AKD® Central Power Supply

Betriebsanleitung

Ausgabe: H, Februar 2018

Gültig für AKD-C, Hardware Revision A

Bestellnummer 903-200019-01

Übersetzung des Originaldokumentes

Bewahren Sie alle Anleitungen während der gesamten Nutzungsdauer des Produkts als Produktkomponente auf. Händigen Sie alle Anleitungen künftigen Anwendern/Besitzern des Produkts aus.

KOLLMORGEN

Bisher erschienene Ausgaben:

Ausgabe	Bemerkungen
	Den Lebenslauf dieses Dokuments finden Sie unter (→ #1)
F, 09/2016	Warnhinweise aktualisiert, Hinweise Projektierungshandbuch, Warnschilder beschrieben, UL Markings aktualisiert, Leistungsschalter entfernt von UL-Zulassung, Netzfrequenz 40-70Hz, SCCR 42kA
G, 10/2017	Sicherheitskennzahl MTTFd neu, Referenz zu sicheren Schleifringen (Stemmann)
H, 02/2018	Typenschlüssel (Mx Typen entfernt), Warenzeichen-Liste aktualisiert

Hardware-Revision (HR)

AKD-N	AKD-C	Firmware/ WorkBench	Export Klassifizierung	Bemerkungen
Α	Α	ab 1.11	3A225	AKD-C und AKD-N Startversion
В	A	ab 1.13	_	AKD Hardware Revision zur Rückverfolgbarkeit wegen der Export Klassifizierung

Warenzeichen

- AKD ist ein registriertes Warenzeichen der Kollmorgen Corporation
- EnDat ist ein eingetragenes Warenzeichen der Dr. Johannes Heidenhain GmbH.
- EtherCAT ist ein eingetragenes Warenzeichen und patentierte Technologie, lizensiert von der Beckhoff Automation GmbH, Deutschland.
- HIPERFACE ist ein eingetragenes Warenzeichen der Max Stegmann GmbH.
- SpeedTec ist ein eingetragenes Warenzeichen der TE Connectivity Ltd
- WINDOWS ist ein eingetragenes Warenzeichen der Microsoft Corporation

Aktuelle Patente:

- US Patent 8.154.228 (Dynamic Braking For Electric Motors)
- US Patent 8.214.063 (Auto-tune of a Control System Based on Frequency Response)
- US Patent 8.566.415 (Safe Torque Off over network wiring)

Patente, die sich auf Feldbus Funktionen beziehen, sind im jeweiligen Feldbus Handbuch gelistet.

Technische Änderungen zur Verbesserung der Leistung der Geräte ohne vorherige Ankündigung vorbehalten.

Gedruckt in Deutschland.

Dieses Dokument ist geistiges Eigentum von Kollmorgen. Alle Rechte vorbehalten. Kein Teil dieses Werkes darf in irgendeiner Form (Fotokopie, Mikrofilm oder in einem anderen Verfahren) ohne schriftliche Genehmigung von Kollmorgen reproduziert oder unter Verwendung elektronischer Systeme verarbeitet, vervielfältigt oder verbreitet werden.

1 Inhaltsverzeichnis

1	Inhaltsverzeichnis	3
2	Allgemeines	
	2.1 Über diese Betriebsanleitung	
	2.2 Hinweise für die Online-Ausgabe (PDF-Format)	
	2.3 Hinweise für die gedruckte Ausgabe (Papierversion)	
	2.4 Verwendete Symbole	
	2.5 Verwendete Abkürzungen	
	2.6 Verwendete Normen	
3	Sicherheit	
٠	3.1 Das sollten Sie beachten	
	3.2 Bestimmungsgemäße Verwendung	
	3.3 Nicht bestimmungsgemäße Verwendung	
	3.4 Warnhinweise auf dem Produkt	
4	Handhabung	
4	-	
	4.1 Verpackung	
	4.2 Transport	
	4.3 Lagerung	
	4.4 Außer Betrieb nehmen	
	4.5 Wartung und Reinigung	
	4.6 Demontage	
	4.7 System Reparatur	
_	4.8 Entsorgung	
5	Zulassungen	
	5.1 Konformität mit UL/cUL	
	5.1.1 UL Markings / Marquages UL	
	5.2 Konformität mit EG Niederspannungsrichtlinie und EMV Richtlinie	
	5.3 Konformität mit EG Maschinenrichtlinie, Funktionale Sicherheit	
	5.4 Konformität mit EAC	
	5.5 Konformität mit RoHS	
	5.6 Konformität mit REACH	
6	Produktidentifizierung	25
	6.1 Lieferumfang	26
	6.2 Typenschild	
	6.3 Typenschlüssel	27
7	Technische Beschreibung und Daten	28
	7.1 Die AKD-C zentrale Spannungsversorgung	29
	7.2 Mechanische Daten	30
	7.3 Elektrische Daten	30
	7.4 Sicherungen	31
	7.4.1 Sicherungen für Leistungsversorgung	31
	7.4.2 Sicherung für externen Bremswiderstand	31
	7.5 Umgebungsbedingungen, Belüftung und Einbaulage	31
	7.6 Massesystem	32
	7.7 Signal Inputs/Outputs	32
	7.8 Stecker	33
	7.9 Empfohlene Anzugsmomente	33
	7.10 Kabelanforderungen	33
	7.11 Definition Kabellänge	34
	7.12 Dynamische Bremsung	
	7.13 Brems-Chopper	35

	7.13.1 Funktionsbeschreibung	35
	7.13.2 Technische Daten	35
	7.14 Ein- und Ausschaltverhalten	36
	7.14.1 Einschaltverhalten im Standardbetrieb	36
	7.14.2 Ausschaltprozess im Standardbetrieb	37
	7.15 Globaler Safe Torque Off (STO)	38
	7.15.1 STO Sicherheitshinweise	38
	7.15.2 Bestimmungsgemäße Verwendung	39
	7.15.3 Nicht bestimmungsgemäße Verwendung	39
	7.15.4 Reaktionszeit	39
	7.15.5 Allgemeine Informationen	40
	7.15.6 Einbauraum, Verdrahtung	41
	7.15.7 Technische Daten und Anschluss	42
	7.15.8 Funktionsbeschreibung	43
	7.15.8.1 Signaldiagramm	44
	7.15.8.2 Funktionstest	44
	7.15.8.3 Applikationsbeispiel Globaler STO mit KSM	45
	7.15.8.4 OSSD Testpulse	45
	7.16 Berührungsschutz	46
	7.16.1 Ableitstrom	
	7.16.2 Fehlerstromschutzschalter (RCD)	46
	7.16.3 Schutztrenntransformatoren	46
	7.17 LED-Anzeige	
8	Mechanische Installation	. 48
	8.1 Wichtige Hinweise	
	8.2 Maßzeichung	50
	8.3 Montagebeispiel	51
9	Elektrische Installation	
	9.1 Wichtige Hinweise	
	9.2 Anleitung für die elektrische Installation	54
	9.3 EMV Störunterdrückung	
	9.3.1 Empfehlungen für die Reduktion von Störungen	
	9.3.2 Schirmanschluss am Gerät	
	9.3.2.1 Schirmanschlussklemmen für X12, X13, X14, X15, X16	
	9.3.2.2 Ethernet Stecker X10, X11, X18	
	9.3.2.3 DC Power Stecker X20A, X21A (Kabel CCNCN1)	
	9.3.2.4 Lokale Feldbus Stecker X20B, X21B (Kabel CCNCN1)	
	9.4 Topologie eines dezentralen Antriebssystems	
	9.4.1 Systemgrenzen	
	9.4.2 Beispiel für einen AKD-C	
	9.4.3 Beispiel für mehrere AKD-C	58
	9.4.3 Beispiel für mehrere AKD-C 9.5 Verdrahtung	58 59
	9.4.3 Beispiel für mehrere AKD-C 9.5 Verdrahtung 9.6 Anschlüsse	58 59 60
	9.4.3 Beispiel für mehrere AKD-C 9.5 Verdrahtung 9.6 Anschlüsse 9.6.1 Steckerzuordnungen	58 59 60
	9.4.3 Beispiel für mehrere AKD-C 9.5 Verdrahtung 9.6 Anschlüsse 9.6.1 Steckerzuordnungen 9.6.2 Anschlussbild	58 59 60 60
	9.4.3 Beispiel für mehrere AKD-C 9.5 Verdrahtung 9.6 Anschlüsse 9.6.1 Steckerzuordnungen 9.6.2 Anschlussbild 9.7 Anschluss der Spannungsversorgung	58 59 60 60 61
	9.4.3 Beispiel für mehrere AKD-C 9.5 Verdrahtung 9.6 Anschlüsse 9.6.1 Steckerzuordnungen 9.6.2 Anschlussbild 9.7 Anschluss der Spannungsversorgung 9.7.1 Anschluss an verschiedene Versorgungsnetze	58 59 60 60 61
	9.4.3 Beispiel für mehrere AKD-C 9.5 Verdrahtung 9.6 Anschlüsse 9.6.1 Steckerzuordnungen 9.6.2 Anschlussbild 9.7 Anschluss der Spannungsversorgung 9.7.1 Anschluss an verschiedene Versorgungsnetze 9.7.2 Anschluss an die Netzversorgung (X12)	58 59 60 61 62
	9.4.3 Beispiel für mehrere AKD-C 9.5 Verdrahtung 9.6 Anschlüsse 9.6.1 Steckerzuordnungen 9.6.2 Anschlussbild 9.7 Anschluss der Spannungsversorgung 9.7.1 Anschluss an verschiedene Versorgungsnetze 9.7.2 Anschluss an die Netzversorgung (X12) 9.7.2.1 Dreiphasiger Anschluss	58 59 60 61 62 63
	9.4.3 Beispiel für mehrere AKD-C 9.5 Verdrahtung 9.6 Anschlüsse 9.6.1 Steckerzuordnungen 9.6.2 Anschlussbild 9.7 Anschluss der Spannungsversorgung 9.7.1 Anschluss an verschiedene Versorgungsnetze 9.7.2 Anschluss an die Netzversorgung (X12) 9.7.2.1 Dreiphasiger Anschluss 9.7.3 24 VDC Versorgungsspannung (X13)	58 59 60 61 62 63 63
	9.4.3 Beispiel für mehrere AKD-C 9.5 Verdrahtung 9.6 Anschlüsse 9.6.1 Steckerzuordnungen 9.6.2 Anschlüssbild 9.7 Anschlüss der Spannungsversorgung 9.7.1 Anschlüss an verschiedene Versorgungsnetze 9.7.2 Anschlüss an die Netzversorgung (X12) 9.7.2.1 Dreiphasiger Anschlüss 9.7.3 24 VDC Versorgungsspannung (X13) 9.8 Zwischenkreis (X14)	58 60 61 62 63 63
	9.4.3 Beispiel für mehrere AKD-C 9.5 Verdrahtung 9.6 Anschlüsse 9.6.1 Steckerzuordnungen 9.6.2 Anschlussbild 9.7 Anschluss der Spannungsversorgung 9.7.1 Anschluss an verschiedene Versorgungsnetze 9.7.2 Anschluss an die Netzversorgung (X12) 9.7.2.1 Dreiphasiger Anschluss 9.7.3 24 VDC Versorgungsspannung (X13) 9.8 Zwischenkreis (X14) 9.8.1 Bremswiderstand (X14)	58 60 61 62 63 63 64 64
	9.4.3 Beispiel für mehrere AKD-C 9.5 Verdrahtung 9.6 Anschlüsse 9.6.1 Steckerzuordnungen 9.6.2 Anschlüssbild 9.7 Anschlüss der Spannungsversorgung 9.7.1 Anschlüss an verschiedene Versorgungsnetze 9.7.2 Anschlüss an die Netzversorgung (X12) 9.7.2.1 Dreiphasiger Anschlüss 9.7.3 24 VDC Versorgungsspannung (X13) 9.8 Zwischenkreis (X14)	58 59 60 61 62 63 63 64 65 66

9.8.2 Kondensator Module (X14)	67
9.8.2.1 Technische Daten	67
9.8.2.2 Anschlussbeispiel mit KCM-S und KCM-E	68
9.8.2.3 Anschlussbeispiel mit KCM-P und KCM-E	69
9.8.2.4 KCM Module entladen	70
9.9 Anschluss der Antriebsstränge	71
9.9.1 Zuordnung der Antriebsstränge	72
9.9.2 DC Power X20A, X21A	73
9.9.3 Lokaler Feldbus (X20B, X21B)	73
9.10 I/O-Anschluss	74
9.10.1 I/O Stecker X15 und X16	74
9.10.2 Digitaler Eingang (ENABLE, X15)	75
9.10.3 Digitaler Ausgang (X15)	76
9.10.4 Fehlerrelais	77
9.10.5 STO Signale (X16)	77
9.11 Motion-Bus-Schnittstelle (X10/X11)	78
9.11.1 Pinbelegung	78
9.11.2 Bus Protokolle	78
9.11.3 Netzwerk Konfiguration	78
9.11.4 EtherCAT	78
9.12 Serviceschnittstelle (X18)	79
9.12.1 Pinbelegung	79
9.12.2 Service Bus Protokolle	79
9.12.3 Mögliche Netzwerkkonfigurationen	
9.13 Taster (B1)	80
9.14 Drehschalter (S1), IP-Adressierung	80
10 Inbetriebnahme	81
10.1 Wichtige Hinweise	82
10.2 Inbetriebnahmesoftware WorkBench	83
10.2.1 Bestimmungsgemäße Verwendung	83
10.2.2 Beschreibung der Software	84
10.2.3 Hardware-Anforderungen	84
10.2.4 Betriebssysteme	84
10.2.5 Installation unter Windows	85
10.3 Basis Systemtest	86
10.3.1 Auspacken, Montieren und Verdrahten	86
10.3.2 IP-Adresse einstellen	86
10.3.3 Verbindungen überprüfen	86
10.3.4 WorkBench Installieren und starten	87
10.3.5 Servoverstärker mit dem Setup-Assistenten freigeben	87
10.4 Fehler und Warnmeldungen	
10.5 Fehlersuche und -behebung beim AKD-C	89
11 Index	
12 Bisher erschienene Ausgaben	93

2 Allgemeines

2.1	Über diese Betriebsanleitung	. 8
2.2	Hinweise für die Online-Ausgabe (PDF-Format)	. 8
	Hinweise für die gedruckte Ausgabe (Papierversion)	
	Verwendete Symbole	
	Verwendete Abkürzungen	
	Verwendete Normen	

2.1 Über diese Betriebsanleitung

Die vorliegende AKD-C Betriebsanleitung beschreibt das zentrale Netzteil AKD-C und enthält Informationen zur sicheren Installation eines dezentralen Antriebssystems mit AKD-C und mehreren AKD-N Servoverstärkern. Eine digitale Version dieser Betriebsanleitung (PDF Format) befindet sich auf der mit dem Gerät gelieferten DVD. Aktualisierungen der Betriebsanleitung können Sie von der Kollmorgen Website (www.kollmorgen.com) herunterladen. Weitere Dokumente auf der beiliegenden DVD:

- Projektierungshandbuch für Dezentrales Antriebssystem: beschreibt den Aufbau eines dezentralen Antriebssystems mit AKD-C und AKD-N. Es liefert Hinweise für die Systemtopologie, Kühlung und Optimierung der Systemleistung.
- AKD-N Betriebsanleitung: beschreibt die Servoverstärker AKD-N für Kollmorgen dezentrale Antriebssysteme und liefert Informationen für die sichere Montage und Installation der Servoverstärker.
- WorkBench Online Hilfe: beschreibt, wie der Antrieb in üblichen Applikationen eingesetzt wird. Sie liefert auch Hinweise für die Optimierung der Systemleistung. Die Online Hilfe beinhaltet den Parameter and Command Reference Guide mit der Dokumentation zu den Parametern und Befehlen, die für die Programmierung des Antriebs verwendet werden.
- EtherCAT Kommunikation: beschreibt die Verwendung des Systems in EtherCAT Applikationen.
- Zubehör Handbuch. Beschreibt Zubehör wie Kabel und Bremswiderstände, die mit AKD-C und AKD-N verwendet werden. Von diesem Dokument existieren regionale Varianten.

2.2 Hinweise für die Online-Ausgabe (PDF-Format)

Das Dokument bietet verschiedene Funktionen, um die Navigation zu vereinfachen.

Lesezeichen	Das Inhaltsverzeichnis und der Index enthalten aktive Lesezeichen.
Inhaltsverzeichnis und Index im Text	Die Zeilen im Inhaltsverzeichnis und Index sind aktive Querverweise. Klicken Sie auf eine Zeile, um zur ent- sprechenden Seite zu gelangen.
Seitennummern im Text	Seitennummern im Text mit Querverweisen sind aktive Verknüpfungen.

2.3 Hinweise für die gedruckte Ausgabe (Papierversion)

Jedem Produkt liegt eine gedruckte Ausgabe dieses Handbuchs bei. Aus ökologischen Gründen wurde das Dokument verkleinert auf DIN A5 gedruckt.

INFO

Sollten Sie Schwierigkeiten haben, die Schriftgröße des verkleinert gedruckten Exemplars zu lesen, können Sie die PDF Version im DIN A4 Format 1:1 ausdrucken und verwenden. Sie finden die PDF Version auf der dem Produkt beiliegenden DVD und auf der Kollmorgen Internetseite.

2.4 Verwendete Symbole

Warnsymbole

Symbol	Bedeutung
▲ GEFAHR	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zum Tode oder zu schweren, irreversiblen Verletzungen führen wird.
▲ WARNUNG	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zum Tode oder zu schweren, irreversiblen Verletzungen führen kann.
VORSICHT	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zu leichten Verletzungen führen kann.
ACHTUNG	Dieses Symbol weist auf eine Situation hin, die, wenn sie nicht vermieden wird, zu Beschädigung von Sachen führen kann.
INFO	Dieses Symbol weist auf wichtige Informationen hin.
<u>^</u>	Warnung vor einer Gefahr (allgemein). Die Art der Gefahr wird durch den nebenstehenden Warntext spezifiziert.
A	Warnung vor gefährlicher elektrischer Spannung und deren Wirkung.
	Warnung vor Gefahr durch heiße Oberfläche.
	Warnung vor Gefahr durch hängende Last.
	Warnung vor Gefahr durch automatischem Anlauf.

Zeichnungssymbole

Symbol	Beschreibung	Symbol	Beschreibung
	Signalmasse	\ \ \	Diode
/////	Gehäusemasse	中	Relais
	Schutzerde		Abschaltverzögertes Relais
þ	Widerstand		Arbeitskontakt
ф	Sicherung	7	Ruhekontakt
Device	Firewall nach dem Stand der Technik		

2.5 Verwendete Abkürzungen

Abkürzung	Bedeutung
(→ # 53)	Diese Symbolik bedeutet in diesem Dokument: siehe Seite 53.
CE	Europäische Gemeinschaft
COM	Serielle Schnittstelle für einen PC
DCOM	Kommunikationsleitung für digitale Eingänge
Disk	Speichermedium (Festplatte, CDRom, DVD)
EEPROM	Elektrisch löschbarer programmierbarer Speicher
EMV	Elektromagnetische Verträglichkeit
KAS	Kollmorgen Automation Suite
KASIDE	Entwicklungsumgebung (Kollmorgen Automation Suite Integrated Deve-
IVACIBE	lopment Environment) benötigt für AKD PDMM Gerätevarianten
LED	Leuchtdiode
LSB	Niederwertiges Byte (oder Bit)
MSB	Höchstwertiges Byte (oder Bit)
NI	Nullimpuls
OSSD	Output signals Switching Device
PC	Personal Computer
PE	Schutzerde
PELV	Schutzkleinspannung
SPS	Speicherprogrammierbare Steuerung
PWM	Pulsweitenmodulation
RAM	Arbeitsspeicher (flüchtiger Speicher)
RBrems/RB	Bremswiderstand
RBext	Externer Bremswiderstand
RBint	Interner Bremswiderstand
RCD	Fehlerstromschutzschalter (FI-Schalter)
ROD	Inkrementalgeber (A quad B)
STO	Safe Torque Off (STO; sicher abgeschaltetes Moment)
VAC	Volt, Wechselspannung
V DC	Volt, Gleichspannung

2.6 Verwendete Normen

Standard	Inhalt
EN 4762	Zylinderschrauben mit Innensechskant
ISO 11898	Strassenfahrzeuge — Controller area network (CAN)
EN 12100	Sicherheit von Maschinen: Grundbegriffe, allgemeine Gestaltungsleitsätze
EN 13849	Sicherheit von Maschinen: Sicherheitsrelevante Teile von Steuerungen
EN 60085	Elektrische Isolierung – Thermische Bewertung und Bezeichnung
EN 60204	Sicherheit von Maschinen: Elektrische Ausrüstung von Maschinen
EN 60364	Errichten von Niederspannungsanlagen
EN 60439	Niederspannungs-Schaltgerätekombinationen
EN 60529	Schutzarten durch Gehäuse (IP-Code)
EN 60664	Isolationskoordination in Niederspannungsbetriebsmitteln
EN 60721	Klassifizierung von Umweltbedingungen
EN 61000	Elektromagnetische Verträglichkeit (EMV)
EN 61131	Speicherprogrammierbare Steuerungen
EN 61491	Ausrüstung von Industriemaschinen – Serielle Datenverbindung für Echtzeit-
	Kommunikation zwischen Steuerungen und Antrieben.
EN 61508	Funktionale Sicherheit sicherheitsbezogener elek-
	trischer/elektronischer/programmierbarer elektronischer Systeme
EN 61800	Elektrische Leistungsantriebe mit einstellbarer Drehzahl
IEC 62061	Funktionale Sicherheit sicherheitsbezogener elek-
	trischer/elektronischer/programmierbarer elektronischer Systeme
IEC 82079	Erstellen von Anleitungen – Gliederung, Inhalt und Darstellung
UL 840	UL Standard for Safety for Insulation Coordination
UL 508C	UL Standard for Safety Power Conversion Equipment

EN – European Standard

ISO – Internationale Organisation für Normung

UL – Underwriters Laboratories

3 Sicherheit

3.1	Das sollten Sie beachten	13
3.2	Bestimmungsgemäße Verwendung	15
	Nicht bestimmungsgemäße Verwendung	
	Warnhinweise auf dem Produkt	

3.1 Das sollten Sie beachten

Dieses Kapitel hilft Ihnen, Gefährdungen für Personen und Sachen zu erkennen und zu vermeiden.

Fachpersonal erforderlich

Für Arbeiten wie Transport, Installation, Inbetriebnahme und Instandhaltung darf nur qualifiziertes Personal eingesetzt werden. Qualifiziertes Personal sind Personen, die mit Transport, Aufstellung, Montage, Inbetriebnahme und Betrieb von Antriebstechnik vertraut sind und über die ihrer Tätigkeit entsprechenden Mindestqualifikationen verfügen:

- Transport: nur durch Personal mit Kenntnissen in der Behandlung elektrostatisch gefährdeter Bauelemente
- Auspacken: nur durch Fachleute mit elektrotechnischer Ausbildung
- Installation: nur durch Fachleute mit elektrotechnischer Ausbildung.
- Inbetriebnahme: nur durch Fachleute mit weitreichenden Kenntnissen in den Bereichen Elektrotechnik und Antriebstechnik

Das Fachpersonal muss ebenfalls IEC 60364 / IEC 60664 und nationale Unfallverhütungsvorschriften kennen und beachten.

