AKD®, AKD® BASIC, AKD® PDMM

Betriebsanleitung

Ausgabe: AG, Mai 2022

Gültig für AKD, AKD BASIC Hardware Revision E / F Gültig für AKD BASIC-I/O Hardware Revision EA / FA Gültig für AKD PDMM Hardware Revision EB / FB

Bestellnummer: 903-200003-01 Übersetzung des Originaldokumentes

Für einen ordnungsgemäßen und sicheren Gebrauch diesen Anleitungen folgen. Für künftige Verwendung aufbewahren.

Bisher erschienene Ausgaben:

Ausgabe	Bemerkungen
	Den Lebenslauf dieses Dokuments finden Sie unter (→ # 215)
	X10 Tabelle Pinbelegung Sense und Thermal Control aktualisiert, RoHS Statement, Lieferumfang geändert (Europäischer Unterschied), alle X9 Anschlusspläne (Buchse=>Stecker) und Pin 6 Schirm über Kondensator, UL-Markings: Stromreduzierung, DC-Bus Link: Beispiele, Stromreduzierung ab 40°C, "Verwendete Standards" entfernt, feste Resover Frequenz
AD, 10/2020	Product Safety Guide ersetzt durch Safety Notes, Master-Slave X9 Korrektur, X3 Belegung AKD-48A korrigiert, AKD-48A Netzanschlussplan verbessert, STO Eingang Stromreduzierung, SCCR 65 kA, Hardware Revision F, UL Markings aktualisiert, DIGI-In38:8mA, Typenschlüssel aktualisiert
	AKD-48 A Absicherung Bremswiderstand, Hinweis Motorfrequenz in Kapitel Leistungsdaten, NC Variante, Spannungsnennwert für 03, 06 und 12 Ampere Modelle aktualisiert
AF U1//U//	UK-Konformität, KCM-Texte entfernt (nicht mehr verfügbar), 65 kA SCCR und Halbleitersicherungen hinzugefügt
AG, 05/2022	ND Variante, EAC Konformität entfernt

Hardware-Revision (HR)

AKD- B/P/T-NA	AKD- B/P/T-NB	AKD- B/P/T-NC	AKD- B/P/T-ND	KD-M	AKD- T-IC	Firmware/ WorkBench	KAS IDE	Bemerkungen
Α	-	-	-	-	-	ab 1.3	-	Startrevision, Export kontrolliert
С	-	-	-	-	-	ab 1.5	-	STO qualifiziert, PROFINET RT freigegeben, Export kontrolliert
-	D	-	-	DB	DA	ab 1.6	ab 2.5	Steuerkarte Rev. 9, AKD-M Star- trevision, AKD-T-IC Startrevision, Export kontrolliert
D	E	-	-	EB	EA	ab 1.13	ab 2.9	Rückverfolgbarkeit wegen der Export Klassifizierung, UL508c gelistet, keine Export- klassifizierung
F	F	-	-	FB	FA	ab 1.13	ab 2.9	UL61800-5-1 gelistet, keine Exportklassifizierung, STO Ein- gang Strombegrenzung
-	-	E	-	EB	EA	ab 1.20	ab 2.9	Steuerkarte Rev. 9 mit erweitertem FPGA
-	-	F	-	FB	FA	ab 1.20	ab 2.9	Steuerkarte Rev. 9 mit erwei- tertem FPGA, gilt nur für MV Modelle 003, 006, 012
-	-	-	E	EB	EA	ab 1.22	ab 3.07	Steuerkarte Rev. 10
-	-	-	F	FB	FA	ab 1.22	ab 3.07	Steuerkarte Rev. 10, gilt nur für MV Modelle 003, 006, 012

Warenzeichen

- AKD ist ein eingetragenes Warenzeichen der Kollmorgen Corporation.
- EnDat ist ein eingetragenes Warenzeichen der Dr. Johannes Heidenhain GmbH.
- EtherCAT® ist ein eingetragenes Warenzeichen und patentierte Technologie, lizensiert von der Beckhoff Automation GmbH, Deutschland.
- Ethernet/IP ist ein eingetragenes Warenzeichen der ODVA, Inc.
- Ethernet/IP Communication Stack: copyright (c) 2009, Rockwell Automation.
- MODBUS ist ein eingetragenes Warenzeichen der SCHNEIDER ELECTRIC USA, INC...
- sercos® ist ein eingetragenes Warenzeichen des sercos® international e.V.
- HIPERFACE ist ein registriertes Warenzeichen der Max Stegmann GmbH.
- PROFINET ist ein eingetragenes Warenzeichen der PROFIBUS und PROFINET International (PI).
- WINDOWS ist ein eingetragenes Warenzeichen der Microsoft Corporation.

Aktuelle Patente:

- US Patent 8,154,228 (Dynamic Braking For Electric Motors)
- US Patent 8,214,063 (Auto-tune of a Control System Based on Frequency Response)

Patente, die sich auf Feldbus Funktionen beziehen, sind im jeweiligen Feldbus Handbuch gelistet.

Technische Änderungen zur Verbesserung der Leistung der Geräte ohne vorherige Ankündigung vorbehalten.

Dieses Dokument ist geistiges Eigentum von Kollmorgen. Alle Rechte vorbehalten. Kein Teil dieses Werkes darf in irgendeiner Form (Fotokopie, Mikrofilm oder in einem anderen Verfahren) ohne schriftliche Genehmigung von Kollmorgen reproduziert oder elektronisch verarbeitet, vervielfältigt oder verbreitet werden.

1 Inhaltsverzeichnis

1	Inhaltsverzeichnis	4
2	Allgemeines	10
	2.1 Über diese Betriebsanleitung	
	2.2 Hinweise für die Online-Ausgabe (PDF-Format)	
	2.3 Verwendete Symbole	
	2.4 Verwendete Abkürzungen	13
3	Sicherheit	
	3.1 Das müssen Sie beachten	15
	3.2 Bestimmungsgemäße Verwendung	18
	3.3 Bestimmungswidrige Verwendung	
	3.4 Warnhinweise auf dem Produkt	
4	Produkt Lebenszyklus, Handhabung	
	4.1 Transport	
	4.2 Verpackung	
	4.3 Lagerung	
	4.4 Installation, Setup und Normalbetrieb	
	4.5 Außer Betrieb nehmen	
	4.6 Wartung und Reinigung	
	4.7 Demontage	
	4.8 System Reparatur	
	4.9 Entsorgung	
5	Zulassungen	
	5.1 Konformität mit UL/cUL	
	5.1.1 Modelle mit Hardware Revision F, FA oder FB	
	5.1.2 Modelle mit Hardware Revision A, C, D, E, DB, DA, EB oder EA	
	5.1.3 UL Markings / Marquages UL	
	5.2 Konformität mit EU	
	5.2.1 Europäische Richtlinien und Normen für Maschinenkonstrukteure	
	5.2.2 Konformität mit RoHS	
	5.2.3 Konformität mit REACH	31
	5.2.4 Safe Torque Off (STO)	32
	5.3 Konformität mit UK	
6	Produktidentifizierung	33
	6.1 Lieferumfang	
	6.2 Typenschild	34
	6.3 Typenschlüssel	35
7		
	7.1 Die digitalen Servoverstärker der AKD Reihe	
	7.2 Umgebungsbedingungen, Belüftung und Einbaulage	
	7.3 Mechanische Daten	
	7.4 Ein-/Ausgänge	
	7.5 Massesystem	
	7.6 Elektrische Daten AKD-xzzz06	
	7.7 Elektrische Daten AKD-xzzz07	
	7.8 Leistungsdaten	
	7.9 Empfohlene Anzugsmomente	
	7.10 Sicherungen und Leistungsschalter	
	7.10.1 Sicherungen für Leistungsversorgung (≤ 5.000 rms)	
	7.10.2 Sicherung für 24-V-Spannungsversorgung	
	7.10.3 Sicherung für externen Bremswiderstand	
	-	

	7.10.4 Sicherung für verbundene Zwischenkreise	
	7.11 Stecker	45
	7.12 Anforderungen für Kabel und Verdrahtung	47
	7.12.1 Allgemeines	
	7.12.2 Kabelquerschnitte und -anforderungen	
	7.13 Dynamisches Bremsen	
	7.13.1 Brems-Chopper	48
	7.13.2 Funktionsbeschreibung	
	7.13.3 Technische Daten für AKD-xzzz06	
	7.13.4 Technische Daten für AKD-xzzz07	50
	7.14 Ein- und Ausschaltverhalten	
	7.14.1 Einschaltverhalten im Standardbetrieb	
	7.14.2 Ausschaltverhalten	
	7.14.2.1 Ausschaltverhalten unter Verwendung des Befehls DRV.DIS	
	7.14.2.2 Ausschaltverhalten unter Verwendung eines digitalen Eingang (kontrollierter Stopp)	
	7.14.2.3 Ausschaltverhalten unter Verwendung des HW-Enable-Eingangs	
	7.14.2.4 Ausschaltverhalten bei Auftreten eines Fehlers	
	7.15 Stopp/Not-Halt/ Not-Aus	
	7.15.1 Stopp	
	7.15.2 Not-Halt	
	7.15.3 NOT-AUS	
	7.16 Safe Torque Off (STO)	
	7.16.1 Sicherheitstechnische Kennzahlen	
	7.16.2 Sicherheitshinweise	
	7.16.3 Bestimmungsgemäße Verwendung	
	7.16.4 Nicht bestimmungsgemäße Verwendung	
	7.16.5 Technische Daten und Anschluss	
	7.16.6 Einbauraum, Verdrahtung	
	7.16.7 OSSD Testpulse	
	7.16.8 Funktionsbeschreibung	
	7.16.8.1 Signaldiagramm	
	7.16.8.2 Anschlussbeispiele	
	7.16.8.3 Funktionstest	
	7.17 Berührungsschutz	
	7.17.1 Ableitstrom	
	7.17.2 Fehlerstromschutzschalter (RCD)	
_	7.17.3 Schutztrenntransformatoren	
8		
	8.1 Wichtige Hinweise	
	8.2 Anleitung für die mechanische Installation	
	8.3 Mechanische Zeichnungen Standard Breite	
	8.3.1 Schaltschrankeinbau AKD-xzzz06, Standard Breite	
	8.3.2 Schaltschrankeinbau AKD-xzzz07, Standard Breite	
	8.3.3 Maße AKD-xzzz06, Standard Breite	
	8.3.4 Maße AKD-xzzz07, Standard Breite	
	8.4 Mechanische Zeichnungen erhöhte Breite	
	8.4.1 Schaltschrankeinbau, Beispiel mit AKD-M00306	
	8.4.2 Schaltschrankeinbau, Beispiel mit AKD-M00307	
	8.4.3 Maße AKD-xzzz06, erhöhte Breite	
_	8.4.4 Maße AKD-xzzz07, erhöhte Breite	
9		
	9.1 Wichtige Hinweise	
	9.2 Anleitung für die elektrische Installation	
	9.3 Verdrahtung	86

9.4 Komponenten eines Servosystems	87
9.5 Anschlüsse AKD-B, AKD-P, AKD-T	
9.5.1 Steckerzuordnung AKD-x00306, AKD-x00606	
9.5.2 Anschlussbild AKD-x00306, AKD-x00606	
9.5.3 Steckerzuordnung AKD-x01206	
9.5.4 Anschlussbild AKD-x01206	
9.5.5 Steckerzuordnung AKD-x02406 und AKD-x00307 bis 02407	
9.5.6 Anschlussbild AKD-x02406 und AKD-x00307 bis 02407	
9.5.7 Steckerzuordnung AKD-x04807	
9.5.8 Anschlussbild AKD-x04807	
9.6 Anschlüsse AKD-M	
9.6.1 Steckerzuordnung AKD-M00306, AKD-M00606	
9.6.2 Anschlussbild AKD-M00306, AKD-M00606	
9.6.3 Steckerzuordnung AKD-M01206	
9.6.4 Anschlussbild AKD-M01206	
9.6.5 Steckerzuordnung AKD-M02406, AKD-M00307 bis AKD-M02407	
9.6.6 Anschlussbild AKD-M02406, AKD-M00307 bis AKD-M02407	
9.6.7 Steckerzuordnung AKD-M04807	
9.6.8 Anschlussbild AKD-M04807	
9.7 EMV Störunterdrückung	
9.7.1 Empfehlungen für die Reduktion von Störungen	
9.7.2 Schirmung mit externer Schirmschiene	
9.7.2.1 Schirmungskonzept	
9.7.2.2 Schirmschiene	
9.7.3 Schirmanschluss an den Servoverstärker	
9.7.3.1 Schirmbleche	
9.7.3.2 Schirmanschlussklemmen	
9.7.3.3 Motorstecker X2 mit Schirmanschluss	
9.8 Anschluss der Spannungsversorgung	
9.8.1 Anschluss an verschiedene Versorgungsnetze AKD-xzzz06 (120 V bis 240 V)	
9.8.2 Anschluss an verschiedene Versorgungsnetze AKD-xzzz07 (240 V bis 240 V)	
9.8.3 24 V-Hilfsspannungsversorgung (X1)	
9.8.3.1 AKD-x003 bis 024, Stecker X1	
9.8.3.2 AKD-x048, Stecker X1	
9.8.4 Anschluss an die Netzversorgung (X3, X4)	
9.8.4.1 Dreiphasiger Anschluss	
9.8.4.2 Ein-/Zweiphasiger Anschluss (nur AKD-x00306 bis AKD-x01206)	
9.9 DC-Bus-Zwischenkreis (X3, X14)	
9.9.1 Zwischenkreis Topologie mit Y-Steckern (max. 24A)	
9.9.2 Zwischenkreis Topologie mit Totokem (max. 2474)	
9.9.3 Externer Bremswiderstand (X3)	
9.9.3.1 AKD-x003 bis 024, Stecker X3	
9.9.3.2 AKD-x048, Stecker X3	
9.10 Motor Leistungsanschluss (X2)	
9.10.1 AKD-x003 bis 024, Leistungsstecker X2	
9.10.2 AKD-x048, Leistungsstecker X2	
9.11 Motorbremse Anschluss (X2, X15, X16)	
9.11.1 AKD-x003 bis 024, Stecker X2	
9.11.2 AKD-x048, Stecker X15, X16	
9.11.3 Funktionalität	
9.12 Feedback Anschluss (X10, X9, X7)	
9.12.1 Feedback Stecker (X10)	
9.12.2 Feedback Stecker (X9)	
9.12.3 Feedback Stecker (X7)	

9.12.4 Resolver	
9.12.5 SFD	130
9.12.6 SFD3	
9.12.7 Hiperface DSL	
9.12.8 Encoder mit BiSS	
9.12.8.1 BiSS (Mode B) Analog	
9.12.8.2 BiSS (Mode C) Digital	
9.12.9 Sinus Encoder mit EnDat 2.1	
9.12.10 Encoder mit EnDat 2.2	
9.12.10.1 Anschluss an X10	
9.12.10.2 Anschluss an X9 und X8	
9.12.11 Sinus Encoder mit Hiperface	
9.12.12 Sinus-Encoder mit Hall	
9.12.13 Inkrementalgeber	
9.12.14 Hall Sensoren	
9.12.15 Tamagawa Smart Abs Encoder	
9.13 Elektronisches Getriebe, Master-Slave Betrieb (X9, X7)	
9.13.1 Technische Eigenschaften und Pinbelegung	
9.13.1.1 Stecker X7 Eingänge	
9.13.1.2 Stecker X9 Eingänge	
9.13.1.3 Stecker X9 Ausgänge	
9.13.2 Encoder als zweites Feedback	
9.13.2.1 Inkrementalgeber Eingang 5 V (X9)	145
9.13.2.2 Inkrementalgeber Eingang 24 V (X7)	145
9.13.2.3 Encoder mit EnDat 2.2 Eingang 5 V (X9)	146
9.13.3 Impuls / Richtung	
9.13.3.1 Impuls / Richtung Eingang 5 V (X9)	147
9.13.3.2 Impuls / Richtung Eingang 5 V bis 24 V (X7)	
9.13.4 CW / CCW	148
9.13.4.1 CW / CCW Eingang 5 V (X9)	
9.13.4.2 CW / CCW Eingang 24 V (X7)	148
9.13.5 Encoder Emulation (EEO)	149
9.13.5.1 Emulation Inkrementalgeber	149
9.13.5.2 Emulation CW / CCW	149
9.13.5.3 Emulation Impuls / Richtung	150
9.13.6 Master-Slave-Steuerung	150
9.14 E/A-Anschluss	
9.14.1 Übersicht	
9.14.1.1 E/A-Stecker X7 und X8 (alle AKD Varianten)	151
9.14.1.2 Stecker X9 (alle AKD Varianten)	
9.14.1.3 E/A-Stecker X21, X22, X23 und X24 (nur AKD-T mit E/A Optionskarte)	
9.14.1.4 E/A-Stecker X35 und X36 (nur AKD-M)	155
9.14.2 Analoge Eingänge (X8, X24)	
9.14.3 Analoge Ausgänge (X8, X23)	157
9.14.4 Digitale Eingänge (X7/X8)	158
9.14.4.1 Digitale Eingänge 1 und 2	
9.14.4.2 Digitale Eingänge 3 bis 7	
9.14.4.3 Digitaler Eingang 8 (ENABLE)	
9.14.5 Digitale Eingänge mit I/O Optionskarte (X21, X22)	161
9.14.6 Digitale Eingänge (X35/X36) bei AKD-M	163
9.14.7 Digitale Ausgänge (X7/X8/X9)	
9.14.7.1 Digitale Ausgänge 1 und 2	165
9.14.7.2 Digital-In/Out 9 bis 11	166
9.14.7.3 Fehlerrelais	166

9.14.8 Digitale Ausgänge mit I/O Optionskarte (X23/X24)	
9.14.8.1 Digitale Ausgänge 21 bis 24 und 26 bis 29	167
9.14.8.2 Digitale Relaisausgänge 25, 30	170
9.14.9 Digitale Ausgänge (X35/X36) bei AKD-M	
9.14.9.1 Digitale Ausgänge 21 und 22	
9.15 LED-Anzeige	172
9.16 Drehschalter (S1, S2, RS1)	
9.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T	173
9.16.2 Drehschalter RS1 mit AKD-M	173
9.17 Taster (B1, B2, B3)	
9.17.1 Taster B1 bei AKD-B, -P, -T	174
9.17.2 Taster B1, B2, B3 bei AKD-M	
9.18 SD Speicherkarte	176
9.18.1 SD Karte mit I/O Optionskarte	176
9.18.2 SD Karte mit AKD-M	177
9.19 Ethernet Schnittstelle (X11X32)	178
9.19.1 Pinbelegung X11, X32	178
9.19.2 Bus Protokolle X11, X32	
9.19.3 Mögliche Netzwerkkonfigurationen	
9.19.4 Festlegen der IP Adresse AKD-B, AKD-P, AKD-T	180
9.19.5 Festlegen der IP Adresse AKD-M	182
9.19.6 Modbus TCP	183
9.20 CAN-Bus-Schnittstelle (X12/X13)	183
9.20.1 CAN-Bus Aktivierung bei AKD-CC Modellen	184
9.20.2 Baudrate für CAN-Bus	185
9.20.3 Stationsadresse für CAN-Bus	186
9.20.4 CAN-Bus-Abschluss	186
9.20.5 CAN-Bus-Kabel	186
9.20.6 CAN-Bus Anschlussbild	187
9.21 Motion-Bus-Schnittstelle (X5/X6/X11)	188
9.21.1 Pinbelegung X5/X6/X11	188
9.21.2 Bus-Protokolle X5/X6/X11	188
9.21.3 EtherCAT	189
9.21.3.1 EtherCAT Aktivierung bei AKD-CC Modellen	189
9.21.4 SynqNet	190
9.21.5 PROFINET	190
9.21.6 Ethernet/IP	190
9.21.7 sercos® III	191
10 Inbetriebnahme	192
10.1 Wichtige Hinweise	193
10.2 Setup AKD-B, AKD-P, AKD-T	194
10.2.1 Setup-Software WorkBench	194
10.2.2 Bestimmungsgemäße Verwendung	194
10.2.3 Beschreibung der Software	195
10.2.4 Hardware-Anforderungen	195
10.2.5 Betriebssysteme	195
10.2.6 Installation unter Windows 2000/XP/VISTA/7/8/10	196
10.2.7 Verstärkerschnelltest AKD-B, AKD-P, AKD-T	197
10.2.7.1 Auspacken, Montieren und Verdrahten des AKD	
10.2.7.2 Mindestverdrahtung zum Testen des Verstärkers ohne Last	
10.2.7.3 IP-Adresse einstellen	197
10.2.7.4 Verbindungen überprüfen	198
10.2.7.5 WorkBench Installieren und starten	198
10.2.7.6 IP-Adresse des Servoverstärkers in WorkBench eingeben	199

	400
10.2.7.7 Servoverstärker mit dem Setup-Assistenten freigeben	199
10.3 Setup AKD-M	200
10.3.1 Setup mit KAS IDE	200
10.3.2 Verstärkerschnelltest AKD-M	200
10.3.2.1 Auspacken, Montieren und Verdrahten des AKD PDMM	200
10.3.2.2 Mindestverdrahtung zum Testen des Verstärkers ohne Last	201
10.3.2.3 IP-Adresse einstellen	201
10.3.2.4 Verbindungen überprüfen	202
10.3.2.5 KAS IDE Installieren und starten	202
10.4 Fehler und Warnmeldungen	203
10.4.1 Fehler und Warnmeldungen AKD	203
10.4.2 Zusätzliche Fehlermeldungen AKD-T	208
10.4.3 Zusätzliche Fehler- und Warnmeldungen AKD-M	209
10.4.3.1 Warnungen	209
10.4.3.2 Fehler	210
10.5 Fehlersuche und -behebung beim AKD	211
11 Index	212
12 Bisher erschienene Ausgaben:	

2 Allgemeines

2.1	Über diese Betriebsanleitung	. 11
	Hinweise für die Online-Ausgabe (PDF-Format)	
2.3	Verwendete Symbole	12
2.4	Verwendete Abkürzungen	13

2.1 Über diese Betriebsanleitung

Die vorliegende *AKD Betriebsanleitung* beschreibt die digitalen AKD Servoverstärker und enthält Informationen zur sicheren Installation eines AKD. Eine digitale Version dieser Betriebsanleitung (PDF Format) befindet sich auf der mit dem Servoverstärker gelieferten DVD. Aktualisierungen der Betriebsanleitung können Sie von der Kollmorgen Website (www.kollmorgen.com) herunterladen.

Informationen zum Gebrauch des AKD bestehen aus:

- Safety Notes: mehrsprachiges Dokument mit Sicherheitsinformationen, gehört in Europa zum Lieferumfang, gedruckt auf DIN A5 Papier.
- Betriebsanleitung: Dieses Dokument, beschreibt die digitalen Servoverstärker AKD und enthält Informationen zur sicheren Installation eines AKD.
- WorkBench Online Hilfe: Beschreibt, wie Sie Ihren Servoverstärker in gängigen Applikationen benutzen. Sie bietet auch Tipps zur Optimierung der Systemleistung mit dem AKD. Die Online Hilfe beinhaltet den Parameter and Command Reference Guide mit der Dokumentation zu den Parametern und Befehlen, die für die Programmierung des AKD verwendet werden.
- CAN-BUS Kommunikation: Beschreibt die Verwendung des Servoverstärkers in CANopen Applikationen.
- EtherCAT Kommunikation: Beschreibt die Verwendung des Servoverstärkers in EtherCAT Applikationen.
- Ethernet/IP Kommunikation: Beschreibt die Verwendung des Servoverstärkers in Ethernet/IP Applikationen.
- sercos[®] III Kommunikation: Beschreibt die Verwendung des Servoverstärkers in sercos[®] Applikationen.
- PROFINET RT Kommunikation: Beschreibt die Verwendung des Servoverstärkers in PROFINET RT Applikationen.
- *SynqNet Kommuniation*: Beschreibt die Verwendung des Servoverstärkers in SynqNet Applikationen.
- Zubehör Handbuch: Dieses Handbuch enthält technische Daten und Maßzeichnungen von Zubehör wie Kabeln und Bremswiderständen, die mit AKD benutzt werden. Von diesem Handbuch existieren regional unterschiedliche Versionen.

2.2 Hinweise für die Online-Ausgabe (PDF-Format)

Das Dokument bietet verschiedene Funktionen, um die Navigation zu vereinfachen.

Lesezeichen	Das Inhaltsverzeichnis und der Index enthalten aktive Lesezeichen.	
Inhaltsverzeichnis und Index im Text	Die Zeilen im Inhaltsverzeichnis und Index sind aktive Querverweise. Klicken Sie auf eine Zeile, um zur entsprechenden Seite zu gelangen.	
Seitennummern im Text	Seitennummern im Text mit Querverweisen sind aktive Verknüpfungen.	

2.3 Verwendete Symbole

Warnsymbole

Symbol	Bedeutung
▲GEFAHR	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zum Tode oder zu schweren, irreversiblen Verletzungen führen wird.
<u> </u>	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zum Tode oder zu schweren, irreversiblen Verletzungen führen kann.
≜VORSICHT	Weist auf eine gefährliche Situation hin, die, wenn sie nicht vermieden wird, zu leichten Verletzungen führen kann.
ACHTUNG	Dieses Symbol weist auf eine Situation hin, die, wenn sie nicht vermieden wird, zu Beschädigung von Sachen führen kann.
INFO	Dieses Symbol weist auf wichtige Informationen hin.
<u>^</u>	Warnung vor einer Gefahr (allgemein). Die Art der Gefahr wird durch den nebenstehenden Warntext spezifiziert.
4	Warnung vor gefährlicher elektrischer Spannung und deren Wirkung.
	Warnung vor Gefahr durch heiße Oberfläche.
	Warnung vor Gefahr durch hängende Last.
	Warnung vor Gefahr durch automatischem Anlauf.

Zeichnungssymbole

Symbol	Beschreibung	Symbol	Beschreibung
	Signalmasse	\	Diode
////	Gehäusemasse	中	Relais
	Schutzerde		Abschaltverzögertes Relais
ф	Widerstand		Arbeitskontakt
ф	Sicherung	7	Ruhekontakt

2.4 Verwendete Abkürzungen

Abkürzung	Bedeutung	
(→ #53)	Diese Symbolik bedeutet in diesem Dokument: siehe Seite 53.	
AGND	Analoge Masse	
CE	Europäische Gemeinschaft	
СОМ	Serielle Schnittstelle für einen PC	
DCOMx	Kommunikationsleitung für digitale Eingänge (mit x=7 oder 8)	
Disk	Speichermedium (Festplatte, CDRom, DVD)	
EEPROM	Elektrisch löschbarer programmierbarer Speicher	
EMV	Elektromagnetische Verträglichkeit	
F-SMA	Stecker für Lichtwellenleiter gemäß EN 60874-2	
KAS	Kollmorgen Automation Suite	
KAS IDE	Entwicklungsumgebung (Kollmorgen Automation Suite Integrated Development Environment) benötigt für AKD PDMM Gerätevarianten	
LED	Leuchtdiode	
LSB	Niederwertiges Byte (oder Bit)	
MSB	Höchstwertiges Byte (oder Bit)	
NI	Nullimpuls	
PC	Personal Computer	
PE	Schutzerde	
SPS	Speicherprogrammierbare Steuerung	
PWM	Pulsweitenmodulation	
RAM	Arbeitsspeicher (flüchtiger Speicher)	
RBrems/RB	Bremswiderstand	
RBext	Externer Bremswiderstand	
RBint	Interner Bremswiderstand	
RCD	Fehlerstromschutzschalter (FI-Schalter)	
RES	Resolver	
ROD	Inkrementalgeber (A quad B)	
S1	Dauerbetrieb	
Safe Torque Off	Safe Torque Off (STO; sicher abgeschaltetes Moment)	
VAC	Volt, Wechselspannung	
V DC	Volt, Gleichspannung	

3 Sicherheit

3.1	Das müssen Sie beachten	15
3.2	Bestimmungsgemäße Verwendung	18
	Bestimmungswidrige Verwendung	
	Warnhinweise auf dem Produkt	

3.1 Das müssen Sie beachten

Dieses Kapitel hilft Ihnen, Gefährdungen für Personen und Sachen zu erkennen und zu vermeiden.

Fachpersonal erforderlich

Die Geräte sind für industrielle Anwendungen bestimmt. Maschinenbauer müssen qualifiziertes Personal einsetzen. Qualifiziertes Personal sind Personen, die für Transport, Installation, Inbetriebnahme und Betrieb von elektrischen Antrieben ausgebildet sind.

- Transport, Lagerung, Auspacken: nur durch Personal mit Kenntnissen in der Behandlung elektrostatisch gefährdeter Bauelemente.
- Mechanische Installation: nur durch Personal mit Kenntnissen in mechanischen Arbeiten
- Elektrische Installation: nur durch Personal mit Kenntnissen in elektrotechnischen Arbeiten.
- Inbetriebnahme: nur durch Fachleute mit weitreichenden Kenntnissen in den Bereichen Elektrotechnik und Antriebstechnik.

Das Fachpersonal muss ebenfalls ISO 12100 / IEC 60364 / IEC 60664 und nationale Unfallverhütungsvorschriften kennen und beachten.

Dokumentation lesen

Lesen Sie vor der Montage und Inbetriebnahme die vorliegende Dokumentation. Falsches Handhaben der Geräte kann zu Personen- oder Sachschäden führen. Der Betreiber muss daher sicherstellen, dass alle mit Arbeiten am Antriebssystem betrauten Personen das Handbuch gelesen und verstanden haben und dass die Sicherheitshinweise in diesem Handbuch beachtet werden.

Hardware Revision prüfen

Prüfen Sie die Hardware-Revisionsnummer des Produkts (siehe Typenschild). Die Nummer ist die Verknüpfung zwischen dem Produkt und dem Handbuch.

Diese Revisionsnummer muss mit der Hardware-Revisionsnummer auf dem Deckblatt der Betriebsanleitung übereinstimmen.

Technische Daten beachten

Halten Sie die technischen Daten und die Angaben zu den Anschlussbedingungen ein. Wenn zulässige Spannungswerte oder Stromwerte überschritten werden, können die Geräte geschädigt werden. Ein ungeeigneter Motor oder fehlerhafte Verdrahtung beschädigen die Systemkomponenten. Prüfen Sie die Kombination aus Servoverstärker und Motor. Gleichen Sie die Nennspannung und den Nennstrom der Komponenten ab.

Risikobeurteilung erstellen

Der Hersteller der Maschine muss eine Risikobeurteilung für die Maschine erstellen und geeignete Maßnahmen treffen, dass unvorhergesehene Bewegungen nicht zu Verletzungen oder Sachschäden führen können. Aus der Risikobeurteilung leiten sich eventuell auch zusätzliche Anforderungen an das Fachpersonal ab.

Automatischer Wiederanlauf

Der Antrieb kann abhängig von der Parametereinstellung nach dem Einschalten der Netzspannung, bei Spannungseinbrüchen oder Unterbrechungen automatisch anlaufen. Es besteht die Gefahr von tödlichen oder schweren Verletzungen für Personen, die in der Maschine arbeiten.

Wenn der Parameter DRV.ENDEFAULT auf 1 gesetzt ist, warnen Sie an der Maschine mit einem Warnschild (Warnung: Automatischer Wiederanlauf nach Einschalten!) und stellen Sie sicher, dass ein Einschalten der Netzspannung nicht möglich ist, während sich Personen im gefährdeten Bereich der Maschine aufhalten. Wenn Sie einen Unterspannungsschutz benutzen, beachten Sie Kapitel 7.5 der EN 60204-1:2006.

Elektrostatisch empfindliche Bauteile

Die Geräte enthalten elektrostatisch gefährdete Komponenten, die durch unsachgemäßen Gebrauch beschädigt werden können. Entladen Sie Ihren Körper elektrostatisch, bevor Sie das Gerät berühren. Vermeiden Sie es, hoch isolierende Stoffe zu berühren (Kunstfasern, Plastikfolie usw.). Legen Sie das Gerät auf eine leitfähige Oberfläche.

Heiße Oberfläche

Die Oberflächen von Verstärkern können im Betrieb sehr heiß werden. Das Gehäuse kann Temperaturen über 80 °C erreichen. Gefahr leichter Verbrennungen. Messen Sie die Temperatur. Warten Sie, bis das Gehäuse auf unter 40 °C abgekühlt ist, bevor Sie es berühren.

Erdung

Stellen Sie die ordnungsgemäße Erdung des Gerätes mit der PE-Schiene im Schaltschrank als Bezugspotential sicher. Gefahr durch elektrischen Schlag.

Ohne niederohmige Erdung ist keine personelle Sicherheit gewährleistet.

Ableitstrom

Da der Ableitstrom zu PE mehr als 3,5 mA beträgt, muss in Übereinstimmung mit der Norm EN61800-5-1 der PE-Anschluss entweder doppelt ausgeführt oder ein Anschlusskabel mit einem Querschnitt von >10 mm² verwendet werden. Abweichende Maßnahmen sind in Übereinstimmung mit regionalen Vorschriften möglich.

Hohe Spannungen

Die Geräte erzeugen hohe elektrische Spannungen bis zu 900 V. Öffnen oder berühren Sie die Geräte während des Betriebs nicht. Halten Sie während des Betriebs alle Abdeckungen und Schaltschranktüren geschlossen.

Während des Betriebes können Servoverstärker ihrer Schutzart entsprechend spannungsführende, blanke Teile besitzen.

An spannungsführenden Teilen besteht unmittelbare Lebensgefahr. Verbaute Schutzmaßnahmen wie Isolationen oder Abschirmungen dürfen nicht entfernt werden. Arbeiten an der elektrischen Anlage sind nur durch geschultes und eingewiesenes Personal, unter Beachtung der Vorschriften für Arbeitssicherheit und nur bei ausgeschalteter und gegen Wiedereinschalten gesicherter elektrischer Versorgung zulässig.

Trennen Sie nie die elektrischen Verbindungen zum Servoverstärker, während dieser Spannung führt. Es besteht die Gefahr von Lichtbogenbildung mit Verletzungsgefahr (Verbrennungen oder Erblindung) und Schäden an Kontakten. Warten Sie nach dem Trennen des Verstärkers von der Versorgungsspannung mindestens 7 Minuten, bevor Sie Geräteteile, die potenziell Spannung führen (z. B. Kontakte), berühren oder Anschlüsse trennen.

Messen Sie stets die Spannung am DC-Bus-Zwischenkreis und warten Sie, bis die Spannung unter 50 V gesunken ist, bevor Sie Komponenten berühren.

Funktionale Sicherheit

Die Sicherheitsfunktion STO im AKD ist qualifiziert. Die Bewertung der Sicherheitsfunktion nach EN13849 oder EN 62061 ist abschließend durch den Anwender zu erstellen.

Verstärkte Isolierung

Im Motor eingebaute Temperaturfühler, Motorhaltebremsen und Rückführsysteme müssen mit einer verstärkten Isolierung (gem. EN 61800-5-1) gegenüber Systemkomponenten mit Leistungsspannung versehen sein, entsprechend der geforderten Prüfspannung der Applikation. Alle Kollmorgen Komponenten entsprechen diesen Anforderungen.

Geräte nicht verändern

Veränderung an der Servoverstärker Hardware ohne Erlaubnis des Herstellers sind nicht zulässig. Öffnen der Geräte bedeutet Verlust der Gewährleistung.

3.2 Bestimmungsgemäße Verwendung

Die AKD Servoverstärker sind ausschließlich zum Antrieb von geeigneten Servomotoren mit geschlossenem Drehmoment-, Drehzahl- und/oder Positionsregelkreis vorgesehen.

AKD Servoverstärker sind Komponenten, die in elektrische Anlagen oder Maschinen eingebaut werden und nur als integrierte Bestandteile dieser Anlagen oder Maschinen betrieben werden können. Der Hersteller der Maschine muss eine Risikoanalyse der Maschine erstellen. Wenn die Servoverstärker in Maschinen oder Anlagen eingebaut werden, darf der Antrieb nicht verwendet werden, bis sichergestellt wurde, dass die Maschine oder Anlage die regionalen Richtlinien erfüllt.

Schaltschrank und Verkabelung

Servoverstärker dürfen nur in geschlossenen Schaltschränken betrieben werden, die sich für die Umgebungsbedingungen eignen (→ # 36). Um die Temperatur innerhalb des Schaltschranks unter 40 °C zu halten, ist möglicherweise eine Belüftung oder Kühlung erforderlich.

Verwenden Sie für die Verdrahtung ausschließlich Kupferleiter. Der Leiterquerschnitt kann von der Norm EN 60204 abgeleitet werden (alternativ für AWG-Leiterquerschnitte: NEC-Tabelle 310-16, Spalte 75 °C).

Spannungsversorgung

Die Servoverstärker der AKD Serie können über ein- oder dreiphasige industrielle Versorgungsnetze wie folgt versorgt werden:

Modelle mit Hardware Revision F, FA oder FB

 AKD-xzzz06: 1 oder 3 phasiges, industrielles Versorgungsnetz (100-240 V).

Modelle mit Hardware Revision A, C, D, E, DB, DA, EB oder EA

- AKD-xzzz06: 1 oder 3 phasiges, industrielles Versorgungsnetz (120 V / 240 V).
- AKD-xzzz07: 3 phasiges, industrielles Versorgungsnetz (240 V, 400 V, 480 V).

Der Anschluss an Versorgungsnetze mit anderen Spannungen ist mit einem zusätzlichen Trenntransformator möglich (→ # 110).

AKD-x04807: Bei Netzspannungs-Unsymmetrie >3% muss eine Netzdrossel 3L0,24-50-2 verwendet werden.

Periodische Überspannungen zwischen Außenleitern (L1, L2, L3) und Gehäuse des Servoverstärkers dürfen 1000V (Amplitude) nicht überschreiten. Gemäß EN 61800 dürfen Spannungsspitzen (< 50 μ s) zwischen den Außenleitern 1000V nicht überschreiten. Spannungs-spitzen (< 50 μ s) zwischen Außenleitern und Gehäuse dürfen 2000V nicht überschreiten.

EMV-Filtermaßnahmen bei AKD-xzzz06 muss der Anwender durchführen.

Gruppeninstallationen und mit Gleichstrom versorgte Antriebe

INFO

Der AKD wurde weder von Kollmorgen, UL noch dem TÜV für Gruppeninstallation untersucht. Es sind keine Werte für eine DC Spannungsversorgung definiert.

Gruppeninstallationen müssen in Bezug auf verzweigte Stromkreise*, Drahtquerschnitt, Nennspannung der Leitung, Absicherung, Spannungsfestigkeit des Systems, Überspannung und Eingangsströme** vom Benutzer überprüft und bewertet werden.

Im Falle von DC versorgten Antrieben ist der eingebauten EMV-Filter wirkungslos. Der Benutzer ist dafür verantwortlich, die leitungsgebundenen Emissionen und die Immunität des Antriebs innerhalb der geforderten Grenzwerte zu halten.

- * Besondere Sorgfalt ist notwendig bei verzweigten Stromkreisen mit Antrieben unterschiedlicher Stromstärken, um zu verhindern, dass die kleineren Servoverstärker als "Sicherung" arbeiten und nicht die vorgesehene Stromkreis-Sicherung.
- ** Die Gleichstromquelle muss den Einschaltstrom während das Hochfahrens begrenzen. Bei der Verdrahtung der Gleichstromquelle muss die Polarität beachtet werden. Falsche Polarität des Gleichstrom beschädigt den Antrieb und führt zum Verlust der Garantie.

Motor-Nennspannung

Die Nennspannung der Motoren muss mindestens so hoch sein wie die vom Servoverstärker erzeugte DC-Zwischenkreisspannung geteilt durch $\sqrt{2}$ ($U_{nMotor} >= U_{DC} / \sqrt{2}$).

Safe Torque Off (STO; sicher abgeschaltetes Moment)

Lesen Sie den Abschnitt "Bestimmungsgemäße Verwendung" im Kapitel "Safe Torque Off (STO)" (→ # 62), bevor Sie diese Sicherheitsfunktion verwenden (gemäß EN 13849, PL d).

3.3 Bestimmungswidrige Verwendung

Eine andere Verwendung als in Kapitel "Bestimmungsgemäße Verwendung" beschrieben ist nicht bestimmungsgemäß und kann zu Schäden bei Personen, Gerät oder Sachen führen. Der Servoverstärker darf nicht mit Maschinen verwendet werden, die nicht den geltenden nationalen Richtlinien oder Normen entsprechen. Die Verwendung des Servoverstärkers in den folgenden Umgebungen ist ebenfalls untersagt:

- explosionsgefährdete Bereiche,
- Umgebungen korrosiven und/oder elektrisch leitenden Säuren, alkalischen Lösungen, Ölen, Dämpfen und Staub,
- Schiffe oder Offshore-Anwendungen.

3.4 Warnhinweise auf dem Produkt

AKD-x002407	AKD-x00306 02406, 00307 01206, 04807	
Wait 7 minutes	Wait 5 minutes	
after removing power	after removing power	
before servicing.	before servicing.	
Übersetzung:	Übersetzung:	
Nach Abschalten	Nach Abschalten	
7 Minuten bis zur	5 Minuten bis zur	
Wartung abwarten.	Wartung abwarten.	

ACHTUNG

Beschädigte Warnsymbole müssen sofort ersetzt werden.

4 Produkt Lebenszyklus, Handhabung

4.1	Transport	21
4.2	Verpackung	21
4.3	Lagerung	21
4.4	Installation, Setup und Normalbetrieb	22
	Außer Betrieb nehmen	
	Wartung und Reinigung	
	Demontage	
	System Reparatur	
	Entsorgung	

4.1 Transport

Transportieren Sie den AKD gemäß EN 61800-2 wie folgt:

- Transport nur durch qualifiziertes Personal in der wiederverwertbaren Originalverpackung des Herstellers. Beim Transport Stöße vermeiden.
- Höchstens mit der maximalen Stapelhöhe stapeln, Details siehe Kapitel "Lagerung".
- Nur innerhalb der angegebenen Temperaturbereiche transportieren: -25 bis +70°C, max. Änderungsrate 20 K/Stunde, Klasse 2K3.
- Nur innerhalb der angegebenen Feuchtigkeitsbereiche transportieren: max. 95 % relative Luftfeuchtigkeit, nicht kondensierend, Klasse 2K3.

ACHTUNG

Die Servoverstärker enthalten elektrostatisch gefährdete Komponenten, die durch unsachgemäßen Gebrauch beschädigt werden können. Entladen Sie sich elektrostatisch, bevor Sie den Servoverstärker berühren. Vermeiden Sie es, hoch isolierende Stoffe zu berühren (Kunstfasern, Plastikfolie usw.). Legen Sie den Servoverstärker auf eine leitfähige Oberfläche.

Wenn die Verpackung beschädigt ist, prüfen Sie das Gerät auf sichtbare Schäden. Informieren Sie den Spediteur und den Hersteller über Schäden an der Verpackung oder Produkt.

4.2 Verpackung

Die AKD Verpackung besteht aus recyclingfähigem Karton mit Einsätzen und einem Aufkleber auf der Außenseite der Verpackung.

Modell	Verpackungsmaße (mm) HxBxL	Gewicht (kg) AKD -B, -P, -T (kg)	Gewicht (kg) AKD -M (kg)
AKD-x00306, -x00606	113 x 250 x 222	1,7	1,9
AKD-x01206	158 x 394 x 292	3,4	3,6
AKD-x02406	158 x 394 x 292	5	5,2
AKD-x00307, -x00607, - x01207	158 x 394 x 292	4,3	4,5
AKD-x02407	158 x 394 x 292	6,7	6,9
AKD-x04807	390 x 600 x 400	15,3	15,5

4.3 Lagerung

Lagern Sie den AKD gemäß EN 61800-2 wie folgt:

- Nur in der wiederverwertbaren Originalverpackung des Herstellers lagern.
- Höchstens mit der maximalen Stapelhöhe stapeln:
 - AKD-x00306 bis 00606: 8 Kartons,
 - AKD-x01206, x02406, x00307 bis x02407: 6 Kartons,
 - AKD-x04807: 3 Kartons.
- Nur innerhalb der angegebenen Temperaturbereiche lagern: -25 bis +55 °C, max. Änderungsrate 20 K/Stunde, Klasse 1K4.
- Nur innerhalb der angegebenen Feuchtigkeitsbereiche lagern: 5 bis 95 % relative Luftfeuchtigkeit, nicht kondensierend, Klasse 1K3.
- Gemäß den folgenden Anforderungen für die Lagerungsdauer lagern:
 - Weniger als 1 Jahr: keine Beschränkungen.
 - Mehr als 1 Jahr: Kondensatoren müssen formiert werden, bevor der Servoverstärker in Betrieb genommen wird. Formierungstechniken sind im Kollmorgen Developer Network (Formierung) beschrieben.

4.4 Installation, Setup und Normalbetrieb

Information zu Installation und Setup finden Sie in diesem Handbuch:

- Kapitel Mechanische Installation (→ #73)
- Kapitel Elektrische Installation (→ #83)
- Kapitel Setup (→ # 192)

Normalbetrieb getestet für Umgebungsklasse 3K3 gemäß EN 61800-2 (→ # 39). Der Hersteller der Maschine definiert die erforderlichen Fachkenntnisse des Endnutzers gemäß der Risikobeurteilung für die Maschine und beschreibt abhängig von der Applikation die Erfordernisse für den normalen Betrieb.

4.5 Außer Betrieb nehmen

ACHTUNG

Nur Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik darf Systemkomponenten außer Betrieb nehmen.

GEFAHR: Tödliche Spannung! Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung.

- Schalten Sie den Hauptschalter des Schaltschranks aus.
- Sichern Sie das System gegen Wiedereinschalten.
- Blockieren Sie den Hauptschalter .
- Warten Sie mindestens 7 Minuten nach Abschalten der Spannung.

4.6 Wartung und Reinigung

Das Gerät ist wartungsfrei, es muss einmal im Jahr durch Fachpersonal geprüft werden.

ACHTUNG

Das Gerät nicht in Flüssigkeiten tauchen oder besprühen. Vermeiden Sie, dass Flüssigkeit in das Gerät eindringt. Wenn das Gerät geöffnet wird, erlischt die Garantie. Das Innere des Geräts kann nur vom Hersteller gereinigt werden.

So reinigen Sie das Gerät von außen:

- 1. Nehmen Sie das Gerät außer Betrieb (siehe Kapitel 4.5 "Außer Betrieb nehmen").
- 2. Gehäuse: Mit Isopropanol oder einer ähnlichen Reinigungslösung reinigen.

VORSICHT: Leicht Entflammbar! Gefahr von Verletzung durch Verpuffung und Feuer.

- Beachten Sie die Sicherheitshinweise auf der Verpackung des Reinigungsmittels.
- Warten Sie nach der Reinigung mindestens 30 Minuten, bevor Sie das Gerät wieder in Betrieb nehmen.
- 3. Schutzgitter am Lüfter: Mit einer trockenen Bürste reinigen.

4.7 Demontage

ACHTUNG

Nur Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik darf Systemkomponenten demontieren.

- 1. Nehmen Sie das Gerät außer Betrieb (siehe Kapitel 4.5 "Außer Betrieb nehmen").
- 2. Prüfen Sie die Temperatur.

VORSICHT: Hohe Temperatur! Gefahr leichter Verbrennungen. Im Betrieb kann der Kühlkörper Temperaturen über 80 °C erreichen. Bevor Sie das Gerät berühren, messen Sie die Temperatur und warten Sie, bis der Servoverstärker auf unter 40 °C abgekühlt ist.

- 3. Entfernen Sie die Stecker. Trennen Sie den PE Anschluss zuletzt.
- 4. Ausbauen: Lösen Sie die Befestigungsschrauben und entfernen Sie das Gerät.

4.8 System Reparatur

ACHTUNG

Nur Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik darf Systemkomponenten austauschen.

VORSICHT: Unerwarteter Anlauf! Bei der Durchführung von Austauscharbeiten kann es zur Kombination von Gefährdungen und multiplen Folgen kommen.

Arbeiten sind nur unter Beachtung der Vorschriften für Arbeitssicherheit, durch geschultes Personal und mit Benutzung der jeweils vorgeschriebenen persönlichen Schutzausrüstung zulässig.

Austausch des Gerätes

Nur der Hersteller kann das Gerät reparieren. Öffnen des Gerätes bedeutet Verlust der Gewährleistung.

- 1. Nehmen Sie das Gerät außer Betrieb (siehe Kapitel 4.5 "Außer Betrieb nehmen").
- 2. Demontieren Sie das Gerät (siehe Kapitel 4.7 "Demontage").
- 3. Senden Sie das Gerät an den Hersteller.
- 4. Installieren Sie ein neues Gerät wie in der Betriebsanleitung beschrieben.
- 5. Nehmen Sie das System in Betrieb, wie in der Betriebsanleitung beschrieben.

Austausch sonstiger Teile des Antriebssystems

Wenn Teile des Antriebssystems ausgetauscht werden müssen (zum Beispiel Kabel), gehen Sie wie folgt vor:

- 1. Nehmen Sie das Gerät außer Betrieb (siehe Kapitel 4.5 "Außer Betrieb nehmen").
- 2. Tauschen Sie die Teile aus.
- 3. Prüfen Sie alle Steckverbindungen auf korrekten Sitz.
- 4. Nehmen Sie das System in Betrieb, wie in der Betriebsanleitung beschrieben.

4.9 Entsorgung

ACHTUNG

Für die fachgerechte Entsorgung des Gerätes wenden Sie sich an einen zertifizierten Elektronikschrottverwerter.

Gemäß der Richtlinie WEEE-2012/19/EG u.ä. nimmt der Hersteller Altgeräte und Zubehör zur fachgerechten Entsorgung zurück. Die Transportkosten muss der Versender tragen.

Senden Sie die Geräte in der Originalverpackung an die in der folgenden Tabelle aufgeführten Herstelleradressen.

Nordamerika	Südamerika
KOLLMORGEN	KOLLMORGEN
201 West Rock Road	Avenida João Paulo Ablas, 2970
Radford, VA 24141, USA	Jardim da Glória, Cotia – SP
	CEP 06711-250, Brazil

Europa	Asien		
KOLLMORGEN Europe GmbH	KOLLMORGEN		
Pempelfurtstr. 1	Room 302, Building 5, Lihpao Plaza,		
40880 Ratingen, Germany	88 Shenbin Road, Minhang District,		
	Shanghai, China.		

5 Zulassungen

5.1	Konformität mit UL/cUL	25
	Konformität mit EU	
5.3	Konformität mit UK	32

5.1 Konformität mit UL/cUL

5.1.1 Modelle mit Hardware Revision F, FA oder FB

Dieser Servoverstärker ist unter der UL (Underwriters Laboratories Inc.)-Aktennummer **E141084** zugelassen. USL, CNL – Power conversion equipment (NMMS, NMMS7).

Modelle AKD gefolgt von B, P, M oder T, gefolgt von 003, 006 oder 012, gefolgt von 06, gefolgt von weiteren Suffixen.

- USL (Zulassung nach Standards der Vereinigten Staaten): Gibt eine Prüfung nach dem US-Standard für Power conversion equipment, UL 61800-5-1.
- CNL (Zulassung nach nationalen Kanadischen Standards): Gibt eine Prüfung nach dem Kanadischen Standard für Industrial Control Equipment CAN/CSA C22.2 274.

UL Markings / Marquages UL

English	Français		
 Identification of the terminals on the controller are coded so they may be identified in the instructions. The instructions shall identify power connections for power supply, load, con- trol, and ground. 	Les bornes de l'unité de contrôle sont codées pour faciliter leur identification dans les instructions. Les instructions doivent identifier les raccordements d'alimentation, de charge, de commande et de terre.		
 Integral solid state short circuit protection does not provide branch circuit protection. Branch cir- cuit protection must be provided in accordance with the National Electrical Code and any addi- tional local codes. 	Une protection de court-circuit à semi-conducteur intégrale ne fournit pas de protection de la dérivation. Il convient de garantir une protection de la dérivation conforme au NEC (National Electrical Code) et aux réglementations locales en vigueur, ou aux directives équivalentes applicables.		
This product is suitable for use on a circuit capable of delivering not more than 5,000 rms symmetrical amperes, 240 V maximum, when protected by class J fuses. Models 003, 006 and 012 are suitable for use on a circuit capable of delivering not more than 65,000 rms symmetrical amperes, 240 V maximum, when protected by semi-conductor fuses.	Ce produit est conçu pour une utilisation sur un circuit capable de fournir 5 000 ampères symétriques (rms) maximum pour 240 V maximum, lorsqu'il est protégé par des fusibles de classe J. Les modèles 001, 003, 006 et 012 sont adaptés à une utilisation sur un circuit capable de fournir pas plus de 65 000 ampères symétriques, 240 V maximum, lorsqu'ils sont protégés par des fusibles à semi-conducteur.		
These drives provide solid state motor overload protection at 125% of the rated FLA Current. For Solid State Overload protection IL.MIMODE must be set to 1.	Ces variateurs offrent une protection contre les surcharges de moteur à semi-conducteur à 125 % du courant FLA nominal. Pour la protection contre les surcharges à semi-conducteurs, IL.MIMODE doit être défini sur 1.		
These devices are intended to be used in a pollution degree 2 environment.	 Ces appareils sont prévus pour une utilisation dans un environnement de pollution de niveau 2. 		
 Maximum surrounding air temperature: 40°C except where higher temperatures with derated currents are given (see table). 	Température maximale de l'air ambiant: 40°C sauf lorsque des températures plus élevées avec des courants réduites sont indiquées (voir tableau).		
Use minimum 75°C copper wire.	Utilisez un fil en cuivre 75 °C minimum.		
 These devices do not provide over temperature sensing. 	Ces variateurs n'offrent pas de capteurs de tempéra- ture excessive.		
Use fuses only.	Utilisez uniquement des fusibles.		
CAUTION Risk of Electrical Shock! Capacitors can have dangerous voltages present up to seven minutes after switching off the supply power. For increased safety, measure the voltage in the DC bus link and wait until the voltage is below 50 V.	• ATTENTION: Risque de choc électrique! Des tensions dangereuses peuvent persister dans les condensateurs jusqu'à sept minutes après la mise hors tension. Pour plus de sécurité, mesurez la tension dans la liaison de bus CC et attendez qu'elle soit inférieure à 50 V.		

