Already published editions

<table>
<thead>
<tr>
<th>Edition</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>07 / 93</td>
<td>First edition</td>
</tr>
<tr>
<td>10 / 94</td>
<td>Adaptation to modified technical design, layout and page numbering changed</td>
</tr>
<tr>
<td>05 / 96</td>
<td>New motors 6SM27 / 6SM37 / 6SM100</td>
</tr>
<tr>
<td>05 / 97</td>
<td>New motors 6SMx7, 6SM109, several corrections</td>
</tr>
<tr>
<td>03 / 98</td>
<td>6SM27..77/109 removed</td>
</tr>
<tr>
<td>05 / 00</td>
<td>Enhanced torque characteristics, new layout, corrections</td>
</tr>
<tr>
<td>09 / 05</td>
<td>Short fan covers removed, design, brand</td>
</tr>
<tr>
<td>07 / 06</td>
<td>Cable bushing metric, cable data</td>
</tr>
</tbody>
</table>

Technical changes to improve the performance of the equipment may be made without prior notice!

All rights reserved. No part of this work may be reproduced in any form (by printing, photocopying, microfilm or any other method) or stored, processed, copied or distributed by electronic means without the written permission of Danaher Motion.
1 General
 1.1 About this manual .. 5
 1.2 Prescribed usage .. 5
 1.3 Safety Notes ... 6
 1.4 Important Notes .. 7
 1.5 Warning signs used in this manual 7
 1.6 Manufacturer declaration .. 8
 1.7 Design of the motors .. 9
 1.8 General technical data .. 9
 1.9 Standard features ... 10
 1.9.1 Style ... 10
 1.9.2 Shaft end, A-side ... 10
 1.9.3 Flange ... 10
 1.9.4 Protection class ... 10
 1.9.5 Protective device .. 10
 1.9.6 Insulation material class 11
 1.9.7 Vibration class .. 11
 1.9.8 Connection method .. 11
 1.9.9 Resolver ... 11
 1.9.10 Holding brake .. 11
 1.10 Selection criteria ... 11
 1.11 Options .. 12
 1.12 Nameplate ... 12
 1.13 Technical data .. 13
 1.13.1 Definitions .. 13
 1.13.2 Technical data 6SM45..100 14
 1.13.3 Technical data 6SM56..100-BV 15
2 Installation / Commissioning
 2.1 Important notes .. 17
 2.2 Assembly / Wiring .. 18
 2.2.1 Connection methods 20
 2.3 Commissioning .. 21
Drawings

3.1 Non-ventilated motors

- 3.1.1 Dimensions 6SM45..100 ... 23
- 3.1.2 Radial-/axial force at the shaft end .. 23
- 3.1.3 Wiring diagram 6SM45..100 ... 24
- 3.1.4 Torque characteristics 6SM45S-3000 ... 25
- 3.1.5 Torque characteristics 6SM45M-3000 ... 25
- 3.1.6 Torque characteristics 6SM45L-3000 ... 26
- 3.1.7 Torque characteristics 6SM56S-3000 ... 26
- 3.1.8 Torque characteristics 6SM56M-3000 ... 27
- 3.1.9 Torque characteristics 6SM56L-3000 ... 27
- 3.1.10 Torque characteristics 6SM71K-3000 ... 28
- 3.1.11 Torque characteristics 6SM71S-3000 ... 28
- 3.1.12 Torque characteristics 6SM71M-3000 ... 29
- 3.1.13 Torque characteristics 6SM100K-3000 29
- 3.1.14 Torque characteristics 6SM100S-3000 30
- 3.1.15 Torque characteristics 6SM100M-3000 30
- 3.1.16 Torque characteristics 6SM100L-3000 31

3.2 Ventilated motors

- 3.2.1 Dimensions 6SM56..100-BV .. 32
- 3.2.2 Radial-/axial force at the shaft end .. 32
- 3.2.3 Wiring diagram 6SM56..100-BV .. 33
- 3.2.4 Fan connection ... 34
- 3.2.5 Torque characteristics 6SM56S-3000-BV 35
- 3.2.6 Torque characteristics 6SM56M-3000-BV 35
- 3.2.7 Torque characteristics 6SM56L-3000-BV 36
- 3.2.8 Torque characteristics 6SM71K-3000-BV 36
- 3.2.9 Torque characteristics 6SM71S-3000-BV 37
- 3.2.10 Torque characteristics 6SM71M-3000-BV 37
- 3.2.11 Torque characteristics 6SM100K-3000-BV 38
- 3.2.12 Torque characteristics 6SM100S-3000-BV 38
- 3.2.13 Torque characteristics 6SM100M-3000-BV 39
- 3.2.14 Torque characteristics 6SM100L-3000-BV 39

Appendix

4.1 Delivery package, transport, storage, maintenance, disposal 41
4.2 Fault-finding ... 42
4.3 Index .. 43
1 General

1.1 About this manual

This manual describes the 6SM45..100 series of synchronous servomotors (standard version). Among other things, you find information about:

- Description of the Motors, Technical Data Chapter 1
- Installation, Commissioning of the motors Chapter 2
- Dimensions, wiring and characteristics Chapter 3
- Notes on Transport, Storage, Maintenance, Disposal Chapter 4

This Manual is intended for the use of qualified staff with professional knowledge of electrical and mechanical engineering.

The motors are operated in drive systems together with servo amplifiers SERVOSTAR. Please observe the entire system documentation, consisting of:

- Installation and commissioning instructions for the servo amplifier
- Installation and commissioning instructions for any CONNECT module or expansion card which is connected
- Operating manual for the Operator Software of the servo amplifier
- Technical description of the 6SM45..100 series of motors

1.2 Prescribed usage

The 6SM45..100 series of synchronous servomotors is designed especially for drives for industrial robots, machine tools, textile and packing machinery and similar with high requirements for dynamics.

The user is only permitted to operate the motors under the ambient conditions which are defined in this documentation.

The 6SM45..100 series of motors is exclusively intended to be driven by servo amplifiers from the SERVOSTAR series under speed and / or torque control.

The mains supply voltage of the used servo amplifier must not exceed 400V at 50..60Hz, TN-system or TT-system with earthed neutral point.

The motors are installed as components in electrical apparatus or machines and can only be commissioned and put into operation as integral components of such apparatus or machines.

The motors must never be connected directly to the mains supply.

The thermal contact which is integrated in the motor windings must be observed and evaluated.

The conformity of the servo-system to the standards mentioned in the manufacturers declaration on page is only guaranteed when the components (servo amplifier, motor, cables etc.) that are used have been supplied by us.
1.3 Safety Notes

- Only properly qualified personnel are permitted to perform such tasks as transport, assembly, commissioning and maintenance. Properly qualified personnel are persons who are familiar with the transport, assembly, installation, commissioning and operation of motors, and who have the appropriate qualifications for their jobs. The qualified personnel must know and observe the following standards and regulations:
 - IEC 364 resp. CENELEC HD 384 or DIN VDE 0100
 - IEC-report 664 or DIN VDE 0110
 - National regulations for safety and accident prevention or BGV A3

- Read the available documentation before assembly and commissioning. Incorrect handling of the motors can result in injury and damage to persons and machinery. Keep strictly to the technical data and the information on the connection requirements (nameplate and documentation).

