ao circuito de desligamento de emergência da instalação. O circuito de desligamento de emergência deve operar o contator de abastecimento.

INFORMAÇÃO

É permitido utilizar a configuração do software para alterar as definições do drive. Qualquer outra alteração irá invalidar a garantia.

9.2 Guia para a instalação elétrica

Instale o sistema elétrico do drive da seguinte forma:

- 1. Selecione os cabos de acordo com IEC 60204 (→ #42).
- Instale a proteção e aterre o drive. Para uma proteção e aterramento em conformidade com EMC, consulte (→ # 99) e (→ # 84) ff. Aterre a chapa de montagem, carcaça do motor e CNC-GND do sistema de controle.
- 3. Ligue o drive e os conectores.
 - Observe as "Recomendações para redução de ruído (EMI)": (→ #99)
 - Ligue o contato de FALHA em série ao circuito de desligamento de emergência do sistema.
 - Conecte as entradas e saídas de controle digital.
 - Conectar o aterramento analógico (também se redes são usadas).
 - Conecte a fonte de entrada analógica, se necessário.
 - Conecte o dispositivo de feedback.
 - Conecte a opção do hardware.
 - Conecte o cabo do motor
 - Conecte a proteção nas duas extremidades. Use uma bobina motora se o cabo é maior que 25m.
 - Conecte o freio de retenção do motor e conecte a proteção nas duas extremidades.
 - Se necessário, conecte o resistor de regeneração externo (com fusíveis).
 - Conecte a alimentação auxiliar (valores máximos de tensão permitidos, consultar dados elétricos (→ #37) ou (→ #38).
 - Conecte o filtro de rede com AKD-xzzz06 (linhas blindadas entre o filtro e o drive).
 - Conecte a alimentação elétrica principal. Verifique o valor máximo de tensão permitido (→ #37) ou (→ #38).
 - Verifique o uso apropriado dos disjuntores de corrente residual (RCD): (→ #66)
 - Conecte o PC (→ # 171) para configurar o drive.
- 4. Verifique a fiação em comparação aos diagramas de fiação.

9.3 Fiação

O procedimento de instalação é descrito como um exemplo. Um procedimento diferente pode ser apropriado ou necessário, dependendo da aplicação do equipamento. A Kollmorgen pode fornecer cursos de treinamento para este procedimento mediante solicitação.

Alta tensão até 900 V!

Há um risco de lesão grave ou morte de choque elétrico ou de arco.

- Somente instale ou ligue o equipamento quando ele não estiver ativo, ou seja, quando nem a alimentação elétrica nem a tensão auxiliar de 24 V, nem as tensões de alimentação de qualquer outro equipamento conectado estejam ligadas.
- Certifique-se de que o gabinete está desconectado com segurança (por exemplo, com um lock-out e sinais de aviso). As tensões individuais são ligadas pela primeira vez durante a configuração.

AVISO

Somente a equipe profissional que é qualificada em engenharia elétrica tem permissão pra instalar o drive. Fios com a cor verde com uma ou mais listras amarelas só devem ser usadas para fio terra. Durante a instalação ou durante a substituição de cabos, utilizar apenas componentes normalizados, em conformidade com as especificações do capítulo 7.12 "Requisitos de Fiação e Cabos".

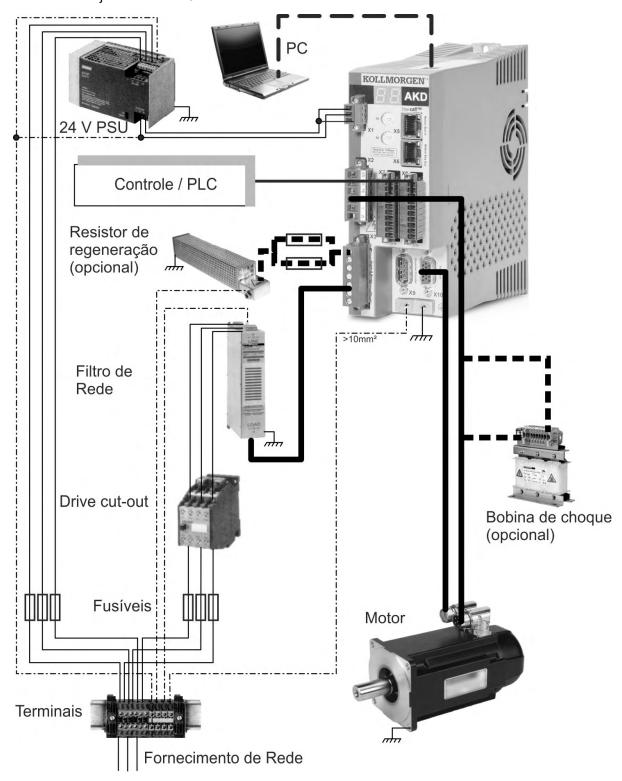
INFORMAÇÃO

O símbolo de terra, que você vai encontrar em todos os diagramas de fiação, indicam que você precisa ter cuidado para poder proporcionar uma ligação eletricamente condutora com a maior área de superfície possível entre a unidade indicada e a chapa de montagem no gabinete de controle. Esta conexão é para o aterramento eficaz de interferência HF, e não deve ser confundida com o símbolo PE (PE = aterramento de proteção, medida de segurança, como por IEC 60204).

Utilize os diagramas de conexão a seguir:

Visão geral (todas as conexões)::

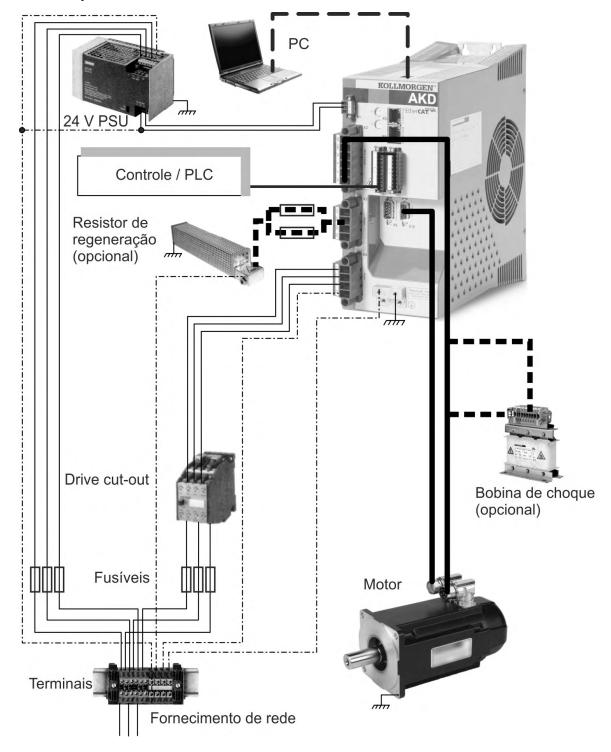
ALD DIDIT


- AKD-B/P/T	(→ #84) ff
- AKD-M	(→ #92)ff
Proteção:	(→ #99)
Principais alimentações:	(→ # 106)
Link de Barramento CC:	(→ # 108)
Motor:	(→ #116)
Feedback:	(→ #121)
Engrenagem eletrônica:	(→ #138)
Emulação de encoder:	(→ #140)
Entradas e saídas digitais e analógicas:	(→ # 146)
Interface de serviço:	(→ # 171)
Interface de CAN-Bus:	(→ # 175)
Interface de Motion bus	(→ # 180)

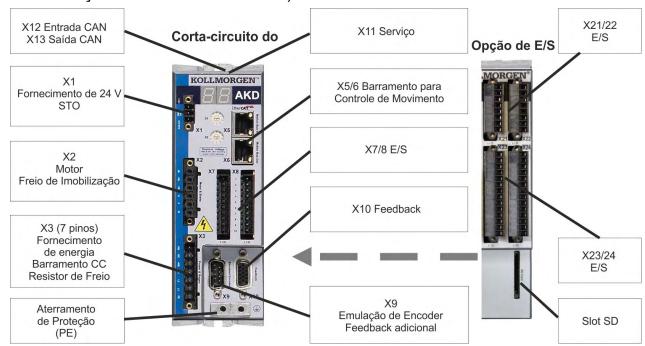
9.4 Componentes de um sistema servo

Com AKD-xzzz06

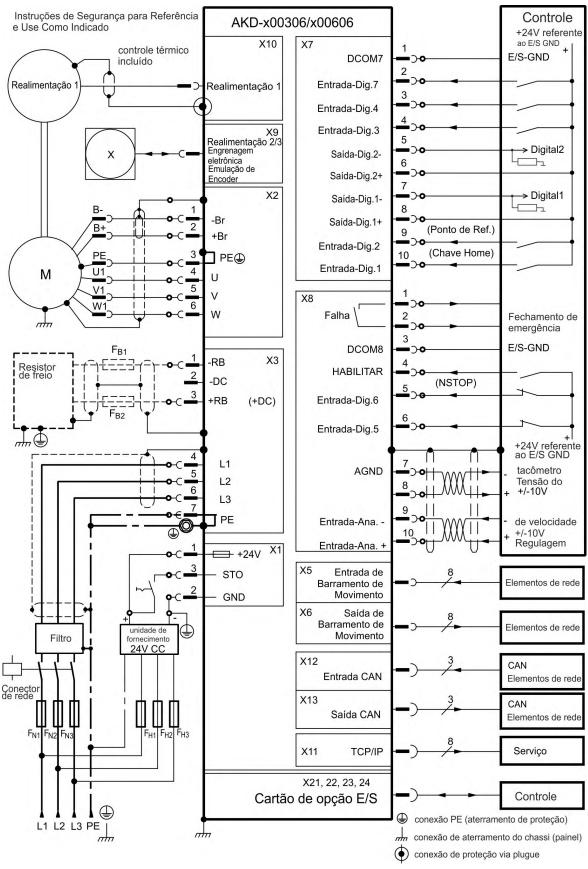
INFORMAÇÃO


Os cabos elaborado de forma vigorosa são protegidos. O aterramento elétrico é elaborado com linhas com traços e pontos. Os dispositivos opcionais são conectados com linhas tracejadas ao drive. Os acessórios necessários são descritos no manual de acessórios.

Com AKD-xzzz07

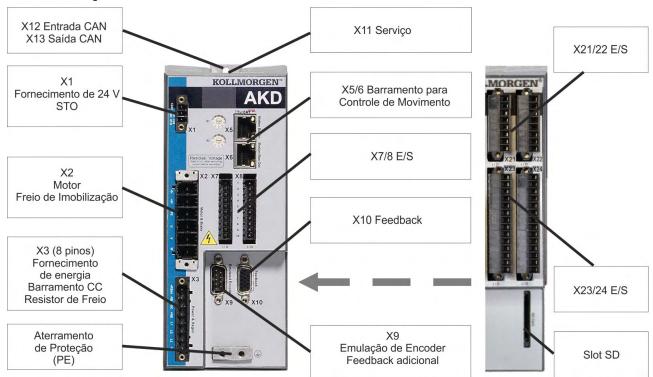

INFORMAÇÃO

Os cabos elaborado de forma vigorosa são protegidos. O aterramento elétrico é elaborado com linhas com traços e pontos. Os dispositivos opcionais são conectados com linhas tracejadas ao drive. Os acessórios necessários são descritos no manual de acessórios.

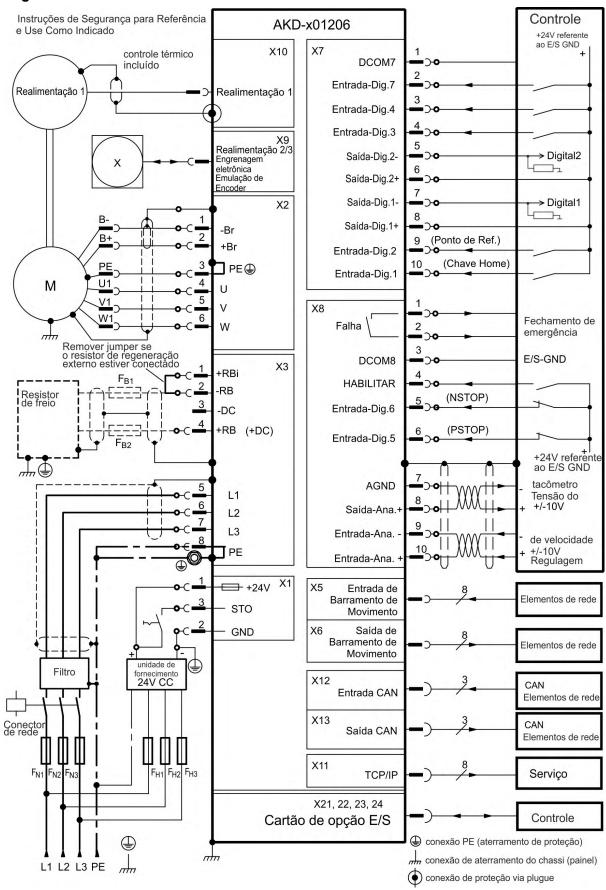


9.5 Panorama de conexão AKD-B, AKD-P, AKD-T

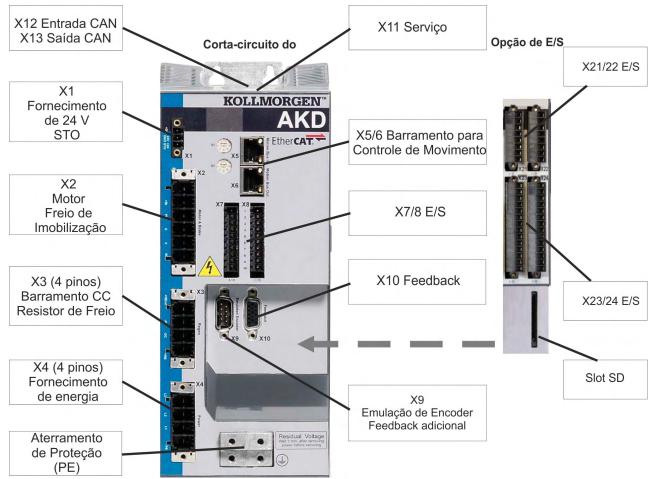
9.5.1 Atribuição do conector AKD-x00306, AKD-x00606



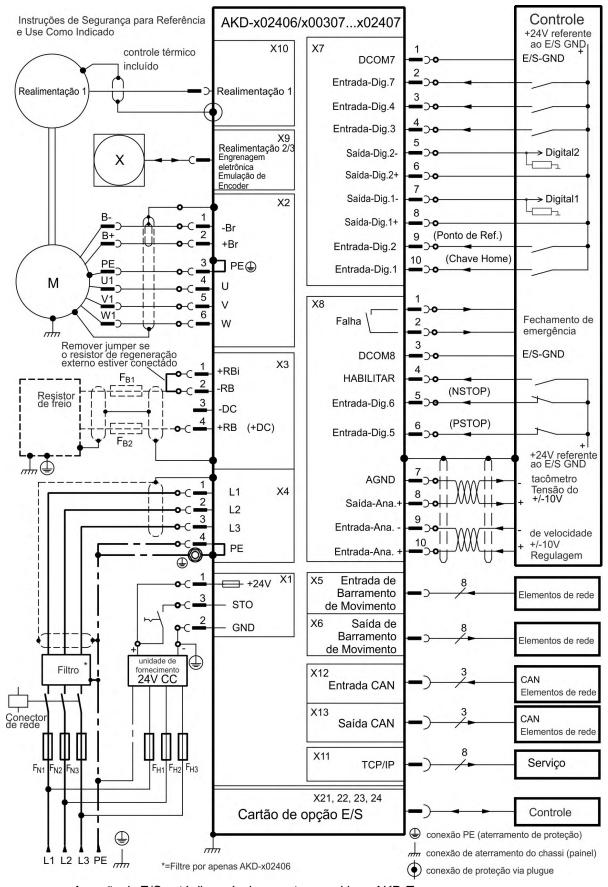
9.5.2 Diagrama de Conexão AKD-x00306, AKD-x00606


A opção de E/S está disponível somente para drives AKD-T.

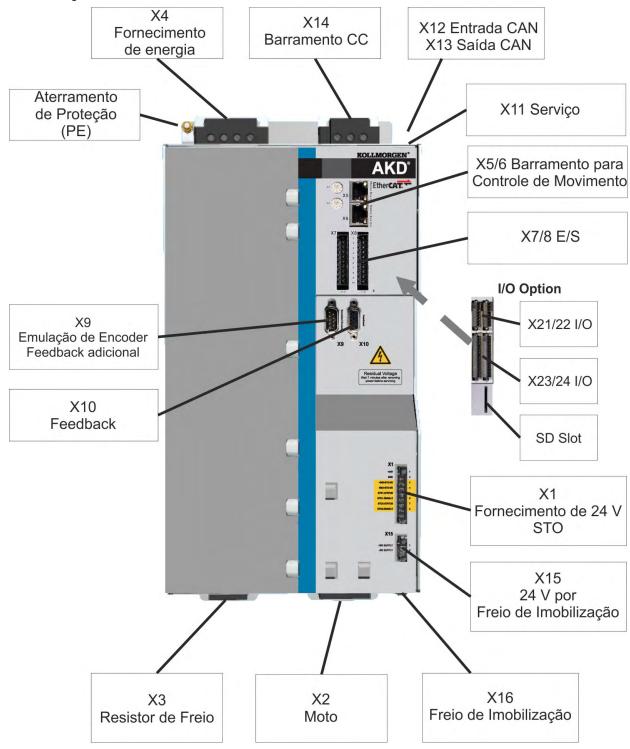
9.5.3 Atribuição do conector AKD-x01206


A opção de E/S está disponível somente para drives AKD-T.

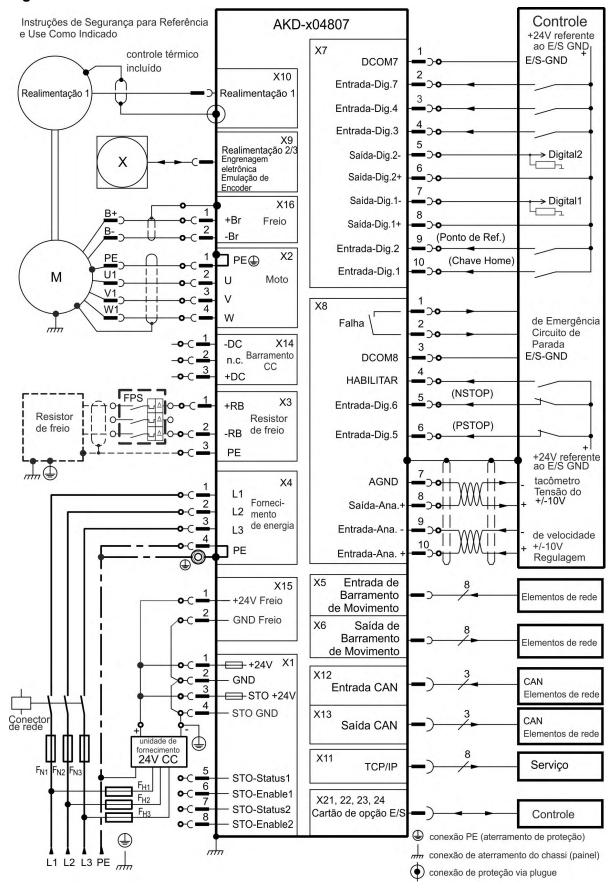
9.5.4 Diagrama de conexão AKD-x01206


A opção de E/S está disponível somente para drives AKD-T.

9.5.5 Atribuição do conector AKD-x02406 e AKD-x00307 a 02407

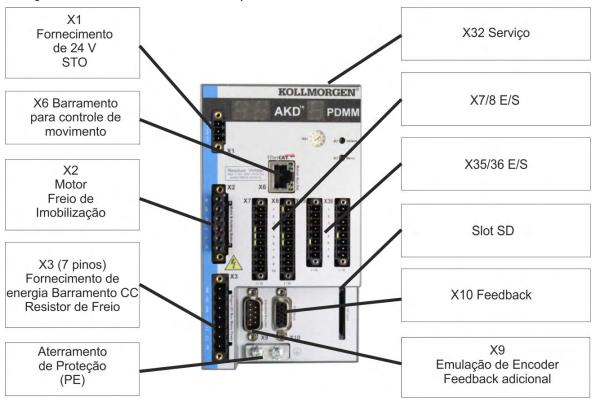

A opção de E/S está disponível somente para drives AKD-T.

9.5.6 Diagrama de conexão AKD-x02406 e AKD-x00307 a 02407

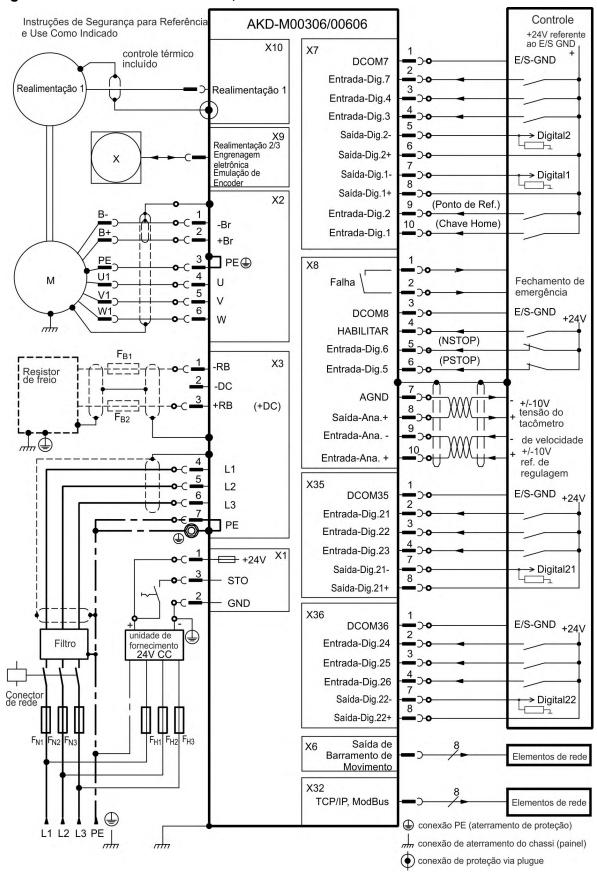


A opção de E/S está disponível somente para drives AKD-T.

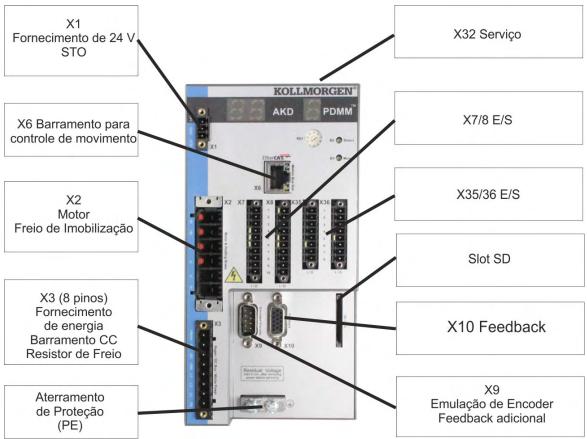
9.5.7 Atribuição do conector AKD-x04807

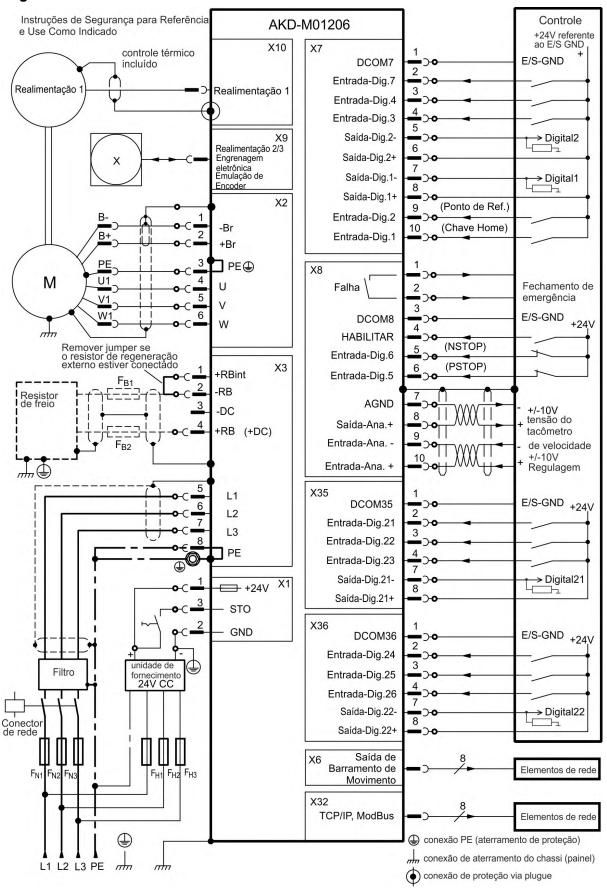


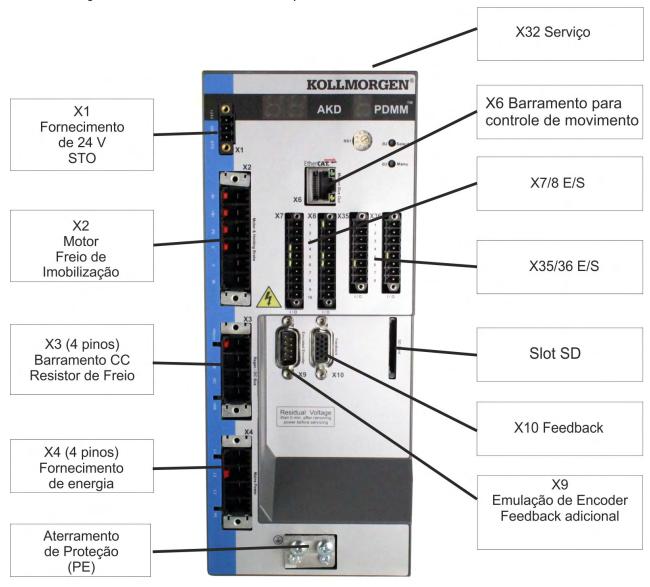
9.5.8 Diagrama de Conexão AKD-x04807

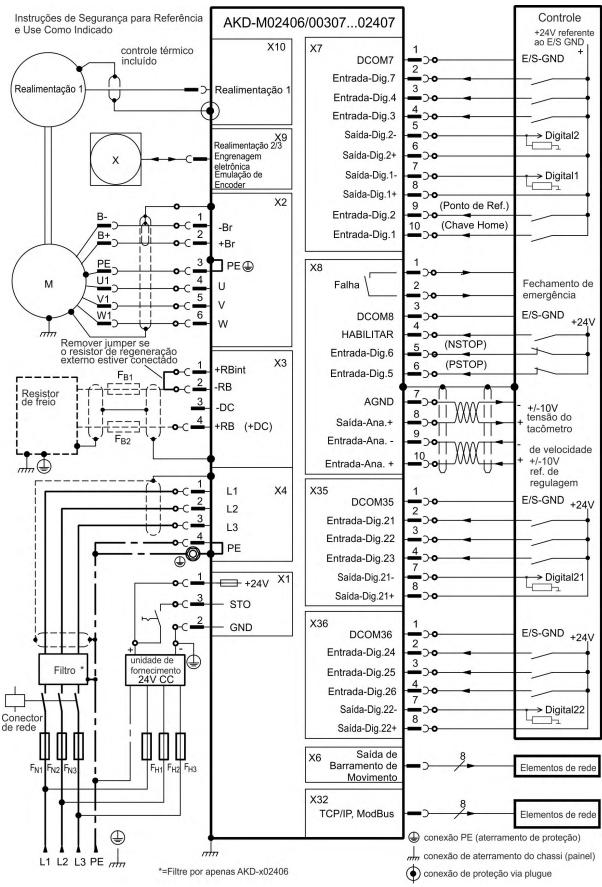


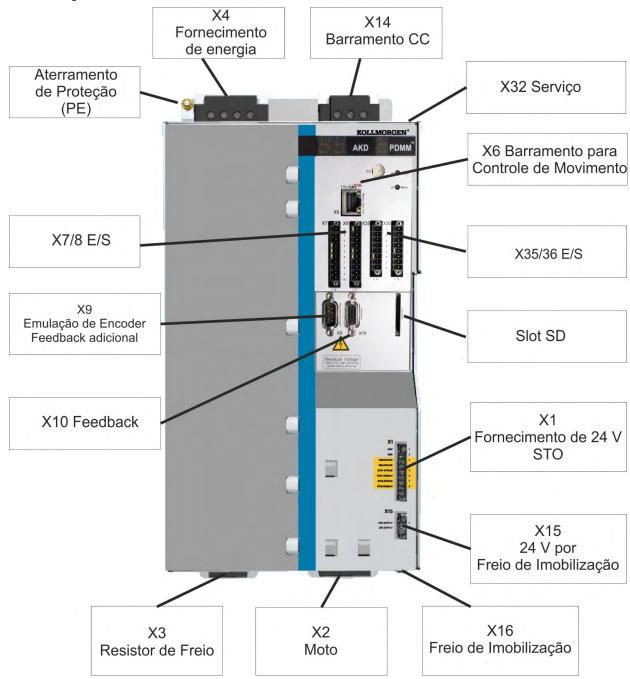
9.6 Panorama de conexão AKD-M

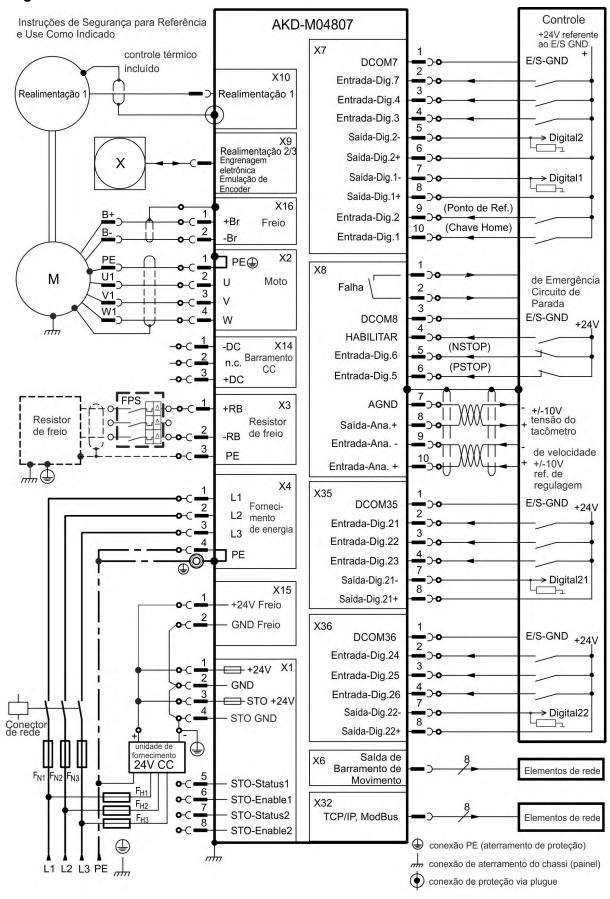

9.6.1 Atribuição do conector AKD-M00306, AKD-M00606


9.6.2 Diagrama de conexão AKD-M00306, AKD-M00606


9.6.3 Atribuição do conector AKD-M01206


9.6.4 Diagrama de conexão AKD-M01206


9.6.5 Atribuição do conector AKD-M02406, AKD-M00307 a AKD-M02407


9.6.6 Diagrama de conexão AKD-M02406, AKD-M00307 a AKD-M02407

9.6.7 Atribuição do conector AKD-M04807

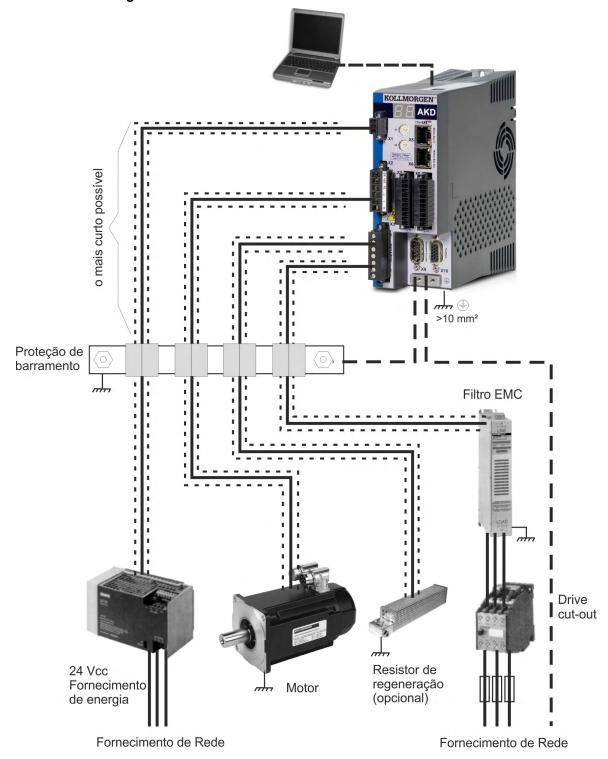
9.6.8 Diagrama de conexão AKD-M04807

9.7 Redução de ruído Interferência Eletromagnética (EMI)

Campos eletromagnéticos!