The table illustrates the derated current referred to the surrounding air temperature / Le tableau montre le courant réduit par rapport à la température de l'air ambiant:

Model Modèle	Input Voltage Tension d'entrée	Input / Output Current [A] Courant Entrée / Sortie [A]			
Modele	rension a entree	@ 40°C	@ 45°C	@ 50°C	@ 55°C
AKD-x00306	100-240 V 1~	5/3	4.5 / 2.7	4.0 / 2.4	3.5 / 2.1
	100-240 V 3~	2.3/3	2.1 / 2.7	1.8 / 2.4	1.6 / 2.1
AKD-x00606	100-240 V 1~	9.9/6	8.9 / 5.4	7.9 / 4.8	6.9 / 4.2
	100-240 V 3~	4.6/6	4.1 / 5.4	3.7 / 4.8	3.2 / 4.2
AKD-x01206	100-240 V 1~	12 / 12	10.8 / 10.8	9.6 / 9.6	8.4 / 8.4
	100-240 V 3~	9.2 / 12	8.3 / 10.8	7.4 / 9.6	6.4 / 8.4

• The following fuse types are recommended for ≤ 5,000 symmetrical amperes/ Les types de fusibles suivants sont recommandés pour ≤ 5 000 ampères symétriques :

Model Modèle	Class Classe	Rating Niveau	Max. Fuse Rating Niveau maximum
AKD-x00306	J	600 VAC, 200 kA	10 A
AKD-x00606	J	600 VAC, 200 kA	15 A
AKD-x01206	J	600 VAC, 200 kA	15 A

• The following semi-conductor fuses are recommended for ≤ 65,000 symmetrical amperes/ Les fusibles semi-conducteurs suivants sont recommandés pour ≤ 65 000 ampères symétriques :

Model Modèle	Manufacturer Fabricant	Manufacturer part N° Référence fabricant	Rating Niveau	Max. Fuse Rating Niveau maximum
AKD-x00306	MERSEN Bussmann	FR14GR69V10 FWP-10G14F	690 VAC, 200 kA	10 A
AKD-x00606	MERSEN Bussmann	FR14GR69V16 FWP-16G14F	690 VAC, 200 kA	16 A
AKD-x01206	MERSEN Bussmann	FR14GR69V16 FWP-16G14F	690 VAC, 200 kA	16 A

The table illustrates the torque requirements for the field wiring connectors /
Le tableau indique les spécifications de couple pour les connecteurs de câblage sur site:

	Torque for Connector for / Couple pour Connecteur de					
Model	Mains Motor Phase Input 24 VDC					
Modèle	Secteur	Phase moteur	Entrée 24Vcc			
AKD-x00306	5-7 in-lbs	5-7 in-lbs	4 in-lbs			
AKD-x00606	5-7 in-lbs	5-7 in-lbs	4 in-lbs			
AKD-x01206	5-7 in-lbs	7 in-lbs	4 in-lbs			

5.1.2 Modelle mit Hardware Revision A, C, D, E, DB, DA, EB oder EA

Dieser Servoverstärker ist unter der UL (Underwriters Laboratories Inc.)-Aktennummer **E141084** zugelassen. USL, CNL – Power conversion equipment (NMMS, NMMS7).

Modelle AKD gefolgt von B, P, M oder T, gefolgt von 003, 006, 012, 024 oder 048, gefolgt von 06 oder 07, gefolgt von weiteren Suffixen.

- USL (Zulassung nach Standards der Vereinigten Staaten): Gibt eine Prüfung nach dem US-Standard für Power conversion equipment, UL 508C.
- CNL (Zulassung nach nationalen Kanadischen Standards): Gibt eine Prüfung nach dem Kanadischen Standard für Industrial Control Equipment CAN/CSA C22.2 274.

5.1.3 UL Markings / Marquages UL

English	Français
• Identification of the terminals on the controller are coded so they may be identified in the instructions. The instructions shall identify power connections for power supply, load, con- trol, and ground.	Les bornes de l'unité de contrôle sont codées pour faciliter leur identification dans les instructions. Les instructions doivent identifier les raccordements d'alimentation, de charge, de commande et de terre.
 Integral solid state short circuit protection does not provide branch circuit protection. Branch cir- cuit protection must be provided in accordance with the National Electrical Code and any addi- tional local codes. 	Une protection de court-circuit à semi-conducteur intégrale ne fournit pas de protection de la dérivation. Il convient de garantir une protection de la dérivation conforme au NEC (National Electrical Code) et aux réglementations locales en vigueur, ou aux directives équivalentes applicables.
This product is suitable for use on a circuit capable of delivering not more than 42,000 rms symmetrical amperes, 240 V (AKD-xzzz06) / 480 V (AKD-xzzz07) maximum, when protected by fuses.	Ce produit est conçu pour une utilisation sur un circuit capable de fournir 42.000 ampères symétriques (rms) maximum pour 240 V (AKD-xzzz06) / 480 V (AKD-xzzz07) maximum, s'il dispose de fusibles ou de protections équivalentes.
These drives provide solid state motor overload protection at 125% of the rated FLA Current. For Solid State Overload protection IL.MIMODE must be set to 1.	Ces variateurs offrent une protection contre les surcharges de moteur à semi-conducteur à 125 % du courant FLA nominal. Pour la protection contre les surcharges à semi-conducteurs, IL.MIMODE doit être défini sur 1.
These devices are intended to be used in a pollution degree 2 environment.	Ces appareils sont prévus pour une utilisation dans un environnement de pollution de niveau 2.
 Maximum surrounding air temperature: 40°C except where higher temperatures with derated currents are given (see table). 	Température maximale de l'air ambiant: 40°C sauf lorsque des températures plus élevées avec des courants réduites sont indiquées (voir tableau).
Use minimum 75°C copper wire.	Utilisez un fil en cuivre 75 °C minimum.
 These devices do not provide over temperature sensing. 	Ces variateurs n'offrent pas de capteurs de tempéra- ture excessive.
Use fuses only.	Utilisez uniquement des fusibles.
CAUTION Risk of Electrical Shock! Capacitors can have dangerous voltages present up to seven minutes after switching off the supply power. For increased safety, measure the voltage in the DC bus link and wait until the voltage is below 50 V.	■ ATTENTION: Risque de choc électrique! Des tensions dangereuses peuvent persister dans les condensateurs jusqu'à sept minutes après la mise hors tension. Pour plus de sécurité, mesurez la tension dans la liaison de bus CC et attendez qu'elle soit inférieure à 50 V.

The table illustrates the derated current referred to the surrounding air temperature / Le tableau montre le courant réduit par rapport à la température de l'air ambiant:

Model Modèle	Input Voltage Tension d'entrée	Input / Output Current [A] Courant Entrée / Sortie [A]			
Modele	Tension a entree	@ 40°C	@ 45°C	@ 50°C	@ 55°C
AKD-x00306	120 V / 240 V 1~	5/3	4.5 / 2.7	4.0 / 2.4	3.5 / 2.1
AND-X00300	120 V / 240 V 3~	2.3/3	2.1 / 2.7	1.8 / 2.4	1.6 / 2.1
AKD-x00606	120 V / 240 V 1~	9.9/6	8.9 / 5.4	7.9 / 4.8	6.9 / 4.2
AND-X00000	120 V / 240 V 3~	4.6 / 6	4.1 / 5.4	3.7 / 4.8	3.2 / 4.2
AKD-x01206	120 V / 240 V 1~	12 / 12	10.8 / 10.8	9.6 / 9.6	8.4 / 8.4
AND-X01200	120 V / 240 V 3~	9.2 / 12	8.3 / 10.8	7.4 / 9.6	6.4 / 8.4
AKD-x02406	240 V 3~	18.3 / 24	ĺ		
AKD-x00307	400 V / 480 V 3~	2.7/3	2.4 / 2.7	2.2 / 2.4	1.9 / 2.1
AKD-x00607	400 V / 480 V 3~	5.4 / 6	4.9 / 5.4	4.3 / 4.8	3.8 / 4.2
AKD-x01207	400 V / 480 V 3~	9.2 / 12	8.3 / 10.8	7.4 / 9.6	6.4 / 8.4
AKD-x02407	400 V / 480 V 3~	18.3 / 24			
AKD-x04807	400 V / 480 V 3~	49.3 / 48			

The following fuse types are recommended / Les types de fusibles suivants sont recommandés :

Model Modèle	Class Classe	Rating Niveau	Max. Fuse Rating Niveau maximum
AKD-x00306	J	600 VAC, 200 kA	10 A
AKD-x00606	J	600 VAC, 200 kA	15 A
AKD-x01206	J	600 VAC, 200 kA	15 A
AKD-x02406	J	600 VAC, 200 kA	30 A
AKD-x00307	J	600 VAC, 200 kA	6 A
AKD-x00607	J	600 VAC, 200 kA	10 A
AKD-x01207	J	600 VAC, 200 kA	15 A
AKD-x02407	J	600 VAC, 200 kA	30 A
	J	600 VAC, 200 kA	60 A
AKD-x04807	Listed (DIVQ) Circuit Bre- aker Siemens, 3RV17 42-5LD10	600 VAC, 65 kA	60 A

• The table illustrates the torque requirements for the field wiring connectors /
Le tableau indique les spécifications de couple pour les connecteurs de câblage sur site:

	Torque for Connector for / Couple pour Connecteur de				
Model Modèle	Mains Secteur	Motor Phase Phase moteur	Input 24 VDC Entrée 24Vcc		
AKD-x00306	5-7 in-lbs	5-7 in-lbs	4 in-lbs		
AKD-x00606	5-7 in-lbs	5-7 in-lbs	4 in-lbs		
AKD-x01206	5-7 in-lbs	7 in-lbs	4 in-lbs		
AKD-x02406	7 in-lbs	7 in-lbs	4 in-lbs		
AKD-x00307	7 in-lbs	7 in-lbs	4 in-lbs		
AKD-x00607	7 in-lbs	7 in-lbs	4 in-lbs		
AKD-x01207	7 in-lbs	7 in-lbs	4 in-lbs		
AKD-x02407	7 in-lbs	7 in-lbs	4 in-lbs		
AKD-x04807	13 in-lbs	13 in-lbs	4 in-lbs		

• The following fuse types are recommended / Les types de fusibles suivants sont recommandés:

Model	Class/	Rating/	Max. Fuse Rating/
Modèle	Classe	Niveau	Niveau maximum
AKD-x00306	J	600 VAC, 200 kA	10 A
AKD-x00606	J	600 VAC, 200 kA	15 A
AKD-x01206	J	600 VAC, 200 kA	15 A
AKD-x02406	J	600 VAC, 200 kA	30 A
AKD-x00307	J	600 VAC, 200 kA	6 A
AKD-x00607	J	600 VAC, 200 kA	10 A
AKD-x01207	J	600 VAC, 200 kA	15 A
AKD-x02407	J	600 VAC, 200 kA	30 A
AKD-x04807	J	600 VAC, 200 kA	60 A

• The following table illustrates the torque requirements for the field wiring connectors / Le tableau suivant indique les spécifications de couple pour les connecteurs de câblage sur site:

Model/ Modèle		Motor Phase Connector/ Connecteur de	24 VDC Input Connector/ Connecteur
	teur	phase moteur	d'entrée 24Vcc
AKD-x00306	5-7 in-lbs	5-7 in-lbs	4 in-lbs
AKD-x00606	5-7 in-lbs	5-7 in-lbs	4 in-lbs
AKD-x01206	5-7 in-lbs	7 in-lbs	4 in-lbs
AKD-x02406	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x00307	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x00607	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x01207	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x02407	7 in-lbs	7 in-lbs	4 in-lbs
AKD-x04807	13 in-lbs	13 in-lbs	4 in-lbs

5.2 Konformität mit EU

Die Konformität mit der EG-EMV-Richtlinie 2014/30/EG und der Niederspannungsrichtlinie 2014/35/EG ist für die Lieferung von Servoverstärkern in die Europäische Gemeinschaft vorgeschrieben.

INFO

EU Konformitätserklärungen finden Sie auf der Kollmorgen Website.

Die Servoverstärker wurden von einem zugelassenen Prüflabor in einer definierten Konfiguration anhand der in dieser Dokumentation beschriebenen Systemkomponenten geprüft. Jede Abweichungen von der in dieser Dokumentation beschriebenen Konfiguration und Installation bedeutet, dass der Nutzer für die Durchführung von neuen Messungen verantwortlich ist, um die Konformität mit den gesetzlichen Vorschriften sicherzustellen.

Kollmorgen erklärt die Konformität der Geräteserie AKD mit den folgenden Richtlinien:

- EG Richtlinie 2006/42/EU, Maschinenrichtlinie Verwendete harmonisierte Norm EN61800-5-2
- EG Richtlinie 2014/35/EU, Niederspannungsrichtlinie Verwendete harmonisierte Norm EN61800-5-1
- EG Richtlinie 2014/30/EU, EMV Richtlinie Verwendete harmonisierte Norm EN 61800-3

ACHTUNG

Diese Servoverstärker können in Wohngebieten hochfrequente Störungen verursachen und erfordern Entstörungsmaßnahmen (externe EMV-Filter).

AKD-xzzz06

INFO

AKD-xzzz06 Servoverstärker verfügen nicht über integrierte EMV-Filter.

Mit externen EMV-Filter gegen Störaussendungen erfüllen die AKD-xzzz06 die Störfestigkeitsanforderungen der zweiten Umgebungskategorie (Industrieumgebungen) für Produkte der Kategorie C2 (Motorkabel < 10 m).

Bei einer Motorkabellänge von 10 m oder mehr und externen EMV-Filtern erfüllen die AKDxzzz06 die Anforderungen der Kategorie C3.

AKD-xzzz07

INFO

AKD-xzzz07 Servoverstärker verfügen über integrierte EMV-Filter.

Die AKD-xzzz07 erfüllen die Störfestigkeitsanforderungen der zweiten Umgebungskategorie (Industrieumgebungen). Für Störaussendungen erfüllen die AKD-xzzz07 die Anforderungen an Produkte der Kategorie C2 (Motorkabel < 10 m).

Bei einer Motorkabellänge von 10 m oder mehr erfüllen die AKD-xzzz07 die Anforderungen der Kategorie C3.

AKD-x04807: Bei Netzspannungs-Unsymmetrie > 3% muss eine Netzdrossel 3L0,24-50-2 verwendet werden.

5.2.1 Europäische Richtlinien und Normen für Maschinenkonstrukteure

Servoverstärker sind Komponenten, die für den Einbau in elektrische Anlagen und Maschinen für den industriellen Einsatz vorgesehen sind. Wenn die Servoverstärker in Maschinen oder Anlagen eingebaut werden, darf der Servoverstärker nicht verwendet werden, bis sichergestellt wurde, dass die Maschine oder das Gerät die Anforderungen folgender Normen erfüllt:

- EG-Maschinenrichtlinie (2006/42/EG)
- EG-EMV-Richtlinie (2014/30/EG)
- EG-Niederspannungsrichtlinie (2014/35/EG)

Zur Konformität mit der EG-Maschinenrichtlinie (2006/42/EG) anzuwendende Normen

- EN 60204-1 (Sicherheit von Maschinen Elektrische Ausrüstung von Maschinen)
- EN 12100 (Sicherheit von Maschinen)

ACHTUNG

Der Hersteller der Maschine muss eine Risikobeurteilung für die Maschine erstellen und adäquate Maßnahmen ergreifen, um sicherzustellen, dass unvorhergesehene Bewegungen nicht zu Verletzungen oder Sachschäden führen können.

Zur Konformität mit der EG-Niederspannungsrichtlinie (2014/35/EG) anzuwendende Normen

- EN 60204-1 (Sicherheit von Maschinen Elektrische Ausrüstung von Maschinen)
- EN 60439-1 (Niederspannungs-Schaltgerätekombinationen)

Zur Konformität mit der EG-EMV-Richtlinie (2014/30/EG) anzuwendende Normen

- EN 61000-6-1/2 (Störfestigkeit für den Wohn- und Industriebereich)
- EN 61000-6-3/4 (Störaussendungen im Wohn- und Industriebereich)

Der Hersteller der Maschine ist dafür verantwortlich, dass diese die Grenzwerte gemäß EMV-Vorschriften erfüllt. Hinweise zum korrekten Einbau im Hinblick auf die EMV (Abschirmung, Erdung, Behandlung von Anschlüssen und Kabelanschlüssen) sind in dieser Anleitung enthalten.

INFO

Der Hersteller der Maschine/Anlage muss prüfen, ob weitere Normen oder EG-Richtlinien für die Maschine/Anlage gelten.

Kollmorgen gewährleistet ausschließlich die Konformität des Servosystems mit den in diesem Kapitel genannten Normen, wenn die Komponenten (Motor, Leitungen, Drosseln usw.) von Kollmorgen geliefert wurden.

5.2.2 Konformität mit RoHS

Das Gerät wurde in Übereinstimmung mit RoHS Richtlinie 2011/65/EG mit deligierter Richtlinie 2015/863/EU zum Einbau in eine Maschine gefertigt.

5.2.3 Konformität mit REACH

Die Verordnung (EG) Nr. 1907/2006 regelt die Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe 1 (kurz: "REACH").

Die Geräte enthalten keine Stoffe (CMR Stoffe, PBT-Stoffe, vPvB-Stoffe sowie ähnlich gefährliche Stoffe, die im Einzelfall aufgrund wissenschaftlicher Kriterien festgelegt werden) oberhalb 0,1 Masse-%, die in der "Kandidatenliste" aufgeführt sind.

5.2.4 Safe Torque Off (STO)

Ein zusätzlicher digitaler Eingang (STO) gibt die Leistungsendstufe des Verstärkers frei, solange ein 24 V-Signal an diesem Eingang anliegt. Wenn der Schaltkreis des STO-Eingangs geöffnet wird, wird der Motor nicht mehr mit Leistung versorgt. Der Antrieb erzeugt kein Drehmoment mehr und trudelt aus.

Das Schaltungskonzept zur Realisierung der Sicherheitsfunktion "Safe Torque OFF" in den Servoverstärkern der Baureihe ist geeignet, die Anforderungen an SIL 2 gem. EN 62061 und des PLd, KAT 3 gem. EN 13849-1 zu erfüllen.

Mit AKD-x04807 Servoverstärkern kann SIL3/PLe erreicht werden, wenn beide STO-Enable Eingänge und die korrespondierenden STO-Status Ausgänge genutzt werden.

INFO

Sicherheitszertifikate finden Sie auf der Kollmorgen Website.

Die Teilsysteme (AKD) sind durch die folgenden Kennzahlen sicherheitstechnisch vollständig beschrieben:

Gerät	Betriebs- art	EN 13849-1	EN 62061	PFH [1/h]	T _M [Jahre]	SFF [%]
AKD-x003024	einkanalig	PL d, Kat. 3	SIL 2	1,50E-07	20	100
AKD-x048	einkanalig	PL d, Kat. 2	SIL 2	1,88E-07	20	89
	zweikanalig	PL d, Kat. 3	SIL 2	5,64E-09	20	87
	zweikanalig mit periodischem Test	PL e, Kat. 4	SIL 3	5,64E-09	20	87

5.3 Konformität mit UK

Kollmorgen erklärt die Konformität der Produktreihe AKD mit den folgenden Richtlinien:

- S.I. 2016/1101, Electrical Equipment (Safety) Regulations 2016
 Verwendete designierte Norm EN 61800-5-1
- S.I. 2016/1091, Electromagnetic Compatibility Regulations 2016
 Verwendete designierte Norm EN 61800-3 + A1

Die Geräte stimmen überein mit **The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment Regulations 2012** zum Einbau in eine Maschine.

6 Produktidentifizierung

6.1	Lieferumfang	34
	Typenschild	
	Typenschlüssel	

6.1 Lieferumfang

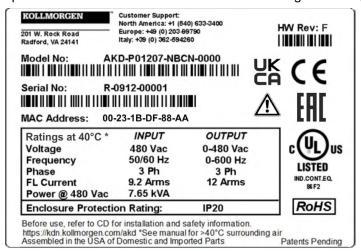
Wenn ein Servoverstärker der AKD Reihe bestellt wird, sind im Lieferumfang folgende Komponenten enthalten:

- AKD
- Gedrucktes Exemplar des AKD Safety Notes
- DVD mit der AKDBetriebsanleitung, der Setup-Software WorkBench und der weiteren Produktdokumentation in elektronischer Form.
- Gegenstecker (falls erforderlich f
 ür die Ger
 ätevariante): X1, X2, X3, X4, X7, X8, X14, X15, X16, X21, X22, X23, X24, X35, X36
- Erdungsplatte bei allen AKD

INFO

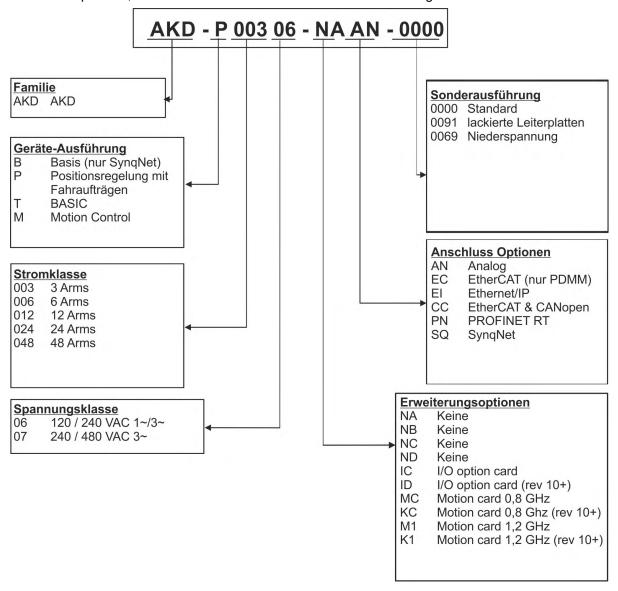
Die SubD- und RJ45-Gegenstecker sind nicht im Lieferumfang enthalten.

Getrennt erhältliches Zubehör


Zubehör muss bei Bedarf separat bestellt werden. Lesen Sie im Zubehörhandbuch für Ihre Region nach:

- EMV-Filter f

 ür Netzspannung, Kategorien C2 oder C3
- Externer Bremswiderstand
- Motorleitung. Bereits konfektionierte Motorleitungen sind für alle Regionen erhältlich.
 EU-Kunden können auch Motorleitungen mit kundenspezifischen Längen bestellen und das Kabel mit getrennt bestellten Leistungssteckern selbst konfigurieren.
- Feedbackleitung. Bereits konfektionierte Feedbackleitungen sind für alle Regionen erhältlich. EU-Kunden können auch Kabelmaterial mit kundenspezifischen Längen bestellen und das Kabel mit getrennt bestellten Steckern selbst konfigurieren.
- Motordrossel, für Motorleitungen mit einer Länge von über 25 m
- CAN-Terminierungsstecker (nur für CAN-Servoverstärker)
- Serviceleitung zum Netzwerkanschluss
- Netzkabel, Steuerkabel und Feldbuskabel (Zuschnittlängen)


6.2 Typenschild

Das unten abgebildete Typenschild ist an der Seite des Verstärkers angebracht, die Beispieldaten beziehen sich auf eine 12 A-Ausführung. Abbildung ähnlich.

6.3 Typenschlüssel

Benutzen Sie den Typenschlüssel nur zur Produktidentifizierung, nicht für den Bestellprozess, da nicht alle Merkmalkombinationen technisch möglich sind.

Sonderausführung: hier werden kundenspezifische und regionale Besonderheiten kodiert.

Anschluss Optionen: Servoverstärker mit Anschlussoption CC besitzen sowohl die EtherCAT Stecker (X5 und X6) als auch CANopen Stecker (X12 und X13). Mit dem Software Parameter DRV.TYPE können Sie den gewünschten Feldbus aktivieren; die beiden Feldbusse können nicht gleichzeitig verwendet werden.

7 Technische Beschreibung und Daten

7.1 Die digitalen Servoverstärker der AKD Reihe	37
7.2 Umgebungsbedingungen, Belüftung und Einbaulage	39
7.3 Mechanische Daten	39
7.4 Ein-/Ausgänge	40
7.5 Massesystem	40
7.6 Elektrische Daten AKD-xzzz06	
7.7 Elektrische Daten AKD-xzzz07	
7.8 Leistungsdaten	43
7.9 Empfohlene Anzugsmomente	
7.10 Sicherungen und Leistungsschalter	44
7.11 Stecker	
7.12 Anforderungen für Kabel und Verdrahtung	
7.13 Dynamisches Bremsen	
7.14 Ein- und Ausschaltverhalten	
7.15 Stopp/Not-Halt/ Not-Aus	
7.16 Safe Torque Off (STO)	
7.17 Berührungsschutz	

7.1 Die digitalen Servoverstärker der AKD Reihe

Verfügbare AKD Varianten

Kurzname	Beschreibung	Gehäuse	Anschluss
AKD-B***	Der Basisverstärker wird durch analoge Drehmoment- und Geschwindigkeits-Sollwerte gesteuert (elektronisches Getriebe).	Standard	Analog, SynqNet
AKD-P**	Der Positionsindexer-Typ fügt dem Basistyp Fahrsatzsteuerung hinzu, kann Ein- und Ausgänge verarbeiten, Entscheidungen tref- fen, Zeitverzögerungen hin- zufügen und Variablen ändern.	Standard	Analog, CANopen, EtherCAT, PROFINET RT, Ethernet/IP, sercos [®] III
AKD-M***	Motion Controller PDMM- EtherCAT Master für bis zu 8 Ach- sen. Umfasst alle fünf EN 61131- Sprachen, PLC Open und Pipes Network. Diese Variante wird AKD PDMM genannt.	Erhöhte Breite	EtherCAT
AKD-T***	Dieser Servoverstärker ist eine Erweiterung des Basis- verstärkers zur einfachen Pro- grammierung (Basic ähnlich). Diese Variante wird AKD BASIC genannt.	Standard	Analog
AKD-T***-IC	AKD BASIC mit I/O Erweiterung.	Erhöhte Breite	Analog, I/O Erweiterung

Standardmerkmale

- Versorgungsspannungsbereich von 120 bis 480 V ±10 % (AKD-x04807 nur mit 240 V bis 480 V).
- Verschiedene Gehäusemaße, je nach den Strom- und Hardware-Optionen.
- Integrierter Motion-Bus, integrierter TCP/IP-Servicekanal.
- Integrierte Unterstützung für SFD, Hiperface DSL, Resolver, Comcoder, 1Vp-p Sin-Cos Encoder, Inkrementalgeber, Tamagawa Smart Abs.
- Integrierte Unterstützung für ENDAT 2.1 & 2.2-, BiSS- oder HIPERFACE-Protokoll.
- Integrierte Encoder-Emulation und Unterstützung für zweite Rückführung.
- Integrierte Safe Torque Off (STO)-Funktion gemäß EN 62061 SIL 2.
- Betrieb von Synchron-Servomotoren, Linearmotoren und Asynchronmotoren möglich.

Leistungsteil

- Ein- oder dreiphasige Versorgung, Spannungsbereich 120 bis 480 V ±10%, 50 bis 400 Hz ±5% oder DC. Anschluss an Netze mit höherer Spannung nur über Trenntransformator, (→ # 111). Einphasige Stromversorgung mit Minderung der Ausgangsleistung.
- B6 Brückengleichrichter, integrierter Sanftanlaufkreis.
- Sicherungen vom Nutzer bereitzustellen.
- DC-Bus-Zwischenkreisspannungsbereich 170 bis 680 V DC, Parallelschaltung möglich.
- Endstufen-IGBT-Modul mit erdfreier Strommessung.
- Bremskreis mit dynamischer Verteilung der generierten Leistung auf verschiedene Servoverstärker am selben DC-Zwischenkreis.

 Interner Bremswiderstand in allen AKD Modellen bis auf AKD-x00306, AKD-x00606 und AKD-x04807, externe Bremswiderstände falls erforderlich.

Integrierte Sicherheit

- Ausreichende Isolationsabstände/Kriechstrecken und elektrische Isolation für sichere galvanische Trennung gemäß EN 61800-5-1 zwischen den Versorgungs-/Motoranschlüssen und der Signalelektronik.
- Sanftanlauf, Überspannungserkennung, Kurzschlussschutz, Phasenausfallüberwachung.
- Temperaturüberwachung des Verstärkers und Motors.
- Motorüberlastschutz: Foldback Mechanismus
- SIL 2-Safe Torque Off (Wiederanlaufschutz) gemäß EN 62061, (→ #60).

Hilfsspannungsversorgung 24 V DC

Von einer externen 24 V ±10 %-Stromversorgung mit Kurzschlussschutz.

Betrieb und Parametereinstellung

 Mit der Setup-Software WorkBench, zur Konfiguration über TCP/IP oder KAS IDE für AKD PDMM Setup.

Volldigitale Steuerung

- Digitaler Stromregler (670 ns)
- Einstellbarer digitaler Drehzahlregler (62,5 µs)
- Softwareoption Positionsregler (250 μs)

Ein-/Ausgänge

- 1 programmierbarer analoger Eingang (→ # 156)
- 1 programmierbarer analoger Ausgang (→ # 157)
- 7 programmierbare digitale Eingänge (→ # 158)
- 2 programmierbare digitale Ausgänge (→ # 165)
- 1 Enable-Eingang (→ # 158)
- 1 bzw. 2 STO-Eingänge (→ # 60)
- Zusätzliche digitale Eingänge und Ausgänge bei bestimmten Gerätevarianten (z.B. AKD PDMM oder bei Geräten mit I/O Erweiterung).

Optionskarten

Diese Optionen wirken sich auf die Breite des Geräts aus.

- IC: Zusätzliche digitale I/O
- MC/M1: Motion Controller mit zusätzlichen digitalen I/O. Erweitert den AKD zum AKD PDMM (Typenschlüssel: AKD-M), einem Master für mehrachsige, synchronisierte Systeme.

Anschluss

- Ein-/Ausgänge (→ # 151)
- Encoder Emulation (→ # 149)
- Service Schnittstelle (→ # 178)
- CANopen (→ # 183), optional
- Motion Bus Schnittstelle (→ # 188)
 - SyngNet (→ # 190), optional
 - EtherCAT (→ # 189), optional
 - PROFINET RT (→ # 190), optional
 - Ethernet/IP (→ # 190), optional
 - sercos[®] III (→ # 191), optional

7.2 Umgebungsbedingungen, Belüftung und Einbaulage

Lagerung / Transport	(→ #21)/(→ #21)						
Umgebungstemperatur	Nicht UL/cUL Regionen:						
im Betrieb	0 bis +40 °C unter Nennbedingungen						
	+40 bis +55 °C mit Dauerstromreduzierung von 4 % pro K						
	UL/cUL Regionen : siehe UL Zulassung (→ # 25)						
Feuchtigkeit im Betrieb	Relative Luftfeuchtigkeit 5 bis 85 %, nicht kondensierend, Klasse 3K3						
Einsatzhöhe	Bis zu 1000 Meter über Normalnull ohne Beschränkungen. 1000 bis 2500 Meter über Normalnull mit Stromreduzierung von 1,5 %/100 m.						
Verschmutzungsgrad	Verschmutzungsgrad 2 gemäß EN 60664-1						
Schwingungen	Klasse 3M1 gemäß EN 60721-3-3						
Gehäuseschutzart	IP 20 gemäß EN 60529						
Einbaulage	Vertikal, (→ #75)						
Belüftung	Eingebauter Lüfter (bis auf AKD-x00306)						
ACHTUNG	Der Servoverstärker schaltet sich bei übermäßig hohen Tem- peraturen im Schaltschrank aus (Fehler F234, Motor ohne Drehmoment). Stellen Sie eine ausreichende Zwangs- belüftung im Schaltschrank sicher.						

7.3 Mechanische Daten

Mechanische Daten	Einheit	AKD- x00306	AKD- x00606	AKD- x01206	AKD- x02406
Gewicht, Geräte mit Standard Breite	kg	1	,1	2	3,7
Gewicht, Geräte mit erhöhter Breite	kg	1,3		2,2	4
Höhe, ohne Stecker	mm	168		196	248
Höhe, mit Stecker	mm	200		225	280
Standard Breite vorne/hinten	mm	54/59		72/78,4	96/100
Erhöhte Breite vorne/hinten	mm	84/89		91/96	96/100
Tiefe, ohne Stecker	mm	156		187	228
Tiefe, mit Steckern	mm	18	35	< 215	< 265

Mechanische Daten	Einheit	AKD-	AKD-	AKD-	AKD-	AKD-
Mechanisone Daten	Ellliell	x00307	x00607	x01207	x02407	x04807
Gewicht, Geräte mit Standard Breite	kg		2,7		5,3	11,5
Gewicht, Geräte mit erhöhter Breite	kg		2,9		5,5	11,7
Höhe, ohne Stecker	mm	256		306	385	
Höhe, mit Servicestecker	mm	290		340	526	
Standard Breite vorne/hinten	mm	65/70		99/105	185/185	
Erhöhte Breite vorne/hinten	mm		95/100		99/105	-
Tiefe, ohne Stecker	mm	185		228	225	
Tiefe, mit Steckern	mm		< 225		< 265	< 265

7.4 Ein-/Ausgänge

Schnittstelle	Elektrische Daten
Analoge Eingänge	±12 VDC Gleichtaktunterdrückungen: > 30 dB bei 60 Hz Auflösung 16 Bit, voll monoton Update Rate: 16 kHz Nichtlinearität < 0,1% vom Gesamtbereich Offsetdrift max. 250μV/°C Eingangsimpedanz > 13 kΩ
Analoge Ausgänge	±10 VDC max 20mA Auflösung 16 Bit, voll monoton Update Rate: 4 kHz Nichtlinearität < 0,1% vom Gesamtbereich Offsetdrift max. 250μV/°C Kurzschlussfest gegen AGND Ausgangsimpedanz 110 Ω
Digitale Eingänge	 EIN: 3,5 VDC bis 30 VDC, 2 mA bis 15 mA AUS: -2 VDC bis +2 VDC, max. 15 mA Galvanische Isolation für 250 VDC
Digitale Ausgänge	 max. 30 VDC, 100 mA Kurzschlussfest Galvanische Isolation für 250 VDC
Relaisausgänge	max. 30 VDC, 1A max. 42 VAC, 1 A Schaltzeit 10ms Isolation für 400 VDC Kontakt/Spule

7.5 Massesystem

AGND	Analoge Masse
DCOM7/8	Gemeinsamer für digitale Eingänge an I/O-Stecker X7/8
DCOM21.x/22.x	Gemeinsamer für digitale Eingänge an I/O-Stecker X21/22 (AKD-T-IC)
DCOM35/36	Gemeinsamer für digitale Eingänge an E/A-Stecker X35/36 (AKD-M)
GND	24 V Versorgung, STO Eingang (bis AKD-x024, Haltebremse
STO-GND	STO-Enable Eingänge(AKD-x048
0 V	Interne Masse, Encoder-Emulationsausgang, Servicekanal

7.6 Elektrische Daten AKD-xzzz06

Elektrische Daten	Dim	AKD- x00306	AKD- x00606	AKD- x01206	AKD- x02406
Nennversorgungsspannung (L1/L2/L3)	V	1			3 x 240 V ±10%
Netzfrequenz	Hz	50 Hz bis 400 Hz ±5% oder DC			
Nenneingangsleistung für S1-Betrieb bei 240V	kVA	1,2	2,38	3,82	7,6
Nenneingangsstrom bei 40° C Umgebungstem	perat	ur			
bei 1 x 120 V	а	5,0	9,9	12	_
bei 1 x 240 V	Α	5,0	9,9	12	-
bei 3 x 120 V	Α	2,3	4,6	9,2	-
bei 3 x 240 V	Α	2,3	4,6	9,2	18,3
Zulässige Ein-/Ausschaltfrequenz, Netz	1/h		3	0	
max. Einschaltstrom	Α	10	10	10	20
Nenn-DC-Bus-Zwischenkreisspannung (Bus-Einschaltverzögerung 3ph 1s)	٧		140 b	is 340	
Dauerausgangsstrom (± 3 %), einphasig oder	dreiph	asig, bei 40	° C Umgebu	ngstemperat	ur
bei 120 V	Aeff	3	6	12	_
bei 240 V	Aeff	3	6	12	24
Spitzenausgangsstrom (für ca. 5 s, ± 3 %)	Aeff	9	18	30	48
Dauerausgangsleistung bei Nenneingangsstro	m				
bei 1 x 120 V	VA	312,5	625	1250	_
bei 1 x 240 V	VA	625	1250	2500	_
bei 3 x 120 V	VA	312,5	625	1250	_
bei 3 x 240 V	VA	625	1250	2500	5000
Spitzenausgangsleistung (für ca. 1 s)					
bei 1 x 120 V	kVA	0,937	1,875	3,125	_
bei 1 x 240 V	kVA	1,875	3,750	6,250	_
bei 3 x 120 V	kVA	0,937	1,875	3,125	_
bei 3 x 240 V	kVA	1,875	3,750	6,250	10
Technische Daten für Bremschopper			(→ ;	4 48)	
Min. Motorinduktivität					
bei 120 V	mH	1,3	0,6	0,5	0,3
bei 240 V	mΗ	2,5	1,3	1	0,6
Max. Motorinduktivität	mH	250	125	100	60
Wärmeableitung, Endstufe deaktiviert	W	max. 20	max. 20	max. 20	max. 25
Wärmeableitung bei Nennstrom	W	31	57	137	175
Schallpegel (Lüfter mit niedriger/hoher Drehzahl)	dB (A)	-	33/39	37/43	41/56
Hilfsspannungsversorgung (PELV)	V	24 V (:	±10%, Spanı	nungsabfall r	orüfen)
-Strom ohne/mit Motorbremse (B, P, T Typen)	Α	0,5 / 1,7	0,6 / 1,8	0,7 / 1,9	1,0 / 2,5
-Strom ohne/mit Motorbremse (M Typ)	Α	0,8/2,0	0,9/2,1	1,0 / 2,2	1,3 / 2,8

7.7 Elektrische Daten AKD-xzzz07

Elektrische Daten	Dim	AKD- x00307	AKD- x00607	AKD- x01207	AKD- x02407	AKD- x04807
Nennversorgungsspannung (L1/L2/L3)	V	ACCCC!		V bis 480 \		A0 1001
Netzfrequenz	Hz		50 Hz bis 400 Hz ±5% oder DC			
Nenneingangsleistung für S1-Betrieb bei 480V	kVA	2,24	4,49	7,65	15,2	40,9
Nenneingangsstrom bei 40° C Umgebungste	mperat	ur				
bei 3 x 240 V	Α	2,7	5,4	9,2	18,3	49,3
bei 3 x 400 V	Α	2,7	5,4	9,2	18,3	49,3
bei 3 x 480 V	Α	2,7	5,4	9,2	18,3	49,3
Zulässige Ein-/Ausschaltfrequenz, Netz	1/h			30		
max. Einschaltstrom (bei 480V, 20°C)	А	9	9	9	9	9
Nenn-DC-Bus-Zwischenkreisspannung (Bus-Einschaltverzögerung 3ph 1s)	V=			340 bis 680)	
Dauerausgangsstrom (± 3 %) bei 40° C Umge	bungs	temperatur				
bei 240 V	Aeff	3	6	12	24	48
bei 400 V	Aeff	3	6	12	24	48
bei 480 V	Aeff	3	6	12	24	48
Spitzenausgangsstrom (für ca. 5 s, ± 3 %)	Aeff	9	18	30	48	96
Dauerausgangsleistung bei Nenneingangsstr	om					
bei 3 x 240 V	kVA	0,6	1,25	2,5	5	10
bei 3 x 400 V	kVA	1	2	4,2	8,3	16,6
bei 3 x 480 V	kVA	1,2	2,5	5	10	20
Spitzenausgangsleistung (für ca. 1 s)						
bei 3 x 240 V	kVA	1,8	3,75	6,25	10	20
bei 3 x 400 V	kVA	3	6,75	10,4	16,7	33
bei 3 x 480 V	kVA	3,6	7,5	12,5	20	40
Technische Daten für Bremschopper			(→ ‡	<i>‡</i> 48)		
Min. Motorinduktivität						
bei 240 V	mh	3,2	1,6	1,3	0,6	0,3
bei 400 V	mh	5,3	2,6	2.1	1	0,5
bei 480 V	mh	6,3	3,2	2,5	1,2	0,6
Max. Motorinduktivität	mH	600	300	250	120	60
Wärmeableitung, Endstufe deaktiviert	W	max. 20	max. 20	max. 20	max. 25	max. 25
Wärmeableitung bei Nennstrom	W	102	129	153	237	640
Schallpegel (Lüfter mit niedriger/hoher Drehzahl)	dB(A)	34/43	34/43	44/52	48/58	48/72
Hilfsspannungsversorgung (PELV)	V= 24 V (±10%, Spannungsabfall prüfen)			n)		
-Strom ohne/mit Motorbremse (B, P, T Typen)	A=	1 / 2,5	1/2,5	1 / 2,5	2/4	2/*
-Strom ohne/mit Motorbremse (M Typ)	A=	1,3 / 2,8	1,3 / 2,8	1,3 / 2,8	2,3/4,3	2,3 / *

^{* =} Motorhaltebremse wird mit separater 24 V ±10% Spannung versorgt (→ # 122).

7.8 Leistungsdaten

AKD-xzzz06

Leistungsdaten	Einheit	bis AKD- x00606	AKD- x01206	AKD- x02406
Schaltfrequenz der Endstufe	kHz	10	8	8
Spannungsanstiegsgeschwindigkeit dU/dt	kV/µs	3 2,5		4,3
Bandbreite des Stromreglers	kHz	2,5 bis 4 2 bis 3		is 3
Bandbreite des Drehzahlreglers (skalierbar)	Hz	0 bis 1000	0 bis 800	0 bis 600
Bandbreite des Positionsreglers (skalierbar)	Hz		1 bis 250	

AKD-xzzz07

Leistungsdaten	Einheit	AKD- x00307	AKD- x00607	AKD- x01207	AKD- x02407	AKD- x04807
Schaltfrequenz der Endstufe	kHz	8	8	6	8	8
Spannungsanstiegsgeschwindigkeit dU/dt	kV/µs	7,2				
Bandbreite des Stromreglers	kHz	2,5 bis 4 2 bis 3		2 bis 3		
Bandbreite des Drehzahlreglers (skalierbar)	Hz	0 bis 0 bis 600 800		0 bis 600		
Bandbreite des Positionsreglers (skalierbar)	Hz			1 bis 250)	

Bei Asynchronmotoren (Motor.Type = 2, Asynchronmotor U / f, Steuerung mit offenem Regelkreis) ist die maximale elektrische Motorfrequenz auf 600 Hz festgelegt, um den Exportbestimmungen von EAR 99 / ECCN zu entsprechen.

7.9 Empfohlene Anzugsmomente

	Anzugsmoment/Nm (Werte in in-lbs siehe (→ # 26)						
Stecker	AKD-x00306, AKD-x00606	AKD-x01206	AKD-x02406, AKD-x00307 bis AKD-x02407	AKD-x04807			
X1	0,2 bis 0,25	0,2 bis 0,25	0,2 bis 0,25	0,2 bis 0,25			
X2	0,5 bis 0,6	0,7 bis 0,8	0,7 bis 0,8	0,7 bis 0,8			
X3	0,5 bis 0,6	0,5 bis 0,6	0,7 bis 0,8	0,7 bis 0,8			
X4	-	-	0,7 bis 0,8	0,7 bis 0,8			
X7, X8, X21, X22, X23, X24, X35, X36	0,2 bis 0,25	0,2 bis 0,25	0,2 bis 0,25	0,2 bis 0,25			
X14	-	-	1,7 bis 1,8	1,7 bis 1,8			
X15, X16	-	-	0,2 bis 0,25	0,2 bis 0,25			
PE-Block	1,7	1,7	1,7	1,7			

7.10 Sicherungen und Leistungsschalter

Sicherungshalter: In Kombination mit den Standard-Sicherungsblöcken müssen gemäß EN 60529 fingersichere Sicherungshalter verwendet werden.

Beispiel Eaton/Bussmann: Modulare Sicherungshalter der CH-Reihe, Klasse J, 3-polig: CH30J3

Beispiel Mersen: Ultrasafe Sicherungshalter, Klasse J, 3-polig: US3J3I

7.10.1 Sicherungen für Leistungsversorgung (≤ 5.000 rms)

Servoverstärker- Modell	Max. Strom-Nennwert	Beispiel Klasse J Eaton/Bussmann	Beispiel Klasse J Mersen			
AKD-x00306	10 A (zeitverzögert)	LPJ10SP/DFJ10	AJT10/HSJ10			
AKD-x00606	15 A (zeitverzögert)	LPJ15SP/DFJ15	AJT15/HSJ15			
AKD-x01206	15 A (zeitverzögert)	LPJ15SP/DFJ15	AJT15/HSJ15			
AKD-x02406	30 A (zeitverzögert)	LPJ30SP/DFJ30	AJT30/HSJ30			
	-		-			
AKD-x00307	6 A (zeitverzögert)	LPJ6SP/DFJ6	AJT6/HSJ6			
AKD-x00607	10 A (zeitverzögert)	LPJ10SP/DFJ10	AJT10/HSJ10			
AKD-x01207	15 A (zeitverzögert)	LPJ15SP/DFJ15	AJT15/HSJ15			
AKD-x02407	30 A (zeitverzögert)	LPJ30SP/DFJ30	AJT30/HSJ30			
AKD-x04807	60 A (zeitverzögert)	LPJ60SP/DFJ60	AJT60/HSJ60			
AKD-x04807	AKD-x04807 Siemens Leistungsschalter 3RV17 42-5LD10 (→ # 115)					

Halbleitersicherungen (≤ 65.000 rms) siehe Kapitel UL-Konformität (→ # 25).

7.10.2 Sicherung für 24-V-Spannungsversorgung

Servoverstärker- Modell		L_ '	Beispiel Klasse J Mersen
alle AKD	8 A (zeitverzögert)	LPJ8SP/DFJ8	AJT8

7.10.3 Sicherung für externen Bremswiderstand

Verstärkermodell	Strom- nennwert @240V	Strom- nennwert @480V	UL Region Beispiel:	CE Region Beispiel:
AKD-x003 bis 012	10 A	40 A	Eaton/Bussmann FWP-xxA14F	Siba 110 V400 V: gRL xxA (gS)
AKD-x024	15 A	50 A		Siba 400 V480 V: aR xxA
AKD-x048	-	100 A	Eaton/Bussmann FWP-100A22F	Mersen MEV100A100-4

7.10.4 Sicherung für verbundene Zwischenkreise

Verstärkermodell		UL Region Beispiel:	CE Region Beispiel:
AKD-x003 bis 024	50 A	I .	Siba: 110 V400 V: gRL 50 A (gS) Siba: 400 V480 V: aR 50 A
AKD-x048	125 A	Eaton/Bussmann FWP-125A14F	Siba: 400 V480 V: aR 125 A

7.11 Stecker

AKD-xzzz06 und AKD-xzzz07 Typen

Stecker	Тур	max. Leiter- querschnitt ¹	Strom 2	Spannung 3
Steuersignale X7/X8	Steckerklemmen, 10 polig	1,5 mm², 16 AWG	10 A	250 V
Steuersignale X21/X22*	Steckerklemmen, 8 polig	1,5 mm², 16 AWG	10 A	250 V
Steuersignale X23/X24*	Steckerklemmen, 14 polig	1,5 mm², 16 AWG	10 A	250 V
Steuersignale X35/X36**	Steckerklemmen, 8 polig	1,5 mm², 16 AWG	10 A	250 V
Rückführung X10	SubD 15-polig HD (Buchse)	0,5 mm², 21 AWG	1 A	< 100 V
Service X11	RJ45	0,5 mm², 21 AWG	1 A	< 100 V
Service X11, X32*	RJ45	0,5 mm², 21 AWG	1 A	< 100 V
Motion-Bus X5, X6	RJ45	0,5 mm², 21 AWG	1 A	< 100 V
CAN I/O X12/13	RJ25	0,5 mm², 21 AWG	1 A	< 100 V
Encoder-Emulation X9	SubD 9-polig (Stift)	0,5 mm², 21 AWG	1 A	< 100 V

^{*} nur mit I/O Optionskarte "IC", ** nur bei AKD-M Variante

AKD-xzzz06 Typen (100-240 V Netzspannung)

Stecker	Тур	Max. Leiter- querschnitt ¹	Strom 2	Spannung ³
24V/STO X1 (03 to 24A)	Steckerklemmen, 3 polig	1,5 mm ² , 16 AWG	8 A	160 V
Motor X2 (3 bis 6 A)	Steckerklemmen, 6 polig	2,5 mm ² , 14 AWG	10 A	320 V
Motor X2 (12 bis 24 A)	Steckerklemmen, 6 polig	10 mm², 8 AWG	30 A	1000 V
Versorgung/Brems-R X3 (3 bis 6A)	Steckerklemmen, 7 polig	2,5 mm², 14 AWG	10 A	320 V
Versorgung/Brems-R X3 (12A)	Steckerklemmen, 8 polig	2,5 mm², 14 AWG	16 A	320 V
Versorgung X4 (24 A)	Steckerklemmen, 4 polig	10 mm², 8 AWG	30 A	1000 V
Brems-R X3 (24 A)	Steckerklemmen, 4 polig	10 mm², 8 AWG	30 A	1000 V

AKD-xzzz07 Typen (240 V bis 480 V Netzspannung)

Stecker	Тур	Max. Leiter- querschnitt ¹	Strom 2	Spannung 3
24V/STO X1 (03 bis 24A)	Steckerklemmen, 3 polig	1,5 mm², 16 AWG	8 A	160 V
24V/STO X1 (48A)	Steckerklemmen, 8 polig	1,5 mm², 16 AWG	8 A	160 V
Motor X2 (03 bis 24A)	Steckerklemmen, 6 polig	10 mm², 8 AWG	30 A	1000 V
Motor X2 (48A)	Steckerklemmen, 4 polig	16 mm², 6 AWG	54 A	1000 V

Stecker	Тур	Max. Leiter- querschnitt ¹	Strom 2	Spannung 3
Brems-R X3 (03 bis 24 A)	Steckerklemmen, 4 polig	10 mm², 8 AWG	30 A	1000 V
Brems-R X3 (48 A)	Steckerklemmen, 3 polig	16 mm², 6 AWG	54 A	1000 V
Versorgung X4 (3 bis 24A)	Steckerklemmen, 4 polig	10 mm², 8 AWG	30 A	1000 V
Versorgung X4 (48 A)	Steckerklemmen, 4 polig	16 mm², 6 AWG	54 A	1000 V
DC-Bus X14 (48A)	Steckerklemmen, 3 polig	16 mm², 6 AWG	54 A	1000 V
24V Motorbremse X15 (48A)	Steckerklemmen, 2 polig	1,5 mm², 16 AWG	8 A	160 V
Motorbremse X16 (48A)	Steckerklemmen, 2 polig	1,5 mm², 16 AWG	8 A	160 V

¹Anschluss mit einer Leitung

²Anschluss mit einer Leitung mit empfohlenem Leiterquerschnitt (→ # 47)

³Nennspannung bei Verschmutzungsgrad 2 (kleinster Wert gemäß UL840/IEC60664)

7.12 Anforderungen für Kabel und Verdrahtung

7.12.1 Allgemeines

Informationen zu den chemischen, mechanischen und elektrischen Merkmalen der Kabel finden Sie im Zubehörhandbuch, oder wenden Sie sich an den Kundendienst.

INFO

Um die maximal zulässige Leitungslänge zu erreichen, müssen Sie Kabelmaterial verwenden, das die folgenden Kapazitätsanforderungen erfüllt (Phase zu Schirm):

- Motorkabel: weniger als 150 pF/m
- Feedback-Kabel: weniger als 120 pF/m

Motorkabel mit einer Länge > 25 m können den Einsatz einer Motordrossel erfordern.

7.12.2 Kabelquerschnitte und -anforderungen

Die folgende Tabelle enthält die empfohlenen Leiterquerschnitte und Kabelanforderungen für Schnittstellen von einachsigen Systemen gemäß EN 60204. Bei Mehrachsensystemen beachten Sie bitte die spezifischen Betriebsbedingungen für Ihr System.

Schnittstelle	Querschnitt	Kabelanforderungen
AC-Anschluss	bis zu AKD-x006: 1,5 mm² (16 AWG) AKD-x012: 2,5 mm² (14 AWG) AKD-x 024: 4 mm² (12 AWG) AKD-x048: 16 mm² (6 AWG)	600 V, min. 75°C
DC-Zwischenkreis, Bremswiderstand	AKD-x006: 1,5 mm² (16 AWG) AKD-x01224: 2,5 mm² (14 AWG) AKD-x048: 4 mm² (12 AWG)	1000 V, min. 75 °C, geschirmt für Längen >0,20 m
Motorkabel ohne Drossel, max. 25 m	bis zu AKD-x006: 1,5 mm² (16 AWG) AKD-x012: 2,5 mm² (14 AWG) AKD-x 024: 4 mm² (12 AWG) AKD-x048: 16 mm² (6 AWG)	600 V, min. 75 °C, geschirmt, Kapazität < 150 pF/m
Motorkabel mit Drossel, 25 bis 50 m	bis zu AKD-x006: 1,5 mm² (16 AWG) AKD-x012: 2,5 mm² (14 AWG) AKD-x 024: 4 mm² (12 AWG)	600 V, min. 75 °C, geschirmt, Kapazität < 150 pF/m
Resolver, max. 100 m	4 x 2 x 0,25 mm ² (24 AWG)	paarweise verdrillt, geschirmt, Kapazität < 120 pF/m
SFD, max. 50 m	1 x 2 x 0,25 mm ² (24 AWG) 1 x 2 x 0,50 mm ² (21 AWG)	paarweise verdrillt, geschirmt
SFD3/DSL, max. 25 m	1 x 2 x 0,50 mm² (21 AWG)	paarweise verdrillt, geschirmt
Encoder, max. 50 m	7 x 2 x 0,25 mm ² (24 AWG)	paarweise verdrillt, geschirmt
ComCoder, max. 25 m	8 x 2 x 0,25 mm ² (24 AWG)	paarweise verdrillt, geschirmt
Analoge E/A, max. 30 m	0,25 mm² (24 AWG)	paarweise verdrillt, geschirmt
Digitale E/A, max. 30 m	0,5 mm² (21 AWG)	Einzelleitung
Haltebremse (Motor)	min. 0,75 mm² (19 AWG)	600 V, min. 75 °C, geschirmt
+24 V/GND, max. 30 m	max. 2,5 mm² (14 AWG)	Einzelleitung

7.13 Dynamisches Bremsen

Die dynamische Bremsung ist eine Methode zum Abbremsen eines Servosystems durch Abbau der mechanischen Energie über die Gegen-EMK des Motors. Der AKD verfügt über einen dynamischen Bremsmodus, der vollständig in die Hardware integriert ist. Bei Aktivierung schließt der AKD die Motorklemmen in Phase mit der Gegen-EMK kurz. Dies wandelt den rückgespeisten Strom in Bremsstrom um und gewährleistet den schnellstmöglichen Stopp des Motors.

- Wird der Strom nicht begrenzt, dann wird die mechanische Energie in die Motorwicklungen abgeleitet.
- Wird der Strom begrenzt, dann wird die Energie in die Bus-Kondensatoren geleitet.
- Der Servoverstärker begrenzt auch den maximalen dynamischen Bremsstrom an der Motorklemme über den Parameter DRV.DBILIMIT, um übermäßige Ströme/Kräfte an Servoverstärker, Motor und Last zu vermeiden.

Ob und wie der AKD den dynamischen Bremsmodus nutzt, hängt von DRV.DISMODE ab.

7.13.1 Brems-Chopper

Wenn die rückgespeiste Energie zu einem ausreichend hohen Anstieg der Bus-Kondensatorspannung führt, gibt der Servoverstärker den Brems-Chopper frei und die rückgespeiste Energie wird an den Bremswiderstand ausgegeben. Je nach Verstärkertyp und Verdrahtung des Servoverstärkers ein interner oder externer Widerstand.

AKD-x00306 bis AKD-x00606, AKD-x04807

Kein interner Bremswiderstand. Ein externer Widerstand kann angeschlossen werden.

AKD-x01206 bis AKD-x02406 und AKD-x00307 bis AKD-x02407

Interner Bremswiderstand, zusätzlich kann ein externer Widerstand angeschlossen werden. Geeignete externe Bremswiderstände sind im *AKDZubehörhandbuch* beschrieben.

7.13.2 Funktionsbeschreibung

Übersteigt die vom Motor rückgespeiste Energie die Spannungsschwelle des DC-Busses, wird der Brems-Chopper freigegeben, und die überschüssige Energie wird an den Bremswiderstand ausgegeben.

1. Einzelne Servoverstärker, nicht über den DC-Bus-Zwischenkreis (+DC, -DC) gekoppelt

Wenn die durchschnittliche oder Spitzenleistung der vom Motor zurückgespeisten Energie den eingestellten Wert für die Nennbremsleistung übersteigt, gibt der Servoverstärker die Warnung "n521 Regen Over power" aus. Steigt die Leistung über die Fehlerschwelle, schaltet sich der Brems-Chopper aus.