- It is vital that you ensure that the motor housing is safely earthed to the PE (protective earth) busbar in the switch cabinet. Electrical safety is impossible without a low-resistance earth connection.

- Never open the motor terminal box during operation. Do not unplug any connectors during operation. This creates the danger of death, severe injury, or extensive material damage.

- Power connections may be live even when the motor is not rotating. Never disconnect the power connections of the motor while the equipment is energised. This can cause flashovers with resulting injuries to persons and damage to the contacts.

- After disconnecting the servo amplifier from the supply voltage, wait at least five minutes before touching any components which are normally live (e.g. contacts, screw connections) or opening any connections. The capacitors in the servo amplifier can still carry a dangerous voltage up to five minutes after switching off the supply voltages. To be quite safe, measure the DC-link voltage and wait until the voltage has fallen below 40V.

- The surfaces of the motors can be very hot in operation, according to their protection category. The surface temperature can reach 100°C. Measure the temperature, and wait until the motor has cooled down below 40°C before touching it.
1.4 Important Notes

- Servomotors are precision equipment. The flange and shaft are especially vulnerable during storage and assembly — so avoid brute force. Precision requires delicacy. It is important to use the locking thread which is provided to tighten up couplings, gear wheels or pulley wheels and warm up the drive components, where possible. Blows or the use of force will lead to damage to the bearings and the shaft.

- Wherever possible, use only backlash-free, frictionally-locking collets or couplings, e.g. from the manufacturers Baumann & Cie, Gerwah, Jacob, KTR or Ringspann. Ensure correct alignment of the couplings. A displacement will cause unacceptable vibration and the destruction of the bearings and the coupling.

- For toothed belts, it is vital to observe the permissible radial forces. An excessive radial load on the shaft will significantly shorten the life of the motor.

- Avoid axial loads on the motor shaft, as far as possible. Axial loading significantly shortens the life of the motor.

- In all cases, do not create a mechanically constrained motor shaft mounting by using a rigid coupling with additional external bearings (e.g. in a gearbox).

- For mounting style V3 (shaft end upwards), make sure that no liquid can enter the upper bearing.

- Take note of the no. of motor poles and the no. of resolver poles, and ensure that the correct setting is made in the servo amplifier which is used. An incorrect setting can lead to the destruction of the motor, especially with small motors.

1.5 Warning signs used in this manual

⚠️	Danger to personnel from electricity and its effects	
![⚠️]	![⚠️]	General warning general instruction mechanical hazard
➞	see page/chapter (cross reference)	🔴 special emphasis
1.6 Manufacturer declaration

According to the EG-Machine-guideline 89/392/EWG, appendix II B

We, the company
Danaher Motion GmbH
Wacholderstraße 40-42
40489 Düsseldorf

declare, that the product

Motor series 6SM
(types 6SM45, 6SM56, 6SM71, 6SM100)

is intended exclusively, in its standard version, for installation in another machine and that
its commissioning is forbidden until it has been established that the machine into which
this product is to be installed conforms to the provisions of the EC Directive in its version
89/392/EEC.

We confirm that the above-mentioned product conforms to the following standards:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>73/23/EWG</td>
<td>Low voltage directive</td>
</tr>
<tr>
<td>VDE 0530 / DIN 57530</td>
<td>Provisions for rotating machinery</td>
</tr>
<tr>
<td>DIN EN 60034-7</td>
<td>Design</td>
</tr>
<tr>
<td>DIN 748</td>
<td>Cylindrical shaft ends</td>
</tr>
<tr>
<td>DIN 6885</td>
<td>Keys / keyways</td>
</tr>
<tr>
<td>DIN 42955</td>
<td>True running, coaxiality and concentricity</td>
</tr>
<tr>
<td>DIN EN 60034-14</td>
<td>Vibration class</td>
</tr>
</tbody>
</table>

Issued by: Management

Michel van Roozendaal

This Declaration does not contain any assurance of properties. The notes on safety and
protection in the operating instructions must always be observed.
1.7 Design of the motors

Synchronous servomotors in the 6SM45..100 series are brushless DC motors for demanding servo applications. When combined with our digital servo amplifiers they are especially suited for positioning tasks in industrial robots, machine tools, transfer lines etc. With high requirements for dynamics and stability.

The servomotors have permanent magnets in the rotor. The rare earth neodymium-iron-boron magnetic material is an important factor in making it possible to drive these motors in a highly dynamic fashion. A three-phase winding which is driven by the servo amplifier is integrated into the stator. The motor does not have any brushes since commutation is performed electronically by the servo amplifier.

For these motors, forced ventilation is usually not necessary, because of the optimised heat transfer through the strongly ribbed motor housing. However, in order to increase \(M_0 \), the motors in the series 6SM56..100 can be delivered with a separately driven fan (motor plus option -BV-). The fan can also be retrofitted.

The temperature of the winding is monitored by temperature sensors in the stator windings and is signalled via an electrically isolated contact (normally closed).

A resolver is built into the motors as feedback element. The servo amplifiers of the SERVOSTAR® series evaluate the resolver (hence rotor) position and supply sinusoidal currents to the motors.

The motors can be delivered with or without a built-in holding brake.

The motors are enamelled in matt black (RAL 9005). This finish is not resistant against solvents (e.g. trichlorethylene, nitro-thinners, or similar).

1.8 General technical data

Climate category

3K3 to EN 50178

Ambient temperature

5...+40°C for site altitude up to 1000m amsl

It is vital to consult our applications department for ambient temperatures above 40°C and encapsulated mounting of the motors.

Permissible humidity (at rated values)

85% rel. humidity, no condensation

Power derating

1% / K in range 40°C...50°C up to 1000m amsl

for site altitude above 1000m amsl and 40°C

6% up to 2000m amsl

17% up to 3000m amsl

30% up to 4000m amsl

55% up to 5000m amsl

No derating for site altitudes above 1000m amsl with temperature reduction of 10K / 1000m

Max. permissible flange temperature

65°C ± 10% at rated values

Ball-bearing life

≥ 20.000 operating hours

Technical data

⇒ p.13

Storage data

⇒ p.41
1.9 Standard features

1.9.1 Style

The basic style for the 6SM45..100 synchronous motors is style IM B5 according to DIN EN 60034-7. The permitted mounting positions may be read from the technical data of the motor series.

1.9.2 Shaft end, A-side

Power transmission is made through the cylindrical shaft end A (fit k6) to DIN 748, with a locking thread but **without a fitted-keyway**.