A radiação eletromagnética pode, agindo em materiais condutores de eletricidade, apresentar perigo potencial (aquecimento, perda de implantes).

- Todo o trabalho na instalação elétrica deve ser desempenhado apenas por funcionários treinados e qualificados, em conformidade com as normas de segurança no trabalho, e somente com as fontes principais desligadas, sem risco de reiniciar.
- Medidas de proteção integradas, como isolamento ou blindagem, não devem ser removidas.

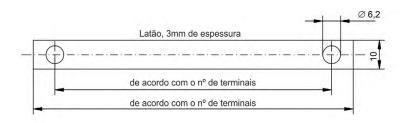

9.7.1 Recomendações para redução de ruído (EMI)

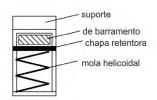
- Certifique-se de ter boas conexões entre os componentes do painel elétrico.
 Conecte todas as partes metálicas do painel (porta, fechadura e estrutura) utilizando cordoalhas de aterramento. Não confie somente nos parafusos ou dobradiças para garantir o aterramento..
- Certifique-se de ter uma boa malha de aterramento. Conecte o painel corretamente a uma malha de aterramento. Os condutores de terra devem ter o mesmo medidor que os condutores de alimentação principal.
- Use Kollmorgen cabos. Experiências anteriores mostram que clientes que usam cabos de energia e de feedback da Kollmorgen têm muito menos problemas do que os clientes que montam seus cabos. Posicione os cabos de energia e de controle separadamente, Kollmorgenrecomenda uma distância de, pelo menos, 200 mm para melhorar a imunidade à interferência.
- Aterre a blindagem nas duas extremidades.
 - Aterre toda a blindagem com grandes áreas através de conectores de metal apropriados ou abraçadeiras de aterramento sempre que possível. Para os cabos de alimentação do painel conectar em 360º a malha de aterramento ao Terra. Nunca conectar somente um a "rabicho". Para mais informações sobre conceitos de blindagem, (\Rightarrow # 100).
- Com um filtro de rede separado, mantenha os condutores que entram separados dos que saem do filtro de rede.
 - Posicione o filtro o mais próximo possível do ponto de entrada de energia do painel. Se for necessário cruzar os condutores de potência de entrada e do motor, cruze-os a 90°.
- Linhas de feedback não podem ser estendidas, já que a blindagem seria interrompida e o processamento do sinal pode ser interrompido. Instale todos os cabos de feedback com uma seção transversal adequada, em conformidade com IEC 60204 (→ #42) e use o material do cabo solicitado para alcançar o máximo comprimento.
- Entrelace os cabos apropriadamente. Se precisar dividir os cabos, use conectores com invólucro de metal. Certifique-se que a malha de aterramento esteja abraçada em 360º e aterrada adequadamente.
- Use entradas diferenciais para sinais analógicos. Imunidade a ruído em sinais analógicos é bastante reduzido usando entradas diferenciais. Use linhas blindadas de sinal de par trançado, conectando proteções nas duas extremidades.
- As linhas entre os drives e os filtros e o resistor de regeneração externo devem ser blindados. Instale todos os cabos de energia com um seção transversal adequada, em conformidade com IEC 60204 (→ #42) e use o material de cabo solicitado para alcançar o máximo comprimento.

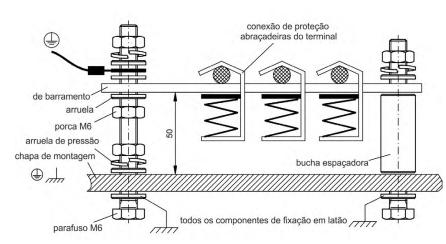
9.7.2 Blindagem com Barramento Blindado Externo

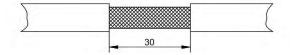
O filtro do EMC deve ser feito externamente pelo usuário, se necessário, e requer o uso de cabos blindados. A Kollmorgen recomenda uma conexão blindada ligada em estrela, por exemplo, com um barramento blindado.

9.7.2.1 Conceito de Blindagem


9.7.2.2 Conceito de Barramento




As blindagens do cabo de alimentação (entrada de linha, cabo do motor, resistor de regeneração externo) pode ser direcionado para um barramento adicional através de abraçadeiras da blindagem.


AKollmorgen recomenda o uso de abraçadeiras da blindagem Weidmüller KLBÜ.

Descreve-se abaixo um possível cenário para configurar um barramento para as abraçadeiras da blindagem acima.

1. Corte um barramento de um trilho de latão no comprimento necessário (seção transversal 10 x 3 mm) e perfure orifícios conforme indicado. Todas as abraçadeiras da blindagem necessárias devem se encaixar entre os orifícios perfurados.

Risco de lesões devido à força da mola helicoidal. Use pinças.

- 2. Pressione a mola helicoidal e a chapa de suporte juntas e empurre o barramento através da abertura do suporte.
- 3. Monte o barramento com as abraçadeiras da blindagem montadas na chapa de montagem. Use buchas espaçadoras ou parafusos de metal com porcas e acessórios para manter um espaçamento de 50 mm. Aterre o barramento usando apenas um condutor com uma seção transversal de, pelo menos, 2,5 mm².
- 4. Desencape o cabo externo em, aproximadamente, 30 mm, tomando cuidado para não danificar a blindagem trançada. Empurre a braçadeira da blindagem para cima e direcione o cabo até ela através do barramento.

AVISO

Certifique-se de que o contato seja bom entre a braçadeira da blindagem e a blindagem trançada.

9.7.3 Conexão de blindagem do drive

É possível conectar a blindagem do cabo diretamente no drive usando chapas de aterramento, abraçadeiras de conexão da blindagem e um conector do motor com dispositivo de alívio de tensão e chapa de aterramento.

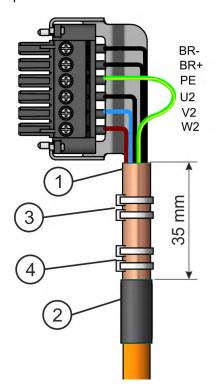
9.7.3.1 Chapas de aterramento

Monte as chapas de aterramento no drive, conforme mostrado nas fotos abaixo.

Dos tipos AKD-x00306 ao 01206: chapa de aterramento em L (apenas UE)

Dos tipos AKD-x02406 e zzz07: chapa lisa de aterramento

9.7.3.2 Abraçadeiras de conexão de blindagem



Use abraçadeiras de conexão de blindagem (consulte o manual de acessórios). Elas se engancham na chapa de aterramento e garantem ótimo contato entre a blindagem e a chapa de aterramento.

AKollmorgen recomenda as abraçadeiras da blindagem Phoenix Contact SK14 com um passo de 6 a 13mm.

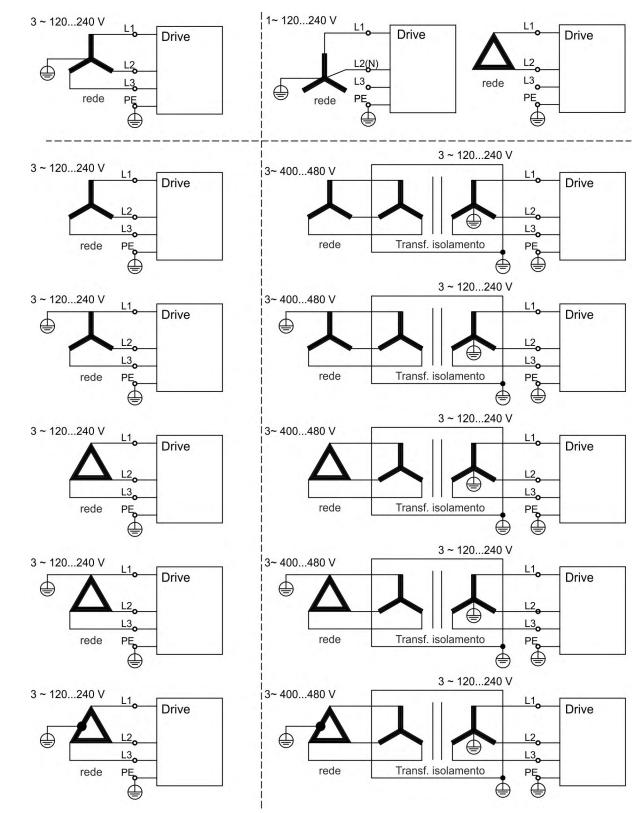
9.7.3.3 Conector do motor X2 com conexão de blindagem

Conexão alternativa para a conexão de potência do motor acoplando o conector ao dispositivo de alívio de tensão.

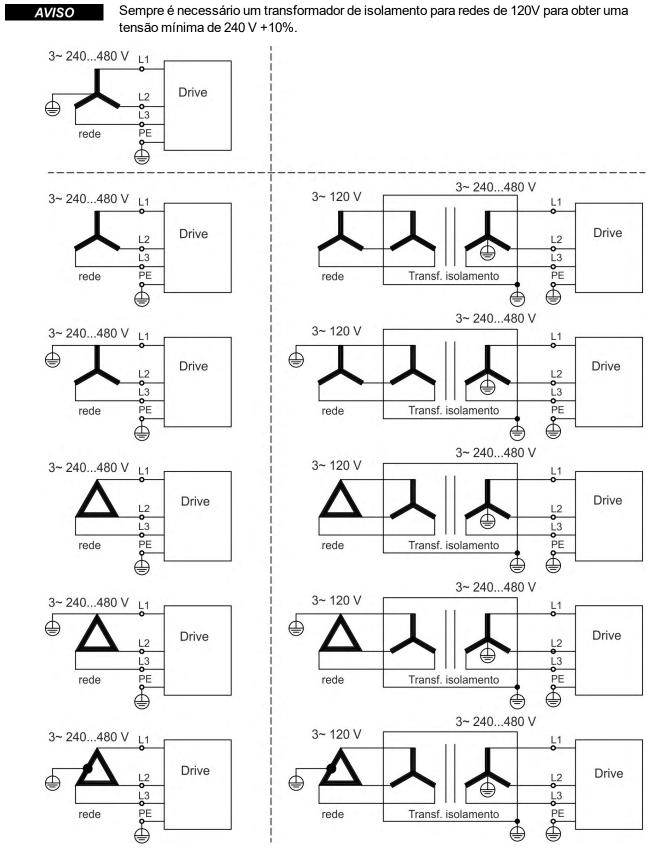
Desencape o cabo externo em, aproximadamente, 120 mm, tomando cuidado para não danificar a blindagem trançada. Empurre para trás a blindagem trançada (1) sobre o cabo e fixe-a com uma luva de borracha (2) ou retrátil.

Diminua o comprimento de todos os fios, exceto o fio de aterramento de proteção (PE) (verde/amarelo) em cerca de 20 mm para que o fio de PE seja agora o maior deles. Desencape todos os fios e encaixe as virolas na extremidade do fio.

Fixe a blindagem trançada do cabo ao protetor com uma braçadeira de cabo (3) e use uma segunda braçadeira (4) para prender o cabo sobre a luva de borracha.

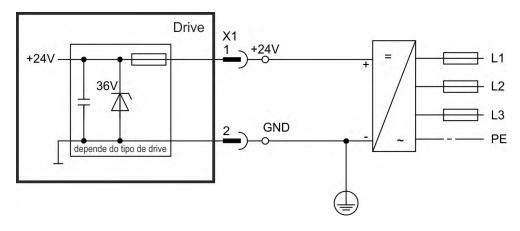

Ligue o conector, conforme mostrado no diagrama de conexão. Ligue o conector ao soquete localizado à frente do AKD.

Parafuse o conector no local. Isto garante o contato condutivo sobre uma grande área superficial entre a blindagem trançada e o painel frontal.


9.8 Conexão com a rede elétrica

9.8.1 Conexão a várias redes de alimentação AKD-xzzz06 (120V a 240V)

AVISO Sempre é necessário um transformador de isolamento para redes de 400 a 480 V para obter uma tensão máxima de 240 V +10%.



9.8.2 Conexão a várias redes de alimentação AKD-xzzz07 (240V a 480V)

9.8.3 Alimentação auxiliar de 24 V (X1)

O diagrama abaixo descreve uma fonte de alimentação externa de 24 Vcc, isolada eletricamente, por exemplo, por um transformador de isolamento. A corrente máxima necessária depende do uso do freio do motor e do cartão de opção $(\rightarrow \#37)$ or $(\rightarrow \#38)$.

9.8.3.1 AKD-x003 to 024, conector X1

Pino	Sinal	Descrição
1	+24	Tensão auxiliar de +24 Vcc
2	GND	GND de alimentação de 24V
3	STO	STO habilitado (Torque seguro des-
		ligado)

9.8.3.2 AKD-x048, conector X1

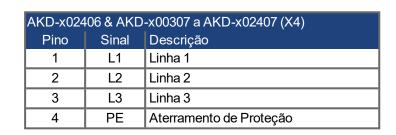
Pino	Sinal	Descrição
1	+24 V	Tensão auxiliar de +24 Vcc
2	GND	GND de alimentação de 24V
3	STO +24V	Auxiliary voltage STO+24 Vcc
4	STO GND	GND de alimentação de STO
5	STO-Status 1	Safe Torque Off status canal 1
6	STO-Enable 1	Safe Torque Off enable canal 1
7	STO-Status 2	Safe Torque Off status canal 2
8	STO-Enable 2	Safe Torque Off enable canal 2

9.8.4 Conexão de alimentação de rede (X3, X4)

Os drives na série AKD podem ser alimentados da seguinte forma:

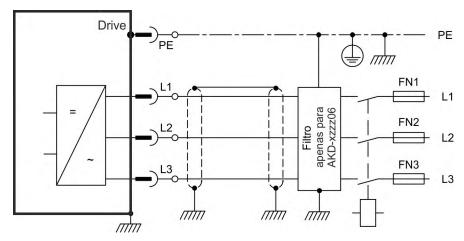
- AKD-xzzz06: As redes de alimentação industrial monofásica ou trifásica (corrente nominal simétrica não superior a 200 kA em 120 V e 240 V).
- AKD-xzzz07: As redes de alimentação industrial trifásica (corrente nominal simétrica não superior a 200 kA em 240 V, 400 V e 480 V).
- AKD-x04807: No caso de a assimetria da tensão da rede for mais que 3%, um indutor de rede 3L0,24-50-2 (consulte o Manual de Acessórios regional) deve ser usado.

A conexão com outros tipos de tensão de redes de alimentação é possível com um transformador de isolamento adicional (→ # 103). Sobretensões periódicas entre as fases (L1, L2, L3) e a carcaça do drive não devem exceder o pico de 1000 V. De acordo com o IEC 61800, os picos de tensão (< 50 µs) entre fases não devem exceder 1000 V. Os picos de tensão (< 50 µs) entre uma fase e a carcaça não devem exceder 2000 V.



AKD-x00306 a AKD-x00606 (X3)			
Pino	Sinal	Descrição	
4	L1	Linha 1	
5	L2	Linha 2	
6	L3	Linha 3	
7	PE	Aterramento de Proteção	

AKD-x01206 (X3)			
Pino	Sinal	Descrição	
5	L1	Linha 1	
6	L2	Linha 2	
7	L3	Linha 3	
8	PE	Aterramento de Proteção	



AKD-x04807 (X4)			
Pino	Sinal	Descrição	
1	L1	Linha 1	
2	L2	Linha 2	
3	L3	Linha 3	
4	PE	Aterramento de Proteção	

9.8.4.1 Conexão trifásica (todos os tipos de AKD)

- Quando diretamente à rede de alimentação trifásica, alimenta redes (→ # 103)
- Filtro para o AKD-xzzz06 fornecido pelo usuário.
- Fusíveis (como fusíveis interrompidos) fornecidos pelo usuário (→ #40).

9.8.4.2 Conexão mono/duas-fásica (apenas de AKD-x00306 a AKD-x01206)

- Diretamente à rede de alimentação monofásica (120 V_{-10%} a 240 V^{+10%}) com condutor neutro ou
 Diretamente à rede de alimentação de duas fases (120 V_{-10%} a 240 V^{+10%}) sem condutor neutro
- Alimenta redes (→ # 103)
- Deixe o circuito L3 aberto
- Filtro fornecido pelo usuário.
- Fusíveis (como fusíveis interrompidos) fornecidos pelo usuário (→ #40)

9.9 Link de Barramento CC (X3, X14)

O link de barramento CC pode ser conectado paralelamente para que a energia de regeneração seja dividida entre todos os drives que estão conectados ao mesmo circuito do link de barramento CC. Todo drive deve ter sua própria conexão de potência à tensão de rede, mesmo se o link de barramento CC for usado. Drives operando como geradores muito frequentemente devem ser colocados ao lado de drives, que precisam de energia. Isso reduz o fluxo de corrente em distâncias mais longas. Definição do tipo de fusível (→ #40).

- A soma das correntes nominais de todos os drives conectados em paralelo a um AKD-x003 para 024 não deve exceder 48 A..
 Use núcleos únicos não blindados (seção transversal 6 mm²) com um comprimento máximo de 200 mm; use cabos blindados (seção transversal 6 mm²) para comprimentos maiores. Nesse caso, nenhum fusível para a proteção de linha é necessário.
- A soma das correntes nominais de todos os AKD-x048 conectados em paralelo a um AKD-x048 não deve exceder 96 A. AKD-x048 deve ser conectado em paralelo somente a drives AKD-x048. Use núcleos únicos não blindados (seção transversal 16 mm²) com um comprimento máximo de 200 mm; use cabos blindados (seção transversal 16 mm²) para comprimentos maiores.

AVISO

O drive pode ser destruído se as tensões do link do barramento CC forem diferentes. Apenas drives com fornecimento de rede da mesma rede (fases e tensões de rede idênticas) podem ser conectados pelo link de barramento CC. AKD-x048 deve ser conectado em paralelo somente a drives AKD-x048.

AVISO

O controle de tensão/perda da rede não está funcionando nos drives conectados ao barramento DC. A rede perdida em um drive dentro de uma conexão de barramento DC não será detectada. É recomendado o monitoramento da rede externa para prevenir a sobrecarga do retificador.

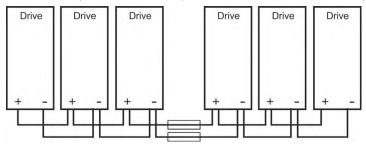
AKD-x00306 a AKD-x00606 (X3)

<u> </u>	
EVALADISATIVA AKD	+RBi-RB-DC+RB L1 L2 L3 PE

Pino	Sinal	Descrição
2	-DC	Barramento de link CC negativo
3	+DC (+RB)	Barramento de link CC positivo

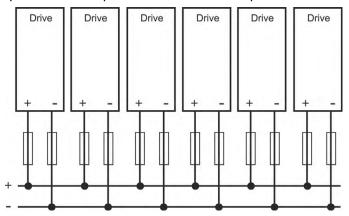
AKD-x01206 (X3)		
Pino	Sinal	Descrição
3	-DC	Barramento de link CC negativo
4	+DC (+RB)	Barramento de link CC positivo

AKD-x02406 & AKD00307 a AKD02407 (X3)		
Pino	Sinal	Descrição
3	-DC	Barramento de link CC negativo
4	+DC (+RB)	Barramento de link CC positivo


AKD-x04807 (X14)		
Pino	Sinal	Descrição
1	-DC	Barramento de link CC negativo
2	n.c.	não conectado
3	+DC	Barramento de link CC positivo

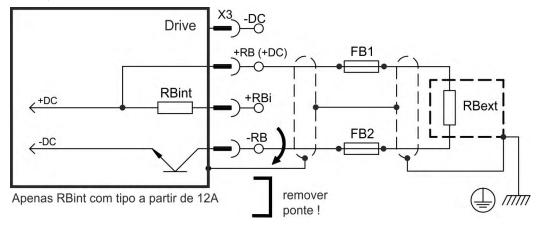
NOTA: Deve ser conectado em paralelo somente a drives AKD-x048.

x003 x012 -DC \leftarrow +RB (+DC) +RB (+DC) +RBin +DC RBint ,-DC x024 <-DC +RB (+DC) FB₁ +RBin +DC **RBext RBint** ,-DC FB2 -RB


9.9.1 Topologia de barramento DC com conectores Y (máx. de 24 A)

Sem os fusíveis de barramento DC, outros dispositivos podem ser danificados ou destruídos se, por exemplo, um dispositivo falhar devido a um curto-circuito interno. Se vários dispositivos estiverem conectados em paralelo, então é comum inserir fusíveis de barramento DC (→ #40) entre grupos de drives (com um grupo composto por dois ou três dispositivos, dependendo da corrente) a fim de limitar qualquer possível dano resultante. Os fusíveis não podem evitar completamente os danos causados por picos de corrente.

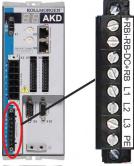
9.9.2 Topologia de barramento DC com barra condutora


Esse tipo de fiação não necessita de conectores Y. Se um dispositivo falhar por causa de um curto-circuito, somente seus fusíveis de barramento DC (→ #40) são desarmados e o restante da rede continua a funcionar normalmente. As barras condutoras sólidas podem conduzir correntes significativamente maiores, pois a corrente de compensação não flui pelo conector, como mostrado acima. Por essa razão, dessa forma podem ser conectados em paralelo praticamente quantos drives forem desejados. Esse arranjo também é frequentemente útil para conectar módulos capacitores KCM.

9.9.3 Resistor de regeneração externo (X3)

Para dados técnicos sobre circuito de freio (→ #43).

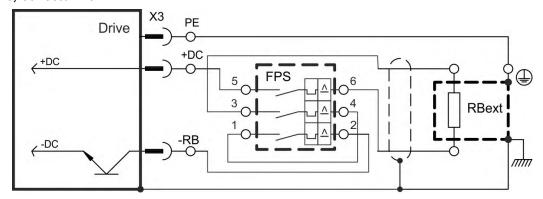
9.9.3.1 AKD-x003 a 024, conector X3



FB1 / FB2

Modelo do Drive	Máx. Amperes @240V	Máx. Amperes @480V	Região UL examplo Bussmann:	Região CE examplo Siba:
AKD-x003 a 012	10A	40A	FWP-xxA14F	110V a 400V: gRL xxA (gS)
AKD-x024	15A	50A		400V a 480V: aR xxA

AKD-x00306 to AKD-x00606 (X3)					
Pino	Pino Sinal Descrição				
1	-RB	-RB Resistor de regeneração externo negativo			
3	3 +RB Resistor de regeneração externo positivo				



AKD-x1	AKD-x1206 (X3)				
Pino	Sinal	Descrição			
1	+Rbint	+Rbint Resistor de regeneração interno positivo			
2	-RB Resistor de regeneração externo negativo				
4	+RB	Resistor de regeneração externo positivo			

AKD-x02406 & AKD-x-00307 to 02407 (X3)						
Pino Sinal Descrição						
2	-RB	Resistor de regeneração externo negativo				
4	4 +RB Resistor de regeneração externo positivo					

9.9.3.2 AKD-x048, conector X3

FPS: Fritzlen DC Powerswitch

RBext	FPS	Gama [In]	Seção transversal
BAS(U)2000-10	FPS-16	10 a 16 A	mín. 2.5 mm²
BAS(U)3000-10	FPS-20	16 a 20 A	mín. 4 mm²
BAS(U)6000-10	FPS-25	20 a 25 A	mín. 4 mm²

AKD-x0	4807	
Pino	Sinal	Descrição
1	PE	Aterramento de Proteção
2	-RB	Resistor de regeneração externo negativo
3	+DC	Resistor de regeneração externo positivo

9.9.4 Módulos capacitores (X3)

Os módulos KCM (KOLLMORGEN Módulos Capacitores) absorvem a energia cinética gerado pelo motor quando estiver funcionando no modo gerador. Normalmente, essa energia é dissipada como desperdício por meio de resistores de regeneração. No entanto, os módulos KCM alimentam a energia que possuem armazenada de volta para o link de barramento DC conforme e quando for necessário.

Informações da montagem: consulte o manual de acessórios regional ou o manual de instruções do KCM.

Dimensões (HxWxD): 300x100x201 mm

KCM-S	Economiza energia: A energia armazenada no módulo capacitor durante a frenagem generativa está disponível na próxima vez que uma aceleração ocorrer. A tensão de início do módulo é calculada automaticamente durante os primeiros ciclos de carga.
КСМ-Р	Energia independente da falta de energia: Se a alimentação de energia falhar, o módulo fornece a energia armazenada para o servo amplificador, necessária para estabilizar o drive de uma maneira controlada (isso somente se aplica à tensão da fonte de alimentação; recarregue a bateria com alimentação de 24 V separadamente).
KCM-E	Módulo de expansão para ambas as aplicações. Módulos de expansão estão disponíveis em duas classes de capacitação.

INFORMAÇÃO

Os módulos KCM só podem estar conectados ao AKD com tensão nominal de 400/480 V. Instruções de montagem, instalação e configuração podem ser encontradas no Manual de Instruções dos Módulos KCM.

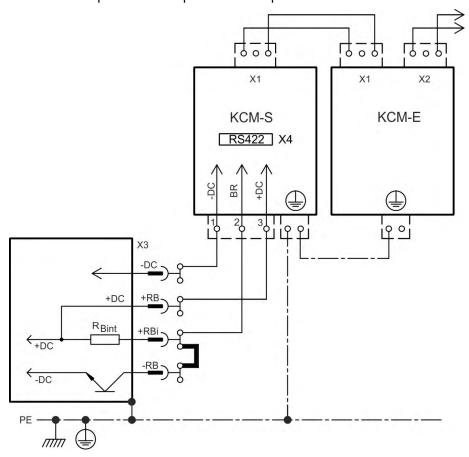
▲ PERIGO

Alta tensão DC de até 900 V!

Há um risco de lesão grave ou morte de choque elétrico ou de arco. Pode demorar mais de uma hora para que os módulos carreguem por conta própria.

- Desligue (desconecte) a tensão de linha. Você só deve trabalhar nas conexões quando o sistema estiver desconectado.
- Verifique o estado da carga com um dispositivo de medição que seja adequado para uma tensão DC de até 1.000 V.
- Ao medir uma tensão de mais de 50 V entre os terminais DC+/DC- ou para aterramento, descarregue os módulos (consulte (→ # 115)).

9.9.4.1 Dados técnicos


	de Arma- zenamento	Alimentação Nominal			Classe de Pro- teção	Tensão de Iní- cio	
Тро	[Ws]	[V DC]	[V DC]	[kW]		[V DC]	[kg]
KCM-S200	1600					avaliado	6.9
KCM-P200	2000		máx. 950			470	6.9
KCM-E200	2000	máx. 850	(30s em 6 min)	18	IP20	-	4.1
KCM-E400	4000		111111)			-	6.2

9.9.4.2 Instalação de exemplo com KCM-S e KCM-E

AVISO

Comprimento máximo do cabo entre AKD e KCM: 500 mm. As linhas de DC+ e DC- sempre devem ser desviadas, seção máxima de curva é 6 mm². Certifique-se de que a polaridade esteja correta, trocar DC+/DC- danificará os módulos KCM.

Conecte a conexão BR ao AKD com os processos de frenagem generativa mais frequentes no sistema. Esse AKD deve ser um resistor de freio externo ou interno ativo. Crie um perfil de movimento que cause a resposta do interruptor de freio.

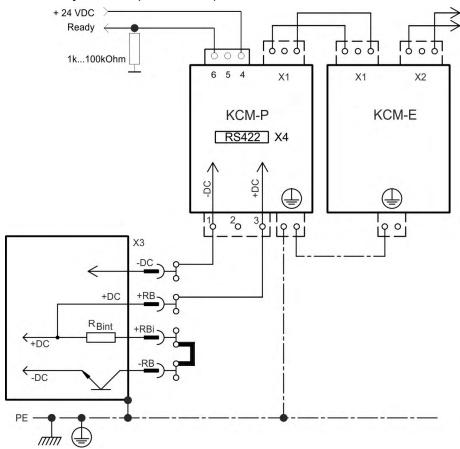
Configuração de KCM-S e KCM-E

Pré-requisito para as seguintes instruções:

- Desconectado adequadamente, sistema de aterramento.
- KCM-S: montado e ligado na cabine de mudança. A carga que leva à ativação do interruptor de freio durante a frenagem deve ser conectada.
- KCM-E: montado e conectado ao KCM-S com cabo de conexão (X1) e linha PE. Auxiliares de descarga (ponte de plug-in) são removidos.