Bei ausgeschaltetem Brems-Chopper wird die DC-Busspannung des Verstärkers überwacht. Wenn der DC-Bus-Schwellenwert überschritten wird, meldet der Servoverstärker einen Überspannungsfehler. Die Leistungsstufe des Verstärkers wird deaktiviert und die Last trudelt aus. Die Fehlermeldung "F501 Bus Überspannung" wird ausgegeben (→ # 203). Der Fehlerkontakt (Klemmen X8/9-10) ist geöffnet (→ # 166).

2. Mehrere Servoverstärker, über den DC-Bus-Zwischenkreis (+DC, -DC) gekoppelt

Über den integrierten Bremskreis können mehrere Servoverstärker derselben Baureihe ohne weitere Maßnahmen über einen gemeinsamen DC-Bus betrieben werden (→ # 117). 90 % der kombinierten Leistung aller gekoppelten Servoverstärker steht permanent für die Spitzen- und Dauerleistung zur Verfügung. Das Abschalten bei Überspannung erfolgt wie oben unter 1. beschrieben für den Servoverstärker mit der niedrigsten Ausschaltschwelle.

INFO

Beachten Sie die Regenerierungszeit (einige Minuten) nach voller Belastung mit Spitzenbremsleistung.

7.13.3 Technische Daten für AKD-xzzz06

Die technischen Daten für die Bremskreise hängen von Verstärkertyp und Netzspannung ab.

Netzspannung, Kapazitäten und Einschaltspannungen sind sämtlich Nennwerte.

Bremski	reis			Netz-
	1013			spannung
Тур		Nenndaten		120V / 240V
1		Einschaltschwelle des Bremskreises	V	380
alle Typ	oen	Überspannungsgrenze	V	420
		Maximaler Bremsauslastungsgrad	%	15*
Тур		Nenndaten	Einheit	100-240 V
AKD-x0	0306	Externer Bremswiderstand	Ω	33
		Maximale Dauerbremsleistung, externer Widerst.	kW	0,77
		Spitzenbremsleistung, externer Widerstand (1 s)	kW	5,4
		Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	60 / 20
		Zwischenkreis-Kapazität	μF	940
AKD-x0	0606	Externer Bremswiderstand	Ω	33
		Maximale Dauerbremsleistung, externer Widerst.	kW	1,5
		Spitzenbremsleistung, externer Widerstand (1 s)	kW	5,4
		Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	60 / 20
		Zwischenkreis-Kapazität	μF	940
AKD-x0	1206	Interner Bremswiderstand	Ω	15
		Dauerleistung, interner Widerstand	W	100
		Spitzenbremsleistung, interner Widerstand (0,5 s)	kW	11,7
		Externer Bremswiderstand	Ω	15
		Maximale Dauerbremsleistung, externer Widerst.	kW	3
		Spitzenbremsleistung, externer Widerstand (1 s)	kW	5,4
		Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	160 / 55
		Zwischenkreis-Kapazität	μF	2460
Тур	Nenno	daten	Einheit	120 V / 240 V
AKD-		er Bremswiderstand	Ω	8
x02406	Daue	rleistung, interner Widerstand	W	200
	Spitze	enbremsleistung, interner Widerstand (0,5 s)	kW	22
	Exter	ner Bremswiderstand	Ω	15
	Maximale Dauerbremsleistung, externer Widerst.		kW	6
	Spitze	enbremsleistung, externer Widerstand (1 s)	kW	11,8
	Speic	herbare Energie in Kondensatoren (+/- 20 %)	Ws	180 / 60
	Zwisc	henkreis-Kapazität	μF	2720
		-		

^{*} hängt von der Leistung des angeschlossenen Bremswiderstandes ab

7.13.4 Technische Daten für AKD-xzzz07

Die technischen Daten für die Bremskreise hängen von Verstärkertyp und Netzspannung ab.

Netzspannung, Kapazitäten und Einschaltspannungen sind sämtlich Nennwerte.

Bremskreis			Netzsp	annung
Тур	Nenndaten	Einheit	240V	400V/ 480V
AKD-xzzz07	Einschaltschwelle des Bremskreises	V	380	760
alle Typen	Überspannungsgrenze	V	420	840
	Maximaler Bremsauslastungsgrad	%	1	5*
AKD-x00307	Interner Bremswiderstand	Ω	3	33
	Dauerleistung, interner Widerstand	W	8	30
	Spitzenbremsleistung, interner Widerstand (0,5 s)	kW	5,5	22,1
	Externer Bremswiderstand	Ω	3	33
	Maximale Dauerbremsleistung, externer Widerst.	kW	0,77	1,5
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	5,4	21,4
	Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	5	35 / 20
	Zwischenkreis-Kapazität	μF	2	35
AKD-x00607	Interner Bremswiderstand	Ω	3	33
	Dauerleistung, interner Widerstand	W	1	00
	Spitzenbremsleistung, interner Widerstand (0,5 s)	kW	5,4	21,4
	Externer Bremswiderstand	Ω	3	33
	Maximale Dauerbremsleistung, externer Widerst.	kW	1,5	3
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	5,4	21,4
	Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	5	35 / 20
	Zwischenkreis-Kapazität	μF	2	35
AKD-x01207	Interner Bremswiderstand	Ω	3	33
	Dauerleistung, interner Widerstand	W	1	00
	Spitzenbremsleistung, interner Widerstand (0,5 s)	kW	5,4	21,4
	Externer Bremswiderstand	Ω	3	33
	Maximale Dauerbremsleistung, externer Widerst.	kW	3	6
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	5,4	21,4
	Speicherbare Energie in Kondensatoren (+/- 20 %)	Ws	10	70 / 40
	Zwischenkreis-Kapazität	μF	4	70

AKD-x02407	Interner Bremswiderstand	Ω	2	23
	Dauerleistung, interner Widerstand	W	2	00
	Spitzenbremsleistung, interner Widerstand (0,5	kW	7,7	30,6
	s)			
	Externer Bremswiderstand	Ω	2	23
	Maximale Dauerbremsleistung, externer Widerst.	kW	6	12
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	7,7	30,6
	Speicherbare Energie in Kondensatoren (+/- 20	Ws	15	110/
	(%)			60
	Zwischenkreis-Kapazität	μF	6	80
AKD-x04807	Externer Bremswiderstand	Ω	1	10
	Maximale Dauerbremsleistung, externer Widerst.	kW	6	12
	Spitzenbremsleistung, externer Widerstand (1 s)	kW	17,6	70,5
	Speicherbare Energie in Kondensatoren (+/- 20	Ws	20	146 /
	(%)			80
	Zwischenkreis-Kapazität	μF	9	00

^{*} hängt von der Leistung des angeschlossenen Bremswiderstandes ab

7.14 Ein- und Ausschaltverhalten

Dieses Kapitel beschreibt das Ein- und Ausschaltverhalten des AKD.

Verhalten der "Haltebremsen"-Funktion

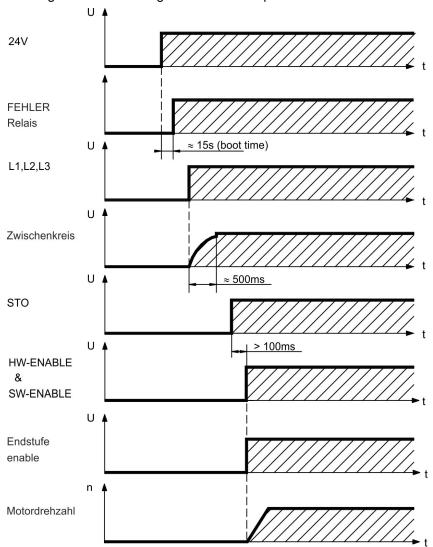
Servoverstärker mit freigegebener Haltebremsenfunktion besitzen ein spezielles Timing für das Ein- und Ausschalten der Endstufe (→ # 123). Ereignisse, die das DRV.ACTIVATE Signal abschalten, lösen die Haltebremse aus. Bei Deaktivierung des ENABLE-Signals (Freigabesignal) wird die elektrische Bremsung ausgelöst. Wie bei allen elektronischen Schaltungen gilt die allgemeine Regel, dass das interne Haltebremsenmodul ausfallen kann.

Die funktionale Sicherheit, z.B. bei hängenden Lasten (vertikale Lasten), erfordert eine zusätzliche mechanische Bremse, die sicher betätigt werden muss, z.B. durch eine Sicherheitssteuerung.

Wenn die Geschwindigkeit unter den Schwellenwert *CS.VTHRESH* abfällt oder es während eines Stopp-Vorgangs zu einer Zeitüberschreitung kommt, wird die Bremse geschlossen. Setzen Sie bei vertikalen Achsen den Parameter MOTOR.BRAKEIMM auf 1, damit die Motorhaltebremse (→ # 123) nach Fehler oder Hardware Disable ohne Verzögerung einfällt.

Verhalten bei Unterspannung

Das Verhalten bei Unterspannung hängt von der Einstellung VBUS.UVMODE ab.


VBUS.UVMODE	DC-Bus-Unterspannungsmodus. Hinweise zur Konfiguration des Parameters finden Sie im <i>AKD Benutzerhandbuch</i> .
0	Der Servoverstärker meldet bei jedem Auftreten eines Unterspannungszustands einen F502-Unterspannungsfehler.
	spannangszastanas ement soz-omerspannangsierner.
1 (Standard)	Der Servoverstärker gibt eine n502-Warnung aus, wenn er nicht frei-
	gegeben ist. Der Servoverstärker meldet einen Fehler, wenn der Ser-
	voverstärker bei Auftreten des Zustands freigegeben ist oder versucht
	wird, ihn freizugeben, während ein Unterspannungszustand auftritt.

STO-Sicherheitsfunktion

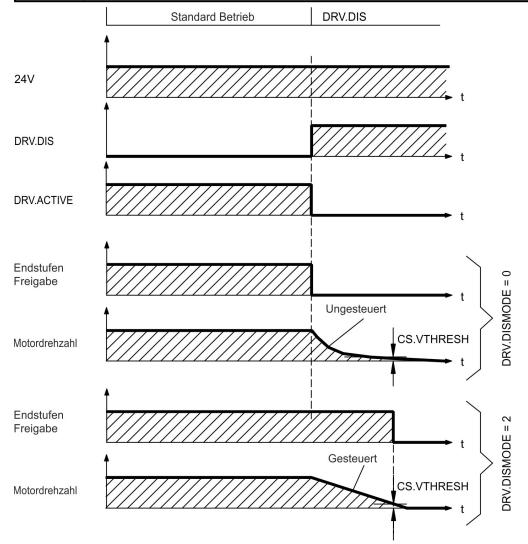
Mit der STO-Sicherheitsfunktion kann der Servoverstärker mithilfe seiner internen Elektronik im Stillstand gesichert werden, so dass die Antriebswelle auch bei anliegender Stromversorgung gegen unbeabsichtigtes Wiederanlaufen gesichert ist. Im Kapitel "Safe Torque Off (STO)" wird die Verwendung der STO-Funktion beschrieben (→ # 60).

7.14.1 Einschaltverhalten im Standardbetrieb

Das folgende Schema zeigt die korrekte Sequenz zum Einschalten des Verstärkers.

Fehler F602 tritt auf, wenn STO nicht angesteuert wird, wenn die HW-Freigabe aktiviert wird. Weitere Informationen zur STO-Funktion (→ # 60).

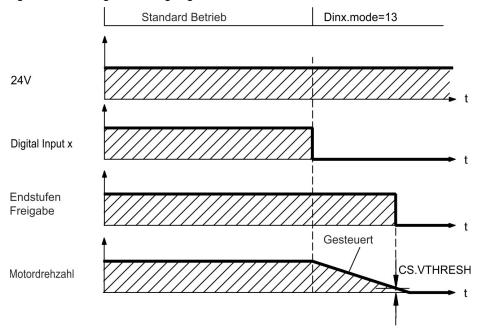
7.14.2 Ausschaltverhalten


INFO

Die 24 V-Versorgung des Verstärkers muss konstant aufrecht erhalten werden. Der HW-Enable-Eingang deaktiviert die Endstufe sofort. Konfigurierte digitale Eingänge und Feldbusbefehle können verwendet werden, um kontrollierte Stopps auszuführen.

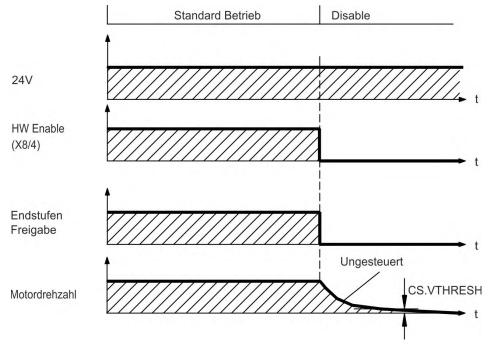
7.14.2.1 Ausschaltverhalten unter Verwendung des Befehls DRV.DIS

Die Taste Enable/Disable in WorkBench gibt intern einen *drv.dis*-Befehl an den Servoverstärker aus. Hinweise zur Konfiguration der Eingänge und Softwarebefehle finden Sie in der Onlinehilfe. Dieses Enable-Signal wird auch "Softwarefreigabe" genannt.


DRV. DISMODE	DRV.DISMODE steuert das Verhalten des <i>drv.dis</i> -Befehls, der über WorkBench, eine Klemme oder über den Feldbus ausgegeben wird. Hinweise zur Konfiguration finden Sie im <i>AKDBenutzerhandbuch</i> .
0	Achse sofort deaktivieren. Wenn die Geschwindigkeit unter den Schwellenwert <i>CS.VTHRESH</i> abfällt oder es zu einer Zeitüberschreitung kommt, wird die Bremse geschlossen. Stopp der Kategorie 0 gemäß EN 60204 (→ # 58).
2	Kontrollierten Stopp verwenden, um den Servoverstärker sofort zu deaktivieren. Wenn die Geschwindigkeit unter den Schwellenwert <i>CS.VTHRESH</i> abfällt oder es zu einer Zeitüberschreitung kommt, wird die Bremse geschlossen. Stopp der Kategorie 1 gemäß EN 60204 (→ # 58).

Wenn die Geschwindigkeit unter den Schwellenwert CS.VTHRESH abfällt oder es zu einer Zeitüberschreitung kommt, wird die Motorhaltebremse geschlossen (→ # 123).

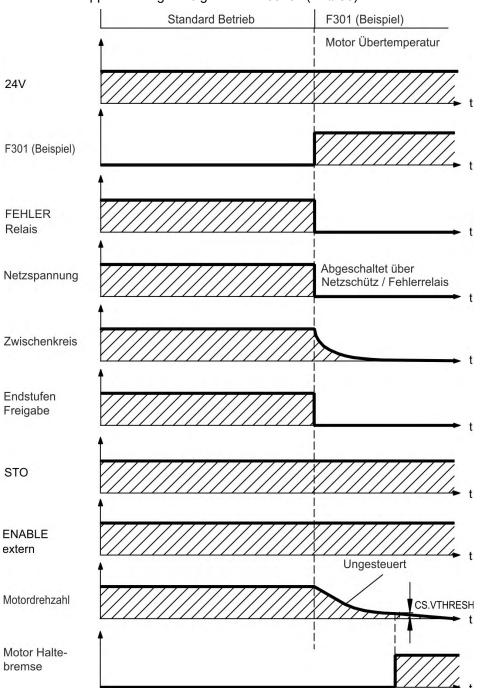
7.14.2.2 Ausschaltverhalten unter Verwendung eines digitalen Eingang (kontrollierter Stopp)


Dies ist ein Stopp der Kategorie 2 gemäß EN 60204 (→ # 58). Ein digitaler Eingang wird konfiguriert, um den Motor zu einem kontrollierten Stopp zu bringen und dann den Servoverstärker zu deaktivieren und die Haltebremse zu aktivieren (falls vorhanden). Die Konfiguration von digitalen Eingängen ist im AKDBenutzerhandbuch beschrieben.

Wenn die Geschwindigkeit unter den Schwellenwert CS.VTHRESH abfällt oder es zu einer Zeitüberschreitung kommt, wird die Motorhaltebremse geschlossen (→ # 123).

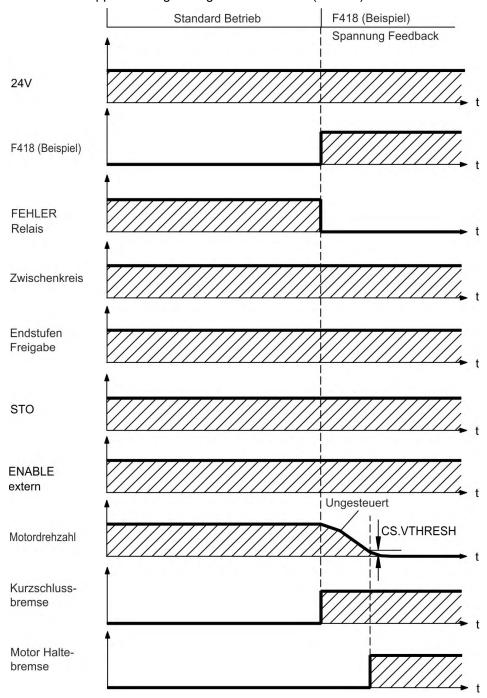
7.14.2.3 Ausschaltverhalten unter Verwendung des HW-Enable-Eingangs

Dies ist ein Stopp der Kategorie 0 gemäß EN 60204 (→ # 58). Der Hardware-Enable-Eingang deaktiviert die Leistungsstufe sofort.



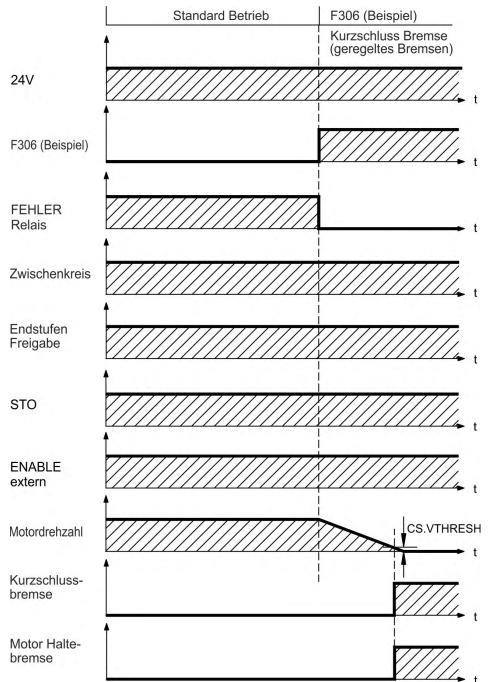
Wenn die Geschwindigkeit unter den Schwellenwert CS.VTHRESH abfällt oder es zu einer Zeitüberschreitung kommt, wird die Motorhaltebremse geschlossen (→ # 123). Setzen Sie bei vertikalen Achsen den Parameter MOTOR.BRAKEIMM auf 1, damit die Motorhaltebremse nach Hardware Disable ohne Verzögerung einfällt.

7.14.2.4 Ausschaltverhalten bei Auftreten eines Fehlers


Das Verhalten des Verstärkers hängt stets vom Fehlertyp und der Einstellung einer Reihe verschiedener Parameter ab (DRV.DISMODE, VBUS.UVFTHRESH, CS.VTHRESH und weitere; nähere Informationen siehe *AKDBenutzerhandbuch* oder Hilfe zu WorkBench). Eine Tabelle mit Beschreibungen des spezifischen Verhaltens bei jedem Fehler finden Sie im Abschnitt *Servoverstärker Fehler- und Warnmeldungen* des *AKDBenutzerhandbuchs*. Die folgenden Seiten zeigen Beispiele für mögliches Verhalten bei Fehlern.

Ausschaltverhalten bei Fehlern, die eine Deaktivierung der Endstufe bewirken Dies ist ein Stopp der Kategorie 0 gemäß EN 60204 (→ #58).

Wenn die Geschwindigkeit unter den Schwellenwert CS.VTHRESH abfällt oder es zu einer Zeitüberschreitung kommt, wird die Motorhaltebremse geschlossen (→ # 123). Setzen Sie bei vertikalen Achsen den Parameter MOTOR.BRAKEIMM auf 1, damit die Motorhaltebremse nach Fehler ohne Verzögerung einfällt.


Ausschaltverhalten bei Fehlern, die eine dynamische Bremsung bewirken Dies ist ein Stopp der Kategorie 0 gemäß EN 60204 (→ #58).

Wenn die Geschwindigkeit unter den Schwellenwert CS.VTHRESH abfällt oder es zu einer Zeitüberschreitung kommt, wird die Motorhaltebremse geschlossen (→ # 123).

Ausschaltverhalten bei Fehlern, die einen kontrollierten Stopp bewirken

Dies ist ein Stopp der Kategorie 1 gemäß EN 60204 (→ #58).

Wenn die Geschwindigkeit unter den Schwellenwert *CS.VTHRESH* abfällt oder es zu einer Zeitüberschreitung kommt, wird die Motorhaltebremse geschlossen (→ # 123).

7.15 Stopp/Not-Halt/ Not-Aus

Die Steuerfunktion Stopp, Not-Halt und Not-Aus sind in der Norm EN 60204 definiert. Angaben für die sicherheitsbezogenen Aspekte dieser Funktionen finden Sie in den Normen EN 13849 und EN 62061.

INFO

Der Parameter DRV.DISMODE muss auf 2 gesetzt sein, um die verschiedenen Stopp-Kategorien zu implementieren. Hinweise zur Konfiguration dieses Parameters finden Sie in der WorkBench *Onlinehilfe*.

WARNUNG Keine Funktionale Sicherheit!

Wenn die Last nicht sicher blockiert ist, kann dies zu schweren Verletzungen führen. Bei senkrechten Achsen kann die Last herunterfallen.

- Die funktionale Sicherheit, z.B. bei hängenden Lasten (vertikale Lasten), erfordert eine zusätzliche mechanische Bremse, die sicher betätigt werden muss, z. B. durch eine Sicherheitssteuerung.
- Setzen Sie bei vertikalen Achsen den Parameter MOTOR.BRAKEIMM auf 1, damit die Motorhaltebremse (→ # 123) nach Fehler oder Hardware Disable ohne Verzögerung einfällt.

7.15.1 Stopp

Die Stopp-Funktion hält den Antrieb im Normalbetrieb an. Die Stopp Funktion ist in der Norm EN 60204 definiert.

INFO

Die Stopp-Kategorie muss durch eine Risikobewertung der Maschine bestimmt werden.

Stopp-Funktionen müssen Priorität gegenüber zugewiesenen Anlauffunktionen besitzen. Die folgenden Stopp-Kategorien sind definiert:

Stopp-Kategorie 0

Stillsetzen durch sofortiges Unterbrechen der Energiezufuhr zu den Antriebselemente (dies ist ein ungesteuertes Stillsetzen). Mit der zugelassenen STO-Sicherheitsfunktion (→ #60) kann der Servoverstärker mit seiner internen Elektronik sicher gestoppt werden (IEC 62061 SIL2).

Stopp-Kategorie 1

Ein gesteuertes Stillsetzen, wobei die Energiezufuhr zu den Antriebselemente aufrechterhalten wird, um die Abschaltung durchzuführen. Die Energiezufuhr wird erst unterbrochen, wenn der Stillstand erreicht ist.

Stopp-Kategorie 2

Ein gesteuertes Stillsetzen, wobei die Energiezufuhr zu den Antriebselemente aufrechterhalten wird.

Stopps der Kategorie 0 und der Kategorie 1 müssen unabhängig von der Betriebsart ausgelöst werden können, wobei ein Stopp der Kategorie 0 Priorität besitzen muss.

Bei Bedarf sind Vorkehrungen für den Anschluss von Schutzvorrichtungen und Verriegelungen zu treffen. Falls notwendig, muss die Stopp-Funktion ihren Status an die Steuerlogik melden. Ein Zurücksetzen der Stopp-Funktion darf nicht zu einer Gefahrensituation führen.

7.15.2 Not-Halt

Die Not-Halt-Funktion wird zum schnellstmöglichen Anhalten der Maschine in einer Gefahrensituation verwendet. Die Not-Halt-Funktion ist durch die Norm EN 60204 definiert. Prinzipien der Not-Halt Ausrüstung und funktionale Gesichtspunkte sind in ISO 13850 festgelegt.

Der Steuerbefehl für den Not-Halt wird durch eine einzelne menschliche Handlung manuell ausgelöst, z.B. über einen zwangsöffnenden Druckschalter (roter Taster auf gelbem Hintergrund). Die Not-Halt-Funktion muss stets voll funktionsfähig und verfügbar sein. Der Bediener muss sofort verstehen, wie dieser Mechanismus bedient wird (ohne eine Anleitung zu lesen).

INFO

Die Stopp-Kategorie für den Not-Halt muss durch eine Risikobewertung der Maschine bestimmt werden.

Zusätzlich zu den Anforderungen für Stopps muss der Not-Halt die folgenden Anforderungen erfüllen:

- Der Not-Halt muss Priorität gegenüber allen anderen Funktionen und Betätigungen in allen Betriebsarten besitzen.
- Die Energiezufuhr zu allen Antriebselementen, die zu Gefahrensituationen führen könnten, muss entweder so schnell wie möglich unterbrochen werden, ohne dass es zu anderen Gefahren kommt (Stopp Kategorie 0, z.B. mit STO), oder so gesteuert werden, dass die gefahrbringende Bewegung so schnell wie möglich angehalten wird (Stopp-Kategorie 1).
- Das Zurücksetzen darf kein Wiederanlaufen bewirken.

7.15.3 NOT-AUS

Die Not-Aus Funktion wird zum Abschalten der elektrischen Energieversorgung der Maschine verwendet, um Gefährdungen durch elektrische Energie (z.B. einen elektrischen Schlag) auszuschließen. Funktionale Gesichtspunkte für Not-Aus sind in IEC 60364-5-53 festgelegt.

Der Not-Aus wird durch eine einzelne menschliche Handlung manuell ausgelöst, z.B. über einen zwangsöffnenden Druckschalter (roter Taster auf gelbem Hintergrund).

INFO

Die Ergebnisse einer Risikobewertung der Maschine bestimmen, ob ein Not-Aus notwendig ist.

Not-Aus wird erreicht durch Abschalten der Energieeinspeisung mit elektromechanischen Schaltgeräten. Das führt zu einem Stopp der Kategorie 0. Wenn diese Stopp Kategorie für die Maschine nicht zulässig ist, muss der Not-Aus durch andere Maßnahmen (z.B. Schutz gegen direktes Berühren) ersetzt werden.

7.16 Safe Torque Off (STO)

Die Sicherheitsfunktion STO im AKD ist qualifiziert. Das Schaltungskonzept zur Realisierung der Sicherheitsfunktion "Safe Torque OFF" in den Servoverstärkern ist demnach geeignet, die Anforderungen an SIL 2 gem. EN EN 62061 und des PLd, Kat. 3 gem. EN 13849-1 zu erfüllen. Mit AKD-x04807 Servoverstärkern kann SIL3/PLe erreicht werden, wenn beide STO-Enable Eingänge und die korrespondierenden STO-Status Ausgänge genutzt werden.

AKD-x003 bis AKD-x024

Ein zusätzlicher digitaler Eingang (STO) gibt die Leistungsendstufe des Verstärkers frei, solange ein 24 V-Signal an diesem Eingang anliegt. Wenn der Schaltkreis des STO-Eingangs geöffnet wird, wird der Motor nicht mehr mit Leistung versorgt. Der Antrieb erzeugt kein Drehmoment mehr und trudelt aus.

INFO

Dieser Eingang ist nicht konform mit EN 61131-2. Sie können einen Stopp der Kategorie 0 (→ # 58) mit dem STO Eingang erreichen, ohne das Netzschütz zu betätigen.

AKD-x048

Zwei zusätzliche digitale Eingänge (STO-Enable1 und STO-Enable2) geben die Leistungsendstufe des Verstärkers frei, solange 24 V an beiden Eingängen anliegt. Wenn einer der STO-Enable Eingänge geöffnet wird, wird der Motor nicht mehr mit Leistung versorgt. Der Antrieb erzeugt kein Drehmoment mehr und trudelt aus.

INFO

Diese Eingänge sind nicht konform mit EN 61131-2. Sie können einen Stopp der Kategorie 0

(→ # 58) mit den STO Eingängen erreichen, ohne das Netzschütz zu betätigen.

7.16.1 Sicherheitstechnische Kennzahlen

Die Teilsysteme (AKD) sind durch die Kennzahlen sicherheitstechnisch vollständig beschrieben:

AKD-x003 bis AKD-x024

Funktion	Betriebsart	EN 13849-1	EN 62061	PFH [1/h]	T _M [Jahre]	SFF [%]
STO	einkanalig	PL d, Kat. 3	SIL 2	1,50E-07	20	100

AKD-x048

Funktion	Betriebsart	EN 13849-1	EN 62061	PFH [1/h]	T _M [Jahre]	SFF [%]
STO	einkanalig	PL d, Kat.2	SIL 2	1,88E-07	20	89
STO	zweikanalig	PL d, Kat.3	SIL 2	5,64E-09	20	87
STO	zweikanalig mit periodischem Test	PL e, Kat.4	SIL 3	5,64E-09	20	87

ACHTUNG

Ein sehr unwahrscheinliches, aber mögliches Ereignis kann auftreten, wenn innerhalb einer sehr kurzen Zeit zwei nicht benachbarte IGBTs einen Kurzschluss aufweisen. In diesem Fall kann eine Bewegung von maximal 120° (elektrisch) auftreten. Dies kann nur geschehen, wenn die STO Funktion des Antrieb aktiviert ist. Wenn die Ausfallrate eines IGBT 120 FIT beträgt, ergeben sich für einen solchen Kurzschluss 60 FIT (50:50 Modell). Bei einem solchen Ereignis müssen 2 spezifische IGBTs zur gleichen Zeit ausfallen. Die Rechnung ergibt eine Wahrscheinlichkeit von 1.5 * 10⁻¹⁵ pro Stunde (ohne Ausfälle wegen gemeinsamer Ursachen). Auch wenn die STO Funktion über ein Jahr lang ausgeführt wird, wird dieses Ereignis nur alle 100 Milliarden Jahre eintreten.

7.16.2 Sicherheitshinweise

WARNUNG Keine Bremsleistung!

Schwere Verletzungen können die Folge sein, wenn eine hängende Last nicht sicher blockiert wird. Der Servoverstärker kann eine hängende Last nicht halten, wenn die STO-Funktion aktiviert ist.

 Benutzen Sie eine zusätzliche sichere mechanische Sperre (zum Beispiel durch eine Motor-Haltebremse).

Die Verwendung in Aufzug-Applikationen ist nicht zulässig.

WARNUNG Automatischer Wiederanlauf!

Es besteht die Gefahr von tödlichen oder schweren Verletzungen für Personen, die in der Maschine arbeiten. Der Antrieb kann abhängig von der Parametereinstellung nach dem Einschalten der Netzspannung, bei Spannungseinbrüchen oder Unterbrechungen automatisch anlaufen. Wenn Parameter DRV.ENDEFAULT auf 1 gesetzt ist,

- warnen Sie an der Maschine mit einem Warnschild (WARNUNG: Automatischer Anlauf möglich" oder ähnlich!) und
- stellen Sie sicher, dass ein Einschalten der Netzspannung nicht möglich ist, während sich Personen im Arbeitsbereich der Maschine aufhalten.

NORSICHT Hohe elektrische Spannung!

Es besteht Stromschlag- und Verletzungsgefahr. Die Funktion STO gewährleistet keine elektrische Trennung am Leistungsausgang. Wenn ein Zugang zu den Motoranschlüssen erforderlich ist,

- trennen Sie den Servoverstärker von der Netzspannung,
- beachten Sie die Entladezeit des Zwischenkreises.

ACHTUNG

Wenn die Funktion STO von einer Steuerung automatisch einkanalig angesteuert wird, muss sichergestellt sein, dass der Ausgang der Steuerung gegen Fehlfunktion überwacht wird. Dies verhindert das ungewollte Ansteuern der STO-Funktion durch einen fehlerhaften Ausgang der Steuerung.

ACHTUNG

Wenn der STO-Enable abgeschaltet ist, kann der Antrieb nicht kontrolliert gebremste werden. Wenn eine kontrollierte Bremsung vor Verwendung der STO Funktion nötig ist, muss der Servoverstärker gebremst werden und der STO-Eingang verzögert von der +24 V-Versorgung getrennt werden.

ACHTUNG

Im Falle eines seltenen Doppelfehlers in sehr kurzer Zeit (→ # 60) kann eine einmalige Bewegung bis zum maximalen Winkel von 120° (elektr.) auftreten. Dies kann nur geschehen, wenn die STO Funktion des Antrieb aktiviert ist. Auch wenn die STO Funktion über ein Jahr lang ausgeführt wird, wird dieses Ereignis nur alle 100 Milliarden Jahre eintreten.

7.16.3 Bestimmungsgemäße Verwendung

Die Funktion STO ist ausschließlich dazu bestimmt, einen Antrieb funktional sicher anzuhalten und gegen Wiederanlauf zu sichern. Um die funktionale Sicherheit zu erreichen, muss die Schaltung des Sicherheitskreises die Sicherheitsanforderungen der EN 60204, EN 12100 und EN 13849-1 erfüllen.

ACHTUNG

Die folgende Funktionsreihenfolge muss unbedingt eingehalten werden, wenn der Antrieb kontrolliert gebremst werden soll:

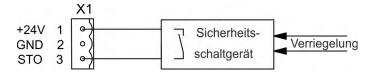
- 1. Bremsen Sie die Achse kontrolliert ab (Geschwindigkeits-Sollwert = 0 V, Befehl Kontrollierter Stopp über digitalen Eingang oder Feldbus).
- Wenn Geschwindigkeit = 0 U/min, deaktivieren Sie den Servoverstärker (Enable = 0 V).
- 3. Bei hängender Last den Antrieb zusätzlich mechanisch blockieren
- 4. STO ansteuern

7.16.4 Nicht bestimmungsgemäße Verwendung

Die STO Funktion darf nicht verwendet werden, wenn der Servoverstärker aus den folgenden Gründen stillgesetzt werden muss:

- Reinigungs-, Wartungs- und Reparaturarbeiten, l\u00e4ngere Au\u00dberbetriebnahme. In diesen F\u00e4llen muss die gesamte Anlage vom Personal spannungsfrei geschaltet und gesichert werden (Hauptschalter).
- Not-Aus: im Not-Aus Fall wird das Netzschütz abgeschaltet (Not-Aus Taster).

7.16.5 Technische Daten und Anschluss


AKD-x003 bis AKD-x024

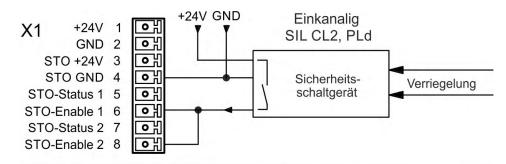
STO-Eingang (X1/3)

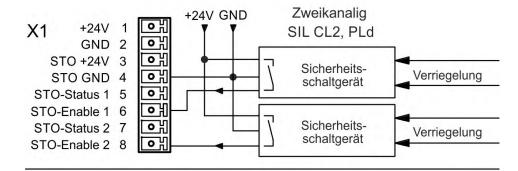
- Massebezug ist GND
- 24 V ±10%,45 mA
- Galvanische Isolation f
 ür 250 VDC
- Reaktionszeit < 10 ms</p>

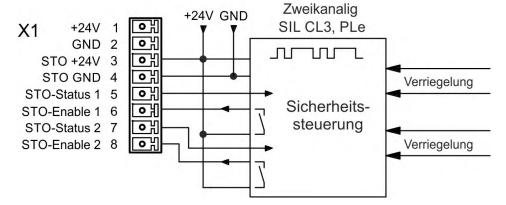
Pin	Signal	Beschreibung	
1	+24	+24 V DC Hilfsspannungsversorgung	
2	GND	24 V Versorgungs-GND	
3	STO	STO Enable (Safe Torque Off)	

AKD-x048

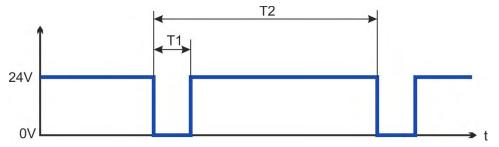
Eingänge STO-Enable 1/2 (X1)


- Massebezug ist STO GND
- High Pegel 24 V ±10%, 16 bis 25 mA
- Low Pegel 0...5 VDC
- Reaktionszeit < 10 ms</p>
- Galvanische Isolation f
 ür 250 VDC


Ausgänge STO-Status 1/2 (X1)


- Massebezug ist STO GND
- gemäß EN61131-2 Typ 1
- max. 30 VDC (PELV), max. 100mA
- PELV gemäß EN 60204-1
- Galvanische Isolation f
 ür 250 VDC

Pin	Beschreibung	Pin	Beschreibung
1	+24 V DC Hilfsspannungs-	5	STO-Status 1
	versorgung		
2	24 V Versorgungs-GND	6	STO-Enable 1
3	STO +24 VDC Versorgung	7	STO-Status 2
4	STO GND	8	STO-Enable 2


7.16.6 Einbauraum, Verdrahtung

Da der Servoverstärker die Schutzart IP20 besitzt, müssen Sie einen Einbauraum wählen, der den sicheren Betrieb des Verstärkers ermöglicht. Der Einbauraum muss mindestens die Schutzart IP54 besitzen. Die Verdrahtung im spezifizierten Einbauraum muss die Anforderungen der EN 60204-1 und ISO 13849-2 (Tabelle D.4) erfüllen.

Wenn Sie Leitungen verdrahten, die sich außerhalb des spezifizierten Einbauraumes befinden, müssen die Kabel fest verlegt werden, vor äußeren Beschädigungen geschützt (z. B. durch Verlegung in einem Kabelkanal), in verschiedenen ummantelten Kabeln oder einzeln durch einen geerdeten Anschluss geschützt.

7.16.7 OSSD Testpulse

Sicherheitssteuerungen prüfen ihre Ausgänge periodisch während des normalen Betriebs. Diese Testprozeduren erzeugen Pulse am STO-Enable Eingang.

INFO

Testpulse mit T1 \leq 300 µs und T2 \geq 200 ms haben keinen Einfluss auf die sicherheitsrelevante STO Funktion.

Testpulse außerhalb dieser Spezifikation lösen die STO Funktion aus, führen aber nicht zu einer gefährlichen Situation.

7.16.8 Funktionsbeschreibung

Wenn die STO Funktion (Safe Torque Off) nicht benötigt wird, muss STO-Enable direkt an +24 V angeschlossen werden. Die STO Funktion ist dann überbrückt und kann nicht verwendet werden. Wenn die STO Funktion verwendet wird, muss der STO-Enable an den Ausgang einer Sicherheitssteuerung oder eines Sicherheitsrelais angeschlossen werden, das mindestens die Anforderungen von PLd, Kategorie 3 gemäß EN 13849 erfüllt (Anschlussdiagramm: (→ # 67).

SIL2/PLd Einkanalige Ansteuerung

Bei der einkanaligen Ansteuerung der STO Sicherheitsfunktion (SIL2/PLd), wird der STO Eingang von einem Ausgang eines Sicherheitsgerätes geschaltet (z.B. von einem Sicherheitsrelais). Irrtümliches Ansteuern wird nicht erkannt. Daher muss der Ausgang des Sicherheitsgerätes überwacht werden, um Fehlfunktionen zu bemerken.

STO	ENABLE	Anzeige	Motor hat Drehmoment	Sicherheit
0 V	0 V	n602	nein	ja
0 V	+24 V	F602	nein	ja
+24 V	0 V	OPMODE	nein	nein
+24 V	+24 V	opmode mit 'Punkt'	ja	nein

Wenn die STO Funktion im Betrieb durch Trennung des STO-Eingangs von der 24 V-Versorgung aktiviert ist, trudelt der Motor ohne Kontrolle aus und der Servoverstärker zeigt den Fehler F602 an.

SIL2/PLd zweikanalige Ansteuerung (nur mit AKD-x048)

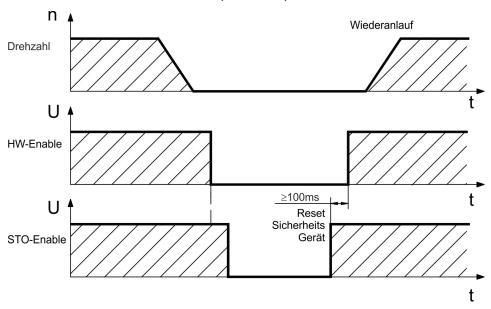
Bei der zweikanaligen Ansteuerung der STO Sicherheitsfunktion (SIL2/PLd), werden die Abschaltpfade STO-Enable1 und STO-Enable2 von zwei unabhängigen Ausgängen eines Sicherheitsgerätes geschaltet (z.B. von einem Sicherheitsrelais).

STO-Enable1	STO-Enable2	ENABLE	Anzeige	Motodrehmoment	Sicherheit
0 V	0 V	0 V	n602	nein	ja
0 V	0 V	+24 V	F602	nein	ja
+24 V	+24 V	0 V	opmode	nein	nein
+24 V	+24 V	+24 V	opmode mit 'Punkt'	ja	nein
+24 V	0 V	0 V	n602	nein	nein
+24 V	0 V	+24 V	F602	nein	nein
0 V	+24 V	0 V	n602	nein	nein
0 V	+24 V	+24 V	F602	nein	nein

SIL3/PLe zweikanalige Ansteuerung (nur mit AKD-x048)

Bei der zweikanaligen Ansteuerung der STO Sicherheitsfunktion, werden die Abschaltpfade STO-Enable1 und STO-Enable2 von zwei unabhängigen Ausgängen eines Sicherheitsgerätes geschaltet (Logik siehe Tabelle oben).

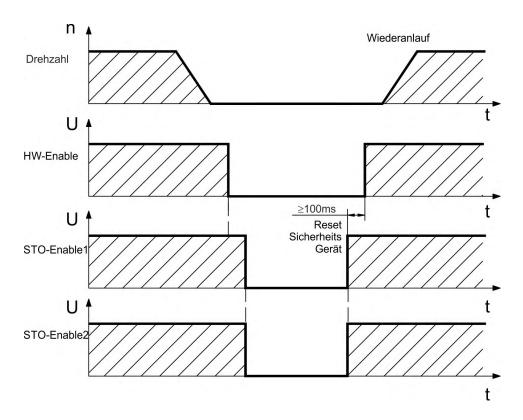
INFO


Um PL e / SIL CL3 zu erreichen, muss das sichere Schalten der Impulssperre durch Auswerten der STO-Status Signale periodisch getestet werden (→ #70).

7.16.8.1 Signaldiagramm

Einkanalig, mit AKD-x003 bis AKD-x024

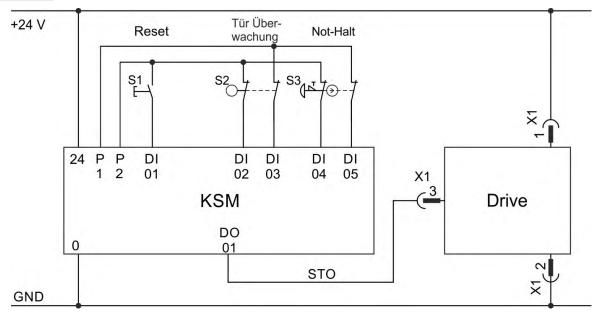
Das folgende Diagramm zeigt die Verwendung der einkanaligen STO Funktion für ein sicheres Stoppen und den störungsfreien Betrieb des Verstärkers.


- 1. Bremsen Sie die Achse kontrolliert ab (Geschwindigkeits-Sollwert = 0 V).
- 2. Wenn Geschwindigkeit = 0 U/min, deaktivieren Sie den Servoverstärker (Enable = 0 V).
- 3. Aktivieren Sie die STO Funktion (STO = 0 V).

Zweikanalig, mit AKD-x048

Das folgende Diagramm zeigt die Verwendung der zweikanaligen STO Funktion für ein sicheres Stoppen und den störungsfreien Betrieb des Verstärkers.

- 1. Bremsen Sie die Achse kontrolliert ab (Geschwindigkeits-Sollwert = 0 V).
- 2. Wenn Geschwindigkeit = 0 U/min, deaktivieren Sie den Servoverstärker (Enable = 0 V).
- 3. Aktivieren Sie die STO Funktion (STO-Enable 1 = 0 V und STO-Enable 2 = 0 V)

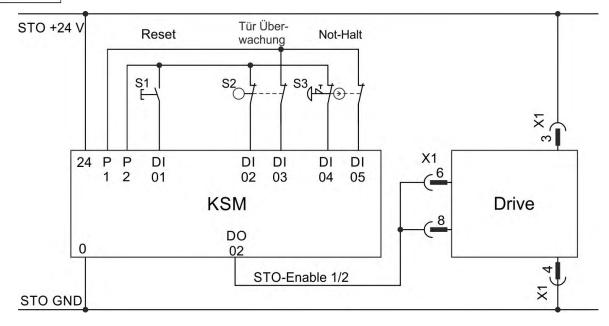


7.16.8.2 Anschlussbeispiele

Einkanalig SIL2/PLd mit AKD-x003 bis 024

Die Beispielanwendung unten zeigt eine Tür-Überwachung und Not-Halt, angesteuert von einem Kollmorgen KSM Sicherheitsmodul, das den STO-Enable Eingang eines AKD-x003 bis 024 gem. SIL2/PLd schaltet. Gründe für die Einschaltstromreduzierung siehe KDN. AKD-xxx06 Geräte ab Hardware revision F (FA, FB) benötigen keinen externen Widerstand zur Stromreduzierung

INFO Beachten Sie die Hinweise zu Einbauort und Verdrahtung (→ # 64).

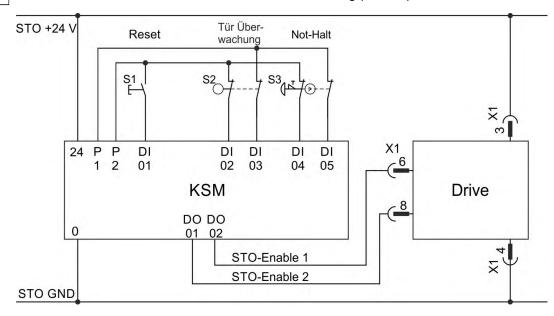


Einkanalig, SIL2/PLd mit AKD-x048

Die Beispielanwendung unten zeigt eine Tür-Überwachung und Not-Halt, angesteuert von einem Kollmorgen KSM Sicherheitsmodul, das die STO-Enable Eingänge eines AKD-x048

gem. SIL2/PLd schaltet. STO-Status Signal müssen nicht ausgewertet werden. Gründe für die Einschaltstromreduzierung siehe KDN.

INFO Beachten Sie die Hinweise zu Einbauort und Verdrahtung (→ # 64).

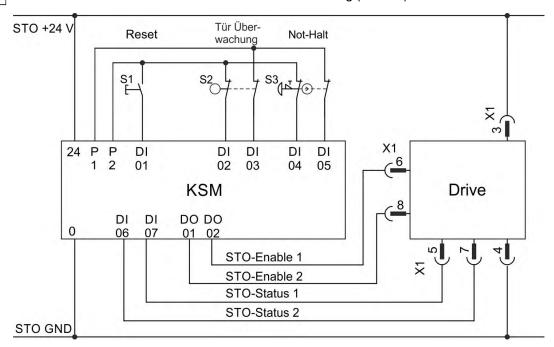


Zweikanalig, SIL2/PLd nur mit AKD-x048

Die Beispielanwendung unten zeigt eine Tür-Überwachung und Not-Halt, angesteuert von einem Kollmorgen KSM Sicherheitsmodul, das die STO-Enable Eingänge eines AKD-x048 gem. SIL2/PLd schaltet. STO-Status Signal müssen nicht ausgewertet werden. Gründe für die Einschaltstromreduzierung siehe KDN.

INFO

Beachten Sie die Hinweise zu Einbauort und Verdrahtung (→ #64).



Zweikanalig, SIL3/PLe nur mit AKD-x048

Die Beispielanwendung unten zeigt eine Tür-Überwachung und Not-Halt, angesteuert von einem Kollmorgen KSM Sicherheitsmodul, das die STO-Enable Eingänge eines AKD-x048 gem. SIL3/PLe schaltet. Das sichere Schalten der Impulssperre muss durch Auswerten der STO-Status Signale in der Sicherheitssteuerung periodisch getestet werden. Gründe für die Einschaltstromreduzierung siehe KDN.

INFO

Beachten Sie die Hinweise zu Einbauort und Verdrahtung (→ #64).

7.16.8.3 Funktionstest

Einkanalige und zweikanalige Ansteuerung, SIL CL2 / PLd

ACHTUNG

Prüfen Sie die STO-Funktion

- einmal pro Jahr.
- · bei der ersten Inbetriebnahme.
- · nach jeder Störung in der Verkabelung.
- nach dem Austausch von einer oder mehreren Komponenten.

Methode 1, Servoverstärker bleibt freigegeben

1. Antrieb mit Sollwert 0V stoppen. Servoverstärker bleibt freigegeben.

GEFAHR: Betreten Sie nicht den Gefahrenbereich!

- 2. Aktivieren Sie die STO Funktion, z.B. durch Öffnen der Schutztür.
- Das Fehlerrelais öffnet, das Netzschütz wird geöffnet und der Servoverstärker zeigt den Fehler F602 an.

Methode 2, Servoverstärker gesperrt

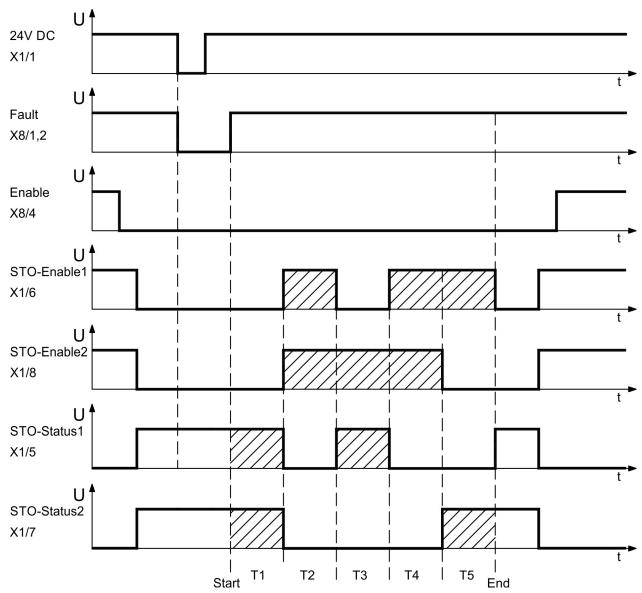
- Alle Antrieben mit Sollwert 0V stoppen, Servoverstärker sperren (Enable=0V).
- Aktivieren Sie die STO Funktion, z.B. durch Öffnen der Schutztür.
- 3. Der Servoverstärker zeigt die Warnung n602 an.

Zweikanalige Ansteuerung, SIL CL3 / PLe

ACHTUNG

Um PL e / SIL CL3 zu erreichen, muss das sichere Schalten der Impulssperre durch Auswerten der STO-Status Signale periodisch getestet werden:

- beim Anlauf einer Anlage,
- beim Wiederanlauf nach Auslösen einer Schutzeinrichtung,
- mindestens alle 8 Stunden durch den Bediener.


Die Eingänge STO-ENABLE1 und STO-ENABLE2 werden nach einer definierten Testsequenz abwechselnd geschaltet. Der Schaltzustand der Impulssperre wird über die STO-Status Ausgänge des AKD gemeldet und ausgewertet, um einen ausreichenden Diagnose-Deckungsgrad zu erreichen:

- Diagnose mit externem, nicht sicheren Controller, Test mit dynamischer Sequenz:
 - Testzyklus: bei jedem Gerätestart, mindestens einmal pro Tag.
 - Diagnose Deckungsgrad: 60 %
- Diagnose mit externem, sicheren Controller, Test mit dynamischer Sequenz:
 - Testzyklus: bei jedem Gerätestart, mindestens einmal pro Tag.
 - Diagnose Deckungsgrad: 90 %

Die Testsequenz für die Funktionsprüfung der sicheren Impulssperre muss wie im folgenden Ablaufdiagramm dargestellt durchgeführt werden.

Startbedingungen für die Testsequenz:

- Betriebsbereit BTB/RTO = "1"
- Freigabesignal ENABLE = "0"
- STO-ENABLE1 = "0" und STO-ENABLE2 = "0"

Legende:

STO-ENABLE1: Eingang, 1. Abschaltweg STO-ENABLE2: Eingang, 2. Abschaltweg

STO-STATUS1: Ausgang, Zustand des 1. Abschaltweges STO-STATUS2: Ausgang, Zustand des 2. Abschaltweges

T1 ... T5: Testsequenz Start: Start der Testsequenz End: Ende der Testsequenz

7.17 Berührungsschutz

7.17.1 Ableitstrom

Der Ableitstrom über den Schutzleiter PE entsteht aus der Summe der Geräte- und Kabelableitströme. Der Frequenzverlauf des Ableitstromes setzt sich aus einer Vielzahl von Frequenzen zusammen, wobei die Fehlerstromschutzschalter maßgeblich den 50Hz Strom bewerten. Der Ableitstrom kann daher nicht mit einem konventionellen Multimeter gemessen werden. Mit kapazitätsarmen Leitungen kann als Faustformel bei 400 V Netzspannung abhängig von der Taktfrequenz der Endstufe der Ableitstrom angenommen werden zu: I_{Abl} = n x 20 mA + L x 1 mA/m bei einer Taktfrequenz von 8 kHz an der Endstufe I_{Abl} = n x 20 mA + L x 2 mA/m bei einer Taktfrequenz von 16 kHz an der Endstufe (wobei IAbl = Ableitstrom, n = Anzahl von Verstärkern, L = Länge des Motorkabels) Bei anderen Nennnetzspannungen variiert der Ableitstrom proportional zur Spannung.

Beispiel: 2 x Servoverstärker + ein Motorkabel mit 25 m Länge bei einer Taktfrequenz von 8 kHz:

 $2 \times 20 \text{ mA} + 25 \text{ m} \times 1 \text{ mA/m} = 65 \text{ mA Ableitstrom}$.

INFO

Da der Ableitstrom zu PE mehr als 3,5 mA beträgt, muss in Übereinstimmung mit der Norm EN61800-5-1 der PE-Anschluss entweder doppelt ausgeführt oder ein Anschlusskabel mit einem Querschnitt von >10 mm² verwendet werden. Verwenden Sie die PE-Klemme und die PE-Anschlussschrauben, um diese Anforderung zu erfüllen.

Zur Minimierung von Ableitströmen können die folgenden Maßnahmen getroffen werden:

- Verringern Sie die Länge des Motorkabels.
- Verwenden Sie Kabel mit geringer Kapazität (→ # 47).

7.17.2 Fehlerstromschutzschalter (RCD)

In Übereinstimmung mit EN 60364-4-41 (Errichten von Niederspannungsanlagen) und EN 60204 (Elektrische Ausrüstung von Maschinen) können Fehlerstromschutzschalter (RCDs) verwendet werden, sofern die erforderlichen Vorschriften erfüllt werden. Der AKD ist ein 3-phasiges System mit einer B6 Gleichrichterbrücke. Es müssen daher RCDs verwendet werden, die auf alle Ströme ansprechen, um jeden DC-Fehlerstrom zu erkennen. Die Faustregel zur Bestimmung des Ableitstroms finden Sie im vorigen Kapitel. Bemessungsfehlerströme in den RCDs:

10 bis 30 mA	Schutz gegen indirekte Berührung (Personen-Brandschutz) für fest instal lierte und bewegliche Geräte sowie gegen direkten Kontakt.
50 bis 300 mA	Schutz gegen indirekte Berührung (Personen-Brandschutz) für fest instal
1	lierte Geräte.

INFO

Empfehlung: Zum Schutz gegen direkte Berührung (bei Motorkabellänge von bis zu 5m) empfiehlt Kollmorgen, jeden Servoverstärker einzeln durch einen allstromsensitiven 30mA RCD abzusichern.

Wenn Sie einen selektiven RCD verwenden, beugt der intelligentere Bewertungsprozess einem fehlerhaften Ansprechen des RCD vor.