If the motors drive via pinions or toothed belts, then high radial forces will occur. The permissible values at the end of the shaft may be read from the diagram in chapter 3.1.2. The maximum values at rated speed you will find at the technical data. Power take-off from the middle of the free end of the shaft allows a 10% increase in FR.

The curves are based on a bearing life of 20,000 operating hours.

The axial force F_A must not exceed $F_R/3$.

Double-coned collets have proved to be ideal zero-backlash coupling devices, combined, if required, with metal bellows couplings.

1.9.3 Flange

Flange dimensions to IEC standard, fit j6, accuracy according to DIN 42955.

Tolerance class: **N** (R available as option -65-)

1.9.4 Protection class

<table>
<thead>
<tr>
<th>Description</th>
<th>Protection Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard version</td>
<td>IP65</td>
</tr>
<tr>
<td>Motors with separate fan (Option -BV-)</td>
<td>IP54</td>
</tr>
<tr>
<td>Standard shaft bushing</td>
<td>IP64</td>
</tr>
<tr>
<td>Shaft bushing with shaft-sealing ring (Option -J-)</td>
<td>IP65</td>
</tr>
</tbody>
</table>

1.9.5 Protective device

The standard version of each motor is fitted with a thermostat (electrically isolated, normally closed). You will find the switching point at the technical data. The thermostat does **not** provide any protection against short, heavy overloading. Provided that our pre-assembled resolver cable is used, the thermostat contact is integrated into the monitoring system of the digital servo amplifier SERVOSTAR®.

The flange temperature must not exceed 65°C in rated operation.
1.9.6 Insulation material class
The motors come up to insulation material class F according to DIN 57530.

1.9.7 Vibration class
The motors are made to vibration class N according to DIN EN 60034-14.

1.9.8 Connection method
The motors are fitted with rectangular connectors for resolver signals and terminal boxes for the power supply. The mating connectors are not part of the delivery package. We can supply preassembled resolver and power cables (⇒ 2.2.1).

1.9.9 Resolver
The motors are equipped with two-pole hollow-shaft resolvers.

1.9.10 Holding brake
The motors are optionally available with a holding brake.
Type designation: 6SMxxx-xxxx-G
A permanent magnet brake (24V DC) is integrated into the G-motors. When this brake is de-energized it blocks the rotor. The holding brakes are designed as standstill brakes and are not suited for repeated operational braking. If the brake is released then the rotor can be moved without a remanent torque, the operation is free from backlash!
The holding brake can be controlled directly by SERVOSTAR®-servo amplifier (no personal safety!), the winding is suppressed in the servo amplifier — additional circuitry is not required.
If the holding brake is not controlled directly by the servo amplifier, an additional wiring (e.g. varistor) is required. Consult our applications department beforehand.
A personal safe operation of the holding brake requires an additional contact (normally opened) in the braking circuit and an anti-surge-device (e.g. Varistor) for the brake.
Wiring example for SERVOSTAR®:

1.10 Selection criteria
The three-phase servomotors are designed to operate with SERVOSTAR servo amplifiers. Together, both units form a closed speed or torque control loop.
The most important selection criteria are:
— Standstill torque \(M_0 \) [Nm]
— Rated speed \(n_n \) [min\(^{-1}\)]
— Moment of inertia of motor and load \(J \) [kgcm\(^2\)]
— Effective torque (calculated) \(M_{rms} \) [Nm]

When calculating the motors and servo amplifiers which are required, take account of the static load and the dynamic load (acceleration/braking). Collected formula and examples of the calculations are available from our applications department.
1.11 Options

-09- Special flanges and shafts are possible, we invite inquiries.

-G- Built-in holding brake.

-J- Radial shaft-sealing rings:
A radial shaft-sealing ring can be supplied at extra charge to seal against oil mist
and oil spray. This increases the protection rating of the shaft bushing to IP65. The
sealing ring is not suitable for dry running. When a holding brake is built in, the
motor length increases by option -J- for 10mm.

-65- Low tolerance for flange and shaft dimensions and increased concentricity and
angularity according to DIN 42955

-67- Shaft end precisely ground for oil tight seal,
tolerance field k5

-TI- Tropical insulation

-BV- The rated torque in the series 6SM56..100 can be increased by fitting a separately
driven fan. The fan has the intake on the B-side, cools the motor surface and
exhausts to the A-side. For motors of the 6SM100 series, the fan is also obtainable
with a shortened bonnet. The electrical connection of the fan is carried out via a
connector. The mating connector is included in the delivery package of the option.
The protection rating of the motor with a fan is IP54.

-K- Mounting flange for Stöber bevel gear

-2K- Special varnish with 2-component enamel.

-426- Encoder adaptor for ROD426/ROQ425 with coupling and eccentric washers.

1.12 Nameplate

The nameplate depicted below is attached to the side of the servomotor. The information
described below is printed in the individual fields.
1.13 Technical data

1.13.1 Definitions

Standstill torque M_0 [Nm]
The standstill torque can be maintained indefinitely at a speed $n=0 \text{ min}^{-1}$ and rated ambient conditions.

Rated torque M_n [Nm]
The rated torque is produced when the motor is drawing the rated current at the rated speed. The rated torque can be produced indefinitely at the rated speed in continuous operation (S1).

Standstill current $I_{0\text{rms}}$ [A]
The standstill current is the effective sinusoidal current which the motor draws during standstill to produce the standstill torque.

Rated current $I_{n\text{rms}}$ [A]
The rated current is the effective sinusoidal current which the motor draws at the rated speed in order to produce the rated torque.

Peak current (pulse current) $I_{0\text{max}}$ [A]
The peak current (effective sinusoidal value) should not exceed 4-times the rated current. The actual value is determined by the peak current of the servo amplifier which is used.

Torque constant $K_{T\text{rms}}$ [Nm/A]
The torque constant defines how much torque in Nm is produced by the motor with 1A r.m.s. current. The relationship is $M=I \times K_T$.

Voltage constant K_E [V/1000min$^{-1}$]
The voltage constant defines the induced motor EMF, as a sinusoidal peak value between two terminals, per 1000 rpm.

Rotor moment of inertia J [kgcm2]
The constant J is a measure of the acceleration capability of the motor. For instance, at I_0 the acceleration time t_a from 0 to 3000 rpm is given as:

$$t_a \ [s] = \frac{3000 \times 2\pi \times m^2}{M_0 \times 60 \times 10^4 \times cm^2 \times J}$$

with M_0 in Nm and J in kgcm2.

Thermal time constant t_{th} [min]
The constant t_{th} defines the time for the cold motor, under a load of I_0, to heat up to an overtemperature of 0.63 x 105 Kelvin. This temperature rise happens in a much shorter time when the motor is loaded with the rated current.