Proceda de acordo com as instruções abaixo:

- 1. Ative a tensão de linha após o drive ter concluído o processo de reinicialização de 24 V.
- 2. Habilite o AKD e opere o perfil de movimento que causa a resposta do interruptor de freio.
- O KCM-S determina o limite do interruptor e inicia a carregar; luzes LED (visualização superior). A energia armazenada no módulo capacitor durante a frenagem generativa está disponível na próxima vez que uma aceleração ocorrer.


A interface RS422 X4 permite a troca de dados controlada por um software de terminal de sua escolha. Configuração da interface: Transmissão 115200, 8 bits de dados, 1 bit de parada, Sem paridade nem controle de fluxo. O conector fêmea X4 está no pacote. Consulte mais informações no Manual de Instruções do KCM.

9.9.4.3 Exemplo de instalação com KCM-P e KCM-E

AVISO

Comprimento máximo do cabo entre AKD e KCM: 500 mm. As linhas de DC+ e DC- sempre devem ser desviadas, seção máxima de curva é 6 mm². Certifique-se de que a polaridade está correta, trocar DC+/DC- danificará os módulos KCM.

O KCM-P inicia o processo de carregamento em aproximadamente 470 V DC. Se a alimentação de energia falhar, o módulo fornece a energia armazenada para o link de barramento DC (isso somente se aplica à tensão de alimentação de energia; carregue a bateria de alimentação 24 V separadamente).

Configuração de KCM-P e KCM-E

Pré-requisito para as seguintes instruções:

- Desconectado adequadamente, sistema de aterramento.
- KCM-P: montado e ligado na cabine de mudança. Definir o limite de subtensão do AKD VBUS.UVTHRESH para um valor significativamente abaixo de 470V DC, caso contrário o AKD se desativará antes de KCM-P poder fornecer energia para o link de barramento DC.
- KCM-E: montado e conectado ao KCM-P com cabo de conexão (X1) e linha PE...
- Auxiliares de descarga (ponte de plug-in) são removidos.

Proceda de acordo com as instruções abaixo:

- 1. Ative a tensão de linha após o drive ter concluído o processo de reinicialização de 24 V.
- 2. O KCM-P começa o processo de carregamento em aproximadamente 470 V DC; luzes LEd piscam.

A interface RS422 X4 permite a troca de dados controlada por um software de terminal de sua escolha. Configuração da interface: Transmissão 115200, 8 bits de dados, 1 bit de parada, Sem paridade nem controle de fluxo. O conector fêmea X4 está no pacote.

O sinal pronto informa que está pronto para operar (alto nível). Obtenha mais informações no Manual de Instruções do KCM.

9.9.4.4 Descarregar módulos KCM

Os auxiliares fornecidos com cada módulo KCM (ponte de plug-in/cabos de conexão) permitem descarregar os módulos com segurança.

AVISO

Quando o LED de carregamento no topo do módulo piscar, os capacitores estarão carregados. No entanto, o LED não permite que você emita uma conclusão definitiva sobre o estado de descarga, já que não é monitorado para encontrar falhas.

Alta tensão DC de até 900 V!

Há um risco de lesão grave ou morte de choque elétrico ou de arco.

- Desativa a tensão de linha (desconecte o sistema). Você só deve trabalhar nas conexões quando o sistema estiver desconectado.
- Verifique o estado da carga dos capacitores com um dispositivo de medição que seja adequado para uma tensão DC de até 1.000 V.
- Espere até que a tensão medida entre os terminais DC+/DC- ou para aterramento tenha caído para menos de 50 V. Pode demorar mais de uma hora para que os módulos carreguem por conta própria.
- Se você não pode esperar a duração do tempo de descarga própria, é preciso forçar o descarregamento dos módulos.
- É preciso seguir o procedimento descrito abaixo ao forçar o descarregamento dos módulos.

Para sua própria segurança, siga os procedimentos abaixo ao forçar o descarregamento dos módulos:

- 1. Desligue (desconecte) a tensão de linha.
- 2. Descarregue os módulos:

KCM-S/-P: Insira a ponte de plug-in nos terminais de parafuso (preto-1 para cinza-2) na base dos módulos, espere no mínimo 70 s, deixe a ponte de plug-in no lugar (como meio de garantir o transporte). Remova a ponte de plug-in novamente antes do desmantelamento.

KCM-E: Transponha o conector X2/X3 com um cabo conector no topo do módulo, espere no mínimo 70 s, deixe o cabo conector no lugar (como meio de garantir o transporte). Desconecte o cabo conector e reconecte o KCM-E de forma adequada antes do desmantelamento.

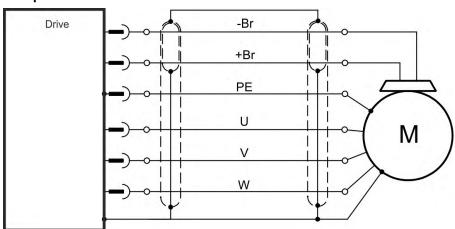
3. Realize a tarefa agendada (por exemplo, limpeza, manutenção ou desinstalação).

9.10 Conexão do potência do motor (X2)

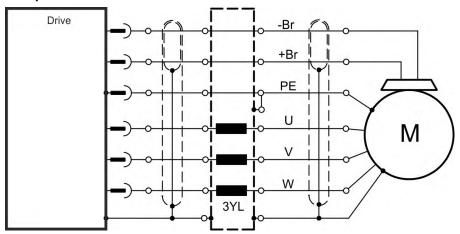
Junto com o cabo de alimentação e o enrolamento do motor, a saída de energia do drive forma um circuito oscilante. Características como capacidade do cabo, comprimento do cabo, indutância do motor e frequência (→ # 37) or (→ # 38) determinam a tensão máxima no sistema.

O drive AKD é capaz de proteger o motor conectado contra a sobrecarga, se os parâmetros forem definidos corretamente e se o sensor de proteção termal estiver conectado e supervisionado. Com os motores da Kollmorgen, os dados válidos são automaticamente definidos pelo banco de dados do motor interno. Com motores de outros fabricantes, os dados de identificação precisam ser inferidos nos campos referentes na visualização do motor do software de configuração WorkBench da Kollmorgen.

AVISO

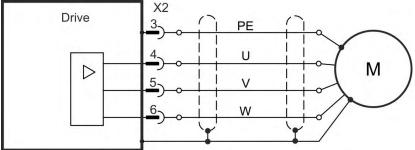

O aumento da tensão dinâmica pode levar a uma redução na vida útil operacional do motor e, em motores inadequados, pode ocorrer descargas elétricas no enrolamento do motor.

- Instale apenas motores com isolamento classe F (em conformidade com IEC60085) ou acima
- Apenas instale cabos que atendam aos requerimentos (→ #42).


AVISO

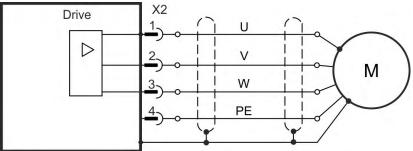
Com cabos longos de motor, correntes de fuga ameaçam a etapa de saída do drive. Para comprimentos de cabo de 25 m a 50 m, uma bobina motora deve ser ligada ao cabo do motor (próximo ao drive). Consulte seu Manual de Acessórios regional dos indutores da Kollmorgen.

Comprimento do cabo ≤ 25 m



Comprimento do cabo >25 m

9.10.1 AKD-x003 a 024, conector X2



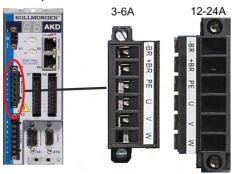
9.10.2 AKD-x048, conector X2

INFORMAÇÃO Comprimento do cabo màx. 25 m.

Pino	Sinal	Descrição
1	U	Fase do motor U
2	V	Fase do motor V
3	W	Fase do motor W
4	PE	Aterramento de proteção (carcaça do motor)

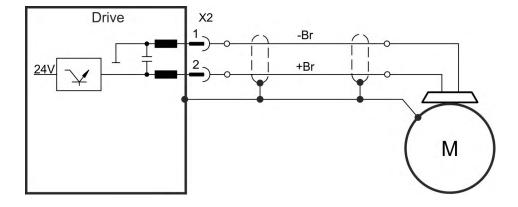
9.11 Freio de retenção do motor (X2, X15, X16)

Um freio de retenção de 24V no motor pode ser controlado diretamente pelo drive. O freio só funciona com nível de tensão de 24 V suficiente. Verifique a queda de tensão, meça a tensão na entrada do freio e verifique sua função (freio e não freio).

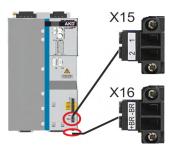

ADVERTÊNCIA

Nenhuma segurança funcional!

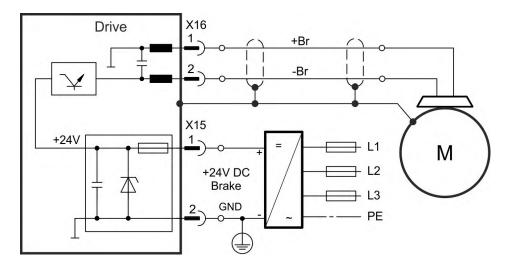
Se a carga não está bloqueado com segurança, isso pode resultar em ferimentos graves. Esta função não garante a segurança de seu funcionamento


- Segurança funcional, por ex., com carga suspensa (eixos verticais), requer um freio mecânico adicional que deve ser operado com segurança, por exemplo por um controle de segurança.
- O Hardware Enable (conector X8 pino4) não inicia uma parada controlada, mas desliga a etapa de energia imediatamente.
- Defina o parâmetro MOTOR.BRAKEIMM para 1 com eixos verticais, para aplicar o freio de retenção mediatamente após falhas ou a opção Hardware desabilitado.

9.11.1 AKD-x003 a 024, conector X2


Pino	Sinal	Descrição
1	-BR	Freio de retenção do motor, negativo
2	+BR	Freio de retenção do motor, positivo
3	PE	Aterramento de proteção (→ #116)
4	U	Fase do motor U (→ # 116)
5	V	Fase do motor V (→ # 116)
6	W	Fase do motor W (→ #116)

Alimentação do freio de tensão por meio de alimentação de tensão auxiliar de 24 V ±10% do drive em X1. Máxima corrente depende do tipo de drive, consulte os Dados Técnicos (→ #37) ou (→ #38).



9.11.2 AKD-x048, conectores X15, X16

AKD-x048 a alimentação de tensão de freio é separada da tensão auxiliar do drive. A corrente máxima de freio é 2 A. Use X15 da entrada de alimentação 24 VDC ±10% e X16 para conectar o freio de retenção do motor.



X15	Sinal	Descrição
1	24V	tensão de 24 V, freio
2	GND	GND, freio
X16	Sinal	Descrição
1	+BR	Freio de retenção do motor, positivo
2	-BR	Freio de retenção do motor, negativo

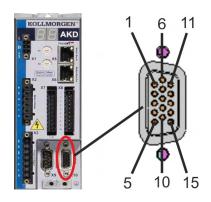
9.11.3 Funcionalidade

A função do freio deve ser habilitada através de um parâmetro. O diagrama abaixo mostra as relações de tempo e de função entre o sinal de parada controlada, a regulagem da velocidade, a velocidade e a força de frenagem. Todos os valores podem ser ajustados com parâmetros; os valores no diagrama são valores padrões.

A regulagem da velocidade do drive é conduzido internamente à uma rampa ajustável (CS.DEC) para 0 V.

Com valores padrões, a saída para o freio é ligada quando a velocidade alcança 120 rpm (CS.VTHRESH) por, pelo menos, 6 ms (CS.TO). Os tempos de ascensão (t_{brH}) e queda (t_{brL}) do freio de retenção integrado no motor são diferentes para os vários tipos de motores (consulte o manual do motor).

9.12 Conexão de feedback (X10, X9, X7)

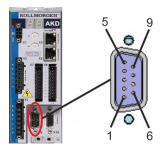

Todo sistema servo fechado normalmente requer, pelo menos, um dispositivo de feedback para enviar valores reais do motor para o drive. Dependendo do tipo de dispositivo de feedback usado, as informações serão realimentadas ao drive usando meios digitais ou analógicos.

OAKD suporta os tipos mais comuns de dispositivo de feedback. As funções do feedback são designadas com parâmetros no WorkBench, a configuração do software. Escalonamento e outras configurações também são realizados no WorkBench. Para uma descrição detalhada dos parâmetros, acesse a ajuda on-line do WorkBench.

A tabela abaixo fornece uma visão geral dos tipos de feedback suportados, seus parâmetros correspondentes e uma referência ao diagrama de conexão relevante em cada caso.

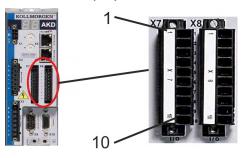
Tipo de feedback	Fiação	Conector	FB1. SELECT	FB2. MODE	FB3. MODE
Resolver	(→ # 124)	X10	40	-	-
SFD	(→ # 125)	X10	41	-	-
SFD3	(→ # 126)	X10	45	-	-
Encoder Hiperface DSL	(→ # 127)	X10	46	-	-
SenCos Encoder BiSS B (analógico)	(→ # 128)	X10	32	-	-
Encoder BiSS C (digital)	(→ #129)	X10	34	-	-
SenCos Encoder ENDAT 2.1	(→ # 130)	X10	30	-	-
Encoder ENDAT 2.2	(→ #131)	X10	31	-	-
Encoder ENDAT 2.2	(→ #132)	X9/X8	-	-	0
Encoder ENDAT 2.2	(→ #141)	X9	-	-	0
SenCos Encoder Hiperface	(→ #133)	X10	33	-	-
Encoder Senoidal + Hall	(→ # 134)	X10	20	-	-
Encoder Senoidal	(→ # 134)	X10	21	-	-
Encoder incremental + Hall	(→ # 135)	X10	10	-	-
Encoder incremental	(→ # 135)	X10	11	-	-
Hall	(→ #136)	X10	12	-	-
Tamagawa Smart Abs	(→ # 137)	X10	42	-	-
Encoder incremental, FB2.SOURCE=1	(→ # 140)	X9	-	0	-
Encoder incremental, FB2.SOURCE=2	(→ # 140)	X7	-	0	-
Pulso / Direção, FB2.SOURCE=1	(→ # 142)	X9	-	1	-
Pulso / Direção, FB2.SOURCE=2	(→ # 142)	X7	-	1	-
Para cima/Para baixo CW/CCW, FB2.SOURCE=1	(→ # 143)	X9	-	2	-
Para cima/Para baixo CW/CCW, FB2.SOURCE=2	(→ # 143)	X7	-	2	-

9.12.1 Conector de feedback (X10)



#	SFD	SFD3/ DSL	Resolver	BiSS B (analógico)			EnDAT 2.2	Hiper- face	Seno Enc. +Hall	Enc.incr. +Hall	Hall	Tamagawa Smart Abs*
1	-	-	-	-	-	_	-	-	Hall U	Hall U	Hall U	-
2	-	-	-	CLK+	CLK+	CLK+	CLK+	-	Hall V	Hall V	Hall V	-
3	_	-	-	CLK-	CLK-	CLK-	CLK-	-	Hall W	Hall W	Hall W	-
4	SEN+	-	-	SEN+	SEN+	SEN+	SEN+	SEN+	SEN+	SEN+	-	SEN+
5	SEN-	-	-	SEN-	SEN-	SEN-	SEN-	SEN-	SEN-	SEN-	-	SEN-
6	COM+	COM+	R1 Ref+	DAT+	DAT+	DAT+	DAT+	DAT+	Zero+	Zero+	-	SD+
7	COM-	COM-	R2 Ref-	DAT-	DAT-	DAT-	DAT-	DAT-	Zero-	Zero-	-	SD-
8	-	-				С	ontrole te	érmico (+)				
9		-		Controle térmico (-)								
10	+5 V	89 V	-	+5 V	+5 V	+5 V	+5 V	89V	+5 V	+5 V	+5 V	+5 V
11	0 V	0 V	-	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V
12	-	-	S1 SIN+	A+	-	A+	-	SIN+	A+	A+	-	-
13		-	S3 SIN-	A-	-	A-	-	SIN-	A-	A-	-	-
14		-	S2 COS+	B+	-	B+	-	COS+	B+	B+	-	-
15	-	-	S4 COS-	B-	-	B-	-	COS-	B-	B-	-	-

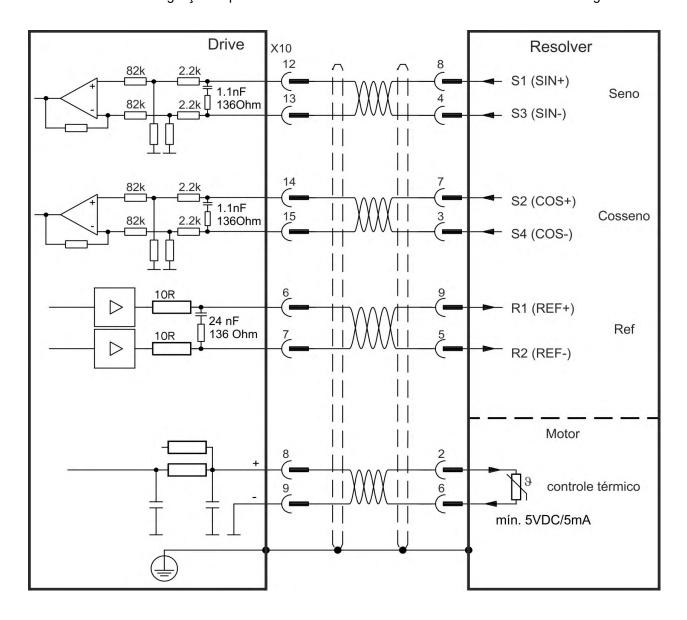
CLK = CLOCK, DAT = DATA, SEN = SENSE, SIN = SENO, COS = CO-SENO,


^{*=} para AKD apenas com "NB" (rev 8+)

9.12.2 Conector de feedback (X9)

Pino	Pulso /	Para cima/Para baixo	Encoder	Encoder com
	Direção	(CW/CCW)	Incremental	EnDat 2.2
1	Pulso +	CW+	A+	CLOCK+
2	Pulso -	CW-	A-	CLOCK-
3	GND	GND	GND	GND
4	Direção +	CCW+	B+	DATA+
5	Direção -	CCW-	B-	DATA-
6	Malha	Malha	Malha	Malha
7	-	-	Zero+	-
8	-	-	Zero-	-
9	-	-	+ 5 V (fornecimento,	+5V (fornecimento,
			saída)	saída)

9.12.3 Conector de feedback (X7)


Pino	Pulso / Direção	Para cima/Para baixo (CW/CCW)	Encoder Incremental
9	Pulso	Para cima (CW)	Canal A
10	Direção	Para baixo (CCW)	Canal B
1	Comum	Comum	Comum

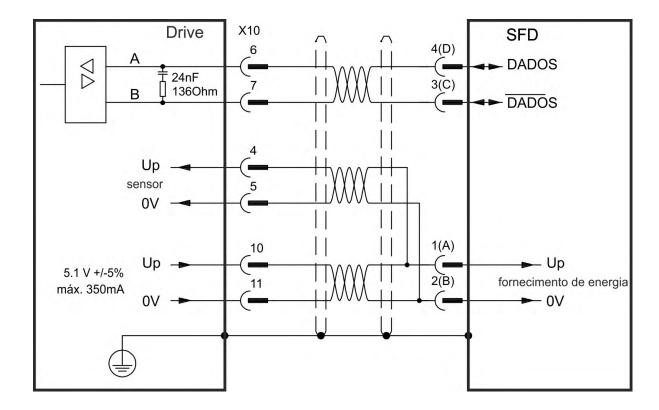
9.12.4 Resolver

O diagrama abaixo mostra a conexão de um resolver (2 a 36 pólos) como um sistema de feedback. O controle térmico no motor está conectado através do cabo do Resolver e avaliado no drive. Se não houver controle térmico no motor, o cabo deve conectar os pinos 8 e 9.

Se planeja-se comprimentos de cabos com mais de 100 m, entre em contato com o apoio ao cliente.

Tipo	FBTYPE	Descrição
Resolver	40	Precisão: 14 bit (0,022°), resolução: 16 bit (0,006°)

9.12.5 SFD


O diagrama abaixo mostra a conexão do Kollmorgen sistema de feedback SFD (quatro fios).

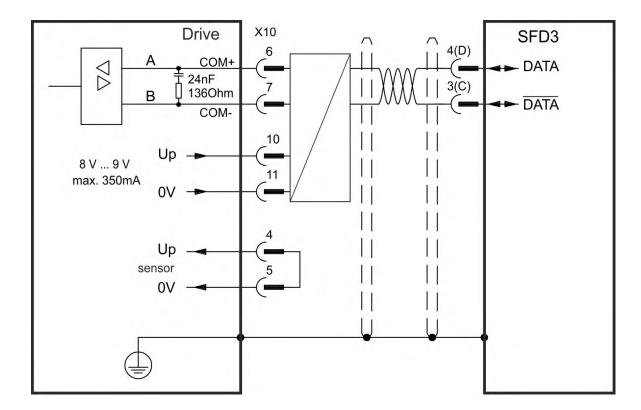
INFORMAÇÃO

Quando a resistência total de cabo SFD para saída de 5V (Acima) e retorno de 5V (0V) é menor do que 3,3 Ohm, então o sensor remoto não é necessário. Para um cabo típico, isso significa que o sensor remoto não é necessário até 25 m.

Os cabos da Kollmorgen são classificados até 50 m sem sensor remoto.

Tipo	FBTYPE	Up	Observações
Smart Feedback Device	41	5 V +/-5%	precisão de 14 bit (0,022°),
(SFD)			resolução de 24 bit (2 x 10E-5°)

9.12.6 SFD3

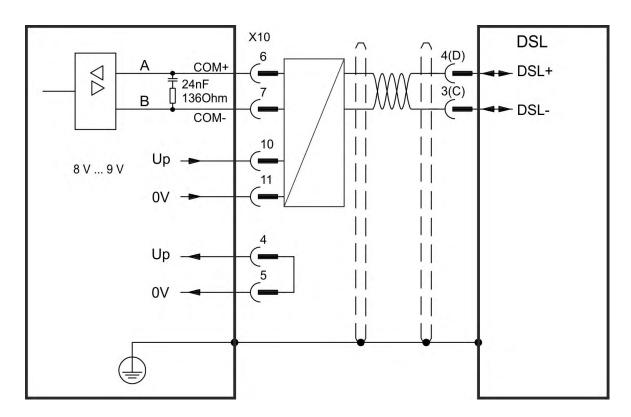

O diagrama abaixo mostra a conexão do Kollmorgen sistema de feedback SFD3 (dois fios).

INFORMAÇÃO

SFD3 pode ser usado com o cabo especial da Kollmorgen.

O comprimento máximo do cabo é de até 25 m.

Tipo	FBTYPE	Up	Observações
SFD3	45	8a9V	de FW 1.11,
			somente com cabos daKollmorgen

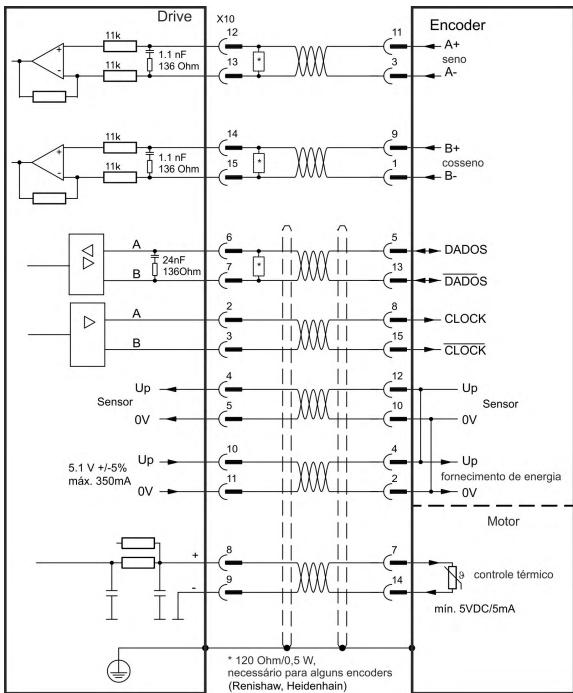

9.12.7 Hiperface DSL

O diagrama abaixo mostra a conexão do Kollmorgen sistema de feedback Hiperface DSL (dois fios).

INFORMAÇÃO

Hiperface DSL pode ser usada com o cabo especial da Kollmorgen. O comprimento máximo do cabo é de até 25 m.

Tipo	FBTYPE	Up	Observações
Hiperface DSL	46	8a9V	de FW 1.9,
			somente com cabos daKollmorgen

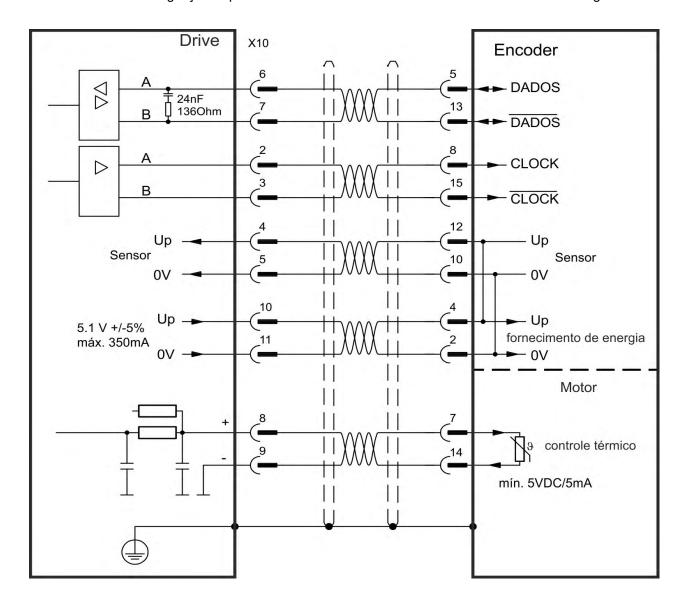

9.12.8 Encoder com BiSS

9.12.8.1 BiSS (Modo B) Analógico

O diagrama abaixo mostra a fiação de um encoder de uma volta ou multi-voltas com interface BiSS Modo B como um sistema de feedback. O controle térmico no motor está conectado através do cabo do encoder e avaliado no drive.

Se planeja-se comprimentos de cabos com mais de 50 m, entre em contato com o apoio ao cliente.

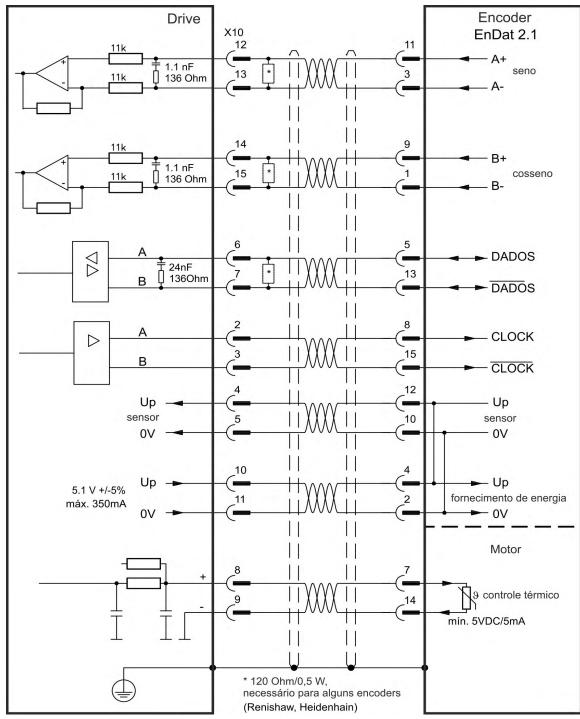
Tipo	FBTYPE	Up	Limite de frequência
BiSS (Modo B)	32	5.1 V +/-5%	1 MHz,
Analógico			250 kHz para encoders que requerem
			resistores de terminação



9.12.8.2 BiSS (Modo C) Digital

O diagrama abaixo mostra a fiação de um encoder de uma volta ou multi-voltas com interface BiSS Modo C da Renishaw (mais especificamente, o modelo Resolute RA26B) como um sistema de feedback. O controle térmico no motor está conectado através do cabo do encoder e avaliado no drive.

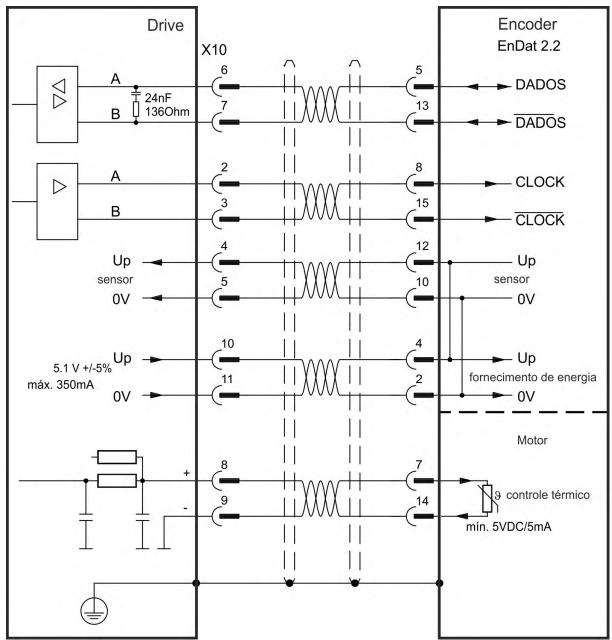
Se planeja-se comprimentos de cabos com mais de 25 m, entre em contato com o apoio ao cliente.


Tipo	FBTYPE	Up	Limite de frequência
BiSS Modo C	34	5 V +/-5%	2,5 MHz

9.12.9 Encoder Senoidal com EnDat 2.1

O diagrama abaixo mostra a fiação de um encoder seno-cosseno de uma volta ou multi-voltas com interface EnDat 2.1 como um sistema de feedback. Os tipos preferidos são os encoders ECN1313 e EQN1325. O controle térmico no motor está conectado através do cabo do encoder e avaliado no drive. Todos os sinais são conectados usando nosso cabo de conexão de encoder pré-montado. Se planeja-se comprimentos de cabos com mais de 50 m, entre em contato com o apoio ao cliente.

Tipo	FBTYPE	Limite de frequência
ENDAT 2.1	30	1 MHz,
		250 kHz para encoders que requerem resistores de terminação


9.12.10 Encoder com EnDat 2.2

Codificadores de uma ou mais voltas com interface EnDat 2.2 pode ser conectado ao X10 ou X9 como um sistema de feedback do motor primário.