7.17.3 Schutztrenntransformatoren

Wenn Schutz gegen direkte Berührung trotz höherer Ableitströme absolut erforderlich ist oder wenn eine alternative Form des Berührungsschutzes gewünscht wird, kann der AKD auch über einen Trenntransformator betrieben werden (Anschlussschema (→ # 110). Zur Überwachung auf Kurzschlüsse kann ein Isolationswächter verwendet werden.

INFO

Halten Sie die Länge der Verdrahtung zwischen dem Transformator und dem Servoverstärker so kurz wie möglich.

8 Mechanische Installation

8.1	Wichtige Hinweise	.74
8.2	Anleitung für die mechanische Installation	.74
8.3	Mechanische Zeichnungen Standard Breite	.75
8.4	Mechanische Zeichnungen erhöhte Breite	.79

8.1 Wichtige Hinweise

△VORSICHT Hoher Ableitstrom!

Gefahr durch elektrischen Schlag, wenn der Servoverstärker (oder der Motor) nicht EMV-gerecht geerdet ist.

- Verwenden Sie elektrisch leitende Montageplatten, z. B. aus Aluminium oder galvanisiertem Stahl.
- Verwenden Sie in ungünstigen Fällen ein Kupfergewebeband zwischen Erdungsbolzen und Erdpotential zum Ableiten der Ströme.

ACHTUNG

Schützen Sie den Servoverstärker vor unzulässigen Belastungen. Achten Sie darauf, dass durch den Transport oder die Handhabung keine Komponenten verbogen oder Isolationsabstände verändert werden. Berühren Sie keine elektronischen Komponenten und Kontakte.

ACHTUNG

Der Servoverstärker schaltet sich bei Überhitzung selbsttätig aus. Sorgen Sie für ausreichende, gefilterte Kaltluftzufuhr von unten im Schaltschrank oder verwenden Sie einen Wärmetauscher (→ # 39).

ACHTUNG

Montieren Sie keine Geräte, die Magnetfelder erzeugen, direkt neben den Servoverstärker. Starke Magnetfelder können interne Bauteile direkt beeinflussen. Montieren Sie Geräte, die Magnetfelder erzeugen, mit Abstand zu den Verstärkern oder schirmen Sie die Magnetfelder ab.

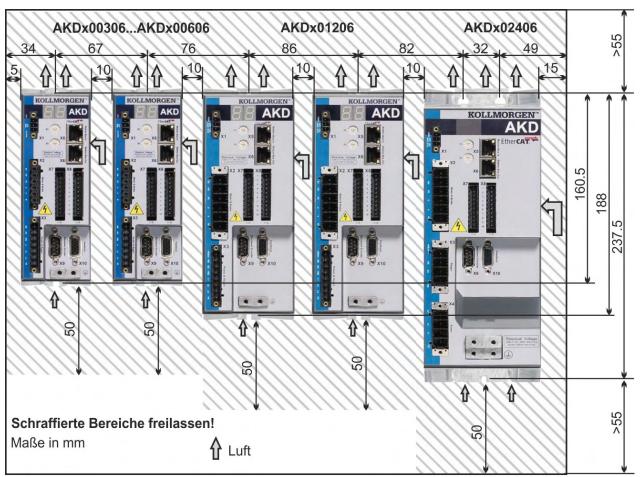
8.2 Anleitung für die mechanische Installation

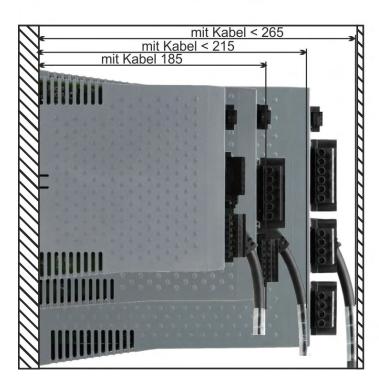
Zum Einbau des AKD werden (mindestens) die folgenden Werkzeuge benötigt; für Ihre spezifische Anlage sind möglicherweise weitere Werkzeuge erforderlich:

- M4-Zylinderschrauben mit Innensechskant (EN 4762)
- 3 mm Innensechskantschlüssel mit T-Griff
- Nr. 2 Kreuzschlitzschraubendreher, Kleiner Schlitzschraubendreher

Maße und Bohrplan hängen ab von der Gerätevariante:

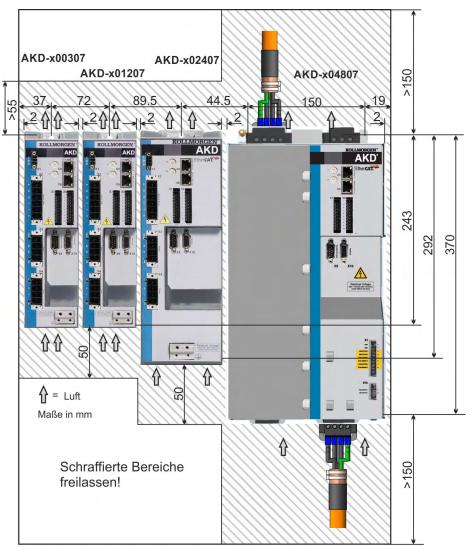
Gerätevariante	Gehäuse				
AKD-B, -P, -T	Standardbreite, (→ # 75)				
AKD-T-IC, -M-MC, -M-M1	Erhöhte Breite, (→ #79)				

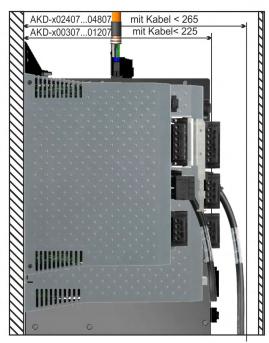

Bauen Sie den Servoverstärker wie folgt ein:

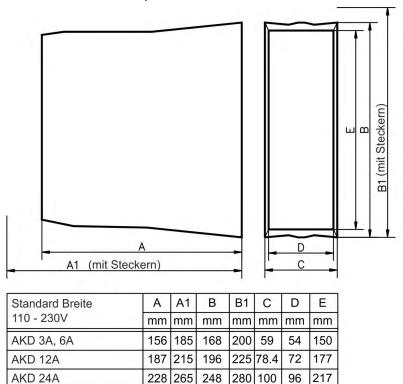

- 1. Bereiten Sie den Einbauort vor.
 - Montieren Sie den Servoverstärker in einem geschlossenem Schaltschrank (\rightarrow # 39). Der Einbauort muss frei von leitenden und korrosiven Materialien sein. Hinweise zur Einbaulage im Schaltschrank (\rightarrow # 75)ff bzw. (\rightarrow # 79)ff.
- 2. Prüfen Sie die Belüftung.
 - Stellen Sie sicher, dass die Belüftung des Verstärkers nicht beeinträchtigt ist, und halten Sie die zulässige Umgebungstemperatur ein, (\rightarrow # 39). Halten Sie den benötigten Freiraum über und unter dem Servoverstärker ein, (\rightarrow # 75)ff bzw. (\rightarrow # 79)ff.
- 3. Prüfen Sie das Kühlsystem.
 - Wenn für den Schaltschrank Kühlsysteme verwendet werden, platzieren Sie das Kühlsystem so, dass kein Kondenswasser in den Servoverstärker tropfen kann.
- 4. Montieren Sie den Servoverstärker.
 - Platzieren Sie den Servoverstärker und die Stromversorgung nahe beieinander auf der leitfähigen, geerdeten Montageplatte im Schaltschrank.
- 5. Erden Sie den Servoverstärker.
 - Hinweise zur EMV-gerechten Schirmung und Erdung (→ # 105). Erden Sie die Montageplatte, das Motorgehäuse und den CNC-GND der Steuerung.

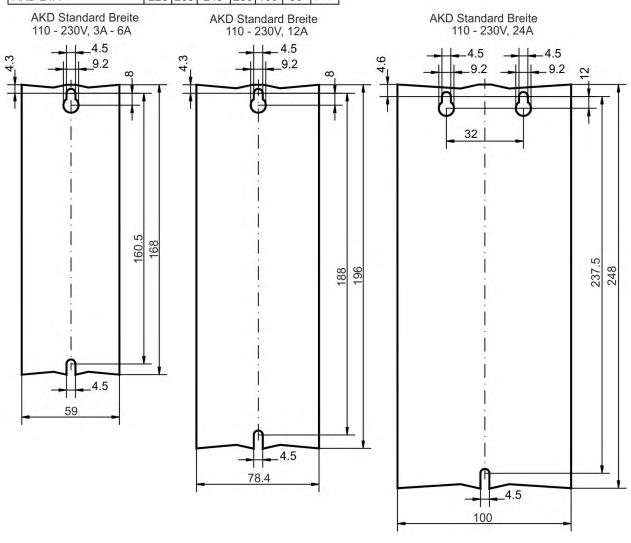
8.3 Mechanische Zeichnungen Standard Breite

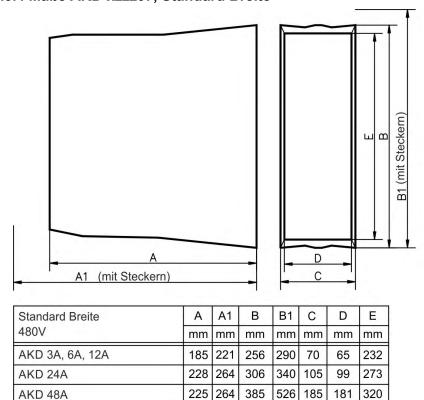
8.3.1 Schaltschrankeinbau AKD-xzzz06, Standard Breite

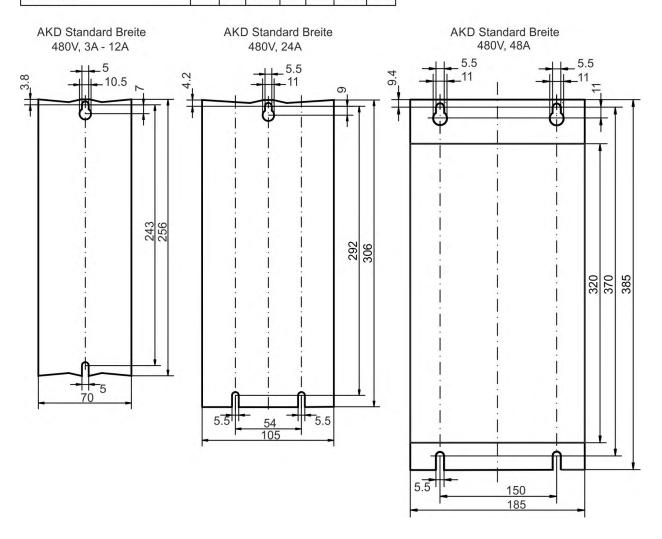

Material: M4-Zylinderschrauben mit Innensechskant gemäß EN 4762, 3 mm Innensechskantschlüssel.



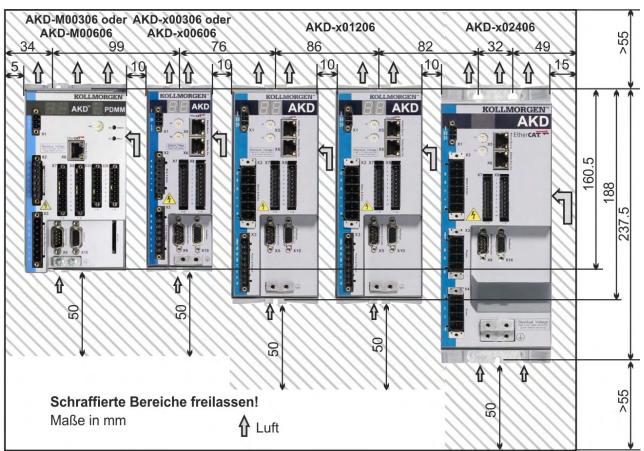

8.3.2 Schaltschrankeinbau AKD-xzzz07, Standard Breite

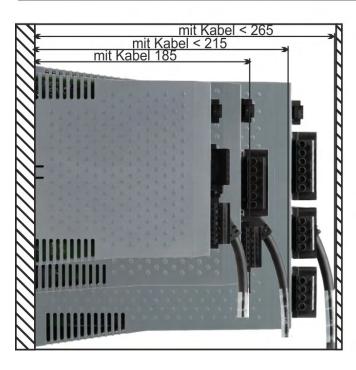

Material: M4-Zylinderschrauben mit Innensechskant gemäß EN 4762, 3 mm Innensechskantschlüssel.




8.3.3 Maße AKD-xzzz06, Standard Breite

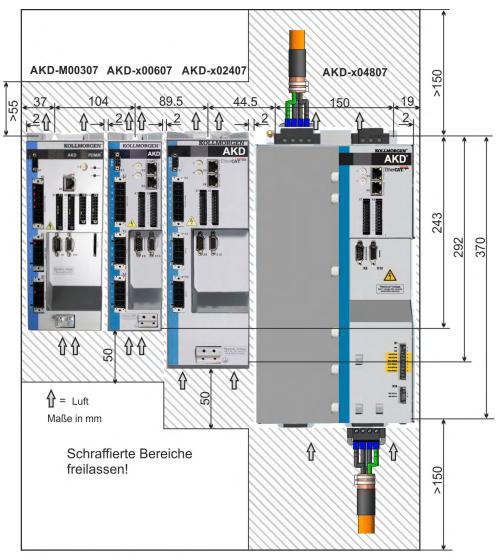
8.3.4 Maße AKD-xzzz07, Standard Breite

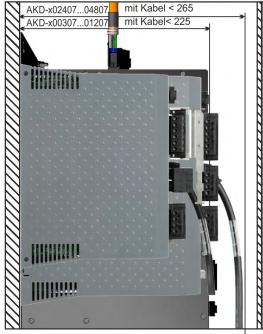




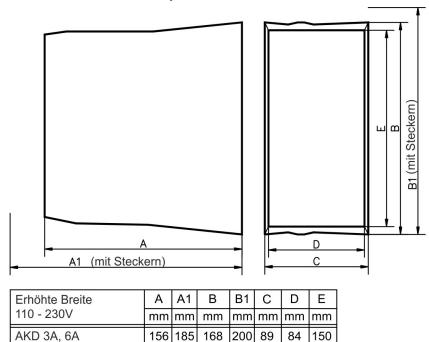
8.4 Mechanische Zeichnungen erhöhte Breite

8.4.1 Schaltschrankeinbau, Beispiel mit AKD-M00306


Material: M4-Zylinderschrauben mit Innensechskant gemäß EN 4762, 3 mm Innensechskantschlüssel.

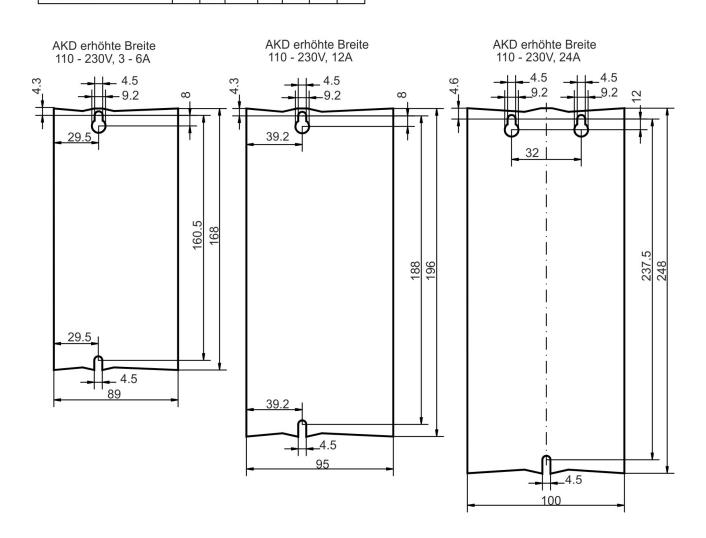


8.4.2 Schaltschrankeinbau, Beispiel mit AKD-M00307


Material: M4-Zylinderschrauben mit Innensechskant gemäß EN 4762, 3 mm Innensechskantschlüssel.

187 215

8.4.3 Maße AKD-xzzz06, erhöhte Breite



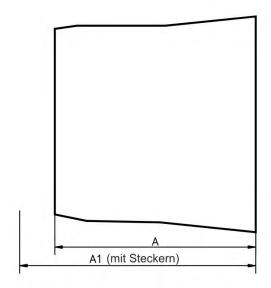
196

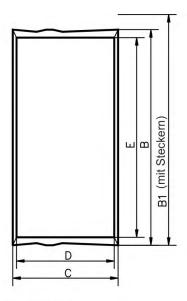
228 258 248

225 96

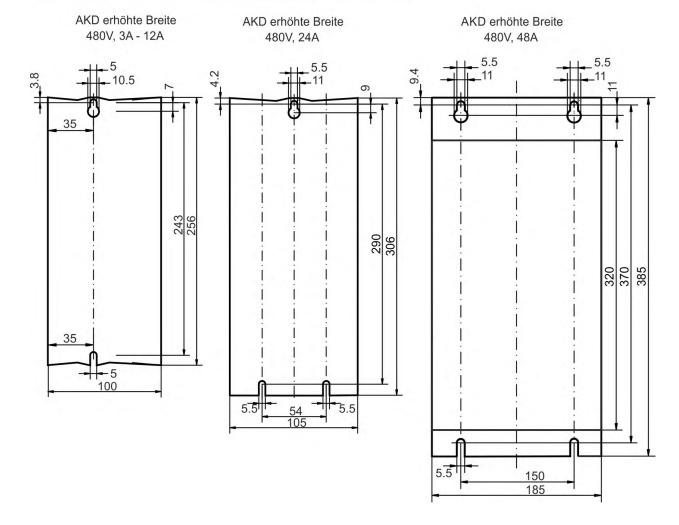
278 100

177


96 217


91

AKD 12A


AKD 24A

8.4.4 Maße AKD-xzzz07, erhöhte Breite

Erhöhte Breite	Α	A1	В	В1	С	D	Е
480V	mm						
AKD 3A, 6A, 12A	185	221	256	290	100	95	232
AKD 24A	228	264	306	340	105	99	273
AKD 48A	225	264	385	526	185	181	320

9 Elektrische Installation

9.1 Wichtige Hinweise	84
9.2 Anleitung für die elektrische Installation	
9.3 Verdrahtung	
9.4 Komponenten eines Servosystems	
9.5 Anschlüsse AKD-B, AKD-P, AKD-T	
9.6 Anschlüsse AKD-M	
9.7 EMV Störunterdrückung	105
9.8 Anschluss der Spannungsversorgung	110
9.9 DC-Bus-Zwischenkreis (X3, X14)	117
9.10 Motor Leistungsanschluss (X2)	120
9.11 Motorbremse Anschluss (X2, X15, X16)	123
9.12 Feedback Anschluss (X10, X9, X7)	126
9.13 Elektronisches Getriebe, Master-Slave Betrieb (X9, X7)	143
9.14 E/A-Anschluss	151
9.15 LED-Anzeige	172
9.16 Drehschalter (S1, S2, RS1)	173
9.17 Taster (B1, B2, B3)	174
9.18 SD Speicherkarte	176
9.19 Ethernet Schnittstelle (X11X32)	178
9.20 CAN-Bus-Schnittstelle (X12/X13)	183
9.21 Motion-Bus-Schnittstelle (X5/X6/X11)	188

9.1 Wichtige Hinweise

ACHTUNG

Der Servoverstärker darf nur von Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik installiert werden. Grüne Drähte mit gelben Streifen dürfen nur für die Verdrahtung der Schutzerde (PE) verwendet werden.

M GEFAHR

überschritten wird (siehe EN 60204-1).

Hohe Spannung bis 900 V!

Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung. Kondensatoren können bis zu 7 Minuten nach Abschalten der Stromversorgung gefährliche Spannung führen. Steuer- und Leistungsanschlüsse können auch bei nicht drehendem Motor unter Spannung stehen.

- Trennen Sie nie die elektrischen Verbindungen zum Servoverstärker, während dieser Spannung führt.
- Achten Sie darauf, dass der Schaltschrank sicher abgeschaltet ist (Absperrung, Warnzeichen usw.).
- Warten Sie nach dem Trennen des Verstärkers von der Stromquelle mindestens 7
 Minuten, bevor Sie Geräteteile, die potenziell Spannung führen (z. B. Kontakte), berühren oder Anschlüsse trennen.
- Messen Sie zur Sicherheit die Spannung am DC-Bus-Zwischenkreis, und warten Sie, bis die Spannung unter 50 V gesunken ist.

ACHTUNG

Falsche Netzspannung, ein ungeeigneter Motor oder fehlerhafte Verdrahtung beschädigen den Servoverstärker. Prüfen Sie die Kombination aus Servoverstärker und Motor. Gleichen Sie die Nennspannung und den Nennstrom der Komponenten ab. Führen Sie die Verdrahtung gemäß dem Anschlussbild aus: (→ #89) und folgende. Stellen Sie sicher, dass die maximal zulässige Nennspannung an den Klemmen L1, L2, L3 oder +DC, −DC auch unter den ungünstigsten Umständen um nicht mehr als 10 %

ACHTUNG

Überdimensionierte externe Sicherungen gefährden Kabel und Geräte. Installieren Sie die Sicherungen des AC-Versorgungseingangs und der 24 V-Versorgung, empfohlene Werte (→ # 44). Hinweise zu Fehlerstromschutzschaltern (RCD) (→ # 72).

ACHTUNG

Da der Ableitstrom zu PE mehr als 3,5 mA beträgt, muss gemäß der Norm EN61800-5-1 der PE-Anschluss entweder doppelt ausgeführt oder ein Anschlusskabel mit einem Querschnitt von >10 mm² verwendet werden. Abweichende Maßnahmen sind nur in Übereinstimmung mit regionalen Vorschriften möglich.

ACHTUNG

Der Status des Verstärkers muss durch die Steuerung überwacht werden, um kritische Situationen zu erkennen. Verdrahten Sie den FEHLER-Kontakt in Reihe zur Not-Aus-Schaltung der Anlage. Die Not-Aus-Schaltung muss das Netzschütz betätigen.

INFO

Die Setup-Software kann verwendet werden, um die Einstellungen des Verstärkers zu ändern. Jede weitere Veränderung führt zum Erlöschen der Garantie.

9.2 Anleitung für die elektrische Installation

Installieren Sie das elektrische Antriebssystem wie folgt:

- 1. Wählen Sie die Kabel gemäß EN 60204 (→ #47).
- Montieren Sie die Schirmung und erden Sie den Servoverstärker.
 Hinweise zur EMV-gerechten Schirmung und Erdung (→ # 105)
 Erden Sie die Montageplatte, das Motorgehäuse und den CNC-GND der Steuerung.
- Verdrahten Sie den Servoverstärker und die Stecker Beachten Sie die "Empfehlungen für die Störunterdrückung": (→ # 105)
 - Verdrahten Sie den FEHLER-Kontakt im Not-Aus-Kreis des Systems.
 - Schließen Sie die digitalen Steuereingänge und -ausgänge an.
 - Schließen Sie die analoge Masse an (auch wenn Feldbusse verwendet werden).
 - Schließen Sie bei Bedarf die analoge Eingangsquelle an.
 - Schließen Sie das Rückführsystem an.
 - Schließen Sie die Hardware-Option an.
 - Schließen Sie das Motorleistungskabel an.
 - Schließen Sie die Schirmung an beiden Enden an. Verwenden Sie eine Motordrossel, wenn das Kabel länger als 25 m ist.
 - Schließen Sie die Motor-Haltebremse und die Schirmung an beiden Enden an.
 - Schließen Sie ggf. den externen Bremswiderstand (mit Sicherung) an.
 - Schließen Sie die Hilfsspannungsversorgung an (maximal zulässige Spannungswerte siehe elektrische Daten (→ #41) oder (→ #42).
 - Schließen Sie den Netzfilter 1NF-xx/3NF-xx an den AKD-xzzz06 an (mit geschirmter Leitung zwischen Filter und Servoverstärker).
 - Schließen Sie die Netzversorgung an.
 Prüfen Sie den max. zulässigen Spannungswert (→ # 41) oder (→ # 42).
 - Prüfen Sie die ordnungsgemäße Funktion der Fehlerstromschutzschalter (RCD); (→
 #72)
 - Schließen Sie den PC an (→ # 178), um den Servoverstärker zu konfigurieren.
- 4. Prüfen Sie die Verdrahtung anhand der Anschlussbilder.

9.3 Verdrahtung

Das Installationsverfahren ist beispielhaft beschrieben. Je nach Applikation kann ein abweichendes Verfahren erforderlich sein. Kollmorgen bietet auf Anfrage Schulungen an.

⚠ GEFAHR Hohe Spannung bis 900 V!

Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag oder Lichtbogenbildung.

- Installieren und verdrahten Sie die Geräte nur im abgeschalteten Zustand, d. h. es darf weder die Netzspannung noch die 24-V-Hilfsspannung oder die Netzspannung anderer angeschlossener Geräte eingeschaltet sein.
- Achten Sie darauf, dass das Gehäuse des Schaltschranks sicher isoliert ist (Absperrung, Warnzeichen usw.). Die einzelnen Spannungen werden zum ersten Mal während der Konfiguration eingeschaltet.

ACHTUNG

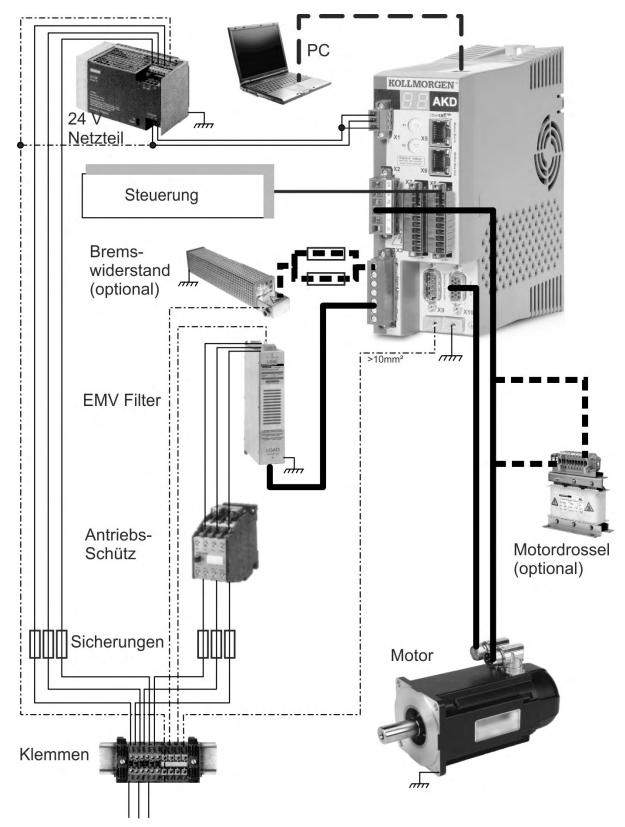
Der Servoverstärker darf nur von Fachpersonal mit Kenntnissen im Bereich der Elektrotechnik installiert werden. Grüne Drähte mit gelben Streifen dürfen nur für die Verdrahtung der Schutzerde (PE) verwendet werden. Verwenden Sie bei der Installation oder beim Austausch von Leitungen nur genormte und mit den Vorgaben in Kapitel 7.12 "Anforderungen für Kabel und Verdrahtung" übereinstimmende Bauteile.

INFO

Das Massezeichen, das in allen Anschlussplänen enthalten ist, deutet an, dass Sie für eine möglichst großflächige, elektrisch leitende Verbindung zwischen dem gekennzeichneten Gerät und der Montageplatte im Schaltschrank sorgen müssen. Diese Verbindung soll die Ableitung von HF-Störungen ermöglichen und darf nicht mit dem PE-Zeichen (PE = Schutzerde, Sicherheitsmaßnahme gemäß EN 60204) verwechselt werden.

Verwenden Sie die folgenden Anschlusspläne:

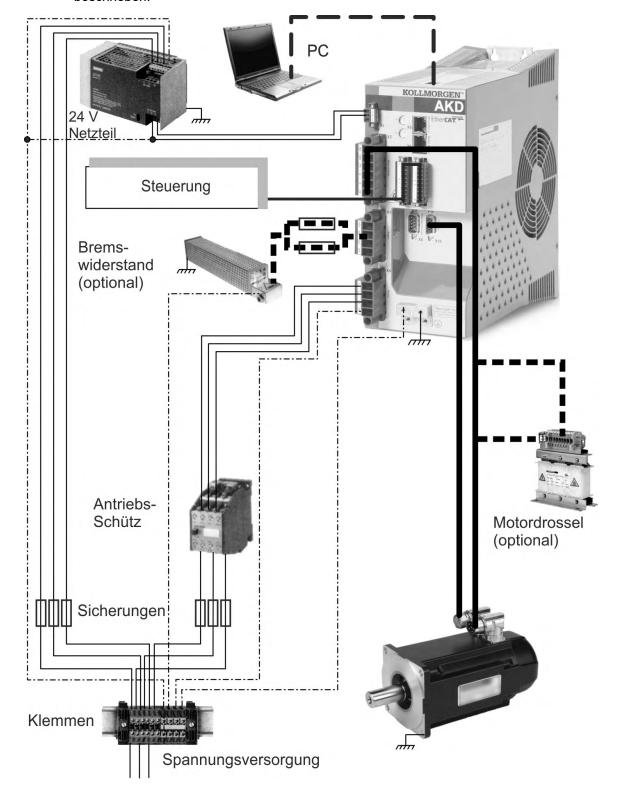
Übersicht (alle Anschlüsse):


- AKD-B/P/T Varianten	(→ #90) ff
- AKD-M Variante	(→ #98) ff
Abschirmung:	(→ # 105)
Netzspannung:	(→ # 114)
DC-Zwischenkreis:	(→ # 117)
Motor:	(→ # 120)
Feedback:	(→ # 126)
Elektronisches Getriebe:	(→ # 143)
Encoder-Emulation:	(→ # 145)
Digitale und analoge Ein- und Ausgänge:	(→ # 151)
Serviceschnittstelle:	(→ # 178)
CAN-Bus-Schnittstelle:	(→ # 183)
Motion-Bus-Schnittstelle:	(→ # 188)

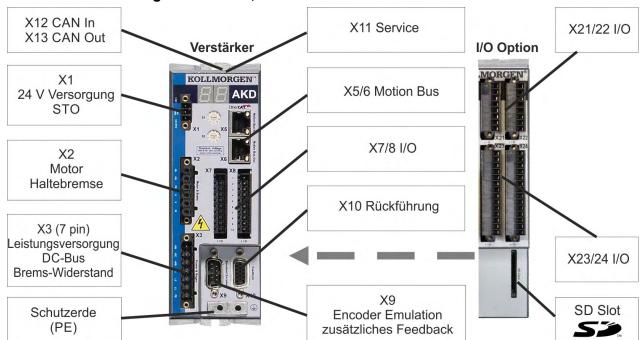
9.4 Komponenten eines Servosystems

Mit AKD-xzzz06

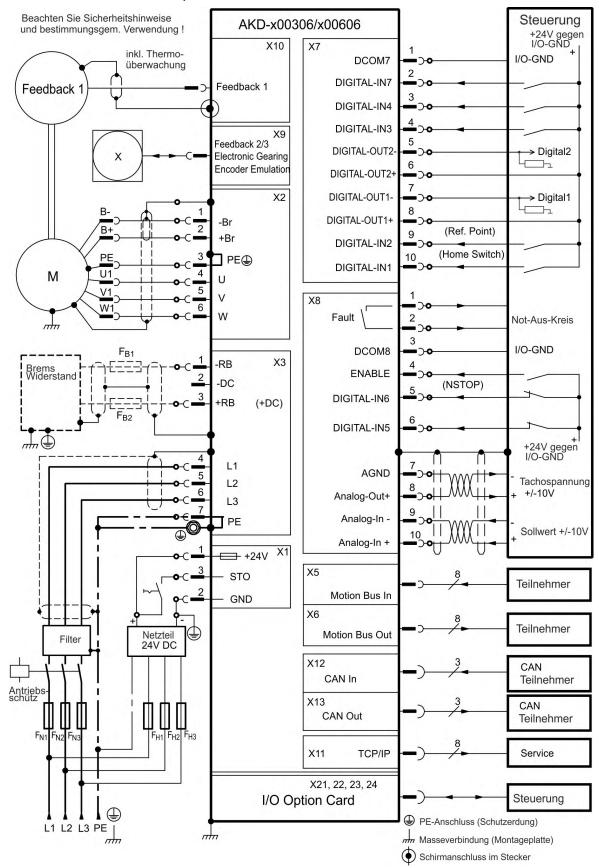
INFO


In Fettdruck dargestellte Kabel sind geschirmt. Die elektrische Erdung ist mit strichpunktierten Linien dargestellt. Optionale Geräte sind mit gestrichelten Linien an den Servoverstärker angeschlossen. Das erforderliche Zubehör ist im Zubehörhandbuch beschrieben.

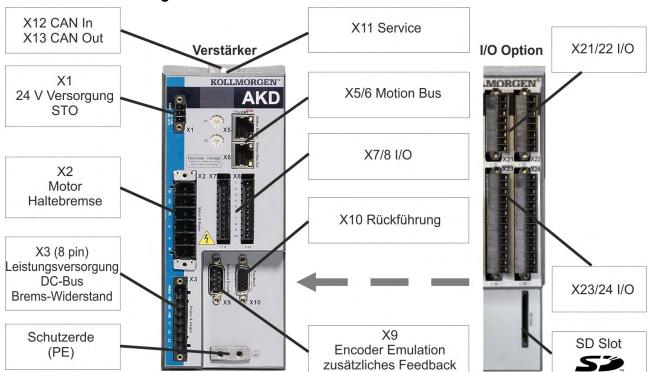
Mit AKD-xzzz07


INFO

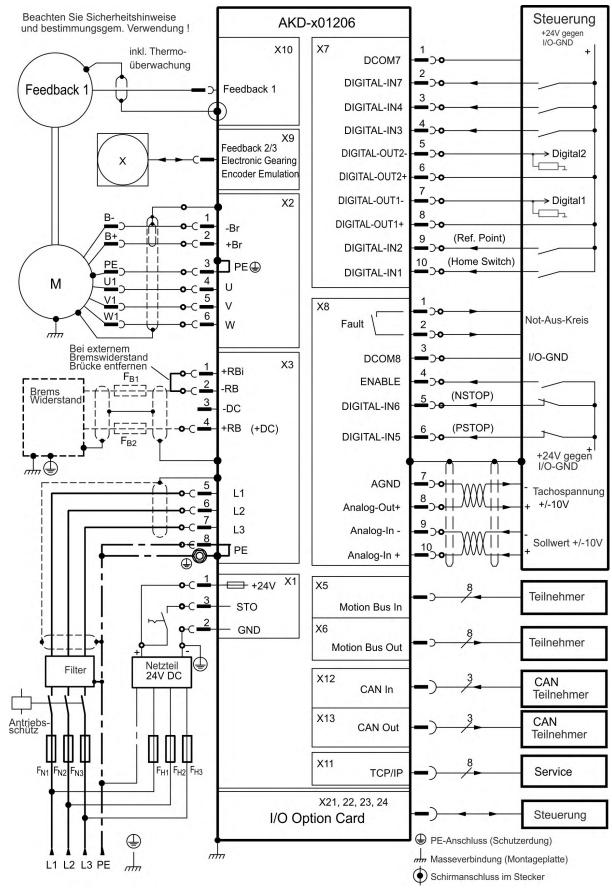
In Fettdruck dargestellte Kabel sind geschirmt. Die elektrische Schutzerdung ist mit strichpunktierten Linien dargestellt. Optionale Geräte sind mit gestrichelten Linien an den Servoverstärker angeschlossen. Das erforderliche Zubehör ist im Zubehörhandbuch beschrieben.


9.5 Anschlüsse AKD-B, AKD-P, AKD-T

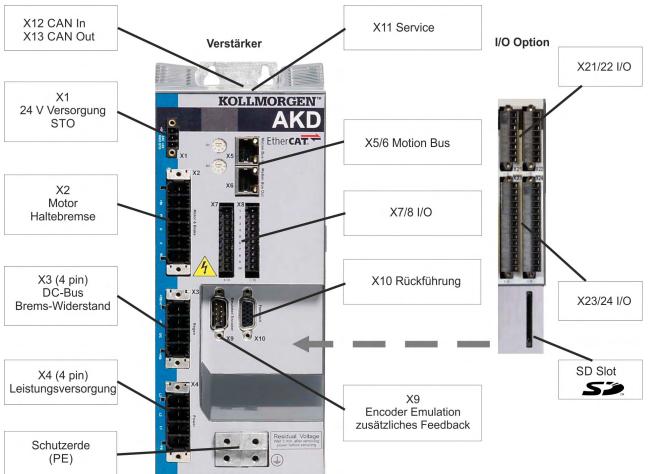
9.5.1 Steckerzuordnung AKD-x00306, AKD-x00606


Die I/O Option ist nur verfügbar für AKD-T Servoverstärker.

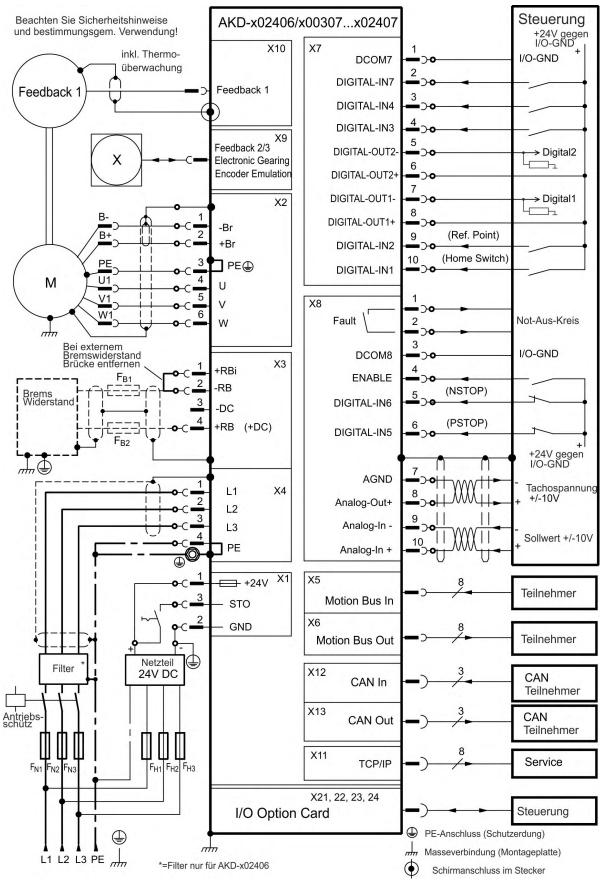
9.5.2 Anschlussbild AKD-x00306, AKD-x00606


Die I/O Option ist nur verfügbar für AKD-T Servoverstärker.

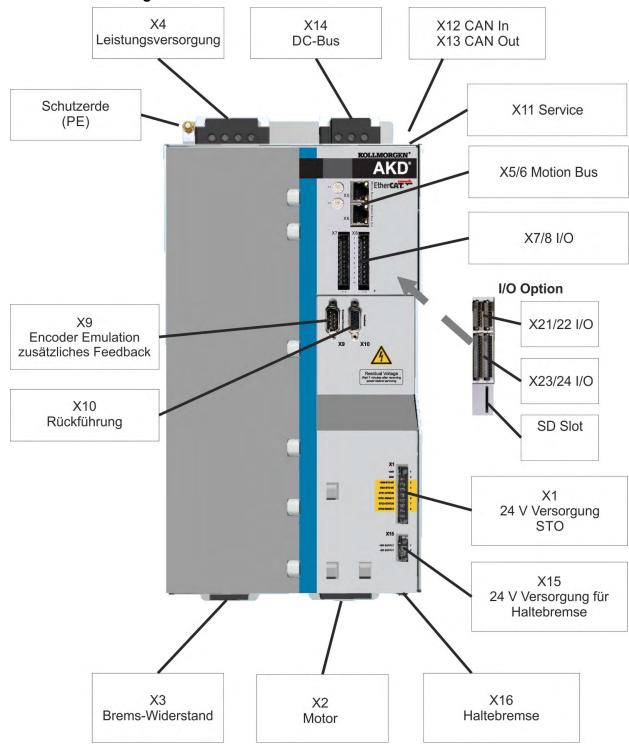
9.5.3 Steckerzuordnung AKD-x01206


Die I/O Option ist nur verfügbar für AKD-T Servoverstärker.

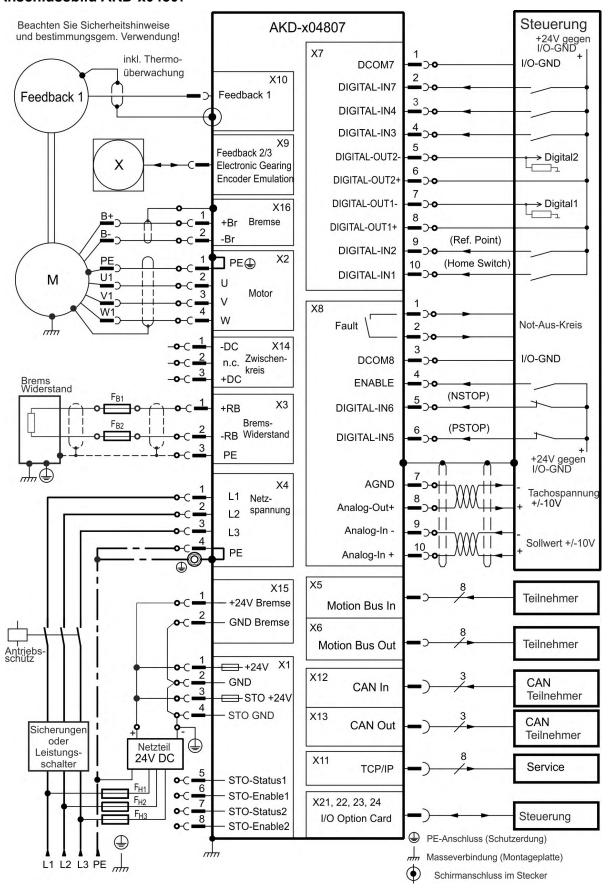
9.5.4 Anschlussbild AKD-x01206


Die I/O Option ist nur verfügbar für AKD-T Servoverstärker.

9.5.5 Steckerzuordnung AKD-x02406 und AKD-x00307 bis 02407

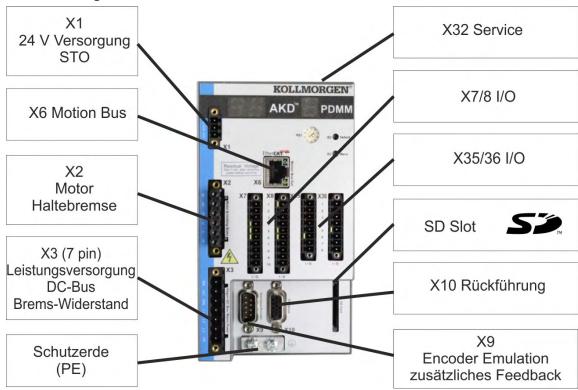

Die I/O Option ist nur verfügbar für AKD-T Servoverstärker.

9.5.6 Anschlussbild AKD-x02406 und AKD-x00307 bis 02407

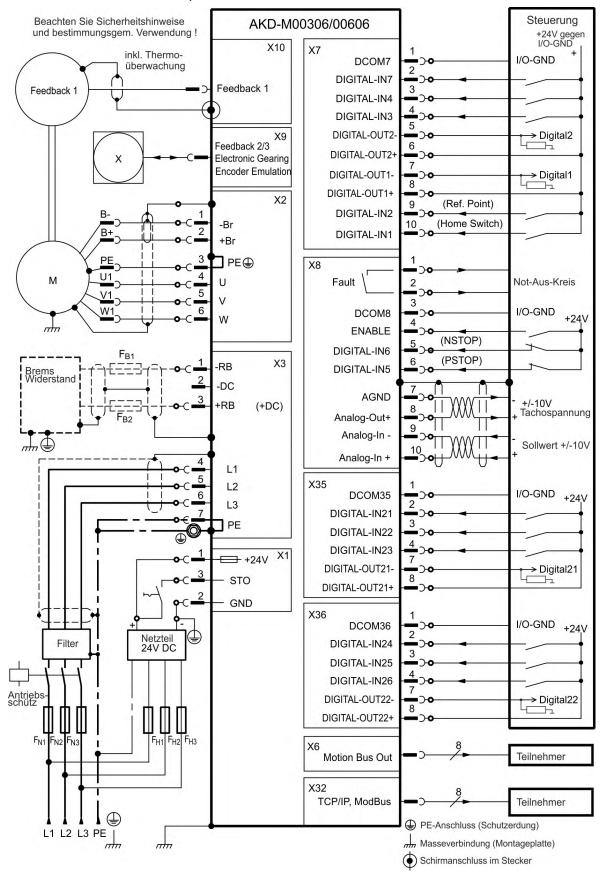


Die I/O Option ist nur verfügbar für AKD-T Servoverstärker.

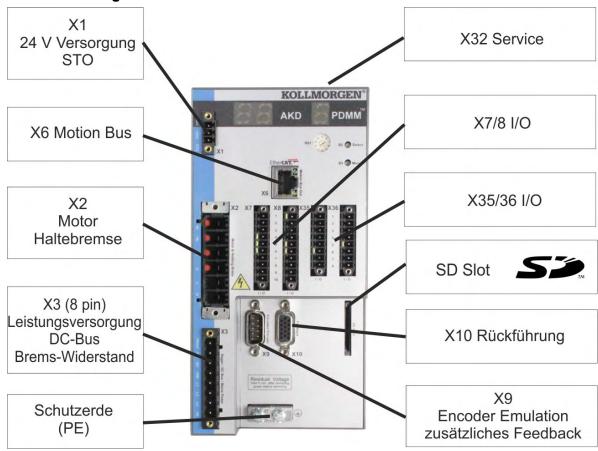
9.5.7 Steckerzuordnung AKD-x04807

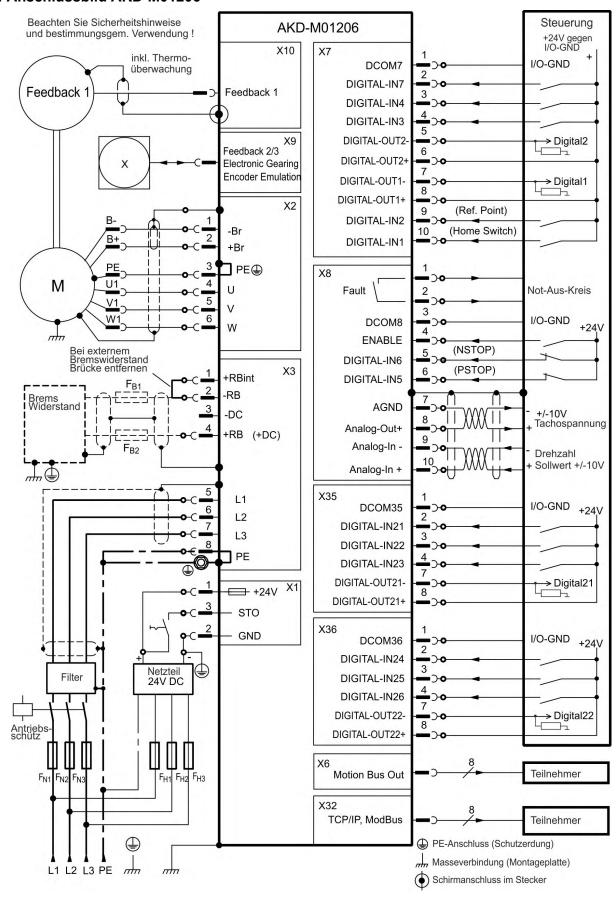


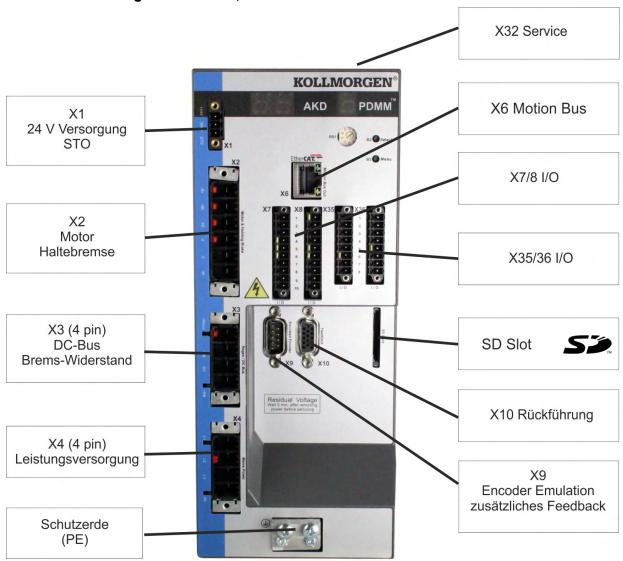
9.5.8 Anschlussbild AKD-x04807

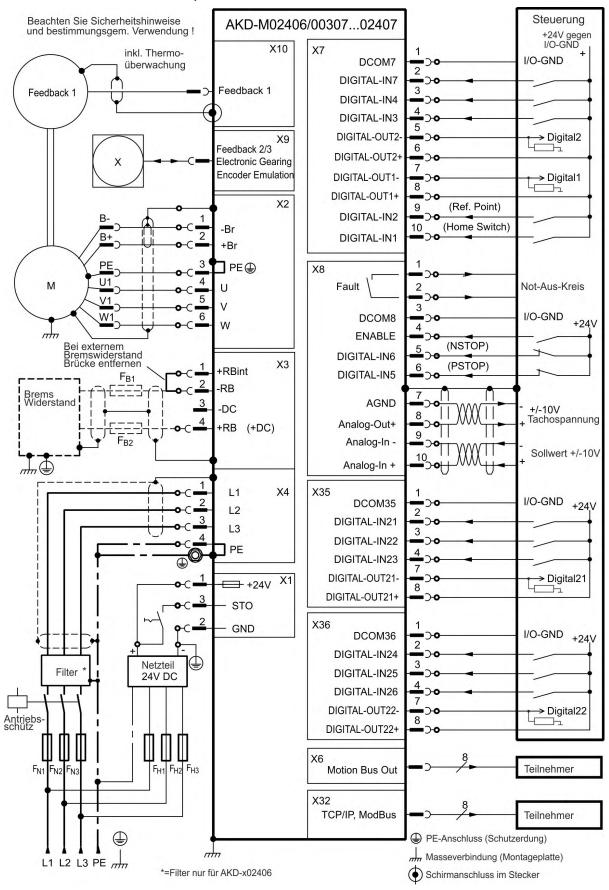


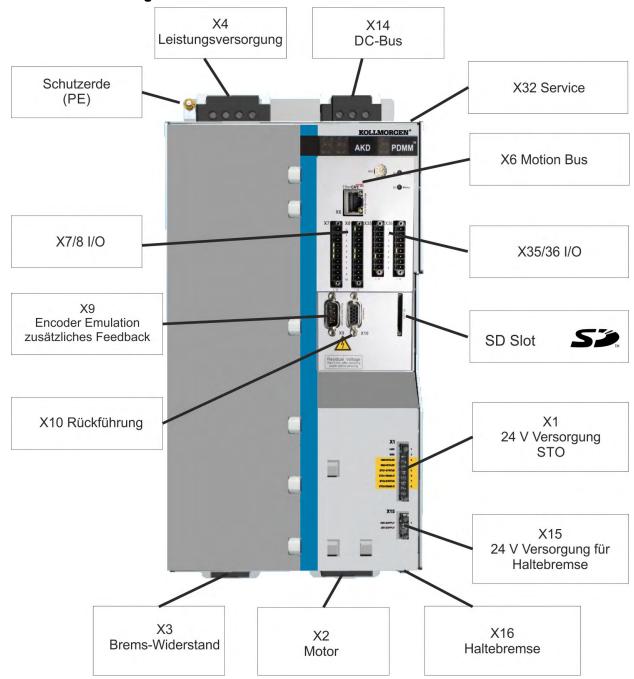
9.6 Anschlüsse AKD-M

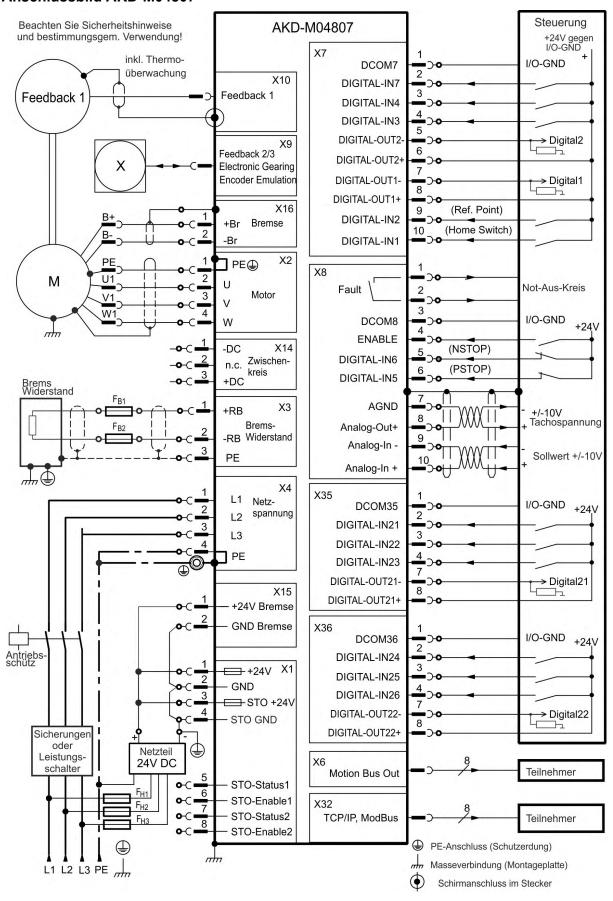

9.6.1 Steckerzuordnung AKD-M00306, AKD-M00606


9.6.2 Anschlussbild AKD-M00306, AKD-M00606


9.6.3 Steckerzuordnung AKD-M01206


9.6.4 Anschlussbild AKD-M01206


9.6.5 Steckerzuordnung AKD-M02406, AKD-M00307 bis AKD-M02407


9.6.6 Anschlussbild AKD-M02406, AKD-M00307 bis AKD-M02407

9.6.7 Steckerzuordnung AKD-M04807

9.6.8 Anschlussbild AKD-M04807

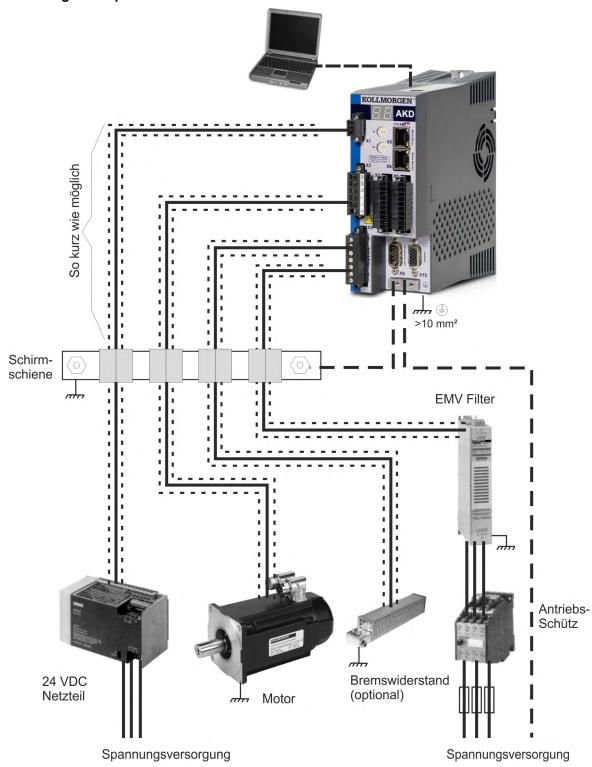
9.7 EMV Störunterdrückung

NORSICHT Elektromagnetische Felder!