Dokumentation lesen

Lesen Sie vor der Montage und Inbetriebnahme die vorliegende Dokumentation. Falsches Handhaben der Geräte kann zu Personen- oder Sachschäden führen. Der Betreiber muss daher sicherstellen, dass alle mit Arbeiten am AKD-C betrauten Personen das Handbuch gelesen und verstanden haben und dass die Sicherheitshinweise in diesem Handbuch beachtet werden.

Hardware Revision prüfen

Prüfen Sie die Hardware-Revisionsnummer des Produkts (siehe Typenschild). Die Nummer ist die Verknüpfung zwischen dem Produkt und dem Handbuch. Diese Revisionsnummer muss mit der Hardware-Revisionsnummer auf dem Deckblatt der Betriebsanleitung übereinstimmen.

Technische Daten beachten

Halten Sie die technischen Daten und die Angaben zu den Anschlussbedingungen ein. Wenn zulässige Spannungswerte oder Stromwerte überschritten werden, können die Geräte geschädigt werden. Ein ungeeigneter Motor oder fehlerhafte Verdrahtung beschädigen die Systemkomponenten. Prüfen Sie die Kombination aus Verstärker und Motor. Gleichen Sie die Nennspannung und den Nennstrom der Komponenten ab.

Risikobeurteilung erstellen

Der Hersteller der Maschine muss eine Risikobeurteilung für die Maschine erstellen und geeignete Maßnahmen treffen, dass unvorhergesehene Bewegungen nicht zu Verletzungen oder Sachschäden führen können. Aus der Risikobeurteilung leiten sich eventuell auch zusätzliche Anforderungen an das Fachpersonal ab.

Automatischer Wiederanlauf!

Der Antrieb kann abhängig von der Parametereinstellung nach dem Einschalten der Netzspannung, bei Spannungseinbrüchen oder Unterbrechungen automatisch anlaufen. Es besteht die Gefahr von tödlichen oder schweren Verletzungen für Personen, die in der Maschine arbeiten.

Wenn der Parameter DRV.ENDEFAULT eines AKD-N auf 1 gesetzt ist, warnen Sie an der Maschine mit einem Warnschild (Warnung: Automatischer Wiederanlauf nach Einschalten!) und stellen Sie sicher, dass ein Einschalten der Netzspannung nicht möglich ist, während sich Personen im gefährdeten Bereich der Maschine aufhalten. Wenn Sie einen Unterspannungsschutz benutzen, beachten Sie Kapitel 7.5 der EN 60204-1:2006.

Elektrostatisch empfindliche Bauteile

Die Geräte enthalten elektrostatisch gefährdete Komponenten, die durch unsachgemäßen Gebrauch beschädigt werden können. Entladen Sie Ihren Körper elektrostatisch, bevor Sie das Gerät berühren. Vermeiden Sie es, hoch isolierende Stoffe zu berühren (Kunstfasern, Plastikfolie usw.). Legen Sie das Gerät auf eine leitfähige Oberfläche.

Erdung

Stellen Sie die ordnungsgemäße Erdung des Gerätes mit der PE-Schiene im Schaltschrank als Bezugspotential sicher. Gefahr durch elektrischen Schlag. Ohne niederohmige Erdung ist keine personelle Sicherheit gewährleistet

Ableitstrom

Da der Ableitstrom zu PE mehr als 3,5 mA beträgt, muss in Übereinstimmung mit der Norm EN61800-5-1 der PE-Anschluss entweder doppelt ausgeführt oder ein Anschlusskabel mit einem Querschnitt von >10 mm² verwendet werden. Abweichende Maßnahmen sind in Übereinstimmung mit regionalen Vorschriften möglich.

Fehlerstrom Schutzschalter oder Überwachungsgeräte

AKD-C mit AKD-N kann einen Gleichstrom im Schutzerdungsleiter verursachen. Wo für den Schutz im Falle einer direkten oder indirekten Berührung eine Fehlerstrom-Schutzeinrichtung (RCD) oder ein Fehlerstrom-Überwachungsgerät (RCM) verwendet wird, ist auf der Stromversorgungsseite des AKD-C nur ein RCD oder RCM vom Typ B zulässig.

Tödliche Spannungen

Die Geräte erzeugen hohe elektrische Spannungen bis zu 900 V. Öffnen oder berühren Sie die Geräte während des Betriebs nicht. Halten Sie während des Betriebs alle Abdeckungen und Schaltschranktüren geschlossen.

Während des Betriebes kann der AKD-C seiner Schutzart entsprechend spannungsführende, blanke Teile besitzen.

An spannungsführenden Teilen besteht unmittelbare Lebensgefahr. Verbaute Schutzmaßnahmen wie Isolationen oder Abschirmungen dürfen nicht entfernt werden. Arbeiten an der elektrischen Anlage sind nur durch geschultes und eingewiesenes Personal, unter Beachtung der Vorschriften für Arbeitssicherheit und nur bei ausgeschalteter und gegen Wiedereinschalten gesicherter elektrischer Versorgung zulässig.

Trennen Sie nie die elektrischen Verbindungen zum AKD-C, während dieser Spannung führt. Es besteht die Gefahr von Lichtbogenbildung mit Verletzungsgefahr (Verbrennungen oder Erblindung) und Schäden an Kontakten. Warten Sie nach dem Trennen des Gerätes von den Versorgungsspannungen (Netzversorgung und 24V Versorgung) mindestens 7 Minuten, bevor Sie Geräteteile, die potenziell Spannung führen (z. B. Kontakte), berühren oder Anschlüsse trennen.

Messen Sie stets die Spannung am DC-Bus-Zwischenkreis am Stecker X14 und warten Sie, bis die Spannung unter 50 V gesunken ist, bevor Sie Komponenten berühren.

Funktionale Sicherheit

Die Sicherheitsfunktion STO im AKD ist zertifiziert. Das Schaltungskonzept zur Realisierung der Sicherheitsfunktion "Safe Torque OFF" in den Geräten ist demnach geeignet, die Anforderungen an SIL 2 gem. EN 62061 und des PLd, Kat. 3 gem. EN 13849-1 zu erfüllen. Die Bewertung der Sicherheitsfunktion nach EN 13849 oder EN 62061 ist abschließend durch den Anwender zu erstellen.

Das Gerät nicht verändern

Veränderung an den Geräten ohne Erlaubnis des Herstellers sind nicht zulässig. Öffnen der Geräte bedeutet Verlust der Gewährleistung.

3.2 Bestimmungsgemäße Verwendung

AKD-C Geräte sind ausschließlich für den Betrieb von AKD-N Servoverstärkern in dezentralen Antriebssystemen geeignet.

AKD-C Netzteile sind Komponenten, die in elektrische Anlagen oder Maschinen eingebaut werden und nur als integrierte Bestandteile dieser Anlagen oder Maschinen betrieben werden können. Der Maschinenhersteller muss eine Risikobeurteilung für die Maschine erstellen.

Wenn die AKD-C Geräte in Maschinen oder Anlagen eingebaut werden, darf das Gerät nicht verwendet werden, bis sichergestellt wurde, dass die Maschine oder Anlage die regionalen Richtlinien erfüllt.

Kollmorgen Dezentrales Antriebssystem

AKD-C Netzteile dürfen nur in Antriebssystemen mit Komponenten von Kollmorgen eingesetzt werden. Zusätzlich benötigte Kollmorgen Komponenten sind die Servoverstärker AKD-N, Hybridkabel, Motorleistungskabel und Motorfeedbackkabel sowie Servomotoren.

Montage

AKD-C Geräte dürfen nur in geschlossenen Schaltschränken betrieben werden, die sich für die Umgebungsbedingungen eignen (→ #31). Beachten Sie die Hinweise im *Projektierungshandbuch für Dezentrale Antriebssystem*.

Verdrahtung

Verwenden Sie nur Kollmorgen Hybridkabel der Serie CCNxN1 für die Verbindung von AKD-C und AKD-N Geräten.

Spannungsversorgung

AKD-C muss an einem 3 phasigen, industriellen Versorgungsnetz betrieben werden (maximaler symmetrischer Nennstrom bei 400 V und 480 V: 42 kA).

Gruppeninstallationen und mit Gleichstrom versorgte Antriebe

ACHTUNG

Der AKD wurde weder von Kollmorgen, UL noch dem TÜV für Gruppeninstallation untersucht. Es sind keine Werte für eine DC Spannungsversorgung definiert.

Gruppeninstallationen müssen in Bezug auf verzweigte Stromkreise*, Drahtquerschnitt, Nennspannung der Leitung, Absicherung, Spannungsfestigkeit des Systems, Überspannung und Eingangsströme** vom Benutzer überprüft und bewertet werden.

Im Falle von DC versorgten Antrieben ist der eingebauten EMV-Filter wirkungslos. Der Benutzer ist dafür verantwortlich, die leitungsgebundenen Emissionen und die Immunität des Antriebs innerhalb der geforderten Grenzwerte zu halten.

- * Besondere Sorgfalt ist notwendig bei verzweigten Stromkreisen mit Antrieben unterschiedlicher Stromstärken, um zu verhindern, dass die kleineren Servoverstärker als "Sicherung" arbeiten und nicht die vorgesehene Stromkreis-Sicherung.
- ** Die Gleichstromquelle muss den Einschaltstrom während das Hochfahrens begrenzen. Bei der Verdrahtung der Gleichstromquelle muss die Polarität beachtet werden. Falsche Polarität des Gleichstrom beschädigt den Antrieb und führt zum Verlust der Garantie.

Hilfsspannungsversorgung, Standby Versorgung

Die Standby Versorgung für die Antriebsstränge dürfen nur für die Versorgung der AKD-N Elektronik verwendet werden. Das 24 VDC Netzteil muss die Anforderungen von PELV (EN 60204-1) erfüllen.

Safe Torque Off (STO; sicher abgeschaltetes Moment)

Lesen Sie den Abschnitt "Bestimmungsgemäße Verwendung" im STO Kapitel (→ #38) bevor Sie diese Sicherheitsfunktion (SIL2, PLd, Kategorie 3 gemäß ISO 13849) verwenden. Das 24 VDC Netzteil für die globale STO Versorgung muss die Anforderungen von PELV (EN 60204-1) erfüllen.

3.3 Nicht bestimmungsgemäße Verwendung

Eine andere Verwendung als in Kapitel "Bestimmungsgemäße Verwendung" beschrieben ist nicht bestimmungsgemäß und kann zu Schäden bei Personen, Gerät oder Sachen führen.

Das Gerät darf nicht eingesetzt werden

- in Maschinen, die nicht den geltenden nationalen Richtlinien oder Normen entsprechen.
- zum Antrieb von Aufzügen,
- in Anwendungen mit häufigen, betriebsmäßigen Kurzschlüssen der Anschlüsse des Bremswiderstandes.
- in Anwendungen mit Kurzschlüssen der DC+/DC-Zwischenkreisanschlüsse.

Die Verwendung des Gerätes in den folgenden Umgebungen ist ebenfalls untersagt:

- explosionsgefährdete Bereiche
- Umgebungen korrosiven und/oder elektrisch leitenden Säuren, alkalischen Lösungen, Ölen, Dämpfen
- Schiffe oder Offshore-Anwendungen

Verdrahtung des Systems mit Hybridkabeln anderer Hersteller als Kollmorgen ist nicht erlaubt. Verändern von Kollmorgen Kabeln oder Steckern ist nicht erlaubt.

3.4 Warnhinweise auf dem Produkt

Wait 7 minutes after removing power before servicing.

Übersetzung: Nach Abschalten 7 Minuten bis zur Wartung abwarten.

The minimum size of the protective earth conductor shall comply with the local safety regulations for high protective earthing conductor current.

Übersetzung:

Die Mindestquerschnitt des Schutzleiters muss den lokalen Sicherheitsbestimmungen für hohen Schutzleiterstrom entsprechen.

ACHTUNG

Beschädigte Warnsymbole müssen sofort ersetzt werden.

4 Handhabung

4.1	Verpackung	18
	Transport	
	Lagerung	
	Außer Betrieb nehmen	
	Wartung und Reinigung	
	Demontage	
	System Reparatur	
	Entsorgung	

4.1 Verpackung

Die AKD-C Verpackung besteht aus recyclingfähigem Karton mit Einsätzen und einem Aufkleber auf der Außenseite der Verpackung.

Modell	Verpackungsmaße (mm) HxBxL	Gesamtgewicht (kg)	
AKD-C01007	125 x 410 x 295	5	

4.2 Transport

Transportieren Sie den AKD-C gemäß EN 61800-2 wie folgt:

- Transport nur durch qualifiziertes Personal in der Originalverpackung des Herstellers.
- Beim Transport Stöße vermeiden.
- Höchstens mit der maximalen Stapelhöhe (8 Kartons) stapeln.
- Nur innerhalb der angegebenen Temperaturbereiche transportieren: -25 bis +70°C, max. Änderungsrate 20 K/Stunde, Klasse 2K3.
- Nur innerhalb der angegebenen Feuchtigkeitsbereiche transportieren: max. 95 % relative Luftfeuchtigkeit, nicht kondensierend, Klasse 2K3.

ACHTUNG

Die Geräte enthalten elektrostatisch gefährdete Komponenten, die durch unsachgemäßen Gebrauch beschädigt werden können. Entladen Sie sich elektrostatisch, bevor Sie das Gerät berühren. Vermeiden Sie es, hoch isolierende Stoffe zu berühren (Kunstfasern, Plastikfolie usw.). Legen Sie das Gerät auf eine leitfähige Oberfläche.

Wenn die Verpackung beschädigt ist, prüfen Sie das Gerät auf sichtbare Schäden. Informieren Sie Spediteur und Hersteller über Schäden an der Verpackung oder am Produkt.

4.3 Lagerung

Lagern Sie den AKD-C gemäß EN 61800-2 wie folgt:

- Nur in der wiederverwertbaren Originalverpackung des Herstellers lagern.
- Höchstens mit der maximalen Stapelhöhe (8 Kartons) stapeln.
- Nur innerhalb der angegebenen Temperaturbereiche lagern: -25 bis +55 °C, max. Änderungsrate 20 K/Stunde, Klasse 1K4.
- Nur innerhalb der angegebenen Feuchtigkeitsbereiche lagern: 5 bis 95 % relative Luftfeuchtigkeit, nicht kondensierend, Klasse 1K3.
- Gemäß den folgenden Anforderungen für die Lagerungsdauer lagern:
 - Weniger als 1 Jahr: keine Beschränkungen.
 - Mehr als 1 Jahr: Kondensatoren müssen formiert werden, bevor der Verstärker in Betrieb genommen wird. Formierungstechniken sind im Kollmorgen Developer Network (Formierung) beschrieben.

4.4 Außer Betrieb nehmen

ACHTUNG

Nur Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik darf Systemkomponenten außer Betrieb nehmen.

GEFAHR: Tödliche Spannung! Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung.

- Schalten Sie den Hauptschalter des Schaltschranks aus.
- Sichern Sie das System gegen Wiedereinschalten.
- Blockieren Sie den Hauptschalter.
- Warten Sie mindestens 7 Minuten nach Abschalten der Spannung.

4.5 Wartung und Reinigung

Das Gerät ist wartungsfrei. Wenn das Gerät geöffnet wird, erlischt die Garantie. Das Innere des Geräts kann nur vom Hersteller gereinigt werden.

ACHTUNG

Das Gerät nicht in Flüssigkeiten tauchen oder besprühen. Vermeiden Sie, dass Flüssigkeit in das Gerät eindringt

So reinigen Sie das Gerät von außen:

- 1. Nehmen Sie das Gerät außer Betrieb (siehe Kapitel 4.4 "Außer Betrieb nehmen").
- 2. Gehäuse: Mit Isopropanol oder einer ähnlichen Reinigungslösung reinigen.

VORSICHT: Leicht Entflammbar! Gefahr von Verletzung durch Verpuffung und Feuer.

- Beachten Sie die Sicherheitshinweise auf der Verpackung des Reinigungsmittels.
- Warten Sie nach der Reinigung mindestens 30 Minuten, bevor Sie das Gerät wieder in Betrieb nehmen.
- 3. Schutzgitter am Lüfter: Mit einer trockenen Bürste reinigen.

4.6 Demontage

ACHTUNG

Nur Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik darf Systemkomponenten demontieren.

- 1. Nehmen Sie das Gerät außer Betrieb (siehe Kapitel 4.4 "Außer Betrieb nehmen").
- 2. Entfernen Sie die Stecker. Trennen Sie den PE Anschluss zuletzt.
- 3. Ausbauen: Lösen Sie die Befestigungsschrauben und entfernen Sie das Gerät.

4.7 System Reparatur

ACHTUNG

Nur Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik darf Systemkomponenten austauschen.

VORSICHT: Unerwarteter Anlauf! Bei der Durchführung von Austauscharbeiten kann es zur Kombination von Gefährdungen und multiplen Folgen kommen.

Arbeiten sind nur unter Beachtung der Vorschriften für Arbeitssicherheit, durch geschultes Personal und mit Benutzung der jeweils vorgeschriebenen persönlichen Schutzausrüstung zulässig.

Austausch AKD-C

Nur der Hersteller kann das Gerät reparieren. Öffnen des Gerätes bedeutet Verlust der Gewährleistung.

- 1. Nehmen Sie das Gerät außer Betrieb (siehe Kapitel 4.4 "Außer Betrieb nehmen").
- 2. Demontieren Sie das Gerät (siehe Kapitel 4.6 "Demontage").
- 3. Senden Sie das Gerät an den Hersteller.
- 4. Installieren Sie ein neues Gerät wie in diesem Handbuch beschrieben.
- 5. Nehmen Sie das System in Betrieb, wie in diesem Handbuch beschrieben.

Austausch sonstiger Teile des Antriebssystems

Wenn Teile des Antriebssystems ausgetauscht werden müssen (zum Beispiel Kabel), gehen Sie wie folgt vor:

- 1. Nehmen Sie das Gerät außer Betrieb (siehe Kapitel 4.4 "Außer Betrieb nehmen").
- 2. Tauschen Sie die Teile aus.
- 3. Prüfen Sie alle Steckverbindungen auf korrekten Sitz.
- 4. Nehmen Sie das System in Betrieb, wie in diesem Handbuch beschrieben.

4.8 Entsorgung

ACHTUNG

Für die fachgerechte Entsorgung des Gerätes wenden Sie sich an einen zertifizierten Elektronikschrottverwerter.

Gemäß den WEEE-2002/96/EG-Richtlinien u.ä. nimmt der Hersteller Altgeräte und Zubehör zur fachgerechten Entsorgung zurück. Die Transportkosten muss der Versender tragen. Senden Sie die Geräte in der Originalverpackung an die in der folgenden Tabelle aufgeführten

Herstelleradressen.

Nordamerika	Südamerika
KOLLMORGEN	KOLLMORGEN
201 West Rock Road	Avenida Tamboré - 1077 Tamboré
Radford, VA 24141, USA	Barueri - SP Brasil
	CEP: 06460-000, Brazil
Europa	Asien
Europa KOLLMORGEN Europe GmbH	Asien KOLLMORGEN
KOLLMORGEN Europe GmbH	KOLLMORGEN

5 Zulassungen

Konformität mit UL/cUL	22
Konformität mit EG Niederspannungsrichtlinie und EMV Richtlinie	23
Konformität mit EG Maschinenrichtlinie, Funktionale Sicherheit	
	Konformität mit EG Niederspannungsrichtlinie und EMV Richtlinie

5.1 Konformität mit UL/cUL

Dieses Gerät ist unter der UL-Aktennummer **E217428** zugelassen. Die UL Markings für beide Systemkomponenten AKD-C und AKD-N sind in einem gemeinsamen Abschnitt zusammengefasst.

5.1.1 UL Markings / Marquages UL

English	Français
This product is suitable for use on a circuit capable of delivering not more than 42,000 rms symmetrical amperes, 480 V maximum.	Ce produit est conçu pour une utilisation sur un circuit capable de fournir 42.000 ampères symétriques (rms) maximum pour 480 V maximum.
Maximum surrounding air temperature 40°C.	La température maximale de l'air ambiant de 40°C.
AKD-C are intended to be used in a pollution degree 2 environment.	AKD-C sont prévus pour une utilisation dans un envi- ronnement de pollution de niveau 2.
• AKD-C : Use 60/75°C copper wire only.	AKD-C: Utilisez seulement un fil cuivre 60/75°C.
AKD-C : CAUTION Risk of Electrical Shock!	AKD-C : ATTENTION: Risque de choc électrique!
Capacitors can have dangerous voltages present	Des tensions dangereuses peuvent persister dans les
up to 7 minutes after switching off the supply	condensateurs jusqu'à 7 minutes après la mise hors
power. For increased safety, measure the vol-	tension. Pour plus de sécurité, mesurez la tension
tage in the DC bus link and wait until the voltage is below 50 V.	dans la liaison de bus CC et attendez qu'elle soit inférieure à 50 V.
For use in Canada:	Pour utilisation au Canada:
Transient surge suppression shall be installed on	Suppression de surtension transitoire doit être installé
the line side of this equipment and shall be rated	sur le côté de la ligne de ce matériel et doit être évalué
277 V (phase to ground), 480 V (phase to phase),	277 V (phase à terre) , 480 V (entre phases) , adapté à
suitable for overvoltage category III, and shall pro	la catégorie de surtension III , et doit fournir une pro-
vide protection for a rated impulse withstand vol-	tection pour un choc nominale supporter la tension de
tage peak of 2 kV.	crête de 2 kV.