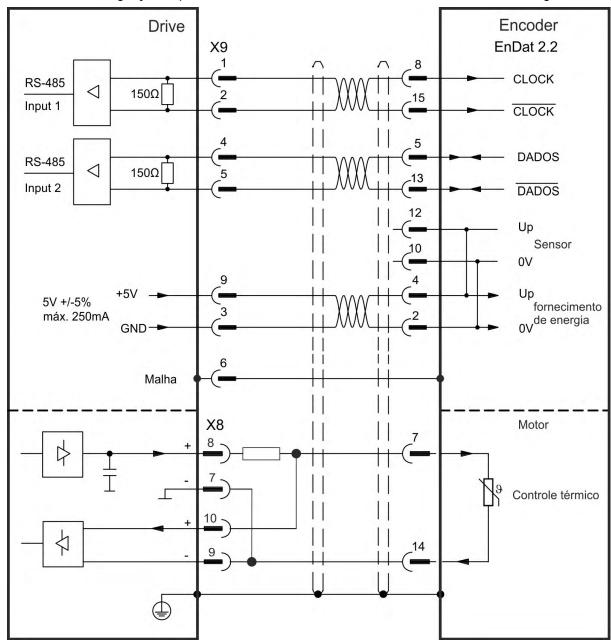
9.12.10.1 Conexão ao X10

O controle térmico no motor está conectado através do cabo do encoder e avaliado no drive. Todos os sinais são conectados usando nosso cabo de conexão de encoder pré-montado. Se planeja-se comprimentos de cabos com mais de 50 m, entre em contato com o apoio ao cliente.

Tipo	FBTYPE	Limite de frequência	Descrição
ENDAT 2.2	31	2,5 MHz	Ajuste na tela página FEEDBACK

9.12.10.2 Conexão ao X9 e X8

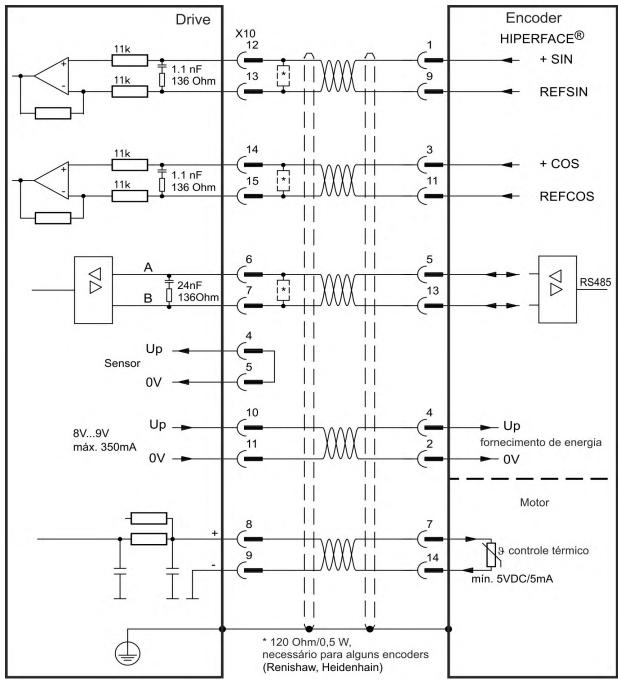
O controle termal no motor é conectado por meio de E/S Análogo em X8 e avaliado no drive. Todos os sinais são conectados usando nosso cabo de conexão especial (Europa: CFD5).


INFORMAÇÃO

A funcionalidade de E/S análogo deve ser selecionado na tela relacionada do WorkBench. Se o limite definido for ultrapassado, então o aviso n256 é criado.

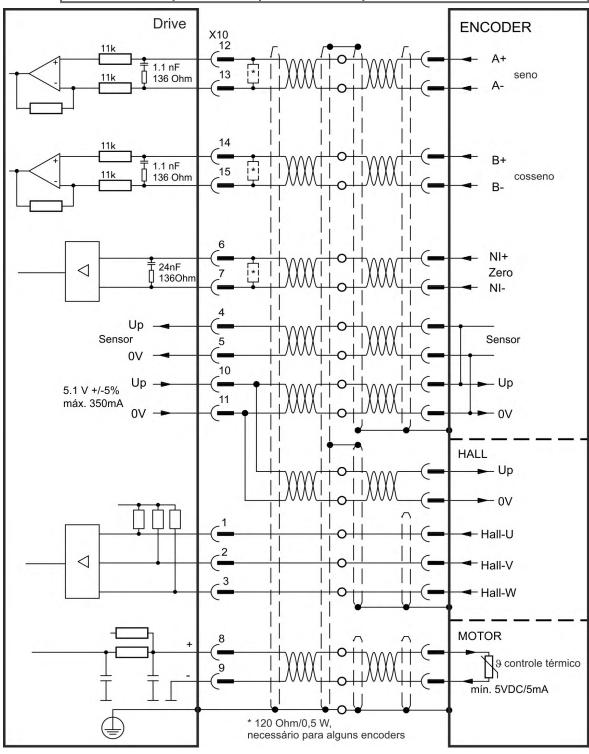
Se planeja-se comprimentos de cabos com mais de 50 m, entre em contato com o apoio ao cliente.

Tipo	FBTYPE	Limite de frequência	Descrição
ENDAT 2.2	0*	2,5 MHz	Ajuste na tela página FEEDBACK


^{*} Para uso como feedback de motor primário, defina os parâmetros DRV.EMUEMODE, PL.FBSOURCE, IL.FBSOURCE, VL.FBSOURCE.

9.12.11 Encoder Senoidal com Hiperface

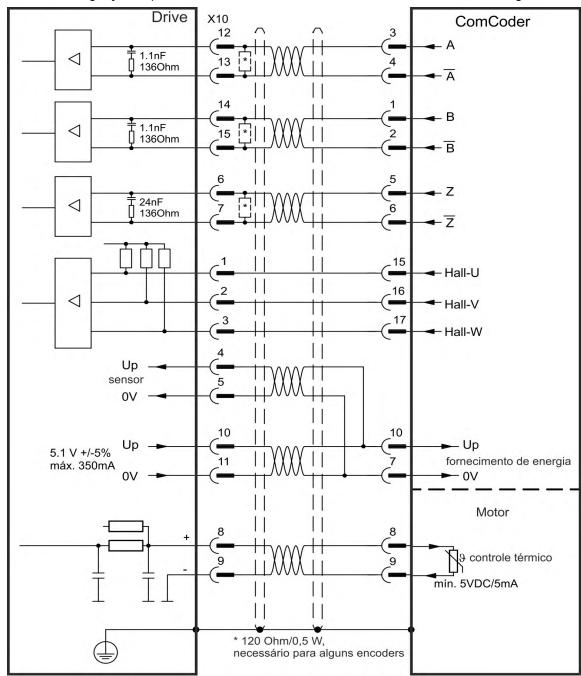
O diagrama abaixo mostra a fiação de um encoder seno-cosseno de uma volta ou multi-voltas com interface Hiperface como um sistema de feedback. O controle térmico no motor está conectado através do cabo do encoder e avaliado no drive. Todos os sinais são conectados usando nosso cabo de conexão de encoder pré-montado. Se planeja-se comprimentos de cabos com mais de 50 m, entre em contato com o apoio ao cliente.


Tipo	FBTYPE	Limite de frequência	Descrição
Hiperface	33	1 MHz,	Conectar os pinos 4 e 5 juntos
		250 kHz para encoders que reque-	causa faz com que a máxima
		rem resistores de terminação	seja de 8 a 9 V

9.12.12 Encoder Senoidal

Dispositivos de feedback que não entregam informações absolutas para comutação podem funcionar com comutação wake&shake (consulte a ajuda do WorkBench) ou podem ser usados como um sistema de feedback completo quando combinados com um encoder Hall adicional. Todos os sinais são conectados ao X10 e lá são avaliados. Se planeja-se comprimentos de cabos com mais de 25 m, entre em contato com o apoio ao cliente.

Tipo	FBTYPE	Up	Limite de frequência
SenCos 1 V p-p com Hall	20	5.1 V +/-5%	1 MHz, 250 kHz para encoders que requerem
SenCos 1 V p-p (Wake&Shake)	21	5.1 V +/-5%	resistores de terminação

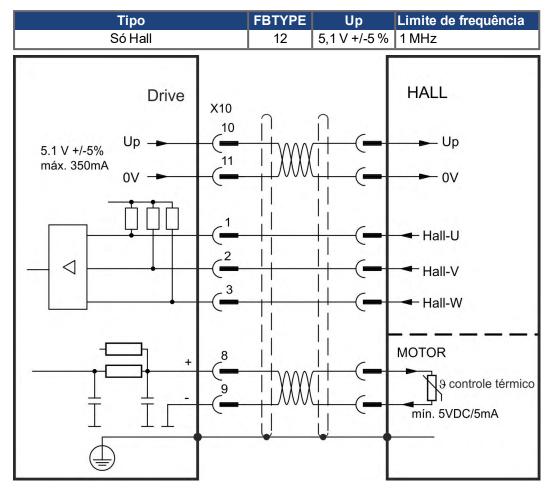


9.12.13 Encoder incremental

Dispositivos de feedback que não entregam informações absolutas para comutação podem funcionar com comutação wake&shake (consulte a ajuda do WorkBench) ou podem ser usados como um sistema de feedback completo quando combinados com um encoder Hall adicional. Todos os sinais são conectados usando um cabo de conexão de camcoder prémontado. O controle térmico no motor está conectado através do cabo do encoder e avaliado no drive.

Se planeja-se comprimentos de cabos com mais de 25 m, entre em contato com o apoio ao cliente.

Tipo	FBTYPE	Limite de frequência
Encoder Incremental e Hall (Comcoder)	10	2,5 MHz
Encoder incremental (Wake&Shake)	11	2,5 MHz

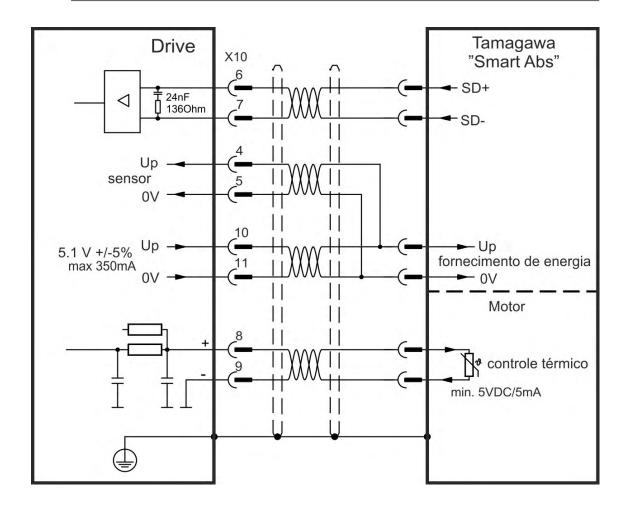

9.12.14 Só Hall

Esse tipo de feedback somente suporta operações no modo Torque e no modo de velocidade.

Os sinais Hall são conectados ao X10. Se os comprimentos de cabos com mais de 25 m forem planejados, entre em contato com o apoio ao cliente.

INFORMAÇÃO

Consulte mais informações sobre a configuração de feedback do Hall na Ajuda On-line do WorkBench.

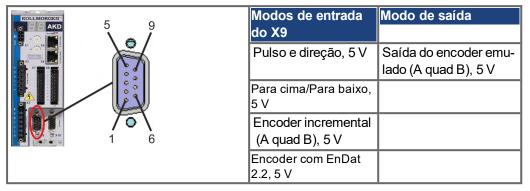

Conexão do motor Kollmorgen:

AKD KBM(S)		TBM(S)		VLM(H)		IC, ICH, IL, ID				
Pin	Signal	Cor	Nome	Cor	Nome	Cor	Nome	Cor	Pin	Nome
X2/4	U	azul	U	vermelho	Α	vermelho	U	vermelho	1	Α
X2/5	V	marrom	V	branco	В	branco	V	branco	2	В
X2/6	W	roxo	W	preto	С	preto	W	preto	3	С
X10/1	Hall-U	amarelo	Н3	amarelo	H-CA	verde	Hall U	marrom	SubD9/4	S3
X10/2	Hall-V	marrom	H1	marrom	H-AB	marrom	Hall V	verde	SubD9/2	S1
X10/3	Hall-W	laranja	H2	laranja	H-BC	branco	HallW	amarelo	SubD9/3	S2

9.12.15 Encoder Tamagawa Smart Abs

O diagrama abaixo mostra a fiação de encoders Tamagawa "Smart Abs" (Tamagawa Seiki Co. Ltd. S48-17/33bit-LPS-5V ou similar) como um sistema de feedback primário. O controle térmico no motor está conectado através do cabo do encoder e avaliado no drive. Se não houver controle térmico no motor, o cabo deve conectar os pinos 8 e 9. O sinal "Sense" é opcional e pode ser omitido se o cabo do encoder for curto e nenhuma queda de tensão significante ocorrer no cabo. A queda de tensão depende do comprimento e do medidor do cabo, e do consumo atual do encoder. Se planeja-se comprimentos de cabos com mais de 25 m, entre em contato com o apoio ao cliente.

Tipo	FBTYPE	Para cima	Limite de frequência	
S48-17/33bit-LPS-5V	42	5 V +/-5%	2,5 MHz	



9.13 Engrenagem eletrônica, Operação mestre-escravo (X9, X7)

É possível configurar sistemas mestre/escravo; use um encoder externo como um encoder de comando, dispositivo de feedback secundário (controle duplo de circuito) ou conecte o amplificador a um controlador de passo de terceiros. Dependendo do nível de tensão do sinal, conector X9 (5 V TTL) ou X7 (24 V) deve ser usado.

O software de configuração WorkBench é usado para realizar ajustes. Consulte a tela "Feedback 2" no WorkBench sobre configuração. FB2.SOURCE, FB2.MODE, FB2.ENCRES e outros são usados para configurar uma aplicação com estas interfaces.

O conector X9 pode ser configurado como uma entrada ou saída para sinais de 5 V (nível TTL).

O conector X7, ENTRADA-DIGITAL 1/2 pode ser configurado como uma entrada para sinais de 24 V.

9.13.1 Características técnicas e pinagem

9.13.1.1 Conector de entrada X7

Características técnicas

- Flutuante, linha comum de referência é a DCOM7
- Máxima frequência de sinal de entrada: 500 kHz
- Conexão do tipo Dissipadora ou Fonte possível
- Máxima: 3.5 a 30 V/2 a 15 mA, Mínima: -2 a +2 V/<15 mA
- Taxa de atualização: firmware lê estado de entrada hardware cada 250 μs

Pino	Pulso/Direção	Para cima/Para baixo	Encoder incremental
9	Pulso	Para cima (CW)	Canal A
10	Direção	Para baixo (CCW)	Canal B
1	Comum	Comum	Comum

9.13.1.2 Conector de entrada X9

Características técnicas

- Interface elétrica: RS-485
- Máxima frequência de sinal de entrada: 3MHz
- Faixa de tensão do sinal de entrada: +12 V a -7 V
- Tensão de fornecimento (aplicável apenas à Entrada do encoder incremental): +5 V ±5%
- Corrente de fornecimento máxima: 250 mA

Pino	Pulso/Direção	Para cima/Para baixo	Encoder incremental	Encoder com EnDat 2.2
1	Pulso+	Para cima +	A+	CLOCK+
2	Pulso -	Para cima -	A-	CLOCK-
3	GND	GND	GND	GND
4	Direção +	Para baixo +	B+	DADOS+
5	Direção -	Para baixo -	B-	DADOS-
6	Malha	Malha	Malha	Malha
7	-	-	Zero+	-
8	-	-	Zero-	-
9	-	-	+ 5 V (fornecimento, saída)	+5V (fornecimento, saída)

AVISO

O comprimento máximo do cabo de um encoder incremental externo usando X9 depende dos requerimentos da queda de tensão do cabo e da potência do encoder externo. Consulte o exemplo de cálculo no capítulo "Engrenagem Eletrônica" a ajuda on-line do WorkBench.

9.13.1.3 Conector de saída X9

Características técnicas

Interface elétrica: RS-485Frequência máx.: 3 MHz

• Os pulsos por valor de rotação são configuráveis.

Mudança de fase do pulso: 90°±20°

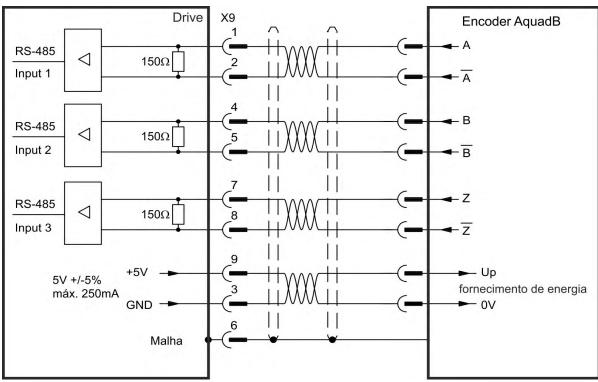
Pino	Saída do encoder emulado
1	Canal A+
2	Canal A-
3	GND
4	Canal B+
5	Canal B-
6	Malha
7	Canal Zero+
8	Canal Zero-
9	-

INFORMAÇÃO

O comprimento máximo do cabo permitido é de 100 metros.

9.13.2 Conexão de sinal do encoder de comando

9.13.2.1 Encoder incremental entrada 5 V (X9)

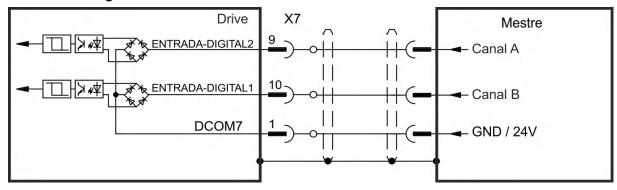

Um encoder A quad B de 5 V, ou a saída da emulação do encoder de outro drive, pode ser conectado à esta entrada e usado como um encoder comandante, feedback de circuito duplo, entrada de engrenagem ou cames.

Parâmetro configuração FB2.MODE = 0, FB2.SOURCE=1.

INFORMAÇÃO

Não o use como conexão primária de feedback do motor!

Diagrama de conexão


9.13.2.2 Encoder incremental entrada 24 V (X7)

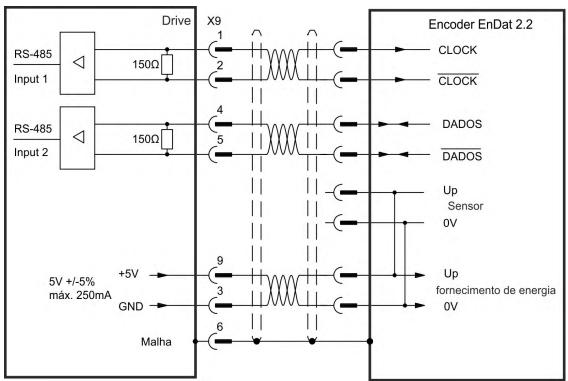
Um encoder A quad B de 24 V pode ser conectado a entradas digitais 1 e 2 e usado como um encoder comandante, feedback de circuito duplo, entrada de engrenagem ou cames. Parâmetro configuração FB2.MODE = 0, FB2.SOURCE=2.

INFORMAÇÃO

Não o use como conexão primária de feedback do motor!

Diagrama de conexão

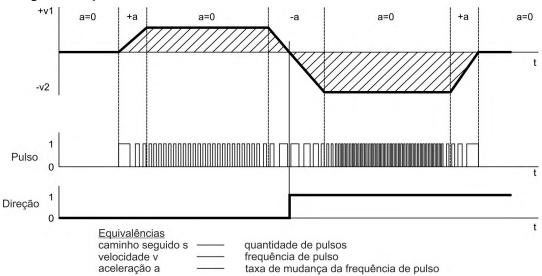
9.13.2.3 Encoder com EnDat 2.2, entrada 5 V (X9)


Um encoder de uma volta ou multi-voltas com EnDat 2.2 pode ser conectado à esta entrada e usado como um encoder comandante, feedback de circuito duplo, entrada de engrenagem ou cames.

Parâmetro configuração FB3.MODE=0, DRV.EMUEMODE=11.

INFORMAÇÃO

Pode ser usado como conexão primária de feedback do motor (→ #132)!


Diagrama de conexão

9.13.3 Conexão do sinal de Pulso / Direção

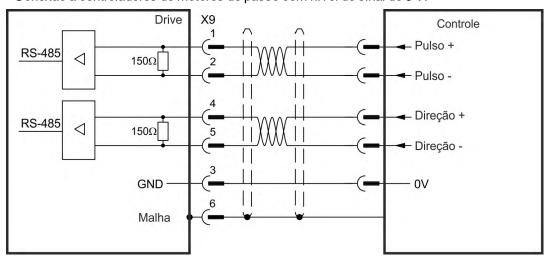
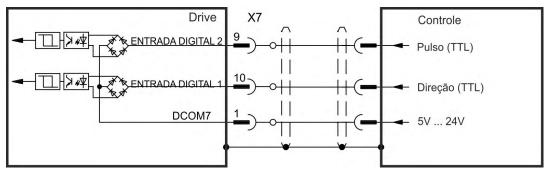
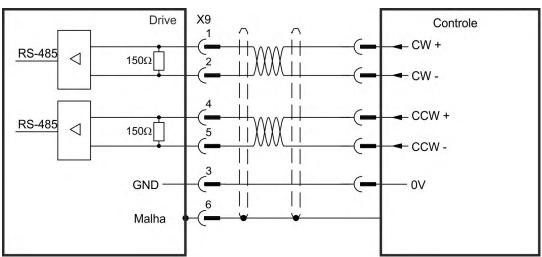

O drive pode ser conectado a um controlador de motor de passo. Defina parâmetros para o drive com o WorkBench. A quantidade de pulsos pode ser ajustada, para que o drive possa ser adaptado para corresponder a qualquer controlador de passos.

Diagrama de perfil de velocidade e sinal

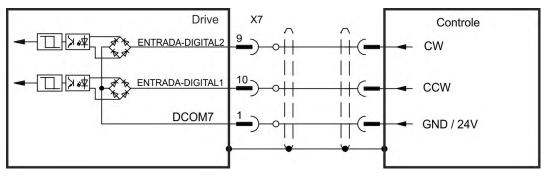

9.13.3.1 Entrada de Pulso / Direção 5V (X9)

Conexão a controladores de motores de passo com nível de sinal de 5 V.

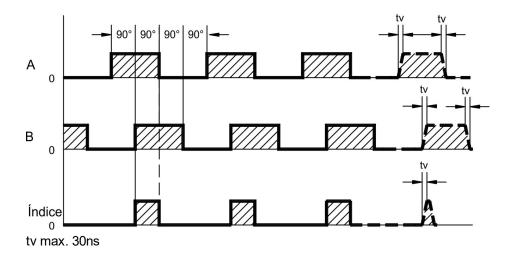
9.13.3.2 Entrada de Pulso / Direção 5V (X7)


Os controladores lógicos de motores de passo, utilizam o padrão industrial de 5V nas saídas de Pulso/Direção ou Passo/Direção. Observe que as entradas (X7) funcionam com entre 5V e 24V (lógico) e, por isso, estas entradas podem ser acionadas por entradas lógicas de 24V também.

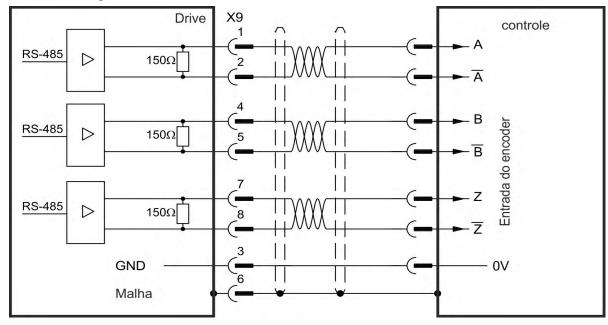
9.13.4 Conexão de sinal para Cima/Baixo (CW / CCW)


9.13.4.1 Entrada CW / CCW 5 V (X9)

O drive pode ser conectado a um controlador de terceiros que entregue sinais CW/CCW de 5 V.

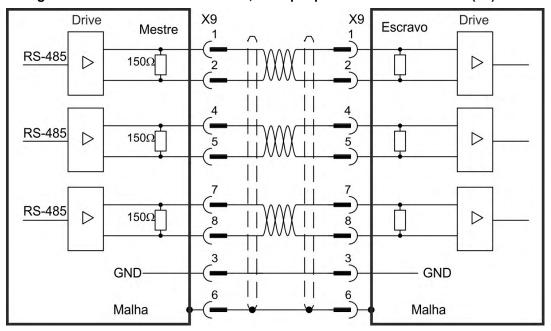

9.13.4.2 Entrada CW / CCW 24 V (X7)

O drive pode ser conectado a um controlador de terceiros que entregue sinais CW/CCW de 24 V.



9.13.5 Saída do encoder emulado (EEO)

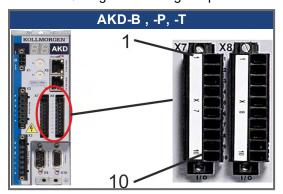
O drive calcula a posição do eixo do motor a partir dos sinais absolutos cíclicos do feedback primário, gerando pulsos de encoder incremental compatível a partir destas informações. As saídas de pulso no SubD conector X9 são 3 sinais, A, B e Índice, com uma diferença de fase de 90° (ou seja, na quadratura, portanto a saída "A quad B" de termo alternativo), com um pulso zero. A resolução (antes da multiplicação) pode ser ajustada pelo parâmetro DRV.EMUERES. Use o parâmetro DRV.EMUEZOFFSET para ajustar e salvar a posição do pulso zero dentro de uma volta mecânica. Os condutores operam a partir de uma tensão de alimentação interna.


Diagrama de conexão

9.13.6 Controle Mestre-Escravo

Vários AKD podem ser conectados como drives escravos a um AKD mestre. Os drives escravos usam os sinais de saída do encoder mestre como entrada de comando e seguem estes comandos (velocidade e direção).

Diagrama de conexão mestre-escravo, exemplo para nível de sinal de 5V (X9)



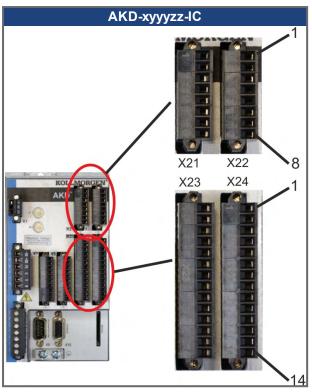
9.14 Conexão de E/S

9.14.1 Visão geral

9.14.1.1 Conectores de E/S X7 e X8 (todas as variantes do AKD)

Sinais de E/S digitais e analógicas padrões estão conectados ao X7 e X8.

Con.	Pino	Sinal	Abreviação	Função	Diagrama de fiação
X7	1	X7 comum digital	DCOM7	Linha comum para X7 pinos 2, 3, 4, 9, 10	
X7	2	Entrada digital 7	DIGITAL-IN 7	Programável	(→ # 152)
X7	3	Entrada digital 4	DIGITAL-IN 4	Programável	
X7	4	Entrada digital 3	DIGITAL-IN 3	Programável	
X7	5	Saída Digital 2-	DIGITAL-OUT2-	Programável	
X7	6	Saída Digital 2+	DIGITAL-OUT2+	Programável	(-> # 160)
X7	7	Saída Digital 1-	DIGITAL-OUT1-	Programável	(→ # 160)
X7	8	Saída Digital 1+	DIGITAL-OUT1+	Programável	
X7	9	Entrada digital 2	DIGITAL-IN 2	Programável, alta velocidade	(→ # 151)
X7	10	Entrada digital 1	DIGITAL-IN 1	Programável, alta velocidade	(7 # 151)
X8	1		Saída de Relé de Fa	alha	(→ # 152)
X8	2		Saída de Relé de Fa	alha	(7 # 152)
X8	3	X8 comum digital	DCOM8	Linha comum para X8 pinos 4, 5, 6	
X8	4	Entrada digital 8	DIGITAL-IN 8	Habilitar etapa de saída, não programável	(→ #152)
X8	5	Entrada digital 6	DIGITAL-IN 6	Programável	
X8	6	Entrada digital 5	DIGITAL-IN 5	Programável	
X8	7	Aterramento analógico	AGND	GND analógico	
X8	8	Saída analógica +	Analog-Out	Tensão de velocidade real	
X8	9	Entrada analógica -	Analog-In-	Regulagem de velocidade	(→ # 151)
X8	10	Entrada analógica +	Analog-In+	1 Negulagetti de velocidade	(7 # 151)

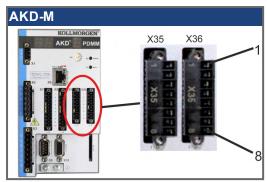

Digital common lines for X7 and X8 are not common to each other.

The DCOMx line should be connected to the 0V of the I/O supply when using sensors of type "Source" with digital inputs.

The DCOMx line should be connected to the 24V of the I/O supply when using sensors of type "Sink" with digital inputs.

9.14.1.2 Conectores de E/S X21, X22, X23 e X24 (Apenas drives com cartão de opção de E/S)

O cartão de opção de E/S oferece quatro conectores adicionais X21, X22, X23, X24 para sinais de E/S.