Elektromagnetische Strahlung kann durch Einwirken auf elektrisch leitende Materialien zu potenziellen Folgegefahren (Erwärmung, Ausfall von Implantaten) führen.

- Arbeiten an der elektrischen Anlage sind nur durch geschultes und eingewiesenes Personal, unter Beachtung der Vorschriften für Arbeitssicherheit und nur bei abgeschalteter und gegen Wiedereinschalten gesicherter elektrischer Versorgung zulässig.
- Erdungen, Potenzialausgleiche und strahlungsmindernde Abschirmungen dürfen nicht entfernt werden.

9.7.1 Empfehlungen für die Reduktion von Störungen

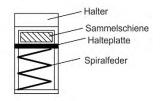

Die folgenden Hinweise helfen elektrischen Störungen in der Anwendung zu reduzieren.

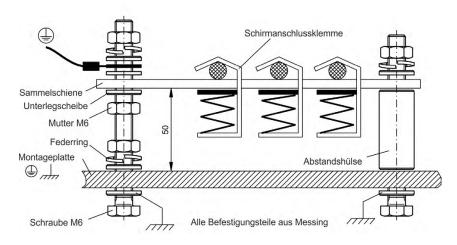
- Stellen Sie leitende Verbindungen zwischen den Komponenten des Schaltschranks sicher. (Seitenwände, Rückwand und Schaltschranktür mit Kupfergeflechten verbinden). Keine Scharniere oder Montageschrauben für Erdungsanschlüsse verwenden.
- Stellen Sie eine gute (niederohmige) Erdverbindung sicher. Schließen Sie den Schaltschrank an eine gute (niederohmige) Erdung an. Verwenden Sie Erdungsleitungen mit großem Querschnitt.
- Verwenden Sie Kollmorgen Kabel. Verlegen Sie Leistungs- und Steuerungskabel getrennt. Kollmorgen empfiehlt einen Abstand von mindestens 200 mm, um die Störfestigkeit zu verbessern.
- Erden Sie die Schirmung an beiden Enden. Erden Sie Schirmungen an großen Flächen (geringe Impedanz), möglichst mit metallisierten Steckergehäusen oder geschirmten Anschlussklemmen. Kabel, die in einen Schaltschrank führen, benötigen eine 360° Schirmung. Verwenden Sie keine ungeschirmten Zwischenstücke. Weitere Informationen zu Schirmungskonzepten (→ # 106).
- Bei separaten Netzfiltern eingehende und ausgehende Leitungen räumlich trennen. Installieren Sie den Netzfilter so nah wie möglich an der Stelle, an der die Eingangs-Spannung in den Schaltschrank eintritt. Wenn die Leitungen für Eingangs-Spannung und Motorleitungen gekreuzt werden müssen, kreuzen Sie sie im 90°-Winkel.
- Rückführungsleitungen dürfen nicht verlängert werden, da dies die Schirmung unterbrechen würde. Montieren Sie alle Rückführkabel mit einem Querschnitt gemäß EN 60204 (→ # 47) und verwenden Sie die vorgeschriebene Kabelqualität, um die maximale Kabellänge zu erreichen.
- Spleißen Sie Kabel ordnungsgemäß. Wenn Sie Kabel teilen müssen, verwenden Sie Stecker mit Endgehäusen aus Metall. Stellen Sie sicher, dass beide Gehäuse mit dem vollen Umfang der Schirmungen verbunden sind.
- Verwenden Sie für analoge Signale Differenzeingänge. Die Störanfälligkeit von analogen Signalen wird durch Verwendung von Differenz Eingängen deutlich vermindert. Verwenden Sie paarweise verdrillte, geschirmte Signalleitungen und schließen Sie Schirmungen an beiden Enden an.
- Leitungen zwischen Servoverstärker und Filter / externem Bremswiderstand müssen abgeschirmt sein. Montieren Sie alle Rückführkabel mit einem Querschnitt gemäß EN 60204 (→ # 47) und verwenden Sie die vorgeschriebene Kabelqualität, um die maximale Kabellänge zu erreichen.

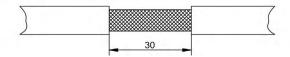
9.7.2 Schirmung mit externer Schirmschiene

Wenn EMV-Filterung extern vorgenommen wird, werden geschirmte Kabel benötigt.Kollmorgen empfiehlt einen Anschluss der Schirmung mit Sternpunkt, z. B. mit einer Schirmschiene.

9.7.2.1 Schirmungskonzept




9.7.2.2 Schirmschiene



Die Abschirmungen des Netzkabels (Eingang, Motorkabel, externer Bremswiderstand) können über Schirmklemmen zu einer zusätzlichen Sammelschiene geführt werden. Kollmorgen empfiehlt, KLBÜ-Schirmklemmen von Weidmüller zu verwenden. Ein möglicher Aufbau der Sammelschiene für die oben genannten Schirmklemmen ist unten beschrieben.

1. Schneiden Sie eine Sammelschiene mit der benötigten Länge aus einer Messingschiene (Querschnitt 10 x 3 mm) und bohren Sie die angegeben Löcher. Alle benötigten Schirmklemmen müssen zwischen die Bohrungen passen.

AVORSICHT

Hohe Federkraft

Verletzungsgefahr durch die Federkraft der Schraubenfeder. Verwenden Sie eine Zange.

- 2. Drücken Sie zusammen mit der Halteplatte die Schraubenfeder zusammen und schieben Sie die Sammelschiene durch die Öffnung im Halter.
- 3. Montieren Sie die Sammelschiene mit den aufgesteckten Schirmklemmen auf der Montageplatte. Verwenden Sie entweder Abstandshülsen aus Metall oder Schrauben mit Muttern, um den Abstand von 50 mm einzuhalten. Erden Sie die Sammelschiene mit einem Draht von mindestens 2,5 mm² Querschnitt.
- 4. Teilen Sie die äußere Kabelummantelung auf eine Länge von ca. 30 mm, und achten Sie darauf, das Schirmgeflecht nicht zu beschädigen. Drücken Sie die Schirmanschlussklemme nach oben und führen Sie das Kabel durch.

ACHTUNG

Stellen Sie einen guten Kontakt zwischen Schirmklemme und Schirmgeflecht sicher.

9.7.3 Schirmanschluss an den Servoverstärker

Sie können die Kabelschirmung mit Schirmblechen, Schirmanschlussklemmen und einem Motorstecker mit Zugentlastung und Schirmbleche direkt an den Servoverstärker anschließen.

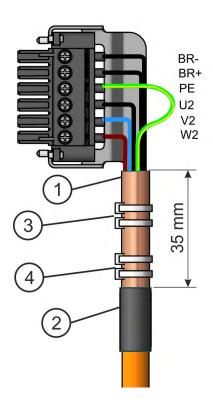
9.7.3.1 Schirmbleche

Montieren Sie die Schirmbleche wie auf den folgenden Abbildungen gezeigt am Servoverstärker.

Typen AKD-x0306 bis x1206: L-förmiges Schirmblech (nur in Europa)

Typen AKD-x02406 & xzzz07: flaches Schirmblech

9.7.3.2 Schirmanschlussklemmen



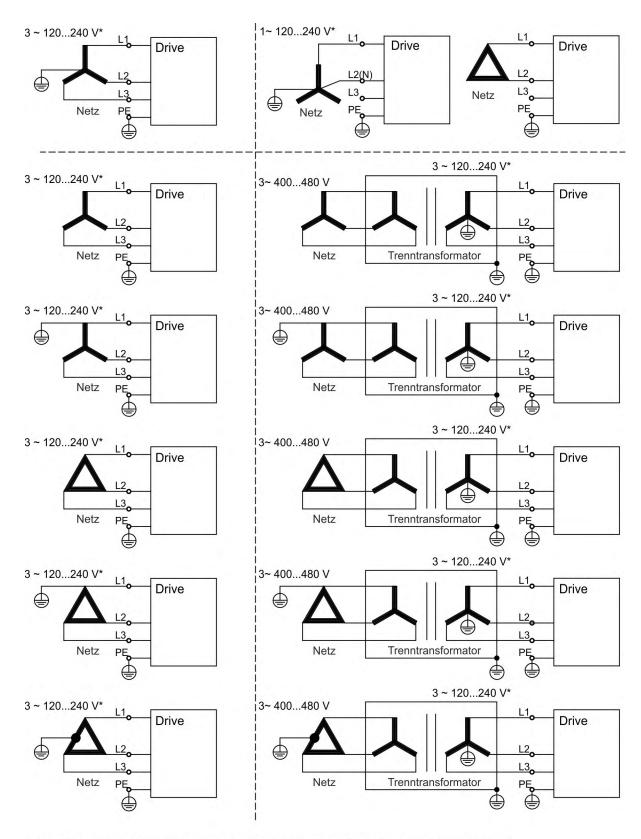
Verwenden Sie Schirmanschlussklemmen (siehe Zubehörhandbuch). Diese werden in die Schirmbleche eingehakt und gewährleisten einen optimalen Kontakt zwischen der Schirmung und dem Schirmblech.

Kollmorgen empfiehlt die Verwendung von Schirmklemmen des Typs Phoenix Contact SK14 mit einem Klemmbereich von 6 bis 13 mm.

9.7.3.3 Motorstecker X2 mit Schirmanschluss

Anschluss der Motorleistung mit Gegenstecker mit Zugentlastung.

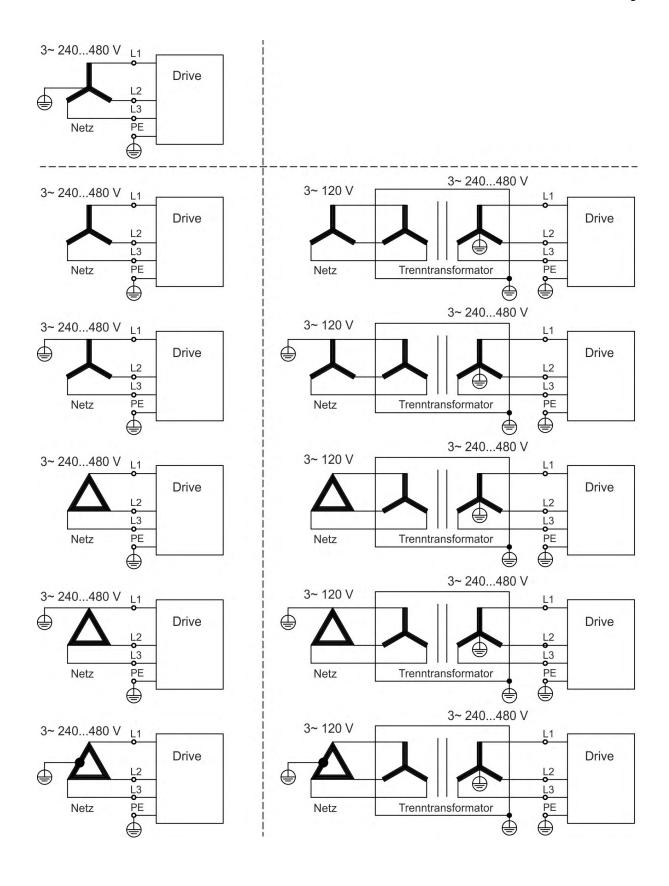
- 1. Isolieren Sie die äußere Kabelummantelung auf eine Länge von ca. 120 mm ab und achten Sie darauf, das Schirmgeflecht nicht zu beschädigen.
- 2. Schieben Sie das Schirmgeflecht (1) über das Kabel und sichern Sie es mit einer Gummihülse (2) oder einem Schrumpfschlauch
- Kürzen Sie alle Adern außer der Schutzerde (grün/gelb) um ca. 20 mm, sodass die Schutzerde die längste Ader ist.
- 4. Isolieren Sie alle Adern ab und bringen Sie Aderendhülsen an.
- 5. Sichern Sie das Schirmgeflecht des Kabels am Schirmblech mit einem Kabelbinder (3) und verwenden Sie einen zweiten Kabelbinder (4), um das Kabel zu fixieren.
- 6. Verdrahten Sie den Stecker wie im Anschlussbild dargestellt.
- Stecken Sie den Stecker in die Buchse an der Vorderseite des AKD.
- 8. Schrauben Sie den Stecker an. Dies stellt sicher, dass zwischen dem Schirmgeflecht und der Frontplatte ein großflächiger, leitender Kontakt besteht.


Die Motorleistung ist nun angeschlossen.

9.8 Anschluss der Spannungsversorgung

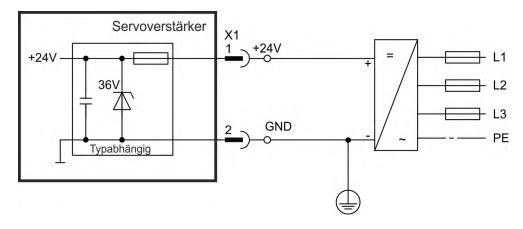
9.8.1 Anschluss an verschiedene Versorgungsnetze AKD-xzzz06 (120 V bis 240 V)

ACHTUNG Für Netzwerke mit einer Spannung von 400 bis 480 V wird ein Trenntransformator benötigt, um eine maximale Spannung von 240 V +10 % zu erhalten.



*100...240 V Nennstrom für AKD-x00306 bis AKD-x01206; gilt nur für Hardware Revisionen F, FA, FB.

9.8.2 Anschluss an verschiedene Versorgungsnetze AKD-xzzz07 (240 V bis 480 V)


ACHTUNG

Für Netzwerke mit einer Spannung von 120 V wird ein Trenntransformator benötigt, um eine minimale Spannung von 240 V +10 % zu erhalten.

9.8.3 24 V-Hilfsspannungsversorgung (X1)

Das Anschlussbild zeigt eine externe 24 V DC-Stromversorgung, die elektrisch isoliert ist, z. B. über einen Trenntransformator. Der erforderliche Nennstrom hängt ab von der Verwendung der Motorbremse und Optionskarte (\rightarrow # 41) oder (\rightarrow # 42).

9.8.3.1 AKD-x003 bis 024, Stecker X1

Pin	Signal	Beschreibung	
1	+24	+24 V DC Hilfsspannungsversorgung	
2	GND	24 V Versorgungs-GND	
3	STO	STO Enable (Safe Torque Off)	

9.8.3.2 AKD-x048, Stecker X1

Pin	Signal	Beschreibung
1	+24 V	+24 V DC Hilfsspannungsversorgung
2	GND	24 V GND
3	STO +24V	+24 V DC STO Hilfsspannungsversorgung
4	STO GND	STO 24 V GND
5	STO-Status 1	Safe Torque Off Status Kanal 1
6	STO-Enable 1	Safe Torque Off Enable Kanal 1
7	STO-Status 2	Safe Torque Off Status Kanal 2
8	STO-Enable 2	Safe Torque Off Enable Kanal 2

9.8.4 Anschluss an die Netzversorgung (X3, X4)

Die Servoverstärker der AKD Serie können wie folgt versorgt werden:

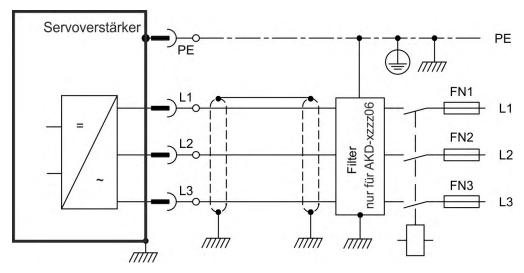
- AKD-x00306 bis AKD-x01206: 1 oder 3 phasiges, industrielles Versorgungsnetz (maximaler symmetrischer Nennstrom bei 100- 240 V: 5 kA). Gilt nur für Hardware Revisionen F, FA, FB.
- AKD-xzzz06: 1 oder 3 phasiges, industrielles Versorgungsnetz (maximaler symmetrischer Nennstrom bei 120 V und 240 V: 42 kA).
- AKD-xzzz07: 3 phasiges, industrielles Versorgungsnetz (maximaler symmetrischer Nennstrom bei 240 V, 400 V und 480 V: 42 kA).
- AKD-x04807: Bei Netzspannungs-Unsymmetrie >3% muss eine Netzdrossel 3L0,24-50-2 (siehe regionales Zubehörhandbuch) verwendet werden.

Der Anschluss an Versorgungsnetze mit anderen Spannungen ist mit einem zusätzlichen Trenntransformator möglich (→ # 110). Periodische Überspannungen zwischen Außenleitern (L1, L2, L3) und Gehäuse des Servoverstärkers dürfen 1000 V (Amplitude) nicht überschreiten. Gemäß EN 61800 dürfen Spannungsspitzen (< 50µs) zwischen den Außenleitern 1000 V nicht überschreiten. Spannungsspitzen (< 50µs) zwischen Außenleitern und Gehäuse dürfen 2000 V nicht überschreiten.

AKD-x00306 to AKD-x00606 (X3)				
Pin	Signal	Beschreibung		
4	L1	Phase L1		
5	L2	Phase L2		
6	L3	Phase L3		
7	PE	Schutzerde		

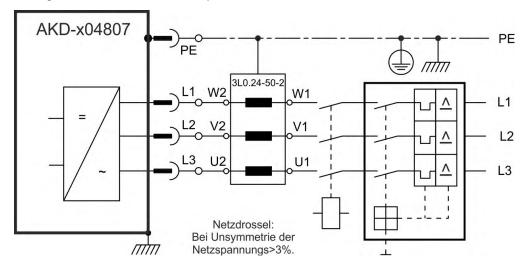
AKD-x01206 (X3)				
Signal	Beschreibung			
L1	Phase L1			
L2	Phase L2			
L3	Phase L3			
PE	Schutzerde			
	Signal L1 L2 L3			

AKD-x02406 & AKD-x00307 bisAKD-x00307 (X4)				
Pin	Signal	Beschreibung		
1	L1	Phase L1		
2	L2	Phase L2		
3	L3	Phase L3		
4	PE	Schutzerde		

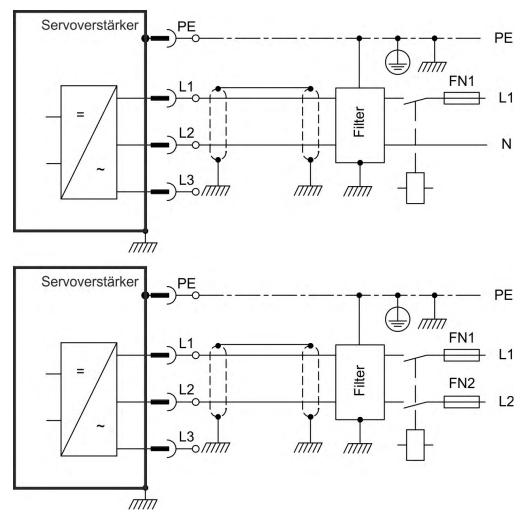


AKD-x04807 (X4)				
Pin Signal		Beschreibung		
1 L1		Phase L1		
2	L2	Phase L2		
3	L3	Phase L3		
4 PE		Schutzerde		

9.8.4.1 Dreiphasiger Anschluss


Sicherungen, alle AKD Typen

- An 3-phasiges Versorgungsnetz, Versorgungsnetze (→ # 110).
- Die Filterung bei AKD-xzzz06 ist vom Anwender bereitzustellen.
- Sicherungen sind vom Anwender bereitzustellen (→ # 44).


Leistungsschalter, AKD-x04807

- An 3-phasiges Versorgungsnetz, Versorgungsnetze (→ # 110).
- Der Leistungsschalter (→ # 44) ist vom Anwender bereitzustellen.
- Eingetragenen Leistungsschalter verwenden, Siemens 3RV17 42-5LD10.
- Bei Unsymmetrie der Netzspannung >3 % muss eine Netzdrossel 3L0,24-50-2 (siehe regionales Zubehörhandbuch) verwendet werden.

9.8.4.2 Ein-/Zweiphasiger Anschluss (nur AKD-x00306 bis AKD-x01206)

- An einphasiges Versorgungsnetz (100 V-10%_{-10%} bis 240 V^{+10%}) mit Nullleiter oder an zweiphasiges Versorgungsnetz (100 V_{-10%} bis 240 V^{+10%}) ohne Nullleiter
- Versorgungsnetze (→ # 110)
- L3 offen lassen
- Die Filterung und Sicherungen (→ #44) sind vom Anwender bereitzustellen.

9.9 DC-Bus-Zwischenkreis (X3, X14)

Der Zwischenkreis kann parallel angeschlossen werden, so dass die Bremsleistung zwischen allen Verstärkern aufgeteilt wird, die an denselben DC-Bus-Zwischenkreis angeschlossen sind. Jeder Servoverstärker muss einen eigenen Anschluss an die Netzspannung besitzen, auch wenn der Zwischenkreis verwendet wird. Servoverstärker, die in der Applikation häufig generatorisch arbeiten, sollten neben Geräte platziert werden, die häufig Energie aufnehmen. Dies verrringert den Stromfluss über größere Entfernungen. Sicherungen sind bei Bedarf vom Nutzer bereitzustellen (→ # 44).

Die Summe der Nennströme aller zu einem **AKD-x003 bis 024** parallel geschalteten Servoverstärker darf 48 A nicht überschreiten. Beispiele: 024-024-024, 012-012-024-012

Verwenden Sie ungeschirmte 6 mm² Einzeladern bis max. 200 mm Länge oder abgeschirmte 6 mm² Leitungen bei größeren Längen. Eine Sicherung als Leitungsschutz ist dann nicht erforderlich.

 Die Summe der Nennströme aller zu einem AKD-x048 parallel geschalteten AKD-x048 darf 96 A nicht überschreiten. Parallelschaltung nur mit AKD-x048. Beispiel: 048-048-048

Verwenden Sie ungeschirmte 16 mm² Einzeladern bis max. 300 mm Länge oder abgeschirmte 16 mm² Leitungen bei größeren Längen.

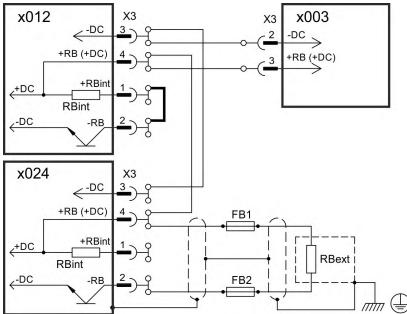
ACHTUNG

Die Geräte können zerstört werden, wenn die DC-Bus-Spannungen unterschiedlich sind. Nur Servoverstärker mit einer Netzversorgung vom selben Stromnetz (identische Netzspannung) dürfen über den DC-Bus-Zwischenkreis angeschlossen werden. AKD-x048 dürfen nur mit AKD-x048 verbunden werden.

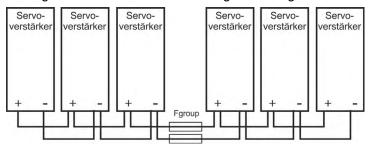
ACHTUNG

Die Phasenausfallüberwachung / Netzüberwachung arbeitet bei Verstärkern im verbundenen Zwischenkreis nicht. Der Ausfall einer Netzphase wird nicht erkannt. Eine externe Phasenausfallüberwachung ist zum Schutz der Endstufe erforderlich.

AKD-x00306 bis AKD-x00606 (X3)				
Pin	Signal Beschreibung			
2	-DC DC-Bus-Zwischenkreis minus			
3	+DC (+RB) DC-Bus-Zwischenkreis plus			

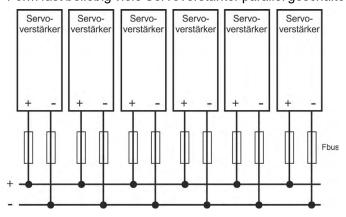

AKD-x01206 (X3)				
Pin	Signal	Beschreibung		
3	-DC	DC-Bus-Zwischenkreis minus		
4	+DC (+RB)	DC-Bus-Zwischenkreis plus		

AKD-x02406 & AKD00307 bis AKD02407 (X3)				
Pin	Signal Beschreibung			
3	-DC DC-Bus-Zwischenkreis minus			
4	+DC (+RB) DC-Bus-Zwischenkreis plus			


AKD04807 (X14)			
Pin	Signal Beschreibung		
1	-DC DC-Bus-Zwischenkreis minus		
2	n.c.	n.c. Nicht verbunden	
3	+DC	DC-Bus-Zwischenkreis plus	

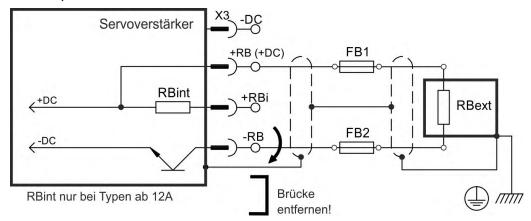
Hinweis: Parallelschaltung nur mit AKD-x048.

9.9.1 Zwischenkreis Topologie mit Y-Steckern (max. 24A)



Wenn ein Gerät durch z.B. einen internen Kurzschluss ausfällt, können ohne externe DC Sicherungen weitere Geräte im Verbund beschädigt oder zerstört werden. Sollen viele Servoverstärker parallel geschaltet werden, so ist es sinnvoll, Zwischenkreissicherungen (→ # 44) zwischen Verstärkergruppen (eine Gruppe bestehend aus zwei oder drei Geräten, je nach Stromstärke) einzufügen, um einen möglichen Folgeschaden zu begrenzen. Vollständig verhindern kann die Sicherung einen Folgeschaden nicht.

9.9.2 Zwischenkreis Topologie mit Stromschiene


Diese Verdrahtung erfordert keine Y-Stecker. Falls ein Gerät durch Kurzschluss ausfällt, lösen nur dessen Zwischenkreissicherungen (→ # 44) aus, der restliche Verbund läuft ungestört weiter. Die massive Stromschiene kann einen wesentlich höheren Strom führen, da der Ausgleichsstrom nicht wie oben über den Stecker fließt. Daher können in dieser Form fast beliebig viele Servoverstärker parallel geschaltet werden.

9.9.3 Externer Bremswiderstand (X3)

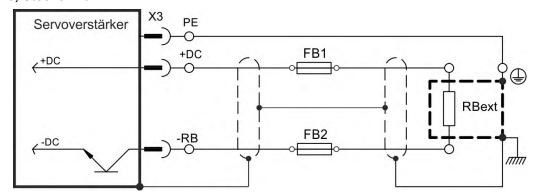
Technischen Daten der Bremsschaltung siehe (→ #48).

9.9.3.1 AKD-x003 bis 024, Stecker X3

FB1 / FB2 Sicherungen

Verstärkermodell	Strom- nennwert @230V	Strom- nennwert @480V	UL Region Beispiel (Eaton):	CE Region Beispiel (Siba):
AKD-x003 to 012	10A	40A		110V to 400V: gRL(gS)
AKD-x024	15A	50A]	400V to 480V: aR

AKD-x00306 bis AKD-x00606 (X3)				
Pin	Signal	Beschreibung		
1	-RB	Externer Bremswiderstand minus		
3 +RB		Externer Bremswiderstand plus		



AKD-x1206 (X3)					
Pin	Signal	Beschreibung			
1	+Rbint	Interner Bremswiderstand plus			
2	-RB	Externer Bremswiderstand minus			
4	+RB	Externer Bremswiderstand plus			

AKD-x02406 & AKD-xzzz07 (X3)					
Pin	Signal	Beschreibung			
2	-RB	Externer Bremswiderstand minus			
4	4 +RB Externer Bremswiderstand plus				

9.9.3.2 AKD-x048, Stecker X3

FB1, FB2:

Gerät	Strom	UL Region Beispiel:	CE Region Beispiel:	
AKD-x048	100A	Eaton Bussmann	Mersen	
		FWP-100A22F	MEV100A100-4	

AKD-x04807					
Pin	Signal	Beschreibung			
1	+RB+DC	Externer Bremswiderstand plus			
2	-RB	Externer Bremswiderstand minus			
3	PE	Schutzerde			

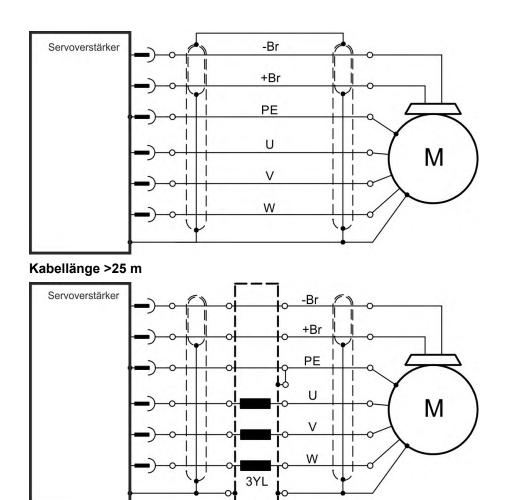
9.10 Motor Leistungsanschluss (X2)

Zusammen mit dem Motorleistungskabel und der Motorwicklung bildet der Leistungsausgang der Servoverstärker einen Schwingkreis. Die maximale Spannung im System hängt von Merkmalen wie der Kapazität und Länge des Kabels, Induktivität des Motors und Frequenz (→ # 41) bzw. (→ # 42) ab.

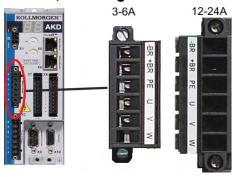
Der AKD kann bei korrekter Parametrierung und Verwendung des Thermofühlers den Motor vor Überlastung schützen:

- Der Parameter IL.MIMODE muss auf 1 gesetzt sein. IL.MIMODE 0 erfüllt nicht die Anforderungen für den Speichererhaltungstest.
- Unterstützte Temperatursensoren finden Sie im Parameter MOTOR.RTYPE.
- Bei Kollmorgen Motoren werden die korrekten Daten aus der Motordatenbank automatisch übernommen.

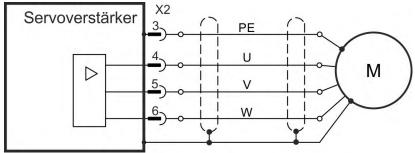
ACHTUNG


Der dynamische Spannungsanstieg kann die Lebensdauer des Motors verringern und bei ungeeigneten Motoren zu Überschlägen in der Motorwicklung führen.

- Verwenden Sie nur Motoren der Isolationsklasse F (gemäß EN 60085) oder höher.
- Verwenden Sie nur Kabel, die den Spezifikationen entsprechen (→ #47).

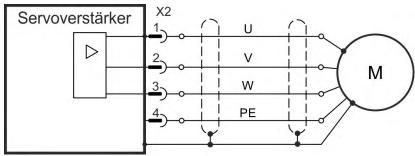

ACHTUNG

Bei längeren Motorkabeln gefährden Ableitströme die Endstufe des Verstärkers. Bei Kabellängen von 25 m bis 50 m muss eine Motordrossel in der Motorleitung verdrahtet werden (nahe am Servoverstärker). Passende Kollmorgen Motordrosseln finden Sie im regionalen Zubehörhandbuch.


Kabellänge ≤ 25 m

9.10.1 AKD-x003 bis 024, Leistungsstecker X2

Pin	Signal	Beschreibung			
1	-Br	Motor-Haltebremse (→ # 123)			
2	+Br	Motor-Haltebremse (→ # 123)			
3	PE	Schutzerde (Motorgehäuse)			
4	U	Motorphase U			
5	V	Motorphase V			
6	W	Motorphase W			


9.10.2 AKD-x048, Leistungsstecker X2

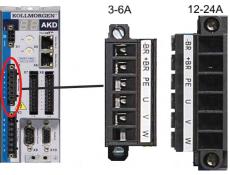
INFO

Maximale Kabellänge 25m.

Pin	Signal	Beschreibung		
1	U	Motorphase U		
2	V	Motorphase V		
3	W	Motorphase W		
4	PE	Schutzerde (Motorgehäuse)		

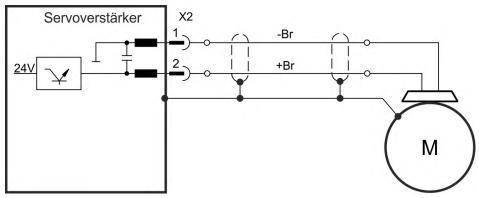
9.11 Motorbremse Anschluss (X2, X15, X16)

Eine 24-V-Haltebremse im Motor kann direkt durch den Servoverstärker gesteuert werden. Die Bremse funktioniert nur mit ausreichender 24-V-Spannung. Prüfen Sie den Spannungsabfall, messen Sie die Spannung am Bremseingang und prüfen Sie die Bremsfunktion (gelüftet und bremsend).

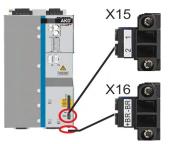


WARNUNG Keine funktionale Sicherheit!

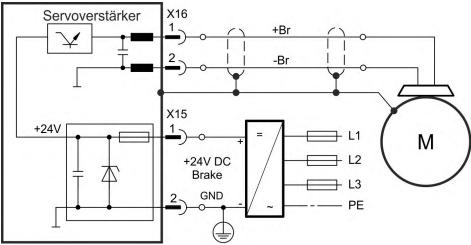
Wenn die Last nicht sicher blockiert ist, kann dies zu schweren Verletzungen führen. Diese Funktion ist nicht funktional sicher.


- Die funktionale Sicherheit, z.B. bei hängenden Lasten (vertikale Lasten), erfordert eine zusätzliche mechanische Bremse, die sicher betätigt werden muss, z.B. durch eine Sicherheitssteuerung.
- Der Hardware Enable Eingang (Stecker X8 Pin 4) leitet keinen kontrollierten Stopp ein, sondern schaltet die Endstufe sofort ab.
- Setzen Sie bei vertikalen Achsen den Parameter MOTOR.BRAKEIMM auf 1, damit die Motorhaltebremse nach Fehler oder Hardware Disable ohne Verzögerung einfällt.

9.11.1 AKD-x003 bis 024, Stecker X2

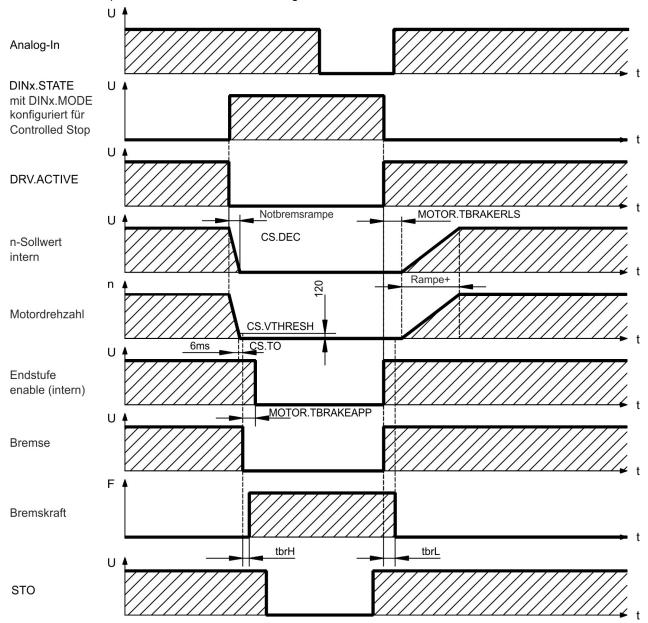

Pin	Signal	Beschreibung		
1	-Br	Motorhaltebremse, minus		
2	+Br	Motorhaltebremse, plus		
3	PE	Schutzerde (→ # 120)		
4	U	Motorphase U (→ # 120)		
5	V	Motorphase V (→ # 120)		
6	W	Motorphase W (→ # 120)		
_	v			

Spannungsversorgung der Bremse über die 24 V \pm 10 % Spannungsversorgung des Verstärkers an X1. Der maximale Bremsstrom hängt ab vom Gerätetyp, siehe Technische Daten (\rightarrow # 41) bzw. (\rightarrow # 42).



9.11.2 AKD-x048, Stecker X15, X16

Bei AKD-x048 ist die Spannungsversorgung der Bremse getrennt von der Servoverstärker Hilfsspannung. Der maximale Bremsstrom ist 2 A. Verwenden Sie X15 für die 24 VDC ±10 % Versorgung und X16 für den Anschluss der Motorhaltebremse.



X15	Signal	Beschreibung			
1	24 V	24V Versorgungsspannung, Bremse			
2	GND	GND, Bremse			
		Beschreibung			
X16	Signal	Beschreibung			
X16 1		Beschreibung Motorhaltebremse, plus			

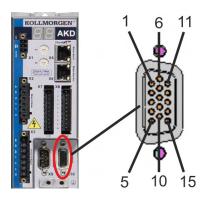
9.11.3 Funktionalität

Die Bremsfunktion muss durch einen Parameter freigegeben werden. Das folgende Diagramm zeigt das Timing und die funktionalen Beziehungen zwischen dem Controlled Stop Signal, der Geschwindigkeit und der Bremskraft. Alle Werte können mit Parametern angepasst werden; die Werte im Diagramm sind Standardwerte.

Der Geschwindigkeitssollwert des Servoverstärkers wird intern entlang einer einstellbaren Rampe (CS.DEC) nach 0V heruntergeregelt.

Bei Default-Einstellung wird der Ausgang für die Bremse geschaltet, wenn die Geschwindigkeit mindestens 6 ms (CS.TO) lang 120 U/min (CS.VTHRESH) erreicht hat. Die Anzugszeiten (t_{brH}) und Abfallzeiten (t_{brL}) der in den Motor integrierten Haltebremse variieren je nach dem Motortyp.

9.12 Feedback Anschluss (X10, X9, X7)

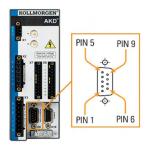

Jedes geschlossene Servosystem erfordert normalerweise mindestens ein Feedback System, um Istwerte vom Motor an den Servoverstärker zu senden. Je nach Typ des verwendeten Systems werden die Informationen analog oder digital an den Servoverstärker zurückgeführt.

AKD unterstützt die gängigsten Feedback-Typen. Feedback-Funktionen werden in WorkBench (Setup-Software) mit Parametern zugewiesen. Die Skalierung und weitere Einstellungen erfolgen ebenfalls in WorkBench. Eine detaillierte Beschreibung der Parameter finden Sie in der Onlinehilfe zu WorkBench.

Die folgende Tabelle bietet eine Übersicht über die unterstützten Rückführungstypen, ihre entsprechenden Parameter und einen Verweis auf das jeweils relevante Anschlussbild.

Feedback Typen	Anschluss	Stecker	FB1. SELECT	FB2. MODE	FB3. MODE
Resolver	(→ # 129)	X10	40	-	-
SFD	(→ # 130)	X10	41	-	-
SFD3	(→ # 131)	X10	45	-	-
Encoder Hiperface DSL	(→ # 132)	X10	46	-	-
Sinus/Cosinus-Encoder BiSS Mode B	(→ # 133)	X10	32	-	-
Encoder BiSS Mode C	(→ # 134)	X10	34	-	-
Sinus/Cosinus-Encoder ENDAT 2.1	(→ # 135)	X10	30	-	-
Encoder ENDAT 2.2	(→ # 136)	X10	31	-	-
Encoder ENDAT 2.2	(→ # 137)	X9/X8	-	-	0
Encoder ENDAT 2.2	(→ # 146)	X9	-	-	0
Sinus/Cosinus-Encoder Hiperface	(→ # 138)	X10	33	-	-
Sinus-Encoder + Hall	(→ # 139)	X10	20	-	-
Sinus-Encoder	(→ # 139)	X10	21	-	-
Inkrementalgeber + Hall	(→ # 140)	X10	10	-	-
Inkrementalgeber	(→ # 140)	X10	11	-	-
Hall Sensoren	(→ # 141)	X10	12	_	-
Tamagawa Smart Abs	(→ # 142)	X10	42	-	-
Inkrementalgeber, FB2.SOURCE=1	(→ # 145)	X9	-	0	-
Inkrementalgeber, FB2.SOURCE=2	(→ # 145)	X7	-	0	-
Impuls/Richtung, FB2.SOURCE=1	(→ # 147)	X9	-	1	-
Impuls/Richtung, FB2.SOURCE=2	(→ # 147)	X7	-	1	-
CW/CCW, FB2.SOURCE=1	(→ # 148)	X9	-	2	-
CW/CCW, FB2.SOURCE=2	(→ # 148)	X7	-	2	-

9.12.1 Feedback Stecker (X10)



Pin	SFD	SFD3/ DSL	Resolver	BiSS B (analog)		EnDAT 2.1	EnDAT 2.2	Hiper- face	Sinus Enc. +Hall	Inkr. Enc. +Hall	Hall	Tamagawa Smart Abs*
1	-	-	-	-	-	-	-	-	Hall U	Hall U	Hall U	-
2	-	-	-	CLK+	CLK+	CLK+	CLK+	-	Hall V	Hall V	Hall V	-
3	-	-	-	CLK-	CLK-	CLK-	CLK-	-	Hall W	Hall W	Hall W	-
4	SEN+	-	-	SEN+	SEN+	SEN+	SEN+	SEN+	SEN+	SEN+	-	SEN+
5	SEN-	-	-	SEN-	SEN-	SEN-	SEN-	SEN-	SEN-	SEN-	-	SEN-
6	COM+	COM+	R1 Ref+	DAT+	DAT+	DAT+	DAT+	DAT+	Null+	Null+	-	SD+
7	COM-	COM-	R2 Ref-	DAT-	DAT-	DAT-	DAT-	DAT-	Null-	Null-	-	SD-
8	-	-	Th+	Th+	-	Th+	-	Th+	Th+	Th+	Th+	Th+
9	-	-	Th-	Th-	-	Th-	-	Th-	Th-	Th-	Th-	Th-
10	+5 V	8 bis 9 V	-	+5 V	+5 V	+5 V	+5 V	8 bis 9 V	+5 V	+5 V	+5 V	+5 V
11	0 V	0 V	-	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V
12	-	-	S1 SIN+	A+	-	A+	-	SIN+	A+	A+	-	-
13	-	-	S3 SIN-	A-	-	A-	-	SIN-	A-	A-	-	-
14	-	-	S2 COS+	B+	-	B+	-	COS+	B+	B+	-	-
15	-	-	S4 COS-	B-	-	B-	-	COS-	B-	B-	-	-

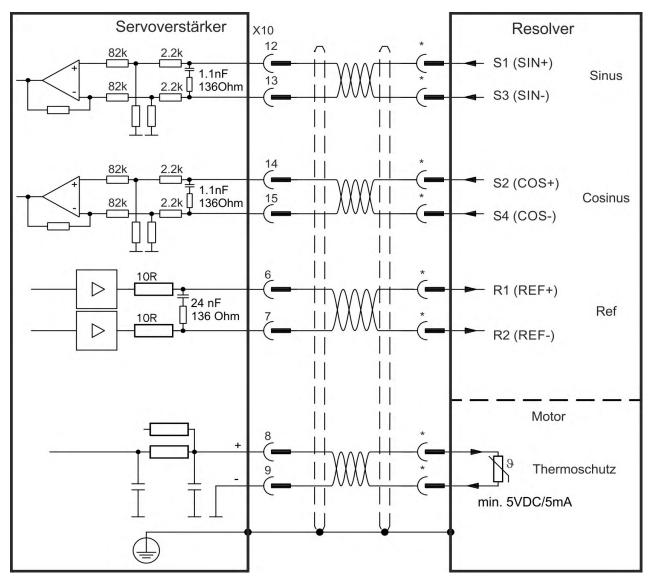
CLK = CLOCK, DAT = DATA, SEN = SENSE, TH = Temperatursensor,


^{*=} nur für AKD mit "NB" und "NC" Erweiterung

9.12.2 Feedback Stecker (X9)

Pin	Impuls/Richtung	CW/CCW	Inkrementalgeber	EnDat 2.2 Geber
1	Impuls+	CW+	A+	CLOCK+
2	Impuls-	CW-	A-	CLOCK-
3	GND	GND	GND	GND
4	Richtung+	CCW+	B+	DATA+
5	Richtung-	CCW-	B-	DATA-
6	Schirm	Schirm	Schirm	Schirm
7	-	-	Null+	-
8	-	-	Null-	-
9	-	-	+ 5 V Versorgung	+ 5 V Versorgung
			(Ausgang)	(Ausgang)

9.12.3 Feedback Stecker (X7)


Pin	Impuls/Richtung	CW/CCW	Inkrementalgeber
9	Impuls	CW	Kanal A
10	Richtung	CCW	Kanal B
1	GND	GND	GND

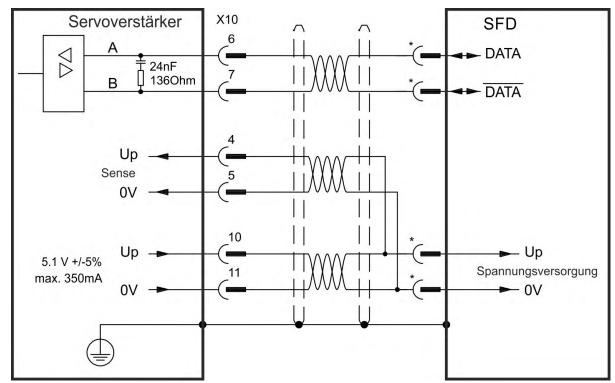
9.12.4 Resolver

Das folgende Diagramm zeigt den Anschluss eines Resolvers (2- bis 36-polig) als Rückführsystem. Die Temperaturüberwachung im Motor ist über das Resolverkabel angeschlossen und wird im Servoverstärker ausgewertet. Falls der Motor keinen Temperatursensor besitzt, muss im Kabel Pin 8 und 9 gebrückt werden.

Wenn Kabellängen von mehr als 100 m geplant sind, wenden Sie sich an den Kundendienst.

Тур	FBTYPE	Beschreibung
Resolver	40	Genauigkeit: 14 Bit (0,022°), Auflösung: 16 Bit (0,006°),
		Frequenz(fest): 6875 Hz

* Pin-Zuordnung auf der Motorseite siehe Motordokumentation.


9.12.5 SFD

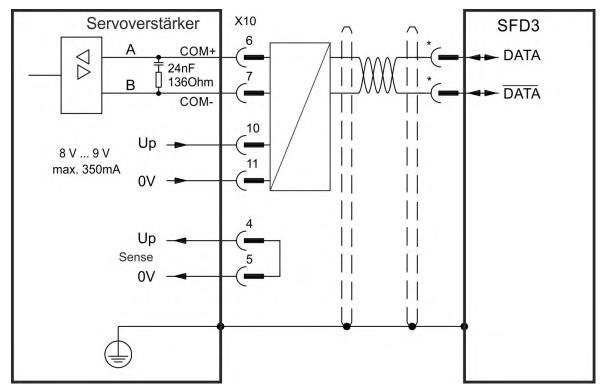
Das folgende Diagramm zeigt den Anschluss des (Vierdraht) Kollmorgen-Rückführsystems SFD.

INFO

Der Sense-Eingang ist nur für Kabel mit einer Länge von über 25 m erforderlich, wenn der Drahtwiderstand vom Servoverstärker zum Sensor 3,3 Ω übersteigt. . Kollmorgen Kabel sind bis 50 m Länge ohne Sense Anschluss zugelassen.

Тур	FBTYPE	Up	Bemerkungen		
Smart Feedback Device	41	5,1 V +/-5 %	Genauigkeit 14 Bit (0.022°),		
(SFD)			Auflösung 24 Bit (2 x 10E-5°)		

* Pin-Zuordnung auf der Motorseite siehe Motordokumentation.


9.12.6 SFD3

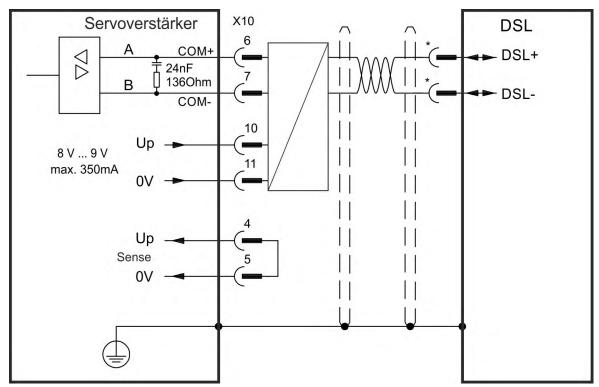
Das folgende Diagramm zeigt den Anschluss des (Zweidraht) Kollmorgen-Rückführsystems SFD3.

INFO

SFD3 kann mit einem speziellen Kollmorgen Anschlusskabel benutzt werden. Maximale Kabellänge bis zu 25 m.

Тур	FBTYPE	Up	Bemerkungen		
SFD3	45 8 bis 9 V		ab FW 1.11,		
			nur mit Kollmorgen Kabeln		

* Pin-Zuordnung auf der Motorseite siehe Motordokumentation.


9.12.7 Hiperface DSL

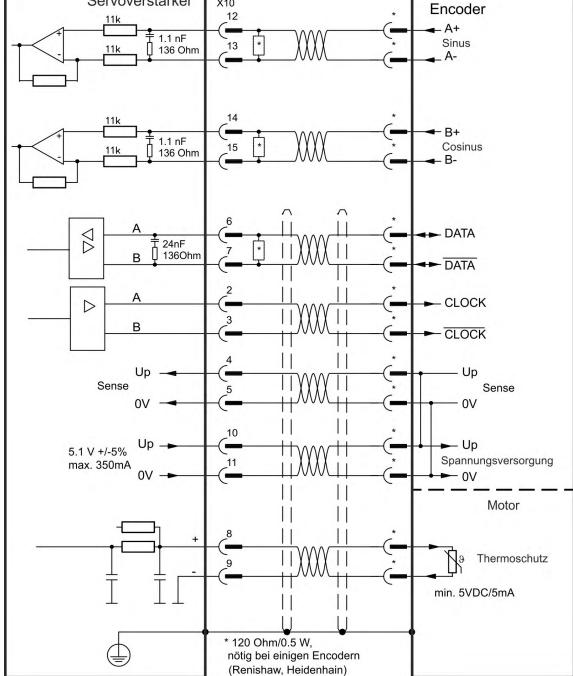
Das folgende Diagramm zeigt den Anschluss des (Zweidraht) Hiperface DSL Rückführsystems.

INFO

Hiperface DSL kann mit einem speziellen Kollmorgen Anschlusskabel benutzt werden. Maximale Kabellänge bis zu 25 m.

Тур	FBTYPE	Up	Bemerkungen
Hiperface DSL	46	8 bis 9 V	ab FW 1.9,
			nur mit Kollmorgen Kabeln

* Pin-Zuordnung auf der Motorseite siehe Motordokumentation.

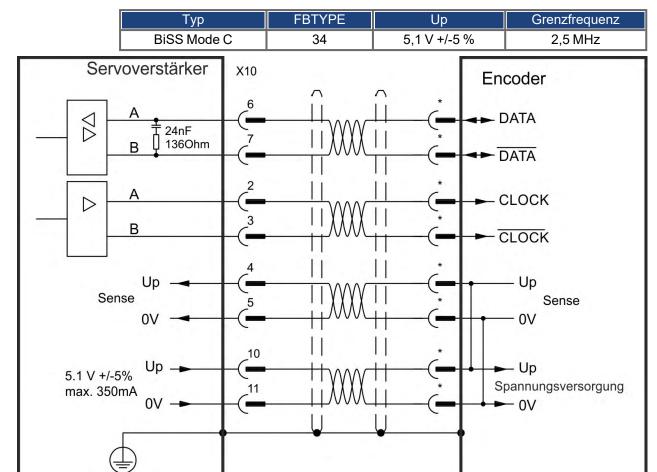

9.12.8 Encoder mit BiSS

9.12.8.1 BiSS (Mode B) Analog

Das folgende Diagramm zeigt die Verdrahtung eines Singleturn- oder Multiturn-Sinus/Cosinus-Encoders mit BiSS Mode B Schnittstelle als Rückführsystem. Die Temperaturüberwachung im Motor ist über das Encoderkabel angeschlossen und wird im Servoverstärker ausgewertet.

Wenn Kabellängen von mehr als 50 m geplant sind, wenden Sie sich an den Kundendienst.

	germania, serial de la composition della composi									
	Тур	FBTYPE	Up	Grenzfrequenz						
	BiSS (Mode B)	32	5,1 V +/-5 %	1 MHz,						
	Analog			250 kHz bei Encodern mit Terminierung.						
<	Servover	stärker x	10 12 13	* Encoder A+ Sinus A-						

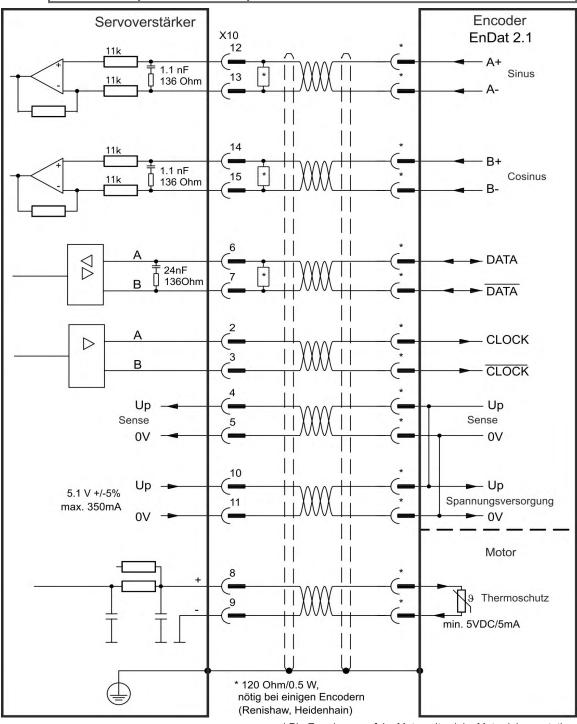


* Pin-Zuordnung auf der Motorseite siehe Motordokumentation.

9.12.8.2 BiSS (Mode C) Digital

Das folgende Diagramm zeigt die Verdrahtung eines Renishaw (Modell "Resolute RA26B") Encoders mit BiSS Mode C Schnittstelle als Rückführsystem.

Wenn Kabellängen von mehr als 25 m geplant sind, wenden Sie sich an den Kundendienst.



 * Pin-Zuordnung auf der Motorseite siehe Motordokumentation.

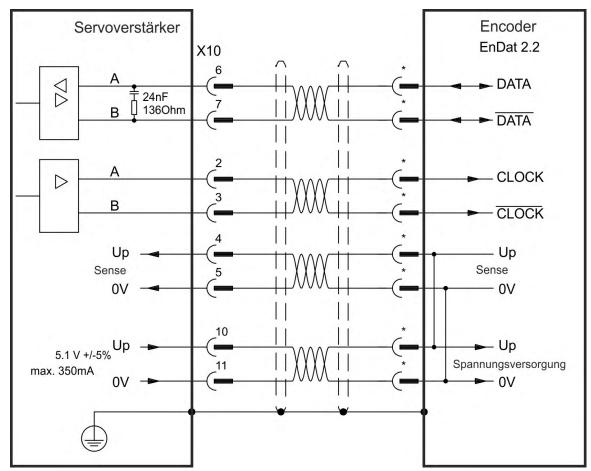
9.12.9 Sinus Encoder mit EnDat 2.1

Das folgende Diagramm zeigt die Verdrahtung eines Singleturn- oder Multiturn-Sinus/Cosinus-Encoders mit EnDat 2.1-Schnittstelle als Rückführsystem. Bevorzugte Typen sind die Encoder ECN1313 und EQN1325. Die Temperaturüberwachung im Motor ist über das Encoderkabel angeschlossen und wird im Servoverstärker ausgewertet. Alle Signale werden mit unserem konfektionierten Encoder-Anschlusskabel angeschlossen. Wenn Kabellängen von mehr als 50 m geplant sind, wenden Sie sich an den Kundendienst.

Тур	FBTYPE	Grenzfrequenz
EnDat 2.1	30	1 MHz,
		250 kHz bei Encodern die eine Terminierung erfordern.

^{*} Pin-Zuordnung auf der Motorseite siehe Motordokumentation.