The following fuse types are recommended for branch circuit protection for AKD-C01007-CBXX:
 Les types de fusibles suivants sont recommandés pour protection de secteur pour AKD-C01007-CBXX:

Model/	Class/	Voltage Rating/	Max. Fuse&SCC Rating/
Modèle	Classe	Niveau de tension	Niveau maximum & SCC
Nonrenewable Cartridge fuse	CC, J	600 VAC	20 A, 200 kA

The following table illustrates the torque requirements for the field wiring connectors:
 Le tableau suivant indique les spécifications de couple pour les connecteurs de câblage sur site:

Model/Modèle	Torque/Couple serrage, LB IN (Nm)	Wire size/Section de fil, AWG (mm²)
AKD-C X12	6.2 - 7.1 (0.7 - 0.8)	12 - 8 (4 - 10)
AKD-C X20A	6.2 - 7.1 (0.7 - 0.8)	12 - 8 (4 - 10)
AKD-C X21A	6.2 - 7.1 (0.7 - 0.8)	12 - 8 (4 - 10)
AKD-C X14	6.2 - 7.1 (0.7 - 0.8)	12 - 8 (4 - 10)
AKD-C X13	1.8 - 2.2 (0.2 - 0.25)	14 - 12 (2.5 - 4)
AKD-C X15	1.8 - 2.2 (0.2 - 0.25)	20 - 18 (0.5 - 0.8)
AKD-C X16	1.8 - 2.2 (0.2 - 0.25)	20 - 18 (0.5 - 0.8)

- Split gage of AKD-N screwed connectors: max. 2.8 mm.
 Le gage de split des connecteurs vissé d'AKD-N: 2,8 mm max.
- Cold plate for AKD-N: at 40°C surrounding air temperature and 680 VDC supply voltage:
 Plaque froide pour AKD-N: à température ambiante 40°C et tension d'alimentation 680 VDC:
 - AKD-N00307: 240 mm x 240 mm x 10 mm or equivalent (LxWxT, Aluminum cold plate, uncoated)
 - AKD-N00607: 500 mm x 500 mm x 10 mm or equivalent (LxWxT, Aluminum cold plate, uncoated)
 - AKD-N01207: 480 mm x 400 mm x 84 mm or equivalent (LxWxT, 31 vertical fins, Aluminum heat sink, uncoated)

5.2 Konformität mit EG Niederspannungsrichtlinie und EMV Richtlinie

EU Konformitätserklärungen finden Sie auf der Kollmorgen Website. Die Konformität mit der EG-EMV-Richtlinie 2014/30/EG und der Niederspannungsrichtlinie 2014/35/EG ist für die Lieferung von Servoverstärkern in die Europäische Gemeinschaft vorgeschrieben. Die Geräte wurden von einem zugelassenen Prüflabor in einer definierten Konfiguration anhand der in dieser Dokumentation beschriebenen Systemkomponenten geprüft. Jede Abweichungen von der in dieser Dokumentation beschriebenen Konfiguration und Installation bedeutet, dass der Nutzer für die Durchführung von neuen Messungen verantwortlich ist, um die Konformität mit den gesetzlichen Vorschriften sicherzustellen.

Kollmorgen erklärt die Konformität der Geräteserie AKD-C01007 mit den folgenden Richtlinien:

- EG Richtlinie 2006/42/EC, Maschinenrichtlinie Verwendete harmonisierte Norm EN13849-1 (2008)
- EG Richtlinie 2014/35/EC, Niederspannungsrichtlinie Verwendete harmonisierte Norm EN61800-5-1 (2007)
- EG Richtlinie 2014/30/EC, EMV Richtlinie
 Verwendete harmonisierte Norm EN 61800-3 (2004)

Die AKD-C01007 erfüllen die Störfestigkeitsanforderungen der zweiten Umgebungskategorie (Industrieumgebungen). Für Störaussendungen erfüllen die AKD-C01007 die Anforderungen an Produkte der Kategorie C2.

ACHTUNG

Diese Servoverstärker können in Wohngebieten hochfrequente Störungen verursachen und erfordern Entstörungsmaßnahmen (externe EMV-Filter).

5.3 Konformität mit EG Maschinenrichtlinie, Funktionale Sicherheit

Die Konformität mit der EG Maschinenrichtlinie Richtlinie 2006/42/EG ist für die Lieferung von Sicherheitskomponenten in die Europäische Gemeinschaft vorgeschrieben. Die Sicherheitsfunktion STO im AKD ist zertifiziert. Das Schaltungskonzept zur Realisierung der Sicherheitsfunktion "Safe Torque OFF" in den Servoverstärkern ist demnach geeignet, die Anforderungen an SIL 2 gem. EN 62061 und des PLd, Kat. 3 gem. EN 13849-1 zu erfüllen.

Safe Torque Off (STO) global

Struktur	STO	ISO 13849-1	MTTF _d	IEC 62061	PFH [1/h]		T _M [Jahre]
AKD-C + 1 x AKD-N	global	PL d, Kat 3	≥ 100	SIL 2	2,9E-08	97,08	20
AKD-C + 8 x AKD-N	global	PL d, Kat 3	≥ 100	SIL 2	2,9E-08	99,44	20

Safe Torque Off (STO) local

Struktur	STO	ISO 13849-1	u		PFH [1/h]		T _M [Jahre]
1 x AKD-N-DS/DT	lokal	PL d, Kat 3	≥ 100	SIL 2	2,9E-08	97,12	20

Weitere Informationen siehe AKD-N Betriebsanleitung

5.4 Konformität mit EAC

EAC ist die Abkürzung für Eurasian Conformity = EurAsische Konformität. Das Zeichen wird in den Staaten der eurasischen Zollunion (Russland/Belarus/Kasachstan) verwendet.

Kollmorgen bestätigt, dass der AKD allen notwendigen Konformitätsverfahren in einem der Mitgliedsstaaten der Eurasischen Zollunion unterzogen wurde, und dass der AKD allen in den Staaten der Eurasischen Zollunion vorgeschriebenen technischen Anforderungen entspricht:

- Niederspannungsanlagen (TP TC 020/2011)
- Elektromagnetische Verträglichkeit (TP TC 004/2011)

Kontakt vor Ort: Intelisys LLC., Bakuninskaya Str. d 14, Building 10, RU-105005 Moskau

5.5 Konformität mit RoHS

Die Richtlinie 2011/65/EG der Europäischen Union zur Beschränkung und Verwendung bestimmter gefährlicher Stoffe in elektrischen und elektronischen Geräten (RoHS), wurde am 3. Januar 2013 wirksam. Dabei handelt es sich namentlich um folgende Substanzen:

Blei (Pb), Cadmium (Cd), Hexavalentes Chrom (CrVI), Polybromierte Biphenyle (PBB), Polybromierte Diphenylether (PBDE), Quecksilber (Hg)

Die AKD Servoverstärker werden RoHS-konform produziert.

5.6 Konformität mit REACH

Die Verordnung (EG) Nr. 1907/2006 regelt die Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe 1 (kurz: "REACH").

Die AKD Servoverstärker enthalten keine Stoffe (CMR Stoffe, PBT-Stoffe, vPvP-Stoffe sowie ähnlich gefährliche Stoffe, die im Einzelfall aufgrund wissenschaftlicher Kriterien festgelegt werden) oberhalb 0,1 Masse-%, die in der "Kandidatenliste" aufgeführt sind.

6 Produktidentifizierung

6.1	Lieferumfang	26
	Typenschild	
	Typenschlüssel	

6.1 Lieferumfang

Wenn ein AKD-C bestellt wurde, sind im Lieferumfang folgende Komponenten enthalten:

- AKD-C
- Gedrucktes Exemplar der AKD-C Betriebsanleitung
- DVD mit Inbetriebnahmesoftware WorkBench und der gesamten Produktdokumentation in digitaler Form.
- Gegenstecker X12, X13, X14, X15, X16
- Zwei Steckerabdeckungen M23

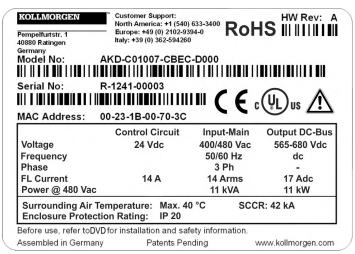
INFO

Die M23 Steckerabdeckungen werden für den Schutz des Steckers X2 des letzten AKD-N im Strang benötigt.

Getrennt erhältliches Zubehör

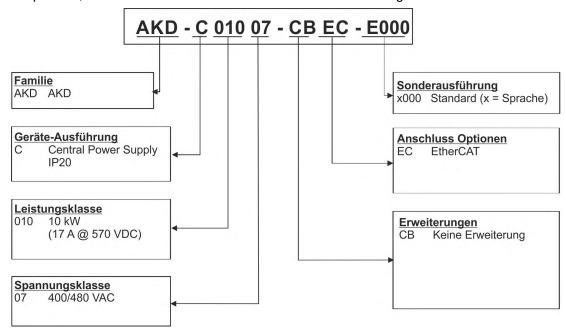
Zubehör muss bei Bedarf separat bestellt werden. Lesen Sie im Zubehörhandbuch für Ihre Region nach:

- Hybridkabel zum Anschluss des ersten AKD-N
- Externer Bremswiderstand
- EtherCAT Kabel zum Netzwerkanschluss
- Leistungsleitungen, Steuerleitungen
- Schaltschrank Kabeldurchführung
- Schleifringe


Ersatzteile

Ersatzteile finden Sie auch im Zubehörhandbuch für Ihre Region:

- Steckerkit (X12...16)
- Schirmklemme SK14


6.2 Typenschild

Das unten abgebildete Typenschild ist an der Seite des Gerätes angebracht. Abbildung ähnlich.

6.3 Typenschlüssel

Benutzen Sie den Typenschlüssel zur Produktidentifizierung, jedoch nicht für den Bestellprozess, da nicht immer alle Merkmalkombination technisch möglich sind.

Sonderausführung: hier werden nicht sicherheitsrelevante, kundenspezifische Besonderheiten und die Sprachversion des gedruckten Materials kodiert.

7 Technische Beschreibung und Daten

29
30
31
31
32
32
33
33
33
34
35
35
36
38
46
47

7.1 Die AKD-C zentrale Spannungsversorgung

Verfügbare AKD Versionen

Variante	Beschreibung I		Anschluss
AKD-C01007-CBEC	Zentrale Spannungsversorgung	10 kW	EtherCAT
	ohne Erweiterung.		

Standardmerkmale

- Versorgungsspannungsbereich von 400 V bis 480 V ±10%.
- EMV Netzfilter und 24 V Filter integriert.
- Integriertes EtherCAT
- Integrierter TCP/IP-Servicekanal, 100 Mbit/s.
- Integrierte Safe Torque Off (STO)-Funktion gemäß EN 62061 SIL 2.
- Versorgt bis zu 16 AKD-N Servoverstärker.

Leistungsteil

- Dreiphasige Versorgung, maximaler Spannungsbereich 360 bis 528 V, 47 bis 65 Hz.
- B6 Brückengleichrichter, integrierter Sanftanlaufkreis.
- Sicherungen vom Nutzer bereitzustellen.
- Sternpunkt der Schirmung nahe am Gerät.
- DC Leistung aufgeteilt auf zwei Stecker (Pfade) für bis zu 16 Servoverstärker.
- DC Zwischenkreisspannung 565 bis 680 VDC, Zwischenkreis Ausgangsstrom maximal 17 A.
- Standby Zwischenkreisspannung 55 VDC ±10% (erzeugt aus der 24 VDC Spannungsversorgung)
- Bremschopper f
 ür alle angeschlossenen AKD-N.
- Eingebauter Bremswiderstand, externer Bremswiderstand oder Kapazitätsmodul, wenn erforderlich.

Integrierte Sicherheit

- Ausreichende Isolationsabstände/Kriechstrecken und elektrische Isolation für sichere galvanische Trennung gemäß EN 61800-5-1 zwischen den Versorgungs-/Zwischenkreisanschlüssen und der Signalelektronik.
- Sanftanlauf, Überspannungserkennung, Kurzschlussschutz, Phasenausfallüberwachung.
- Temperaturüberwachung.
- SIL 2-Safe Torque Off (Wiederanlaufschutz) gemäß EN 62061, (→ #38)

Spannungsversorgung 24VDC (Versorgung der Elektronik und Standby Zwischenkreisspannung)

 Von einer externen 24 V ±10 %-Stromversorgung mit Kurzschlussschutz, mindestens 480 W.

Betrieb und Parametereinstellung

Mit der Setup-Software WorkBench, zur Einrichtung über TCP/IP.

Ein-/Ausgänge

- 1 programmierbarer digitaler Ausgang (→ #76)
- 1 Fehlerrelais Ausgang (→ #77)
- 1 Enable Eingang (→ #75)
- 2 STO Eingänge (einer pro Pfad) (→ #38)
- 2 STO Status Ausgänge (einer pro Pfad) (→ #38)
- Service Schnittstelle (→ #79)
- EtherCAT Schnittstelle (→ #78)

7.2 Mechanische Daten

		Mechanische Daten	Einheiten	AKD-C01007-x
öhe		Gewicht	kg	3,8
	Höhe vorne	mm	290	
	Höhe hinten	mm	329	
R		Breite	mm	80
	Tiefe	Tiefe, ohne Stecker	mm	198
0,	reite	Tiefe, mit Steckern	mm	231

7.3 Elektrische Daten

Elektrische Daten	Einheiten	Wert
Nennversorgungsspannung (L1, L2, L3)	V~	3 x 400 V bis 3 x 480 V, ±10%
Netzfrequenz	Hz	40 Hz bis 70 Hz
Nenneingangsleistung		
bei 3 x 400 V	kVA	9,2
bei 3 x 480 V	kVA	11
Nenneingangsstrom bei 3x400/480 V	Α	14
Zulässige Ein-/Ausschaltfrequenz, Netz	1/h	30
max. Einschaltstrom	Α	5
Nenn-DC-Bus-Zwischenkreisspannung (Bus-Einschaltverzögerung 3ph 1s)	V=	565 bis 680
Standby DC Power Spannung	V=	55 ±10%
Gesamter Dauerausgangsstrom	A=	17
Gesamter Spitzenausgangsstrom (für 1 s, ± 3%)	A=	34
Dauerausgangsleistung		
bei 3 x 400 V	kVA	9,2
bei 3 x 480 V	kVA	11
Spitzenausgangsleistung (für ca. 1 s)		
bei 3 x 400 V	kVA	18,4
bei 3 x 480 V	kVA	22
Technische Daten für Bremschopper	_	(→ #35)
Wärmeableitung im 24V Standby Betrieb		
Kein AKD-N (min.)	W	8,6
16 AKD-N (max.)	W	40
Wärmeableitung bei Nennstrom (ohne Brems- leistung)	W	125
Schallpegel (Lüfter mit niedriger/hoher Drehzahl)	dB(A)	40 / 60
Hilfsspannungsversorgung (PELV)	V=	24 V (±10%, Span- nungsabfall prüfen)
Hilfsspannungsversorgung Strom	A=	14
Hilfsspannungsversorgung Strom		
maximal erforderlich	A=	14
pro AKD-N ohne Bremse	A=	0,33
Hilfsspannung Einschaltstrom	A=	16
Schutzart	-	IP20

7.4 Sicherungen

INFO

In Kombination mit den Standard-Sicherungsblöcken müssen gemäß EN 60529 fingersichere Sicherungshalter verwendet werden.

7.4.1 Sicherungen für Leistungsversorgung

US Sicherungen: Klasse CC oder J, 600 VAC 200 kA, träge. Die Sicherung muss UL- und CSA gelistet sein.

EU Sicherungen: Typen gS (gRL) oder gG, 400 V/500 V, träge

Schmelzsicherung	Strom-Nennwert	UL Region	CE Region
Sicherungen für AC Leis-	20A (zeitverzögert)	Beispiel Bussmann:	Beispiel Siba:
tungsversorgung		LPJ20SP/DFJ20	gS/gG, D02, 20A
Sicherungen für 24 VDC	15A (zeitverzögert)		Beispiel Siba:
Spannungsversorgung		LPJ15SP/DFJ15	Typ gS/gG, 15A

Sicherungshalter:

Beispiel Bussmann: Modulare Sicherungshalter der CH-Reihe, Klasse J, 3-polig: CH30J3 Beispiel Ferraz: Ultrasafe Sicherungshalter, Klasse J, 3-polig: US3J3I

7.4.2 Sicherung für externen Bremswiderstand

Schmelzsicherung	Strom-Nennwert	UL Region	CE Region
AKD-C01007	25 A	Beispiel Bussmann:	Beispiel Siba:
		FWP-25A14F	Typ aR, 25A

Sicherungshalter:

Beispiel Bussmann: Modulare Sicherungshalter der CH-Reihe, Klasse J, 3-polig: CH14J3

7.5 Umgebungsbedingungen, Belüftung und Einbaulage

Lagerung	(→ #18)
Transport	(→ #18)
Umgebungstemperatur	0 bis +40 °C unter Nennbedingungen
im Betrieb	+40 bis +55 °C mit Dauerstromreduzierung von 4 % pro K
Feuchtigkeit im Betrieb	Relative Luftfeuchtigkeit 5 bis 85 %, nicht kondensierend, Klasse 3K3
Einsatzhöhe	Bis zu 1000 Meter über Normalnull ohne Beschränkungen 1000 bis 2000 Meter über Normalnull mit Stromreduzierung von 1,5 %/100 m
Verschmutzungsgrad	Verschmutzungsgrad 2 gemäß EN 60664-1
Schwingungen	Klasse 3M1 gemäß EN 60721-3-3
Umgebung	Schaltschrank IP 54 gemäß IEC 60529
Einbaulage	Vertikal
Belüftung	Integrierter Lüfter
ACHTUNG	Das Gerät schaltet sich bei stark überhöhter Temperatur im Schaltschrank ab. Stellen Sie eine ausreichende Zwangsbelüftung im Schaltschrank sicher.

7.6 Massesystem

Das Gerät enthält verschiedene unabhängige Massenetze:

DCOM	Gemeinsame Leitung für digitale Eingänge an I/O-Stecker X15	
GND	24 V Versorgung	
STO-GND	STO Eingang	
0 V	interne Digitalmasse, Service Schnittstelle	

7.7 Signal Inputs/Outputs

Schnittstelle	Elektrische Daten
Enable Eingang	 gemäß IEC61131-2 Typ 1 Ein: 15 VDC bis 30 VDC, 2 mA bis 15 mA Aus: -3 VDC bis 5 VDC, < 1 mA Aktualisierungsrate: 250 µs
	Galvanische Isolation für 250 VDC
Digitalausgang	 gemäß IEC61131-2 Typ 1 max. 30 VDC, 100 mA kurzschlussfest Galvanische Isolation für 250 VDC
Relaisausgang	 max. 30 VDC, 1A max. 42 VAC, 1 A Schaltzeit 10ms Isolation für 400 VDC Kontakt/Spule
STO-Enable Eingänge	 Ein: 18 VDC bis 30 VDC, 210 mA +10 mA pro AKD-N Aus: 0 VDC bis 12 VDC, < 50 mA Galvanische Isolation für 250 VDC
STO-Status Ausgänge	 gemäß IEC61131-2 Typ 1 max. 30 VDC, 100 mA Galvanische Isolation für 250 VDC

7.8 Stecker

Stecker	Тур	max.Querschnitt ¹	Strom ²	Spannung 3
Motion-Bus X10, X11	RJ-45	0,5 mm ² , 21 AWG	1 A	< 100 V
Leistung X12	Steckerklemmen, 4 polig	10 mm², 8 AWG	30 A	1000 V
Hilfsspannung X13	Steckerklemmen, 2 polig	2,5 mm², 12 AWG	16 A	250 V
Zwischenkreis, Brem- schopper X14	Steckerklemmen, 4 polig	10 mm², 8 AWG	30 A	1000 V
Steuersignale X15	Steckerklemmen, 6 polig	1 mm², 18 AWG	12 A	250 V
STO Signale X16	Steckerklemmen, 6 polig	1 mm², 18 AWG	12 A	250 V
Serviceanschluss X18	RJ-45	0,5 mm ² , 21 AWG	1 A	< 100 V
DC Power X20A, X21A	Steckerklemmen, 3 polig	10 mm², 8 AWG	30 A	1000 V
Lokaler Feldbus In/Out X20B, X21B	Mini I/O Stecker, 8 polig	0,34 mm², 22 AWG	0,5 A	30 V

¹Anschluss mit einer Leitung

7.9 Empfohlene Anzugsmomente

Stecker	Anzugsmoment [Nm]
X13, X15, X16	0,2 bis 0,25
X12, X14, X20A, X21A	0,7 bis 0,8
PE Bolzen	1,7

Werte in in-lbs siehe (→ #22).

7.10 Kabelanforderungen

Die folgende Tabelle enthält die empfohlenen Leiterquerschnitte und Kabelanforderungen gemäß EN 60204. Informationen zu den chemischen, mechanischen und elektrischen Merkmalen der Kabel finden Sie im Zubehörhandbuch.

INFO

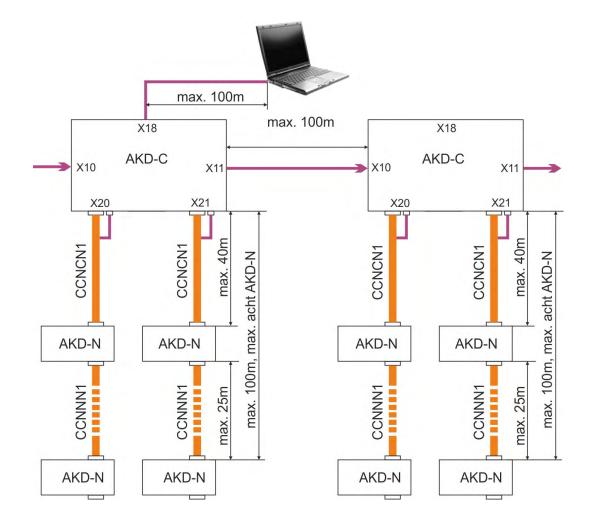
Verwenden Sie nur Hybrid, Motor und Feedback Kabel von Kollmorgen. Die Gewährleistung für das System erlischt, wenn Sie Hybrid, Motor oder Feedback Kabel eines anderen Herstellers als Kollmorgen verwenden.

Hybridkabel von	Kabeltyp*	Hybridkabel nach	Querschnitt
AKD-C X20A/X20B Strang 1	CCNCN1-025	AKD-N X1, hybrid	3 x 2,5 mm ²
			4 x 0,25 mm ²
AKD-C X21A/X21B Strang 2	CCNCN1-025	AKD-N X1, hybrid	3 x 2,5 mm ²
			4 x 0,25 mm ²

^{*} gefolgt von der Längenkodierung. Sprechen Sie Ihren Kollmorgen Vertriebsmitarbeiter an.

Schnittstelle	Querschnitt	Kabelanforderungen
X12, AC Anschluss	4,0 mm² (12 AWG)	600 V, min. 75°C
X13, +24 V/GND	2,5 mm² (14 AWG)	Einzelleitung
X14, Zwischenkreis, Brems-	4,0 mm² (12 AWG)	1000 V, minimum 75°C, abgeschirmt
widerstand		für Längen >0,20 m
X15, Digital I/Os	0,5 mm² (21 AWG)	Einzelleitung
X16, STO Signale	0,5 mm² (21 AWG)	Einzelleitung

²Anschluss mit einer Leitung mit empfohlenem Leiterquerschnitt (→ #33)


³Nennspannung bei Verschmutzungsgrad 2 (kleinster Wert gemäß UL840/IEC60664)

7.11 Definition Kabellänge

INFO

AKD-C besitzt zwei Pfade, an die jeweils bis zu 8 AKD-N angeschlossen werden können. Maximum gesamte Kabellänge für jeden Pfad ist 100 m. Informationen über die Systemtopologie finden sie auf (→ #57)

Kabeltyp	Kabel Verwendung	Verfügbare Länge (m)	Max. Länge (m)
CCNCN1	X20/X21, AKD-C zu AKD-N, hybrid	3, 6, 12, 24, 36	40
Ethernet-Kabel	X10/X11, AKD-C zu AKD-C	auf Anfrage	100
Ethernet-Kabel	X10/X11, AKD-C zum PC oder Switch	auf Anfrage	100
Einzelleitung	X13 +24 V/GND, X15 Digital I/Os, X16 STO Signale		30

7.12 Dynamische Bremsung

Die dynamische Bremsung ist eine Methode zum Abbremsen eines Servosystems durch Abbau der mechanischen Energie über die Gegen-EMK des Motors. Der AKD verfügt über einen dynamischen Bremsmodus, der vollständig in die Hardware integriert ist. Bei Aktivierung schließt der Servoverstärker die Motorklemmen in Phase mit der Gegen-EMK (q-Anteil) kurz, betreibt jedoch weiter den keine Kraft erzeugenden Stromregelkreis (d-Anteil) mit Nullstrom. Dies wandelt den gesamten rückgespeisten Strom in Bremsstrom um und gewährleistet den schnellstmöglichen Stopp des Motors.