Con.	Pino	Sinal	Abreviação	Função	Diagrama de fiação	
X21	1	Entrada digital 21	DIGITAL-IN 21	Programável		
X21	2	Entrada digital 22	DIGITAL-IN 22	Programável		
X21	3	Entrada digital 23	DIGITAL-IN 23	Programável		
X21	4	Comum Digital X21/1_3	DCOM21.1_3	Linha comum para X21 pinos 1, 2, 3	(-> #151)	
X21	5	Entrada digital 24	DIGITAL-IN 24	Programável	(→ # 154)	
X21	6	Entrada digital 25	DIGITAL-IN 25	Programável]	
X21	7	Entrada digital 26	DIGITAL-IN 26	Programável]	
X21	8	Comum Digital X21/5_7	DCOM21.5_7	Linha comum para X21 pinos 5, 6, 7		
X22	1	Entrada digital 27	DIGITAL-IN 27	Programável		
X22	2	Entrada digital 28	DIGITAL-IN 28	Programável		
X22	3	Entrada digital 29	DIGITAL-IN 29	Programável		
X22	4	Comum Digital X22/1_3	DCOM22.1_3	Linha comum para X22 pinos 1, 2, 3	(→ # 154)	
X22	5	Entrada digital 30	DIGITAL-IN 30	Programável	(3 # 154)	
X22	6	Entrada digital 31	DIGITAL-IN 31	Programável		
X22	7	Entrada digital 32	DIGITAL-IN 32	Programável]	
X22	8	Comum Digital X22/5_7	DCOM22.5_7	Linha comum para X22 pinos 5, 6, 7		

Con.	Pino	Sinal	Abreviação	Função	Diagrama de fiação
X23	1	Saída analógica 2 +	Analog-Out2	Programável	
X23	2	reservado	n.c.	n.c.	(→ # 151)
X23	3	Aterramento analógico	AGND	Programável	(3 # 151)
X23	4	reservado	n.c.	n.c.	
X23	5	Saída Digital 21+	DIGITAL-OUT 21+	Programável	
X23	6	Saída Digital 21-	DIGITAL-OUT 21-	Programável	
X23	7	Saída Digital 22+	DIGITAL-OUT 22+	Programável	
X23	8	Saída Digital 22-	DIGITAL-OUT 22-	Programável	(→ # 151)
X23	9	Saída Digital 23+	DIGITAL-OUT 23+	Programável	(7 # 131)
X23	10	Saída Digital 23-	DIGITAL-OUT 23-	Programável	
X23	11	Saída Digital 24+	DIGITAL-OUT 24+	Programável	
X23	12	Saída Digital 24-	DIGITAL-OUT 24-	Programável	
X23	13	Saída de Relé 25	DIGITAL-OUT 25	Programável, relé	(→ # 163)
X23	23 14 Saída de Relé 25		DIGITAL-OUT 25	Programável, relé	(7 # 103)
X24	1	Entrada Analógica 2+	Analog-In2+	Programável	
X24	2	Entrada analógica 2-	Analog-In2-	Programável	(→ # 150)
X24	3	Aterramento analógico	AGND	Programável	(-7 # 150)
X24	4	reservado	n.c.	n.c.	
X24	5	Saída Digital 26+	DIGITAL-OUT 26+	Programável	
X24	6	Saída Digital 26-	DIGITAL-OUT 26-	Programável	
X24	7	Saída Digital 27+	DIGITAL-OUT 27+	Programável	
X24	8	Saída Digital 27-	DIGITAL-OUT 27-	Programável	(→ # 161)
X24	9	Saída Digital 28+	DIGITAL-OUT 28+	Programável	(-7 # 101)
X24	10	Saída Digital 28-	DIGITAL-OUT 28-	Programável	
X24	11	Saída Digital 29+	DIGITAL-OUT 29+	Programável	
X24	12	Saída Digital 29-	DIGITAL-OUT 29-	Programável	
X24	13	Saída de Relé 30	DIGITAL-OUT 30	Programável, relé	(→ # 150)
X24	14	Saída de Relé 30	DIGITAL-OUT 30	Programável, relé	(7 # 150)

9.14.1.3 Conectores de E/S X35 e X36 (apenas (AKD-M)

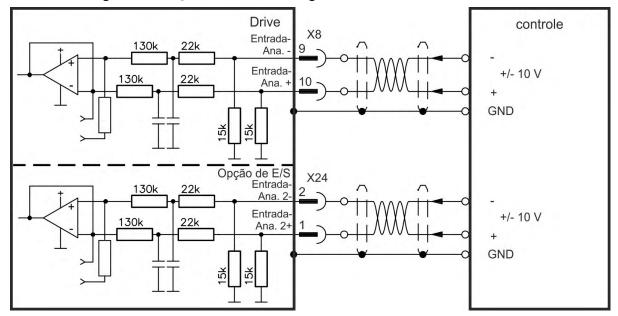
OAKD PDMM oferece dois conectores adicionais X35 e X36 para sinais de E/S digitais.

Con.	Pino	Sinal	Abreviação	Função	Diagrama de fiação
X35	1	X35 comum digital	DCOM35	Linha comum para X35 pinos 2, 3, 4	
X35	2	Entrada digital 21	DIGITAL-IN 21	Programável	(→ # 157)
X35	3	Entrada digital 22	DIGITAL-IN 22	Programável	
X35	4	Entrada digital 23	DIGITAL-IN 23	Programável	
X35	5	n.c.	n.c.	-	(→ # 157)
X35	6	n.c.	n.c.	-	-
X35	7	Saída Digital 21-	DIGITAL-OUT21-	Programável	
X35	8	Saída Digital 21+	DIGITAL-OUT21+	Programável	-
X36	1	X36 comum digital	DCOM36	Linha comum para X36 pinos 2, 3, 4	
X36	2	Entrada digital 24	DIGITAL-IN 24	Programável	(→ # 157)
X36	3	Entrada digital 25	DIGITAL-IN 25	Programável	
X36	4	Entrada digital 26	DIGITAL-IN 26	Programável	
X36	5	n.c.	n.c.		(→ # 157)
X36	6	n.c.	n.c.		-
X36	7	Saída Digital 22-	DIGITAL-OUT22-	Programável	
X36	8	Saída Digital 22+	DIGITAL-OUT22+	Programável	-

Linhas comuns digitais para X35 e X36 não são comuns umas às outras.

A linha DCOMx deve ser conectada ao 0V da alimentação de E/S ao usar sensores do tipo "Fonte" com entradas digitais.

A linha DCOMx deve ser conectada ao 24V da alimentação de E/S ao usar sensores do tipo "Dissipação" com entradas digitais.


9.14.2 Entrada analógica (X8, X24)

O drive é montado com entradas diferenciais para torque, velocidade ou controle de posição das entradas. O drive padrão oferece uma entrada analógica no X8, os drives com cartão de opção de E/S integrado oferecem uma segunda entrada no X24.

Características técnicas

- Faixa de tensão de entrada diferencial: ±12,5 V
- Tensão de entrada máxima referente ao Retorno de E/S: -12,5, +16,0 V
- Resolução: 16 Bit e totalmente monotônica
- Desvio não ajustado: < 50 mV
- Desvio do tipo ajustável: 250 μV / ° C
- Tolerância de ganho ou inclinação: +/- 3%
- Não-linearidade: < 0,1% da escala real ou 12,5 mV
- Relação de Rejeição do Modo Comum: > 30 dB a 60 Hz
- Impedância de entrada: > 13k Ohms
- Sinal para relação de ruído referente à escala real:
 - AIN.CUTOFF = 3000 Hz: 14 bitAIN.CUTOFF = 800 Hz: 16 bit

Diagrama de fiação da entrada analógica

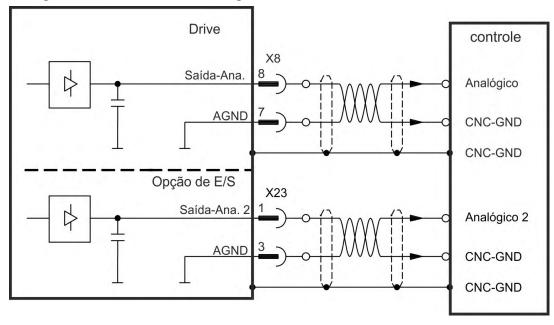
Exemplos de aplicação para regulagem de entrada da Entrada-Analógica:

- entrada de sensibilidade reduzida para operação de configuração/jog
- pré-controle/sobreposição

Definindo a direção da rotação

Configuração padrão: rotação em sentido horário do eixo do motor (olhando para a extremidade do eixo) afetado pela tensão positiva entre o terminal (+) e o terminal (-)

Para inverter a direção da rotação, troque as conexões para terminais +/-, ou troque o parâmetro DRV.DIR na página da tela "Feedback 1".


9.14.3 Saída analógica(X8, X23)

As saídas analógicas podem ser usadas para gerar valores analógicos convertidos de medições digitais gravados no drive. O drive padrão oferece uma saída analógica no X8, drives com cartão de opção de E/S integrado oferecem uma segunda entrada no X23. Uma lista de funções pré-programadas está incluída no software de configuração WorkBench.

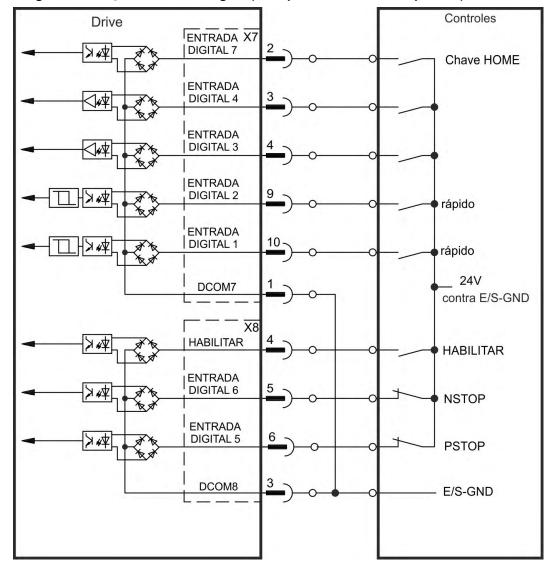
Características técnicas

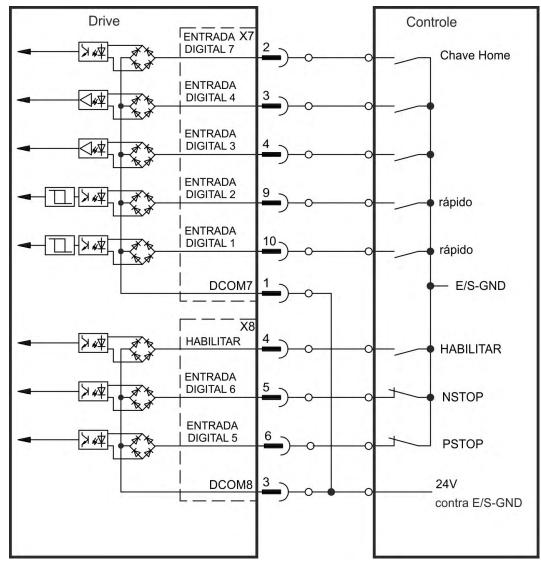
- Faixa de tensão de saída referente ao AGND: ±10 V
- Resolução: 16 Bit e totalmente monotônica
- Taxa de atualização: 4 kHz
- Desvio n\u00e3o ajustado: < 50 mV
- Desvio do tipo ajustável: 250 μV / ° C
- Tolerância de ganho ou inclinação: +/- 3%
- Não-linearidade: < 0,1% da escala real ou 20 mV
- Impedância de saída: 110 ohms
- As especificações estão em conformidade com IEC 61131-2 Tabela 11
- -3 dB Largura de banda: >8 kHz
- Corrente máxima de saída: 20 mA
- Carga capacitiva: qualquer valor exceto velocidade de resposta limitada pelo lout máx. e pelo Rout
- Protegido de curto-circuito para AGND

Diagrama de fiação da saída analógica

9.14.4 Entradas digitais (X7/X8)

O drive fornece 8 entradas digitais (→ # 146). Elas podem ser usadas para iniciar as funções pré-programadas que estão armazenadas no drive. Uma lista dessas funções pré-programadas está incluída no WorkBench. A entrada digital 8 não é programável, mas está fixa na função ENABLE.


Se uma entrada está programada, ela deve ser salva no drive.


INFORMAÇÃO

Dependendo da função selecionada, as entradas são ativo alto ou baixo. O filtro de entrada digital pode ser definido no WorkBench para alterar a sensibilidade das entradas (consulte a Ajuda On-line).

As entradas podem ser usadas com +24 V (tipo sink) comutada ou GND (tipo source) comutado. Consulte os diagramas abaixo para exemplos típicos de fiação de entrada digital.

Diagrama de fiação de entrada digital (exemplo de conexão do tipo sink)

Diagrama de fiação de entrada digital (exemplo de conexão do tipo source)

9.14.4.1 Entradas digitais 1 e 2

Estas entradas (X7/9 e X7/10) são particularmente rápidas e, por isso, adequadas para funções de trava, por exemplo. Elas também podem ser usadas como entradas de 24 V para engrenagem eletrônica (→ # 138).

Características técnicas

- Flutuante, linha comum de referência é a DCOM7
- Sensores do tipo Dissipador ou Fonte possíveis
- Máxima: 3,5 a 30 V/2 a 15 mA, Mínimo: -2 a +2 V/<15 mA
- Taxa de atualização: firmware lê o estado de entrada do hardware a cada 250 μs
- Trava de alta precisão: a posição de feedback do motor ou tempo de interpolação é travado ou capturado dentro de 2 µs a partir da transição de sinal de entrada (com o filtro de entrada digital definido a 40 ns)
- O mecanismo de captura de AKD é apurado a cada 62,5 µs (16 kHz) pelo firmware
- Para aplicações com o KAS (exemplo: AKD PDMM), a informação de posição capturada é atualizada na PDO Ethercat. O tempo de atualização típico no projeto KAS é dois ciclos Ethercat (com cada ciclo sendo 250 μs, 500 μs, 1000 μs ou 2000 μs).

9.14.4.2 Entradas digitais 3 a 7

Estas entradas são programáveis com a configuração do software. Por padrão, todas as entradas não estão programadas (desligadas).

Para obter mais informações, consulte a configuração do software.

Características técnicas

Escolha a função que você precisa no WorkBench.

- Flutuante, linha comum de referência é a DCOM7 ou DCOM8
- Sensores do tipo Dissipador ou Fonte possíveis
- Máxima: 3,5 a 30 V/2 a 15 mA, Mínimo: -2 a +2 V/<15 mA
- Taxa de atualização: firmware reads hardware input state every 250 μs
- As taxas de atualização da tarefa para funções de modo de entrada individual são definidas nos parâmetros DIN1.MODE para DIN7.MODE".

9.14.4.3 Entrada digital 8 (ENABLE)

Entrada digital 8 (terminal X8/4) é definida na função Enable.

- Flutuante. linha comum de referência é a DCOM8
- Fiação do tipo Dissipador ou Fonte é possível
- Máxima: 3,5 a 30 V/2 a 15 mA, Mínimo: -2 a +2 V/<15 mA
- Taxa de atualização: conexão direta com o hardware (FPGA)

INFORMAÇÃO

A entrada Enable do hardware e o sinal Enable do software (por meio de fieldbus ou WorkBench) são seriais, isso significa que a fiação da Enable do hardware é obrigatória.

A etapa de saída do drive é habilitada aplicando o sinal de ENABLE (Terminal X8/4, ativo alto). A habilitação é possível apenas se a entrada STO tiver um sinal de 24 V (→ #55). No estado desabilitado (sinal baixo) o motor conectado não tem torque.

Um software habilitado através da configuração do software também é necessário (E link), embora isto também possa ser permanentemente habilitado com o WorkBench.

9.14.5 Entradas digitais com opção de E/S (X21, X22)

A opção "IC" do drive fornece 12 entradas digitais adicionais (→ # 147). Elas podem ser usadas para iniciar as funções pré-programadas que estão armazenadas no drive. Uma lista dessas funções pré-programadas está incluída no WorkBench. Se uma entrada está programada, ela deve ser salva no drive.

INFORMAÇÃO

Dependendo da função selecionada, as entradas são ativo alto ou baixo.

As entradas podem ser usadas com +24 V (tipo sink) comutada ou GND (tipo source) comutado.

Características técnicas

- Flutuante, sensores do tipo dissipador ou fonte possíveis
- Máxima: 3,5 a 30 V/2 a 15 mA, Mínimo: -2 a +2 V/<15 mA
- Taxa de atualização: Software 250 µs

Diagrama de fiação de entrada digital (exemplo de conexão do tipo sink) Drive Controles ENTRADA X21 DIG. 21 24V contra E/S-GND ENTRADA DIG. 22 ENTRADA DIG. 23 DCOM21/1_3 ENTRADA DIG. 24 **ENTRADA** DIG. 25 **ENTRADA** DIG. 26 DCOM21/5_7 ENTRADA X22 DIG. 27 ENTRADA DIG. 28 ENTRADA DIG. 29 DCOM22/1_3 **ENTRADA** DIG. 30 **ENTRADA** DIG. 31 **ENTRADA** DIG. 32

DCOM22/5_7

☐ E/S-GND

Drive Controles X21 ENTR.-DIG.21 ENTR.-DIG.22 ENTR.-DIG.23 DCOM21/1 3 ENTR.-DIG.24 ENTR.-DIG.25 ENTR.-DIG.26 DCOM21/5_7 X22 E/S-GND ENTR.-DIG.27 ENTR.-DIG.28 ENTR.-DIG.29 DCOM22/1_3 ENTR.-DIG.30 ENTR.-DIG.31 ENTR.-DIG.32 contra E/S-GND DCOM22/5_7

24V

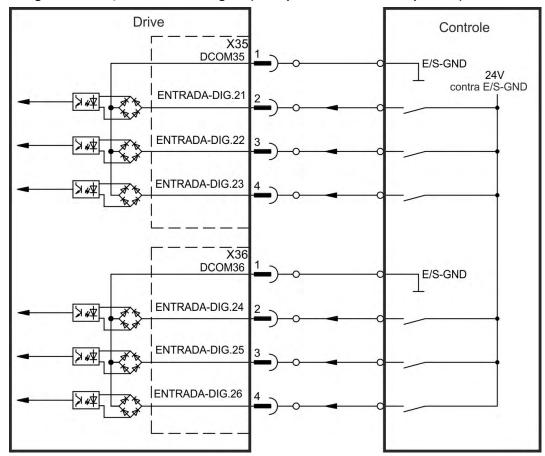
Diagrama de fiação de entrada digital (exemplo de conexão do tipo source)

9.14.6 Entradas digitais (X35/X36) com AKD-M

Além das entradas digitais 8 no X7 e X8 (→ # 146), o AKD PDMM fornece 6 entradas digitais no X35 e X36. Elas podem ser usadas para iniciar as funções pré-programadas que estão armazenadas no drive. Uma lista dessas funções pré-programadas está incluída no KAS IDE. Se uma entrada está programada, ela deve ser salva no drive. Por padrão, todas as entradas não estão programadas (desligadas). Para obter mais informações, consulte o software de configuração.

INFORMAÇÃO

Dependendo da função selecionada, as entradas são ativo alto ou baixo.


Características técnicas

Escolha a função que você precisa no KAS IDE.

- Flutuante, linha comum de referência é a DCOM35 ou DCOM36
- Sensores do tipo Dissipador ou Fonte possíveis
- Máxima: 3,5 a 30 V/2 a 15 mA, Mínimo: -2 a +2 V/<15 mA
- Taxa de atualização: Software 250 μs

As entradas podem ser usadas com +24 V (tipo sink) comutada ou GND (tipo source) comutado. Consulte os diagramas abaixo para exemplos típicos de fiação de entrada digital.

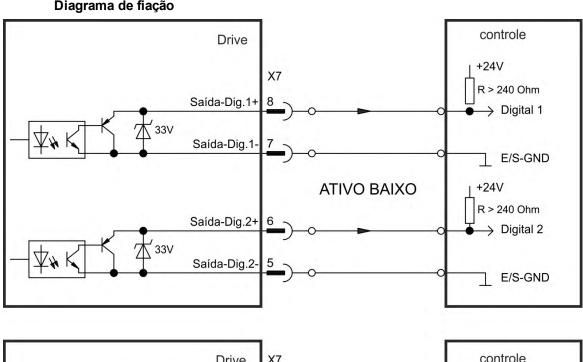
Diagrama de fiação de entrada digital (exemplo de conexão do tipo sink)

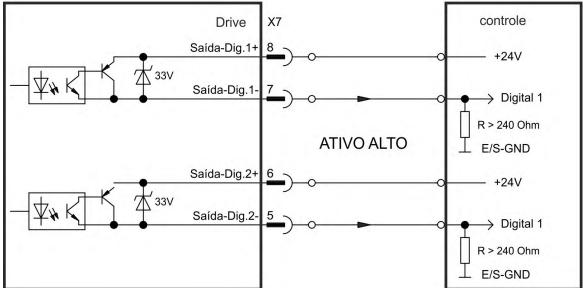
Drive Controle X35 DCOM35 ____ 24V contra E/S-GND ENTRADA-**DIG.21** ENTRADA-DIG.22 ENTRADA-DIG.23 X36 DCOM36 24V contra E/S-GND ENTRADA-女** K DIG.24 ENTRADA-DIG.25 ENTRADA-**DIG.26**

E/S-GND

Diagrama de fiação de entrada digital (exemplo de conexão do tipo source)

9.14.7 Saídas digitais (X7/X8)


9.14.7.1 Saídas digitais 1 e 2


O drive fornece 2 saídas digitais (X7/5 a X7/8, (→ # 146)). Escolha a função necessária no software de configuração. As mensagens das funções pré-programadas armazenadas no drive podem ser geradas aqui. Uma lista destas funções pré-programadas pode ser encontrada no software de configuração. Se uma saída deve ser designada à uma função pré-programada, então o conjunto de parâmetros deve ser salvo no drive.

Características técnicas

- Fonte de alimentação ES de 24 V nos terminais X7/8 e X7/6, 20 Vcc a 30 Vcc
- Todas as saídas digitais são flutuantes, DIGITAL OUT 1/2: terminais X7/7-8 e X7/5-6), máx. 100 mA
- Podem ser ligadas como ativo baixo ou ativo alto (veja exemplos abaixo)
- Taxa de atualização: 250 µs

Diagrama de fiação

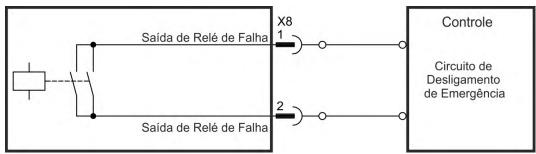
9.14.7.2 Contatos de Relé de FALHA

Prontidão operacional (terminais X8/1 e X8/2) está sinalizada por um contato de relé flutuante

O relé de falha pode ser programado em dois modos de operação:

- Contato fechado quando não há falha
- Contato fechado quando não há falha e o drive está habilitado.

O sinal não é influenciado pelo sinal de habilitar, o l²t-limite, ou o limiar de regeneração.


Características técnicas

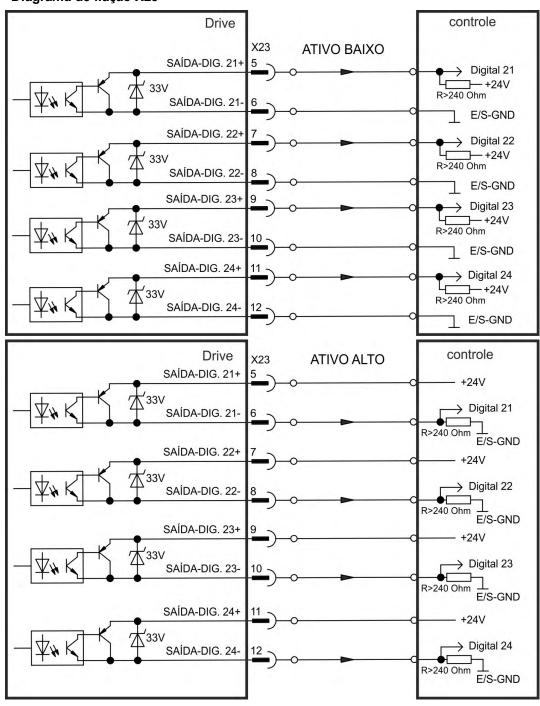
- FAULT: Saída do relé, máx. 30 Vcc ou 42 Vca, 1 A
- Tempo para fechar: máx. 10 ms
- Tempo para abrir: máx. 10 ms

INFORMAÇÃO

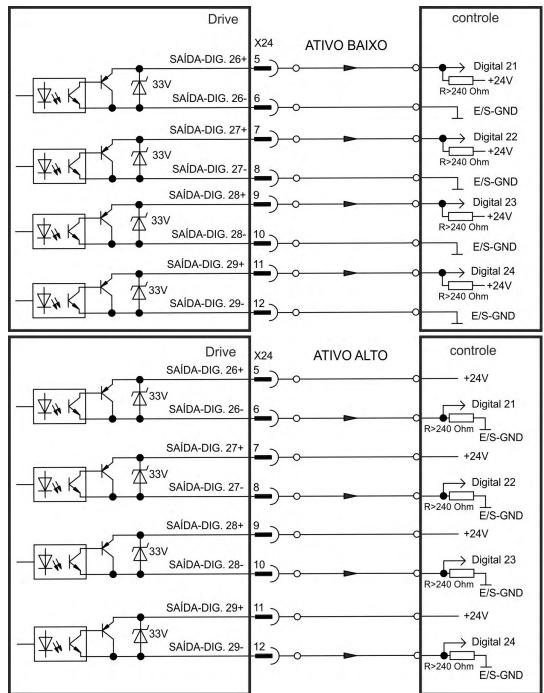
Todas as falham fazem com que o contato de FAULT abram e com que a etapa de saída seja desligada (se o contato de FAULT estiver aberto, a etapa de saída é inibida → sem saída de potência). Lista de mensagens de falha: (→ # 202).

Diagrama de fiação

9.14.8 Saídas digitais com opção de E/S (X23/X24)


9.14.8.1 Saídas digitais de 21 a 24, de 26 a 29

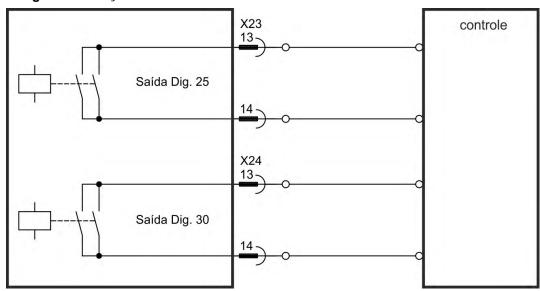
A opção "IC" do drive fornece 10 saídas digitais (→ # 146). Escolha a função necessária no software de configuração. As mensagens das funções pré-programadas armazenadas no drive podem ser geradas aqui. Uma lista destas funções pré-programadas pode ser encontrada no software de configuração. Se uma saída deve ser designada à uma função pré-programada, então o conjunto de parâmetros deve ser salvo no drive.


Características técnicas

- Fonte de alimentação ES de 24 V, 20 Vcc a 30 Vcc, flutuante, máx. 100 mA
- Podem ser ligadas como ativo baixo ou ativo alto (veja exemplos abaixo)
- Taxa de atualização: 250 μs

Diagrama de fiação X23

Diagrama de fiação X24


9.14.8.2 Saídas de relé digitais 25, 30

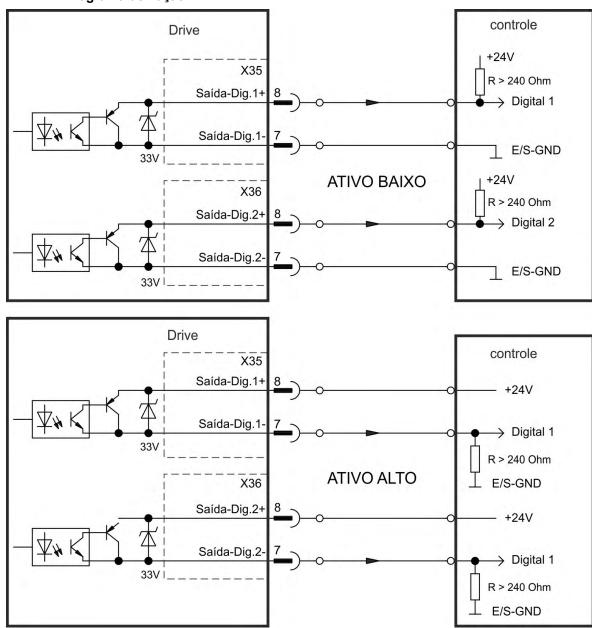
A opção "IC" do drive fornece duas saídas digitais, que são sinalizadas por contatos de relé flutuante (→ # 146). Escolha a função necessária no software de configuração. As mensagens das funções pré-programadas armazenadas no drive podem ser geradas aqui. Uma lista destas funções pré-programadas pode ser encontrada no software de configuração. Se uma saída deve ser designada à uma função pré-programada, então o conjunto de parâmetros deve ser salvo no drive.

Características técnicas

- Saída do relé, máx. 30 Vcc ou 42 Vca, 1 A
- Tempo para fechar: máx. 10 msTempo para abrir: máx. 10 ms

Diagrama de fiação

9.14.9 Saídas digitais (X35/X36) com AKD-M


9.14.9.1 Saídas digitais 21 e 22

Além das 2 saídas digitais no X7 (→ #146), o AKD PDMM fornece 2 saídas digitais no X35 e X36. Escolha a função necessária no software de configuração. As mensagens das funções pré-programadas armazenadas no drive podem ser geradas aqui. Uma lista destas funções pré-programadas pode ser encontrada no software de configuração. Se uma saída deve ser designada à uma função pré-programada, então o conjunto de parâmetros deve ser salvo no drive.

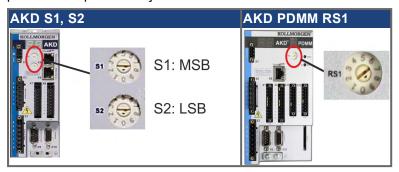
Características técnicas

- Fonte de alimentação ES de 24 V nos terminais X35/8 e X36/8, 20 Vcc a 30 Vcc
- Todas as saídas digitais são flutuantes, máx. 100 mA
- Podem ser ligadas como ativo baixo ou ativo alto (veja exemplos abaixo)
- Taxa de atualização: 1 ms

Diagrama de fiação

9.15 Monitor de LED

O display indica o status do drive após a alimentação de 24 V ser ligada. Se a conexão do serviço ao PC ou ao PAC não funcionar, então o display é a única forma de obter informações.



Consulte detalhes na Ajuda On-line do WorkBench.

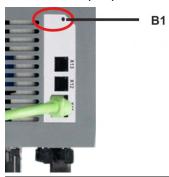
Códigos de exibição (visão geral)	Status
o0, o1, o2	Operação normal, modo de operação 0 ou 1 ou 2, sem falhas
Fx	Falha (consulte (→ #202)
nx	Aviso (consulte (→ #202)
IPx	Mostrando endereço IP do drive
	Ligando e carregando FPGA. Se contínuo, então as imagens do FGPA residente e operacional estão corrompidas.
[.]	Drive habilitado
[.] (piscando)	Drive em um modo de frenagem dinâmica interna (DRV.ACTIVE = 3).
dx	Download do firmware

9.16 Interruptores rotativos (S1, S2, RS1)

Os interruptores rotativos podem ser usados para selecionar o endereço IP ou as funções pré-definidas para execução.