9.12.10 Encoder mit EnDat 2.2


Singleturn- oder Multiturn-Encoders mit EnDat 2.2-Schnittstelle können als primäres Motorfeedback an X10 oder X9 angeschlossen werden.

9.12.10.1 Anschluss an X10

Alle Signale werden mit unserem konfektionierten Encoder-Anschlusskabel angeschlossen.

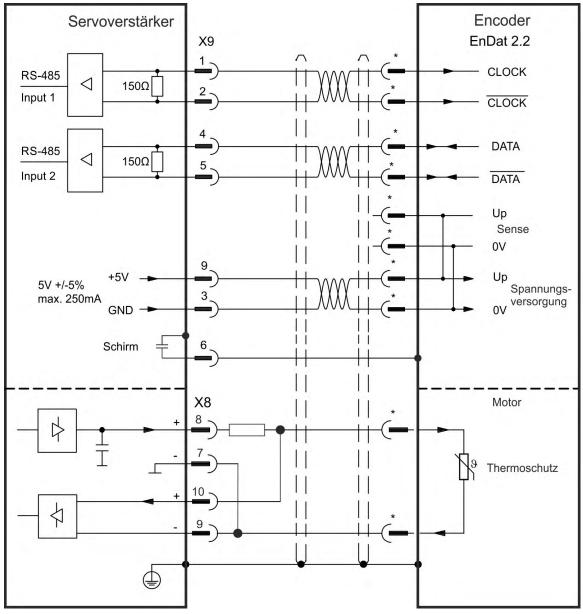
Wenn Kabellängen von mehr als 50 m geplant sind, wenden Sie sich an den Kundendienst.

Тур	FBTYPE	Grenzfrequenz	Beschreibung
EnDat 2.2	31	2,5 MHz	Auf Bildschirmseite FEEDBACK anpassen

* Pin-Zuordnung auf der Motorseite siehe Motordokumentation.

9.12.10.2 Anschluss an X9 und X8

Die Temperaturüberwachung im Motor ist über analoge I/O an X8 angeschlossen und wird im Servoverstärker ausgewertet. Alle Signale werden mit unserem speziellen Kabel angeschlossen (Europa: CFD5).


INFO

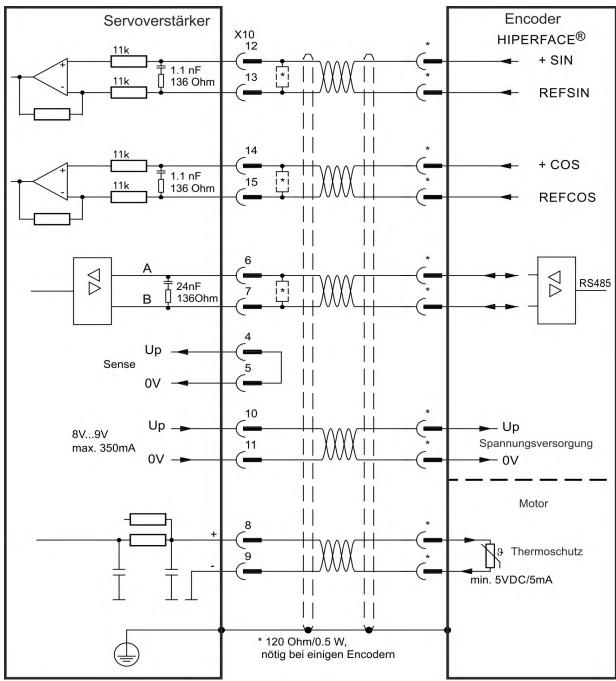
Die Funktion muss dem analogen I/O in der zugehörigen WorkBench Seite zugewiesen werden. Wenn der eingestellte Wert überschritten wird, wird die Warnung n256 ausgegeben.

Wenn Kabellängen von mehr als 50 m geplant sind, wenden Sie sich an den Kundendienst.

Тур	FB3.MODE	Grenzfrequenz	Beschreibung
ENDAT 2.2	0*	2,5 MHz	Auf Bildschirmseite FEEDBACK anpassen

* Für die Verwendung als primäres Motorfeedback müssen die Parameter DRV.EMUEMODE, PL.FBSOURCE, IL.FBSOURCE, VL.FBSOURCE eingestellt werden.

* Pin-Zuordnung auf der Motorseite siehe Motordokumentation.

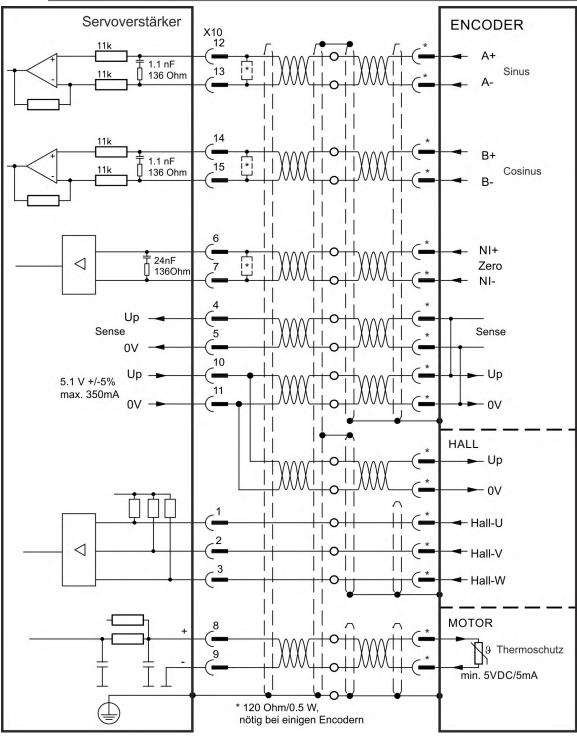

9.12.11 Sinus Encoder mit Hiperface

Das folgende Diagramm zeigt die Verdrahtung eines Singleturn- oder Multiturn-Sinus/Cosinus-Encoders mit Hiperface-Schnittstelle als Rückführsystem.

Die Temperaturüberwachung im Motor ist über das Encoderkabel angeschlossen und wird im Servoverstärker ausgewertet. Alle Signale werden mit unserem konfektionierten Encoder-Anschlusskabel angeschlossen.

Wenn Kabellängen von mehr als 50 m geplant sind, wenden Sie sich an den Kundendienst.

Тур	FBTYPE	Grenzfrequenz	Beschreibung
Hiperface	33	1 MHz,	Wenn Pin 4 und 5 gebrückt
		250 kHz bei Encodern mit Ter-	werden, beträgt Up 8V9V
		minierung.	

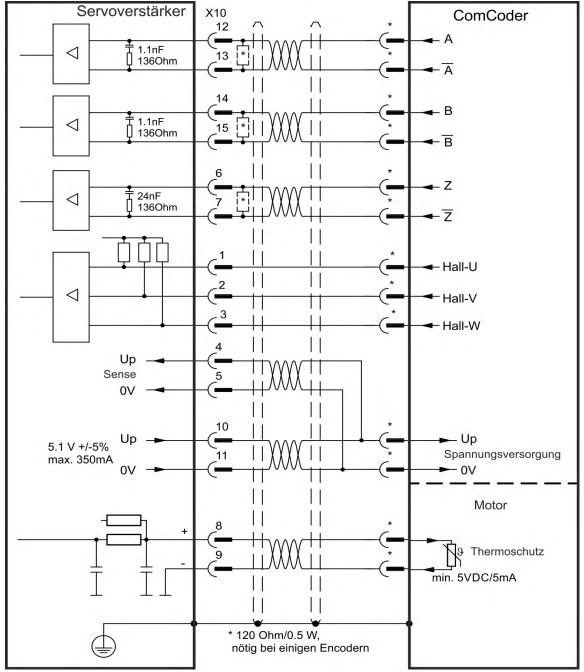


* Pin-Zuordnung auf der Motorseite siehe Motordokumentation.

9.12.12 Sinus-Encoder mit Hall

Rückführsysteme, die keine absoluten Informationen für die Kommutierung liefern, können entweder mit der Wake & Shake-Kommutierung arbeiten (siehe AKD Benutzerhandbuch) oder als komplettes Rückführsystem verwendet werden, wenn sie mit einem zusätzlichen Hall-Encoder kombiniert werden. Alle Signale sind an X10 angeschlossen und werden dort evaluiert. Bei geplanter Kabellänge über 25 m wenden Sie sich an den Kundendienst.

Тур	FBTYPE	Up	Grenzfrequenz
Sinus/Cosinus 1 V p-p mit Hall	20		1 MHz, 250 kHz bei
Sinus/Cosinus 1 V p-p (Wake & Shake)	21		Encodern die eine Ter- minierung erfordern.



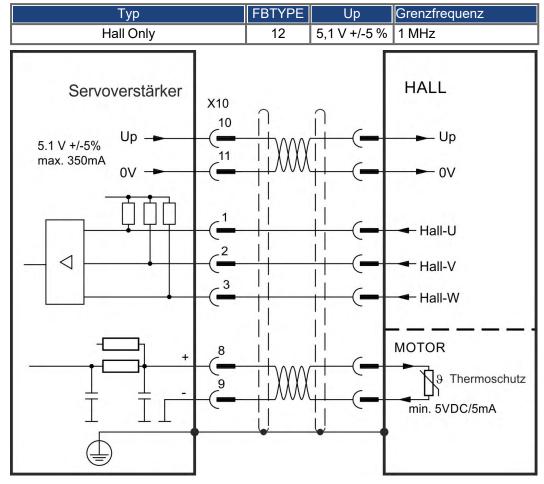
^{*} Pin-Zuordnung auf der Motorseite siehe Motordokumentation.

9.12.13 Inkrementalgeber

Rückführsysteme, die keine absoluten Informationen für die Kommutierung liefern, können entweder mit der Wake & Shake-Kommutierung arbeiten (*siehe AKD Benutzerhandbuch*) oder als komplettes Rückführsystem verwendet werden, wenn sie mit einem zusätzlichen Hall-Encoder kombiniert werden. Alle Signale werden mit einem konfektionierten Comcoder-Anschlusskabel angeschlossen. Die Temperaturüberwachung im Motor ist über das Comcoderkabel angeschlossen und wird im Servoverstärker ausgewertet. Wenn Kabellängen von mehr als 25 m geplant sind, wenden Sie sich an den Kundendienst.

Тур	FBTYPE	Grenzfrequenz
Inkrementalgeber & Hall (Comcoder)	10	2,5 MHz
Inkrementalgeber (Wake & Shake)	11	2,5 MHz

* Pin-Zuordnung auf der Motorseite siehe Motordokumentation.


9.12.14 Hall Sensoren

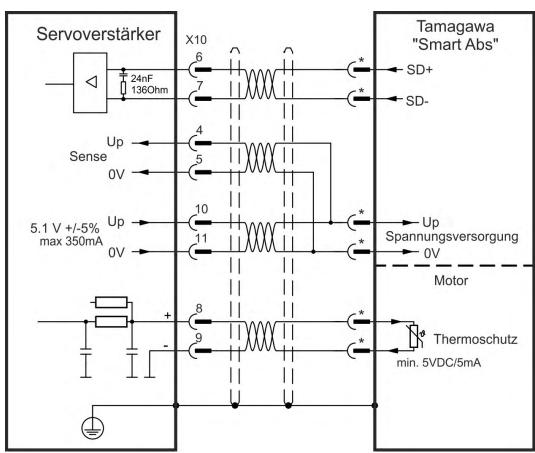
Dieses Rückführsystem ermöglicht nur die Betriebsarten Drehmoment-Regelung und Drehzahl-Regelung.

Die Hall Sensoren sind an X10 angeschlossen. Wenn Kabellängen von mehr als 25 m geplant sind, wenden Sie sich an den Kundendienst.

INFO

Weitere Informationen zu Hall Sensoren finden Sie in der WorkBench Onlinehilfe.

Anschlusslogik für Kollmorgen Motoren:

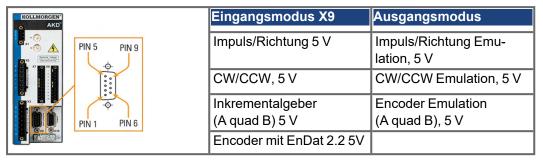

AKD		KBM(S) TBM(S		(S)	S) VLM(H)		IC, ICH, IL, ID			
Pin	Signal	Farbe	Name	Farbe	Name	Farbe	Name	Farbe	Pin	Name
X2 /4	U	Blau	U	Rot	Α	Rot	U	Rot	1	Α
X2/5	V	Braun	V	Weiß	В	Weiß	V	Weiß	2	В
X2/6	W	Violett	W	Schwarz	С	Schwarz	W	Schwarz	3	С
X10/1	Hall U	Gelb	H3	Gelb	H-CA	Grün	Hall U	Braun	SubD9/4	S3
X10/2	Hall V	Braun	H1	Braun	H-AB	Braun	Hall V	Grün	SubD9/2	S1
X10/3	Hall W	Orange	H2	Orange	H-BC	Weiß	Hall	Gelb	SubD9/3	S2
							W			

9.12.15 Tamagawa Smart Abs Encoder

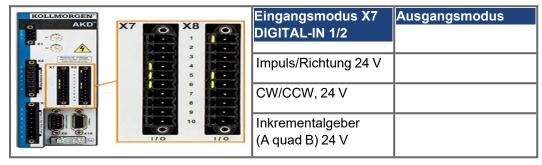
Das folgende Diagramm zeigt die Verdrahtung eines Tamagawa "Smart Abs" Encoders (Tamagawa Seiki Co.Ltd.S48-17/33bit-LPS-5V oder ähnlich) als primäres Feedback für AKD mit "NB" und "NC" Erweiterung. Die Temperaturüberwachung im Motor ist über das Encoderkabel angeschlossen und wird im Servoverstärker ausgewertet. Falls der Motor keinen Temperatursensor besitzt, muss im Kabel Pin 8 und 9 gebrückt werden. Das Sense-Signal ist optional und kann entfallen, wenn das Encoderkabel kurz ist und im Kabel kein nennenswerter Spannungsabfall auftritt.

Wenn Kabellängen von mehr als 25 m geplant sind, wenden Sie sich an den Kundendienst.

Тур		FBTYPE	Up	Grenzfrequenz
S48-17/33bit-LPS-5V		42	5,1 V +/-5 %	2,5 MHz


* Pin-Zuordnung auf der Motorseite siehe Motordokumentation.

9.13 Elektronisches Getriebe, Master-Slave Betrieb (X9, X7)


Es kann z. B. eine Master-Slave-Steuerung aufgebaut, ein externer Geber als zweites Feedback benutzt oder der Servoverstärker durch eine Schrittmotorsteuerung eines Drittanbieters angesteuert werden. Abhängig vom Signalpegel wird Stecker X9 (5 V TTL) oder X7 (24 V) benutzt.

Zur Konfiguration wird die WorkBench Setup Software benutzt (siehe Bildschirmseite "Feedback 2" in WorkBench). FB2.SOURCE, FB2.MODE, FB2.ENCRES und andere Parameter werden als Setup Parameter verwendet.

Stecker X9 kann als 5 V (TTL) Eingang oder Ausgang konfiguriert werden.

Stecker X7 (DIGITAL-IN 1/2) kann als Eingang für 24 V Inkrementalgebersignale konfiguriert werden.

9.13.1 Technische Eigenschaften und Pinbelegung

9.13.1.1 Stecker X7 Eingänge

Technische Eigenschaften

- Potentialfrei, die gemeinsame Referenzleitung ist DCOM7
- Maximale Signaleingangsfrequenz: 500 kHz
- Sensoren des Typs Sink oder Source möglich
- High: 3,5...30 V/2...15 mA, Low: -2...+2 V/<15 mA</p>
- Aktualisierungsrate: Firmware liest den Hardware Eingangsstatus alle 250 μs

Pin	Impuls/Richtung	CW/CCW	Inkrementalgeber
9	Impuls	CW (Uhrzeigersinn)	Spur A
10	Richtung	CCW (gegen Uhrzeigersinn)	Spur B
1	GND	GND	GND

9.13.1.2 Stecker X9 Eingänge

Technische Eigenschaften

- Elektrische Schnittstelle: RS-485
- Maximale Signaleingangsfrequenz: 3 MHz
- Eingangssignal-Spannungsbereich: +12 V bis -7 V
- Versorgungsspannung (nur für Inkrementalgeber-Eingang): +5 V ±5 %
- Maximaler Versorgungsstrom: 250 mA

Pin	Impuls/Richtung	CW/CCW	Inkrementalgeber	EnDat 2.2 Geber
1	Impuls+	CW+	A+	CLOCK+
2	Impuls-	CW-	A-	CLOCK-
3	GND	GND	GND	GND
4	Richtung+	CCW+	B+	DATA+
5	Richtung-	CCW-	B-	DATA-
6	Schirm	Schirm	Schirm	Schirm
7	-	-	Null+	-
8	-	-	Null-	-
9	-	-	+ 5 V Versorgung	+ 5 V Versorgung
			(Ausgang)	(Ausgang)

ACHTUNG

Die maximale Kabellänge eines externen Inkrementalgebers an X9 hängt vom Spannungsabfall im Kabel und den Stromanforderungen des externen Encoders ab. Siehe Berechnungsbeispiel im Kapitel "Elektronisches Getriebe" des Benutzerhandbuchs.

9.13.1.3 Stecker X9 Ausgänge

Technische Eigenschaften

- Elektrische Schnittstelle: RS-485
- Max. Signalausgangsfrequenz: 3 MHz
- Die Impulse pro Umdrehung sind einstellbar.
- Impulsphasenverschiebung: 90°±20°

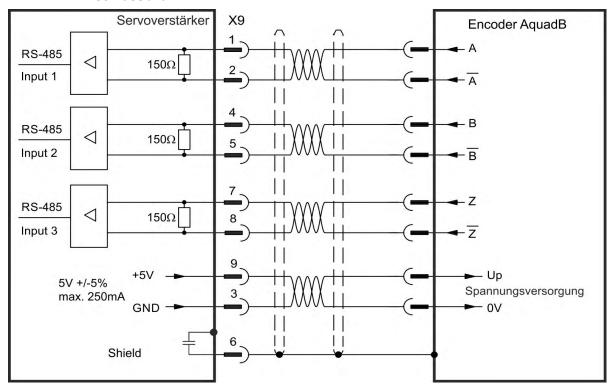
Pin	Impuls/Richtung	CW/CCW	Inkrementalgeber
1	Impuls +	CW+	A+
2	Impuls -	CW -	A-
3	GND	GND	GND
4	Richtung +	CCW +	B+
5	Richtung -	CCW -	B-
6	Schirm	Schirm	Schirm
7*	Z+	Z+	Z+
8*	Z-	Z-	Z-
9	-	-	-

^{*}Der Nullimpuls ist auch als Zero (Z) oder Index bekannt.

INFO

Die maximal zulässige Kabellänge beträgt 100 Meter.

9.13.2 Encoder als zweites Feedback

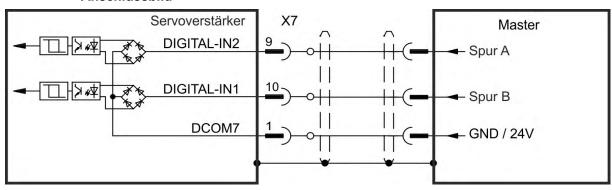

9.13.2.1 Inkrementalgeber Eingang 5 V (X9)

An diesen Eingang kann ein 5 V A quad B-Encoder oder der Encoder-Emulationsausgang eines anderen Verstärkers angeschlossen und als Master-Encoder, zweites Feedback, Getriebe oder Nockeneingang verwendet werden. Parametereinstellung FB2.MODE = 0, FB2.SOURCE=1.

INFO

Verwenden Sie den Eingang nicht als Anschluss für ein primäres Feedback!

Anschlussbild

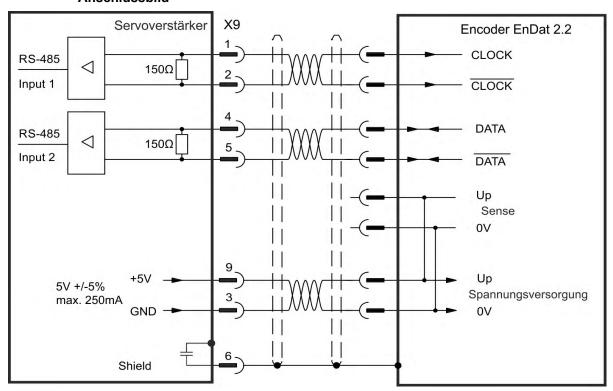

9.13.2.2 Inkrementalgeber Eingang 24 V (X7)

Ein 24 V Inkrementalgeber kann an die digitalen Eingänge 1 und 2 angeschlossen und als Master-Encoder, zweites Feedback, Getriebe oder Nockeneingang verwendet werden. Parametereinstellung FB2.MODE = 0, FB2.SOURCE=2.

INFO

Verwenden Sie den Eingang nicht als Anschluss für ein primäres Feedback!

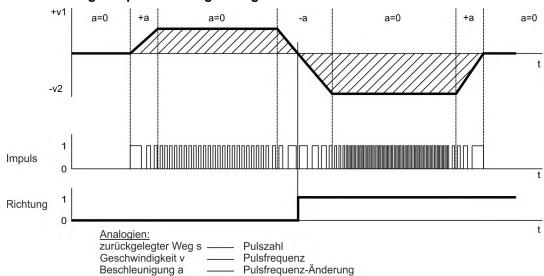
Anschlussbild


9.13.2.3 Encoder mit EnDat 2.2 Eingang 5 V (X9)

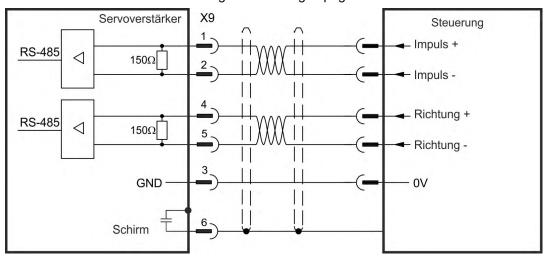
An diesen Eingang kann ein Singleturn- oder Multiturn-Encoders mit EnDat 2.2-Schnittstelle angeschlossen und als Master-Encoder, zweites Feedback, Getriebe oder Nockeneingang. Parametereinstellung FB3.MODE=0, DRV.EMUEMODE=11.

INFO

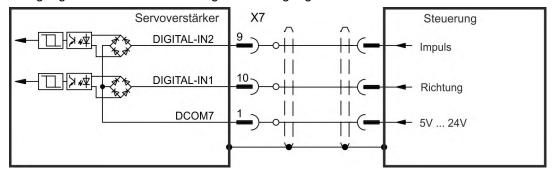
Der Eingang kann als Anschluss für ein primäres Motorfeedback genutzt werden (→ # 137)!


Anschlussbild

9.13.3 Impuls / Richtung

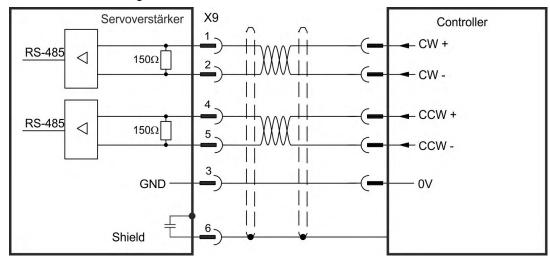

Der Servoverstärker kann an eine Schrittmotorsteuerung eines Drittanbieters angeschlossen werden. Legen Sie mit der Setup-Software WorkBench die Parameter für den Servoverstärker fest. Die Schrittanzahl kann angepasst werden, sodass der Servoverstärker an die Puls-/Richtungssignale einer beliebigen Schrittmotorsteuerung angepasst werden kann.

Geschwindigkeitsprofil und Signaldiagramm

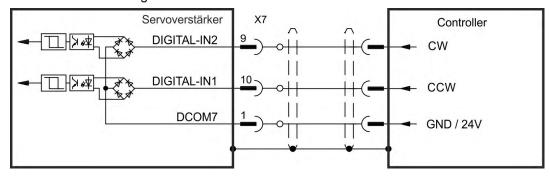

9.13.3.1 Impuls / Richtung Eingang 5 V (X9)

Anschluss an Schrittmotorsteuerungen mit 5 V Signalpegel.

9.13.3.2 Impuls / Richtung Eingang 5 V bis 24 V (X7)


Eingang für Schrittmotorsteuerungen. Die Eingänge an X7 arbeiten mit 5V bis 24V.

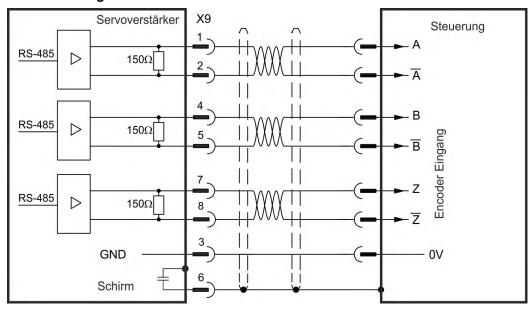
9.13.4 CW / CCW


9.13.4.1 CW / CCW Eingang 5 V (X9)

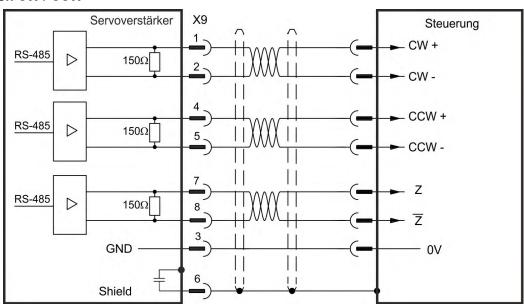
Der Servoverstärker kann an die Steuerung eines Drittanbieters angeschlossen werden, die 5 V CW/CCW-Signale liefert.

9.13.4.2 CW / CCW Eingang 24 V (X7)

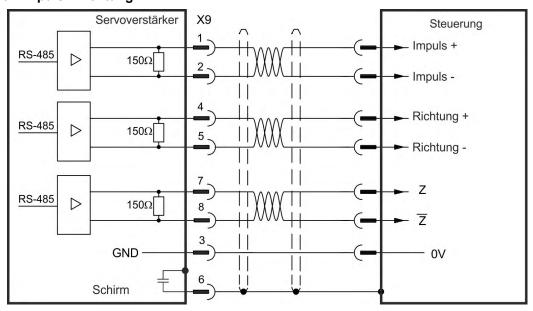
Der Servoverstärker kann an die Steuerung eines Drittanbieters angeschlossen werden, die 24 V CW/CCW-Signale liefert.


9.13.5 Encoder Emulation (EEO)

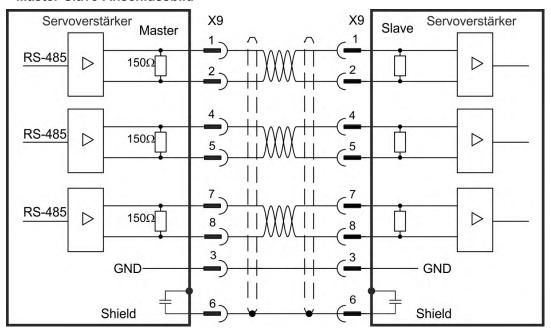
Der Servoverstärker berechnet die Motorwellenposition aus den zyklisch-absoluten Signalen der primären Rückführung und generiert Inkrementalgeber-, CW/CCW- oder Impuls/Richtung- kompatible Signale aus diesen Informationen. Die Auflösung und die Lage des Nullimpulses (Index, Zero) kann mit WorkBench eingestellt werden. Die Ausgänge werden aus einer internen Spannung versorgt.


INFO

Wenn ein Resolver mit mehr als 2 Polen (Multispeed) als Motorfeedback benutzt wird, wird nur ein Nullimpuls pro mechanischer Motorumdrehung ausgegeben. Der Nullimpuls hängt ab von der Startposition des Motors.


9.13.5.1 Emulation Inkrementalgeber

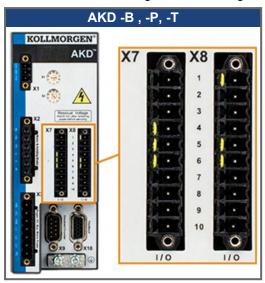
9.13.5.2 Emulation CW / CCW


9.13.5.3 Emulation Impuls / Richtung

9.13.6 Master-Slave-Steuerung

Mehrere AKD Servoverstärker können als Slave-Servoverstärker an einen AKD Master angeschlossen werden. Die Slave-Servoverstärker verwenden die Encoder-Ausgangssignale des Masters als Befehlseingang und führen die Befehle aus.

Master-Slave-Anschlussbild

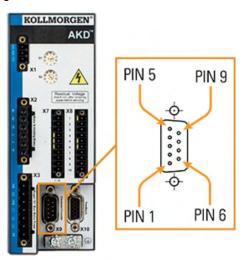


9.14 E/A-Anschluss

9.14.1 Übersicht

9.14.1.1 E/A-Stecker X7 und X8 (alle AKD Varianten)

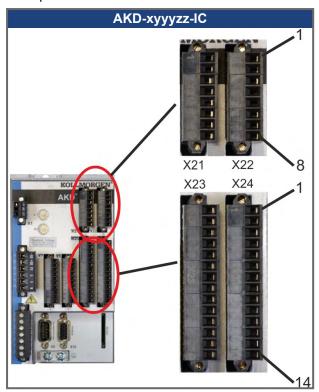
An X7 und X8 werden digitale und analoge E/A-Signale angeschlossen.


Stecker	Pin	Signal	Abkürzung	Funktion	Anschluss
X7	1	Digital Common X7	DCOM7	Gemeinsamer für	(→ # 158)
				X7 Pins 2, 3, 4, 9, 10	
X7	2	Digitaler Eingang 7	DIGITAL-IN 7	Programmierbar	
X7	3	Digitaler Eingang 4	DIGITAL-IN 4	Programmierbar	
X7	4	Digitaler Eingang 3	DIGITAL-IN 3	Programmierbar	
X7	5	Digitaler Ausgang 2-	DIGITAL-OUT2-	Programmierbar	(→ # 165)
X7	6	Digitaler Ausgang 2+	DIGITAL-OUT2+	Programmierbar	
X7	7	Digitaler Ausgang 1-	DIGITAL-OUT1-	Programmierbar	
X7	8	Digitaler Ausgang 1+	DIGITAL-OUT1+	Programmierbar	
X7	9	Digitaler Eingang 2	DIGITAL-IN 2	Programmierbar,	(→ # 158)
				schnell	
X7	10	Digitaler Eingang 1	DIGITAL-IN 1	Programmierbar,	
				schnell	
X8	1	Fehlerrelaisausgang	Fehlerrelaisausgang	Fehlerrelaisausgang	(→ # 166)
X8	2	Fehlerrelaisausgang	Fehlerrelaisausgang	Fehlerrelaisausgang	
X8	3	Digital Common X8	DCOM8	Gemeinsamer für	(→ # 158)
				X8 Pins 4, 5, 6	
X8	4	Digitaler Eingang 8	DIGITAL-IN 8	Freigabe Endstufe,	
	nicht pro-				
			grammierbar		
X8	5	Digitaler Eingang 6	DIGITAL-IN 6	Programmierbar	
X8	6	Digitaler Eingang 5	DIGITAL-IN 5	Programmierbar	
X8	7	Analoge Masse	AGND	Analoge Masse	(→ # 157)
X8	8	Analoger Ausgang +	Analog-Out	Tachospannung	

S	Stecker	Pin	Signal	Abkürzung	Funktion	Anschluss
	X8	9	Analoger Eingang -	Analog-In-	Geschwindigkeits-	(→ # 156)
Г	X8	10	Analoger Eingang +	Analog-In+	Sollwert	

Digital Common Anschlüsse für X7 und X8 sind nicht miteinander verbunden. Die Leitung DCOMx sollte an den 0 V-Ausgang der E/A-Versorgung angeschlossen werden, wenn Sensoren des Typs "Source" mit digitalen Eingängen verwendet werden. Die Leitung DCOMx sollte an den 24 V-Ausgang der E/A-Versorgung angeschlossen werden, wenn Sensoren des Typs "Sink" mit digitalen Eingängen verwendet werden.

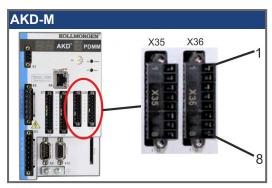
9.14.1.2 Stecker X9 (alle AKD Varianten)


Wenn X9 nicht als Eingang für ein zweites Feedback oder für die Encoder Emulation benutzt wird, stehen drei RS485-Kanäle zur Verfügung, die als digitale Ausgänge programmiert werden können.

Stecker	Pin	Signal	Abkürzung	Funktion	Anschluss
X9	1	Digital In/Out 9+	Digital-IO 9+	Programmierbar	
X9	2	Digital In/Out 9-	Digital-IO 9-	Fiogrammental	
X9	3	Digital Common X9	DCOM9	Referenz GND	
X9	4	Digital In/Out 10+	Digital-IO 10+	Programmierbar	
X9	5	Digital In/Out 10-	Digital-IO 10-	Programmerbai	Ausgang: (→ # 166)
X9	6	Schirm	Schirm	Kabelschirm	(
X9	7	Digital In/Out 11+	Digital-IO 11+	Programmierbar	
X9	8	Digital In/Out 11-	Digital-IO 11-	Programmerbai	
X9	9	reserviert	reserviert	reserviert	

9.14.1.3 E/A-Stecker X21, X22, X23 und X24 (nur AKD-T mit E/A Optionskarte)

Die Optionskarte E/A bietet vier zusätzliche Stecker X21, X22, X23, X24 für E/A Signale.



Stecker	Pin	Signal	Abkürzung	Funktion	Anschluss
X21	1	Digitaler Eingang 21	DIGITAL-IN 21	Programmierbar	(→ # 161)
X21	2	Digitaler Eingang 22	DIGITAL-IN 22	Programmierbar	
X21	3	Digitaler Eingang 23	DIGITAL-IN 23	Programmierbar	
X21	4	Digital Common X21/1_3	DCOM21.1_3	Gemeinsamer für X21 Pins 1, 2, 3	
X21	5	Digitaler Eingang 24	DIGITAL-IN 24	Programmierbar	
X21	6	Digitaler Eingang 25	DIGITAL-IN 25	Programmierbar	
X21	7	Digitaler Eingang 26	DIGITAL-IN 26	Programmierbar	
X21	21 8 Digital Common X21/5_7		DCOM21.5_7	Gemeinsamer für X21 Pins 5, 6, 7	
X22	1	Digitaler Eingang 27	DIGITAL-IN 27	Programmierbar	(→ # 161)
X22	2	Digitaler Eingang 28	DIGITAL-IN 28	Programmierbar	
X22	3	Digitaler Eingang 29	DIGITAL-IN 29	Programmierbar	
X22	4 Digital Common X22/1_3		DCOM22.1_3	Gemeinsamer für X22 Pins 1, 2, 3	
X22	5	Digitaler Eingang 30	DIGITAL-IN 30	Programmierbar	
X22	6	Digitaler Eingang 31	DIGITAL-IN 31	Programmierbar	
X22	7	Digitaler Eingang 32	DIGITAL-IN 32	Programmierbar	
X22	8	Digital Common X22/5_7	DCOM22.5_7	Gemeinsamer für	
				X22 Pins 5, 6, 7	

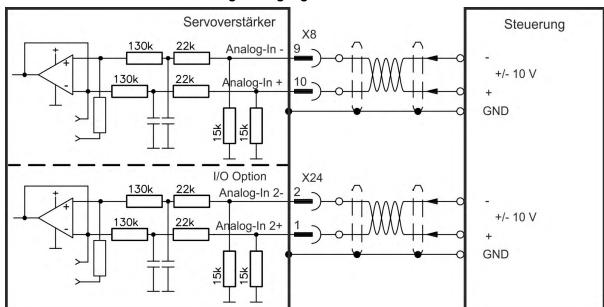
Stecker	Pin	Signal	Signal Abkürzung Funktioi		Anschluss	
X23	1	Analoger Ausgang 2	Analog-Out2	Programmierbar	(→ # 157)	
X23	2	reserviert	n.c.	n.c.		
X23	3	Analoge Masse	AGND	Programmierbar		
X23	4	reserviert	n.c.	n.c.		
X23	5	Digitaler Ausgang	DIGITAL-OUT 21+	Programmierbar	(→ # 167)	
		21+			" ' '	
X23	6	Digitaler Ausgang 21-	DIGITAL-OUT 21-	Programmierbar		
X23	7	Digitaler Ausgang 22+	DIGITAL-OUT 22+	Programmierbar		
X23	8	Digitaler Ausgang 22-	DIGITAL-OUT 22-	Programmierbar		
X23	9	Digitaler Ausgang 23+	DIGITAL-OUT 23+	Programmierbar		
X23	10	Digitaler Ausgang 23-	DIGITAL-OUT 23-	Programmierbar		
X23	11	Digitaler Ausgang 24+	DIGITAL-OUT 24+	Programmierbar		
X23	12	Digitaler Ausgang 24-	DIGITAL-OUT 24-	Programmierbar		
X23	13	Relaisausgang 25	DIGITAL-OUT 25	Programmierbar, Relais	(→ # 170)	
X23	14 Relaisausgang 25		DIGITAL-OUT 25	Programmierbar, Relais		
X24	1	Analoger Eingang 2+	Analog-In2+	Programmierbar	(→ # 156)	
X24	2	Analoger Eingang 2-	Analog-In2-	Programmierbar		
X24	3	Analoge Masse	AGND	Programmierbar		
X24	4	reserviert	n.c.	n.c.		
X24	5	Digitaler Ausgang 26+	DIGITAL-OUT 26+	Programmierbar	(→ # 167)	
X24	6	Digitaler Ausgang 26-	DIGITAL-OUT 26-	Programmierbar		
X24	7	Digitaler Ausgang 27+	DIGITAL-OUT 27+	Programmierbar	grammierbar	
X24	8	Digitaler Ausgang 27-	DIGITAL-OUT 27-	Programmierbar	1	
X24	9	Digitaler Ausgang 28+	DIGITAL-OUT 28+	Programmierbar	mierbar	
X24	10	Digitaler Ausgang 28-	DIGITAL-OUT 28-	Programmierbar		
X24	11	Digitaler Ausgang 29+	DIGITAL-OUT 29+	Programmierbar		
X24	12	Digitaler Ausgang 29-	Digitaler Ausgang 29- DIGITAL-OUT 29- Programmie			
X24	13	Relaisausgang 30	DIGITAL-OUT 30	Programmierbar, Relais	(→ # 170)	
X24	14	Relaisausgang 30	DIGITAL-OUT 30	Programmierbar, Relais		

9.14.1.4 E/A-Stecker X35 und X36 (nur AKD-M)

AKD PDMM bietet zwei zusätzliche Stecker X35 und X36 mit digitalen E/A.

Stecker	Pin	Signal	Abkürzung	Funktion	Anschluss
X35	1	Digital Common X35	DCOM35	Gemeinsamer für	(→ # 163)
				X35 Pins 2, 3, 4	
X35	2	Digitaler Eingang 21	DIGITAL-IN 21	Programmierbar	
X35	3	Digitaler Eingang 22	DIGITAL-IN 22	Programmierbar	
X35	4	Digitaler Eingang 23	DIGITAL-IN 23	Programmierbar	
X35	5	n.c.	n.c.	-	-
X35	6	n.c.	n.c.	-	-
X35	7	Digitaler Ausgang 21-	DIGITAL-OUT21-	Programmierbar	(→ # 171)
X35	8	Digitaler Ausgang 21+	DIGITAL-	Programmierbar	
	OUT21+		OUT21+		
X36	1	Digital Common X36	DCOM36	Gemeinsamer für	(→ # 163)
				X36 Pins 2, 3, 4	
X36	2	Digitaler Eingang 24	DIGITAL-IN 24	Programmierbar	
X36	3	Digitaler Eingang 25	DIGITAL-IN 25	Programmierbar	
X36	4	Digitaler Eingang 26	DIGITAL-IN 26	Programmierbar	
X36	5	n.c.	n.c.	-	-
X36	6	n.c.	n.c.	-	-
X36	7	Digitaler Ausgang 22-	DIGITAL-OUT22-	Programmierbar	(→ # 171)
X36	8 Digitaler Ausgang 22+		DIGITAL-	Programmierbar	
			OUT22+		

Digital Common Anschlüsse für X35 und X36 sind nicht miteinander verbunden. Die Leitung DCOMx sollte an den 0-V-Ausgang der E/A-Versorgung angeschlossen werden, wenn Sensoren des Typs "Source" mit digitalen Eingängen verwendet werden. Die Leitung DCOMx sollte an den 24-V-Ausgang der E/A-Versorgung angeschlossen werden, wenn Sensoren des Typs "Sink" mit digitalen Eingängen verwendet werden.


9.14.2 Analoge Eingänge (X8, X24)

Der Servoverstärker bietet Differenzeingänge für die analoge Drehmoment-, Geschwindigkeits- oder Positionsregelung. Im Standardgerät ist ein analoger Eingang an X8 verfügbar, Geräte mit eingebauter I/O Optionskarte bieten einen zweiten Eingang an X24.

Technische Eigenschaften

- Bereich der Differenzeingangsspannung: ± 12,5 V
- Maximale Eingangspannung bezogen auf interne Masse (0V): -12,5 bis +16,0 V
- Auflösung: 16 Bit und voll monoton
- Firmware Update Rate: 16 kHz
- Nicht eingestellter Offset: < 50 mV
- Offset-Drift typisch: 250 μV/°C
- Verstärkungs- oder Abfalltoleranz: +/- 3%
- Nichtlinearität: < 0,1% des Endwertes oder 12,5 mV</p>
- Gleichtaktunterdrückungen: > 30 dB bei 60 Hz
- Eingangsimpedanz: > 13 kΩ
- Signal-Stör-Verhältnis bezogen auf den Endwert:
 - AIN.CUTOFF = 3 kHz: 14 Bit
 AIN.CUTOFF = 800 Hz: 16 Bit

Anschlussbild für analogen Eingang

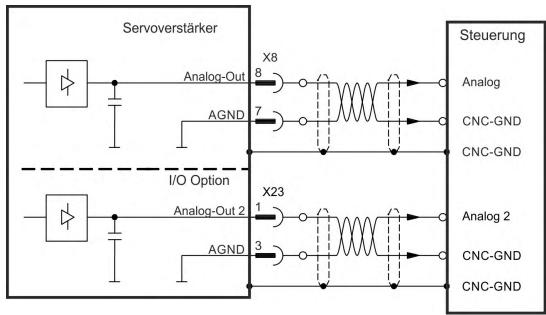
Anwendungsbeispiele für Sollwert-Eingang Analog-In:

- Eingang mit reduzierter Empfindlichkeit für Konfiguration/Tippbetrieb
- Vorsteuerung/Übersteuerung

Definieren der Drehrichtung

Standardeinstellung: Die Drehung der Motorwelle im Uhrzeigersinn (auf das Wellenende blickend) wird von der positiven Spannung zwischen Klemme (+) und Klemme (-) beeinflusst.

Um die Drehrichtung der Motorwelle umzukehren, vertauschen Sie die Anschlüsse an den Klemmen +/- oder ändern Sie den Parameter DRV.DIR auf der Seite "Feedback 1".


9.14.3 Analoge Ausgänge (X8, X23)

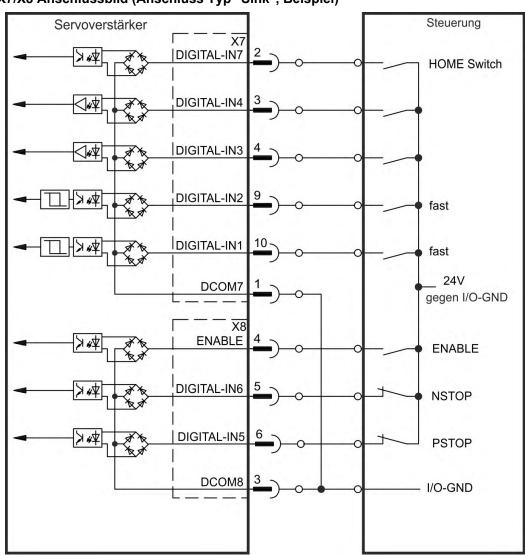
Analoge Ausgänge werden verwendet, um konvertierte analoge Werte auszugeben, die im Servoverstärker digital erfasst wurden. Im Standardgerät ist ein analoger Ausgang an X8 verfügbar, Geräte mit eingebauter I/O Optionskarte bieten einen zweiten Ausgang an X23. Eine Liste dieser vorprogrammierten Funktionen ist in der WorkBench Setup Software enthalten.

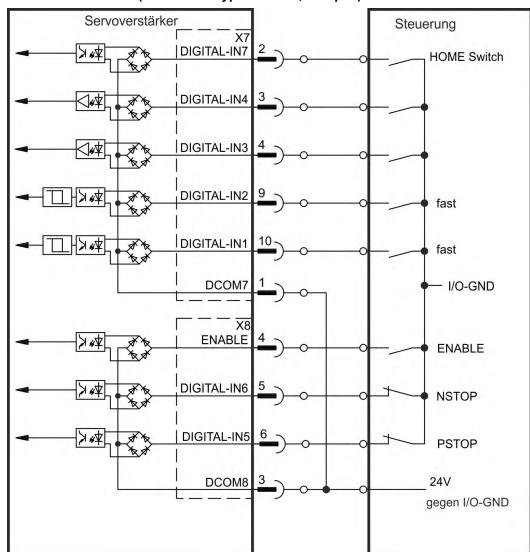
Technische Eigenschaften

- Ausgangsspannungsbereich bezogen auf AGND: ± 10 V
- Auflösung: 16 Bit und voll monoton
- Update rate: 4 kHz
- Nicht eingestellter Offset: < 50 mV</p>
- Offset-Drift typisch: 250 μV/°C
- Verstärkungs- oder Abfalltoleranz: +/- 3%
- Nichtlinearität: < 0,1% des Endwertes oder 20 mV
- Ausgangsimpedanz: 110 Ω
- Die Spezifikation erfüllt die Anforderungen der Norm EN 61131-2, Tabelle 11.
- Bandbreite -3 dB: >8 kHz
- Maximaler Ausgangsstrom: 20 mA
- Kapazitive Last: unbegrenzt, die Reaktionsgeschwindigkeit ist jedoch durch lout und Rout begrenzt.
- Kurzschlussfest gegen AGND

Anschlussbild für analogen Ausgang

9.14.4 Digitale Eingänge (X7/X8)


Der Servoverstärker bietet 8 digitale Eingänge (→ # 151). Diese können verwendet werden, um vorprogrammierte Funktionen zu initiieren, die im Servoverstärker gespeichert sind. Eine Liste dieser vorprogrammierten Funktionen ist in WorkBench enthalten. Der digitale Eingang 8 ist nicht programmierbar, sondern fest auf die ENABLE-Funktion eingestellt. Wenn ein Eingang programmiert wurde, muss dies im Servoverstärker gespeichert werden.


INFO

Je nach der ausgewählten Funktion sind die Eingänge HIGH oder LOW aktiv. Zur Änderung der Eingangsempfindlichkeit können Sie in WorkBench digitale Eingangsfilter setzen (siehe Online Help)..

Die Eingänge können mit geschalteten +24 V ("Sink") oder geschaltetem GND ("Source") verwendet werden. Siehe folgende Diagramme.

X7/X8 Anschlussbild (Anschluss Typ "Sink", Beispiel)

X7/X8 Anschlussbild (Anschluss Typ "Source", Beispiel)

9.14.4.1 Digitale Eingänge 1 und 2

Diese Eingänge (X7/9 und X7/10) sind besonders schnell und eignen sich daher z. B. für Latch-Funktionen. Sie können auch als 24 V Eingänge für elektronisches Getriebe benutzt werden (→ # 143).

- Potentialfrei, die gemeinsame Referenzleitung ist DCOM7
- Sensoren des Typs Sink oder Source möglich
- High: 3,5...30 V/2...15 mA, Low: -2...+2 V/<15 mA</p>
- Aktualisierungsrate: Firmware liest den Hardware Eingangsstatus alle 250 µs.
- Die AKD Capture Engine wird alle 62,5 µs (16 kHz) durch die Firmware abgefragt
- Bei KAS Applikationen (Beispiel: AKD PDMM), wird die Latch Position information im Ethercat PDO aktualisiert. Typische Aktualisierungszeit im KAS Projekt beträgt zwei Ethercat Zyklen (jeder Zykles beträgt 250 μs, 500 μs, 1000 μs oder 2000 μs)

9.14.4.2 Digitale Eingänge 3 bis 7

Diese Eingänge können mit der Setup-Software programmiert werden. Standardmäßig sind alle Eingänge abgeschaltet. Weitere Informationen finden Sie in der Setup-Software. Wählen Sie die gewünschte Funktion in WorkBench.

- Potentialfrei, gemeinsame Referenzleitung ist DCOM7 bzw. DCOM8
- Sensoren des Typs Sink oder Source möglich
- High: 3,5...30 V/2...8 mA, Low: -2...+2 V/<8 mA
- Aktualisierungsrate: Firmware liest den Hardware Eingangsstatus alle 250 μs

9.14.4.3 Digitaler Eingang 8 (ENABLE)

Der digitale Eingang 8 (Klemme X8/4) ist auf die Enable-Funktion eingestellt.

- Potentialfrei, die gemeinsame Referenzleitung ist DCOM8.
- Verdrahtung des Typs Sink oder Source möglich
- High: 3,5...30 V/2...8 mA, Low: -2...+2 V/<8 mA
- Aktualisierungsrate: direkte Verbindung zur Hardware (FPGA)

INFO

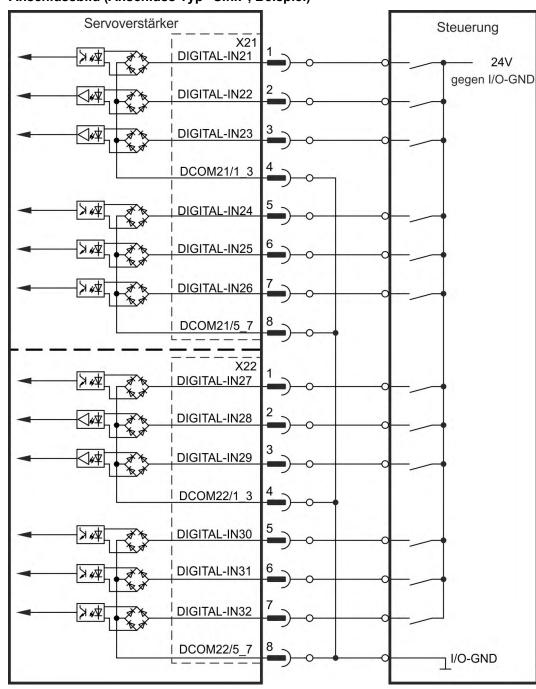
Der Hardware Enable Eingang und das Software Enable Signal (über Feldbus oder WorkBench) sind seriell verknüpft, das bedeutet, der Hardware Enable muss immer verdrahtet werden.

Die Endstufe des Verstärkers wird freigegeben, indem das ENABLE-Signal angewendet wird (Klemme X8/4, aktiv high). Die Freigabe ist nur möglich, wenn am STO Eingang ein 24 V-Signal anliegt, (→ # 60). Im deaktivierten Status (Low Signal) erzeugt der angeschlossene Motor kein Drehmoment.

Eine Software-Freigabe durch die Setup-Software ist ebenfalls erforderlich (UND-Verknüpfung). Die Software Freigabe in WorkBench kann auf permanent gesetzt werden.

9.14.5 Digitale Eingänge mit I/O Optionskarte (X21, X22)

Die Option "IC" bietet 12 zusätzliche digitale Eingänge (→ # 153). Diese können verwendet werden, um vorprogrammierte Funktionen zu initiieren, die im Servoverstärker gespeichert sind. Eine Liste dieser vorprogrammierten Funktionen ist in WorkBench enthalten. Wenn ein Eingang programmiert wurde, muss dies im Servoverstärker gespeichert werden.


INFO

Je nach der ausgewählten Funktion sind die Eingänge HIGH oder LOW aktiv. Die Eingänge können mit geschalteten +24 V ("Sink") oder GND ("Source") benutzt werden.

Technische Eigenschaften

- Potentialfrei, Sensoren des Typs Sink oder Source möglich
- High: 3,5...30 V/2...15 mA, Low: -2...+2 V/<15 mA,
- Aktualisierungsrate: Hardware 250 μs

Anschlussbild (Anschluss Typ "Sink", Beispiel)

Servoverstärker Steuerung X21 DIGITAL-IN21 DIGITAL-IN22 DIGITAL-IN23 DCOM21/1_3 **DIGITAL-IN24** DIGITAL-IN25 DIGITAL-IN26 DCOM21/5_7 X22 I/O-GND DIGITAL-IN27 DIGITAL-IN28 DIGITAL-IN29 DCOM22/1_3 DIGITAL-IN30 DIGITAL-IN31 DIGITAL-IN32 gegen I/O-GND I DCOM22/5_7 - 24V

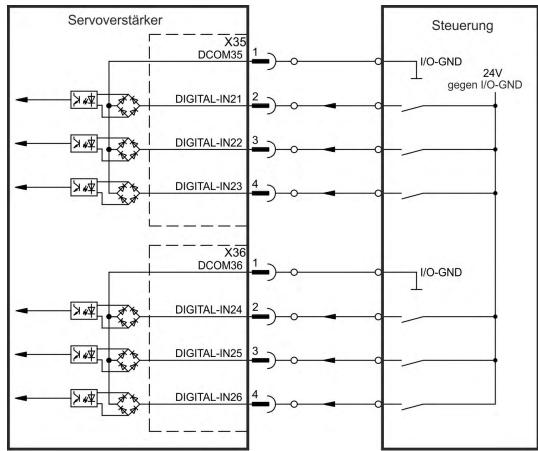
Anschlussbild (Anschluss Typ "Source", Beispiel)

9.14.6 Digitale Eingänge (X35/X36) bei AKD-M

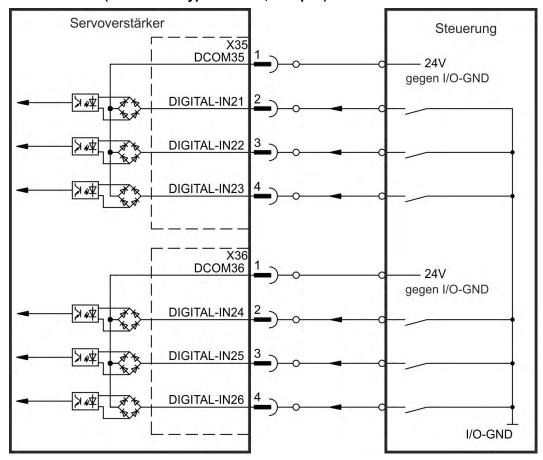
Zusätzlich zu den 8 digitalen Eingängen an X7/X8 (→ # 151) bietet die Gerätevariante AKD PDMM 6 digitale Eingänge an X35 und X36. Diese können verwendet werden, um vorprogrammierte Funktionen zu initiieren, die im Servoverstärker gespeichert sind. Eine Liste dieser vorprogrammierten Funktionen ist in KAS IDE enthalten. Wenn ein Eingang programmiert wurde, muss dies im Servoverstärker gespeichert werden. Standardmäßig sind alle Eingänge abgeschaltet. Weitere Informationen finden Sie in der Setup-Software.

INFO

Je nach der ausgewählten Funktion sind die Eingänge HIGH oder LOW aktiv.


Technische Eigenschaften

Wählen Sie die gewünschte Funktion in KAS IDE.