Release delay time $t_{B\text{RH}}$ [ms] / Application delay time $t_{B\text{RL}}$ [ms] of the brake
These constants define the response times of the holding brake when operated with the rated voltage from the SERVOSTAR servo amplifier.
1.13.2 Technical data 6SM45..100

<table>
<thead>
<tr>
<th>Data</th>
<th>Sym</th>
<th>Dim</th>
<th>6SM 45S-3000</th>
<th>6SM 45M-3000</th>
<th>6SM 45L-3000</th>
<th>6SM 56S-3000</th>
<th>6SM 56M-3000</th>
<th>6SM 56L-3000</th>
<th>6SM 71S-3000</th>
<th>6SM 71M-3000</th>
<th>6SM 100K-3000</th>
<th>6SM 100S-3000</th>
<th>6SM 100M-3000</th>
<th>6SM 100L-3000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standstill torque M_0 Nm</td>
<td>A</td>
<td>0.85</td>
<td>1.7</td>
<td>3.2</td>
<td>3.8</td>
<td>7.0</td>
<td>10.0</td>
<td>10.5</td>
<td>16.5</td>
<td>22.0</td>
<td>25.0</td>
<td>36.0</td>
<td>46.0</td>
<td>57.0</td>
</tr>
<tr>
<td>Standstill current I_{rms} A</td>
<td>1.3</td>
<td>1.3</td>
<td>2.4</td>
<td>2.8</td>
<td>4.8</td>
<td>7.6</td>
<td>8.0</td>
<td>12.3</td>
<td>15.6</td>
<td>18.8</td>
<td>26.7</td>
<td>35.0</td>
<td>42.0</td>
<td></td>
</tr>
<tr>
<td>Rated speed n_n min$^{-1}$</td>
<td>3000</td>
<td></td>
</tr>
<tr>
<td>Torque constant K_{rms} Nm/A</td>
<td>0.68</td>
<td>1.36</td>
<td>1.36</td>
<td>1.33</td>
<td>1.45</td>
<td>1.32</td>
<td>1.31</td>
<td>1.35</td>
<td>1.41</td>
<td>1.33</td>
<td>1.35</td>
<td>1.32</td>
<td>1.35</td>
<td></td>
</tr>
<tr>
<td>Voltage constant K_E mV/min</td>
<td>58</td>
<td>116</td>
<td>116</td>
<td>114</td>
<td>124</td>
<td>113</td>
<td>112</td>
<td>115</td>
<td>121</td>
<td>114</td>
<td>116</td>
<td>113</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>Mains supply voltage U_n V</td>
<td></td>
</tr>
<tr>
<td>Rated torque at n_n M_n Nm</td>
<td></td>
</tr>
<tr>
<td>Rated current I_n A</td>
<td></td>
</tr>
<tr>
<td>Rated power P_n kW</td>
<td></td>
</tr>
<tr>
<td>Peak current I_{max} A</td>
<td></td>
</tr>
<tr>
<td>Motor pole no. p_{Mot}</td>
<td></td>
</tr>
<tr>
<td>Resolver pole no. p_{Res}</td>
<td></td>
</tr>
<tr>
<td>Winding resistance Ph-Ph R_{20} Ω</td>
<td></td>
</tr>
<tr>
<td>Winding inductance Ph-Ph L mH</td>
<td></td>
</tr>
<tr>
<td>Insulation class</td>
<td></td>
</tr>
<tr>
<td>Switch point therm contact °C</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Rotor moment of inertia J kgcm²</td>
<td></td>
</tr>
<tr>
<td>Static friction torque M_F Nm</td>
<td></td>
</tr>
<tr>
<td>Radial load permitted at shaft end with n_n F_R N</td>
<td></td>
</tr>
<tr>
<td>Axial load permitted at shaft end with n_n F_A N</td>
<td></td>
</tr>
<tr>
<td>Tolerance class flange</td>
<td></td>
</tr>
<tr>
<td>Vibration class flange</td>
<td></td>
</tr>
<tr>
<td>Thermal time constant t_{Th} min</td>
<td></td>
</tr>
<tr>
<td>Weight standard G kg</td>
<td></td>
</tr>
<tr>
<td>Order number standard</td>
<td></td>
</tr>
<tr>
<td>EMV-RES connector</td>
<td></td>
</tr>
<tr>
<td>RES cable, shielded</td>
<td></td>
</tr>
<tr>
<td>Power connection</td>
<td></td>
</tr>
<tr>
<td>Motor cable, shielded</td>
<td></td>
</tr>
<tr>
<td>max. 2 of motor cable</td>
<td></td>
</tr>
<tr>
<td>max. 2 of braking cable</td>
<td></td>
</tr>
<tr>
<td>Holding torque M_{BR} Nm</td>
<td></td>
</tr>
<tr>
<td>Operating voltage U_{BR} V=</td>
<td></td>
</tr>
<tr>
<td>Moment of inertia J_{BR} kgcm²</td>
<td></td>
</tr>
<tr>
<td>Release delay time t_{Rel} ms</td>
<td></td>
</tr>
<tr>
<td>Application delay time t_{App} ms</td>
<td></td>
</tr>
<tr>
<td>Weight of the brake G_{BR} kg</td>
<td></td>
</tr>
<tr>
<td>Motor cable with brake</td>
<td></td>
</tr>
<tr>
<td>Separate braking cable</td>
<td></td>
</tr>
<tr>
<td>Order number with -G-</td>
<td></td>
</tr>
</tbody>
</table>