- Wird der Strom nicht begrenzt, dann wird die mechanische Energie in die Motorwicklungen abgeleitet.
- Wird der Strom begrenzt, dann wird die Energie in die AKD-C Kondensatoren geleitet.
- Der Verstärker begrenzt auch den maximalen dynamischen Bremsstrom an der Motorklemme über den Parameter DRV.DBILIMIT, um übermäßige Ströme/Kräfte an Verstärker, Motor und Last zu vermeiden.

Ob und wie der AKD den dynamischen Bremsmodus nutzt, hängt von DRV.DISMODE ab.

7.13 Brems-Chopper

Der AKD-C besitzt einen internen Bremswiderstand, ein externer Widerstand kann an X14 angeschlossen werden.

Geeignete externe Bremswiderstände sind im regionalen Zubehörhandbuch beschrieben.

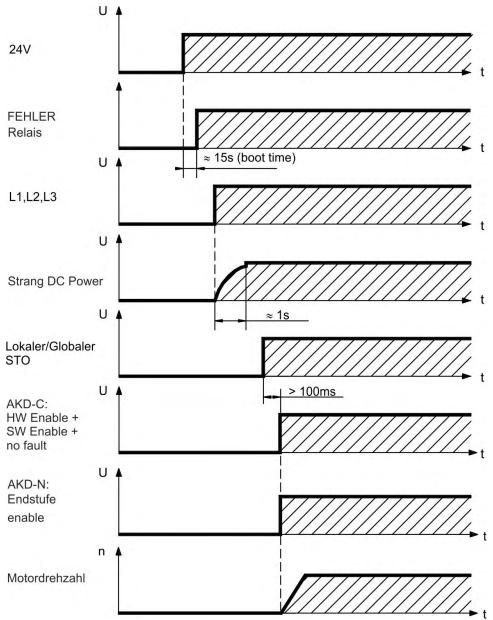
7.13.1 Funktionsbeschreibung

Wenn die rückgespeiste Energie zu einem ausreichend hohen Anstieg der Bus-Kondensatorspannung führt, gibt der AKD-C den Brems-Chopper frei und die rückgespeiste Energie wird an den Bremswiderstand am AKD-C ausgegeben (intern oder an Stecker X14 angeschlossen). 90 % der kombinierten Leistung aller gekoppelten Verstärker steht permanent für die Spitzen- und Dauerleistung zur Verfügung. Wenn die Spannungsschwelle im Zwischenkreis überschritten wird, meldet der Servover-stärker mit der toleranzbedingt niedrigsten Ausschaltschwelle einen Überspannungsfehler. Die Endstufe des Verstärkers wird gesperrt und die Last trudelt aus, die Fehlermeldung "F501 Bus Überspannung" (→ #88) erscheint. Das AKD-C Fehlerrelais (X15/5-6) öffnet wegen dieses Fehlers.

7.13.2 Technische Daten

INFO

Beachten Sie die Regenerierungszeit (einige Minuten) nach voller Belastung mit Spitzenbremsleistung.

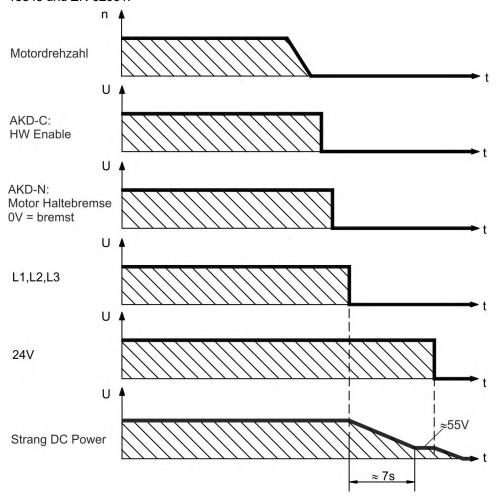

Nenndaten	Einheiten	400 V	480 V
Einschaltschwelle des Bremskreises (nominal)	V	760	760
Überspannungsgrenze	V	840	840
Maximaler Bremsauslastungsgrad	%	15*	15*
Interner Bremswiderstand	Ohm	33	33
Dauerleistung, interner Widerstand	W	100	100
Spitzenbremsleistung, interner Widerstand (0,5 s)	kW	17,5	17,5
Externer Bremswiderstand	Ohm	33	33
Maximale Dauerbremsleistung, externer Widerstand	kW	1,5	1,5
Spitzenbremsleistung, externer Widerstand (1 s)	kW	17,5	17,5
Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	21	7
Zwischenkreis-Kapazität (nominal)	μF	585	585

^{*} hängt von der Leistung des angeschlossenen Bremswiderstands ab

7.14 Ein- und Ausschaltverhalten

7.14.1 Einschaltverhalten im Standardbetrieb

Das folgende Schema zeigt die korrekte Sequenz zum Einschalten des Systems.



7.14.2 Ausschaltprozess im Standardbetrieb

INFO

Der HW-Enable-Eingang deaktiviert alle AKD-N Endstufen sofort. In der AKD -N Betriebsanleitung sind Ausschaltverhaltensweisen der Verstärker abhängig von verschiedenen Betriebsbedingungen und Parametereinstellungen beschrieben.

Die Steuerfunktion Stopp, Not-Halt und Not-Aus sind in der Norm EN 60204 definiert. Angaben für die sicherheitsbezogenen Aspekte dieser Funktionen finden Sie in den Normen EN 13849 und EN 62061.

7.15 Globaler Safe Torque Off (STO)

7.15.1 STO Sicherheitshinweise

A WARNUNG

Keine Bremsleistung

Schwere Verletzungen können die Folge sein, wenn eine hängende Last nicht sicher blockiert wird. Der Verstärker kann eine hängende Last nicht halten, wenn die STO-Funktion aktiviert ist.

- Benutzen Sie eine zusätzliche sichere mechanische Sperre (zum Beispiel eine Motor-Haltebremse).
- Die Antriebe dürfen nicht für Aufzüge verwendet werden.

AWARNUNG

Automatischer Anlauf

Es besteht die Gefahr von tödlichen oder schweren Verletzungen für Personen, die in der Maschine arbeiten. Der Antrieb kann abhängig von der Parametereinstellung nach dem Einschalten der Netzspannung, bei Spannungseinbrüchen oder Unterbrechungen automatisch anlaufen. Wenn der Parameter DRV.ENDEFAULT eines AKD-N auf 1 gesetzt ist,

- warnen Sie an der Maschine mit einem Warnschild ("WARNUNG: Automatischer Wiederanlauf nach Einschalten" oder ähnlich) und
- stellen Sie sicher, dass ein Einschalten der Netzspannung nicht möglich ist, während sich Personen im gefährdeten Bereich aufhalten.
- Wenn Sie einen Unterspannungsschutz benutzen, beachten Sie Kapitel 7.5 der EN 60204-1:2006.

▲ VORSICHT

Hohe elektrische Spannung

Es besteht Stromschlag- und Verletzungsgefahr. Die Funktion STO gewährleistet keine elektrische Trennung am Leistungsausgang. Wenn ein Zugang zu den Motoranschlüssen erforderlich ist,

- trennen Sie den Verstärker von der Netzspannung,
- beachten Sie die Entladezeit des Zwischenkreises.

ACHTUNG

Wenn die Funktion STO von einer Steuerung automatisch einkanalig angesteuert wird, muss sichergestellt sein, dass der Ausgang der Steuerung gegen Fehlfunktion überwacht wird. Damit kann verhindert werden, dass durch einen fehlerhaften Ausgang der Steuerung die Funktion STO ungewollt angesteuert wird.

ACHTUNG

Wenn der STO-Enable abgeschaltet ist, kann der Antrieb nicht kontrolliert gebremste werden. Wenn eine kontrollierte Bremsung vor Verwendung der STO Funktion nötig ist, muss der Verstärker gebremst werden und der STO-Eingang verzögert von der +24 V-Versorgung getrennt werden.

ACHTUNG

Im Falle eines seltenen Doppelfehlers in sehr kurzer Zeit (→ #39) kann eine einmalige Bewegung bis zum maximalen Winkel von 120° (elektr.) auftreten. Dies kann nur geschehen, wenn die STO Funktion des Antrieb aktiviert ist. Auch wenn die STO Funktion über ein Jahr lang ausgeführt wird, wird dieses Ereignis nur alle 100 Milliarden Jahre eintreten.

INFO

Die STO Status Signale sind nur informell und nicht relevant für die funktionale Sicherheit.

7.15.2 Bestimmungsgemäße Verwendung

Die Funktion STO ist ausschließlich dazu bestimmt, einen Antrieb funktional sicher anzuhalten und gegen Wiederanlauf zu sichern. Um die funktionale Sicherheit zu erreichen, muss die Schaltung des Sicherheitskreises die Sicherheitsanforderungen der EN 60204, EN 12100 und EN 13849-1 erfüllen.

Wenn die globale STO Funktion benutzt wird, müssen die Eingänge STO-Enable 1/2 an die Ausgängen einer Sicherheitssteuerung oder eines Sicherheitsrelais angeschlossen sein, das mindestens die Anforderungen von PLd, Kategorie 3 gemäß ISO 13849 erfüllt.

Das 24 VDC Netzteil für die Versorgung des lokalen STO muss den Anforderungen der PELV (EN 60204-1) genügen.

7.15.3 Nicht bestimmungsgemäße Verwendung

Die STO Funktion darf nicht verwendet werden, wenn der Verstärker aus den folgenden Gründen stillgesetzt werden muss:

- Reinigungs-, Wartungs- und Reparaturarbeiten, längere Außerbetriebnahme. In diesen Fällen muss die gesamte Anlage vom Personal spannungsfrei geschaltet und gesichert werden (Hauptschalter).
- Not-Aus-Situationen. Im Not-Aus Fall wird das Netzschütz abgeschaltet (Not-Aus Taster).
- Verdrahtung des Systems mit Hybridkabeln anderer Hersteller als Kollmorgen ist nicht erlaubt.
- Verändern von Kabeln oder Steckern ist nicht erlaubt.
- Verwenden Sie die STO Status Signale nicht für funktionale Sicherheit.

Sicherheitstechnische Kennzahlen

Die Systeme sind durch die Kennzahlen sicherheitstechnisch vollständig beschrieben:

Struktur	STO	ISO 13849-1	MTTF _d	IEC 62061	PFH [1/h]	SFF [%]	T _M [Jahre]
AKD-C + 1 x AKD-N	global	PL d, Kat 3	≥ 100	SIL 2	2,9E-08	97,08	20
AKD-C + 8 x AKD-N	global	PL d, Kat 3	≥ 100	SIL 2	2,9E-08	99,44	20
1 x AKD-N-DS/DT	lokal	PL d, Kat 3	≥ 100	SIL 2	2,9E-08	97,12	20

ACHTUNG

Ein sehr unwahrscheinliches, aber mögliches Ereignis kann auftreten, wenn innerhalb einer sehr kurzen Zeit zwei nicht benachbarte IGBTs einen Kurzschluss aufweisen. In diesem Fall kann eine Bewegung von maximal 120° (elektrisch) auftreten. Dies kann nur geschehen, wenn die STO Funktion des Antrieb aktiviert ist. Wenn die Ausfallrate eines IGBT 120 FIT beträgt, ergeben sich für einen solchen Kurzschluss 60 FIT (50:50 Modell). Bei einem solchen Ereignis müssen 2 spezifische IGBTs zur gleichen Zeit ausfallen. Die Rechnung ergibt eine Wahrscheinlichkeit von 1.5 * 10⁻¹⁵ pro Stunde (ohne Ausfälle wegen gemeinsamer Ursachen). Auch wenn die STO Funktion über ein Jahr lang ausgeführt wird, wird dieses Ereignis nur alle 100 Milliarden Jahre eintreten.

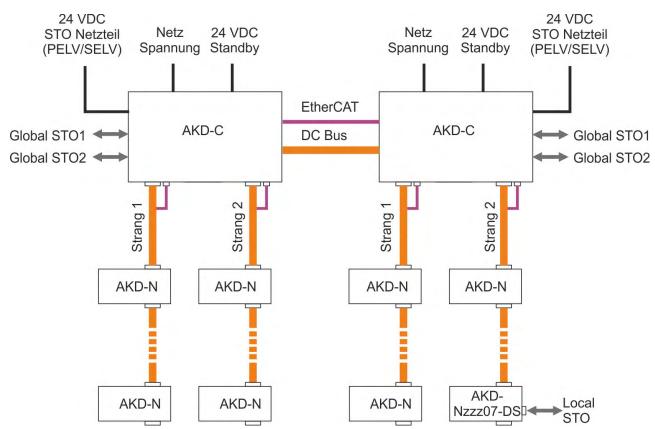
7.15.4 Reaktionszeit

Die Verzögerung von der fallenden Flanke am globalen STO Enable Eingang bis zur Unterbrechung der Energiezufuhr zu den Motoren am Antriebsstrang hängt von der Anzahl der am Strang angeschlossenen AKD-N ab. Die maximale Reaktionszeit beträgt 10 ms. Je mehr AKD-N am Strang angeschlossen sind, desto kürzer ist die Reaktionszeit.

7.15.5 Allgemeine Informationen

Stecker X16 ermöglicht den Zugriff auf alle für STO (Safe Torque Off) relevanten Signale des dezentralen Systems, das von diesem AKD-C versorgt wird.

INFO


Die globale STO Funktion umfasst folgende Teilsysteme: AKD-C, AKD-N ohne Option "DS" oder "DT", Kollmorgen Hybrid Verbindungskabel.

Für jeden Antriebsstrang gibt es einen STO-Enable Eingang und einen STO-Status Ausgang. STO-Enable 1 beeinflusst nur den Antriebsstrang 1. STO-Enable 2 beeinflusst nur den Antriebsstrang 2.

Der STO eines Antriebsstranges gibt die Endstufen aller AKD-N (ohne Option "DS" oder "DT"), die am Antriebsstrang angeschlossen sind, frei, solange ein 24 V Signal am STO-Enable Eingang anliegt. Wenn der STO Eingang offen liegt, wird keine Leistung zu den angeschlossenen Motoren übertragen, die Antriebe haben kein Drehmoment und trudeln aus bis zum Stillstand.

INFO

Das globale STO Signal hat keinen Einfluss auf angeschlossene AKD-N mit Option "DS" oder "DT" (lokaler STO Eingang). Der lokale STO Eingang am AKD-N hat auch keinen Einfluss auf den globalen STO. Die lokale STO Funktion ist in der AKD-N Betriebsanleitung beschrieben.

Die Sicherheitsfunktion STO im AKD ist zertifiziert. Das Schaltungskonzept zur Realisierung der Sicherheitsfunktion "Safe Torque OFF" in den Servoverstärkern ist demnach geeignet, die Anforderungen an SIL 2 gem. EN 62061 und des PLd, Kat. 3 gem. EN 13849-1 zu erfüllen.

Applikationsbeispiele finden Sie im Handbuch Projektierung Dezentraler Antriebssysteme.

7.15.6 Einbauraum, Verdrahtung

Anschlussbeispiel (→ #45). Beachten Sie die geforderten Umgebungsbedingungen (siehe Kapitel (→ #31).

Der AKD-C muss in einem Schaltschrank mit Schutzklasse IP54 eingebaut werden, damit die Anforderungen an Verschmutzungsgrad 2 gemäß IEC 60664-1 eingehalten werden. Der Stecker X16 (STO Signale) erfüllt die Anforderungen an Verschmutzungsgrad 3 gemäß IEC 60664-1.

Der AKD-N kann in einer IP67 Umgebung eingesetzt werden.

Im Schaltschrank

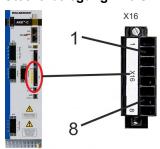
Die Verdrahtung im spezifizierten Einbauraumes muss die Anforderungen der EN 60204-1 erfüllen. In Übereinstimmung mit der Norm EN 13849-2 ist ein Fehlerausschluss für einen Kurzschluss zwischen zwei beliebigen Leitern bei Sicherheitslevel PLd erlaubt; dies gilt auch für die STO Verdrahtung des AKD-C. Die Leiter müssen fest angeschlossen und gegen Beschädigung geschützt sein (siehe ISO 13849-2, Tabelle D.4).

Außerhalb des Schaltschranks

Wenn Sie Leitungen verdrahten, die sich außerhalb des spezifizierten Einbauraumes (IP54) befinden, müssen die Kabel fest verlegt werden, vor äußeren Beschädigungen geschützt (z. B. durch Verlegung in einem Kabelkanal), in verschiedenen ummantelten Kabeln oder einzeln durch einen geerdeten Anschluss geschützt.

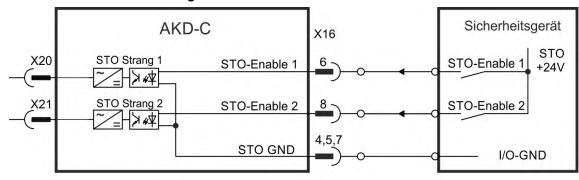
Maximale Kabellänge

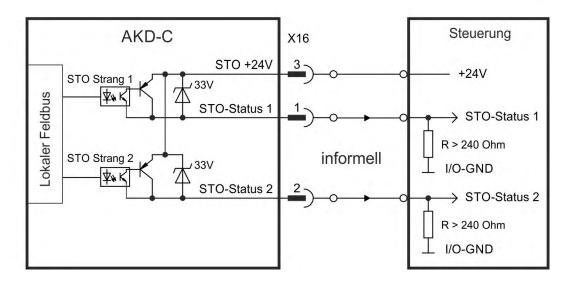
Die maximale Kabellänge für sicherheitsrelevante Ein-/Ausgänge und der 24V Spannungsversorgung beträgt 30 m.


7.15.7 Technische Daten und Anschluss

INFO

Die globalen STO Eingänge sind nicht kompatibel mit IEC 61131-2. Der Stecker X16 (STO Signale) erfüllt die Anforderungen an Verschmutzungsgrad 3 gemäß IEC 60664-1.


STO-Enable Eingänge	Eingänge entsprechen nicht IEC61131-2	
	Galvanische Isolation für 250 VDC	
	• Aus: 0 VDC bis 12 VDC, < 50 mA	
	• Ein: 18 VDC bis 30 VDC, 210 mA +10 mA pro AKD-N	
	 tolerierte OSSD Pulsdauer 300 μs 	
STO-Status Ausgänge	● gemäß IEC61131-2 Typ 1	
	• max. 30 VDC, 100 mA	
	Galvanische Isolation für 250 VDC	
STO 24 VDC Ver-	PELV gem. EN 60204-1	
sorgung	● Ausgang 24 VDC +/-10%	
	Strom 5 A (STO Versorgung des gesamten Systems)	


Steckerbelegung X16 STO Signale

Pin	Signal	Beschreibung
1	STO-Status 1	STO Statusmeldung Antriebsstrang 1
2	STO-Status 2	STO Statusmeldung Antriebsstrang 2
3	+24	STO +24 VDC Versorgung
4, 5	GND	STO GND
6	STO-Enable 1	STO Enable Antriebsstrang 1
7	GND	STO GND
8	STO-Enable 2	STO Enable Antriebsstrang 2

Anschlussbild STO Signale

7.15.8 Funktionsbeschreibung

Für jeden Antriebsstrang gibt es einen STO-Enable Eingang und einen STO-Status Ausgang. Der STO des Antriebsstranges gibt die Endstufen aller AKD-N (ohne Option "DS" oder "DT"), die am Antriebsstrang angeschlossen sind, frei, solange ein 24 V Signal am STO-Enable Eingang anliegt. Wenn die STO Funktion im Betrieb durch Trennung des STO-Enable Eingangs von der 24 V-Versorgung aktiviert ist, trudeln die Antriebe (ohne Option DS/DT) im Strang ohne Kontrolle aus.

Wenn die globale STO Funktion (Safe Torque Off) nicht benötigt wird, müssen die Eingänge STO-Enable 1/2 direkt an +24 VDC angeschlossen werden. Die Funktion ist dann überbrückt und kann im Sicherheitskonzept nicht genutzt werden.

INFO

Das Strang STO Signal hat keinen Einfluss auf angeschlossene AKD-N mit Option "DS" oder "DT" (lokaler STO Eingang). Der lokale STO-Status dieses Gerätes wird trotzdem im Strang STO-Status gemeldet.

INFO

Der Strang STO-Status Ausgang am AKD-C ist eine logische Oder-Verknüpfung von allen STO-Stati der am jeweiligen Strang angeschlossenen Servoverstärker. STO-Status ist High:

- während der System-Startphase (Bootvorgang), oder
- wenn der Strang STO-Enable mit 0V angesteuert ist, oder
- wenn die Kommunikation mit einem der Servoverstärker am Strang abgebrochen ist, oder
- wenn keine Servoverstärker am Strang angeschlossen ist, oder
- wenn der lokale Feldbus nicht arbeitet.

Mögliche Zustände der Servoverstärker im Antriebsstrang bezogen auf die globale STO Funktion:

Strang STO-Enable	Strang HW Enable	Strang STO-Status	Sicherheit gem. SIL2	AKD-N im Strang kann Moment produzieren
0 V	nein	Hoch	ja	nein
0 V	ja	Hoch	ja	nein
+24 V	nein	Niedrig	nein	nein
+24 V	ja	Niedrig	nein	ja

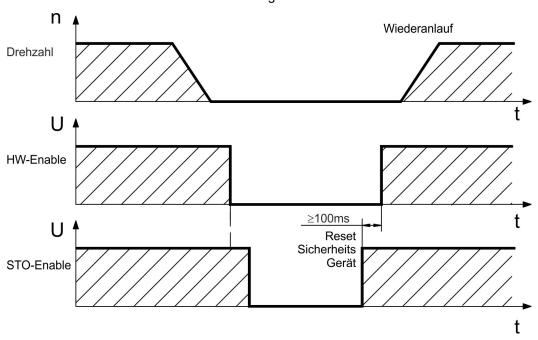
ACHTUNG

Die folgende Funktionsreihenfolge muss unbedingt eingehalten werden, wenn der Antrieb kontrolliert gebremst werden soll:

- 1. Bremsen Sie die Antriebe kontrolliert ab (Geschwindigkeits-Sollwert = 0 V).
- 2. Wenn die Geschwindigkeit 0 U/min beträgt, deaktivieren Sie die Antriebe (Enable = 0 V).
- 3. Bei hängender Last den Antrieb zusätzlich mechanisch blockieren
- 4. STO ansteuern

INFO

Wenn STO-Enable abgeschaltet ist, kann keine kontrollierte Bremsung durchgeführt werden. Wenn eine kontrollierte Bremsung vor der Aktivierung der STO-Funktion erforderlich ist, muss der Antrieb zunächst gebremst und der STO-Enable Eingang zeitverzögert von +24 V getrennt werden.