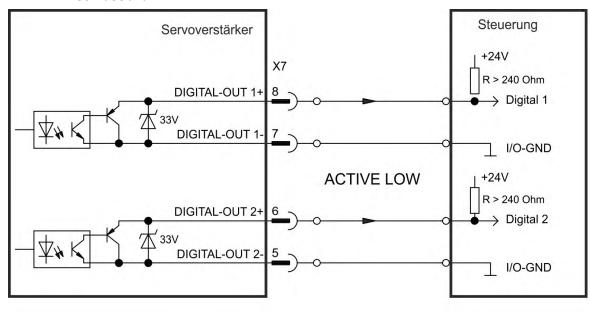

- Potentialfrei, die gemeinsame Referenzleitung ist DCOM35 oder DCOM36
- Sensoren des Typs Sink oder Source möglich
- High: 3,5...30 V/2...15 mA, Low: -2...+2 V/<15 mA
- Aktualisierungsrate: Software 250 μs

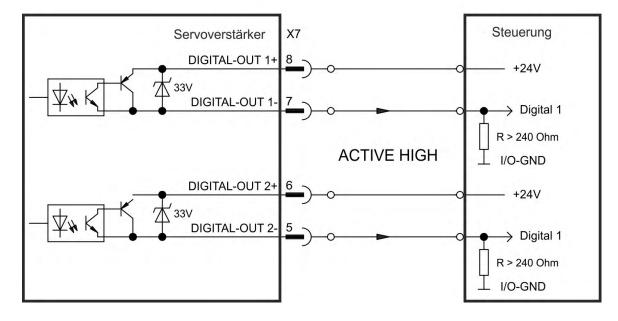
Die Eingänge können mit geschalteten +24 V ("Sink") oder geschaltetem GND ("Source") verwendet werden. Siehe folgende Diagramme.

Anschlussbild (Anschluss Typ "Sink", Beispiel)

Anschlussbild (Anschluss Typ "Source", Beispiel)

9.14.7 Digitale Ausgänge (X7/X8/X9)

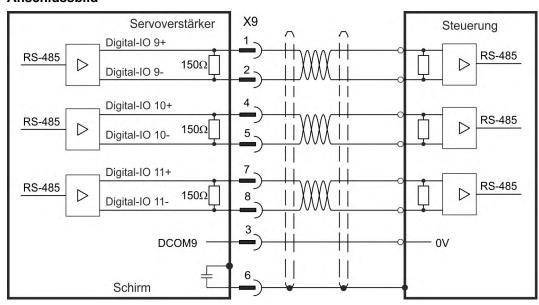

9.14.7.1 Digitale Ausgänge 1 und 2


Der Servoverstärker bietet 2 digitale Ausgänge (X7/5 bis X7/8, (→ # 151). Wählen Sie die gewünschte Funktion in der Setup-Software aus. Es können Meldungen von vorprogrammierten Funktionen, die im Servoverstärker gespeichert sind, ausgegeben werden. Eine Liste dieser vorprogrammierten Funktionen ist in der Setup Software enthalten. Wenn eine Funktion zugewiesen wurde, muss der Parametersatz im Servoverstärker gespeichert werden.

Technische Eigenschaften

- 24 V I/O-Stromversorgung an Klemmen X7/8 und X7/6, 20 V DC bis 30 V DC
- Alle digitalen Ausgänge sind potentialfrei, DIGITAL OUT 1/2: Klemmen X7/7-8 und X7/5-6), max.100 mA
- Kann als aktiv low oder aktiv high verdrahtet werden (siehe folgende Beispiele)
- Aktualisierungsrate: 250 μs

Anschlussbild


9.14.7.2 Digital-In/Out 9 bis 11

X9 kann für digitale I/O benutzt werden. Die Kanäle können als Ausgang definiert werden. Wählen Sie die gewünschte Funktion in WorkBench aus. Weitere Informationen finden Sie in der Setup Software.

Technische Eigenschaften

- RS-485, Referenzmasse DCOM9
- Max Signal (Kanal) Ausgangsfrequenz: 3 MHz

Anschlussbild

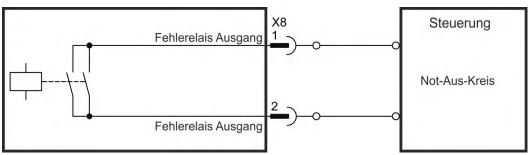
9.14.7.3 Fehlerrelais

Die Betriebsbereitschaft (Klemmen X8/1 und X8/2) wird durch einen potentialfreien Relaiskontakt gemeldet.

Das Fehlerrelais kann für zwei Betriebsarten programmiert werden:

- Kontakt geschlossen, wenn kein Fehler vorliegt
- Kontakt geschlossen, wenn kein Fehler vorliegt und der Servoverstärker freigegeben ist.

Das Signal wird weder durch das Enable-Signal, die I^2 t-Grenze noch durch die Bremschopperschwelle beeinflusst.


Technische Eigenschaften

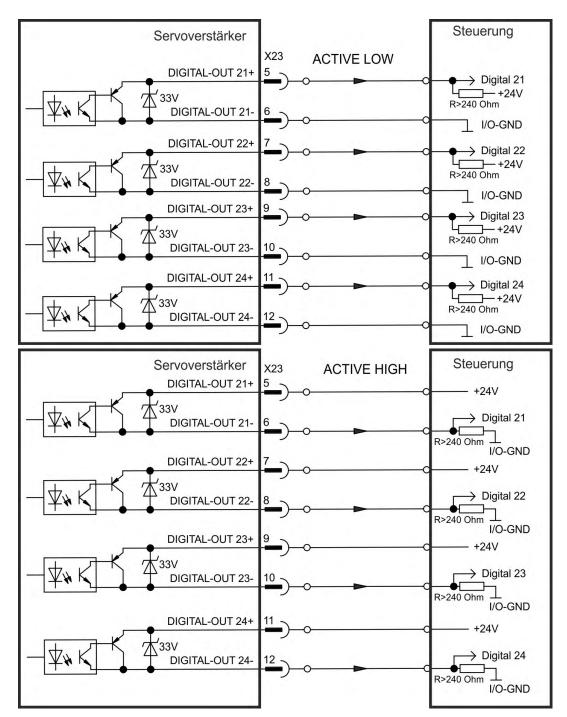
- FEHLER: Relaisausgang, max. 30 V DC oder 42 V AC, 1 A
- Anzugsverzögerung: max. 10 ms
- Abfallverzögerung: max. 10 ms

INFO

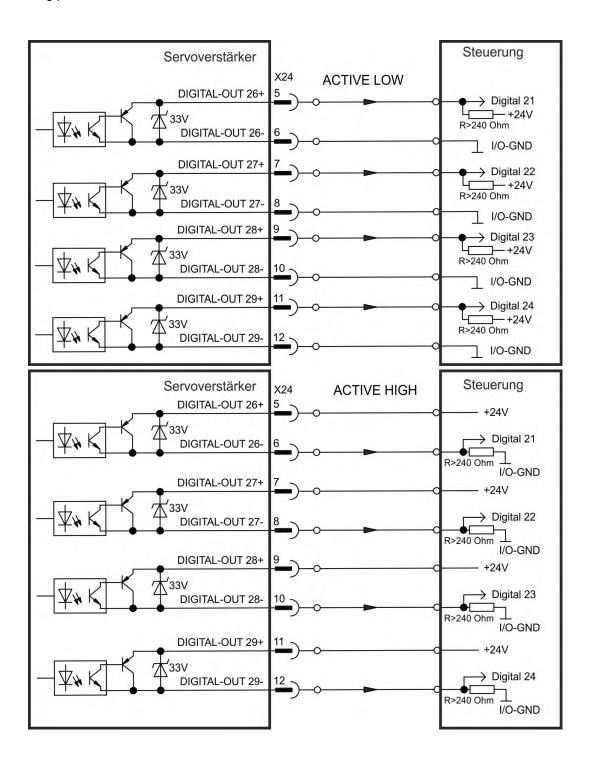
Alle Fehler führen zum Öffnen des Fehlerkontakts und zur Abschaltung der Endstufe (wenn der Fehlerkontakt offen ist, ist die Endstufe deaktiviert -> keine Leistungsabgabe). Liste der Fehlermeldungen: (→ # 203).

Anschlussbild

9.14.8 Digitale Ausgänge mit I/O Optionskarte (X23/X24)


9.14.8.1 Digitale Ausgänge 21 bis 24 und 26 bis 29

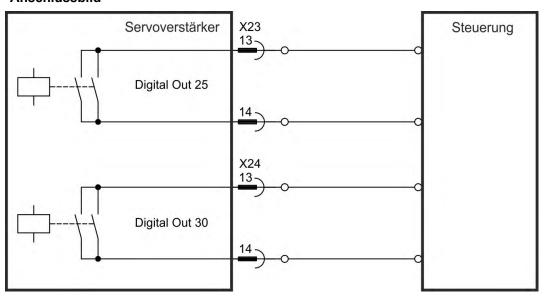
Die Optionskarte "IC" bietet 10 zusätzliche digitale Ausgänge (→ # 151). Wählen Sie die gewünschte Funktion in der Setup-Software aus. Es können Meldungen von vorprogrammierten Funktionen, die im Servoverstärker gespeichert sind, ausgegeben werden. Eine Liste dieser vorprogrammierten Funktionen ist in der Setup Software enthalten. Wenn eine Funktion zugewiesen wurde, muss der Parametersatz im Servoverstärker gespeichert werden.


Technische Eigenschaften

- 24 V I/O-Stromversorgung, 20 VDC bis 30 VDC, potentialfrei, max. 100 mA.
- Kann als aktiv low oder aktiv high verdrahtet werden (siehe folgende Beispiele)
- Aktualisierungsrate: 250 μs

Anschlussbild X23

Anschlussbild X24


9.14.8.2 Digitale Relaisausgänge 25, 30

Die Optionskarte "IC" bietet zwei zusätzliche digitale Relaisausgänge (→ # 151). Wählen Sie die gewünschte Funktion in der Setup-Software aus. Es können Meldungen von vorprogrammierten Funktionen, die im Servoverstärker gespeichert sind, ausgegeben werden. Eine Liste dieser vorprogrammierten Funktionen ist in der Setup Software enthalten. Wenn eine Funktion zugewiesen wurde, muss der Parametersatz im Servoverstärker gespeichert werden.

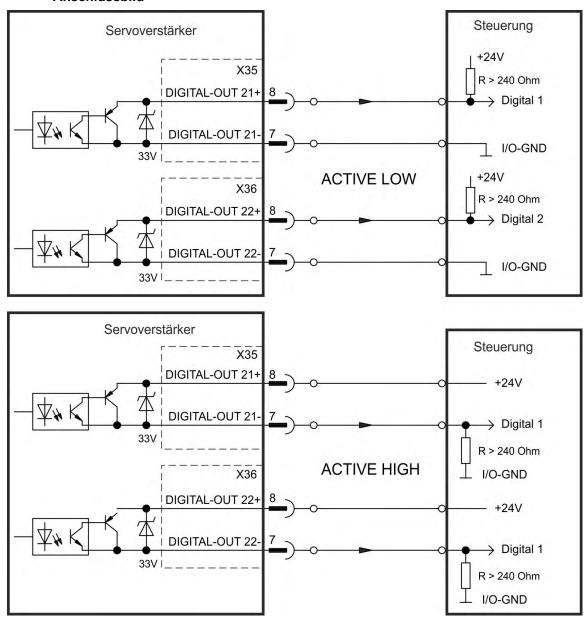
Technische Eigenschaften

- Relaisausgang, max. 30 V DC oder 42 V AC, 1 A
- Anzugsverzögerung: max. 10 ms
- Abfallverzögerung: max. 10 ms

Anschlussbild

170

9.14.9 Digitale Ausgänge (X35/X36) bei AKD-M


9.14.9.1 Digitale Ausgänge 21 und 22

Zusätzlich zu den digitalen Ausgängen an X7 ((→ # 151) bietet die Gerätevariante AKD PDMM 2 digitale Ausgänge an X35 und X36. Wählen Sie die gewünschte Funktion in der Setup-Software aus. Es können Meldungen von vorprogrammierten Funktionen, die im Servoverstärker gespeichert sind, ausgegeben werden. Eine Liste dieser vorprogrammierten Funktionen ist in der Setup Software enthalten. Wenn eine Funktion zugewiesen wurde, muss der Parametersatz im Servoverstärker gespeichert werden.

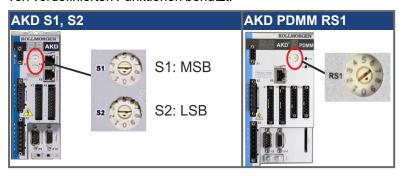
Technische Eigenschaften

- 24 V I/O-Stromversorgung an Klemmen X35/8 und X36/8, 20 V DC bis 30 V DC
- Alle digitalen Ausgänge sind potentialfrei, max. 100 mA.
- Kann als aktiv low oder aktiv high verdrahtet werden (siehe folgende Beispiele)
- Aktualisierungsrate: 1 ms

Anschlussbild

9.15 LED-Anzeige

LED-7-Segmentanzeigen geben den Status des Verstärkers an, nachdem die 24 V-Versorgung eingeschaltet wurde. Falls die TCP/IP Verbindung zum PC oder zur Steuerung nicht arbeitet, ist die LED Anzeige die einzige Informationsquelle.



Mehr Informationen finden Sie in der WorkBench Onlinehilfe.

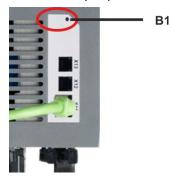
Anzeigecodes (Übersicht)	Status			
00, 01, 02	Normalbetrieb, Betriebsart 0 oder 1 oder 2, keine Fehler			
Fx	Fehler (siehe (→ # 203)			
nx	Warnung (siehe (→ # 203)			
IPx	Anzeige der IP-Adresse des Servoverstärkers			
	Eingeschaltet, lädt FPGA. In Monitor- und Betriebs-FPGA fehlerhaft.			
[.]	Servoverstärker freigegeben			
[.] (blinkt)	Servoverstärker in dynamischem Bremsmodus (DRV.ACTIVE = 3).			
dx	Firmware-Download			

9.16 Drehschalter (S1, S2, RS1)

Die eingebauten Drehschalter werden zum Einstellen der IP Adresse oder für die Auswahl von vordefinierten Funktionen benutzt.

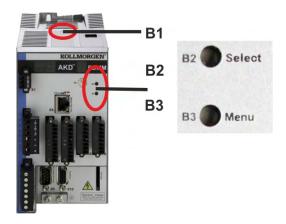
9.16.1 Drehschalter S1 und S2 mit AKD-B, -P, -T

S1	S2	Funktion	Einstellen wenn	Bemerkungen			
0	0	DHCP IP	24 V aus ist	Die IP-Adresse des Servoverstärkers wird vom DHCP-Server im Netzwerk abgerufen, Details siehe (→ # 180).			
x	У	Statische IP	24 V aus ist	Die IP-Adresse ist 192.168.0.nn, gültige Werte sind 01 bis 99, Details siehe (→ # 180).			
AKD	AKD-x****-CC						
8	9	DRV.TYPE Umschaltung	24 V ein und AKD gesperrt ist	3s langes Drücken von B1 schaltet den Servoverstärker von CAN nach EtherCAT oder umgekehrt (→ # 184) und (→ # 189). Anschließend 24 V aus und wieder einschalten.			
AKD	mit	I/O Optionskarte					
1	0	Daten laden	24 V ein und AKD gesperrt ist	5s langes Drücken von B1 startet den Lade- vorgang von der SD Karte in den Ser- voverstärker. Details siehe (→ # 176).			
1	1	Daten sichern	24 V ein und AKD gesperrt ist	5s langes Drücken von B1 startet den Spei- chervorgang vom Servoverstärker in die SD Karte. Details siehe (→ # 176).			
AKD)-T						
1	2	Stopp Programm	24 V ein ist	5s langes Drücken von B1 stoppt das BASIC Programm.			
1	3	Neustart Programm	24 V ein ist	5s langes Drücken von B1 startet das BASIC Programm neu.			


9.16.2 Drehschalter RS1 mit AKD-M

RS1	Funktion	Einstellen wenn	Bemerkungen
0	DHCP IP	24 V aus ist	Die IP-Adresse des Servoverstärkers wird vom DHCP- Server im Netzwerk abgerufen (→ # 182).
1	Statische IP	24 V aus ist	Die IP Adresse kann mit einem Web Browser konfiguriert werden (→ # 182).
2 9	Statische IP	24 V aus ist	Die IP-Adresse ist 192.168.0.10n, gültige Werte sind 2 bis 9 (→ # 182).

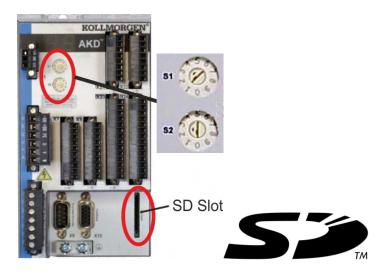
9.17 Taster (B1, B2, B3)


Die Taster werden verwendet, um vordefinierte Funktionen zu starten.

9.17.1 Taster B1 bei AKD-B, -P, -T

Funktion	Taster	Bemerkungen
IP Adresse anzei-	B1	Kurz drücken, um die IP Adresse im zweistelligen Display
gen		anzuzeigen.
Gerätetyp bei AKD-CC Vari- anten umschalten	B1	Drehschalter S1 auf 8 und S2 auf 9 stellen. 3 Sekunden lang drücken, um von CAN nach EtherCAT oder zurück umzuschalten.
Laden von SD Karte	B1	Nur Servoverstärker mit I/O Optionskarte. Drehschalter S1 auf 1 und S2 auf 0 stellen. B1 5s lang drücken, um Daten von der SD Karte in den Servoverstärker zu laden.
Speichern auf SD Karte	B1	Nur Servoverstärker mit I/O Optionskarte. Drehschalter S1 auf 1 und S2 auf 1 stellen. B1 5s lang drücken, um Daten vom Servoverstärker auf der SD Karte zu speichern.

9.17.2 Taster B1, B2, B3 bei AKD-M



Funktion	Taster	Bemerkungen		
-	B1	Unbenutzt		
Startfunktione	n (Taster drü	cken und halten, während der Hochlaufphase des Ver-		
stärkers)				
Recovery	B2	Drücken und Halten startet den Servoverstärker im Recovery Modus.		
Menü	B3	Drücken und Halten blockiert den Autostart der Appli- kation und startet die Anzeige des Menüs. Menüpunkt aus- führen siehe unten.		
	· ·	er bei normalem Betrieb drücken)		
Menü	B3	Drücken startet die Anzeige der Menüpunkte. Die Menüpunkte werden 10s lang angezeigt, durch Drücken von B2 auswählen.		
Menüpunkt ausführen	B2	Drücken während der gewünschte Menüpunkt angezeigt wird. Applikation läuft, verfügbare Menüpunkte: - 'IP' Adresse - 'stop' Applikation (bestätigen) Application läuft nicht, verfügbare Menüpunkte: - 'IP' Adresse - 'start' Applikation (bestätigen) - 'reset' auf Werkseinstellungen (bestätigen) - 'backup' zu SD Karte (bestätigen) (→ # 177) - 'restore' von SD Karted (bestätigen) (→ # 177)		
Bestätigen	B2	Falls der gewählte Menüpunkt eine Bestätigung erfordert, wird im Display 10 s lang ein "y" angezeigt. Drücken Sie B2 zur Bestätigung.		

9.18 SD Speicherkarte

9.18.1 SD Karte mit I/O Optionskarte

AKD mit eingebauter I/O Optionskarte besitzen einen integrierten SD Kartenleser. Die Funktionen können mit der WorkBench Software oder mit B1 (Geräteoberseite) zusammen mit der Drehschaltereinstellung 10 bzw. 11 ausgelöst werden. Detaillierte Informationen finden Sie in der WorkBench Onlinehilfe.

INFO

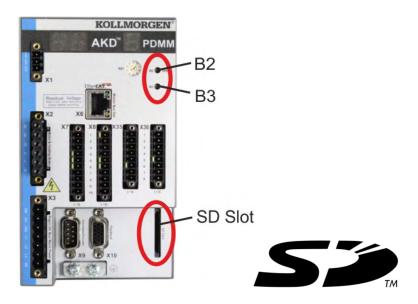
Das Auslösen der Save/Load Funktionen (AKD nach SD oder SD nach AKD) ist bei laufendem Programm oder freigegebenem Servoverstärker nicht möglich.

BASIC Programme und nichtflüchtige Parameter können gespeichert/geladen werden. Wenn während der Save/Load Funktionen ein Fehler auftritt, wird die Fehlernummer im LED Display mit "E" gefolgt von vier Zahlen angezeigt. Fehlernummern (→ # 203)

Unterstützte SD Speicherkarten

SD Speicherkarten sind von den Herstellern vorformatiert. Die folgende Tabelle zeigt die von AKD unterstützten Speicherkartentypen:

SD Type	Dateisystem	Kapazität	Unterstützt
SD (SDSC)	FAT16	1MB bis 2GB	JA
SDHC	FAT32	4GB bis 32GB	JA
SDXC	exFAT (Microsoft)	>32GB bis 2TB	NEIN


Funktionen

Wenn eine SD Speicherkarte in den SD Kartenleser gesteckt ist und kein Programm läuft und der Servoverstärker gesperrt ist (disable), stellen Sie die Drehschalter wie unten beschrieben ein und drücken Sie B1 etwa 5 Sekunden lang um die Funktion zu starten:

Funktion	S1	S2	Bemerkungen
Daten auf SD Karte	1	1	5s lang B1 drücken, um Daten vom Servoverstärker
speichern			auf der SD Karte zu speichern.
Daten von SD Karte	1	0	5s lang B1 drücken, um Daten von der SD Karte in
laden			den Servoverstärker zu laden.

9.18.2 SD Karte mit AKD-M

AKD PDMM besitzt einen integrierten SD Kartenleser.Mit den Tasten B2 und B3 können Datenübertragungen zwischen AKD PDMM und SD Speicherkarte gestartet werden. Diese Funktionen können auch in der KAS IDE Software ausgelöst werden. Detaillierte Informationen finden Sie in der KAS IDE Onlinehilfe.

Die Auslösung der backup/restore Funktionen (AKD PDMM nach SD oder SD nach AKD PDMM) ist bei laufender Applikation nicht möglich.

INFO

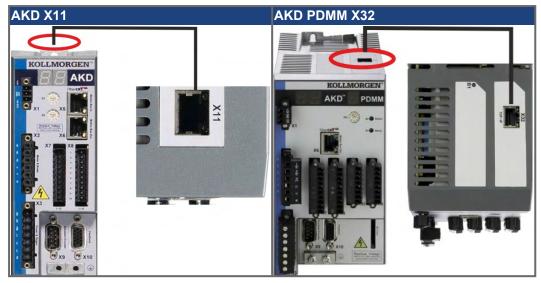
Stoppen Sie die Applikation über den Web-Browser oder benutzen Sie die Stopp Funktion mit den Tasten B2/B3 bevor Sie die SD Funktionen nutzen.

Wenn während der Save/Load Funktionen ein Fehler auftritt, wird die Fehlernummer im einstelligen LED Display mit "E" gefolgt von zwei Zahlen angezeigt. Fehlernummern (→ # 209)

Unterstützte SD Speicherkarten

SD Speicherkarten sind von den Herstellern vorformatiert. Die folgende Tabelle zeigt die von AKD PDMM unterstützten Speicherkartentypen:

SD Type	Dateisystem	Kapazität	Unterstützt
SD (SDSC)	FAT16	1MB bis 2GB	JA
SDHC	FAT32	4GB bis 32GB	JA
SDXC	exFAT (Microsoft)	>32GB bis 2TB	NEIN


Funktionen

Wenn eine SD Speicherkarte in den SD Kartenleser gesteckt ist und kein Anwendungsprogramm läuft, zeigt das Menü im einstelligen Display (mit B3 starten, (→ # 174) die möglichen Funktionen:

- 'backup' kopiert Firmware, Konfigurationsdaten, Anwenderprogramme und Nutzerdaten vom AKD PDMM auf die SD Karte.
- 'restore' kopiert Firmware, Konfigurationsdaten, Anwenderprogramme und Nutzerdaten von der SD Karte auf den AKD PDMM.

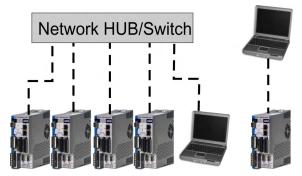
9.19 Ethernet Schnittstelle (X11X32)

Die Parameter für den Betrieb, die Positionsregelung und Fahraufträge können mit der Setup-Software auf einem handelsüblichen PC konfiguriert werden.

Schließen Sie die Serviceschnittstelle (X11 oder X32) des Verstärkers an eine Ethernet-Schnittstelle am PC direkt oder über einen Netzwerkhub/-switch an, **während die Stromversorgung zu den Geräten abgeschaltet ist.** Verwenden Sie bevorzugt Standard-Ethernetkabel der Kategorie 5.

Prüfen Sie, ob die Verbindungs-LEDs am AKD (grüne LED am RJ45-Stecker) und an Ihrem PC (oder Netzwerkhub/-switch) beide leuchten. Wenn beide LEDs leuchten, besteht eine gute elektrische Verbindung.

LED	Name	Anzeige
Grün	Link	Ein = Empfangssignal gültig
Gelb	Activity	Blinkt = Sende oder Empfange Datenpaket


9.19.1 Pinbelegung X11, X32

Pin	Signal	Pin	Signal
1	Senden +	5	n.c.
2	Senden -	6	Empfangen -
3	Empfangen +	7	n.c.
4	n.c.	8	n.c.

9.19.2 Bus Protokolle X11, X32

Protokoll	Тур	Stecker
Modbus TCP	Service Bus	X11, X32
Ethernet TCP/IP	Service Bus	X11, X32

9.19.3 Mögliche Netzwerkkonfigurationen

9.19.4 Festlegen der IP Adresse AKD-B, AKD-P, AKD-T

Die IP-Adresse kann auf der LED Anzeige durch Drücken der Taste B1 angezeigt werden.

B1 drücken zur Anzeige der IP Adresse

Sie können die Drehschalter verwenden, um den Wert für die IP-Adresse des AKD zu wählen. Bei CANopen und einigen anderen Feldbussen legen die Drehschalter auch die Stationsadresse des Servoverstärkers für das jeweilige Netzwerk fest.

S2: LSB

Drehschalter- Einstellung	IP-Adresse des Servoverstärkers
00	DHCP/Automatische IP-Adresse. Die IP-Adresse des AKD wird vom DHCP-Server in Ihrem Netzwerk abgerufen. Wenn kein DHCP-Server vorhanden ist, wird eine automatische IP-Adresse vergeben (sie wird intern gemäß dem AutoIP-Protokoll im Format 169.254.xx.xx generiert).
01 bis 99	Statische IP-Adresse. Die IP-Adresse ist 192.168.0.nn, wobei nn für die Zahl steht, auf die Drehschalter eingestellt sind. Diese Einstellung generiert Adressen im Bereich von 192.168.0.01 bis 192.168.0.99. Beispiel: Wenn S1 auf 2 und S2 auf 5 eingestellt ist, lautet die IP-Adresse 192.168.0.25.

INFO

Die PC-Subnetmask muss auf 255.255.255.0 oder 255.255.128 gesetzt sein. Wenn Sie den AKD direkt mit einem PC verbinden, benutzen Sie statische IP-Adressierung (nicht 00).

Statische IP Adressierung

Wenn der Servoverstärker direkt an einen PC angeschlossen wird, muss die statische IP Adressierung benutzt werden. Stellen Sie die Drehschalter S1 und S2 auf eine von 00 abweichende Stellung (siehe Tabelle oben).

Dynamische IP-Adressierung (DHCP und Auto-IP)

Wenn S1 und S2 beide auf 0 eingestellt sind, befindet sich der Servoverstärker im DHCP-Modus. Der Servoverstärker ruft seine IP-Adresse von einem externen DHCP-Server ab, sofern im Netzwerk ein solcher vorhanden ist. Wenn kein DHCP-Server vorhanden ist, erzeugt der Servoverstärker automatisch eine private IP-Adresse im Format 169.254.x.x.

Wenn Ihr PC direkt mit dem Servoverstärker verbunden ist und in den TCP/IP-Einstellungen festgelegt ist, dass die IP-Adresse automatisch abgerufen werden soll, wird zwischen den Geräten eine Verbindung mithilfe von automatisch generierten kompatiblen Adressen hergestellt. Ein PC kann bis zu 60 Sekunden benötigen, um eine automatische private IP-Adresse zu konfigurieren (169.254.x.x).

Ändern der IP-Adresse

Wenn Sie die Drehschalter verstellen, während der Servoverstärker mit 24 V versorgt wird, müssen Sie die 24V Hilfsspannung aus- und wieder einschalten. Dadurch wird die Adresse zurückgesetzt.

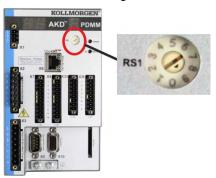
IP-Adressenmodus

Standardmäßig verwendet der Servoverstärker die oben beschriebene Methode um die IP-Adresse festzulegen. Die IP-Adresse kann jedoch auch unabhängig von den Drehschaltern festgelegt werden. Weitere Informationen finden Sie im AKD Benutzerhandbuch oder auf Bildschirmseite Einstellungen-> Feldbus-> TCP/IP in WorkBench.

Wiederherstellen der Kommunikation bei unerreichbarer IP-Adresse

Wenn IP.MODE auf 1 gesetzt ist (feste IP-Adressierung) startet der Servoverstärker mit einer IP-Adresse, die eventuell vom Host Computer nicht erreichbar ist.

Wenn eine statische Adresse die Kommunikation verhindert, können die IP Einstellungen auf den Defaultzustand mit folgender Prozedur zurückgesetzt werden:


- Beide Drehschalter auf 0 stellen.
- Taster B1 (oben am Servoverstärker) zirka 5 s lang drücken.

Das Diplay blinkt 0.0.0.0 und dann versucht der Servoverstärker eine Adresse über DHCP zu beziehen.

Schalten Sie die Spannung nicht ab, benutzen Sie nun WorkBench um die IP Adresse wie gewünscht einzustellen und speichern Sie die Werte im nicht-flüchtigen Speicher.

9.19.5 Festlegen der IP Adresse AKD-M

Sie können den Drehschalter RS1 verwenden, um die IP-Adresse des AKD PDMMeinzustellen. Die konfigurierte IP-Adresse wird am 7-Segment Display angezeigt, wenn beim Einschalten der 24 V Versorgung ein Ethernet Kabel an X32 gesteckt ist. Wenn kein Ethernet Kabel gesteckt ist, wird keine IP Adresse angezeigt.

Drehschalter- Einstellung	IP-Adresse des Servoverstärkers
0	DHCP/Automatische IP-Adresse. Die IP-Adresse des AKD wird vom DHCP-Server in Ihrem Netzwerk abgerufen. Wenn kein DHCP-Server vorhanden ist, wird eine automatische IP-Adresse vergeben (sie wird intern gemäß dem AutoIP-Protokoll im Format 169.254.xx.xx generiert).
1	Statische IP-Adresse. Die IP Adresse kann mit einem Web Browser konfiguriert werden. Die default IP Adresse ist 192.168.1.101. Um diese Adresse zu ändern, starten Sie einen Web Browser und geben die default IP Adresse als Adresse ein. Die Website des AKD PDMM öffnet sich. Navigieren Sie zur Registerkarte "Settings" und stellen Sie die gewünschte statische IP Adresse des AKD PDMM ein.
2 bis 9	Statische IP-Adresse. Die IP-Adresse ist 192.168.0.10n, wobei n für die Zahl steht, auf die der Drehschalter eingestellt ist. Diese Einstellung generiert Adressen im Bereich von 192.168.0.10 2 bis 192.168.0.10 9 . Beispiel: Wenn S1 auf 5 eingestellt ist, lautet die IP-Adresse 192.168.0.105.

INFO

Die PC-Subnetmask muss auf 255.255.255.0 oder 255.255.255.128 gesetzt sein.

Statische IP Adressierung

Wenn der Servoverstärker direkt an einen PC angeschlossen wird, muss die statische IP Adressierung benutzt werden. Stellen Sie den Drehschalter RS1 auf einen Wert zwischen 2 und 9 ein (siehe Tabelle oben).

Dynamische IP-Adressierung (DHCP und Auto-IP)

Wenn RS1 auf 0 eingestellt ist, befindet sich der Servoverstärker im DHCP-Modus. Der Servoverstärker ruft seine IP-Adresse von einem externen DHCP-Server ab, sofern im Netzwerk ein solcher vorhanden ist. Wenn kein DHCP-Server vorhanden ist, erzeugt der Servoverstärker automatisch eine private IP-Adresse im Format 169.254.x.x.

Wenn Ihr PC direkt mit dem Servoverstärker verbunden ist und in den TCP/IP-Einstellungen festgelegt ist, dass die IP-Adresse automatisch abgerufen werden soll, wird zwischen den Geräten eine Verbindung mithilfe von automatisch generierten kompatiblen Adressen hergestellt. Ein PC kann bis zu 60 Sekunden benötigen, um eine automatische private IP-Adresse zu konfigurieren (169.254.x.x).

Ändern der IP-Adresse

Wenn Sie die Drehschalter verstellen, während der Servoverstärker mit 24 V versorgt wird, müssen Sie die 24V Hilfsspannung aus- und wieder einschalten. Dadurch wird die Adresse zurückgesetzt.

9.19.6 Modbus TCP

können über den RJ45 Stecker X11 (AKD) oder X32 (AKD PDMM, nur für Kollmorgen Touchpanels) an eine Modbus HMI angeschlossen werden. Das Protokoll ermöglicht das Lesen und Schreiben der Servoverstärker-parameter. Der Status der Kommunikation wird über die eingebauten LEDs angezeigt.

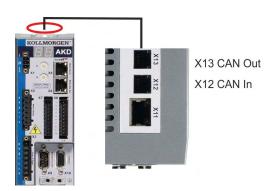
Stecker	LED#	Name	Funktion
X11, X32	LED1	Link In	Ein = aktiv, Aus= inaktiv
	LED2	Betrieb	Ein = in Betrieb, Aus= nicht in Betrieb

Schließen Sie die Serviceschnittstelle (X11, X32) des Verstärkers an eine Ethernet-Schnittstelle am PC direkt oder über einen Netzwerkhub/-switch an, während die Stromversorgung zu den Geräten abgeschaltet ist. Verwenden Sie bevorzugt Standard-Ethernetkabel der Kategorie 5.

Voraussetzungen für den Anschluss einer Modbus HMI an den Servoverstärker:

- Die HMI muss Modbus TCP unterstützen.
- Die HMI benötigt Ethernet Hardware und einen Treiber für Modbus TCP, der Treiber benötigt keine speziellen Eigenschaften um den AKD zu unterstützen.

Die Kollmorgen AKI HMI's sind kompatible mit dem "Kollmorgen Modbus Master" Treiber.


Die Subnet Maske des AKD lautet 255.255.255.0. Die ersten drei Oktets der IP Adresse des Servoverstärkers müssen mit den ersten drei Oktets der IP Adresse der HMI übereinstimmen. Das letzte Oktet muss unterschiedlich sein.

Prüfen Sie, ob die Link-LED am AKD Servoverstärker (grüne LED am RJ45-Stecker) und am Master bzw. Switch leuchten. Wenn beide LEDs leuchten, besteht eine gute elektrische Verbindung.

Modbus TCP und WorkBench/KAS IDE können über einen Switch simultan laufen.

9.20 CAN-Bus-Schnittstelle (X12/X13)

Für die CAN-Bus-Verbindung werden zwei 6-polige RJ25-Stecker (X12/X13) verwendet.

Stecker	Pin	Signal	Stecker	Pin	Signal
X12	1	Interner Abschlusswiderstand	X13	1	Interner Abschlusswiderstand
X12	2	CAN-Schirm	X13	2	CAN-Schirm
X12	3	CANH in	X13	3	CANH out
X12	4	CANL in	X13	4	CANL out
X12	5	GND	X13	5	GND
X12	6	Interner Abschlusswiderstand	X13	6	Interner Abschlusswiderstand

9.20.1 CAN-Bus Aktivierung bei AKD-CC Modellen

AKD-CC Modelle unterstützen das CANopen-Protokoll sowohl bei CAN-Bus- als auch EtherCAT-Netzwerkverwendung. Setzen des Parameters DRV.TYPE aktiviert entweder EtherCAT oder CANopen. Im Auslieferungszustand der CC Modelle ist die EtherCAT-Hardware aktiv gesetzt.

Um die CAN-Bus-Hardware zu aktivieren, müssen Sie den Parameter DRV.TYPE ändern.

- 1. Mit Software: Schließen Sie einen PC an den AKD an und ändern Sie den Parameter DRV.TYPE im WorkBench Terminal (siehe DRV.TYPE Dokumentation) oder
- 2. Mit Hardware: Benutzen Sie die Drehschalter S1 & S2 in der Front und den Taster B1 oben am Gerät.

Die folgenden Schritte beschreiben das Umschalten mit Hilfe der Drehschalter:

1. Stellen Sie den Wert 89 mit den AKD-Drehschaltern ein.

Drehen Sie S1 auf 8 und S2 auf 9

Drücken Sie die B1 Taste für etwa 3 Sekunden.

B1 für 3 Sekunden drücken

Die 7-Segment Anzeige zeigt während des Vorgangs Cn. Schalten Sie die 24 V Spannungsversorgung nicht ab, solange das Display Cn zeigt!

- 3. Warten Sie, bis das Display zurück auf die Standardanzeige schaltet. Nun ist das Gerät für CANopen vorbereitet.
- 4. Schalten Sie die 24 V Spannungsversorgung aus und wieder ein.

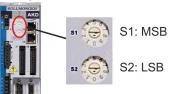
INFO

Die 7-Segmentanzeige zeigt Er (Error), wenn die Umschaltung nicht erfolgreich war. Schalten Sie die 24 V Spannungsversorgung aus und wieder ein. Wiederholen Sie den Vorgang. Falls der Fehler erneut gemeldet wird, wenden Sie sich an den Kollmorgen Kundendienst.

9.20.2 Baudrate für CAN-Bus

Sie können festlegen, ob der Servoverstärker beim Einschalten eine feste Baudrate wählen oder einen Algorithmus zur automatischen Erkennung der Baudrate ausführen soll. Die Übertragungsgeschwindigkeit kann über den Parameter **FBUS.PARAM01** eingestellt werden. FBUS.PARAM01 stellen Sie in WorkBench oder mit den AKD-Drehschaltern ein.

Baudrate [kBit/s]	FBUS.PARAM01	Oberer Drehschalter S1	Unterer DrehschalterS2
Auto	0	9	0
125	125	9	1
250	250	9	2
500	500	9	3
1000	1000	9	4


Im Falle einer festen Baudrate sendet der Servoverstärker nach einem Aus- und Wiedereinschalten der Spannungsversorgung die Boot-Up Meldung mit der Baudrate, die im nichtflüchtigen Speicher abgelegt ist. Im Falle einer automatischen Erkennung der Baudrate sucht der Servoverstärker nach einem gültigen CAN-Frame auf dem Bus. Bei Empfang eines gültigen Frames sendet der Servoverstärker die Boot-Up Meldung entsprechend der gemessenen Bit-Zeit. Anschließend kann die Baudrate über das Objekt 1010 Sub 1 im nichtflüchtigen Speicher abgelegt werden.

INFO

Anderenfalls wird die Funktion zur automatischen Erkennung benutzt. Eine zuverlässige automatische Erkennung der Baudrate erfordert eine normgemäße Verkabelung des CAN-Bus (Abschlusswiderstände, Masseanschluss usw.) erforderlich. Wenn die automatische Erkennung der Baudrate verwendet wird, muss der AKD gesperrt sein.

Gehen Sie zur Einstellung der Baudrate über die Drehschalter wie folgt vor:

- 1. Sperren Sie den Servoverstärker.
- Stellen Sie die Drehschalter auf eine der Adressen von 90 bis 94 ein (siehe Tabelle oben)

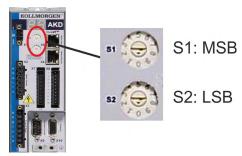
Drehen Sie S1 auf 9 und S2 auf eine Zahl von 0 bis 4

3. Drücken Sie mindestens 3 Sekunden lang die Taste B1 am AKD, bis die Drehschaltereinstellung im AKD-Display erscheint.

B1 für 3 Sekunden drücken

4. Wenn der Einstellwert des Drehschalters im Display blinkt, lassen Sie die Taste B1 los und warten Sie, bis das Blinken aufhört. Dabei wird der Parameter FBUS.PARAM01 auf den neuen Wert gesetzt, und alle Parameter werden gespeichert. Die neue Einstellung wird mit dem nächsten Einschalten des Servoverstärkers wirksam.

Wenn ein Fehler auftritt, blinken die folgenden Meldungen 5 mal:


- E1 Servoverstärker ist freigegeben
- E2 Speichern der neuen Einstellungen fehlgeschlagen
- E3 Fehlerhafte Schalterstellung

9.20.3 Stationsadresse für CAN-Bus

INFO

Nachdem Sie die Stationsadresse geändert haben, müssen Sie die 24 V-Hilfsspannungsversorgung für den Servoverstärker aus- und wieder einschalten.

Verwenden Sie während der Konfiguration die Drehschalter an der Frontplatte des AKD, um die Stationsadresse für die Kommunikation voreinzustellen.

Die Drehschalter an der Frontplatte des AKD (S1 & S2) entsprechen der CAN-Stationsadresse. Die Schalter S1 & S2 entsprechen auch der IP-Adresseneinstellung des Verstärkers. Sowohl das CAN- als auch das IP-Netzwerkadressenschema müssen konfiguriert werden, um dieser Abhängigkeit Rechnung zu tragen, wenn das TCP/IP- und das CAN-Netzwerk in einer Anwendung gleichzeitig ausgeführt werden. Beispiel:

S1 (MSB)	S2 (LSB)	CAN Adresse	IP Adresse
4	5	45	192.168.0.45

Die Einstellung der IP Adresse kann mit Hilfe der WorkBench Software (Einstellungen -> Feldbus-> TCP/IP) von den Drehschaltern entkoppelt werden.

9.20.4 CAN-Bus-Abschluss

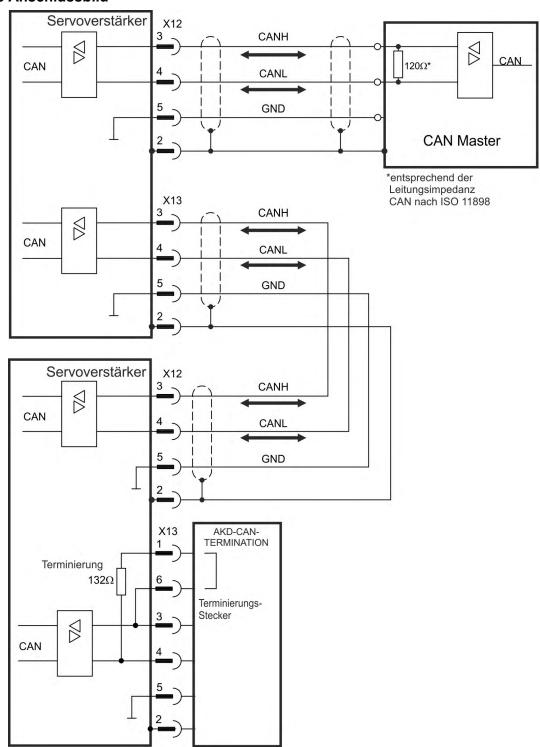
Das letzte Busgerät an beiden Enden des CAN-Bus-Systems muss über Abschlusswiderstände verfügen. Der AKD verfügt über integrierte 132 Ω Widerstände, die aktiviert werden können, indem die Pins 1 und 6 gebrückt werden. Ein optionaler Terminierungsstecker ist für den AKD verfügbar (*AKD-CAN-TERMINATION*). Der optionale Terminierungsstecker ist ein RJ25-Stecker mit einer integrierten Drahtbrücke zwischen den Pins 1 und 6. Der Terminierungsstecker muss in den X13-Stecker des letzten Verstärkers im CAN-Netzwerk gesteckt werden.

INFO

Entfernen Sie den Abschlussstecker, wenn der AKD nicht das letzte Busgerät ist und verwenden Sie X13 zum Anschließen des nächsten Gerätes.

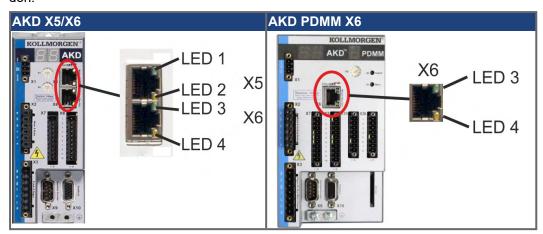
9.20.5 CAN-Bus-Kabel

Um die Anforderungen der Norm ISO 11898 zu erfüllen, muss ein Bus-Kabel mit einer charakteristischen Impedanz von 120 Ω verwendet werden. Die maximale verwendbare Kabellänge für eine zuverlässige Kommunikation nimmt mit zunehmender Übertragungsgeschwindigkeit ab. Zur Orientierung können Sie die folgenden Werte verwenden, die von Kollmorgen gemessen wurden; diese Werte sind keine garantierten Grenzwerte:


Charakteristische Impedanz: 100 bis 120 Ω

Max. Kapazität im Kabel: 60 nF/km
 Schleifenwiderstand: 159.8 Ω/km

Übertragungsgeschwindigkeit (kBaud)	1000	500	250
Maximale Kabellänge (m)	10	70	115


Eine geringere Kapazität im Kabel (max. 30 nF/km) und ein geringerer Leitungswiderstand (Schleifenwiderstand, 115 Ω /km) ermöglichen größere Längen. Eine charakteristische Impedanz von 150 ± 5 Ω erfordert einen Abschluss-Widerstand 150 ± 5 Ω .

9.20.6 CAN-Bus Anschlussbild

9.21 Motion-Bus-Schnittstelle (X5/X6/X11)

Die Motion-Bus-Schnittstelle besitzt RJ45-Stecker und kann je nach der verwendeten Verstärkerversion für die Kommunikation mit verschiedenen Feldbus-Geräten verwendet werden.

ACHTUNG

Schließen Sie die Ethernetleitung für den PC mit der Setup-Software nicht an die Motion-Bus-Schnittstelle X5/X6 an.

Das Ethernet-Konfigurationskabel muss an Stecker X11 oder X32 angeschlossen werden.

9.21.1 Pinbelegung X5/X6/X11

Pin	Signal X5	Signal X6	Signal X11
1	Senden +	Empfangen +	Senden +
2	Senden -	Empfangen -	Senden -
3	Empfangen +	Senden +	Empfangen +
4, 5	n.c.	n.c.	n.c.
6	Empfangen -	Senden -	Empfangen -
7, 8	n.c.	n.c.	n.c.

9.21.2 Bus-Protokolle X5/X6/X11

Protokoll	Тур	Anschluss Option	Stecker
EtherCAT	Motion-Bus	EC oder CC	X5, X6
SynqNet	Motion-Bus	SQ	X5, X6
sercos [®] III	Motion-Bus	S3	X5, X6
PROFINET RT	Motion-Bus	PN	X11
EtherNet/IP	Motion-Bus	El	X11

9.21.3 EtherCAT

Sie können bei AKD mit den Anschlusstypen EC und CC eine Verbindung zum EtherCAT-Netzwerk über die RJ45-Stecker X5 (In Port) und X6 (Out Port) herstellen. Der Kommunikationsstatus wird von den integrierten LEDs angezeigt.

AKD PDMM Geräte (Gerätevariante AKD-M) agieren als EtherCAT (CoE) Master und besitzen dafür den X6 Stecker (Out Port) zum Aufbau einer linearen Topologie mit maximal 8 Slaves und 250 ms Zykluszeit.

Gerätevariante	Stecker	LED- Nr.	Name	LED-Funktion EIN	LED-Funktion AUS
AKD	X5	LED1	Link In	aktiv	nicht aktiv
		LED2	Betrieb	in Betrieb	nicht in Betrieb
AKD und AKD PDMM	X6	LED3	Link Out	aktiv	nicht aktiv
		LED4	-	-	-

9.21.3.1 EtherCAT Aktivierung bei AKD-CC Modellen

AKD-CC Modelle unterstützen das CANopen-Protokoll sowohl bei CAN-Bus- als auch EtherCAT-Netzwerkverwendung. Im Auslieferungszustand der AKD-CC Modelle ist die EtherCAT-Hardware aktiv gesetzt. Sollten Sie ein Gerät von CANopen nach EtherCAT umschalten müssen, ändern Sie den Parameter DRV.TYPE.

- 1. Mit Software: Schließen Sie einen PC an den AKD an und ändern Sie den Parameter DRV.TYPE im WorkBench Terminal (siehe DRV.TYPE Dokumentation) oder
- 2. Mit Hardware: Benutzen Sie die Drehschalter S1 & S2 in der Front und den Taster B1 oben am Gerät.

Die folgenden Schritte beschreiben das Umschalten mit Hilfe der Drehschalter:

1. Stellen Sie den Wert 89 mit den AKD-Drehschaltern ein.

Drehen Sie S1 auf 8 und S2 auf 9

2. Drücken Sie die B1 Taste für etwa 3 Sekunden.

B1 für 3 Sekunden drücken

Die 7-Segment Anzeige zeigt während des Vorgangs En. Schalten Sie die 24 V Spannungsversorgung nicht ab, solange das Display En zeigt!

- 3. Warten Sie, bis das Display zurück auf die Standardanzeige schaltet.
- 4. Schalten Sie die 24 V Spannungsversorgung aus und wieder ein.

INFO

Die 7-Segmentanzeige zeigt Er (Error), wenn die Umschaltung nicht erfolgreich war. Schalten Sie die 24 V Spannungsversorgung aus und wieder ein. Wiederholen Sie den Vorgang. Falls der Fehler erneut gemeldet wird, wenden Sie sich an den Kollmorgen Kundendienst.

9.21.4 SynqNet

Sie können eine Verbindung zum SynqNet-Netzwerk über die RJ45-Stecker X5 (In Port) und X6 (Out Port) herstellen. Der Status wird von den integrierten LEDs angezeigt.

Stecker	LED#	Name	Funktion
X5	LED1	Link_in	EIN = Empfang gültig (In Port)
			AUS = ungültig, ausgeschaltet oder reset
	LED2	zyklisch	EIN = Netzwerk zyklisch
			BLINKEND = Netzwerk nicht zyklisch
			AUS = ausgeschaltet oder reset
X6	LED3	Link_out	EIN = Empfang gültig (Out Port)
			AUS = ungültig, ausgeschaltet oder reset
	LED4	Repeater	EIN = Repeater eingeschaltet, Netzwerk zyklisch
			BLINKEND = Repeater eingeschaltet, Netzwerk nicht
			zyklisch
			AUS = Repeater ausgeschaltet, Netz ausgeschaltet oder
			reset

9.21.5 PROFINET

AKD mit Anschluss Option **PN** können über den RJ45 Stecker X11 an ein PROFINET Netzwerk angeschlossen werden. Das PROFINET RT Protokoll wird benutzt. Der Status der Netzwerkkommunikation wird über die eingebauten LEDs angezeigt.

	Stecker	LED#	Name	Funktion
	X11	LED1	Link In	Ein = aktiv, Aus= inaktiv
ĺ		LED2	Betrieb	Ein = in Betrieb, Aus= nicht in Betrieb

Schließen Sie die Serviceschnittstelle (X11) des Verstärkers an eine Ethernet-Schnittstelle am PC direkt oder über einen Netzwerkhub/-switch an, während die Stromversorgung zu den Geräten abgeschaltet ist. Verwenden Sie bevorzugt Standard-Ethernetkabel der Kategorie 5. Prüfen Sie, ob die Link-LED am AKD Servoverstärker (grüne LED am RJ45-Stecker) und am Master bzw. Switch leuchten. Wenn beide LEDs leuchten, besteht eine gute elektrische Verbindung. Die Subnet Maske des AKD lautet 255.255.255.0. Die ersten drei Oktets der IP Adresse des Servoverstärkers müssen mit den ersten drei Oktets der IP Adresse der HMI übereinstimmen. Das letzte Oktet muss unterschiedlich sein. PROFINET RT und WorkBench können gleichzeitig verwendet werden wenn ein Switch benutzt wird.

9.21.6 Ethernet/IP

AKD mit Anschluss Option **EI** können über den RJ45 Stecker X11 an ein Ethernet/IP Netzwerk angeschlossen werden. Der Status der Netzwerkkommunikation wird über die eingebauten LEDs angezeigt.

	Stecker	LED#	Name	Funktion
ı	X11	LED1	Link In	Ein = aktiv, Aus= inaktiv
ı		LED2	Betrieb	Ein = in Betrieb, Aus= nicht in Betrieb

Schließen Sie die Serviceschnittstelle (X11) des Verstärkers an eine Ethernet-Schnittstelle am Ethernet/IP Master direkt oder über einen Netzwerkhub/-switch an, **während die**Stromversorgung zu den Geräten abgeschaltet ist. Verwenden Sie Kat. 5 Kabel. Prüfen Sie, ob die Link-LED am AKD Servoverstärker (grüne LED am RJ45-Stecker) und am Master bzw. Switch leuchten. Wenn beide LEDs leuchten, besteht eine gute elektrische Verbindung. Die Subnet Maske des AKD lautet 255.255.255.0. Die ersten drei Oktets der IP Adresse des Servoverstärkers müssen mit den ersten drei Oktets der IP Adresse der HMI übereinstimmen. Das letzte Oktet muss unterschiedlich sein. Ethernet/IP und WorkBench können simultan laufen, wenn ein Switch verwendet wird.

9.21.7 sercos[®] III

AKD Servoverstärker (Variante S3) können an ein sercos[®] III Netzwerk über die RJ45-Stecker X5 (In Port) und X6 (Out Port) angeschlossen werden. Lineare und Ring Topologien sind möglich. Der Status der Kommunikation wird über die eingebauten Stecker-LEDs angezeigt.

INFO

Verfügbar ab Firmware Revision 1.11, das Protokoll arbeitet zur Zeit nur mit Mastern der Firma Hypertherm.

Stecker	LED#	Name	Funktion
X5	LED1	Link In	EIN = aktiv,
			AUS= nicht aktiv
	LED2	Betrieb	EIN = in Betrieb,
			AUS = nicht in Betrieb
X6	LED3	Link Out	EIN = aktiv,
			AUS= nicht aktiv
	LED4	-	-

10 Inbetriebnahme

10.1	Wichtige Hinweise	193
	Setup AKD-B, AKD-P, AKD-T	
	Setup AKD-M	
	Fehler und Warnmeldungen	
	Fehlersuche und -behebung beim AKD	

10.1 Wichtige Hinweise

ACHTUNG

Der Servoverstärker darf nur von Fachpersonal mit umfassenden Kenntnissen in der Elektrotechnik und der Antriebstechnik getestet und konfiguriert werden.

⚠ GEFAHR Tödliche Spannung!

Es besteht die Gefahr von schweren oder tödlichen Verletzungen durch elektrischen Schlag. Lebensgefahr beim Berühren von spannungsführenden Teilen.

- Eingebaute Schutzmaßnahmen wie Isolation oder Schirmung dürfen nicht entfernt werden.
- Arbeiten an der elektrischen Installation sollen nur von geschultem und qualifizierten Personal unter Beachtung der Arbeitssicherheitsbestimmungen bei abgeschalteter und gegen Wiedereinschalten gesicherter Netzspannung durchgeführt werden.
- Im Normalbetrieb muss die Schranktür geschlossen sein und das Gerät darf nicht berührt werden.

MARNUNG Automatischer Wiederanlauf!

Es besteht die Gefahr von tödlichen oder schweren Verletzungen für Personen, die in der Maschine arbeiten. Der Antrieb kann abhängig von der Parametereinstellung nach dem Einschalten der Netzspannung, bei Spannungseinbrüchen oder Unterbrechungen automatisch anlaufen. Wenn Parameter DRV.ENDEFAULT auf 1 gesetzt ist,

- warnen Sie an der Maschine mit einem Warnschild (WARNUNG: Automatischer Anlauf möglich" oder ähnlich!) und
- stellen Sie sicher, dass ein Einschalten der Netzspannung nicht möglich ist, während sich Personen im Arbeitsbereich der Maschine aufhalten.