General 07/06
Kollmorgen
Technical data 6SM56..100-BV

<table>
<thead>
<tr>
<th>Data</th>
<th>Sym</th>
<th>Dim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Datum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standstill torque M_{0BV} Nm</td>
<td>M_{0BV}</td>
<td>4.8 9.2 13.2 14.0 23.0 31.0 36.0 53.0 69.0 84.0</td>
</tr>
<tr>
<td>Standstill current I_{0BV} A</td>
<td>I_{0BV}</td>
<td>3.6 6.3 10.0 10.7 17.1 22.0 27.1 39.3 52.2 62.2</td>
</tr>
<tr>
<td>Rated speed n_n min⁻¹</td>
<td>n_n</td>
<td>3000 3000 3000 3000 3000 3000 3000 3000 3000 3000</td>
</tr>
<tr>
<td>Torque constant $K_{T_{max}}$ Nm/A</td>
<td>$K_{T_{max}}$</td>
<td>1.33 1.45 1.32 1.31 1.35 1.41 1.33 1.35 1.32 1.35</td>
</tr>
<tr>
<td>Voltage constant K_{E} mV/min</td>
<td>K_{E}</td>
<td>114 124 113 112 115 121 114 116 113 115</td>
</tr>
<tr>
<td>Mains supply voltage U_n V</td>
<td>U_n</td>
<td>400</td>
</tr>
<tr>
<td>Rated torque at n_n M_{n} Nm</td>
<td>M_{n}</td>
<td>4.8 9.0 12.5 13.7 21.9 28.6 35.1 50.1 63.1 75.0</td>
</tr>
<tr>
<td>Rated current I_n A</td>
<td>I_n</td>
<td>3.8 6.5 9.8 10.8 16.8 21.0 27.1 38.1 49.1 57.2</td>
</tr>
<tr>
<td>Rated power P_n kW</td>
<td>P_n</td>
<td>1.5 2.8 3.9 4.3 6.9 9.0 11.0 15.7 19.8 23.6</td>
</tr>
<tr>
<td>Peak current I_{max} A</td>
<td>I_{max}</td>
<td>12.4 19.6 28.3 32.0 44.0 51.0 72.0 113.0 150.0 180.0</td>
</tr>
<tr>
<td>Motor pole no. p_{Mot}</td>
<td>p_{Mot}</td>
<td>6</td>
</tr>
<tr>
<td>Resolver pole no. p_{Res}</td>
<td>p_{Res}</td>
<td>2</td>
</tr>
<tr>
<td>Winding resistance Phase-Phase R_{ij} Ω</td>
<td>R_{ij}</td>
<td>9.4 4.0 1.8 1.65 0.8 0.57 0.46 0.22 0.16 0.12</td>
</tr>
<tr>
<td>Winding inductance Phase-Phase L_{ij} mH</td>
<td>L_{ij}</td>
<td>54.0 30.0 15.8 19.6 12.0 9.0 10.5 7.0 5.0 4.0</td>
</tr>
<tr>
<td>Insulation class</td>
<td></td>
<td>F, DIN 57530</td>
</tr>
<tr>
<td>Switch point thermal contact °C</td>
<td></td>
<td>145 ± 5</td>
</tr>
<tr>
<td>Design</td>
<td></td>
<td>IM B5 (V1, V3), DIN 42950</td>
</tr>
<tr>
<td>Rotor moment of inertia J kgcm²</td>
<td>J</td>
<td>5.2 10.0 15.0 20.0 31.0 42.0 74.0 108.0 141.0 175.0</td>
</tr>
<tr>
<td>Static friction torque M_s Nm</td>
<td>M_s</td>
<td>0.154 0.18 0.208 0.23 0.28 0.334 0.4 0.49 0.58 0.67</td>
</tr>
<tr>
<td>Radial load permitted at shaft end with n_n F_A N</td>
<td>F_A</td>
<td>530 700</td>
</tr>
<tr>
<td>Radial load permitted at shaft end with n_n F_A N</td>
<td>F_A</td>
<td>170 230</td>
</tr>
<tr>
<td>Tolerance class flange</td>
<td></td>
<td>N, DIN 42955</td>
</tr>
<tr>
<td>Vibration class</td>
<td></td>
<td>N, DIN ISO 2373</td>
</tr>
<tr>
<td>Thermal time constant t_{TH} min</td>
<td>t_{TH}</td>
<td>15 15 15 15 20 20 20 20 25 25</td>
</tr>
<tr>
<td>Weight incl. ventilator G kg</td>
<td>G</td>
<td>7.8 9.7 12.0 14.2 18.2 22.5 29.5 36.5 43.5 52.5</td>
</tr>
<tr>
<td>Order number motor</td>
<td></td>
<td>81682 81683 81753 81679 81754 81680 84855 84856 84876 84874</td>
</tr>
<tr>
<td>Order number -BV-</td>
<td></td>
<td>65079 65078 65078</td>
</tr>
<tr>
<td>EMV-RES connector</td>
<td></td>
<td>12 poles, round</td>
</tr>
<tr>
<td>RES cable, shielded</td>
<td></td>
<td>4x2x0.25</td>
</tr>
<tr>
<td>Power connection</td>
<td></td>
<td>M4 M6 M8</td>
</tr>
<tr>
<td>Motor cable, shielded</td>
<td></td>
<td>4x1.5 4x4 4x6 4x16</td>
</tr>
<tr>
<td>max. \varnothing of motor cable</td>
<td></td>
<td>15 20 28</td>
</tr>
<tr>
<td>max. \varnothing of braking cable</td>
<td></td>
<td>8 12.5</td>
</tr>
<tr>
<td>Holding torque M_{HS} Nm</td>
<td>M_{HS}</td>
<td>12 20 60</td>
</tr>
<tr>
<td>Operating voltage U_{HS} V=</td>
<td>U_{HS}</td>
<td>24 +6/-10%</td>
</tr>
<tr>
<td>electrical power P_{HS} W</td>
<td>P_{HS}</td>
<td>18 22 50</td>
</tr>
<tr>
<td>Moment of inertia J_{HS} kgcm²</td>
<td>J_{HS}</td>
<td>3.6 9.5 57.5</td>
</tr>
<tr>
<td>Release delay time t_{BRH} ms</td>
<td>t_{BRH}</td>
<td>30 - 60 30 - 60 20 - 60 70 - 160</td>
</tr>
<tr>
<td>Application delay time t_{BRL} ms</td>
<td>t_{BRL}</td>
<td>10 - 20 10 - 35 30 - 60</td>
</tr>
<tr>
<td>Weight of the brake G_{BR} kg</td>
<td>G_{BR}</td>
<td>1.1 1.9 5.4</td>
</tr>
<tr>
<td>Order number with -G-</td>
<td></td>
<td>81686 81867 81866 81865 81864 81863 84699 84857 84877 84875</td>
</tr>
<tr>
<td>Motor cable with brake, shielded</td>
<td></td>
<td>4x1.5 + 2x0.75 or 4x1.5 + 2x0.75 4x2.5 + 2x1</td>
</tr>
<tr>
<td>Separate braking cable</td>
<td></td>
<td>4x1.5 or 4x2.5</td>
</tr>
<tr>
<td>Operating voltage ventilator U_{BV} V</td>
<td>U_{BV}</td>
<td>230 (50-60 Hz)</td>
</tr>
<tr>
<td>Rated current ventilator I_{BV} A</td>
<td>I_{BV}</td>
<td>0.12 0.25</td>
</tr>
<tr>
<td>Connector</td>
<td></td>
<td>4 poles</td>
</tr>
<tr>
<td>Protection class with ventilator</td>
<td></td>
<td>IP54</td>
</tr>
</tbody>
</table>
2 Installation / Commissioning

2.1 Important notes

- Check that the servo amplifier and motor match each other. Compare the rated voltage and rated current of the unit. Carry out the wiring according to the wiring diagram in the Installation and Commissioning Instructions for the servo amplifier. The connections to the motor are shown on pages 24 and 33. Notes on the connection methods can be found on page 20.

- Ensure that there is proper earthing of the servo amplifier and the motor.

- Route the power and control cables as separately as possible from one another (separation > 20 cm). This will improve the immunity of the system to electromagnetic interference. If a motor power cable is used which includes integral brake control leads, then these brake control leads must be shielded. The shielding must be connected at both ends (see under Installation Instructions for the servo amplifier).

- Install all cables carrying a heavy current with an adequate cross-section, as per EN 60204. The recommended cross-section can be found in the Technical data.

Attention!