INFO

Bei Verdrahtung des STO-Eingangs innerhalb eines Einbauraumes ist darauf zu achten, dass die verwendeten Kabel und der Einbauraum die Anforderungen der Norm EN 60204-1 erfüllen. Wenn Sie Leitungen außerhalb des spezifizierten Einbauraumes verdrahten, müssen die Kabel fest verlegt und vor äußeren Beschädigungen geschützt werden.

7.15.8.1 Signaldiagramm

Das folgende Diagramm zeigt die Verwendung der globalen STO Funktion für ein sicheres Stoppen und den störungsfreien Betrieb der Verstärker, die an einem Antriebsstrang angeschlossen sind.

- 1. Bremsen Sie die Antriebe kontrolliert ab (Geschwindigkeits-Sollwert = 0 V).
- 2. Wenn die Geschwindigkeit 0 U/min beträgt, deaktivieren Sie die Antriebe (Enable = 0 V).
- 3. Aktivieren Sie die STO Funktion (STO Enable = 0 V)
- 4. Zum Neustart müssen Sie das Sicherheitsgerät resettieren.

7.15.8.2 Funktionstest

ACHTUNG

Bei der ersten Inbetriebnahme und nach jeder Störung in der Verkabelung des Verstärkers oder nach dem Austausch von einer oder mehreren Komponenten des Antriebs muss die STO-Funktion geprüft werden.

Erste Methode:

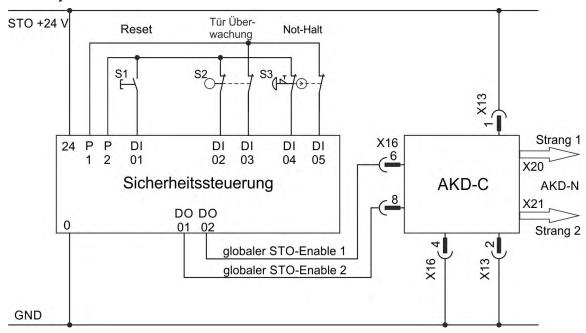
1. Bremsen Sie die Verstärker im Antriebsstrang mit Sollwert 0 V, belassen Sie die Verstärker freigegeben.

GEFAHR: Betreten Sie nicht den Gefahrenbereich!

- Aktivieren Sie die globale STO Funktion, indem Sie z.B. die Schutztür des Antriebsstranges öffnen, an dem der Verstärker angeschlossen ist (0V an AKD-C X16/6 bzw. X16/8 0V).
- Der AKD-C Fehlerkontakt öffnet, die STO Statusmeldung für den Antriebsstrang (X16/1 bzw. X16/2) ändert den Zustand, die Antriebe verlieren Drehmoment und trudeln ohne Kontrolle bis zum Stillstand aus.

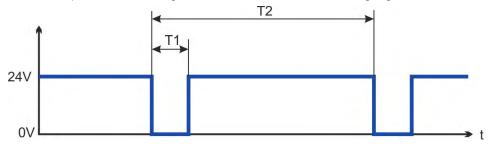
Zweite Methode:

- 1. Bremsen Sie die Verstärker im Antriebsstrang mit Sollwert 0 V, schalten Sie den Strang ab.
- Aktivieren Sie die globale STO Funktion, indem Sie z.B. die Schutztür des Antriebsstranges öffnen, an dem der Verstärker angeschlossen ist (0V an AKD-C X16/6 bzw. X16/8 0V).
- 3. Die STO Statusmeldung für den Antriebsstrang (X16/1 bzw. X16/2) ändert den Zustand, der Antriebsstrang kann nicht freigegeben werden.


7.15.8.3 Applikationsbeispiel Globaler STO mit KSM

Die Beispielapplikation unten zeigt eine Tür-Überwachung und den Not-Halt, wobei die globalen STO-Enable Eingänge eines AKD-C gemäß SIL2 / PLd von einer Sicherheitssteuerung angesteuert werden. Beide Antriebsstränge werden getrennt geschaltet.

INFO


Kollmorgen KSM Module können nicht verwendet werden.

Detaillierte Applikationsbeispiele finden Sie im Handbuch *Projektierung Dezentraler Antriebssysteme*.

7.15.8.4 OSSD Testpulse

Sicherheitssteuerungen prüfen ihre Ausgänge periodisch während des normalen Betriebs. Diese Testprozeduren erzeugen Pulse an den STO-Enable Eingängen des AKD-C.

Testpulse mit T1 < 300 μ s und T2 > 200 ms haben keinen Einfluss auf die sicherheitsrelevante STO Funktion. Testpulse außerhalb dieser Spezifikation lösen die STO Funktion aus, führen aber nicht zu einer gefährlichen Situation.

7.16 Berührungsschutz

7.16.1 Ableitstrom

Der Ableitstrom über den Schutzleiter PE entsteht aus der Summe der Geräte- und Kabelableitströme. Der Frequenzverlauf des Ableitstromes setzt sich aus einer Vielzahl von Frequenzen zusammen, wobei die Fehlerstromschutzschalter maßgeblich den 50Hz Strom bewerten. Der Ableitstrom kann daher nicht mit einem konventionellen Multimeter gemessen werden.

INFO

Da der Ableitstrom zu PE mehr als 3,5 mA beträgt, muss in Übereinstimmung mit der Norm EN61800-5-1 der PE-Anschluss entweder doppelt ausgeführt oder ein Anschlusskabel mit einem Querschnitt von >10 mm² verwendet werden. Abweichende Maßnahmen sind in Übereinstimmung mit regionalen Vorschriften möglich.

7.16.2 Fehlerstromschutzschalter (RCD)

INFO

AKD-C mit angeschlossenen AKD-N kann einen Gleichstrom im Schutzerdungsleiter verursachen. Wo für den Schutz im Falle einer direkten oder indirekten Berührung eine Fehlerstrom-Schutzeinrichtung (RCD) oder ein Fehlerstrom-Überwachungsgerät (RCM) verwendet wird, ist auf der Stromversorgungsseite des AKD-C nur ein RCD oder RCM vom Typ B zulässig.

INFO

In Übereinstimmung mit EN 60364-4-41 (Errichten von Niederspannungsanlagen) und EN 60204 (Elektrische Ausrüstung von Maschinen) können Fehlerstromschutzschalter (RCDs) verwendet werden, sofern die erforderlichen Vorschriften erfüllt werden. Der AKD-C ist ein 3-phasiges System mit einer B6 Gleichrichterbrücke. Es müssen daher RCDs verwendet werden, die auf alle Ströme ansprechen, um jeden DC-Fehlerstrom zu erkennen. Bemessungsfehlerströme in den RCDs:

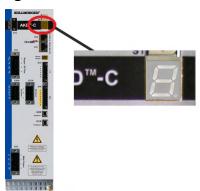
INFO

10 bis 30 mA Schutz gegen indirekte Berührung (Personen-Brandschutz) für fest installierte und bewegliche Geräte sowie gegen direkten Kontakt.

50 bis 300 mA Schutz gegen indirekte Berührung (Personen-Brandschutz) für fest installierte Geräte.

Wenn Sie einen selektiven RCD verwenden, beugt der intelligentere Bewertungsprozess einem fehlerhaften Ansprechen des RCD vor.

7.16.3 Schutztrenntransformatoren


Wenn Schutz gegen direkte Berührung trotz höherer Ableitströme absolut erforderlich ist oder wenn eine alternative Form des Berührungsschutzes gewünscht wird, kann der AKD auch über einen Trenntransformator betrieben werden (Anschlussschema (→ #62).

Zur Überwachung auf Kurzschlüsse kann ein Isolationswächter verwendet werden.

INFO

Halten Sie die Länge der Verdrahtung zwischen dem Transformator und dem Verstärker so kurz wie möglich.

7.17 LED-Anzeige

LED-7-Segmentanzeigen geben den Status des Gerätes an, nachdem die 24 V-Versorgung eingeschaltet wurde. Falls die TCP/IP Verbindung zum PC oder zur Steuerung nicht arbeitet, ist die LED Anzeige die einzige Informationsquelle. AKD Aktive Fehlercodes oder Warnungscodes werden permanent angezeigt. Fehlermeldungen sind mit "F"oder "E" kodiert, Warnmeldungen mit "n". Die IP-Adresse kann auf der LED-Anzeige durch Drücken der Taste B1 abgerufen werden.

Die Status LEDs des lokalen Feldbus sind im Kapitel (→ #73) beschrieben.

8 Mechanische Installation

8.1	Wichtige Hinweise	. 49
	Maßzeichung	
8.3	Montagebeispiel	. 51

8.1 Wichtige Hinweise

▲ VORSICHT

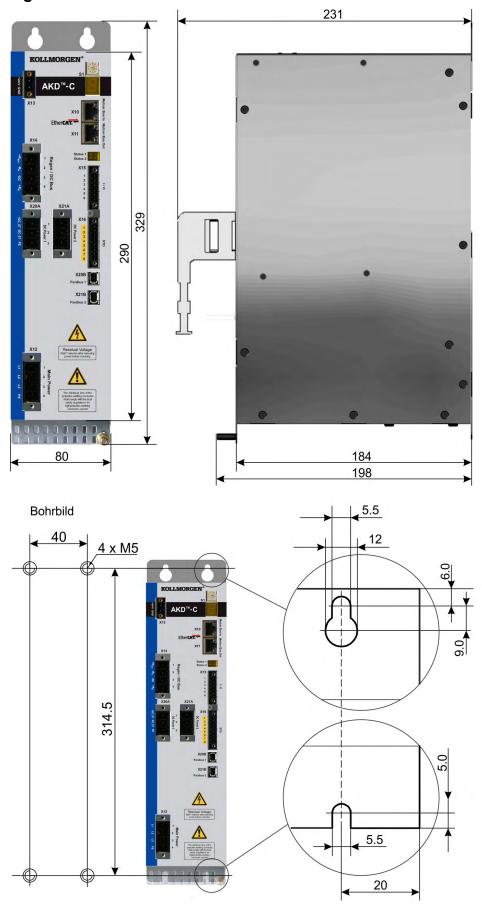
Hoher Ableitstrom!

Gefahr durch elektrischen Schlag, wenn der Verstärker (oder der Motor) nicht EMV-gerecht geerdet ist.

- Verwenden Sie elektrisch leitende Montageplatten, z. B. aus Aluminium oder galvanisiertem Stahl.
- Verwenden Sie in ungünstigen Fällen ein Kupfergewebeband zwischen Erdungsbolzen und Erdpotential zum Ableiten der Ströme.

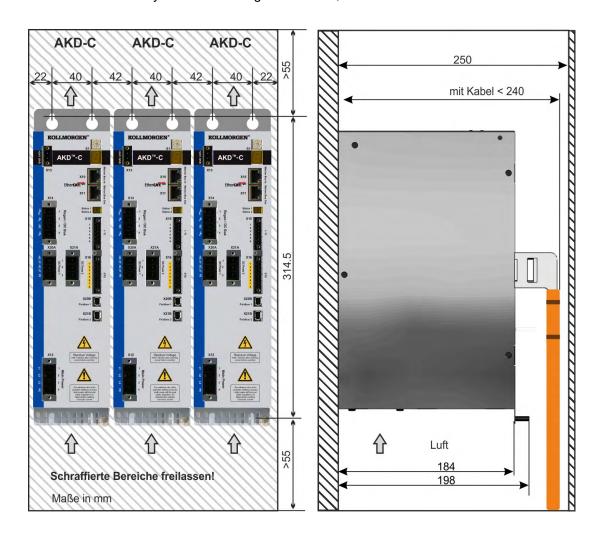
ACHTUNG

Schützen Sie das Gerät vor unzulässigen Belastungen. Achten Sie insbesondere darauf, dass durch den Transport oder die Handhabung keine Komponenten verbogen oder Isolationsabstände verändert werden. Vermeiden Sie den Kontakt mit elektronischen Komponenten und Kontakten.


ACHTUNG

Das Gerät schaltet sich bei Überhitzung selbsttätig aus. Stellen Sie sicher, dass der Einbauraum die Anforderungen erfüllt (→ #31).

ACHTUNG


Montieren Sie keine Geräte, die Magnetfelder erzeugen, direkt neben das Gerät. Starke Magnetfelder können interne Bauteile direkt beeinflussen. Montieren Sie Geräte, die Magnetfelder erzeugen, in ausreichendem Abstand zum AKD-C und/oder schirmen Sie die Magnetfelder ab.

8.2 Maßzeichung

8.3 Montagebeispiel

Material: vier M5 Zylinderschrauben gem. EN 4762, 4 mm Innensechskantschlüssel.

9 Elektrische Installation

9.1	Wichtige Hinweise	53
	Anleitung für die elektrische Installation	
9.3	EMV Störunterdrückung	55
	Topologie eines dezentralen Antriebssystems	
	Verdrahtung	
9.6	Anschlüsse	60
9.7	Anschluss der Spannungsversorgung	62
9.8	Zwischenkreis (X14)	65
9.9	Anschluss der Antriebsstränge	71
9.10	I/O-Anschluss	74
9.11	Motion-Bus-Schnittstelle (X10/X11)	78
9.12	Serviceschnittstelle (X18)	79
9.13	Taster (B1)	80
9.14	Drehschalter (S1), IP-Adressierung	80

9.1 Wichtige Hinweise

ACHTUNG

Der Verstärker darf nur von Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik installiert werden. Grüne Drähte mit gelben Streifen dürfen nur für die Verdrahtung der Schutzerde (PE) verwendet werden.

Hohe Spannung bis 900V!

Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung. Kondensatoren können bis zu 7 Minuten nach Abschalten der Stromversorgung gefährliche Spannung führen. Steuer- und Leistungsanschlüsse können auch bei nicht aktivem Motor unter Spannung stehen.

- Installieren und verdrahten Sie nur abgeschaltete Geräte.
- Achten Sie darauf, dass die Anlage sicher freigeschaltet ist (Absperrung, Warnzeichen usw.).
- Trennen Sie nie die elektrischen Verbindungen zum Servoverstärker, während dieser Spannung führt.
- Warten Sie nach dem Freischalten des Servoverstärkers mindestens 7 Minuten, bevor Sie Geräteteile berühren oder Anschlüsse trennen.
- Messen Sie zur Sicherheit die Spannung am DC-Bus-Zwischenkreis, und warten Sie, bis die Spannung unter 50 V gesunken ist.

ACHTUNG

Da der Ableitstrom zu PE mehr als 3,5 mA beträgt, muss gemäß der Norm EN61800-5-1 der PE-Anschluss entweder doppelt ausgeführt oder ein Anschlusskabel mit einem Querschnitt von >10 mm² verwendet werden. Abweichende Maßnahmen sind nur in Übereinstimmung mit regionalen Vorschriften möglich.

ACHTUNG

Falsche Zwischenkreisspannung, ein ungeeigneter Motor oder fehlerhafte Verdrahtung beschädigen die Systemkomponenten. Prüfen Sie die Kombination aus Verstärker und Motor. Gleichen Sie die Nennspannung und den Nennstrom der Komponenten ab. Führen Sie die Verdrahtung gemäß dem Anschlussbild aus: (→ #60).

INFO

Die Setup-Software kann verwendet werden, um die Einstellungen des Gerätes zu ändern. Jede weitere Veränderung führt zum Erlöschen der Garantie.

9.2 Anleitung für die elektrische Installation

Installieren Sie das elektrische System wie folgt:

- 1. Wählen Sie die Kabel gemäß EN 60204 (→ #33) und der Systemtopologie (→ #57).
- 2. Montieren Sie die Schirmung und erden Sie den AKD-C. Erden Sie die Montageplatte und den CNC-GND der Steuerung.
- 3. Verdrahten Sie das Gerät.
 - Verdrahten Sie den FEHLER-Kontakt im Not-Aus-Kreis des Systems.
 - Schließen Sie ggf. den externen Bremswiderstand (mit Sicherung) an.
 - Schließen Sie die benötigten AKD-N Servoverstärker an Antriebsstrang 1 oder 2 an.
 - Schließen Sie bei Bedarf den Enable Eingang und die digitalen Eingänge an.
 - Schließen Sie STO-Enable Eingänge und den STO-Status Ausgänge für die benutzten Antriebsstränge an (→ # 38).
 - Schließen Sie die Hilfsspannungsversorgung an (maximal zulässige Spannungswerte siehe elektrische Daten (→ # 30).
 - Schließen Sie die Netzversorgung an.
 Prüfen Sie den maximal zulässigen Spannungswert (→ # 30). Prüfen Sie die ordnungsgemäße Funktion der Fehlerstromschutzschalter (RCD); (→ # 46).
 - Verbinden Sie einen PC (→ #79) zur Inbetriebnahme des Systems.
- 4. Prüfen Sie die Verdrahtung anhand der Anschlusspläne und beachten Sie die Grenzen der Systemtopologie (→ #57).

9.3 EMV Störunterdrückung

A VORSICHT

Elektromagnetische Felder

Elektromagnetische Strahlung kann durch Einwirken auf elektrisch leitende Materialien zu potenziellen Folgegefahren (Erwärmung, Ausfall von Implantaten) führen.

- Arbeiten an der elektrischen Anlage sind nur durch geschultes und eingewiesenes Personal, unter Beachtung der Vorschriften für Arbeitssicherheit und nur bei ausgeschalteter und gegen Wiedereinschalten gesicherter elektrischer Versorgung zulässig.
- Erdungen, Potenzialausgleiche und strahlungsmindernde Abschirmungen dürfen nicht entfernt werden.

9.3.1 Empfehlungen für die Reduktion von Störungen

Die folgenden Hinweise helfen Ihnen, Probleme mit elektrischen Störungen in Ihrer Anwendung zu reduzieren.

 Stellen Sie leitende Verbindungen zwischen den Komponenten des Schaltschranks sicher.

(Seitenwände, Rückwand und Schaltschranktür mit Kupfergeflechten verbinden). Keine Scharniere oder Montageschrauben für Erdungsanschlüsse verwenden. Die gesamte Auflagefläche des AKD-C muss elektrisch leitend auf der Montageplatte aufliegen. Elektrisch leitende Platten verwenden, z. B. aus Aluminium oder galvanisiertem Stahl. Entfernen Sie bei lackierten und anderen beschichteten Metallplatten die gesamte Beschichtung hinter dem Verstärker.

- Stellen Sie eine gute (niederohmige) Erdverbindung sicher.
 Schließen Sie den Schaltschrank an eine gute (niederohmige) Erdung an. Erdungsleitungen mit großem Querschnitt verwenden.
- Verwenden Sie Kollmorgen Leitungen.

Konfektionierte Kollmorgen Leitungen reduzieren die Fehlerquote gegenüber Fremdkonfektionierung erheblich.

Verlegen Sie Leistungs- und Steuerungskabel getrennt. Kollmorgen empfiehlt einen Abstand von mindestens 200 mm, um die Störfestigkeit zu verbessern.

Erden Sie die Schirmung an beiden Enden.

Erden Sie Schirmungen an großen Flächen (geringe Impedanz), möglichst mit metallisierten Steckergehäusen oder geschirmten Anschlussklemmen. Kabel, die in einen Schaltschrank führen, benötigen eine 360° Schirmung. Verwenden Sie keine ungeschirmten Zwischenstücke.

Spleißen Sie Kabel ordnungsgemäß.

Wenn Sie Kabel teilen müssen, verwenden Sie Stecker mit Endgehäusen aus Metall. Stellen Sie sicher, dass beide Gehäuse mit dem vollen Umfang der Schirmungen verbunden sind. Kein Teil der Verkabelung darf ungeschirmt sein. Unterbrechen Sie nie ein Kabel mit einer Klemmenleiste.

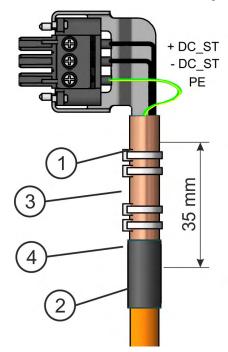
9.3.2 Schirmanschluss am Gerät

9.3.2.1 Schirmanschlussklemmen für X12, X13, X14, X15, X16

Schirmanschlussklemmen (siehe Zubehörhandbuch) werden für die Kontaktierung der Kabelschirmgeflechte für X12, X13, X14, X15, X16.

INFO

Verdrahtung zu diesen Steckern muss meist nicht geschirmt ausgeführt werden.


Wir empfehlen Schirmklemmen des Typs Phoenix Contact SK14 mit einem Klemmbereich von 6 bis 13 mm. Diese werden in das Erdungsblech eingehakt und gewährleisten einen optimalen Kontakt zwischen der Schirmung und dem Erdungsblech.

9.3.2.2 Ethernet Stecker X10, X11, X18

Der Schirm des Ethernet Kabels wird über den Stecker mit dem Gehäuse verbunden.

9.3.2.3 DC Power Stecker X20A, X21A (Kabel CCNCN1)

Anschluss für DC Power durch Gegenstecker mit Zugentlastung.

Isolieren Sie die äußere Kabelummantelung auf eine Länge von ca. 100 mm ab und achten Sie darauf, das Schirmgeflecht nicht zu beschädigen. Schieben Sie das Schirmgeflecht (1) über das Kabel und sichern Sie es mit einer Gummihülse (2) oder Schrumpfschlauch.

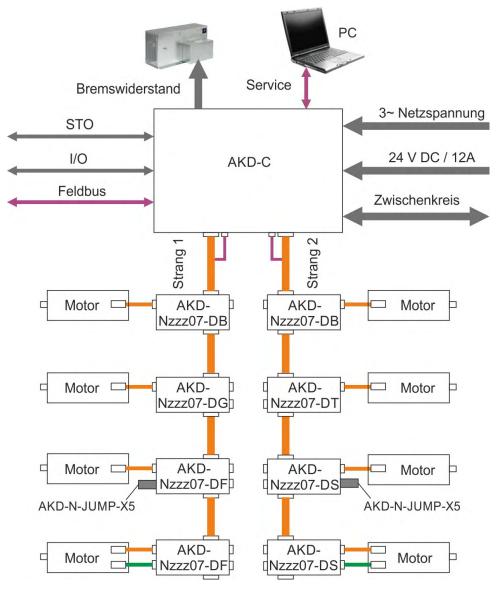
Kürzen Sie alle Adern außer der Schutzerde (grün/gelb) um ca. 20 mm, sodass die Schutzerde die längste Ader ist. Isolieren Sie alle Adern ab und bringen Sie Aderendhülsen an.

Sichern Sie das Schirmgeflecht des Kabels am Schirmblech mit einem Kabelbinder (3) und verwenden Sie einen zweiten Kabelbinder (4), um das Kabel zu fixieren.