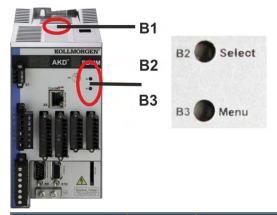
9.16.1 Interruptores rotativos S1 e S2 com AKD-B, -P, -T

S1	S2	Função	Definido quando	Observações			
0	0	DHCP IP	24 V está DESLIGADO	O drive adquire seu endereço IP de um servidor DHCP externo; para mais detalhes, consulte a (→ # 172).			
x	у	IP estático	24 V está DESLIGADO	O endereço IP é 192.168.0.nn, valores válidos são de 01 a 99; para mais detalhes, consulte a (→ # 172).			
Ape	nas d	drivesAKD-x***	*-CC				
8	9	Alterna DRV.TYPE	24 V está LIGADO e o drive está desabilitado	Pressione B1 por 3 segundos para alterar de rede CAN para EtherCAT, ou vice-versa (→ # 176) e (→ # 181). Desliga e liga o 24V.			
Ape	nas d	drives com cartâ	io de opção E/S				
1	0	Carrega dados	24 V está LIGADO e o drive está desabilitado	Pressione B1 por 5 segundos para carregar dados do cartão SD para o drive; para mais detalhes, consulte a (→ # 169).			
1	1	Salva dados	24 V está LIGADO e o drive está desabilitado	Pressione B1 por 5 segundos para salvar dados do drive para o cartão SD; para mais detalhes, consulte a (→ # 169).			
Ape	Apenas drivesAKD-T						
1	2	Para o pro- grama	24 V está LIGADO	Pressione B1 por 5 segundos para parar o programa BASIC			
1	3	Reinicia o pro- grama	24 V está LIGADO	Pressione B1 por 5 segundos para reiniciar o programa BASIC			


9.16.2 Interruptor rotativo RS1 com AKD-M

RS1	Função	Definido quando	Observações
0	DHCP IP	24 V está DESLIGADO	O drive irá adquirir seu endereço IP de um servidor DHCP externo (→ # 174).
1	IP estático	24 V está DESLIGADO	O endereço IP é configurável por um software a partir de um navegador (→ # 174).
2 a 9	IP estático	24 V está DESLIGADO	O endereço IP é 192.168.0.10n, valores válidos são de 2 a 9 (→ # 174).

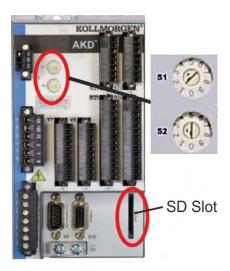
9.17 Botões (B1, B2, B3)


Os botões podem ser usados para iniciar funções pré-definidas.

9.17.1 Botão B1 com AKD-B, -P, -T

Função	Botão	Observações
Exibe o endereço IP	B1	Pressione brevemente para exibir o endereço IP no moni-
		tor de dois dígitos
Altera o tipo de drive	B1	Ajusta os interruptores rotativos S1 para 8 e S2 para 9.
do modelo AKD-		Pressione B1 por 3 segundos para alterar de CAN para
x***CC		EtherCAT, ou o contrário.
Carregar dados de um cartão SD	B1	Apenas drives com o cartão opcional de E/S. Ajusta os interruptores rotativos S1 para 1 e S2 para 0. Pressione
um cartao ob		B1 por 5 segundos para carregar os dados de um cartão
		SD para o drive.
Salvar dados no car-	B1	Apenas drives com o cartão opcional de E/S. Ajusta os
tão SD		interruptores rotativos S1 para 1 e S2 para 1. Pressione
		B1 por 5 segundos para salvar dados do drive para um car-
		tão SD.

9.17.2 Botões B1, B2, B3 com AKD-M



Função	Botão	Observações			
-	B1	Não usado			
Funções de tempo de inicialização (mantenha-o pressionado durante a sequência de inicialização)					
Modo de recu- peração	B2	Mantenha-o pressionado para inicializar em modo de recu- peração.			
Menu	В3	Mantenha-o pressionado para bloquear a inicialização auto- mática da aplicação e para iniciar o ciclo através dos itens do menu.			
Funções operacio	nais (press	ione o botão durante o modo de operação normal)			
Menu	В3	Pressione para completar um ciclo através dos itens do menu. Os itens do menu serão exibidos no LED de 7 segmentos repetidamente for 10 segundos e podem ser selecionados pressionando B2.			
Seleciona o item do menu	В2	Pressione enquanto o item do menu requerido é exibido para realizar a ação. A aplicação está sendo executada, itens de menu disponíveis: Endereço 'IP' 'parar' aplicação (confirmar) Nenhuma aplicação está sendo executada, itens de menu disponíveis: Endereço 'IP' 'iniciar' aplicação (confirmar) 'redefinir' para os padrões (confirmar) 'redefinir' para o cartão SD (confirmar) (→ # 170) 'restaurar' de um cartão SD (confirmar) (→ # 170)			
Confirmar	B2	Se a seleção do item do menu selecionado requerer uma confirmação, "y" é exibido por 10 segundos - pressione B2 para confirmar.			

9.18 Slot para cartão SD

9.18.1 Slot para cartão SD - opção para cartão de E/S

Drives com cartão de opção de E/S oferecem slot para cartão SD para ativar transferências de arquivos de/para o AKD e cartão de memória SD. Estes recursos podem ser iniciados a partir do software WorkBench ou com o botão B1 (em cima do drive) combinado com uma configuração de interruptor rotativo 10 ou 11. A descrição detalhada pode ser encontrada no a ajuda do WorkBench.

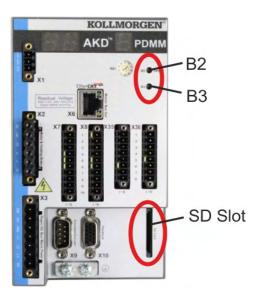
INFORMAÇÃO

As operação salvar/carregar (doAKD para o SD ou do SD para o AKD) só são possíveis enquanto nenhum programa estiver sendo executado e o drive estiver desabilitado. Programas BASIC e parâmetros não voláteis podem ser salvos/carregados. Se ocorrer uma falha durante as operações salvar/carregar, o número da falha é exibido no display com um E seguido por quatro dígitos. Códigos de erros (→ # 202).

Tipos de cartão SD suportados

Cartões SD são pré-formatados pelo fabricante. A seguinte tabela resume os tipos de cartão SD e o suporte do AKD .

Tipo de SD	Sistema de arquivo	Capacidade	Suportado
SD (SDSC)	FAT16	1MB para 2GB	SIM
SDHC	FAT32	4GB para 32GB	SIM
SDXC	exFAT (Microsoft)	>32GB para 2TB	NÃO


Recursos

Se um cartão SD estiver inserido na entrada do SD, o drive estiver desabilitado e nenhum programa estiver sendo executado, defina os interruptores rotativos conforme descrito abaixo e pressione B1 por 5 segundos para iniciar a função definida:

Função	S1	S2	Observações
Salvar dados no cartão	1	1	Pressione B1 por 5 segundos para salvar dados do
SD			drive para o cartão SD.
Carregar dados de um	1	0	Pressione B1 por 5 segundos para carregar dados do
cartão SD			cartão SD para o drive.

9.18.2 Slot para cartão SD com AKD-M

AKD PDMM oferecem slot para cartão SD e botões B2/B3 para ativar transferências de arquivos de/para o AKD PDMM e cartão de memória SD. Estes recursos podem ser iniciados a partir do software KAS IDE também. A descrição detalhada pode ser encontrada no a ajuda do KAS IDE.

O backup / restauração operações (AKD PDMM para SD ou SD para AKD PDMM) não será possível se um aplicativo está sendo executado.

INFORMAÇÃO

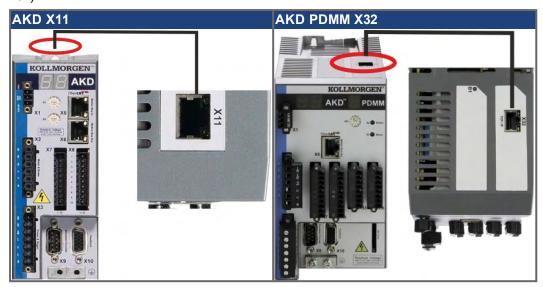
Pare o aplicativo de web-browser ou usar o B2/B3 "stop" antes de iniciar qualquer funcionalidade do cartão SD.

If ocorrer uma falha durante a salvar / operações de carga, o número de falhas é exibido no visor um dígito com E seguido por dois dígitos. Os códigos de erro (→ # 208).

Tipos de cartão SD suportados

Cartões SD são pré-formatados pelo fabricante. A seguinte tabela resume os tipos de cartão SD e o suporte do AKD PDMM .

Tipo de SD	Sistema de arquivo	Capacidade	Suportado
SD (SDSC)	FAT16	1MB para 2GB	SIM
SDHC	FAT32	4GB para 32GB	SIM
SDXC	exFAT (Microsoft)	>32GB para 2TB	NÃO


Recursos

Se um cartão SD estiver inserido na entrada do SD e nenhum programa estiver sendo executado, o menu de botão (começou com B3 (→ # 167)) apresenta as possíveis funções de transferência de dados:

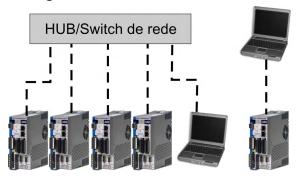
- 'backup' para copiar firmware, configurações, aplicativos de usuário e arquivos de dados do usuário a partir do AKD PDMM para o cartão SD.
- 'restaurar' para carregar o firmware, configuração, aplicação do usuário, e os arquivos de dados do usuário do cartão SD para AKD PDMM.

9.19 Interface de serviço (X11, X32)

Os parâmetros de operação, controle de posição e bloco de movimento podem ser configurados usando a configuração do software em um computador comercial comum (→ # 187).

Conecte a interface de serviço (X11 ou X32) do drive para uma interface Ethernet no PC diretamente ou através de um(a) hub/central de rede, **enquanto a alimentação para o equipamento estiver desligada.** Use cabos Cat. 5 Ethernet padrão para a conexão (em alguns casos cabos cruzados também irão funcionar).

Confirme se o LED do link no AKD (o LED verde no conector RJ45) e no seu PC (ou hub/central da rede) estão acesos. Se as duas luzes estiverem acesas, então você tem uma boa conexão elétrica.

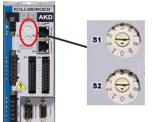

9.19.1 Pinagem X11, X32

Pino	Sinal	Pino	Sinal
1	Transmitir +	5	n.c.
2	Transmitir -	6	Receber-
3	Receber+	7	n.c.
4	n.c.	8	n.c.

9.19.2 Protocolos de barramento de serviço X11, X32

Protocolo	Tipo	Conector
Modbus TCP	Barramento de serviço	X11, X32
Ethernet TCP/IP	Barramento de serviço	X11, X32

9.19.3 Possíveis configurações da rede



9.19.4 Configurando o Endereço AKD-B, AKD-P, AKD-T

O endereço IP pode ser exibido no monitor frontal em LED se o botão B1 for pressionado.

É possível usar os interruptores rotativos para definir o endereço IP do AKD. Para o protocolo CANopen e outros protocolos de rede, os interruptores rotativos também definem o endereço de nó do drive para aquela rede em específico.

S1: MSB

S2: LSB

Configuração do inter- ruptor rotativo	Endereço IP do drive
00	Endereço DHCP/Auto IP. O endereço IP do drive é obtido no servidor DHCP em sua rede. Se nenhum servidor DHCP for encontrado, os endereços IP são um endereço Auto IP (é gerado internamente seguindo o protocolo Auto IP e será no formato 169.254.xx.xx).
01 a 99	Endereço IP estático. O endereço IP é 192.168.0.nn, onde nn é o número do interruptor rotativo. Esta configuração gera endereços em uma faixa de 192.168.0.1a 192.168.0.99. Exemplo: se S1 está definido como 2 e S2 como 5 – o endereço IP é 192.168.0.25

INFORMAÇÃO

A máscara subnet do PC deve ser definido para 255.255.255.0 ou 255.255.255.128 Ao conectar o AKD diretamente em um PC, use o endereço IP estático (não 00).

Endereço IP estático

Ao conectar o drive diretamente em um PC, deve-se usar o endereço IP estático. Defina os interruptores rotativos S1 e S2 para um número diferente de 00 (veja tabela acima).

Endereço IP dinâmico (DHCP e Auto-IP)

Quando ambos S1 e S2 estão definidos como 0, o drive está em modo DHCP. O drive irá adquirir seu endereço IP de um servidor DHCP externo se ele estiver presente na rede. Se um servidor DHCP não estiver presente, o drive irá assumir um Endereço IP Particular Automático na forma 169.254.x.x.

Se o PC estiver conectado diretamente ao drive e ajustado para obter um endereço IP automaticamente nas configurações de TCP/IP, uma conexão será estabelecida com ambos os dispositivos usando endereços compatíveis gerados automaticamente. Pode-se levar até 60 segundos para um PC configurar um Endereço IP Particular Automático (169.254.x.x).

Alterando o endereço IP

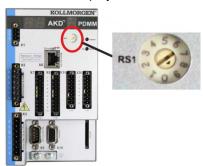
Se os interruptores forem alterados enquanto a alimentação lógica de 24 V estiver sendo fornecida ao drive, você deve reiniciar a tensão de alimentação de 24 V. Esta ação irá redefinir o endereço.

Modo do endereço IP

Por padrão, o drive usa o método descrito acima para adquirir seu endereço IP. Um método de configurar o endereço IP independente dos Interruptores rotativos está disponível. Mais informações disponíveis no *WorkBench Online Help* ou no caminho Tela de Configurações-> Rede-> Tela TCP/IP no WorkBench.

Se o IP.MODE foi ajustado para 1 (usando IP estático definido pelo software), o drive irá reiniciar em um Endereço IP que pode ser inexistente com as configurações do host do computador.

Se o endereço IP evita a comunicação, as configurações de IP podem ser redefinidas para o padrão através do seguinte procedimento:


- Ajuste os dois interruptores rotativos para 0.
- Mantenha pressionado o botão B1 (em cima do drive) por 5 segundos.

O monitor irá piscar 0.0.0.0 e depois tentar encontrar um endereço pelo DHCP.

Sem remover a alimentação lógica do drive, use o WorkBench para conectar-se ao drive, reconfigure as configurações do endereço IP como desejado e armazene os valores na memória não-volátil.

9.19.5 Configurando o endereço IP do AKD-M

Você pode usar o interruptor rotativo RS1 para ajustar o endereço IP do AKD PDMM. O endereço IP configurado (dependendo do interruptor rotativo atual muda para a posição RS1) será exibido no segmento 7 no tempo de conexão do cabo Ethernet e na inicialização, se um cabo Ethernet estiver conectado. Se o cabo Ethernet estiver conectado, nenhum endereço IP será indicado no display.

Configuração do interruptor rotativo	Endereço IP do drive
0	Endereço DHCP/Auto IP. O endereço IP do drive é obtido no servidor DHCP em sua rede. Se nenhum servidor DHCP for encontrado, os endereços IP são um endereço Auto IP (é gerado internamente seguindo o protocolo AutoIP e será no formato 169.254.xx.xx).
1	Endereço IP estático. O endereço IP é configurável por um software a partir de um navegador. O endereço IP padrão na posição de alteração 1 é 192.168.1.101. Para configurar o endereço IP, abra um navegador e digite o endereço IP na caixa de endereço eletrônico. O site do AKD PDMM irá aparecer. Vá para a aba de Configurações e depois na de Rede para configurar o endereço IP estático para o AKD PDMM.
2 a 9	Endereço IP estático. O endereço IP é 192.168.0.10n, onde nn é o número do interruptor rotativo. Esta configuração gera endereços em uma faixa de 192.168.0.10 2 a 192.168.0.10 9 . Exemplo: se RS1 está definido como 5 – o endereço IP é 192.168.0.105

INFORMAÇÃO

A máscara subnet do PC deve ser definido para 255.255.255.0 ou 255.255.255.128

Endereço IP estático

Ao conectar o drive diretamente em um PC, deve-se usar o endereço IP estático. Defina o interruptor rotativo RS1 para um número entre 2 e 9 (veja tabela acima). Exemplo: se RS1 está definido como 5 – o endereço IP é 192.168.0.105

Endereço IP dinâmico (DHCP e Auto-IP)

Quando RS1 está definido como 0, o drive está em modo DHCP. O drive irá adquirir seu endereço IP de um servidor DHCP externo se ele estiver presente na rede. Se um servidor DHCP não estiver presente, o drive irá assumir um Endereço IP Particular Automático na forma 169.254.x.x.

Se o PC estiver conectado diretamente ao drive e ajustado para obter um endereço IP automaticamente nas configurações de TCP/IP, uma conexão será estabelecida com ambos os dispositivos usando endereços compatíveis gerados automaticamente. Pode-se levar até 60 segundos para um PC configurar um Endereço IP Particular Automático (169.254.x.x).

Alterando o endereço IP

Se o interruptor for alterado enquanto a alimentação lógica de 24 V estiver sendo fornecida ao drive, você deve reiniciar a tensão de alimentação de 24 V. Esta ação irá redefinir o endereço.

9.19.6 Modbus TCP

O drive pode ser conectado à IHM Modbus através do conector RJ-45 X11 (AKD) ou X32 (AKD PDMM, Kollmorgen apenas para painéis sensíveis ao toque). O protocolo permite leitura e gravação dos parâmetros do drive.

O status de comunicação é indicado pelos LEDs integrados.

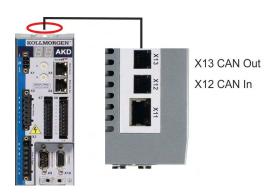
Conector	LED nº	Nome	Função
X11, X32	LED1	Link porta de EN	LIGADO = ativo, DESLIGADO = inativo
	LED2	EXECUTAR	LIGADO = executando,
			DESLIGADO = não executando

Conecte a interface de serviço (X11, X32) do drive para uma interface homem-máquina (IHM) Ethernet Modbus diretamente ou através de uma chave de rede, **enquanto a alimentação para o equipamento estiver desligada.** Use cabos Cat. 5 Ethernet padrão para a conexão.

Para conectar uma IHM ao drive, é necessário o seguinte:

- A IHM deve suportar Modbus TCP.
- Ele deve ter hardware Ethernet e um driver para Modbus TCP, embora o driver não tenha que ser feito especificamente para a família AKD.

As IHMs da Kollmorgen AKI são compatíveis com um driver "Kollmorgen Modbus Master" driver.


A máscara subnet do AKD é 255.255.255.0. Os três primeiros octetos do endereço IP do drive deve ser o mesmo que os três primeiros octetos do endereço IP da IHM. O último octeto deve ser diferente.

Confirme se o LED do link no AKD (o LED verde no conector RJ45) e no seu Master ou Interruptor estão acesos. Se as duas luzes estiverem acesas, então você tem uma boa conexão elétrica.

Modbus TCP e WorkBench/KAS IDE podem operar simultaneamente se um interruptor for usado.

9.20 Interface CAN-Bus (X12/X13)

Dois conectores RJ-12 de 6 pinos X12/X13 são usados para conexão CAN-Bus.

Con.	Pino	Sinal	Con.	Pino	Sinal
X12	1	Resistor de terminação interno	X13	1	Resistor de terminação interno
X12	2	Blindagem CAN	X13	2	Blindagem CAN
X12	3	Entrada CANH	X13	3	Saída CANH
X12	4	Entrada CANL	X13	4	Saída CANL
X12	5	GND	X13	5	GND
X12	6	Resistor de terminação interno	X13	6	Resistor de terminação interno

9.20.1 Ativação CAN-Bus com modelos AKD-CC

Os modelos de driveAKD-CC são Drives com suporte aos tipos de rede EtherCAT e CAN dentro de um software comum. Esses modelos de drive CC permitem selecionar um suporte à rede configurando o parâmetro DRV.TYPE para um determinado valor. Os modelos de drive CC são entregues com o conjunto EtherCAT ativo.

Para ativar o CANopen, o parâmetro DRV. TYPE deve ser alterado

- pelo software: conecte o PC ao AKD e altere o parâmetro DRV.TYPE na tela de terminal do WorkBench consulte a documentação do parâmetro DRV.TYPE) ou
- 2. pelo hardware: com os interruptores rotativos S1 e S2 na frente e o botão B1 na parte de cima do Drive.

As seguintes etapas são necessárias para alterar o tipo de rede de EtherCAT para CAN com os interruptores rotativos.

1. Ajuste os interruptores rotativos na parte da frente do AKD para o valor de 89.

Ajuste S1 para 8 e S2 para 9

Pressione o botão B1 por cerca de 3 segundos (inicia o DRV.NVSAVE).
 Pressione B1 por 3 segundos.

O display exibe **Cn** durante o processo de alteração do DRV.TYPE para CAN. **Não desligue a fonte de alimentação de 24[V] enquanto o display mostrar Cn!**

- Aguarde até que o display volte ao seu estado original; agora o drive está pronto para o CAN.
- 4. Execute o ciclo de energia no drive **desligando** a fonte de alimentação de 24 V e depois **ligue-a** novamente.

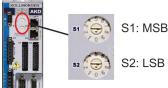
INFORMAÇÃO

O display exibe Er (Erro) caso a instrução de DRV.TYPE falhe. Neste caso, execute o ciclo de energia no drive e entre em contato com o apoio ao cliente Kollmorgen para obter ajuda.

9.20.2 Taxa de transmissão para CAN-Bus

O usuário pode decidir usar um algoritmo de detecção de taxa de transmissão fixa para o comportamento da inicialização do drive. A taxa de transmissão pode ser ajustada através do **FBUS.PARAM01**. O parâmetro também pode ser ajustado pelo WorkBench ou através de um mecanismo especial com os interruptores rotativos na frente do AKD .

Taxa de trans- missão [kBit/s]	FBUS. PARAM01	Interruptor rotativo superior S1	Interruptor rotativo inferior S2
automático	0	9	0
125	125	9	1
250	250	9	2
500	500	9	3
1000	1000	9	4


No caso de uma taxa de transmissão fixa, o drive envia uma mensagem de reinicialização com a taxa de transmissão salva na memória não volátil do drive após um ciclo de energia. No caso de detecção de transmissão automática, o drive detecta uma estrutura CAN válida no barramento. Quando uma estrutura válida é recebida, o drive envia a mensagem de reinicialização com o tempo de bit medido. Depois a taxa de transmissão pode ser armazenada em uma memória não volátil através do objeto 1010 sub 1, ou o mecanismo de transmissão automática é sempre usado.

INFORMAÇÃO

Para detecção de transmissão automática confiável, recomenda-se usar cabeamento adequado ao CAN-Bus (dois terminais, conexão GND etc.). O drive precisa ser desabilitado se a transmissão automática estiver em uso.

Para configurar a taxa de transmissão com interruptores rotativos, siga o procedimento abaixo (estado do drive desabilitado):

- 1. Desabilite o drive.
- 2. Ajuste os interruptores rotativos para um dos endereços 90 a 94 (veja tabela acima).

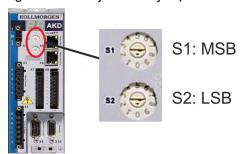
Ajuste S1 para 9 e S2 para 0 ou 4

3. Pressione o botão B1 no AKDpor pelo menos 3 segundos até que a configuração do interruptor rotativo seja exibida no display do AKD.

4. Quando o display piscar com a configuração do ajuste do interruptor rotativo, pare de pressionar o B1 e aguarde até que pare de piscar. Durante este período de tempo, o parâmetro FBUS.PARAM01 é ajustado para o novo valor e todos os parâmetros são armazenados na memória não volátil. A nova configuração será assumida na próxima inicialização.

Se ocorrer um erro, as seguintes mensagens de erro irão piscar 5 vezes:

- E1 Drive está desabilitado
- E2 Falha no armazenamento não volátil da nova configuração
- E3 Seleção de interruptor rotativo inválido


Pressione B1 por 3 segundos.

9.20.3 Endereço de nó para CAN-Bus

INFORMAÇÃO

Após alterar o endereço de nó, você deve reiniciar a alimentação auxiliar de 24 V para o drive

Durante a configuração, use os interruptores rotativos no painel frontal do AKD para pré-configurar o endereço da estação para comunicação.

Os interruptores rotativos na frente do AKD (S1eS2) correspondem ao endereço de nó CAN. Os interruptores S1 e S2 também correspondem à configuração de endereço IP do drive. Os endereços das duas redes, CAN e IP, precisam ser configuradas, principalmente se ambos protocolos, TCP/IP e CAN estiverem funcionando ao mesmo tempo em uma aplicação. Exemplo:

S1 (MSB)	S2 (LSB)	Endereço CAN	Endereço IP
4	5	45	192.168.0.45

A configuração do endereço IP pode ser desacoplada dos interruptores rotativos usando configurações no drive. Use Configurações -> Rede-> TCP/IP para ajustar estas configurações.

9.20.4 Terminação CAN-Bus

Os equipamentos instalados nas extremidades de uma rede CAN-Bus devem ter resistores de terminação. O AKD possui resistores de 132 ohms integrados que podem ser ativados com a conexão dos pinos 1 e 6. Um plugue de terminação opcional está disponível para o AKD (*P-AKD-CAN-TERM*). O plugue de terminação opcional é um conector RJ-12 com um jumper de fio anexado entre os pinos 1 e 6. Um plugue deve ser inserido no conector X13 do último drive na rede CAN.

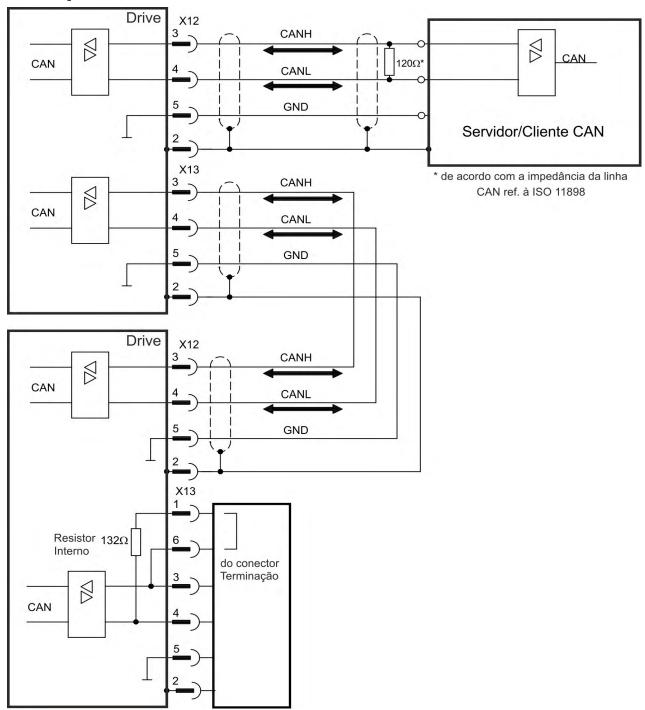
INFORMAÇÃO

Remova o conector da terminação se o AKD não for o último dispositivo CAN-Bus e use o X13 para conectar o próximo nó CAN..

9.20.5 Cabo do CAN-Bus

Para atender a ISO 11898, um cabo de rede com uma impedância característica de 120 ohms deve ser usado. O comprimento máximo de cabo aplicável para comunicação confiável diminui com a velocidade de transmissão crescente. Como guia, você pode usar os seguintes valores que a Kollmorgen mediu; entretanto, estes valores não são limites confirmados:

- Impedância característica: 100-120 ohms
- Capacitância máx. do cabo: 60 nF/km
- Resistência do circuito principal: 159,8 ohms/km


Comprimento do cabo, dependendo da taxa de transmissão:

Taxa de Transmissão (kBaud)	1,000	500	250
Comprimento máximo do cabo (m)	10	70	115

A menor capacitância do cabo (máx. 30 nF/km) e a menor resistência principal (resistência do circuito, 115 ohms/1000m) possibilitam atingir maiores distâncias.

(150 ± 5 ohms de impedância característica requer 150 ± 5 ohms de resistor de terminador)

9.20.6 Fiação do CAN-Bus

9.21 Interface de Barramento de Movimento (X5/X6/X11)

A interface de barramento de movimento possui conectores RJ-45 e pode ser usada para comunicar-se com vários dispositivos de rede dependendo da versão do drive usado.

AVISO

Não conecte a linha Ethernet para PC ou PAC com a configuração do software à interface de barramento de movimento X5/X6.

O cabo Ethernet de configuração deve ser conectado ao X11 ou X32.

9.21.1 Pinagem X5, X6, X11

Pino	Sinal X5	Sinal X6	Sinal X11
1	Transmitir +	Receber+	Transmitir +
2	Transmitir -	Receber-	Transmitir -
3	Receber+	Transmitir +	Receber+
4,5	n.c.	n.c.	n.c.
6	Receber-	Transmitir -	Receber-
7,8	n.c.	n.c.	n.c.

9.21.2 Protocolos de barramento X5, X6, X11

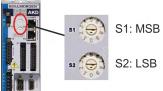
Protocolo Tipo			Conector
		Conectividade	
EtherCAT	Barramento de movimento	EC ou CC	X5, X6
SynqNet Barramento de movimento		SQ	X5, X6
sercos [®] III	Barramento de movimento	S3	X5, X6
PROFINET RT	Barramento de movimento	PN	X11
Ethernet/IP	Barramento de movimento	EI	X11

9.21.3 EtherCAT

Os drives AKD variantes de conexão EC e CC) podem ser conectados como escravos à rede EtherCAT (CoE) através de conectores RJ-45 X5 (porta entrada) e X6 (porta de saída). O status de comunicação é indicado pelos LEDs do conector integrados.

Os drives AKD PDMM variante do drive AKD-M) atua como um EtherCAT (CoE) mestre e, por isso, fornece o conector X6 (saída) para uma topologia de cadeia com tempo de ciclo de 250 ms e no máximo 8 escravos.

Variante do drive	Con.	LED nº	Nome	Função
AKD	X5	LED1	Link porta de EN	LIGADO = ativo, DESLIGADO = inativo
		LED2	EXECUTAR	LIGADO = executando, DESLIGADO =
				não executando
AKD e	X6	LED3	Link porta de SA	LIGADO = ativo, DESLIGADO = inativo
AKD PDMM		LED4	-	-


9.21.3.1 Ativação do EtherCAT com modelos AKD-CC

Os modelos de driveAKD-CC são Drives com suporte aos tipos de rede EtherCAT e CAN dentro de um software comum. Os modelos de drive CC são entregues com o conjunto EtherCAT ativo. Se você precisa alterar um drive de CANopen para EtherCAT, o parâmetro DRV.TYPE deve ser alterado

- 1. pelo software: conecte o PC ao AKD e altere o parâmetro DRV.TYPE na tela de terminal do WorkBench consulte a documentação do parâmetro DRV.TYPE) ou
- 2. pelo hardware: com os interruptores rotativos S1 e S2 na frente e o botão B1 na parte de cima do Drive.

As seguintes etapas são necessárias para alterar o tipo de rede de CAN para EtherCAT com os interruptores rotativos.

1. Ajuste os interruptores rotativos na parte da frente do AKD para o valor de 89

Ajuste S1 para 8 e S2 para 9

2. Pressione o botão B1 por cerca de 3 segundos (inicia o DRV.NVSAVE).

O display exibe **En** durante o processo de alteração do DRV.TYPE para EtherCAT. **Não desligue a fonte de alimentação de 24[V] enquanto o display mostrar En!**

- 3. Aguarde até que o monitor volte ao seu estado original.
- 4. Execute o ciclo de energia no drive **desligando** a fonte de alimentação de 24 V e depois **ligue-a** novamente

INFORMAÇÃO

O display exibe Er (Erro) caso a instrução de DRV.TYPE falhe. Neste caso, execute o ciclo de energia no drive e entre em contato com o apoio ao cliente Kollmorgen para obter ajuda.