If a servo amplifier of the series SERVOSTAR is used and the motor cable exceeds 25m, a boxed choke (type 3YLNxx, manufactured by Danaher Motion) and motor leads with the following diameters must be used:

<table>
<thead>
<tr>
<th>Servo amplifier</th>
<th>Max. cable diameter</th>
</tr>
</thead>
<tbody>
<tr>
<td>digitas 7201...7206</td>
<td>4x1mm²</td>
</tr>
<tr>
<td>SERVOSTAR 601...606</td>
<td>4x1mm²</td>
</tr>
<tr>
<td>SERVOSTAR 610</td>
<td>4x1.5mm²</td>
</tr>
<tr>
<td>SERVOSTAR 620</td>
<td>4x2.5 mm²</td>
</tr>
</tbody>
</table>

- Connect up all shielding via a wide surface-area contact (low impedance) and metallized connector housings or EMC-PG glands.

- Check the compliance to the permitted radial and axial forces F_R and F_a. When you use a toothed belt drive, the minimal permitted diameter of the pinion e.g. follows from the equation: $d_{min} \geq \frac{M_0}{F_R} \times 2$.

- Ensure that there is adequate heat transfer in the surroundings and the motor flange, so that the maximum permissible flange temperature is not exceeded in S1 operation.

Caution!

Never undo the electrical connections to the motor while it is energised. A dangerous voltage, resulting from residual charge, can be still present on the capacitors up to 300 seconds after switch-off of the mains supply.

Measure the DC-link voltage and wait until it has fallen below 40V.

Even when the motor is not rotating, control and power leads may be live.
2.2 Assembly / Wiring

Only qualified staff with knowledge of mechanical engineering are permitted to assemble the motor.

Only staff qualified and trained in electrical engineering are allowed to wire up the motor.

The procedure is described as an example. A different method may be appropriate or necessary, depending on the application of the equipment.

\textit{Warning!}

\textit{Protect the motor from unacceptable stresses.}
\textit{Take care, especially during transport and handling, that components are not bent and that insulation clearances are not altered.}

\textit{Always make sure that the motors are de-energized during assembly and wiring, i.e. No voltage may be switched on for any piece of equipment which is to be connected.}

\textit{Ensure that the switch cabinet remains turned off (barrier, warning signs etc.). The individual voltages will only be turned on again during commissioning}

\textit{Note!}

\textit{The ground symbol \(\text{ground symbol}\), which you will find in the wiring diagrams, indicates that you must provide an electrical connection, with as large a surface area as possible, between the unit indicated and the mounting plate in the switch cabinet. This connection is to suppress HF interference and must not be confused with the PE (protective earth) symbol \(\text{PE symbol}\) (protective measure to EN 60204).}

\textit{To wire up the motor, use the wiring diagrams in the Installation and Commissioning Instructions of the servo amplifier which is used.}
The following notes should help you to carry out the assembly and wiring in an appropriate sequence, without overlooking anything.

Site

The site must be free of conductive and aggressive material. For V3-mounting (shaft end upwards), make sure that no liquids can enter the bearings. If an encapsulated assembly is required, please consult our applications department beforehand.

Ventilation

Ensure an unhindered ventilation of the motors and observe the permissible ambient and flange temperatures. For ambient temperatures above 40°C please consult our applications department beforehand.

Assembly

During assembly, take care that the motor is not overstressed when it is fixed in place.

Cable selection

Select cables according to EN 60204

See the table on page 17 when cable length exceeds 25m.

Earthing and Shielding

Use correct earthing and EMC-shielding according to the Installation Instructions for the servo amplifier which is used. Earth the mounting plate and motor casing. For connection methods see page 20

— Route power cables as separately as possible from control cables
— Connect the motor leads, install ring cores or motor chokes close to the servo amplifier, connect shields to shielding terminals or EMC connectors at both ends
— Connect the holding brake, if used, Connect shielding at both ends.
— Connect the separate fan, if used.

Wiring

Final check of the installed wiring, according to the wiring diagram which was used
2.2.1 Connection methods

- Carry out the wiring in accordance with the valid standards and regulations.
- Only use our preassembled shielded cables for the resolver connections.
- Connect up the shielding according to the wiring diagrams in the Installation Instructions for the servo amplifier.
- Incorrectly installed shielding inevitably leads to EMC interference.

In the table below you find all cables supplied by us. They are cUL approved. Further information referring to chemical, mechanical and electrical qualities can be received from our applications department.

Insulating material

- Sheathing: PUR (Polyurethane, identification 11Y)
- Core insulation: PETP (Polyesteraphthalate, identification 12Y)

Capacity

- Motor cable: less than 150 pF/m
- Resolver cable: less than 120 pF/m

Technical Data

- All cables are suitable for trailing.
- Technical data refer to mobile usage of cables.
- Life time: 1 Million bending cycles
- The temperature range refers to the operation temperature.
- Identification:
 - N = numbered cores
 - F = cores with colour code according to DIN 47100
 - () = shielding

<table>
<thead>
<tr>
<th>Cores [mm²]</th>
<th>Identification</th>
<th>Temperature range [°C]</th>
<th>Cable diameter [mm]</th>
<th>Bending radius [mm]</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4x1,0)</td>
<td>N</td>
<td>-30 / +80</td>
<td>10</td>
<td>100</td>
<td>Motor cable</td>
</tr>
<tr>
<td>(4x1,5)</td>
<td>N</td>
<td>-30 / +80</td>
<td>10,5</td>
<td>105</td>
<td></td>
</tr>
<tr>
<td>(4x2,5)</td>
<td>N</td>
<td>-30 / +80</td>
<td>12,6</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>(4x4)</td>
<td>N</td>
<td>-5 / +70</td>
<td>12,8</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>(4x6)</td>
<td>N</td>
<td>-5 / +70</td>
<td>16,1</td>
<td>160</td>
<td></td>
</tr>
<tr>
<td>(4x10)</td>
<td>N</td>
<td>-5 / +70</td>
<td>19,0</td>
<td>190</td>
<td></td>
</tr>
<tr>
<td>(4x16)</td>
<td>N</td>
<td>-5 / +70</td>
<td>23,3</td>
<td>235</td>
<td></td>
</tr>
<tr>
<td>(4x1,5)</td>
<td>N</td>
<td>-30 / +80</td>
<td>10,5</td>
<td>105</td>
<td>Braking cable</td>
</tr>
<tr>
<td>(4x2,5)</td>
<td>N</td>
<td>-30 / +80</td>
<td>12,6</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td>(4x1,0+(2x0,75))</td>
<td>F</td>
<td>-30 / +80</td>
<td>10,5</td>
<td>100</td>
<td>Motor cable with integral brake control leads</td>
</tr>
<tr>
<td>(4x1,5+(2x0,75))</td>
<td>N</td>
<td>-30 / +80</td>
<td>11,5</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>(4x2,5+(2x1))</td>
<td>F</td>
<td>-30 / +80</td>
<td>14,2</td>
<td>145</td>
<td></td>
</tr>
<tr>
<td>(4x2x0,25)</td>
<td>F</td>
<td>-30 / +80</td>
<td>7,7</td>
<td>70</td>
<td>Resolver cable</td>
</tr>
</tbody>
</table>
2.3 Commissioning

The procedure for commissioning is described as an example. A different method may be appropriate or necessary, depending on the application of the equipment.