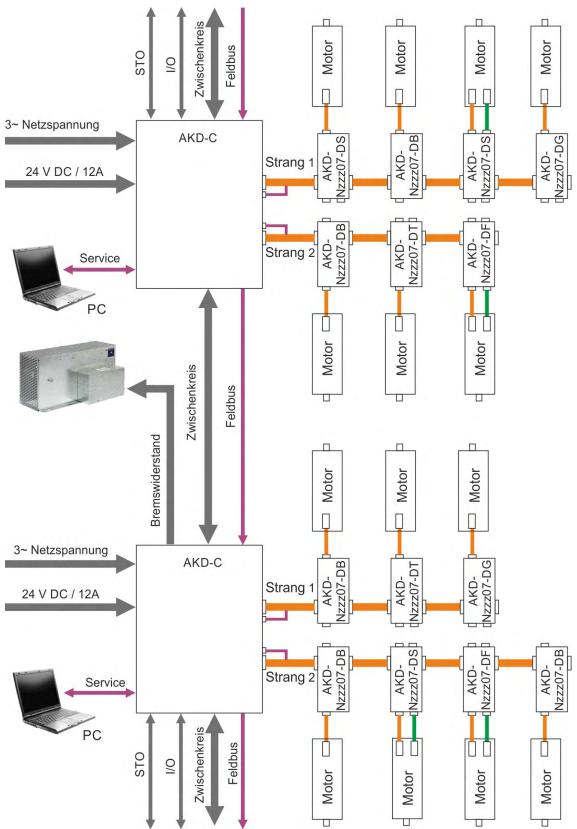
Verdrahten Sie den Stecker wie im Anschlussbild dargestellt. Stecken Sie den Stecker in die Buchse an der Vorderseite des AKD-C.

Schrauben Sie den Stecker an. Dies stellt sicher, dass zwischen dem Schirmgeflecht und der Frontplatte ein großflächiger, leitender Kontakt besteht.

9.3.2.4 Lokale Feldbus Stecker X20B, X21B (Kabel CCNCN1)


Der Schirm des lokalen Feldbuskabel wird über den Stecker mit dem Gehäuse verbunden.

9.4 Topologie eines dezentralen Antriebssystems


9.4.1 Systemgrenzen

Stranglänge:	maximal 100 m Gesamtkabellänge pro Strang
Anzahl AKD-N:	maximal 8 pro Strang, insgesamt maximal 16
	Beachten Sie die Hinweise zu Einschränkungen des Gesamtstroms und der Gesamtleistung im <i>Projektie-</i> rungshandbuch für Dezentrale Antriebssystem.
Anzahl der AKD-C:	begrenzt vom Feldbus Protokoll
Summe der Ausgangsströme von Strang 1 und 2:	17 A, nutzen Sie den Gleichzeitigkeitsfaktor der Achsen für die Optimierung.
Standby Gesamtleistung:	Standby Gesamtleistung ist begrenzt auf 260 W bei 24 V.
Serviceschnittstelle X18	Ethernet TCP/IP 100 Mbit/s

9.4.2 Beispiel für einen AKD-C

9.4.3 Beispiel für mehrere AKD-C

9.5 Verdrahtung

Hohe Spannung bis 900 V

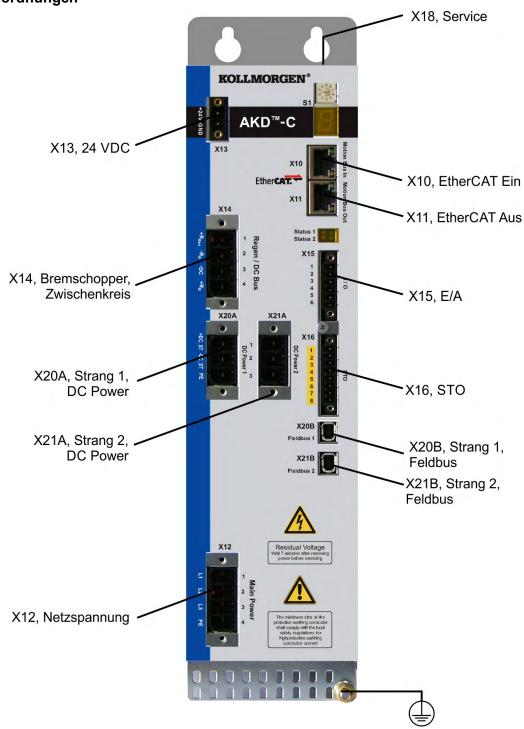
Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung.

- Installieren und verdrahten Sie die Geräte nur im abgeschalteten Zustand, d. h. es darf weder die Netzspannung noch die 24 V Hilfsspannung oder die Netzspannung anderer angeschlossener Geräte eingeschaltet sein.
- Achten Sie darauf, dass die Anlage sicher freigeschaltet ist (Absperrung, Warnzeichen usw.). Die einzelnen Spannungen werden zum ersten Mal während der Konfiguration eingeschaltet.

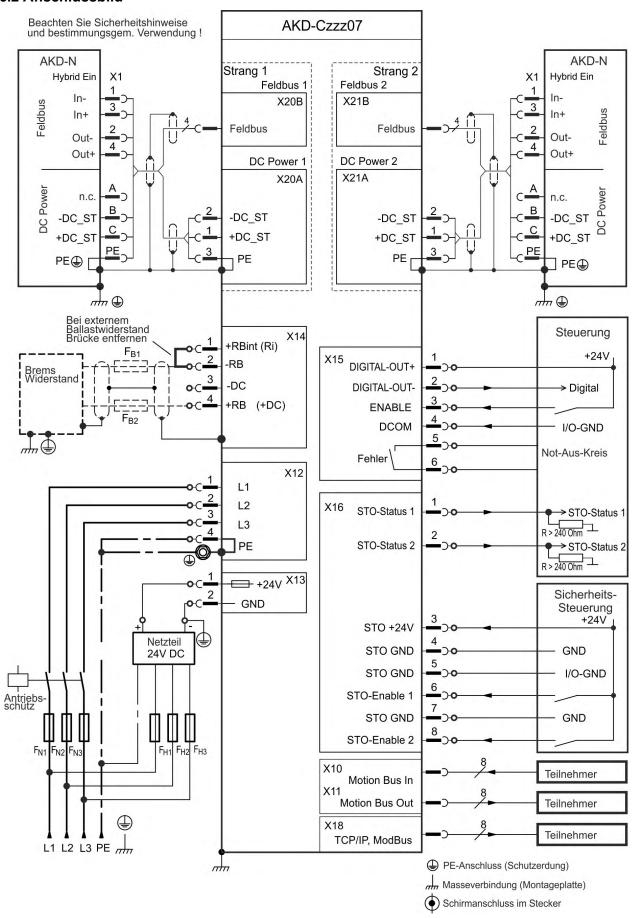
ACHTUNG

Das dezentrale Antriebssystem darf nur von Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik installiert werden. Grüne Drähte mit gelben Streifen dürfen nur für die Verdrahtung der Schutzerde (PE) verwendet werden. Verwenden Sie bei der Installation oder beim Austausch von Leitungen nur genormte und mit den Vorgaben in Kapitel 7.10 "Kabelanforderungen" übereinstimmende Bauteile.

INFO


Das Erdungssymbol, das in allen Schaltplänen enthalten ist, gibt an, dass Sie darauf achten müssen, eine elektrisch leitende Verbindung mit der größtmöglichen Oberfläche zwischen der angegebenen Komponente und der Montageplatte im Schaltschrank vorzusehen. Dieser Anschluss dient der effektiven Erdung von HF-Störungen und darf nicht mit dem PE-Symbol (PE = Schutzerde, Sicherheitsmaßnahme gemäß EN 60204) verwechselt werden.

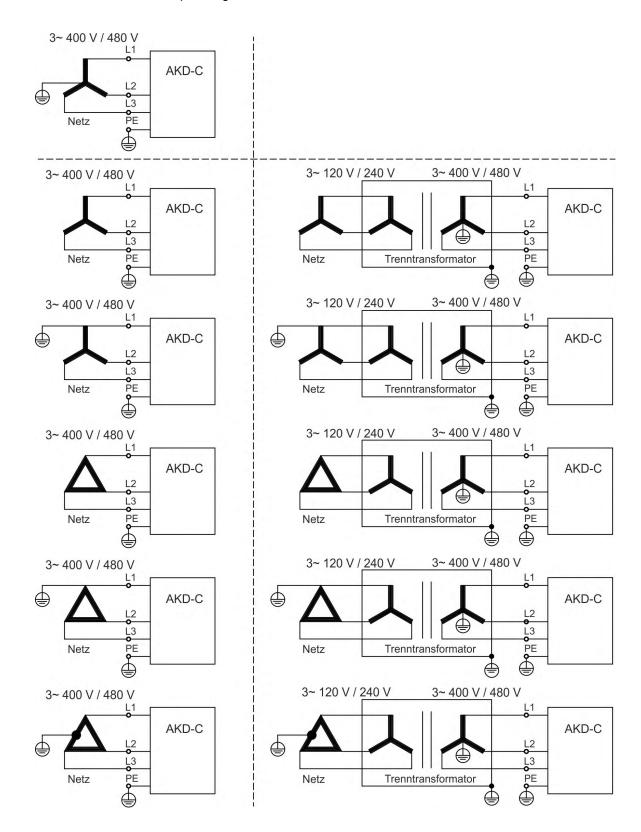
Verwenden Sie die folgenden Anschlusspläne:


Übersicht AKD-C	(→ #61)
Netzversorgung	(→ #63)
24 VDC Versorgung	(→ #64)
DC-Bus-Zwischenkreis	(→ #65)
Anschluss der Antriebsstränge	(→ #71)
Digitale I/O	(→ #74)
Motion-Bus	(→ #78)
Service Schnittstelle	(→ #79)

9.6 Anschlüsse

9.6.1 Steckerzuordnungen

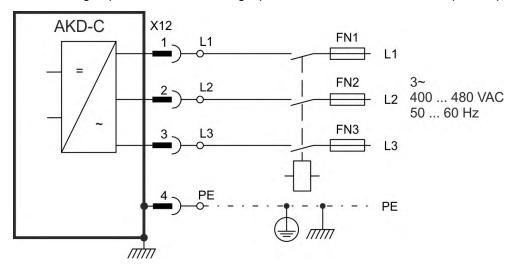
9.6.2 Anschlussbild


9.7 Anschluss der Spannungsversorgung

9.7.1 Anschluss an verschiedene Versorgungsnetze

Diese Seite zeigt möglichen Anschlussvarianten für verschiedene Versorgungsnetze.

ACHTUNG

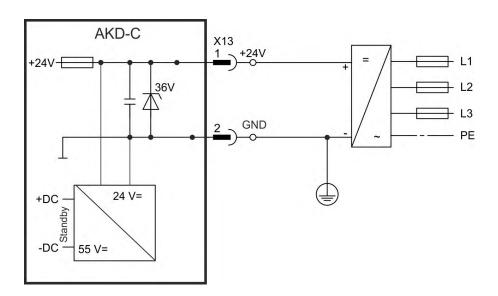

Für Netzwerke mit einer Spannung von 120V/240V wird ein Trenntransformator benötigt, um eine minimale Spannung von 400 V +10 % zu erhalten.

9.7.2 Anschluss an die Netzversorgung (X12)

9.7.2.1 Dreiphasiger Anschluss

- Direkt an 3-phasiges Versorgungsnetz, Versorgungsnetze (→ #62)
- Sicherungen (z.B. Schmelzsicherungen) sind vom Nutzer bereitzustellen (→ #31).

Pin	Signal	Beschreibung
1	L1	Phase L1
2	L2	Phase L2
3	L3	Phase L3
4	PE	Schutzerde


9.7.3 24 VDC Versorgungsspannung (X13)

Das Anschlussbild zeigt eine externe 24 V DC-Stromversorgung, die elektrisch isoliert ist, z. B. über einen Trenntransformator. Der erforderliche Nennstrom hängt von der Verwendung der Motorbremse und der Anzahl der angeschlossenen AKD-N ab.

Die 24 VDC Spannung wird intern aufgeteilt in einen Versorgungszweig für die AKD-C Steuerelektronik und einen Zweig für die Versorgung der angeschlossenen AKD-N Verstärker für den Fall des Ausfalls der AC Netzspannung.

INFO

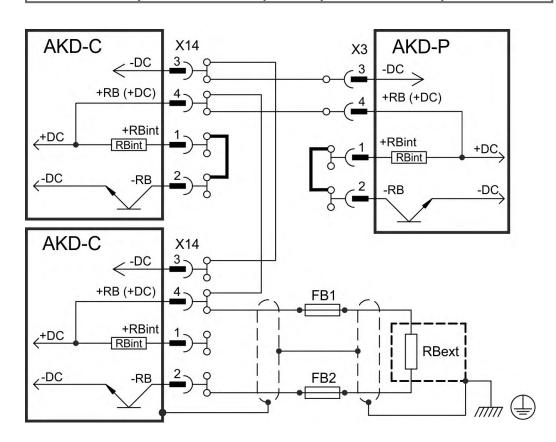
Standby Leistung ist begrenzt auf 260 W bei 24 V für beide Pfade. Diese Leistung muss alle AKD-N (jeweils 8 W) versorgen und die verbleibende Leistung kann für Motor-Haltebremsen benutzt werden.

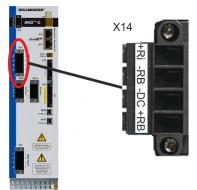
Pin	Signal	Beschreibung
1	+24	+24 V DC Hilfsspannungsversorgung
2	GND	24 V Versorgungs-GND

9.8 Zwischenkreis (X14)

Der Zwischenkreis kann parallelgeschaltet werden, so dass die Bremsleistung auf all AKD-C am selben Zwischenkreis aufgeteilt wird. Jeder AKD-C benötigt seinen eigenen AC Netz-anschluss, auch wenn die Zwischenkreise verbunden sind.

ACHTUNG

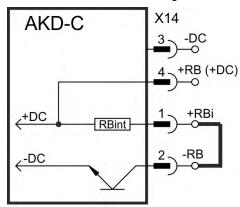

Die Geräte können zerstört werden, wenn die DC-Bus-Zwischenkreisspannungen unterschiedlich sind. Nur Geräte mit einer Netzversorgung vom selben Stromnetz (identische Netzspannung und Phasen) dürfen über den DC-Bus-Zwischenkreis verbunden werden. Verwenden Sie ungeschirmte, einadrige Kabel bis max. 200 mm Länge. Bei größerer Länge geschirmte Kabel verwenden.


ACHTUNG

Die Zwischenkreisklemmen +DC/-DC sind nicht kurzschlussfest. Beachten Sie den erforderlichen Leitungsquerschnitt (→ #33).

Mögliche Zwischenkreisverbindungen

Geräte	AKD-xzzz07	KCM	AKD-xzzz06	S3xx / S7xx
AKD-C01007	ja	ja	nein	nein

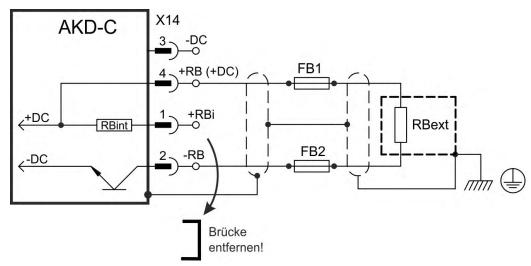


Pin	Signal	Beschreibung
3	-DC	DC-Bus-Zwischenkreis minus
4	+DC (+RB)	DC-Bus-Zwischenkreis plus

9.8.1 Bremswiderstand (X14)

9.8.1.1 Interner Bremswiderstand

AKD-C besitzt einen eingebauten Bremswiderstand. Dieser interne Bremschopper ist aktiv, wenn die Steckbrücke im Gegenstecker X14 zwischen 1 (+RBi) und 2 (-RB) gesteckt ist.



9.8.1.2 Externer Bremswiderstand

Hinweise zu den technischen Daten der Bremsschaltung finden Sie unter (\Rightarrow # 35). Sicherungen sind vom Nutzer bereitzustellen (\Rightarrow # 31).

ACHTUNG

Die Bremschopperklemmen +RB/-RB sind kurzschlussfest. Beachten Sie das Verbot von häufigen, betriebsmäßigen Kurzschlüssen an den Klemmen für den externen Bremswiderstand (→ # 16).

Pin	Signal	Beschreibung
2	-RB	Externer Bremswiderstand minus
4	+RB	Externer Bremswiderstand plus

9.8.2 Kondensator Module (X14)

KCM Module (**K**OLLMORGEN **C**apacitor **M**odules) nehmen kinetische Energie auf, die der Motor im generatorischen Betrieb erzeugt. Normalerweise wird diese Energie über Bremswiderstände in Verlustleistung umgesetzt. Die KCM Module speisen die gespeicherte Energie in den Zwischenkreis zurück, wenn sie benötigt wird.

Montage: siehe regionales Zubehörhandbuch oder KCM Installationshandbuch.

Abmessungen (HxBxT): 300x100x201 mm

KCM-S	S part Energie: Die beim generatorischen Bremsen im Kondensatormodul gespeicherte Energie steht für den nächsten Beschleunigungsfall zur Verfügung. Die Einsatzspannung des Moduls wird automatisch während der ersten Lastzyklen ermittelt.				
КСМ-Р	Power trotz Netzausfall: Bei Ausfall der Leistungsversorgung stellt das Modul dem Servoverstärker die gespeicherte Energie für ein gesteuertes Stillsetzen des Antriebs zur Verfügung (nur Leistungsspannung; 24V separat puffern).				
KCM-E	Erweiterungsmodul für beide Einsatzzwecke. Erweiterungsmodule sind in zwei Kapazitätsklassen verfügbar.				

INFO

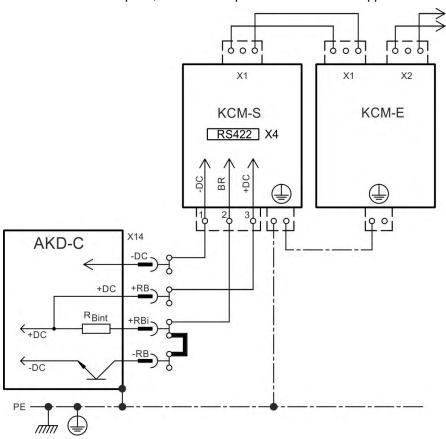
Die KCM Module dürfen nur an AKD Servoverstärkern mit 400/480V Nennspannung angeschlossen werden; Informationen zu Montage, Installation und Inbetriebnahme finden Sie in der Betriebsanleitung der KCM Module.

Hohe Gleichspannung bis 900 V

Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung. Die Selbstentladezeit der Module kann über eine Stunde betragen.

- Schalten Sie die Netzspannung ab (freischalten). Sie dürfen nur bei freigeschalteter Anlage an den Anschlüssen arbeiten.
- Prüfen Sie den Ladezustand mit einem für Gleichspannung bis 1000V geeigneten Messgerät.
- Wenn Sie zwischen den Klemmen DC+/DC- oder gegen Erde eine Spannung größer als 50 V messen, entladen Sie die Module (siehe (→ #70).

9.8.2.1 Technische Daten


	Speicher-		Spitzen		Schutz		Gewicht
	Kapazitat	Versorgungs- Spannung	Versorgungs- Spannung		lasse	Spannung	
Тур	[Ws]	[V DC]	[V DC]	[kW]		[V DC]	[kg]
KCM-S200	1600	max. 850	max. 950 (30s in 6 min)	18	IP20	ermittelt	6,9
KCM-P200	2000					470	6,9
KCM-E200	2000					-	4,1
KCM-E400	4000					-	6,2

9.8.2.2 Anschlussbeispiel mit KCM-S und KCM-E

ACHTUNG

Maximale Kabellänge zwischen AKD-C und KCM: 500mm. Die DC+ und DC- Leitungen sollten immer verseilt sein, der maximal zulässige Querschnitt ist 6mm². Achten Sie auf korrekte Polung, bei Vertauschen von DC+/DC- werden die KCM Module zerstört.

Erstellen Sie ein Fahrprofil, das zum Ansprechen des Bremschoppers führt.

Inbetriebnahme KCM-S und KCM-E

Voraussetzung für die folgenden Anweisungen:

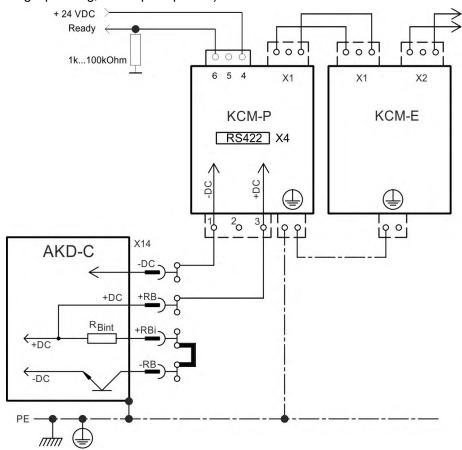
- Ordnungsgemäß freigeschaltete, geerdete Anlage
- KCM-S: im Schaltschrank montiert und verdrahtet. Last muss angekoppelt sein, die dazu führt, dass beim Abbremsen der Bremschopper des Servoverstärkers aktiv wird.
- KCM-E: montiert, mit PE geerdet und mit dem Verbindungskabel am KCM-S angeschlossen (X1).
- Entladehilfsmittel (Steckbrücke) sind entfernt.

Fahren Sie fort wie unten beschrieben:

- 1. Netzspannung einschalten, wenn AKD-C den 24V Boot-Vorgang beendet hat.
- 2. AKD freigeben und das Fahrprofil fahren, das zum Ansprechen des Bremschoppers führt.
- KCM-S ermittelt die Chopperschwelle und beginnt zu laden, die LED (Moduloberseite) blinkt. Die im Kondensatormodul gespeicherte Energie steht für den nächsten Beschleunigungsfall zur Verfügung.

Das RS422 Interface an X4 ermöglicht den Datenaustausch über eine Terminalsoftware Ihrer Wahl. Der X4 Gegenstecker ist im Lieferumfang.

Interface Einstellungen: 115200 Baud, 8 Data Bits, 1 Stop Bit, No Parity&Flow Control.


Weitere Informationen finden Sie in der KCM Betriebsanleitung.

9.8.2.3 Anschlussbeispiel mit KCM-P und KCM-E

ACHTUNG

Maximale Kabellänge zwischen AKD-C und KCM: 500mm. Die DC+ und DC- Leitungen sollten immer verseilt sein, der maximal zulässige Querschnitt ist 6mm². Achten Sie auf korrekte Polung, bei Vertauschen von DC+/DC- werden die KCM Module zerstört.

KCM-P beginnt den Ladevorgang bei ca. 470 V DC. Bei Ausfall der Leistungsversorgung stellt das Modul dem Zwischenkreis die gespeicherte Energie zur Verfügung (nur Leistungsspannung, 24V separat puffern).

Inbetriebnahme KCM-P und KCM-E

Voraussetzung für die folgenden Anweisungen:

- Ordnungsgemäß freigeschaltete, geerdete Anlage
- KCM-P: im Schaltschrank montiert und verdrahtet. Stellen Sie die AKD Unterspannungsgrenze VBUS.UVTHRESH auf einen Wert unter 470V DC, sonst schaltet der AKD ab, bevor das KCM-P Energie in den Zwischenkreis liefern kann.
- KCM-E: montiert, mit PE geerdet und mit dem Verbindungskabel am KCM-P angeschlossen (X1).
- Entladehilfsmittel (Steckbrücke) sind entfernt.