NORSICHT Hohe Temperatur!

Gefahr leichter Verbrennungen. Der Kühlkörper des Verstärkers kann im Betrieb Temperaturen über 80 °C erreichen.

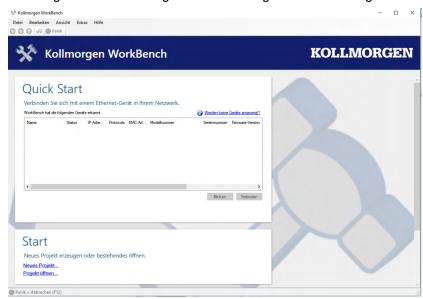
- Prüfen Sie die Temperatur des Kühlkörpers, bevor Sie ihn berühren.
- Warten Sie, bis der Servoverstärker auf unter 40 °C abgekühlt ist.

ACHTUNG

Wenn der Servoverstärker länger als 1 Jahr gelagert wurde, müssen Sie die Kondensatoren im DC-Bus-Zwischenkreis formieren. Formierungstechniken sind im Kollmorgen Developer Network (Formierung) beschrieben.

INFO

Weitere Informationen zur Konfiguration des Geräts:


- Die Parameter und das Verhalten des Regelkreises sind in der WorkBench Onlinehilfe beschrieben.
- Die Feldbus Konfiguration ist in der entsprechenden Anleitung auf der DVD beschrieben.

10.2 Setup AKD-B, AKD-P, AKD-T

10.2.1 Setup-Software WorkBench

Dieses Kapitel beschreibt die Installation der Setup-SoftwareWorkBench für die Inbetriebnahme der digitalen Servoverstärker AKD-B, AKD-P und AKD-T. WorkBench wird für die Inbetriebnahme der Gerätevariante AKD-M nicht verwendet (AKD PDMM). Für diese Gerätevariante wird die Software KAS IDE benutzt (→ # 200).

Kollmorgen bietet Schulungs- und Vertiefungskurse auf Anfrage.

10.2.2 Bestimmungsgemäße Verwendung

Die Setup-Software ist dafür vorgesehen, die Betriebsparameter für die Servoverstärker der AKD Reihe zu ändern und zu speichern. Der angeschlossene Servoverstärker kann mithilfe dieser Software konfiguriert werden. Während der Inbetriebnahme kann der Servoverstärker direkt über die Servicefunktionen gesteuert werden.

Die Einstellung der Parameter eines laufenden Antriebs darf nur von entsprechend qualifiziertem Fachpersonal (→ # 15) vorgenommen werden.

Datensätze, die auf Datenträgern gespeichert wurden, sind nicht gegen unbeabsichtigte Veränderungen durch andere Personen gesichert. Die Verwendung von ungeprüften Daten kann zu unerwarteten Bewegungen führen. Nachdem Sie Datensätze geladen haben, müssen Sie daher alle Parameter prüfen, bevor Sie den Servoverstärker freigeben.

10.2.3 Beschreibung der Software

Jeder Servoverstärker muss an die Anforderungen für Ihre Maschine angepasst werden. Für die meisten Anwendungen können Sie einen PC und WorkBench (die Setup-Software für den Servoverstärker) verwenden, um die Parameter für Ihren Servoverstärker festzulegen. Der PC wird über ein Ethernet-Kabel mit dem Servoverstärker verbunden (→ # 178). Die Setup-Software ermöglicht die Kommunikation zwischen dem PC und AKD. Sie finden die Setup-Software auf der mitgelieferten DVD und im Download-Bereich der Kollmorgen-Website.

Sie können Parameter einfach ändern und die Wirkung auf den Servoverstärker direkt beobachten, da eine permanente (Online-)Verbindung zum Servoverstärker besteht. Sie können auch wichtige Istwerte vom Servoverstärker abrufen, die auf dem PC-Monitor angezeigt werden (Oszilloskop-Funktionen).

Sie können Datensätze auf Datenträgern speichern (Archivierung) sowie auf andere Servoverstärker laden oder zu Sicherungszwecken verwenden. Sie können die Datensätze auch ausdrucken.

Die meisten Standard-Feedbacks (SFD, EnDAT 2.2, 2.1, and BiSS) sind Plug-and-Play kompatibel. Die Typenschilddaten des Motors werden im Rückführsystem gespeichert und vom Servoverstärker beim Einschalten automatisch abgerufen. Die Daten der nicht Plug-and-Play-kompatiblen Motoren von Kollmorgen sind in WorkBench gespeichert und können per Mausklick über die Bildschirmseite "Motor" in der WorkBench-Software geladen werden.

Eine umfassende Onlinehilfe mit Beschreibungen aller Variablen und Funktionen bietet Ihnen in jeder Situation Unterstützung.

10.2.4 Hardware-Anforderungen

Die Serviceschnittstelle (X11, RJ45) des Verstärkers wird über ein Ethernet-Kabel mit der Ethernet-Schnittstelle des PCs verbunden (→ # 178).

Mindestanforderungen für den PC:

Prozessor: mindestens 1GHz

Grafikarte: Windows-kompatibel, Farbe

RAM: 500 MB

Laufwerke: Festplatte mit mindestens 500 MB freiem Speicherplatz, DVD-Laufwerk Schnittstellen: eine freie Ethernet-Schnittstelle oder einen Hub-/Switch-Anschluss

10.2.5 Betriebssysteme

Windows 2000/XP/VISTA/7/8/10

WorkBench unterstützt Windows 2000, Windows XP, Windows VISTA, Windows 7, Windows 8 und Windows 10.

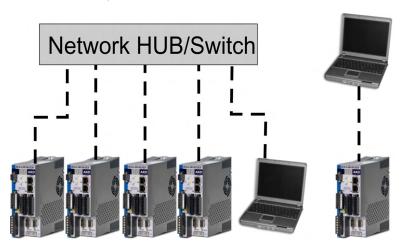
Unix, Linux

Die Funktion der Software für Windows unter Unix oder Linux wurde nicht geprüft.

10.2.6 Installation unter Windows 2000/XP/VISTA/7/8/10

Die DVD enthält ein Installationsprogramm für die Setup-Software.

Installation


- Autostart-Funktion aktiviert:
 Legen Sie die DVD in ein freies Laufwerk ein. Ein Fenster mit dem Startbildschirm wird
 geöffnet. Darin wird eine Verknüpfung mit der Setup-Software WorkBench angezeigt.
 Klicken Sie auf die Verknüpfung, und befolgen Sie die Anweisungen.
- Autostart-Funktion deaktiviert:

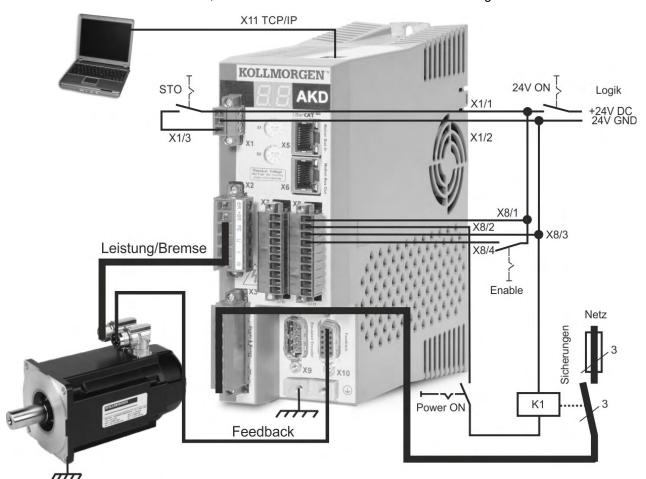
 Legen Sie die DVD in ein freies Laufwerk ein. Klicken Sie in der Taskleiste auf **Start**und dann auf **Ausführen**. Geben Sie den Programmaufruf ein: x:\index.htm (x = Laufwerksbuchstabe des DVD-Laufwerks).

 Klicken Sie auf **OK** und fahren Sie wie vorstehend beschrieben fort.

Anschluss an die Ethernet-Schnittstelle des PCs

 Schließen Sie das Schnittstellenkabel an eine Ethernet-Schnittstelle an Ihrem PC oder an einen Hub/Switch und die Serviceschnittstelle X11 des AKD an (→ # 178).

10.2.7 Verstärkerschnelltest AKD-B, AKD-P, AKD-T


10.2.7.1 Auspacken, Montieren und Verdrahten des AKD

- Packen Sie den Servoverstärker und das Zubehör aus. Beachten Sie die Sicherheitshinweise in der Dokumentation.
- Montieren Sie den Servoverstärker.
- Verdrahten Sie den Servoverstärker oder nehmen Sie die Mindestverdrahtung zum Testen des Verstärkers wie unten beschrieben vor.
- Stellen Sie sicher, dass Sie die folgenden Informationen zur Hand haben:
 - Nennversorgungsspannung
 - Motortyp (Motordaten, wenn der Motortyp in der Motordatenbank nicht enthalten ist)
 - In den Motor integrierte Rückführungseinheit (Typ, Polzahl/Strichzahl/Protokoll)
 - Trägheitsmoment der Last

10.2.7.2 Mindestverdrahtung zum Testen des Verstärkers ohne Last

ACHTUNG

Dieser Schaltplan dient nur zur Veranschaulichung und erfüllt nicht die Anforderungen im Hinblick auf EMV, Sicherheit oder Funktionalität Ihrer Anwendung.

Wenn Sie den AKD direkt mit einem PC verbinden, empfehlen wir eine statische IP-Adressierung (ungleich 00).

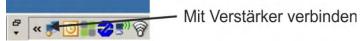
10.2.7.3 IP-Adresse einstellen

Stellen Sie die IP-Adresse ein wie in (→ # 180) beschrieben.

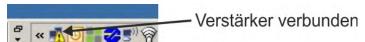
10.2.7.4 Verbindungen überprüfen

Sie können die Logikversorgung zum Servoverstärker über den Anschluss X1 einschalten (für die Kommunikation wird keine Bus-Spannung benötigt).

Wenn die Stromversorgung hergestellt ist, beginnen LED-Meldungen zu blinken:


- 1. –
- 2. []
- 3.][
- 4. I-P
- 5. IP-Adresse des Servoverstärkers, wird als Folge von Zahlen und Punkten angezeigt (z. B. 192.168.0.25).
- 6. Status des Servoverstärkers (opmode "o0", "o1" oder "o2") bzw. Fehlercode, wenn am Servoverstärker ein Fehlerzustand vorliegt.

Prüfen Sie, dass die Verbindungs-LEDs am Servoverstärker (grüne LED am RJ45-Stecker) und an Ihrem PC beide leuchten. Wenn beide LEDs leuchten, ist die elektrische Verbindung hergestellt.



LED leuchtet grün, wenn der Verstärker an einem Netzwerk angeschlossen ist.

Während der PC die Verbindung herstellt, erscheint in Ihrer Taskleiste das folgende Symbol:

Warten Sie, bis dieses Symbol sich zum Symbol für eingeschränkte Konnektivität ändert (dies kann bis zu einer Minute dauern).

Der PC kann vollständig mit dem Servoverstärker kommunizieren, obwohl Windows für die Verbindung mit dem Servoverstärker das Symbol für eingeschränkte Konnektivität anzeigt. In WorkBench können Sie jetzt den Servoverstärker über diese Verbindung konfigurieren.

10.2.7.5 WorkBench Installieren und starten

WorkBench wird automatisch von der mit dem Servoverstärker gelieferten DVD installiert. WorkBench ist auch auf der Kollmorgen Website verfügbar. Wenn die Installation vollständig ist, klicken Sie auf das WorkBench Symbol um das Programm zu starten. WorkBench zeigt eine Liste aller Servoverstärker an, die in Ihrem lokalen Netzwerk erkannt wurden. Wählen Sie den zu konfigurierenden Servoverstärker aus und klicken Sie auf Next.

Wenn mehrere Servoverstärker erkannt werden, kann ein Servoverstärker mit einem der folgenden Verfahren eindeutig identifiziert werden:

- 1. MAC Adresse des Gerätes. Diese Adresse finden Sie auf dem Aufkleber an der Seite des Servoverstärkers.
- 2. Name des Gerätes. Der Gerätename wird mit der WorkBench Software eingestellt. Ein neuer Servoverstärker erhält standardmäßig den Namen "No_Name".

 Display blinken lassen. Wählen Sie einen Servoverstärker aus und klicken Sie auf Blink (Blinken). Das Display des gewählten Servoverstärkers blinkt nun 20 Sekunden lang.

10.2.7.6 IP-Adresse des Servoverstärkers in WorkBench eingeben

Wenn WorkBench Ihren Servoverstärker nicht automatisch anzeigt, können Sie die IP-Adresse wie folgt manuell in WorkBench eingeben:

1. IP-Adresse ermitteln. Sie können die IP-Adresse des Servoverstärkers auf dem Servoverstärker-Display anzeigen lassen, indem Sie die Taste B1 drücken. Auf dem Display erscheinen nacheinander die Zahlen und Punkte der IP-Adresse (z. B.

192.168.0.25).

 Eingabe der IP-Adresse. Geben Sie die ermittelte IP-Adresse in das Feld Specify Address (Adresse angeben) in WorkBench ein. Klicken Sie dann auf Weiter, um die Verbindung herzustellen.

10.2.7.7 Servoverstärker mit dem Setup-Assistenten freigeben

Sobald eine Verbindung mit dem Servoverstärker hergestellt wurde, wird die Bildschirmseite "AKD Übersicht" angezeigt. Ihr Servoverstärker wird im Navigationsbereich auf der linken Seite des Bildschirms angezeigt. Klicken Sie mit der rechten Maustaste auf den Namen Ihres Servoverstärkers und wählen Sie im Dropdown-Menü die Option **Setup Wizard** aus. Der Setup-Assistent führt Sie durch die Erstkonfiguration des Servoverstärkers. Dies umfasst eine einfache Testbewegung des Antriebs.

Nachdem Sie den Setup-Assistenten abgeschlossen haben, sollte der Servoverstärker freigegeben sein. Wenn der Servoverstärker nicht freigegeben ist, prüfen Sie Folgendes:

- 1. Die Hardware-Freigabe (HW) muss aktiviert sein (Pin 4 am Stecker X8).
- Die Software-Freigabe (SW) muss aktiviert sein. Aktivieren Sie die Funktionen mit der Schaltfläche Enable/Disable in der oberen Symbolleiste in WorkBench oder auf der Bildschirmseite "Übersicht".
- 3. Es dürfen keine Fehler vorliegen (klicken Sie auf die Schaltfläche **Clear Fault** (Fehler löschen) in der oberen Symbolleiste, um alle Fehler zu löschen).

Der Status der HW-Freigabe, SW-Freigabe und von Fehlern wird in der unteren Symbolleiste der WorkBench-Software angezeigt. Der Servoverstärker ist verbunden, wenn am unteren rechten Rand **Online** angezeigt wird.

Sie können jetzt die Bildschirmseite "Einstellungen" in WorkBench verwenden, um die erweiterte Konfiguration Ihres Servoverstärkers fortzusetzen.

10.3 Setup AKD-M

10.3.1 Setup mit KAS IDE

Die Steuerung und die Antriebe müssen an die Anforderungen Ihrer Maschine angepasst werden. Für die meisten Anwendungen können Sie einen PC und die KAS IDE-Software ("Kollmorgen Automation Suite Integrated Development Environment") für das Einrichten der Betriebsbedingungen und der Parameter für das Antriebssystem verwenden. Der PC ist über ein Ethernet Kabel mit dem AKD verbunden.

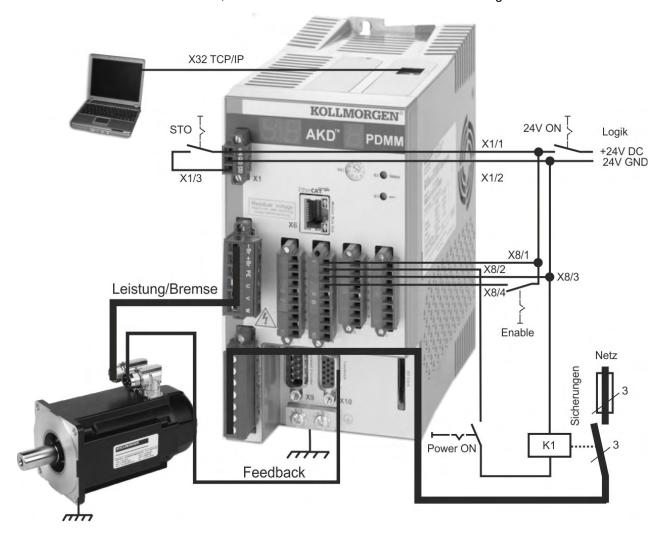
KAS IDE enthält Werkzeuge für das Konfigurieren des EtherCAT Netzwerk, Inbetriebnahme und Tunen der Kollmorgen Servoverstärker, Erstellen eines SPS Programms und einer Benutzeroberfäche (HMI).

KAS IDE ist auf DVD verfügbar oder kann elektronisch zugestellt werden. Nehmen Sie Kontakt zu einem Kollmorgen Vertriebsmitarbeiter auf.

Die AKD Runtime ist im KDN (http://kdn.kollmorgen.com) und auf der Kollmorgen Website (http://www.kollmorgen.com) als Download verfügbar.

Kollmorgen bietet Schulungs- und Vertiefungskurse an.

10.3.2 Verstärkerschnelltest AKD-M


10.3.2.1 Auspacken, Montieren und Verdrahten des AKD PDMM

- Packen Sie den Servoverstärker und das Zubehör aus. Beachten Sie die Sicherheitshinweise in der Dokumentation.
- Montieren Sie den Servoverstärker.
- Verdrahten Sie den Servoverstärker oder nehmen Sie die Mindestverdrahtung zum Testen des Verstärkers wie unten beschrieben vor.
- Stellen Sie sicher, dass Sie die folgenden Informationen zur Hand haben:
 - Nennversorgungsspannung
 - Motortyp (Motordaten, wenn der Motortyp in der Motordatenbank nicht enthalten ist)
 - In den Motor integrierte Rückführungseinheit (Typ, Polzahl/Strichzahl/Protokoll)
 - Trägheitsmoment der Last

10.3.2.2 Mindestverdrahtung zum Testen des Verstärkers ohne Last

ACHTUNG

Dieser Schaltplan dient nur zur Veranschaulichung und erfüllt nicht die Anforderungen im Hinblick auf EMV, Sicherheit oder Funktionalität Ihrer Anwendung.

Wenn Sie den AKD PDMM direkt mit einem PC verbinden, empfehlen wir eine statische IP-Adressierung (ungleich 0).

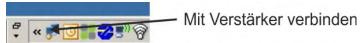

10.3.2.3 IP-Adresse einstellen

Stellen Sie die IP-Adresse ein wie in (→ # 182) beschrieben.

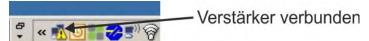
10.3.2.4 Verbindungen überprüfen

Sie können die Logikversorgung zum Servoverstärker über den Anschluss X1 einschalten (für die Kommunikation wird keine Bus-Spannung benötigt).

Wenn die Stromversorgung hergestellt ist, beginnen LED-Meldungen zu blinken:



Prüfen Sie, dass die Verbindungs-LEDs am Servoverstärker (grüne LED am RJ45-Stecker X32) und an Ihrem PC beide leuchten. Wenn beide LEDs leuchten, ist die elektrische Verbindung hergestellt.



LED leuchtet grün, wenn der Verstärker an einem Netzwerk angeschlossen ist.

Während der PC die Verbindung herstellt, erscheint in Ihrer Taskleiste das folgende Symbol:

Warten Sie, bis dieses Symbol sich zum Symbol für eingeschränkte Konnektivität ändert (dies kann bis zu einer Minute dauern).

Der PC kann vollständig mit dem Servoverstärker kommunizieren, obwohl Windows für die Verbindung mit dem Servoverstärker das Symbol für eingeschränkte Konnektivität anzeigt. In KAS IDE können Sie jetzt den Servoverstärker über diese Verbindung konfigurieren.

10.3.2.5 KAS IDE Installieren und starten

INFO

Fortsetzung des Setup und Funktionstest siehe "KAS getting started" Guide.

10.4 Fehler und Warnmeldungen

10.4.1 Fehler und Warnmeldungen AKD

Wenn ein Fehler auftritt, wird das Fehlerrelais des Verstärkers geöffnet; die Endstufe wird ausgeschaltet (der Motor erzeugt kein Drehmoment mehr) oder die Last wird dynamisch gebremst. Das spezifische Verhalten des Verstärkers hängt vom Fehlertyp ab. Auf der LED-Anzeige an der Frontplatte des Verstärkers wird die Nummer des aufgetretenen Fehlers angezeigt. Wenn vor der Fehlermeldung eine Warnung ausgegeben wird, erscheint die Warnmeldung auf der LED-Anzeige mit derselben Nummer wie der zugehörige Fehler. Warnungen deaktivieren weder die Leistungsstufe des Verstärkers noch den Fehlerausgang.

AKD Fehler- oder Warnmeldungen werden angezeigt. Fehlermeldungen sind mit "F" kodiert, Warnmeldungen mit "n".

Bei eingebauter Optionskarte I/O werden Fehler bezogen auf die SD Karte mit "E" gefolgt von 4 Zahlen angezeigt.

In der zweistelligen LED-Anzeige wird links ein "F" oder "E" für einen Fehler oder ein "n" für eine Warnmeldung angezeigt. Rechts wird die Nummer des Fehlers oder der Warnung angezeigt: 1-0-1-[Pause]. Es wird der Fehler mit der höchsten Priorität angezeigt, wenn mehrere Fehler gleichzeitig vorliegen. Prüfen Sie die AKD WorkBench Fehlerbildschirmseite oder lesen Sie den Status von DRV.FAULTS, um die vollständige Liste der aktuellen Fehler anzuzeigen.

ACHTUNG

Beseitigen Sie auftretende Fehler und Störungen unter Beachtung der Arbeitssicherheit. Fehlerbeseitigung nur durch qualifiziertes und eingewiesenes Fachpersonal.

INFO

Weitere Informationen zu Fehlermeldungen, Fehlerbeseitigung und zum Löschen von Fehlern finden Sie in der WorkBench-Onlinehilfe und in **KDN**.

Fehler	Meldung/Warnung
	24V (X1) zusammengebrochen oder 5V (X9) kurzgeschlossen.
F0	Reserviert.
F101, n101	Nicht kompatibler FPGA-Typ. FPGA ist ein Labor-FPGA.
F102, n102	Fehler durch Boot-Firmware. FPGA ist keine Standard-FPGA-Version.
F103	Fehler Boot-FPGA.
F104	Fehler FPGA.
F105	Stempel des nichtflüchtigen Speichers ungültig.
F106	Daten des nichtflüchtigen Speichers
n107	Positiver Endschalter erreicht.
n108	Negativer Endschalter erreicht.
F120	Fehler beim Setzen auf Werksparameter.
F121	Fehler bei Referenzfahrt.
F123, n123	Ungültiger Fahrauftrag.
F124	Datenfehler Cogging Kompensation im nichtflüchtigen Speicher (CRC).
F125, n125	Feldbus Synchronisations Frames verloren.
F126, n126	Bode plot: zu viel Bewegung.
F127	Unvollständige Notfall Prozedur.
F128	MPOLES/FPOLES ist keine Ganzzahl.
F129	Feldbus Heartbeat-Verlust.
F130	Überstrom bei sekundärer Rückführungsversorgung.

Fehler	Meldung/Warnung
F131	Zweites Feedback A/B Spur Kabelbruch
F132	Zweites Feedback Z Signal Kabelbruch
F133	Fehlernummer in F138 geändert.
F134	Unzulässiger Status der sekundären Rückführung.
	Fehler an Feedback 2 verhindert Fernkommutierung für Feedback 1.
F136	Die Firmware- und FPGA-Version sind nicht kompatibel.
n137	Referenzfahrt und Rückführung nicht kompatibel
F138	Instabilität während Autotuning
F139	Zielposition überschritten wegen Aktivierung des falschen Fahrauftrages.
n151	Keine ausreichende Fahrstrecke; Bewegungsausnahme.
n152	Keine ausreichende Fahrstrecke; Folgefahrsatzausnahme.
n153	Überschreitung der maximalen Geschwindigkeit.
n154	Folgefahrsatz fehlgeschlagen; Bewegungsparameter prüfen.
n156	Zielposition infolge eines Haltebefehls überschritten.
n157	Index-Impuls für Referenzfahrt nicht gefunden.
n158	Referenzfahrt-Schalter nicht gefunden.
n159	Einstellung der Fahrauftrags-Parameter fehlgeschlagen
n160	Aktivierung des Fahrauftrags fehlgeschlagen.
n161	Referenzfahrt fehlgeschlagen.
n163	MT.NUM überschreitet den Grenzwert.
n164	Fahrauftrag ist nicht initialisiert.
n165	Zielposition des Fahrauftrags außerhalb des Bereichs.
n167	SW Endschalter erreicht.
n168	Ungültige Bit-Kombination im Steuerwort des Fahrauftrags.
n169	1:1 Profil kann nicht bei laufendem Fahrauftrag ausgelöst werden.
n170	Die Kundenprofil-Tabelle ist nicht initialisiert.
n171	Aktivierung des Fahrauftrags steht bevor.
n174	Referenzfahrt Distanz überschritten
n179	Messfahrt der Cogging Kompensation hat vorzeitig gestoppt.
n180	Cogging Kompensation nicht aktiv. Achse muss zunächst referenziert wer-
	den.
F201	Fehler in externem RAM.
F202	Fehler in externem RAM.
F203	Fehler bei Code-Integrität.
F204-F232	EEPROM-Fehler erkannt.
F234-F237	Innentemperatur zu hoch.
n234-n237	
F240-F243	Innentemperatur niedrig.
n240-n243	-
F245	Externer Fehler.
F247	Bus-Spannung überschreitet zulässige Grenzwerte.
F248	Optionskarte: EEPROM fehlerhaft.
F249	I/O Optionskarte: Checksumme Downstream.
F250	Optionskarte: Checksumme Upstream.
F251	Optionskarte: Watchdog.
	· •

Fehler	Meldung/Warnung
F252	Optionskarte: Firmware und FPGA Typen sind nicht kompatibel.
F253	Optionskarte: Firmware und FPGA Typen sind nicht kompatibel.
	Analogeingang, Überspannung
F257, n257	
F301, n301	
F301, 11301	Überdrehzahl.
F302	Motorposition nicht stabil.
F304, n304 F305	Bremskreis unterbrochen.
F305	Kurzschluss Bremskreis.
F307	
	Bremse im Freigabezustand geschlossen.
F308	Spannung übersteigt Nennwert für den Motor.
n309	Motor I²t Belastung.
F312	Bremse gelöst obwohl sie angezogen sein sollte.
F401	Festlegung des Rückführungstyps fehlgeschlagen.
F402	Fehler bei Amplitude des analogen Signals.
F403	EnDat-Kommunikationsfehler.
F404	Nicht erlaubter Hall Status (000, 111).
F405	BiSS-Watchdog-Fehler.
F406	BiSS-Multiturn-Fehler.
F407	BiSS-Sensorfehler.
F408-F416	<u> </u>
F417	Defekte Ader in primärer Rückführung.
F418	Spannungsversorgung der primären Rückführung.
F419	Encoder-Initialisierung fehlgeschlagen.
F420	FB3 EnDat-Kommunikationsfehler.
F421	SFD Positionssensor Fehler
F423	Fehler im nichtflüchtigen Speicher, Erweitertes Multiturn.
F436	EnDat überhitzt.
F438, n438	
	Schleppfehler (Magnitude).
F450	Schleppfehler (Präsentation).
F451, n451	Tamagawa Encoder Batterie.
F452	Erweitertes Multiturn wird vom Feedback nicht unterstützt.
F453-F459	Tamagawa Encoder: Kommunikationsfehler.
F460	Tamagawa Encoder: Überdrehzahl.
F461	Tamagawa Encoder: Zählfehler.
F462	Tamagawa Encoder: Zählerüberlauf.
F463	Tamagawa Encoder: Überhitzung.
F464	Tamagawa Encoder: Multiturn-Fehler.
F465	Starke Erschütterung von Feedbacksystem erkannt.
F467	Feedback Fehler an Feedback 1. Bei Verwendung eines BiSS Feedback
	zeigt F467 einen Kommunikationsfehler mit dem Feedback an. FB1.FAULTS
	liefert dann keine zusätzlichen Informationen.
F468	FB2.SOURCE nicht eingestellt, Remote Kommutierung nicht möglich.
F469	FB1.ENCRES ist keine Zweierpotenz, Remote Kommutierung nicht möglich.

Fehler	Meldung/Warnung
F470	Feedback Fehler an Feedback 3.
F471	Betriebsart Position unterstützt kein Hall-Sensor Feedback.
F473	Wake & Shake - Zu kleine Bewegung.
F475	Wake & Shake - Zu große Bewegung.
F476	Wake & Shake - Grob-Fein-Abweichung zu groß.
F478, n478	Wake & Shake - Überdrehzahl.
	Wake & Shake - Schleifenwinkel-Abweichung zu groß.
F480	Feldbus-Geschwindigkeits-Sollwert zu hoch.
F481	Feldbus-Geschwindigkeits-Sollwert zu niedrig.
F482	Wake & Shake - Kommutierung nicht initialisiert
F483	Wake & Shake - Motor U Phase fehlt.
F484	Wake & Shake - Motor V Phase fehlt.
F485	Wake & Shake - Motor W Phase fehlt.
F486	Wake & Shake - Umschaltfrequenz am Eingang übersteigt maximale Dreh-
	zahl des emulierten Encoders.
F487	Wake & Shake - Validierung: positive Bewegung meldet Fehler.
F489	Wake & Shake - Validierung: negative Bewegung meldet Fehler.
F490	Wake & Shake - Validierung: Komm. Winkel Timeout.
F491	Wake & Shake - Validierung: Kommutierungswinkel zu weit gefahren -
	schlechter Winkel.
F492	Wake & Shake - Validierung: Kommutierungswinkel braucht mehr Strom als
	MOTOR.ICONT.
F493	Ungültige Kommutierung - Motor beschleunigt in die falsche Richtung.
n495	Aufgezeichnete Cogging Kompensationstabelle konnte nicht abgearbeitet werden.
F501, n501	Überspannung Bus.
F502	Unterspannung Bus. Warnung bevor Fehler auftritt.
F503	Überlast Bus-Kondensator.
F504-F518	Interner Versorgungsspannungsfehler
F519	Kurzschluss Bremswiderstand.
F521, n521	Überstrom Bremswiderstand.
F523	Überspannung Bus FPGA
F524, n524	
F525	Überstrom am Ausgang.
F526	Kurzschluss am Stromsensor
F527	lu-Strom analog-digital Konverter blockiert
F528	lv-Strom analog-digital Konverter blockiert
F529	lu-Strom-Offset-Grenze überschritten
F530	lv-Strom-Offset-Grenze überschritten
F531	Endstufenfehler
F532	Konfiguration der Antriebs-Parameter unvollständig.
F534	Lesen der Motorparameter vom Rückführsystem fehlgeschlagen.
F535	Übertemperatur des Leistungsteils.
	AC Eingang, Phase 1 fehlt
	AC Eingang, Phase 2 fehlt
F543, n543	AC Eingang, Phase 3 fehlt

Fehler	Meldung/Warnung
F560	Bremschopper an der Kapazitätsgrenze, kann Überspannung nicht verhindern.
F570, n570	Netzphase fehlt.
n580	Verwendet Ableitung der Position bei Feedback-Typ Sensorlos im Positionsmodus.
n581	Geschwindigkeit 0 bei Feedback-Typ Asynchron Sensorlos im Positionsmodus.
n582	Kommutierungsfrequenz wurde auf 599 Hz begrenzt, um unter den Grenzwerten von ECCN-3A225 / AL-3A225 zu bleiben.
F587	Alle AC Eingangsphasen fehlen
n601	Modbus Übertragungsrate zu hoch.
F602	Safe torque off (STO).
n603	OPMODE und CMDSOURCE unverträglich.
n604	EMUEMODE inkompatibel mit DRV.HANDWHEELSRC.
F621	Fehler beim Lesen des CRC der Steuerungskarte.
F623	Fehler beim Lesen des CRC der Leistungskarte.
F624	Leistungskarte-Watchdog-Fehler.
F625	Leistungskarte Kommunikationsfehler.
F626	Leistungskarte FPGA nicht konfiguriert.
F627	Steuerkarte-Watchdog-Fehler.
F630	Zyklischer FPGA Lesefehler.
F631	Zeitüberschreitung des Befehls.
F701	Feldbus-Laufzeit.
F702, n702	Feldbus-Kommunikation unterbrochen.
F703	Eine Not-Halt-Verzögerung ist aufgetreten, während die Achse abschalten sollte.
F706, n706	Zyklische Feldbus Sollwerte fehlen.

10.4.2 Zusätzliche Fehlermeldungen AKD-T

AKD BASIC Runtime Fehler werden in der zweistelligen 7-Segmentanzeige des Servoverstärkers angezeigt:

Das zweistellige Display zeigt die Fehlercodes.

Die zusätzlichen Runtime Fehlermeldungen für AKD-T beginnen mit "F801". Alle Fehler beheben Sie mit: Fehler löschen, Programm korrigieren, neu kompilieren und downloaden, Programm neu starten.

ACHTUNG

Beseitigen Sie auftretende Fehler und Störungen unter Beachtung der Arbeitssicherheit. Fehlerbeseitigung nur durch qualifiziertes und eingewiesenes Fachpersonal.

INFO

Weitere Informationen zu Fehlermeldungen, Fehlerbeseitigung und zum Löschen von Fehlern finden Sie in der WorkBench-Onlinehilfe und in **KDN**.

Fehler	Beschreibung
F801	Division durch Null.
F802	Stack Overflow.
F803	Zu wenig Speicher.
F804	Kein Interrupt Handler definiert.
F805	Interrupt Fehler.
F806	Maximal String Länge überschritten.
F807	String Überlauf.
F808	Array Grenzen überschritten.
F809	Eigenschaft nicht unterstützt.
F810	Interner Firmware/Hardware Fehler.
F812	Parameter nicht unterstützt.
F813	Parameter Zugriffsfehler.
F814	Daten nicht gefunden.
F815	Daten ungültig.
F816	Daten zu groß.
F817	Daten zu klein.
F818	Bereich des Parametertyps überschritten.
F819	Daten nicht durch 2 teilbar.
F820	Fehlerhafte Module Einstellung.
F821	Kann vom Kommando nicht lesen.
F823	Servoverstärker zuerst freigeben.
F824	DRV.OPMODE muss auf 2 gesetzt sein (Position).
F825	DRV.CMDSOURCE muss auf 5 gesetzt sein (Programm).
F826	Kann nicht während einer Bewegung ausgeführt werden.
F827	Schreiben auf Read-Only Parameter.
F828	Servoverstärker zuerst sperren (disable).
F829	Programmcode nicht unterstützt - Firmware aktualisieren.
F830	Keine negativen Werte erlaubt.
F831	BASIC Programm ungültig. Eventuell Firmware Upgrade erforderlich.
F832	BASIC Programm fehlt.
F901	Zu viele Nocken.

10.4.3 Zusätzliche Fehler- und Warnmeldungen AKD-M

Fehler und Warnungen werden mit den 7-Segment Anzeigen des Gerätes angezeigt:

Um die Handhabung zu vereinfachen, sind Fehler und Warnmeldungen gleich zu handhaben. Wenn ein Fehler oder eine Warnung auftritt, wird er im einstelligen Display angezeigt, Sie können den Fehler in der Tabelle unten identifizieren, den Grund erkennen und die Maßnahmen zum Entfernen der Ursache durchführen.

Aktive Fehler und Warnungen können mit dem Controller Kommando *ClearCtrlErrors* gelöscht werden (Hinweis: nicht löschbare Fehler bleiben bestehen).

10.4.3.1 Warnungen

Warnung	Beschreibung
A01	Temperaturgrenze überschritten
A02	Wenig Speicher.
A04	Eingangsspannung niedrig
A12	Wenig Flash Speicher.
A21	Wiederherstellbarer Prozess hat während des Betriebs nicht geantwortet.
A23	CPU ist überlastet
A30	EtherCAT Sende-Frames in Betriebsmodus verloren.
A38	EtherCAT Empfangs-Frame in Betriebsmodus verloren.
A40	Lokale digitale I/Os haben kein zyklisches Update erhalten.
A53	AKD-M-MC wurde durch das leistungsfähigere Modell M1 ersetzt.

10.4.3.2 Fehler

Prüfen Sie immer die Logdatei des Controllers, wenn ein Fehler oder eine Warnung auftritt. Die Log Meldungen enthalten detailliertere Informationen über den Fehler und das Verhalten des Antriebs, bevor der Fehler auftrat. Versteckte Fehlerursachen können mit diesen Logbuch Informationen leichter gefunden werden.

ACHTUNG

Beseitigen Sie auftretende Fehler und Störungen unter Beachtung der Arbeitssicherheit. Fehlerbeseitigung nur durch qualifiziertes und eingewiesenes Fachpersonal.

INFO

Weitere Informationen zu Fehlermeldungen, Fehlerbeseitigung und zum Löschen von Fehlern finden Sie in der WorkBench-Onlinehilfe und in **KDN**.

Fehler	Beschreibung
E01	Temperaturgrenze überschritten. PDMM Betrieb gestoppt. CPU wird deaktiviert.
E02	Speicherüberlauf. KAS Laufzeitsystem wurde gestoppt.
E03	Lüfterfehler
E10	Firmware ist fehlerhaft.
E11	Flash ist fehlerhaft, Filesystem nicht verfügbar.
E12	Nicht genügend Flash Speicher verfügbar.
E13	Nichtflüchtiger Speicher für Variablen voll.
E14	Zurücksetzen auf Herstellerdaten fehlgeschlagen.
E15	Dateien können nicht von/zur SD-Karte gelesen oder geschrieben werden.
E16	Nicht genügend Platz auf der SD-Karte verfügbar.
E20	Runtime Code, Prozess, oder Applikation startet nicht.
E21	Runtime Code, Prozess, oder Applikation anwortet nicht während der Aus-
	führung.
E22	Schwerer Fehler im PLC Programm, Applikation gestoppt.
E23	CPU ist überlastet
E24	SPS Anwendung kann nicht gestartet werden.
E30	EtherCAT Kommunikation während des operational Modus ausgefallen.
E31	EtherCAT Kommunikation während des preop Modus ausgefallen.
E32	EtherCAT Kommunikation während des bootstrap Modus ausgefallen.
E33	Initialisierung von EtherCAT in den operational Modus fehlgeschlagen.
E34	Initialisierung von EtherCAT in den preop Modus fehlgeschlagen.
E35	Initialisierung von EtherCAT in den bootstrap Modus fehlgeschlagen.
E36	EtherCAT konnten die erwarteten Geräte nicht finden.
E37	EtherCAT Rückkehr zum Intialisierungsstatus fehlgeschlagen.
E50	Backup auf die SD-Karte gescheitert.
E51	Restore von der SD-Karte gescheitert.
E52	SD Backup Dateien fehlen oder sind fehlerhaft.
E53	SD Backup Dateien sind nicht kompatibel.

10.5 Fehlersuche und -behebung beim AKD

Fehler können aus den verschiedensten Gründen auftreten, die von den Bedingungen in Ihrer Anwendung abhängen. Die Ursachen für Fehler in Mehrachsensystemen können besonders komplex sein.

ACHTUNG

Beseitigen Sie auftretende Fehler und Störungen unter Beachtung der Arbeitssicherheit. Fehlerbeseitigung nur durch qualifiziertes und eingewiesenes Fachpersonal.

INFO

Weitere Informationen zu Fehlermeldungen, Fehlerbeseitigung und zum Löschen von Fehlern finden Sie in der WorkBench-Onlinehilfe und in **KDN**.

Problem	Mögliche Ursachen	Abhilfe
MMI-Meldung: Kommunikationsfehler	falsches Kabel verwendet, Kabel an Servoverstärker oder PC falsch eingesteckt	Kabel in die richtigen Anschlüsse am Servoverstärker und am PC einstecken richtige Schnittstellen wählen.
Servoverstärker wird nicht freigegeben	 falsche PC-Schnittstelle gewählt HW Enable nicht verdrahtet HW oder SW Enable nicht aktiviert 	 richtige Schnittstellen wählen HW Enable (X8 Pin 4) anschließen 24V an HW Enable anlegen und SW Enable aktivieren in WorkBench / Fieldbus
Motor dreht nicht	Servoverstärker gesperrt Softwarefreigabe nicht eingestellt Bruch in Sollwertkabel Motorphasen vertauscht Bremse nicht gelöst Antrieb ist mechanisch blockiert Motor-Polzahl falsch eingestellt Feedback falsch eingestellt	 Freigabesignal anwenden Softwarefreigabe einstellen Sollwertkabel prüfen Motorphasensequenz korrigieren Bremssteuerung prüfen Mechanik prüfen Motor-Polzahl einstellen Feedback korrekt konfigurieren
Motor schwingt	 Verstärkung zu hoch (Drehzahlregler) Schirmung des Rückführkabels unterbrochen AGND nicht verdrahtet 	 VL.KP (Drehzahlregler) reduzieren Rückführkabel ersetzen AGND an CNC-GND anschließen
Servoverstärker mel- det Schleppfehler	 leff oder Ipeak zu klein Strom- oder Geschwindigkeitsgrenzen erreicht Beschleunigungs-/Verzögerungsrampe zu lang 	 Motor-/Verstärkerauslegung prüfen Prüfen, dass IL.LIMITN, IL.LIMITP, VL.LIMITN oder VL.LIMITP den Verstärkerbetrieb nicht einschränken DRV.ACC/DRV.DEC verringern
Überhitzung des Motors	Motor-Nennleistung überschrittenMotorstrom Einstellung fehlerhaft	 Motor-/Verstärkerauslegung prüfen Dauer- und Spitzenstromwerte des Motors korrekt einstellen
Servoverstärker zu weich	Kp (Drehzahlregler) zu kleinKi (Drehzahlregler) zu kleinFilter zu hoch eingestellt	 VL.KP (Drehzahlregler) erhöhen VL.KI (Drehzahlregler) erhöhen Hinweise zur Reduzierung der Filterung in Dokumentation lesen (VL.AR*)
Servoverstärker läuft ungleichmäßig	Kp (Drehzahlregler) zu großKi (Drehzahlregler) zu großFilter zu niedrig eingestellt	 VL.KP (Drehzahlregler) reduzieren VL.KI (Drehzahlregler) reduzieren Hinweise zur Erhöhung der Filterung in der Dokumentation lesen (VL.AR*)
Während der Instal- lation erscheint ein Dia- logfenster (Speicherplatz) und bleibt sichtbar.	MSI Installer Eigenschaft.Nicht genug Platz auf der Festplatte	 Installation abbrechen und erneut starten (möglicherweise mehrfach versuchen, Problem taucht zufällig auf). Genügend Speicherplatz auf Ihrer Festplatte sicherstellen (~500MB).

11 Index

2	
24V Hilfsspannung, Schnittstelle	. 113
A	
Abkürzungen	13
Ableitstrom	
Abmessungen	
Erhöhte Breite	8
Standard Breite	
Abschirmung	85
Absicherung	
AKD Familie	
Analoge Eingänge	
Analoge Sollwerte	
Anforderungen für Kabel und Verdrahtun	
Anschluss der Rückführung	. 127
Anschlussbilder	
B, P, T Varianten	
M Varianten	98
Anschlüsse	0.0
B, P, T Varianten	
M Varianten	
Anzugsmoment, SteckerAusgänge	43
Analog	157
Basisdaten	
Digital alle Varianten	
Digital M Variante	
Digital, I/O Option	
Fehlerrelais	
Relais, I/O Option	
Außer Betrieb nehmen	
В	
B . T .	
Basis Test	40-
B, P, T Varianten	200
M Varianten Belüftung	. 200
Mechanische Installation	7/
Umgebungsbedingungen	
Berührungsschutz	
Bestimmungsgemäße Verwendung	· · · · · •
ANTRIEB	18
Safe Torque Off	
WorkBench Setup Software	
Betriebssysteme	
WorkBench	195
BiSS Encoder	. 133
Brems-Chopper	
Bremswiderstand, Schnittstelle	119

C

CAN-Bus	
Baudrate	
Busabschluss	186
CAN-Schnittstelle	
Kabel	
Knoten-Adresse	
Comcoder Schnittstelle	
CW/CCW Eingang	148
D	
Demontage	22
Diagnose Deckungsgrad	70
Digitale Eingänge	
alle Varianten	
I/O Option	
M Variante	
Dokument Revisionen	215
DSL	132
Dynamisches Bremsen	48
- -	
E	
E/A Anschluss	151
Ein- und Ausschaltverhalten	
Einbaulage	
Eingänge	
Analog	156
Basisdaten	
Digital alle Varianten	
Digital M Variante	
Digital, I/O Option	
ENABLE	
Programmierbar159	
Safe Torque Off	
Einsatzhöhe	
Elektrische Daten	
Emulated Encoder Stecker	
ENABLE	
Encoder Emulation Ausgang	
Encoder Emulation, Schnittstelle	
EnDat 2.1 Encoder Schnittstelle	
EnDat 2.2 Encoder Schnittstelle	
Entsorgung	
Erdung	
EtherCAT	
Ethernet	
EtherCAT Protokoll	189
Ethernet/IP Protokoll	
Modbus TCP Protokoll	
PROFINET RT Protokoll	
sercos® III Protokoll	
SynqNet Protokoll	
EtherNet/IP	

F	N	
Fehlerbehebung 211 Fehlerrelais 166	Netzspannung, Schnittstelle Nicht bestimmungsgemäße Verwendung	
Feuchtigkeit	Allgemeines	
im Betrieb39	Safe Torque Off	
Lagerung21	Normen	
Transport21	NOT-AUS	
Formieren 193	Not-Halt Funktionen	58
G	P	
Gehäuseschutzart 39	PC Anschluss	
Geräuschemission	PROFINET Puls Richtung, Schnittstelle	
Н	<u> </u>	141
Hall Sensoren 141	R	
Hardware-Anforderungen	REACH	
WorkBench195	Relais Ausgang, I/O Option	
Hiperface DSL 132	Reparatur	23
Hiperface Encoder Schnittstelle138	Resolver Schnittstelle	129
	ROD 5V mit Hall Schnittstelle	140
I	RoHS	31
Inbetriebnahme	Rückführung (Feedback)	126
B, P, T Varianten 194 M Varianten 200	S	
Installation	Safe Torque Off	60
Elektrisch83	Safe Torque Off (STO)	
Mechanisch73	Schaltschrankeinbau	
Software WorkBench196	Erhöhte Breite	79
Installation, Setup und Normalbetrieb22	Standard Breite	
IP Adresse	Schirmanschluss	106
B, P, T Varianten 180	Schirmbleche	108
M Variante182	Schwingungen	39
17	Seite	
K	sercos® III	191
Konformität25	Service Schnittstelle	178
EU30	Setup-Software	
REACH31	WorkBench	194
RoHS	SFD	130
Safety 32	SFD3	131
UK	Sicherheit	14
OR02	Sicherheitshinweise	
L	Allgemein	15
	Elektrische Installation	
Lagerung 21	Inbetriebnahme	193
Lieferumfang34	Mechanische Installation	74
M	Safe Torque Off	61
	SinCos Encoder mit Hall	139
Master-Slave150	Stapelhöhe	21
Mechanische Daten39	Stapelhöhe, Lagerung	
Modbus 183	Stecker	
Motor-Haltebremse123	Steckerzuordnungen	
Motor Leistungsanschluss 120	B, P, T Varianten	89
Motor Schnittstelle	M Varianten	97
	Stopp Funktion	
	SynqNet	

Systemkomponenten, Übersicht	87
Т	
Taster Temperatur	174
im Betrieb	39
Lagerung	
Transport	
Transport Typenschild	
U	
UL Markings	25
Umgebungstemperatur	39
V	
Verdrahtung	86
Verpackung	
Verschmutzungsgrad	
Versorgungsnetze	
Verwendete Symbole	12
W	
Wartung	22
Z	
Zwischenkreis-Kapazität	49
Zwiechenkreie Cohnittetelle	

12 Bisher erschienene Ausgaben:

Ausgabe	Bemerkungen
-, 11/2009	Beta Startversion
-, 12/2009	Nur Englisch: Digital I/O corrections, several updates
A 02/2010	Nur Englisch: CAN termination connector "optional", data dynamic brake updated, resolver signals ren-
A, 03/2010	amed, CE certificate, X9 description updated, technical data completed
B, 06/2010	Erstausgabe Deutsch: Diverse Updates, Maße korrigiert, Ein-/Ausschaltdiagramme
C, 07/2010	Layout Titelseite, Timing Diagramme Ein-/Ausschalten
D, 01/2011	Hardware Revision C, STO validiert, Digital In Pegel geändert
E, 04/2011	Analog In/Out Spezifikation erweitert, einphasige Einspeisung erweitert
F, 10/2011	PROFINET RT, Modbus TCP, Layout Titelseite
G, 03/2012	AKD PDMM neu, Einschränkung 270 V AC Netzversorgung entfernt, Typenschlüssel erweitert, EnDat 2.2 @ X9, Stopp Kapitel überarbeitet, Maßzeichnungen
H, 05/2012	AKD-T-IC neu, Signale der I/O Optionskarte neu , PDMM Fehlercodes erweitert
J, 08/2012	Smart Abs (Tamagawa) neu, BiSS C neu, X21 & X22 Pinbelegung korrigiert
K, 11/2012	Feedback Anschlusspläne korrigiert, Hinweis Schriftgröße, Absicherung Bremswiderstand, Fehlertabellen aktualisiert
L, 05/2013	Hiperface DSL Feedback neu (ab FW 1.9), Fehlertabelle aktualisiert, KCM Module neu
M, 09/2013	24A AKD-M neu, Fehlertabelle aktualisiert, Außenmaße aktualisiert
N, 12/2013	sercos® III Option neu, SFD3 Feedback neu, SinCos Grenzfrequenz, Hinweise Wiederanlauf
P, 05/2014	KCM X4 und Ready Kontakte neu, KCM Einschaltreihenfolge, AKD-M-M1 neu, Up/Down umbenannt in CW/CCW, primäres Feedback an X7/X9, ISO Warnsymbole
R, 08/2014	Thermosensor Pinout aktualisiert für alle Feedbacks, "NB" Hinweis für Tamagawa, Hinweise Zwischenkreis-Topology, Absicherung Zwischenkreis
T, 12/2014	48A Information integriert, CE Zertifikat entfernt, HR geändert gem. Exportkontrolle
U, 09/2015	AC zertifiziert, 48A Gerät vervollständigt, RoHS/Reach Informationen, FPS neu, Stecker Span- nungsangaben korrigiert, AKD 48A funktionale Sicherheit Informationen, EnDAT 2.2 an X9&X8, KCM anschluss korrigiert, Hinweis auf Netzdrossel bei 48A Gerät
V, 11/2015	Hall-Only Feedback neu, Hinweise auf "Benutzerhandbuch" ersetzt durch Hinweise auf Workbench Onlinehilfe, Bestimmungsgemäße Verwendung (DC Versorgung / Gruppierung) erweitert, Safety Norm korrigiert (EN 62061 für SIL)
W, 08/2016	Techn. Daten X7 (Elektr.Getriebe) aktualisiert, EMV und NS Richtlinien aktualisiert, Warnhinweise aktualisiert, Kapitel Handhabung, 48A Anschluss Motorbremse korrigiert, PFH Wert
Y, 03/2017	Grenzfrequenz EnDat 2.2 geändert, Links nach KDN in Fehlertabellen, Fehlertabellen aktualisiert(F120, F124, n179, n180, F471, n495, F631)
AA, 10/2017	Anschlussplan Digitale Ausgänge X23/X24 aktualisiert, STO Reaktionszeit (0324A) neu, 24V Anschluss für 48A STO Ansteuerung, 48A Anschluss Motorbremse korrigiert
AB, 10/2018	Hinweis auf 24V Filter als Zubehör entfernt, Beschreibung der Service & Motion Interface LEDs, Anschluss- bild Motorbremse 48A Gerät korrigiert, Layout der Warnhinweise aktualisiert, Anforderungen an Fach- kräfte aktualisiert, Lesegebot Titelseite neu, Leistungsschalter für Netzanschluss 48A Gerät, X9 DIO neu, X9 Ausgang EEO: CW/CCW & Puls/Richtung neu, Motor-Feedback Pinout entfernt
AC, 10/2019	X10 Tabelle Pinbelegung Sense und Thermal Control aktualisiert, RoHS Statement, Lieferumfang geändert (Europäischer Unterschied), alle X9 Anschlusspläne (Buchse=>Stecker) und Pin 6 Schirm über Kondensator, UL-Markings: Stromreduzierung, DC-Bus Link: Beispiele, Stromreduzierung ab 40°C, "Verwendete Standards" entfernt, feste Resover Frequenz
AD, 10/2020	Product Safety Guide ersetzt durch Safety Notes, Master-Slave X9 Korrektur, X3 Belegung AKD-48A korrigiert, AKD-48A Netzanschlussplan verbessert, STO Eingang Stromreduzierung, SCCR 65 kA, Hardware Revision F, UL Markings aktualisiert, DIGI-In38:8mA, Typenschlüssel aktualisiert
AE, 08/2021	AKD-48 A Absicherung Bremswiderstand, Hinweis Motorfrequenz in Kapitel Leistungsdaten, NC Variante, Spannungsnennwert für 03, 06 und 12 Ampere Modelle aktualisiert
AF, 01/2022	UK-Konformität, KCM-Texte entfernt (nicht mehr verfügbar), 65 kA SCCR und Halbleitersicherungen hinzugefügt
AG, 05/2022	ND Variante, EAC Konformität entfernt

WISSENSWERTES ÜBER KOLLMORGEN

Kollmorgen ist ein führender Anbieter von Antriebssystemen und Komponenten für den Maschinenbau. Dank großem Know-how im Bereich Antriebssysteme, höchster Qualität und umfassender Fachkenntnisse bei der Verknüpfung und Integration von standardisierten und spezifischen Produkten liefert Kollmorgen optimale Lösungen, die mit Leistung, Zuverlässigkeit und Bedienerfreundlichkeit bestechen und Maschinenbauern einen wichtigen Wettbewerbsvorteil bieten.

Besuchen Sie das <u>Kollmorgen Developer Network</u>. Stellen Sie Fragen an die Community, durchsuchen Sie die "Knowledge Base", laden Sie Dateien herunter und schlagen Sie Verbesserungen vor.

Europa

Web:

Tel.:

Fax:

E-Mail:

Pempelfurtstr. 1

Nordamerika KOLLMORGEN

201 West Rock Road Radford, VA 24141, USA

 Web:
 www.kollmorgen.com

 E-Mail:
 support@kollmorgen.com

 Tel.:
 +1 - 540 - 633 - 3545

 Fax:
 +1 - 540 - 639 - 4162

China und SEA KOLLMORGEN

Room 302, Building 5, Lihpao Plaza, 88 Shenbin Road, Minhang District, Shanghai, China.

Web: www.kollmorgen.cn

KOLLMORGEN Europe GmbH

www.kollmorgen.com

technik@kollmorgen.com +49 - 2102 - 9394 - 0

+49 - 2102 - 9394 - 3155

40880 Ratingen, Germany

E-Mail: sales.china@kollmorgen.com

Tel.: +86 - 400 668 2802 **Fax:** +86 - 21 6248 5367

Südamerika KOLLMORGEN

Avenida João Paulo Ablas, 2970 Jardim da Glória, Cotia – SP CEP 06711-250, Brazil

Web: <u>www.kollmorgen.com</u> **Tel.:** +55 11 4615-6300