Only specialist personnel with extensive knowledge in the areas of electrical engineering / drive technology are allowed to commission the drive unit of servo amplifier and motor.

Caution!

Check that all live connection points (terminal boxes) are safe against accidental contact. Deadly voltages can occur, up to 900V.

Never undo the electrical connections to the motor when it is live. The residual charge in the capacitors of the servo amplifier can produce dangerous voltages up to 300 seconds after the mains supply has been switched off.

The surface temperature of the motor can reach 100°C in operation. Check (measure) the temperature of the motor. Wait until the motor has cooled down below 40°C before touching it.

Make sure that, even if the drive starts to move unintentionally, no danger can result for personnel or machinery.

- Check the assembly and orientation of the motor.
- Check the drive components (clutch, gear unit, belt pulley) for the correct seating and setting (observe the permissible radial and axial forces).
- Check the wiring and connections to the motor and the servo amplifier. Check that the earthing is correct.
- Test the function of the holding brake, if used. (apply 24V, the brake must be released).
- Check whether the rotor of the motor revolves freely (release the brake, if necessary). Listen out for grinding noises.
- Check that all the required measures against accidental contact with live and moving parts have been carried out.
- Carry out any further tests which are specifically required for your system.
- Now commission the drive according to the commissioning instructions for the servo amplifier.
- In multi-axis systems, individually commission each drive unit (servo amplifier and motor).
This page has been deliberately left blank.
3 Drawings

3.1 Non-ventilated motors

3.1.1 Dimensions 6SM45..100

<table>
<thead>
<tr>
<th>Motor Type</th>
<th>q</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>j</th>
<th>k</th>
<th>m</th>
<th>n</th>
<th>p</th>
<th>q</th>
<th>q1</th>
<th>r</th>
<th>u</th>
<th>v</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>6SM45S–3000</td>
<td></td>
</tr>
<tr>
<td>6SM45M–3000</td>
<td></td>
</tr>
<tr>
<td>6SM45L–3000</td>
<td></td>
</tr>
<tr>
<td>6SM56S–3000</td>
<td>90</td>
<td>14</td>
<td>99</td>
<td>30</td>
<td>8</td>
<td>17</td>
<td>85</td>
<td>66</td>
<td>195</td>
<td>220</td>
<td>270</td>
<td>95</td>
<td>100</td>
<td>7</td>
<td>160</td>
</tr>
<tr>
<td>6SM56M–3000</td>
<td>95</td>
<td>19</td>
<td>115</td>
<td>40</td>
<td>3</td>
<td>8</td>
<td>22</td>
<td>85</td>
<td>66</td>
<td>255</td>
<td>295</td>
<td>330</td>
<td>103</td>
<td>115</td>
<td>9</td>
</tr>
<tr>
<td>6SM56L–3000</td>
<td>130</td>
<td>24</td>
<td>115</td>
<td>50</td>
<td>3,5</td>
<td>12</td>
<td>27</td>
<td>110</td>
<td>70</td>
<td>316</td>
<td>366</td>
<td>416</td>
<td>129</td>
<td>165</td>
<td>12</td>
</tr>
<tr>
<td>6SM71K–3000</td>
<td>180</td>
<td>32</td>
<td>115</td>
<td>58</td>
<td>4</td>
<td>13</td>
<td>42</td>
<td>150</td>
<td>135</td>
<td>367</td>
<td>415</td>
<td>463</td>
<td>174</td>
<td>215</td>
<td>14</td>
</tr>
<tr>
<td>6SM71S–3000</td>
<td>180</td>
<td>32</td>
<td>115</td>
<td>58</td>
<td>4</td>
<td>13</td>
<td>42</td>
<td>150</td>
<td>135</td>
<td>367</td>
<td>415</td>
<td>463</td>
<td>174</td>
<td>215</td>
<td>14</td>
</tr>
<tr>
<td>6SM71M–3000</td>
<td>180</td>
<td>32</td>
<td>115</td>
<td>58</td>
<td>4</td>
<td>13</td>
<td>42</td>
<td>150</td>
<td>135</td>
<td>367</td>
<td>415</td>
<td>463</td>
<td>174</td>
<td>215</td>
<td>14</td>
</tr>
<tr>
<td>6SM100K–3000</td>
<td>180</td>
<td>32</td>
<td>115</td>
<td>58</td>
<td>4</td>
<td>13</td>
<td>42</td>
<td>150</td>
<td>135</td>
<td>367</td>
<td>415</td>
<td>463</td>
<td>174</td>
<td>215</td>
<td>14</td>
</tr>
<tr>
<td>6SM100S–3000</td>
<td>180</td>
<td>32</td>
<td>115</td>
<td>58</td>
<td>4</td>
<td>13</td>
<td>42</td>
<td>150</td>
<td>135</td>
<td>367</td>
<td>415</td>
<td>463</td>
<td>174</td>
<td>215</td>
<td>14</td>
</tr>
<tr>
<td>6SM100M–3000</td>
<td>180</td>
<td>32</td>
<td>115</td>
<td>58</td>
<td>4</td>
<td>13</td>
<td>42</td>
<td>150</td>
<td>135</td>
<td>367</td>
<td>415</td>
<td>463</td>
<td>174</td>
<td>215</td>
<td>14</td>
</tr>
<tr>
<td>6SM100L–3000</td>
<td>180</td>
<td>32</td>
<td>115</td>
<td>58</td>
<td>4</td>
<td>13</td>
<td>42</td>
<td>150</td>
<td>135</td>
<td>367</td>
<td>415</td>
<td>463</td>
<td>174</td>
<td>215</td>
<td>14</td>
</tr>
</tbody>
</table>

3.1.2 Radial-axial force at the shaft end

\[F_A = F_R / 3 \]
3.1.3 Wiring diagram 6SM45..100

Top view build-in plug Resolver

Top view terminal box power

Resolver

Rd-WH
Bk-WH
Bk
Rd
Ye
Bl

9 WH
8 GY
7 GN
6 RD
3 YE
2 BU
1 RD

SubD9

R1
R2
S1 sine
S2 cosine

Servostar™600

Digital® or

Thermal protection

+ Ring core only for digital®

6SM 45..100

U1
U2
V1
V2
W1
W2
B+
B-
Brake

PE
Brake

XGND

Connector round, 12-poles

Shield connected to metallic cover

4 x 2 x 0.25 shielded, twisted pairs on request max. 100m

Sub-D connector 9-poles

Shield connected to metallic cover

Length	Mat. No.
5m | 84972
10m | 84973
15m | 84974
20m | 84975

Res. cable f. 6SM with connector

Colour coding acc. to IEC 757
3.1.4 Torque characteristics 6SM45S-3000

Legend:
X-axis: speed [min⁻¹]
Y-Axis: torque [Nm]
1: Performance curve
2: cut-off characteristic \(M(n) \)
3: rated speed \(n_r \)