Fahren Sie fort wie unten beschrieben:

- 1. Netzspannung einschalten, wenn AKD-C den 24 V Boot-Vorgang beendet hat.
- 2. KCM-P beginnt den Ladevorgang bei ca. 470V DC, die LED blinkt.

Das RS422 Interface an X4 ermöglicht den Datenaustausch über eine Terminalsoftware Ihrer Wahl. Der X4 Gegenstecker ist im Lieferumfang.

Interface Einstellungen: 115200 Baud, 8 Data Bits, 1 Stop Bit, No Parity&Flow Control.

Das Ready Signal meldet die Betriebsbereitschaft (High Signal).

Weitere Informationen finden Sie in der KCM Betriebsanleitung.

9.8.2.4 KCM Module entladen

Die jedem Modul beiliegenden Hilfsmittel (Steckbrücke bzw. Verbindungskabel) ermöglichen das sichere Entladen der Module.

ACHTUNG

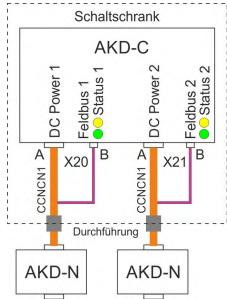
Wenn die Lade-LED in der Oberseite der Module blinkt, sind die Kondensatoren geladen. Die LED ermöglicht jedoch keine sichere Aussage über den Entladezustand, da sie nicht auf Ausfall überwacht wird.

Hohe Gleichspannung bis 900 V DC

Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung.

- Schalten Sie die Netzspannung ab (freischalten). Sie dürfen nur bei freigeschalteter Anlage an den Anschlüssen arbeiten.
- Prüfen Sie den Ladezustand mit einem für Gleichspannung bis 1000V geeigneten Messgerät.
- Warten Sie, bis die gemessene Spannung zwischen den Klemmen DC+/DC- oder nach Erde unter 50 V gesunken ist.
 Die Selbstentladezeit der Module kann über eine Stunde betragen.
- Wenn Sie die Selbstentladezeit nicht abwarten können, müssen Sie die Module zwangsentladen.
- Folgen Sie dem unten beschriebenen Prozess zur Zwangsentladung der Module.

Gehen Sie zu Ihrer Sicherheit bei der Zwangsentladung der Module wie folgt vor:


- 1. Schalten Sie die Netzspannung ab (freischalten).
- 2. Entladen Sie die Module:
 - **KCM-S/-P**: Steckbrücke in die Schraubklemmen (schwarz-1 nach grau-2) an der Unterseite der Module stecken, mindestens 70s warten, Steckbrücke stecken lassen (Transportsicherung). Vor erneuter Inbetriebnahme die Steckbrücke wieder entfernen.
 - **KCM-E**: Mit einem Verbindungskabel an der Oberseite des Moduls die Stecker X2/X3 brücken, mindestens 70s warten, Verbindungskabel stecken lassen (Transportsicherung). Vor erneuter Inbetriebnahme das Verbindungskabel lösen und KCM-E wieder korrekt anschließen.
- 3. Führen Sie die geplante Aufgabe durch (z.B. Reinigen, Warten oder Deinstallieren).

9.9 Anschluss der Antriebsstränge

AKD-C unterstützt zwei Antriebsstränge mit bis zu 16 AKD-N Servoverstärker.

INFO

Verwenden Sie IP67 Kabeldurchführungen für den Durchbruch der Hybridkabel durch die Schaltschrankwand.

Schaltschrank

AKD-C

Power

DC

Feldbus 1

DC Power

2

Feldbus 2

Zum Anschluss des ersten AKD-N an einen der DC Antriebsstränge muss der Kollmorgen Kabeltyp CCNCN1 benutzt werden. Dieses Kabel ist ein Y Adapter mit einem Hybridstecker am AKD-N Ende und zwei Steckern am AKD-C Ende mit getrenntem DC Power und lokalem Feldbus.

Kollmorgen empfiehlt zur Sicherstellung der Schutzklasse IP67 die Kabeldurchführungsleisten KDL/S kombiniert mit der Kabeldurchführungstülle KDT/S

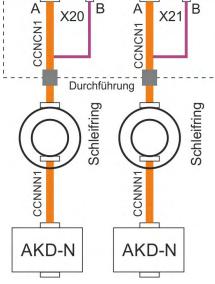
Murrplastik Systemtechnik GmbH Fabrikstraße 10

D-71570 Oppenweiler, Germany

Telefon: +49 (0)7191 482-0 Website: www.murrplastik.de E-Mail: info@murrplastik.de

Schleifringe für Drehtische

Wenn AKD-N auf einem Drehtisch montiert werden soll, benötigen Sie für die Leistungs- und Datenübertragung zwischen AKD-C im Schaltschrank und AKD-N auf dem Drehtisch ein Schleifring System.


Kollmorgen arbeitet mit der Firma STEMMANN-TECHNIK zusammen, die kundenspezifische Schleifring Lösungen anbietet:

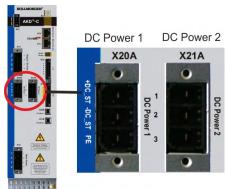
STEMMANN-TECHNIK GmbH

Niedersachsenstraße 2

D-48465 Schüttorf, Germany Telefon: +49 (0)592381-0


Website: www.stemmann.com E-Mail: sales@stemmann.de

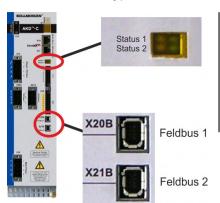
Die Sicherheitsfunktion STO wurde mit den STEMMANN Schleifringen Artikel Nr.: 6263576 und 6263577 geprüft.


Diese Schleifringe können als Einzelmodule oder als Modul in einer Schleifringkassette verwendet werden.

9.9.1 Zuordnung der Antriebsstränge

9.9.2 DC Power X20A, X21A

Die DC Power Anschlüsse versorgen bis zu 8 AKD-N Servoverstärker pro Antriebsstrang mit Gleichstrom. Anschluss für DC Power durch Gegenstecker mit Zugentlastung. Der Stecker ist am Kollmorgen CCNCN1 Kabel angeschlagen (→ #56).


Pin	Signal	Beschreibung
1	+DC_ST	DC Power positiv
2	-DC_ST	DC Power negativ
3	PE	Schutzerde

9.9.3 Lokaler Feldbus (X20B, X21B)

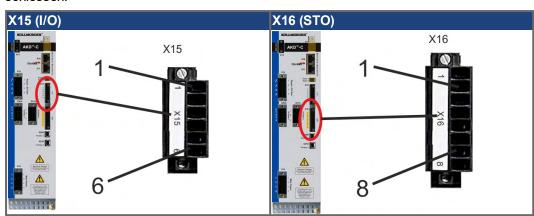
Lokale Feldbus Stecker getrennt für jeden Antriebsstrang ermöglichen dem AKD-C mit allen angeschlossenen AKD-N über ein 4-adriges Bussystem zu kommunizieren. Der Stecker ist am Kollmorgen CCNCN1 Kabel angeschlagen (→ # 56).

ACHTUNG

Diese Schnittstellen dürfen nicht direkt mit standard EtherCAT Geräten verbunden werden. Die Stecker sind Typ 1 Mini I/O, benutzen Sie nur Kollmorgen Kabel CCNCN1.

Pin	Signal	Beschreibung
1	Empfangen +	Empfangen +
2	Empfangen -	Empfangen -
3	Senden +	Senden +
6	Senden -	Senden -
4,5,7,8	n.c.	Nicht verbunden

Status LEDs für die lokalen Feldbusverbindungen


Der Status der Kommunikation wird über die eingebauten Status LEDs angezeigt, ein Paar für jeden Antriebsstrang.

LED	Name	Funktion
Grün	Link In	Ein = aktiv, Aus= inaktiv
Gelb	Betrieb	Ein = in Betrieb, Aus= nicht in Betrieb

9.10 I/O-Anschluss

9.10.1 I/O Stecker X15 und X16

Digitale I/O Signale werden an X15 angeschlossen, STO Signale werden an X16 angeschlossen.

	Pin	Signal	Abkürzung	Funktion	Anschluss
X15	1	Digitaler Ausgang +	DIGITAL-OUT+	Programmierbar	(→ #76)
X15	2	Digitaler Ausgang -	DIGITAL-OUT-		
X15	3	Hardware-Freigabe	ENABLE	Freigabe Endstufe	(→ #75)
X15	4	Digital Common	DCOM	Gemeinsame Leitung für X15 Pins 1, 2, 3	
X15	5	Fehlerrelaisausgang	Fault (Fehler)	Fehlerrelaisausgang	(→ #77)
X15	6	Fehlerrelaisausgang	Fault (Fehler)	Fehlerrelaisausgang	
X16	1	STO-Status von DC Power Strang 1	STO-Status 1	STO Status von Strang 1	(→ #77)
X16	2	STO-Status von DC Power Strang 2	STO-Status 2	STO Status von Strang 2	
X16	3	STO +24 VDC	STO +24 V	24 VDC für STO Signale	
X16	4	STO GND	STO GND	GND für STO 24 V	
X16	5	STO GND	STO GND	GND für STO 24 V	
X16	6	STO-Enable für DC Power Strang 1	STO-Enable 1	Schaltet das Moment in Strang 1 ab	
X16	7	STO GND	STO GND	GND für STO 24 V	
X16	8	STO-Enable für DC Power Strang 2	STO-Enable 2	Schaltet das Moment in Strang 2 ab	

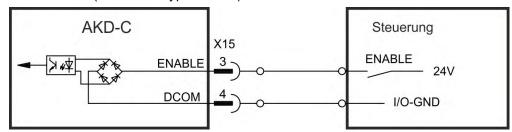
Die Leitung DCOM sollte an den 0 V-Ausgang der I/O-Versorgung angeschlossen werden, wenn Sensoren des Typs "Source" mit digitalen Eingängen verwendet werden. Die Leitung DCOM sollte an den 24 V-Ausgang der I/O-Versorgung angeschlossen werden, wenn Sensoren des Typs "Sink" mit digitalen Eingängen verwendet werden.

9.10.2 Digitaler Eingang (ENABLE, X15)

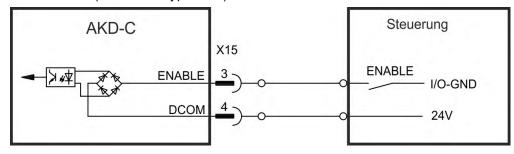
Der digitale Eingang (Klemme X15/3) ist auf die Hardware Enable-Funktion eingestellt. Technische Eigenschaften:

- Potentialfrei, die gemeinsame Referenzleitung ist DCOM
- Verdrahtung des Typs Sink oder Source möglich
- gemäß IEC61131-2 Typ 1
- EIN: 15 VDC bis 30 VDC, 2 mA bis 15 mA, AUS: -3 VDC bis 5 VDC, < 1 mA
- Galvanische Isolation f
 ür 250 VDC
- Aktualisierungsrate: direkte Verbindung zur Hardware (FPGA)

INFO


Der Hardware Enable Eingang und das Software Enable Signal (über Feldbus oder WorkBench) sind seriell verknüpft, das bedeutet, der Hardware Enable muss verdrahtet werden.

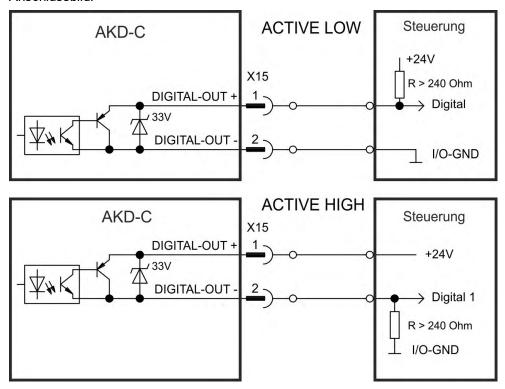
Die Leistungsendstufen der AKD-N Verstärker, die am AKD-C angeschlossen sind, werden durch Anlegen des ENABLE Signals freigegeben (Klemme X15/3). Die Freigabe ist nur möglich, wenn am STO-Enable 1 bzw. 2 (gültig für DC Power Stränge 1 oder 2) ein 24 V Signal anliegt (→ #38). Im deaktivierten Status erzeugt der angeschlossene Motor kein Drehmoment.


Eine Software-Freigabe durch die Setup-Software ist ebenfalls erforderlich (UND-Verknüpfung). Die Software Freigabe in WorkBench kann auf permanent gesetzt werden.

Der Eingang kann mit geschalteten +24 V ("Source") oder geschaltetem GND ("Sink") verwendet werden. Siehe folgende Diagramme.

Anschlussbild (Anschluss Typ "Source"):

Anschlussbild (Anschluss Typ "Sink"):


9.10.3 Digitaler Ausgang (X15)

Der Verstärker bietet einen digitalen Ausgang (X15/1 nach X15/2, (→ #74). Wählen Sie die gewünschte Funktion in der Setup-Software aus. Es können Meldungen von vorprogrammierten Funktionen, die im AKD-C gespeichert sind, ausgegeben werden. Eine Liste dieser vorprogrammierten Funktionen ist in der Setup Software enthalten. Wenn eine Funktion zugewiesen wurde, muss der Parametersatz im AKD-C gespeichert werden.

Technische Eigenschaften:

- gemäß IEC61131-2 Typ 1
- Potentialfrei, max. 30 VDC, 100 mA
- kurzschlussfest
- Galvanische Isolation f
 ür 250 VDC
- Kann als aktiv low oder aktiv high verdrahtet werden (siehe folgende Beispiele)
- Aktualisierungsrate: 250 μs

Anschlussbild:

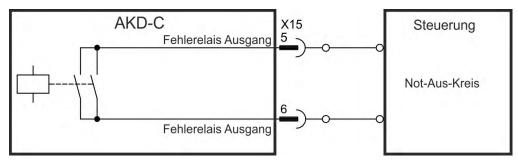
9.10.4 Fehlerrelais

Die Betriebsbereitschaft (Klemmen X15/5 und X15/6) wird durch einen potentialfreien Relaiskontakt gemeldet.

Das Fehlerrelais kann für zwei Betriebsarten programmiert werden:

- Kontakt geschlossen, wenn kein Fehler vorliegt
- Kontakt geschlossen, wenn kein Fehler vorliegt und der Verstärker freigegeben ist.

Das Signal wird nicht durch das Enable-Signal, die I²t-Grenze oder die Brems-Chopperschwelle beeinflusst.

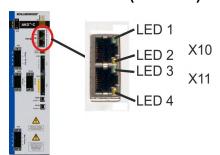

Technische Eigenschaften:

- FEHLER: Relaisausgang, max. 30 V DC oder 42 V AC, 1 A
- Anzugsverzögerung: max. 10 ms
- Abfallverzögerung: max. 10 ms

INFO

Alle Fehler führen zum Öffnen des Fehlerkontakts und zur Abschaltung der AKD-N Endstufen (wenn ein Fehler auftritt, wird das interne Hardware-Ready Signal gesperrt => keine Leistungsabgabe an Motoren). Liste der Fehlermeldungen: (→ #88).

Anschlussbild:



9.10.5 STO Signale (X16)

Stecker X16 am AKD-C ermöglicht den Zugriff auf alle STO Signale des dezentralen Antriebssystems, das von diesem -C versorgt wird. Es gibt einen STO-Enable Eingang und einen STO-Status Ausgang für jeden Antriebsstrang. Alle STO Signale sind galvanisch getrennt und benötigen eine eterne 24 VDC Versorgung (PELV/SELF).

Eine genaue Beschreibung der STO Schnittstelle und der Funktionalität finden Sie im Kapitel (→ #38).

9.11 Motion-Bus-Schnittstelle (X10/X11)

Die Motion-Bus-Schnittstelle besitzt RJ-45-Stecker und kann für die Kommunikation mit einem EtherCAT Master und anderen AKD-C verwendet werden.

ACHTUNG

Beseitigen Sie auftretende Fehler und Störungen unter Beachtung der Arbeitssicherheit. Fehlerbeseitigung nur durch qualifiziertes und eingewiesenes Fachpersonal.

9.11.1 Pinbelegung

Pin	Signal X10	Signal X11
1	Senden +	Empfangen +
2	Senden -	Empfangen -
3	Empfangen +	Senden +
4, 5	n.c.	n.c.
6	Empfangen -	Senden -
7, 8	n.c.	n.c.

9.11.2 Bus Protokolle

Protokoll	Тур	Anschluss (Option
EtherCAT	Motion-Bus	EC	

9.11.3 Netzwerk Konfiguration

9.11.4 EtherCAT

AKD-C01007-CB**EC** kann als Slave an ein EtherCAT Netzwerk (CoE) über RJ-45 Stecker X10 (In Port) und X11 (Out Port) angeschlossen werden. Der Kommunikationsstatus wird über die Stecker LEDs angezeigt.

Stecker	LED-Nr.	Name	Funktion
X10	LED1	Link In Ein = aktiv, Aus= inaktiv	
	LED2	Betrieb	Ein = in Betrieb, Aus= nicht in Betrieb
X11	LED3	Link Out Ein = aktiv, Aus= inaktiv	
	LED4	-	-

78

9.12 Serviceschnittstelle (X18)

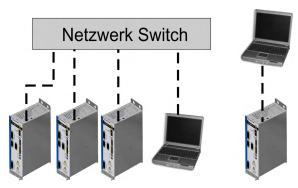
Die Parameter für den Betrieb, die Positionsregelung und Fahraufträge können mit der Setup-Software WorkBench auf einem handelsüblichen PC konfiguriert werden (→ #84).

Schließen Sie die Serviceschnittstelle (X18) an eine Ethernet-Schnittstelle am PC direkt oder über einen Netzwerkswitch an. Das Kabel kann auch bei eingeschalteter Spannung gesteckt werden. Prüfen Sie, ob die Verbindungs-LEDs am AKD-C (grüne LED am RJ45-Stecker) und an Ihrem PC (oder Netzwerkswitch) beide leuchten. Wenn beide LEDs leuchten, besteht eine gute elektrische Verbindung.

INFO

Die Serviceschnittstelle X18 eines AKD-C erlaubt **nicht** den Zugriff auf AKD-N Servoverstärker, die an anderen AKD-C angeschlossen sind.

9.12.1 Pinbelegung

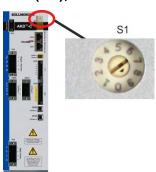

Pin	Signal	Pin	Signal
1	Senden +	5	n.c.
2	Senden -	6	Empfangen -
3	Empfangen +	7	n.c.
4	n.c.	8	n.c.

9.12.2 Service Bus Protokolle

Protokoll	Тур
Ethernet TCP/IP	Service Bus 100 Mbit/s

9.12.3 Mögliche Netzwerkkonfigurationen

INFO Netzwerkhub und 10 Mbit/s Übertragungsrate werden nicht unterstützt.


9.13 Taster (B1)

Die Taster werden verwendet, um vordefinierte Funktionen zu starten.

Kurz drücken, um die IP Adresse im Display anzuzeigen.

9.14 Drehschalter (S1), IP-Adressierung

Die konfigurierte IP-Adresse wird am 7-Segment Display angezeigt, wenn beim Einschalten ein Ethernet Kabel an X32 gesteckt ist. Wenn kein Ethernet Kabel gesteckt ist, wird keine IP Adresse angezeigt. Weitere Informationen finden Sie im AKD-C Benutzerhandbuch oder auf Bildschirmseite Einstellungen-> Feldbus-> TCP/IP in WorkBench.

INFO

Stellen Sie S1 auf 0 (Null) für DHCP/Automatische IP-Adresse.

S1	AKD-C IP Adresse
0	DHCP/Automatische IP-Adresse. Die IP-Adresse des AKD-C wird vom
	DHCP-Server in Ihrem Netzwerk abgerufen. Wenn kein DHCP-Server vor-
	handen ist, wird eine Automatische IP-Adresse vergeben (sie wird intern
	gemäß dem AutoIP-Protokoll im Format 169.254.x.x generiert).
1 bis 9	Vorbereitet für Statische IP-Adresse. Zur Zeit ohne Funktion.

INFO

Die PC-Subnetmask muss auf 255.255.255.0 oder 255.255.255.128 gesetzt sein.

Dynamische IP-Adressierung (DHCP und Auto-IP)

Wenn S1 auf 0 gesetzt ist, ist das Gerät im DHCP Modus. Der AKD-C ruft seine IP-Adresse von einem externen DHCP-Server ab, wenn im Netzwerk einer vorhanden ist. Wenn kein DHCP Server vorhanden ist, stellt der AKD-C eine automatische, private IP Adresse im Format 169.254.x.x ein.

Wenn Ihr PC oder PAC direkt mit dem AKD-C verbunden ist und in den TCP/IP-Einstellungen festgelegt ist, dass die IP-Adresse automatisch abgerufen werden soll, wird zwischen den Geräten eine Verbindung mithilfe von automatisch generierten kompatiblen Adressen hergestellt. Es kann bis zu 60 Sekunden dauern, eine automatische private IP-Adresse zu konfigurieren (169.254.x.x).

Ändern der IP-Adresse

Wenn Sie die Drehschalter verstellen, während der AKD-C mit 24 V versorgt wird, müssen Sie die 24V Hilfsspannung aus- und wieder einschalten. Das setzt die Adresse zurück.

10 Inbetriebnahme

Wichtige Hinweise	.82
Inbetriebnahmesoftware WorkBench	83
Basis Systemtest	86
Fehlersuche und -behebung beim AKD-C	
	Inbetriebnahmesoftware WorkBench Basis Systemtest Fehler und Warnmeldungen

10.1 Wichtige Hinweise

INFO

Der Hersteller der Maschine muss eine Risikobeurteilung für die Maschine erstellen und geeignete Maßnahmen ergreifen, um sicherzustellen, dass unvorhergesehene Bewegungen nicht zu Verletzungen oder Sachschäden führen können.

ACHTUNG

Das dezentrale Antriebssystem darf nur von Fachpersonal mit umfassenden Kenntnissen in der Elektrotechnik und der Antriebstechnik getestet und konfiguriert werden.

▲ GEFAHR

Tödliche Spannung!

Gefahr eines elektrischen Schlags. An spannungsführenden Teilen besteht unmittelbare Lebensgefahr.

- Verbaute Schutzmaßnahmen wie Isolationen oder Abschirmungen dürfen nicht entfernt werden.
- Arbeiten an der elektrischen Anlage sind nur durch geschultes und eingewiesenes Personal, unter Beachtung der Vorschriften für Arbeitssicherheit und nur bei ausgeschalteter und gegen Wiedereinschalten gesicherter elektrischer Versorgung zulässig.