9.21.4 SynqNet

Você pode conectar-se à Rede SynqNet através de conectores RJ-45 X5 (porta de entrada) e X6 (porta de saída). O status de comunicação é indicado pelos LEDs integrados.

Conector	LED nº	Nome	Função
X5	LED1	LINK_IN	LIGADO = receber válido (porta de ENTRADA)
			DESLIGADO = inválido, desligar ou redefinir.
	LED2	CÍCLICO	LIGADO = rede cíclica
			PISCAR = rede não cíclica
			DESLIGADO = desligar ou redefinir
X6	LED3	LINK_OUT	LIGADO = receber válido (porta de SAÍDA)
			DESLIGADO = inválido, desligar ou redefinir
	LED4	REPETIDOR	LIGADO = repetidor ligado, rede cíclica
			PISCAR = repetidor ligado, rede não cíclica
			DESLIGADO = repetidor desligado, desligar ou rede-
			finir

9.21.5 PROFINET

OAKD com opção de conectividade **PN** pode ser conectado à uma rede PROFINET através do conector RJ-45 X11. O protocolo PROFINET RT é usado. O status de comunicação é indicado pelos LEDs integrados.

Conector	LED nº	Nome	Função
X11	LED1	Link porta de EN	LIGADO = ativo, DESLIGADO = inativo
	LED2	EXECUTAR	LIGADO = executando,
			DESLIGADO = não executando

Conecte a interface de serviço (X11) do drive para uma interface Ethernet no PROFINET Master diretamente ou através de uma chave de rede, **enquanto a alimentação para o equipamento estiver desligada.** Use cabos Cat. 5 Ethernet padrão para a conexão.

Confirme se o LED do link no AKD (o LED verde no conector RJ45) e no seu Master ou Interruptor estão acesos. Se as duas luzes estiverem acesas, então você tem uma boa conexão elétrica.

A máscara subnet do AKD é 255.255.255.0. Os três primeiros octetos do endereço IP do drive deve ser o mesmo que os três primeiros octetos do endereço IP da IHM. O último octeto deve ser diferente.

PROFINET RT e WorkBench podem operar simultaneamente se um interruptor for usado.

9.21.6 Ethernet/IP

OAKD com opção de conectividade **EI** pode ser conectado à uma rede Ethernet/IP através do conector RJ-45 X11. O status de comunicação é indicado pelos LEDs integrados.

ľ	Conector	LED nº	Nome	Função
	X11	LED1	Link porta de EN	LIGADO = ativo, DESLIGADO = inativo
		LED2		LIGADO = executando, DESLIGADO = não executando
ı				DESLIGADO = não executando

Conecte a interface de serviço (X11) do drive para uma interface Ethernet no Ethernet/IP Master diretamente ou através de uma chave de rede, **enquanto a alimentação para o equipamento estiver desligada.** Use cabos Cat. 5 Ethernet padrão para a conexão.

Confirme se o LED do link no AKD (o LED verde no conector RJ45) e no seu Master ou Interruptor estão acesos. Se as duas luzes estiverem acesas, então você tem uma boa conexão elétrica.

A máscara subnet do AKD é 255.255.255.0. Os três primeiros octetos do endereço IP do drive deve ser o mesmo que os três primeiros octetos do endereço IP da IHM. O último octeto deve ser diferente.

Ethernet/IP e WorkBench podem operar simultaneamente se um interruptor for usado.

9.21.7 sercos[®] III

Drives AKD (conexão variante S3) podem ser conectados como slaves à rede sercos® III por meio dos conectores RJ-45 X5 (porta de entrada) e X6 (porta de saída). Topologias de linha e anel são possíveis. O status de comunicação é indicado pelos conectores LEDs integrados.

INFORMAÇÃO

Disponível a partir da revisão de firmware 1.11, o protocolo funciona somente com mestres Hypertherm.

Conector	LED nº	Nome	Função
X5	LED1	Link porta de EN	LIGADO = ativo, DESLIGADO = inativo
	LED2	EXECUTAR	LIGADO = executando, DESLIGADO = não executando
X6	LED3	Link porta de SA	LIGADO = ativo, DESLIGADO = inativo
	LED4	-	-

10 Configuração

10.1	Notas Importantes	185
10.2	Configurar AKD-B, AKD-P, AKD-T	186
10.3	Configurar AKD-M	192
10.4	Mensagens de falha e advertência	202
10.5	Resolução de problemas do AKD	210

10.1 Notas Importantes

AVISO

Apenas profissionais com conhecimento extenso nas áreas de engenharia elétrica e tecnologia de drives são permitidos para realizar testes e configurar o drive.

Tensão letal!

Há risco de choque elétrico. As partes energizadas do dispositivo apresentam perigo letal.

- Medidas de proteção integradas, como isolamento ou blindagem, não devem ser removidas.
- Todo o trabalho na instalação elétrica deve ser desempenhado apenas por funcionários treinados e qualificados, em conformidade com as normas de segurança no trabalho, e somente com as fontes principais desligadas, sem risco de reiniciar.

▲ATENÇÃO

Início automático!

Risco de morte ou ferimento sério à humanos trabalhando na máquina. O drive pode reinicializar automaticamente depois de ligar, queda de tensão ou interrupção da tensão de alimentação, dependendo da configuração de parâmetro. Se o parâmetro DRV.ENDEFAULT for configurado como 1,

- coloque um aviso na máquina ("ATENÇÃO: Início automático possível" ou similar) e
- garanta, que ligar não seja possível, enquanto humanos estejam em uma área perigosa da máquina.

Alta temperatura!

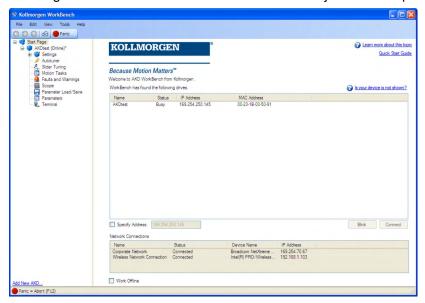
Risco de queimaduras leves. O dissipador de calor do drive pode atingir temperaturas de até 80 °C quando em operação.

- Antes de manusear o drive, verifique a temperatura do dissipador.
- Aguarde até que o dissipador de calor esfrie para 40 °C.

AVISO

Se o drive estiver armazenado por mais de 1 ano, é necessário restaurar os capacitores no circuito do link de barramento CC. Os procesimentos de reforma são descritos na Kollmorgen Developer Network (Forming).

INFORMAÇÃO


Mais informações sobre como configurar o equipamento:

- Parâmetros de programação e comportamento do circuito de controle são descritos na seção de ajuda on-line da configuração do software.
- A configuração do fieldbus é descrita no manual correspondente no DVD.

10.2 Configurar AKD-B, AKD-P, AKD-T

10.2.1 Software para configuração WorkBench

Este capítulo descreve a instalação do software de configuração WorkBench para os drives AKD-B, AKD-P e AKD-T .O WorkBench não é usado para configurar o AKD-M (AKD PDMM), para configuração do drive KAS IDEutilizar o software (→ # 192).A Kollmorgen oferece cursos de treinamento e familiarização mediante pedido.

10.2.2 Use como indicado

O objetivo da configuração do software é ser usado para alterar e salvar os parâmetros operacionais para a série de drives AKD . Este drive pode ser configurado com a ajuda deste software e durante este procedimento o drive pode ser controlado diretamente pelas funções do serviço.

Apenas profissionais que possuem experiência relevante (→ #15) têm permissão para realizar a configuração de parâmetros on-line para um drive que está em funcionamento.

Conjuntos de dados que foram armazenados em mídia de dados não estão protegidos contra alterações involuntárias feitas por terceiros. Podem ocorrer movimentos inesperados se forem usados dados não verificados. Por isso, após carregar um conjunto de dados, todos os parâmetros sempre devem ser verificados antes de habilitar o drive.

10.2.3 Descrição do software

Cada drive deve ser adaptado aos requisitos da sua máquina. Para a maioria das aplicações, é possível usar um PC e o WorkBench (o software de configuração do drive) para configurar as condições e os parâmetros operacionais para o seu drive. O PC é conectado ao drive por um cabo Ethernet (→ # 171). O software de configuração fornece a comunicação entre o PC e o AKD. É possível encontrar o software de configuração no DVD que acompanha o drive e na seção de downloads do site da Kollmorgen.

Facilmente, é possível alterar parâmetros e observar instantaneamente o efeito no drive, já que há uma conexão contínua (on-line) com o drive. Você também pode ler os valores reais importantes do drive, que são exibidos no monitor do PC (funções de osciloscópio).

É possível salvar conjuntos de dados em mídia de dados (arquivamento) e carregá-los em outros drives ou usá-los para backup. Também é possível imprimir os conjuntos de dados.

A maioria dos feedbacks padrão (SFD, EnDAT 2.2, 2.1, e BiSS) são compatíveis ao recurso plug-and-play. Os dados de identificação do motor são armazenados no dispositivo de feedback e lidos pelo drive automaticamente na inicialização. Motores sem o recurso plug-and-play Kollmorgen são armazenados no WorkBench e podem ser carregados com um clique usando a tela do Motor no WorkBench software.

Ajuda on-line abrangente com descrição integrada de todas as variáveis e funções ajuda você em qualquer situação.

10.2.4 Requisitos de hardware

A interface de serviço (X11, RJ45) do drive está conectada à interface Ethernet do PC por um cabo Ethernet (→ #171).

Requisitos mínimos para o PC:

Processador: pelo menos Pentium[®] II ou equivalente Adaptador gráfico: Compatível com o Windows, colorido

Drives : disco rígido com, pelo menos, 20 MB de espaço livre, drive de DVD Interface: uma interface Ethernet livre, uma porta Hub ou uma porta Switch

10.2.5 Sistemas Operacionais

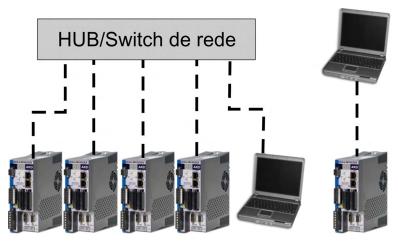
Windows 2000/XP/VISTA/7/8

O WorkBench funciona com Windows 2000, Windows XP, Windows VISTA, Windows 7 e WIndows 8.

Unix, Linux

O funcionamento do software ainda não foi testado em Windows operando em Unix ou Linux.

10.2.6 Instalação no Windows 2000/XP/VISTA/7/8


O DVD inclui um programa de instalação para a configuração do software.

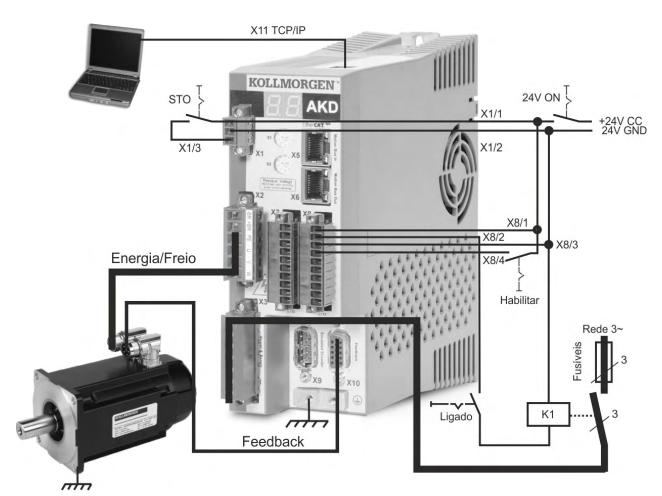
Instalação

- Função de inicialização automática ativada:
 Insira o DVD em um drive livre. Abre-se uma janela com a tela de início. Nela você encontrará um link para o software de configuração WorkBench. Clique nele e siga as instruções.
- Função de inicialização automática desativada:
 Insira o DVD em um drive livre. Clique em Iniciar (barra de tarefas), depois em Executar.
 Entre no programa chamado: x:\index.htm (x = letra correta do drive do DVD).
 Clique em OK e proceda como descrito acima.

Conexão à interface Ethernet do PC

 Conecte o cabo da interface à uma interface Ethernet em seu PC ou a um Hub/Switch e à interface de serviço X11 do AKD (→ #171).

10.2.7 Teste inicial do driveAKD-B, AKD-P, AKD-T


10.2.7.1 Abertura da embalagem, montagem e instalação elétrica do AKD

- Desembale o drive e seus acessórios. Observe as instruções de segurança na documentação.
- Monte o drive.
- Instalem a fiação elétrica do drive ou aplique a fiação mínima para testar o drive conforme descrito abaixo.
- Certifique-se de que você tenha em mãos as seguintes informações sobre os componentes do drive:
 - tensão de alimentação da rede nominal
 - tipo do motor (dados do motor caso o tipo de motor não esteja listado na base de dados do motor)
 - unidade de feedback integrado ao motor (tipo, pólos/linhas/protocolo)
 - momento de inércia da carga

10.2.7.2 Fiação mínima para teste do drive sem carga

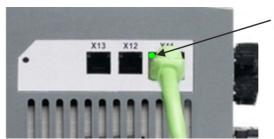
AVISO

Este diagrama de fiação é apenas para ilustração geral e não está em conformidade com os requisitos EMC, de segurança ou de funcionalidade da sua aplicação.

Ao conectar o AKD diretamente em um PC, recomenda-se endereço IP estático (não 00).

10.2.7.3 Configure endereço IP

Configure o endereço IP do drive conforme descrito em (→ #172).


10.2.7.4 Confirmar conexões

Você pode ligar a potência lógica ao drive através do conector X1 (não é necessária tensão de barramento para as comunicações).

Após fornecimento de alimentação, o drive exibe uma sequência de luzes LED:

- 1. -
- 2. []
- 3.][
- 4. I-P
- 5. Endereço IP do drive, exibida em sequência (por exemplo, 192.168.0.25).
- 6. Status do drive status (opmodo "o0", "o1" ou "o2") ou código de falha se o drive estiver em uma condição de falha.

Confirme se os LEDs do link no drive (LED verde no conector RJ45) e no seu PC estão acesos. Se as duas luzes estiverem acesas, então você tem uma conexão elétrica funcionando corretamente.

O LED fica verde se o drive estiver conectado através de um dispositivo de rede.

Enquanto o PC está se conectando, sua barra de status irá mostrar os seguintes ícones de aquisição:

Aguarde este ícone mudar para o ícone de funcionalidade limitada (este processo pode levar até um minuto).

Embora o Windows exiba este ícone de funcionalidade limitada para a conexão do drive, o PC pode se comunicar completamente com o drive. Usando o WorkBench, agora é possível configurar o drive através desta conexão.

10.2.7.5 Instalar e iniciar o WorkBench

OWorkBench é instalado automaticamente a partir do DVD que acompanha o drive. OWorkBench também está disponível no Kollmorgen site: www.kollmorgen.com.

Após a conclusão da instalação, clique no ícone do WorkBench para iniciar o programa. O WorkBench irá mostrar uma lista de todos os drives que ele consegue encontrar em sua rede local. Selecione o drive que você deseja configurar e depois clique em **Próximo**.

Se vários drives forem detectados, um drive pode ser identificado isoladamente usando um dos seguintes métodos:

- O endereço MAC do drive. Este endereço está impresso no adesivo localizado na lateral do drive.
- 2. O nome do drive. O nome do drive é determinado usando o WorkBench. Um drive novo tem o nome de "Sem Nome" por padrão.
- Piscando o display. Selecione um drive e clique em Piscar para forçar o display localizado na frente do drive a piscar por 20 segundos.

10.2.7.6 Configurar o endereço IP do drive no WorkBench

Se o WorkBench não exibir automaticamente seu drive, então você pode configurar o endereço IP manualmente no WorkBench da seguinte forma:

Exibir o endereço IP. É possível exibir o endereço IP do drive no display do drive pressionando o botão B1. O display mostra os dígitos e pontos do endereço IP em sequência (por exemplo, 192.168.0.25).

 Inserir o endereço IP do drive. Após determinar o endereço IP, insira-o manualmente no campo Especificar endereço no WorkBench. Em seguida, clique em Próximo para se conectar.

10.2.7.7 Habilite o drive usando o assistente de configuração

Após estabelecer uma conexão do drive, a tela de Visão Geral do AKD é exibida. Seu drive aparece na área de navegação no lado esquerdo da tela. Clique com o botão direito no nome do seu drive e selecione **Assistente de configuração** no menu suspenso. O Assistente de configuração guia você pela configuração inicial do drive, que inclui um movimento simples de teste.

Após concluir o Assistente de configuração, seu drive deve estar habilitado. Se não estiver, verifique o seguinte:

- 1. A habilitação do hardware (HW) deve estar no estado de habilitado (pino 4 no conector X8).
- 2. A habilitação do software (SW) deve estar no estado de habilitado. Ative-o usando o botão **Enable/Disable** na barra de ferramentas superior no WorkBench ou na tela de Visão Geral.
- 3. Sem falhas pode estar presente (clique no botão **Limpar falha** na barra de ferramentas superior para limpar quaisquer falhas).

O status de Enable HW, Enable SW e Falhas é exibido na barra de ferramentas inferior do WorkBench . O drive está conectado se o canto inferior direito exibir **Online**.

Agora você pode usar a Janela de configurações no WorkBench para completar a configuração avançada do seu drive.

10.3 Configurar AKD-M

10.3.1 Software para configuração KAS IDE

Este capítulo descreve a instalação do software de configuração KAS IDE para os drives AKD-M (AKD PDMM) .O KAS IDE inão é usado para configurar os drives AKD-B, AKD-P e AKD-T para essas variantes de drive o software WorkBench deve ser usado (→ # 186).

O ambiente de desenvolvimento integrado KAS IDE contém ferramentas para configurar a rede EtherCAT, configurar e ajustar os drives, criar um programa PLC e criar uma IHM. A . Kollmorgen oferece cursos de treinamento e familiarização mediante pedido.

10.3.2 Use como indicado

O objetivo da configuração do software é ser usado para alterar e salvar os parâmetros operacionais para a série de drives AKD PDMM. Este drive pode ser configurado com a ajuda deste software e durante este procedimento o drive pode ser controlado diretamente pelas funções do serviço.

Apenas profissionais que possuem experiência relevante (→ #15) têm permissão para realizar a configuração de parâmetros on-line para um drive que está em funcionamento.

Conjuntos de dados que foram armazenados em mídia de dados não estão protegidos contra alterações involuntárias feitas por terceiros. Podem ocorrer movimentos inesperados se forem usados dados não verificados. Por isso, após carregar um conjunto de dados, todos os parâmetros sempre devem ser verificados antes de habilitar o drive.

.

10.3.3 Descrição do software

Cada drive deve ser adaptado aos requisitos da sua máquina. Para a maioria das aplicações, é possível usar um PC e o KAS IDE (ambiente de desenvolvimento Kollmorgen Automation Suite Integrated) para configurar as condições e os parâmetros operacionais para o seu drive. O PC é conectado ao drive por um cabo Ethernet (→ # 171). O software de configuração fornece a comunicação entre o PC e o AKD PDMM. É possível encontrar a configuração do software do KAS IDE no DVD que acompanha o drive e na seção de downloads do site da Kollmorgen.

Facilmente, é possível alterar parâmetros e observar instantaneamente o efeito no drive, já que há uma conexão contínua (on-line) com o drive. Você também pode ler os valores reais importantes do drive, que são exibidos no monitor do PC (funções de osciloscópio).

É possível salvar conjuntos de dados em mídia de dados (arquivamento) e carregá-los em outros drives ou usá-los para backup. Também é possível imprimir os conjuntos de dados.

A maioria dos feedbacks padrões (SFD, EnDAT 2.2, 2.1 e BiSS) são compatíveis com o recurso plug-and-play. Os dados de identificação do motor são armazenados no dispositivo de feedback e lidos pelo drive automaticamente na inicialização. Motores Kollmorgen sem o recurso plug-and-play são armazenados no KAS IDE e podem ser carregados com um clique usando a tela do Motor no software KAS IDE.

Ajuda on-line abrangente com descrição integrada de todas as variáveis e funções ajuda você em qualquer situação.

10.3.4 Requisitos de hardware

A interface de serviço (X32, RJ45) do drive está conectada à interface Ethernet do PC por um cabo Ethernet (→ # 171).

Requisitos mínimos para o PC:

Processador: pelo menos Pentium® II ou superior

Sistema operacional: Windows XP ou 7

Adaptador gráfico: Compatível com o Windows, colorido

Drives : disco rígido com, pelo menos, 20 MB de espaço livre, drive de DVD Interface : uma interface Ethernet livre, uma porta Hub ou uma porta Switch

10.3.5 Sistemas operacionais

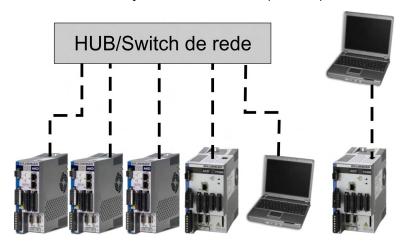
Windows XP/7

OKAS IDE funciona com Windows XP e Windows 7

Unix, Linux

O funcionamento do software ainda não foi testado em Windows operando em Unix ou Linux.

10.3.6 Instalação com Windows XP/7


O DVD inclui um programa de instalação para a configuração do software.

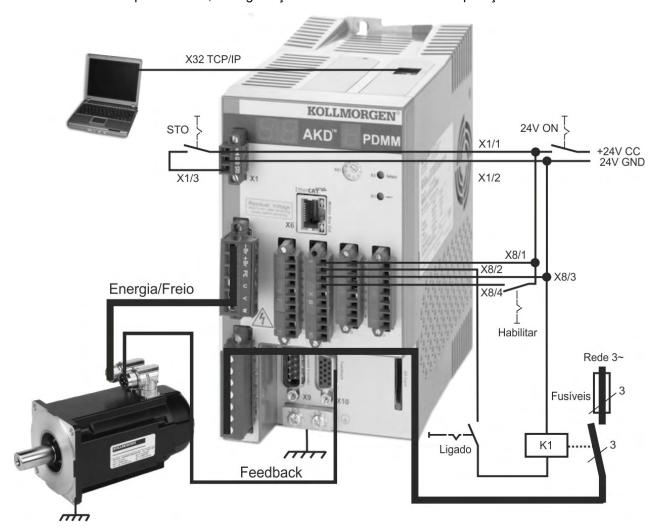
Instalação

- Função de inicialização automática ativada:
 Insira o DVD em um drive livre. Abre-se uma janela com a tela de início. Nela você encontrará um link para o software de configuração KAS IDE. Clique nele e siga as instruções.
- Função de inicialização automática desativada:
 Insira o DVD em um drive livre. Clique em Iniciar (barra de tarefas), depois em Executar.
 Entre no programa chamado: x:\index.htm (x = letra correta do drive do DVD).
 Clique em OK e proceda como descrito acima.

Conexão à interface Ethernet do PC

 Conecte o cabo da interface à uma interface Ethernet em seu PC ou a um Hub/Switch e à interface de serviço X32 do AKD PDMM (→ # 171).

10.3.7 Teste inicial do drive AKD-M


10.3.7.1 Abertura da embalagem, montagem e instalação elétrica do AKD PDMM

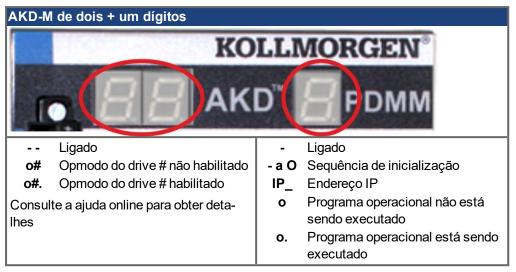
- Desembale o drive e seus acessórios. Observe as instruções de segurança na documentação.
- Monte o drive.
- Instalem a fiação elétrica do drive ou aplique a fiação mínima para testar o drive conforme descrito abaixo.
- Certifique-se de que você tenha em mãos as seguintes informações sobre os componentes do drive:
 - tensão de alimentação da rede nominal
 - tipo do motor (dados do motor caso o tipo de motor não esteja listado na base de dados do motor)
 - unidade de feedback integrado ao motor (tipo, pólos/linhas/protocolo)
 - momento de inércia da carga

10.3.7.2 Fiação mínima para teste do drive sem carga

AVISO

Este diagrama de fiação é apenas para ilustração geral e não está em conformidade com os requisitos EMC, de segurança ou de funcionalidade da sua aplicação.

Ao conectar o AKD PDMM diretamente em um PC, recomenda-se endereço IP estático (não 0).


10.3.7.3 Configure endereço IP

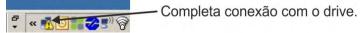
Configure o endereço IP do drive conforme descrito em (→ #174).

10.3.7.4 Confirmar conexões

Você pode ligar a potência lógica ao drive através do conector X1 (não é necessária tensão de barramento para as comunicações).

Após fornecimento de alimentação, o drive exibe uma sequência de luzes LED:

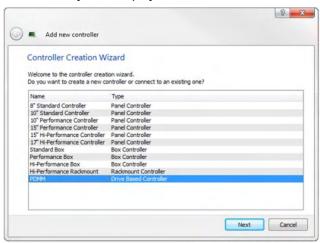
Confirme se os LEDs do link no drive (LED verde no conector RJ45 X32) e no seu PC estão acesos. Se as duas luzes estiverem acesas, então você tem uma conexão elétrica funcionando corretamente.



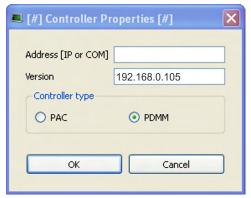
O LED fica verde se o drive estiver conectado através de um dispositivo de rede.

Enquanto o PC está se conectando, sua barra de status irá mostrar os seguintes ícones de aquisição:

Aguarde este ícone mudar para o ícone de funcionalidade limitada (este processo pode levar até um minuto).



Embora o Windows exiba este ícone de funcionalidade limitada para a conexão do drive, o PC pode se comunicar completamente com o drive. Usando o KAS IDE, agora é possível configurar o drive através desta conexão

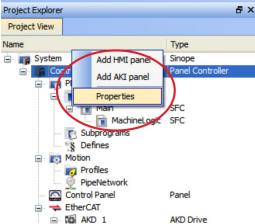

10.3.7.5 Instalar e iniciar o KAS IDE

O KAS IDE está incluído no DVD que veio junto com o AKD PDMM, e também está disponível on-line no endereço www.kollmorgen.com. Insira o DVD e aguarde o instalador ser iniciado automaticamente. Após a conclusão da instalação, clique no ícone do KAS IDE para iniciar o programa.

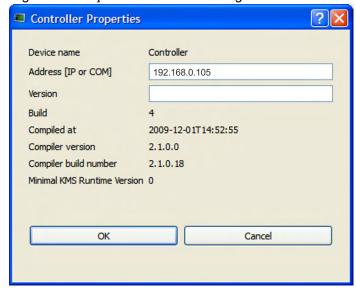
Inicie um novo projeto selecionando **Arquivo > Novo**. Isto irá abrir a janela **Adicionar um novo controlador**. Selecione o seu modelo AKD PDMM da lista. Então o controlador será adicionado à janela do projeto.

Para associar o projeto a um endereço IP do controlador AKD PDMM clique com o botão direito na opção Controlador na Janela do Projeto. Selecione **Propriedades** e a seguinte tela será exibida:

Digite o endereço IP do AKD PDMM, ajuste o *Tipo de controlador* para o PDMM e clique em OK. Para conectar-se ao PDMM, baixar e executar o projeto, use os seguintes controles:


Clique duplo em EtherCAT na janela do projeto para abrir a janela dos dispositivos EtherCAT. Clique nos dispositivos de busca no canto superior direito, e o KAS IDE irá identificar e adicionar automaticamente seu drive. Se vários drives forem detectados, um drive pode ser identificado isoladamente usando um dos seguintes métodos:

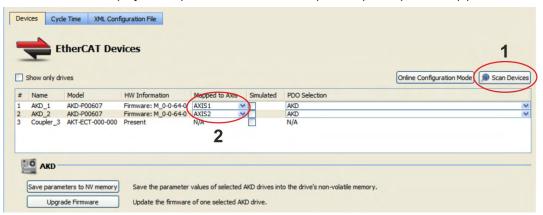
- 1. O endereço MAC do drive. Ele está impresso no adesivo localizado na lateral do drive.
- 2. O nome do drive. O nome do drive é determinado usando o KAS IDE. Um drive novo tem o nome de "No Name" por padrão.
- 3. Piscando o display. Selecione um drive e clique em Piscar para forçar o display localizado na frente do drive a piscar por 20 segundos.


10.3.7.6 Configurar o endereço IP do drive no KAS IDE

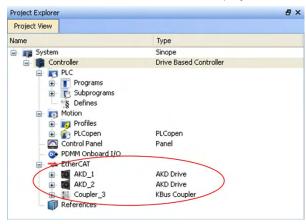
Se o KAS IDE não exibir automaticamente seu drive, então você pode configurar o endereço IP manualmente no KAS IDE da seguinte forma:

- Exibir o endereço IP. É possível exibir o endereço IP do drive no display do drive iniciando o menu com o botão B2 e selecionando "IP" pressionando o botão B2 novamente. O display mostra os dígitos e pontos do endereço IP em sequência (por exemplo, 192.168.0.105).
- O endereço IP do AKD PDMM está configurado no arquivo do projeto dentro do KAS IDE.
 Para ver o endereço IP, abra ou crie um novo projeto. Clique com o botão direito no item do Controlador Explorador de projeto/Visualizar projeto e selecione *Propriedades*.

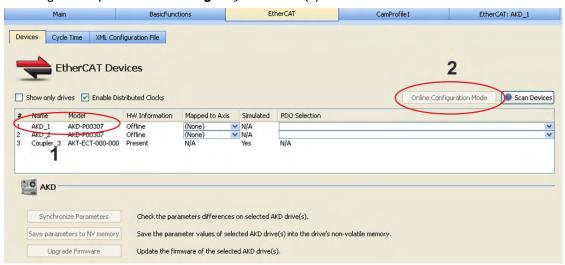
3. Digite o endereço do AKD PDMM da seguinte forma:

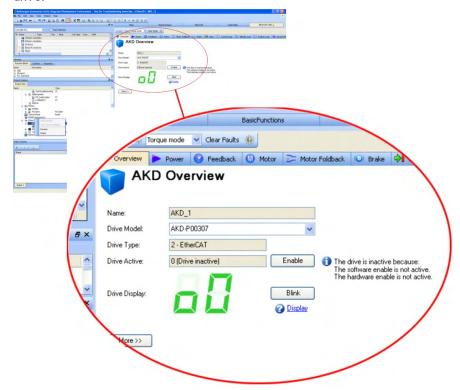

10.3.7.7 Iniciando um novo projeto

Após abrir um projeto (novo ou salvo) a partir do Explorador de Projeto, é possível abrir uma variedade de itens para montar um projeto:

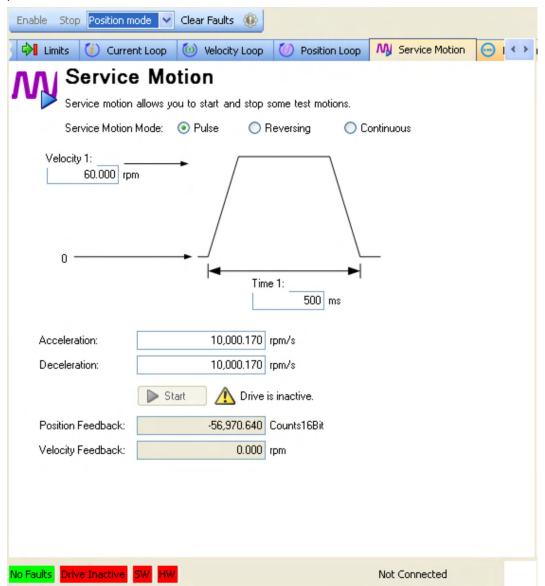


Todos os drives, incluindo o próprio drive no AKD PDMM e a E/S Remota podem ser configurados pelo KAS IDE.