▲ WARNUNG

Automatischer Anlauf

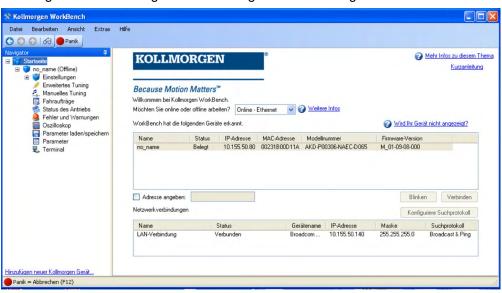
Es besteht die Gefahr von tödlichen oder schweren Verletzungen für Personen, die in der Maschine arbeiten. Der Antrieb kann abhängig von der Parametereinstellung nach dem Einschalten der Netzspannung automatisch anlaufen. Wenn der Parameter DRV.ENDEFAULT eines AKD-N auf 1 gesetzt ist,

- warnen Sie an der Maschine mit einem Warnschild (Warnung: Automatischer Wiederanlauf nach Einschalten!) und
- stellen Sie sicher, dass ein Einschalten der Netzspannung nicht möglich ist, während sich Personen im gefährdeten Bereich aufhalten.

ACHTUNG

Wenn das Gerät länger als 1 Jahr gelagert wurde, müssen Sie die Kondensatoren im DC-Bus-Zwischenkreis formieren. Formierungstechniken sind im Kollmorgen Developer Network (Formierung) beschrieben.

INFO


Weitere Informationen zur Konfiguration des Geräts:

- Die Parameter und das Verhalten des Regelkreises sind in der Onlinehilfe zur Setup-Software Workbench beschrieben.
- Kollmorgen bietet auf Anfrage Schulungen an.

10.2 Inbetriebnahmesoftware WorkBench

Dieses Kapitel beschreibt die Installation der Inbetriebnahmesoftware WorkBench für AKD-C und AKD-N.

Kollmorgen bietet Schulungs- und Vertiefungskurse auf Anfrage.

10.2.1 Bestimmungsgemäße Verwendung

Die Setup-Software ist dafür vorgesehen, die Betriebsparameter für die Verstärker der AKD Reihe zu ändern und zu speichern. Der angeschlossene Verstärker kann mithilfe dieser Software konfiguriert werden. Während der Inbetriebnahme kann der Verstärker direkt über die Servicefunktionen gesteuert werden.

Die Einstellung der Parameter eines laufenden Antriebs darf nur von entsprechend qualifiziertem Fachpersonal (→ #13) vorgenommen werden. Datensätze, die auf Datenträgern gespeichert wurden, sind nicht gegen unbeabsichtigte Veränderungen durch andere Personen gesichert. Die Verwendung von ungeprüften Daten kann zu unerwarteten Bewegungen führen. Nachdem Sie Datensätze geladen haben, müssen Sie daher alle Parameter prüfen, bevor Sie den Verstärker freigeben.

10.2.2 Beschreibung der Software

Jedes Gerät muss an die Anforderungen für Ihre Maschine angepasst werden. Für die meisten Anwendungen können Sie einen PC und WorkBench (die Setup-Software für den Verstärker) verwenden, um Betriebsbedingungen und Parameter festzulegen. Der PC wird über ein Ethernet-Kabel mit dem AKD-C verbunden (→ #79). Die Setup-Software ermöglicht die Kommunikation zwischen dem PC und AKD-N Verstärkern, die an diesem AKD-C angeschlossen sind. Sie finden die Setup-Software auf der mitgelieferten DVD und im Download-Bereich der Kollmorgen-Website.

Sie können Parameter einfach ändern und die Wirkung auf den Verstärker direkt beobachten, da eine permanente (Online-)Verbindung zum AKD-C besteht. Sie können auch wichtige Istwerte vom Verstärker abrufen, die auf dem PC-Monitor angezeigt werden (Oszilloskop-Funktionen).

Sie können Datensätze auf Datenträgern speichern (Archivierung) sowie auf andere AKD-C laden oder zu Sicherungszwecken verwenden. Sie können die Datensätze auch ausdrucken.

Die meisten Standard-Rückführungen (SFD, EnDAT 2.2, 2.1 und BiSS) sind Plug-and-Play-kompatibel. Die Typenschilddaten des Motors werden im Rückführsystem gespeichert und vom Verstärker beim Einschalten automatisch abgerufen. Die Daten der nicht Plug-and-Play-kompatiblen Motoren von Kollmorgen sind in WorkBench gespeichert und können per Mausklick über die Bildschirmseite "Motor" in der WorkBench-Software geladen werden.

Eine umfassende Onlinehilfe mit Beschreibungen aller Variablen und Funktionen bietet Ihnen in jeder Situation Unterstützung.

10.2.3 Hardware-Anforderungen

Die Serviceschnittstelle (X18, RJ45) wird über ein Ethernet-Kabel mit der Ethernet-Schnittstelle des PCs verbunden (→ #79).

Mindestanforderungen für den PC:

Prozessor: mindestens Pentium® II oder gleichwertig

Betriebssystem: Windows

Grafikarte: Windows-kompatibel, Farbe

Laufwerke: Festplatte mit mindestens 20 MB freiem Speicherplatz, DVD-Laufwerk Schnittstellen: eine freie Ethernet-Schnittstelle oder einen Switch-Anschluss, 100 Mbit/s

10.2.4 Betriebssysteme

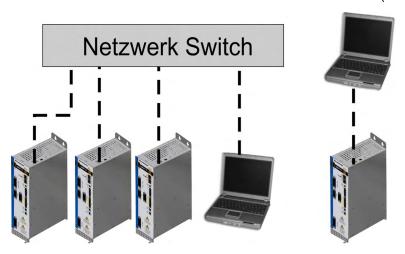
Windows 2000 / XP / VISTA / 7 / 8

WorkBench unterstützt Windows 2000, Windows XP, Windows VISTA, Windows 7 und Windows 8

Unix, Linux

Die Funktion der Software für Windows unter Unix oder Linux wurde nicht geprüft.

10.2.5 Installation unter Windows


Die DVD enthält ein Installationsprogramm für die Setup-Software.

Installation

- Autostart-Funktion aktiviert:
 Legen Sie die DVD in ein freies Laufwerk ein. Ein Fenster mit dem Startbildschirm wird geöffnet. Darin wird eine Verknüpfung mit der Setup-Software WorkBench angezeigt. Klicken Sie auf die Verknüpfung, und befolgen Sie die Anweisungen.
- Autostart-Funktion deaktiviert:
 Legen Sie die DVD in ein freies Laufwerk ein. Klicken Sie in der Taskleiste auf Start und dann auf Ausführen. Geben Sie den Programmaufruf ein: x:\index.htm (x = Laufwerksbuchstabe des DVD-Laufwerks).
 Klicken Sie auf OK und fahren Sie wie vorstehend beschrieben fort.

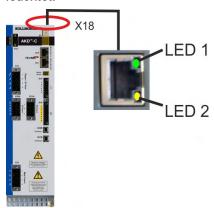
Anschluss an die Ethernet-Schnittstelle des PCs

• Schließen Sie das Schnittstellenkabel an eine Ethernet-Schnittstelle an Ihrem PC oder an einen Switch und die Serviceschnittstelle X18 des AKD-C an (→ #79).

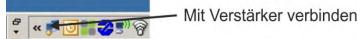
10.3 Basis Systemtest

10.3.1 Auspacken, Montieren und Verdrahten

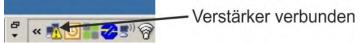
- Packen Sie den AKD-C und das Zubehör aus. Beachten Sie die Sicherheitshinweise in der Dokumentation.
- Montieren Sie den AKD-C (→ #48)ff.
- Verbinden Sie den AKD-N mit dem Hybridkabel mit dem AKD-C (→ #52)ff.
- Schließen Sie die Motoren an die angeschlossenen AKD-N. Detaillierte Informationen siehe *Betriebsanleitung AKD-N*.
- Stellen Sie sicher, dass Sie die folgenden Informationen zur Hand haben:
 - Nennversorgungsspannung
 - Motortyp (Motordaten, wenn der Motortyp in der Motordatenbank nicht enthalten ist)
 - In den Motor integrierte Rückführungseinheit (Typ, Polzahl/Strichzahl/Protokoll)
 - Trägheitsmoment der Last
- Verbinden Sie einen PC mit installierter WorkBench Inbetriebnahmesoftware mit Stecker X18. Weiter Informationen siehe -C Betriebsanleitung.AKD


10.3.2 IP-Adresse einstellen

Die AKD-C Geräteadresse kann mit dem Drehschalter (→ #80), mit der WorkBench Inbetriebnahmesoftware oder über den Feldbus eingestellt werden.


10.3.3 Verbindungen überprüfen

Schalten Sie die 24 VDC Logikversorgung des Systems an Stecker AKD-C X1 ein (für die Kommunikation wird keine Leistungsversorgung benötigt).


Stellen Sie sicher, dass sowohl am AKD-C Stecker als auch am PC Stecker die grüne LED leuchtet.

Während der PC die Verbindung herstellt, erscheint in Ihrer Taskleiste das folgende Symbol:

Warten Sie, bis dieses Symbol sich zum Symbol für eingeschränkte Konnektivität ändert (dies kann bis zu einer Minute dauern).

Der PC kann vollständig mit dem Servoverstärker kommunizieren, obwohl Windows für die Verbindung mit dem Servoverstärker das Symbol für eingeschränkte Konnektivität anzeigt. In WorkBench können Sie jetzt den Servoverstärker über diese Verbindung konfigurieren.

10.3.4 WorkBench Installieren und starten

WorkBench wird automatisch von der mit dem Gerät gelieferten DVD installiert. WorkBench ist auch auf der Kollmorgen Website: www.kollmorgen.com verfügbar.

Wenn die Installation vollständig ist, klicken Sie auf das Symbol um das Programm zu starten. WorkBench WorkBench zeigt eine Liste aller gefundenen Servoverstärker an, die am AKD-C angeschlossen sind.

Wählen Sie den zu konfigurierenden AKD-C aus und klicken Sie auf Weiter.

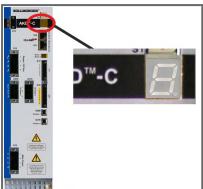
Wenn mehrere Geräte erkannt werden, kann ein Gerät mit einem der folgenden Verfahren eindeutig identifiziert werden:

- 1. MAC Adresse des Gerätes. Diese Adresse ist auf dem Aufkleber an der Seite des Servoverstärkers aufgedruckt.
- 2. Name des Gerätes. Der Gerätename wird mit der WorkBench Software eingestellt. Ein neues Gerät erhält standardmäßig den Namen "No_Name" (Ohne_Namen).
- 3. Das Display blinken lassen. Wählen Sie ein Gerät aus und klicken Sie auf **Blink**, damit die LED an der Vorderseite des Servoverstärkers für 20 Sekunden zu blinken beginnt.

10.3.5 Servoverstärker mit dem Setup-Assistenten freigeben

Sobald eine Verbindung zum AKD-C hergestellt wurde, werden alle an diesem gerät angeschlossenen AKD-N aufgelistet. Wählen Sie einen der Servoverstärker aus und die AKD Bildschirmseite Übersicht erscheint. Ihr Servoverstärker wird im Navigationsbereich auf der linken Seite des Bildschirms angezeigt. Klicken Sie mit der rechten Maustaste auf den Namen Ihres Servoverstärkers und wählen Sie im Dropdown-Menü die Option **Setup Wizard** aus. Der Setup-Assistent führt Sie durch die Erstkonfiguration des Servoverstärkers. Dies umfasst eine einfache Testbewegung des Antriebs.

Nachdem Sie den Setup-Assistenten abgeschlossen haben, sollte der Servoverstärker freigegeben sein. Wenn der Servoverstärker nicht freigegeben ist, prüfen Sie Folgendes:


- 1. Die Hardware-Freigabe (HW) für die Antriebsstränge muss aktiviert sein (Pin 3 am Stecker X15 des AKD-C).
- 2. Die Software-Freigabe (SW) muss aktiviert sein. Aktivieren Sie die Funktionen mit der Schaltfläche **Enable/Disable** in der oberen Symbolleiste in WorkBench oder auf der Bildschirmseite "Übersicht".
- 3. Es dürfen keine Fehler vorliegen (klicken Sie auf die Schaltfläche **Clear Fault** (Fehler löschen) in der oberen Symbolleiste, um alle Fehler zu löschen).

Der Status der HW-Freigabe, SW-Freigabe und von Fehlern wird in der unteren Symbolleiste der WorkBench-Software angezeigt. Der Servoverstärker ist verbunden, wenn am unteren rechten Rand **Online** angezeigt wird.

Sie können jetzt die Bildschirmseite "Einstellungen"in WorkBench verwenden, um die erweiterte Konfiguration Ihres Servoverstärkers fortzusetzen.

10.4 Fehler und Warnmeldungen

Wenn ein Fehler auftritt, wird das Fehlerrelais des AKD-C geöffnet, die Endstufen der angeschlossenen AKD-N werden ausgeschaltet (die Motoren erzeugen kein Drehmoment mehr), oder die Last wird dynamisch gebremst. Das spezifische Verhalten hängt vom Fehlertyp ab. Das LED Display zeigt die Nummer des aktuellen Fehlers. Wenn vor der Fehlermeldung eine Warnung ausgegeben wird, erscheint die Warnmeldung auf der LED-Anzeige mit derselben Nummer wie der zugehörige Fehler. Warnungen deaktivieren weder die Leistungsstufe des AKD-N noch den Fehlerausgang.

AKD Fehler- oder Warnmeldungen werden angezeigt. Fehlermeldungen sind mit "F" kodiert, Warnmeldungen mit "n".

Das LED Display zeigt die Nummer des Fehlers oder der Warnung: F-1-0-1-[Pause] oder n-1-0-1-[Pause]. Es wird der Fehler mit der höchsten Priorität angezeigt, Es können mehrere Fehler gleichzeitig vorliegen. Prüfen Sie die AKD WorkBench Fehlerbildschirmseite oder lesen Sie den Status von DRV.FAULTS, um die vollständige Liste der aktuellen Fehler anzuzeigen.

ACHTUNG

Beseitigen Sie auftretende Fehler und Störungen unter Beachtung der Arbeitssicherheit. Fehlerbeseitigung nur durch qualifiziertes und eingewiesenes Fachpersonal.

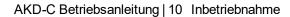
INFO

Weitere Informationen zu Fehlermeldungen, Fehlerbeseitigung und zum Löschen von Fehlern finden Sie in der WorkBench-Onlinehilfe.

Fehler	Meldung/Warnung
F0	
F101	Nicht kompatible Firmware.
n101	FPGA ist ein Labor-FPGA.
F102	Fehler durch Boot-Firmware.
n102	FPGA ist keine Standard-FPGA-Version.
F103	Fehler Boot-FPGA.
F104	Fehler FPGA.
F105	Stempel des nichtflüchtigen Speichers ungültig.
F106	Daten des nichtflüchtigen Speichers.
F125, n125	Feldbus Synchronisation Frames verloren.
F136	Die Firmware- und FPGA-Version sind nicht kompatibel.
F201	Fehler in externem RAM.
F202	Fehler in externem RAM.
F203	Fehler bei Code-Integrität.
F204-F232	EEPROM-Fehler erkannt.
F234-F237	Innentemperatur zu hoch.
n234-n237	
F240-F243	Innentemperatur niedrig.
n240-n243	
F501, n501	Überspannung Bus.
F503, n503	Überlast Bus-Kondensator.
F519	Kurzschluss Bremswiderstand.
F521, n521	Überstrom Bremswiderstand.
F523	Überspannung Bus FPGA
F531	Leistungsstufenfehler.

Fehler	Meldung/Warnung
F536	Fehler Standby Spannungsversorgung.
F537	Fehler Ladeschaltung.
F541	Netzeingang Phase L1 fehlt.
F542	Netzeingang Phase L2 fehlt.
F543	Netzeingang Phase L3 fehlt.
F545	Strangstrom über der Spitzenstromgrenze.
F546	Strangstrom über der Dauerstromgrenze.
F561	Mehr als acht AKD-N an Strang 2.
F562	Mehr als acht AKD-N an Strang 1.
F564	Anzahl der AKD-N an Strang 1 wurde reduziert.
F565	Anzahl der AKD-N an Strang 2 wurde reduziert.
F621	Fehler beim Lesen des CRC der Steuerungskarte.
F623	Fehler beim Lesen des CRC der Leistungskarte.
F624	Leistungskarte-Watchdog-Fehler.
F625	Leistungskarte Kommunikationsfehler.
F626	Leistungskarte FPGA nicht konfiguriert.
F627	Steuerkarte-Watchdog-Fehler.
F628	Datenpaket in Strang 1 nicht empfangen von AKD-C oder AKD-N.
F629	Datenpaket in Strang 2 nicht empfangen von AKD-C.
F702, n702	Feldbus Kommunikation verloren.

10.5 Fehlersuche und -behebung beim AKD-C


Fehler können aus den verschiedensten Gründen auftreten, die von den Bedingungen in Ihrer Anwendung abhängen. Die Ursachen für Fehler in Mehrachsensystemen können besonders komplex sein. Wenn Sie einen Fehler nicht beheben können, kann Ihnen der Kollmorgen Kundendienst weitere Unterstützung bieten.

ACHTUNG

Beseitigen Sie auftretende Fehler und Störungen unter Beachtung der Arbeitssicherheit. Fehlerbeseitigung nur durch qualifiziertes und eingewiesenes Fachpersonal.

INFO

Weitere Informationen zu Fehlermeldungen, Fehlerbeseitigung und zum Löschen von Fehlern finden Sie in der WorkBench-Onlinehilfe.

EtherCAT78 11 Index Fehlerrelais77 2 Feldbus Strang, Schnittstelle73 **Feuchtigkeit** im Betrieb31 Α Formieren82 Abkürzungen10 Ableitstrom46 G Abschirmung54 AKD Familie29 Gehäuseschutzart31 Anforderungen für Kabel und Verdrahtung .. 33 Geräuschemission31 Anschlussbild61 Globaler STO 38 Anschlüsse 60 Anzugsmoment, Stecker33 Ausgänge Basisdaten32 I/O Anschluss74 Digital76 Inbetriebnahme82-83 Fehlerrelais77 Inbetriebnahmesoftware83 Außer Betrieb nehmen18 Installation Electrisch52 В Mechanik49 Software WorkBench 85 Basis Test86 Belüftung31 K Berührungsschutz46 Bestimmungsgemäße Verwendung Allgemeines15 Kondensator Module67 Safe Torque Off39 Konformität WorkBench Setup Software83 Brems-Chopper35 EAC24 Bremswiderstand, Schnittstelle66 REACH24 RoHS24 D UL, cUL22 DC Power Strang, Schnittstelle73 L Demontage19 Digitale Eingänge75 Lagerung18 Dokument Revisionen93 Dynamisches Bremsen35 Ν Ε Netzspannung, Schnittstelle63 EAC24 Nicht bestimmungsgemäße Verwendung Ein- und Ausschaltverhalten36 Allgemeines16 Einbaulage31 Safe Torque Off39 Eingänge Basisdaten32 P Digital75 ENABLE75 PC Anschluss79 Safe Torque Off38 Produktidentifizierung18 Einsatzhöhe31 Entsorgung 20

Erdung54

K	2
REACH 24 Reaktionszeit STO 35 Reparatur 15 RoHS 24	
S	
Safe Torque Off 38 Safe Torque Off (STO) 38 Schleifringe 76 Schwingungen 37 Service Schnittstelle 78 Sicherheitshinweise 12 Allgemeines 12 Safe Torque Off 38 Sicherungen 37 Stapelhöhe 18 Lagerung 18 Transport 18 Stecker 33 Steckerzuordnungen 60 STO Signale 77 Störungshilfe 85	
т	
Taster B1 80 Temperatur im Betrieb 37 Lagerung 18 Transport 18 Transport 18 Typenschild 26 Typenschlüssel 27	 3 3 5
U	
UL Markings	
V	
Verdrahtung59Verschmutzungsgrad37Versorgungsnetze62Verwendete Normen17Verwendete Symbole9	1 <u>2</u> 1
W	
Wartung	.

12 Bisher erschienene Ausgaben

Ausgabe	Bemerkungen
A, 11/2013	Erste Ausgabe
B, 05/2014	KCM RS422 interface an X4 und Ready Kontakt neu, KCM Einschaltreihenfolge neu, Kapitel STO aktualisiert
C, 12/2014	Patente aktualisiert, Fehlerkorrektur
D, 06/2015	STO zertifiziert, UL gelistet, EAC zertifiziert, Hinweise zur Absicherung komplettiert, Leistungsstecker-Nennspannungen korrigiert, RoHS/REACH Informationen, Informationen zur Formierung
E, 12/2015	KCM Anschluss korrigiert, Hinweis auf Schleifringe und Schaltschrankdurchführung, statische IP Adressierung entfernt, Lieferumfang erweitert, Bestimmungsgemäße Verwendung (DC Versorgung / Gruppierung) erweitert, Hinweise auf KSM entfernt, Ausgangsleistung in kVA, NSR 2014/35/EG, EMVR 2014/30/EG
F, 09/2016	Warnhinweise aktualisiert, Hinweise Projektierungshandbuch, Warnschilder beschrieben, UL Markings aktualisiert, Leistungsschalter entfernt von UL-Zulassung , Netzfrequenz 40-70Hz, SCCR 42kA
G, 10/2017	Sicherheitskennzahl MTTFd neu, Referenz zu sicheren Schleifringen (Stemmann)
H, 02/2018	Typenschlüssel (Mx Typen entfernt), Warenzeichen-Liste aktualisiert

WISSENSWERTES ÜBER KOLLMORGEN

Kollmorgen ist ein führender Anbieter von Antriebssystemen und Komponenten für den Maschinenbau. Dank großem Know-how im Bereich Antriebssysteme, höchster Qualität und umfassender Fachkenntnisse bei der Verknüpfung und Integration von standardisierten und spezifischen Produkten liefert Kollmorgen optimale Lösungen, die mit Leistung, Zuverlässigkeit und Bedienerfreundlichkeit bestechen und Maschinenbauern einen wichtigen Wettbewerbsvorteil bieten.

Besuchen Sie das <u>KollmorgenDeveloper Network</u>. Stellen Sie Fragen an die Community, durchsuchen Sie die "Knowledge Base", laden Sie Dateien herunter und schlagen Sie Verbesserungen vor.

Nordamerika

KOLLMORGEN 201 West Rock Road Radford, VA 24141, USA

Web:www.kollmorgen.comMail:support@kollmorgen.comTel.:+1 - 540 - 633 - 3545

Fax: +1 - 540 - 639 - 4162

Europa

KOLLMORGEN Europe GmbH

Pempelfurtstr. 1

40880 Ratingen, Germany

 Web:
 www.kollmorgen.com

 Mail:
 technik@kollmorgen.com

 Tel.:
 +49 - 2102 - 9394 - 0

 Fax:
 +49 - 2102 - 9394 - 3155

Südamerika

KOLLMORGEN Avenida Tamboré - 1077 Tamboré Barueri - SP Brasil

CEP: 06460-000, Brazil

Web: <u>www.kollmorgen.com</u> **Tel.:** +55 11 4191-4771

China und SEA

KOLLMORGEN

Floor 4, Building 9, No. 518,

North Fuquan Road, Changning District,

Shanghai 200335, China

Web: www.kollmorgen.cn

Mail: sales.china@kollmorgen.com

Tel.: +86 - 400 661 2802

KOLLMORGEN