Adicione drives ao projeto: clique no item EtherCAT e procure por dispositivos (1).


Mapeie os drives detectados para o eixo da sua aplicação (2). Todos os itens detectados são automaticamente adicionados ao seu projeto:

Para se comunicar diretamente com um drive sem executar um projeto, clique no item EtherCAT na árvore do projeto. Clique no drive na árvore do projeto para configurar (1), em seguida clique no botão **Configuração on-line** (2):


No espaço de trabalho um conjunto de tela é exibido que permite a configuração completa do drive:

Além disso, o assistente de configuração irá guiá-lo através de um conjunto de etapas para realizar a configuração:

Para realizar um movimento básico sem executar um projeto, a tela **Movimento de serviço** pode ser usada.

10.4 Mensagens de falha e advertência

10.4.1 Mensagens de falha e advertência AKD

Quando ocorre uma falha, o relé de falha do drive é aberto, a etapa de saída é desligada (motor perde todo o torque), ou a carga é freada dinamicamente. O comportamento específico do drive depende do tipo de falha. O display no painel frontal do drive exibe o número da falha ocorrida. Se uma advertência for emitida antes da falha, ela é exibida no LED e tem o mesmo número que a falha associada. Advertências não desarmam a etapa de energia do drive ou a saída do relé de falha.

Se presente, os códigos de falha ou de advertência doAKD são exibidos constantemente. As mensagens de falha são codificadas com "F", e os avisos com "n". Com cartão de opção de E/S integrado, erros de operação do cartão SD são exibidos com um "E" seguido de 4 dígitos.

O lado esquerdo do LED exibe F (ou E) para uma falha ou n para uma advertência. O lado direito exibe o número da falha ou do aviso da seguinte forma: 1-0-1-[interrupção]. A falha com a maior prioridade é exibida. Várias falhas podem estar presentes quando uma condição de falha está ocorrendo. Verifique a Tela de Falhas do AKD WorkBench ou leia o status do DRV.FAULTS através do controlador ou da IHM para toda a lista de falhas.

AVISO

Elimine as falhas e avarias pendentes em observância da segurança no trabalho. A eliminação de falhas é de exclusiva responsabilidade de pessoal especializado, qualificado e instruído.

INFORMAÇÃO

Mais informações sobre mensagens de falhas e limpeza de falhas podem ser encontradas no ajuda on-line do WorkBench e em **KDN**.

Falha	Mensagem/Advertência
	A tensão de entrada da alimentação de controle de 24 V cai ou Encoder
	auxiliar de 5V (X9) em curto-circuito.
F0	Reservado.
F101, n101	Tipo de firmware incompatível. O FPGA é um lab FPGA.
F102, n102	Falha no firmware residente. FPGA operacional não é um FPGA padrão.
F103	Falha no FPGA residente.
F104	Falha no FPGA operacional.
F105	Marcação na memória não-volátil inválida.
F106	Dados da memória não-volátil
n107	Limite do interruptor positivo desencadeado.
n108	Limite do interruptor negativo desencadeado.
F120	Falha ao redefinir os parâmetros.
F121	Erro de Homing.
F123, n123	Tarefa de movimento inválida.
F124	Erro de dados cogging compensação na memória não-volátil (CRC).
F125, n125	Fieldbus: Sincronização perdida.
F126, n126	Bode Plot: Movimento excessivo.
F127	Procedimento de emergência incompleta.
F128	Procedimento de parada de emergência incompleto.
F129	MPOLES/FPOLES não são inteiros.
F130	Fieldbus: Pulsação perdida.
F131	Alimentação do feedback secundário sobre corrente.
F132	Quebra de linha A/B do feedback secundário.

Falha	Mensagem/Advertência
F133	Quebra de linha Z do feedback secundário.
F134	Número da falha alterado para F138. Consulte F138 para mais detalhes.
F135, n135	Falha no feedback 2 evita a comutação remota no feedback 1.
F136	Homing necessário.
n137	As versões FPGA e firmware não são compatíveis
F138	Instabilidade durante o ajuste automático
F139	Posição alvo ultrapassada devido a uma ativação inválida da tarefa de
	movimento.
n151	Não há distância suficiente para o movimento; exceção de movimento.
n152	Não há distância suficiente para o movimento; após exceção de movimento.
n153	Violação do limite de velocidade, limite máximo excedido.
n154	O movimento seguinte falhou; verifique os parâmetros de movimento.
n156	A posição-alvo cruzou devido a um comando de parada.
n157	Pulso índice de homing não encontrado.
n158	Interruptor de referência de homing não encontrado.
n159	Falha ao definir os parâmetros da tarefa de movimento.
n160	Falha na ativação da tarefa de movimento.
n161	Falha no procedimento de homing.
n163	MT.NUM excede o limite.
n164	Tarefa de movimento não é inicializada.
n165	Posição-alvo da tarefa de movimento fora do lugar.
n167	Interruptor de limite SW transversal
n168	Combinação de bits inválida na palavra de controle da tarefa de movi-
	mento.
n169	Perfil 1:1 não pode ser acionado em trânsito.
n170	A tabela de perfil do cliente não é inicializada.
n171	Ativação de tarefa de movimento está pendente no momento.
n174	Distância máxima de homing ultrapassada.
n179	Test drive de compensação cogging parou prematuramente.
n180	Compensação cogging não está ativo. Axis deve primeiro ser referenciado.
F201	Falha no RAM interno.
F202	Falha no RAM externo.
F203	Falha na integridade do código.
F204 a F232	Falha de EEPROM detectada
F234 a F237, n234 a n237	Sensor de temperatura alto.
F240 a F243,	Sensor de temperatura baixo.
n240 a n243	
F245	Falha externa.
F247	Tensão no barramento excede os limiares permitidos.
F248	Placa de opção EEPROM corrompida.
F249	Soma de controle à jusante da placa de opção.
F250	Soma de controle à montante da placa de opção.
F251	Watchdog da placa de opção.
F252	Os tipos FPGA da placa de opção e do firmware não são compatíveis.
F253	As versões FPGA da placa de opção e do firmware não são compatíveis.
	1 · · · · · · · · · · · · · · · · · · ·

Falha	Mensagem/Advertência
F256, n256	Entrada análoga, limite de tensão ultrapassado
F257, n257	Entrada análoga, limite de tensão abaixo do limite
F301, n301	Motor sobreaquecido.
F302	Velocidade excessiva.
F303	Perda de controle.
F304, n304	Realimentação do motor.
F305	Circuito aberto do freio.
F306	Curto-circuito do freio.
F307	Freio fechado durante o estado de habilitação.
F308	A tensão excede a potência do motor.
F309	Carga I2t do motor.
F312	Freio liberado quando deve ser aplicado.
F401	Falha ao definir o tipo de feedback.
F402	Falha na amplitude do sinal analógico.
F403	Falha de comunicação EnDat.
F404	HALL estatal ilegal (000, 111).
F405	Falha no watchdog BiSS.
F406	Falha no multiciclo BiSS.
F407	Falha no sensor Biss.
F408 to F416	Falha no feedback do SFD.
F417	Fio rompido no feedback primário.
F418	Fonte de alimentação do feedback primário.
F419	Falha no procedimento inicial do encoder.
F420	Falha nas comunicações FB3 EnDat.
F421	Falha no sensor de posição do SFD.
F423	Falha no NV, estouro multi-voltas.
F436	EnDat superaquecido.
F438, n438	Desvio da culpa trajetória prevista.
F439, n439	Após erro (magnitude)
F450	Após erro (apresentação)
F451, n451	Encoder Tamagawa: bateria.
F452	Estouro multi-voltas não suportado com este feedback.
F453 to F459	Encoder Tamagawa: comunicação
F460	Encoder Tamagawa: velocidade excessiva.
F461	Encoder Tamagawa: erro de contagem.
F462	Encoder Tamagawa: estouro na contagem.
F463	Encoder Tamagawa: superaquecimento.
F464	Encoder Tamagawa: erro de multi-voltas.
F465	Choque excessivo detectado pelo dispositivo de feedback.
F467	Falha de feedback em feedback 1.No caso de BiSS: comunicações.
F468	FB2.SOURCE não definido, Comutação Remoto não é possível.
F469	FB1.ENCRES não é energia de dois, Comutação Remoto não é possível.
F470	Falha de feedback no feedback 3.
F471	Posição de modo não suportado o feedback do sensor Hall.
F473	Wake & Shake. Movimento insuficiente

Falha	Mensagem/Advertência
F475	Wake & Shake. Movimento em excesso.
F476	Wake & Shake. Delta grosso-fino muito grande.
F478, n478	Wake & Shake. Sobrevelocidade.
F479, n479	Wake & Shake. Delta do ângulo do circuito muito grande.
F480	Velocidade de comando da rede muito alta.
F481	Velocidade de comando da rede muito baixa.
F482	Wake & Shake. Comutação não inicializada.
F483	Wake & Shake. Fase do motor U faltando.
F484	Wake & Shake. Fase do motor V faltando.
F485	Wake & Shake. Fase do motor W faltando.
F486	Velocidade do motor excede a velocidade do EMU.
F487	
F489	Wake & Shake. Falha no movimento positivo de validação.
	Wake & Shake. Falha no movimento negativo de validação.
F490	Wake & Shake. Ângulo de validação da com. expirou.
F491	Wake & Shake. Ângulo de validação da com. se moveu demasiadamente - Ângulo ruim de com.
F492	
F492 	Wake & Shake. Ângulo de Com. de validação precisa ser maior que MOTOR.ICONT.
F493	Comutação inválida detectada – o motor acelera na direção errada.
n495	Tabela de compensação cogging gravada não pôde ser processada.
F501, n501	Sobretensão do barramento.
F502	Subtensão do barramento. Advertência emitida antes da falha.
F503, n503	Sobrecarga do capacitor de barramento.
F504 a F518	Falha na tensão de alimentação interna
F519	Curto-circuito de regeneração.
F521, n521	Sobrealimentação de regeneração.
F523	FPGA de sobretensão do barramento
	-
F524, n524 F525	Realimentação do drive.
	Sobretensão de saída.
F526	Curto-circuito no sensor da corrente.
F527	lu conversor digital analógico atual preso.
F528	Iv conversor digital analógico atual preso
F529	Limite de desvio atual lu excedido.
F530	Limite de desvio atual Iv excedido.
F531	Falha na etapa de potência
F532	Configuração dos parâmetros de motor do drive incompletos.
F534	Falha na leitura de parâmetros do motor a partir do dispositivo de feedback.
F535	Falha de sobretensão na placa de alimentação.
F560	Regeneração próxima à capacidade, não pôde prevenir sobretensão.
F570, n570	Perda de tensão da rede.
n580	Usando o derivativo de posição com tipo de feedback sem sensor no modo
F04	de posição.
n581	Velocidade zero com indução do tipo de feedback sem sensor no modo de
-F02	posição.
n582	Velocidade foi restringida, frequência de comutação máx. de 599 Hz para atender aos limites ECCN-3A225 / AL-3A225.
F601	Taxa de dados do Modbus está muito alta.
1.001	Tana ue uauos uo ivioudus esta muito aita.

Falha	Mensagem/Advertência
F602	Torque seguro desligado.
n603	OPMODE incompatível com CMDSOURCE
n604	EMUEMODE incompatível com DRV.HANDWHEELSRC.
F621	Falha na Placa de controle CRC.
F623	Falha na Placa de energia CRC.
F624	Falha na Placa Watchdog CRC.
F625	Falha na Placa de comunicação CRC.
F626	FPGA da placa de energia não configurado.
F627	Falha no Controle da Placa Watchdog.
F630	Falha na leitura cíclica de FPGA.
F631	Timeout do comando.
F701	Tempo de execução da rede.
F702, n702	Comunicação com rede perdida.
F703	Ocorreu um tempo de esgotamento de emergência enquanto o eixo deveria desabilitar.
F706, n706	Pontos de referência cíclicos Fieldbus ausentes.

10.4.2 Mensagens de falha adicionais AKD-T

AKD BASIC as falhas no tempo de execução são exibidas no monitor de 7 segmentos e dois dígitos do drive:

O monitor LED de dois dígitos indica as AKD mensagens.

As mensagens de falha no tempo de execução adicional do AKD-T são codificadas com números iniciando a partir de F801. Solução para todos os erros: Falha clara, corrigir o programa do usuário, recompilar, fazer o download e tentar executar o programa novamente.

AVISO

Elimine as falhas e avarias pendentes em observância da segurança no trabalho. A eliminação de falhas é de exclusiva responsabilidade de pessoal especializado, qualificado e instruído.

INFORMAÇÃO

Mais informações sobre mensagens de falhas e limpeza de falhas podem ser encontradas no ajuda on-line do WorkBench e em **KDN**.

	I D
Erro	Descrição
F801	Dividir por zero.
F802	Estouro de pilha.
F803	Memória insuficiente.
F804	Nenhum tratador de interrupção definido.
F805	Interromper erro.
F806	Extensão máxima do comprimento da cadeia de caracteres excedida.
F807	Estouro da cadeia de caracteres.
F808	Matriz fora dos limites.
F809	Recurso não suportado.
F810	Erro interno de firmware/hardware.
F812	Parâmetro não suportado.
F813	Erro de acesso do parâmetro.
F814	Dados não encontrados.
F815	Dados inválidos.
F816	Dados muito altos.
F817	Dados muito baixos.
F818	Tipo de parâmetro fora do intervalo.
F819	Dados não divisível por 2.
F820	Configuração do módulo em posição inválida.
F821	Não é possível ler a partir do comando.
F823	Habilitar drive primeiro.
F824	DRV.OPMODE deve ser 2 (posição).
F825	DRV.CMDSOURCE deve ser 5 (programa).
F826	Não é possível executar durante um movimento.
F827	Gravação para o parâmetro somente leitura.
F828	Desabilitar drive primeiro.
F829	Opcode não compatível - atualizar firmware.
F830	Valores negativos não são permitidos.
F831	Programa BASIC inválido. Precisa de atualização do firmware.
F832	Programa BASIC ausente.
F901	Muitos cams.

10.4.3 Mensagens de alarme e erro adicionais AKD-M

Falhas / Erros e Advertências / Alertas são exibidos nos monitores de 7 segmentos do drive:

Para simplificar o manuseio, o processo de manuseio de alarme e erro é consistente, para que você sempre possa aplicar as mesmas etapas de recuperação. Quando ocorre um erro ou um alarme, ele é exibido no monitor de um dígito, é possível identificar o erro na tabela abaixo e seguir as recomendações para corrigir o problema, limpe o monitor e retome o funcionamento da máquina.

Erros e alarmes ativos podem ser apagados com o comando do controlador *ClearCtrlErrors*, (Observação: erros não elimináveis permanecerão).

10.4.3.1 Alarmes

Alarme	Descrição
A01	Alta temperatura excedida
A02	Pouca memória.
A04	Baixa tensão de entrada
A12	A memória flash tem pouco espaço livre.
A21	Processo recuperável ou a rosca falhou em responder durante a operação.
A23	A CPU está sobrecarregada
A30	A EtherCAT perdeu os ciclos de comunicação durante o modo de operação.
A38	EtherCAT perdeu um quadro de recebimento durante o modo de operação.
A40	A IO digital local perdeu uma atualização do ciclo
A53	AKD-M-MC foi substituído pelo modelo de desempenho mais alto M1.

10.4.3.2 Erros

Quando ocorre um Erro ou Alarme, sempre verifique as mensagens de log do controlador. As mensagens de log vão fornecer mais detalhes sobre a falha e o histórico dos acontecimentos que conduziram à falha. Das mensagens de log, você pode determinar os detalhes sobre a causa da falha para corrigir o problema subjacente.

AVISO

Elimine as falhas e avarias pendentes em observância da segurança no trabalho. A eliminação de falhas é de exclusiva responsabilidade de pessoal especializado, qualificado e instruído.

INFORMAÇÃO

Mais informações sobre mensagens de falhas e limpeza de falhas podem ser encontradas no ajuda on-line do WorkBench e em **KDN**.

Erro	Descrição		
E01	1 Temperatura crítica excedida. A operação PDMM é interrompido, a CPU vai ser co		
	cada no modo de suspensão.		
E02	Fora da memória. O tempo de execução KAS está parando.		
E03	Falha no ventilador.		
E10	O firmware está corrompido.		
E11	A unidade flash está corrompida, nenhum sistema de arquivo está disponível.		
E12	Não há memória flash suficiente disponível.		
E13	Fora do espaço NVRAM para variáveis retidas.		
E14	A redefinição para os padrões de fábrica falhou.		
E15	Não foi possível ler / gravar arquivos de / para um cartão SD.		
E16	Não há espaço suficiente disponível no cartão SD.		
E20	O tempo de execução do plug-in, processo, rosca ou aplicação falhou ao iniciar.		
E21	O tempo de execução do plug-in, processo ou rosca falhou em responder durante a		
	operação.		
E22	Erro fatal no programa PLC, a aplicação foi interrompida.		
E23	A CPU está sobrecarregada.		
E24	Aplicativo PLC não pôde ser iniciado		
E30	Falha de comunicação do EtherCAT durante o modo de operação.		
E31	Falha de comunicação do EtherCAT durante o modo pré-operacional.		
E32	Falha de comunicação do EtherCAT durante o modo de inicialização.		
E33	O EtherCAT falhou ao inicializar no modo de operação.		
E34	O EtherCAT falhou ao inicializar no modo pré-operacional.		
E35	O EtherCAT falhou ao inicializar no modo de inicialização.		
E36	O EtherCAT falhou em descobrir os dispositivos previstos.		
E37	O EtherCAT falhou ao retornar para o estado inicial.		
E50	Backup para cartão SD com falha.		
E51	Restaurar do cartão SD com falha.		
E52	Os arquivos de backup do SD estão ausentes ou corrompidos.		
E53	Arquivos de backup SD não são compatíveis.		

10.5 Resolução de problemas do AKD

Podem ocorrer problemas no drive por diversas razões, dependendo das condições da sua instalação. As causas das falhas em sistemas multieixos podem ser particularmente complexas. Se você não conseguir solucionar uma falha ou outro problema usando a orientação de resolução de problemas apresentada abaixo, o serviço de apoio ao cliente pode lhe dar maior assistência.

AVISO

Elimine as falhas e avarias pendentes em observância da segurança no trabalho. A eliminação de falhas é de exclusiva responsabilidade de pessoal especializado, qualificado e instruído.

INFORMAÇÃO

Mais informações sobre mensagens de falhas e limpeza de falhas podem ser encontradas no ajuda on-line do WorkBench e em **KDN**.

Problema	Causas Possíveis	Solução
Mensagem da IHM:	usado cabo errado ou o cabo foi inserido na	insira o cabo no soquete correto do
Falha de comu-	posição errada do drive ou do PC	drive e PC
nicação	selecionada a interface errada do PC	selecione a interface correta
Drive não está habi-	, ,	conectar HW Enable (X8 pino 4)
litado	HW Enable ou SW Enable não definido	Aplicar 24V para HW Enable e sele-
		cionar SW Enable no WorkBench /
		Fieldbus
O motor não gira	 drive não habilitado 	aplique o sinal de ENABLE
	 habilitação do software não configurada 	 configure a habilitação do software
	 interrupção no cabo de regolagem 	verifique o cabo de regolagem
	fases do motor trocadas	corrija a sequência das fases do motor
	freio não liberado	verifique o controle do freio
	o drive é bloqueado mecanicamente	verifique o mecanismo
	 nº do pólo do motor definido incorreta 	configure o nº do pólo do motor
	feedback configurado de forma incorreta	configure o feedback de forma correta
Oscilação do motor	o ganho é muito alto (velocidad)	reduza o VL.KP (velocidad)
	blindagem do cabo de feedback rompida	substitua o cabo do feedback
	AGND não conectado	junte o AGND ao CNC-GND
O drive relata	Irms ou Ipeak configurados muito baixos	verifique o motor/dimensionamento do
os seguintes erros		drive
	corrente ou velocidade limita a aplicação	verifique se o IL.LIMITN/P e o
		VL.LIMITN/P não estão limitando o
	 aceleração/desaceleração da rampa está 	drive
	muito longa	reduza DRV.ACC/DRV.DEC
Motor sobre-	motor operando abaixo da sua taxa	verifique o motor/dimensionamento do
aquecido		drive
	a configuração da corrente do motor está	verifique se os valores da corrente de
	incorreta	pico e contínua do motor estão con-
		figuradas corretamente
Drive muito lento	Kp/Ki (controlador de velocidade) muito	aumente o VL.KP/VL.KI (velocidad)
	baixo	consolte a documentação sobre redu-
	 filtros com a configuração muito alta 	ção de filtro (VL.AR*)
O drive funciona	Kp/Ki (controlador de velocidade) muito	reduza o VL.KP/VL.KI (velocidad)
com dificoldade	alto	consolte a documentação sobre
	 filtros com a configuração muito baixa 	aumento de filtro (VL.AR*)
Durante a ins-	Problema com o instalador MSI.	Cancele a instalação. Reinicialize o ins-
talação, uma caixa		talador (você pode precisar tentar
de diálogo (tama-		várias vezes, o problema é aleatório).
nho da memória)	Espaço em disco rígido insuficiente	Certifique-se de que você tem espaço
aparece e per-		suficiente no disco rígido (~500MB)
manece visível.		/

11 Índice

Α Abbreviations12 Alimentação auxiliar de 24 V105 Alimentação de rede106 Ambient temperature35 Atribuição do conector B, P, T83 M91 В BISS Encoder128 C **CANbus** Endereço de nó178 Taxa de transmissão177 Terminação178 Capacitor Modules112 Chapas de aterramento102 Cima/Baixo143 Circuito de Regeneração43 Componentes de um sistema servo81 Comportamento do Ligar/Desligar46 Conceito de Blindagem100 Conector de feedback 122 Conectores41 Conexão de E/S 146 Conexão de feedback121 Conexão do potência do motor116 Configuração185 Configurar Conformance EAC28 REACH27 RoHS27 Conformidade Safety (STO)28 UL, cUL24 Corrente de fuga66 CW/CCW143

D

DC Bus Capacitance44
Desativando 21
Desligamento de Emergência
Diagrama de caração
Diagrama de conexão
M92
Diagrama de Conexão
B, P, T84
Digital inputs
I/O option
M Variant
Dimensões
Dimensões Estendida
Dimensões Padrão
DSL
Dynamic Braking43
E
EAC
ENABLE
Enclosure protection
EnDat 2.1 Encoder
EnDat 2.2 Encoder
Endereço IP
tipo M174
tipos B, P, T172
Engrenagem eletrônica138
Entradas
Analógica
Basic Data
Digitais
Digitais com opção de E/S
STO
Especificações
EtherCAT181
EtherNet
EtherCAT181
Ethernet/IP183
Modbus TCP175
PROFINET RT
sercos® III
SyngNet
•
Ethernet/IP
_
F
Família AKD33
Fiação80
Freio de retenção do motor118
Fusíveis40
H
Hall Sensoren136
Himanfora DCI 407

Hiperface DSL 127

Hiperface Encoder133	Packaging	20
Humidity	Panorama de conexão	
Storage	B, P, T	83
Transport	M	91
	Parada de Emergência	53
l	Parar / Parada de Emergência / Des-	
	ligamento de Emergência	53
Inputs	PC conection	
Digital M Variant157	Placa de identificação	
Digital, I/O option154	Pollution level	
Enable	PROFINET	
Instalação	Proteção	
Elétrica77	Proteção contra o risco de choques	
KAS IDE194	Pulso / Direção	
Mecânica68	i diso i bireção	174
WorkBench	R	
Instruções de segurança	IX	
Geral15	Re-formando	185
STO56	REACH	
Interface de serviço	Redes de alimentação	
Interruptores rotativos	relação de cobertura de diagnóstico	
miorrapioros rotativos	Relé de FALHA	
K	Requisitos de Fiação e Cabos	
	Requisitos de hardware	
KAS IDE192	KAS IDE	103
KCM 112	WorkBench	
L	Resistor de regeneração	
_	Resolver	
Layout do Gabinete	Revisões de Documentos	
Dimensões expandido73	ROD 5V com Hall	
Dimensões Padrão	RoHS	21
LED165	S	
Link de Barramento CC	3	
Local68	Safe Torque Off (STO)	55
	Saídas	
M		151
	AnalógicaBasic Data	
Marquages UL24		
Mensagens de advertência202	Digitais	
Mensagens de falha202	Digitais com opção de E/S	
Mestre-Escravo145	Digitais tipo M	164
Modbus175	Encoder Emulado	
Motor	Relé de FALHA	
Mounting position35	Relé digitais	
mounting position	SenCos encoder	
N	SenCos encoder com Hall	
••	sercos® III	
Noise Emission35	SFD	
Notas Importantes	SFD3	
Configuração185	Símbolos utilizados	11
Instalação elétrica	Sistemas operacionais	
Instalação mecânica	KAS IDE	193
Número da peça31	Sistemas Operacionais	
	WorkBench	187
P	Site altitude	
•	Slot para cartão SD	
Packago supplied 30	•	

Software para configuração	
KAS IDE	
Workbench	
Stacking height	
Stacking Height, Storage	
Standards	
Standards used	
STO	
Storage	
SynqNet	182
T	
Т	
Tamagawa Encoder	137
Temperature	
em operação	35
Storage	
Transport	
Teste inicial do drive	
Tipo M	105
Tipos B,P,T	180
Torques de aperto recomendados	
Transport	
Trouble Shooting	
Trouble Griedung	
U	
UL Markings	24
Umidade	
em operação	
Use como indicado	
Geral	
KAS IDE	
STO	
WorkBench	
Uso Proibido	
Geral	
STO	57
M	
V	
Ventilação	
Condições Ambientais	26
Mechanical Installation	
Mechanical Installation Vibrations	

12 Revisões de Documentos

Revisão	Observações	
-, 11/2009	Lançamento da versão Beta	
-, 12/2009	Correções de E/S digital, várias atualizações	
A, 03/2010	Terminação do conector CAN "opcional", dados do freio dinâmico atualizados, sinais do resolver renomeados, certificado CE, descrição do X9 atualizada, dados técnicos concluídos	
B, 06/2010	Várias atualizações, erros de digitação e de dimensões corrigidos, ligar/desligar diagramas de tempo	
C, 07/2010	Ligar/desligar diagramas de tempo,erros de digitação, layout da cobertura	
D, 01/2011	11 Revisão do Hardware C, certificado STO, nível de voltagem das entradas digitais alterado	
E, 04/2011	Especificação de Entrada/Saída analógica estendida, alimentação de rede de fase única/dupla atualizado	
F, 10/2011	PROFINET RT, Modbus TCP, várias atualizações, layout da cobertura atualizado	
G, 03/2012	AKD PDMM adicionado, restrição de alimentação de rede de 270 Vac, esquema de número da peça estendido, EnDat 2.2 @ X9, capítulo de PARADA atualizado, dimensões de desenhos	
H, 05/2012	AKD-T-IC adicionado, sinais de cartão de opção E/S adicionados, erros de códigos do PDMM atualizados	
J, 08/2012	Novo Smart Abs (Tamagawa), novo BiSS C, pinagem X21 e X22 atualizadas	
V, 11/2015	Novo Feedback Hall-Only, dicas em "Guia do Usuário" substituídas por dicas em Workbench	
W, 08/2016	Dados técnicos do X7 (transmissão eletrônica) atualizados, LV e versão da Diretriz EMC atualizadas, Avisos atualizados, capítulo Manuseio transferido, conexão do freio do motor 48A corrigida, valor de PFH alterado	
Y, 03/2017	Limite de freqüência EnDat 2.2 alterado, Links em capítulos de erros para KDN, tabela de falhas atualizada (F120, F124, n179, n180, F471, n495, F631)	
AA, 10/2017	Fiação de saída digital X23 / X24 atualizada, tempo de reação STO adicionado (03 24A), fiação 24V para controle STO 48A, conexão do freio do motor AKD48A corrigida	

Sobre a Kollmorgen

A Kollmorgen é uma empresa líder no fornecimento de sistemas de movimentação e componentes para fabricantes de máquinas. Através do conhecimento mundial em movimentação, qualidade líder de mercado e profunda experiência em unir e integrar produtos padronizados e customizados, a Kollmorgen apresenta soluções inovadoras que são inigualáveis em desempenho, confiabilidade e facilidade na hora de usar, proporcionando aos fabricantes de máquinas uma vantagem de mercado indiscutível.

Junte-se à <u>Kollmorgen Developer Network</u> para obter suporte de produtos. Faça perguntas à comunidade, pesquise a base de conhecimento, faça downloads e sugira melhorias.

América do Norte KOLLMORGEN

203A West Rock Road Radford, VA 24141, USA

Web:www.kollmorgen.comMail:support@kollmorgen.comTel.:+1 - 540 - 633 - 3545

Fax: +1 - 540 - 639 - 4162

Europa KOLLM

KOLLMORGEN Europe GmbH

Pempelfurtstraße 1 40880 Ratingen, Germany

 Web:
 www.kollmorgen.com

 Mail:
 technik@kollmorgen.com

 Tel.:
 +49 - 2102 - 9394 - 0

 Fax:
 +49 - 2102 - 9394 - 3155

América do Sul KOLLMORGEN

Avenida Tamboré - 1077 Tamboré - Barueri -

SP Brasil

CEP: 06460-000, Brazil

Web: <u>www.kollmorgen.com</u> +55 11 4191-4771

Ásia KOLLMORGEN

Room 202, Building 3, Lane 168, Lin Hong Road, Changning District Shanghai, China

Web: www.kollmorgen.cn

Mail: sales.china@kollmorgen.com

Tel.: +86 - 400 661 2802

KOLLMORGEN