3.1.5 Torque characteristics 6SM45M-3000

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic \(M(n) \)
3: Rated speed \(n_r \)
3.1.6 Torque characteristics 6SM45L-3000

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic M(n)
3: Rated speed n₀

3.1.7 Torque characteristics 6SM56S-3000

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic M(n)
3: Rated speed n₀
3.1.8 Torque characteristics 6SM56M-3000

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic M(n)
3: Rated speed nₚ

3.1.9 Torque characteristics 6SM56L-3000

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic M(n)
3: Rated speed nₚ
3.1.12 Torque characteristics 6SM71M-3000

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic M(n)
3: Rated speed n₀

3.1.13 Torque characteristics 6SM100K-3000

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic M(n)
3: Rated speed n₀
3.1.14 Torque characteristics 6SM100S-3000

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic M(n)
3: Rated speed n₀

3.1.15 Torque characteristics 6SM100M-3000

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic M(n)
3: Rated speed n₀
3.1.16 Torque characteristics 6SM100L-3000

Legend:
1: Performance curve
2: Cut-off characteristic M(n)
3: Rated speed n_r

X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
3.2 Ventilated motors

3.2.1 Dimensions 6SM56..100-BV

Dimensions are the same with built-in brake

<table>
<thead>
<tr>
<th></th>
<th>a₀</th>
<th>bₐ₆</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>j</th>
<th>k</th>
<th>m</th>
<th>n</th>
<th>p</th>
<th>q</th>
<th>q₁</th>
<th>q₃</th>
<th>r</th>
<th>u</th>
<th>v</th>
<th>w</th>
</tr>
</thead>
<tbody>
<tr>
<td>6SM56S–3000–BV</td>
<td>95</td>
<td>19</td>
<td>130</td>
<td>40</td>
<td>3</td>
<td>8</td>
<td>22</td>
<td>85</td>
<td>66</td>
<td>411</td>
<td>451</td>
<td>491</td>
<td>103</td>
<td>115</td>
<td>9</td>
<td>212</td>
<td>229</td>
<td>252</td>
<td>269</td>
<td>292</td>
</tr>
<tr>
<td>6SM56M–3000–BV</td>
<td>130</td>
<td>24</td>
<td>180</td>
<td>50</td>
<td>3,5</td>
<td>12</td>
<td>27</td>
<td>110</td>
<td>70</td>
<td>503</td>
<td>553</td>
<td>603</td>
<td>129</td>
<td>165</td>
<td>12</td>
<td>273</td>
<td>290</td>
<td>323</td>
<td>340</td>
<td>373</td>
</tr>
</tbody>
</table>

3.2.2 Radial/axial force at the shaft end

\[F_A = \frac{F_R}{3} \]
3.2.3 Wiring diagram 6SM56..100-BV

Top view
build-in plug
Resolver

Top view
terminal box
power

Connector ventilator

View to contacts
of build-in plug

connector round, 12-poles

Shield connected to
metallic cover

4 x 2 x 0.25
shielded, twisted pairs
on request max. 100m

Sub-D connector 9-poles

Shield connected to
metallic cover

Colour coding acc. to IEC 757

Servo Motors 6SM45..100
3.2.4 Fan connection

Strip off the outer insulation of the cable over a length of 35mm. Push the parts 1, 2, and 3 of the PG7 connection onto the cable.

Push the O-Ring 5 onto the thread of part 4 of the PG7 connection and screw part 4 into the plug housing 6, using an open-ended spanner (15 a/f).

Push the rubber ring 3 into the strain relief 2. Push the cable so far through the hole into the plug housing 6 that about 1mm is visible. Screw up the PG with an open-ended spanner (13 a/f).

Strip off the ends of the cores over a length of 7mm and solder them to the contact inserts 7. Push the rubber seal 9 and the O-ring 10 onto the insert 11. Push the insert 11 into the plug housing 8. Screw part 12 right up to the stop with an open-ended spanner (17 a/f). Push the contact inserts from the left into the insert, observing the correct core colour (use appropriate pliers), until they snap into position.

Fit parts 6 und 8 together and screw them together with the three screws 15. Compress the spring ring 13 lightly and push on the knurled sleeve 14, until it snaps into position.
3.2.5 Torque characteristics 6SM56S-3000-BV

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic \(M(n) \)
3: Rated speed \(n_n \)

3.2.6 Torque characteristics 6SM56M-3000-BV

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic \(M(n) \)
3: Rated speed \(n_n \)
3.2.7 Torque characteristics 6SM56L-3000-BV

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic $M(n)$
3: Rated speed n_n

3.2.8 Torque characteristics 6SM71K-3000-BV

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic $M(n)$
3: Rated speed n_n
3.2.9 Torque characteristics 6SM71S-3000-BV

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic M(n)
3: Rated speed n₀

3.2.10 Torque characteristics 6SM71M-3000-BV

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic M(n)
3: Rated speed n₀
3.2.11 Torque characteristics 6SM100K-3000-BV

Legend:
- X-Axis: Speed [min⁻¹]
- Y-Axis: Torque [Nm]
- 1: Performance curve
- 2: Cut-off characteristic M(n)
- 3: Rated speed n_r

3.2.12 Torque characteristics 6SM100S-3000-BV

Legend:
- X-Axis: Speed [min⁻¹]
- Y-Axis: Torque [Nm]
- 1: Performance curve
- 2: Cut-off characteristic M(n)
- 3: Rated speed n_r
3.2.13 Torque characteristics 6SM100M-3000-BV

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic M(n)
3: Rated speed n_r

3.2.14 Torque characteristics 6SM100L-3000-BV

Legend:
X-Axis: Speed [min⁻¹]
Y-Axis: Torque [Nm]
1: Performance curve
2: Cut-off characteristic M(n)
3: Rated speed n_r
4 Appendix

4.1 Delivery package, transport, storage, maintenance, disposal

Delivery package: — Motor from the 6SM45..100 series
 — Technical description (documentation), 1 copy per delivery
 — Motor package leaflet (short info)

Transport: — Climate category 2K3 to EN 50178
 Transport temperature—25...+70°C, max. 20K/hr change
 Transport humidity rel. humidity 5% - 95%, no condensation
 — only by qualified personnel
 — only in the manufacturer’s original recyclable packaging
 — avoid shocks
 — if the packaging is damaged, check the motor for visible damage.
 Inform the carrier and, if appropriate, the manufacturer.

Packaging:

<table>
<thead>
<tr>
<th>Motor type</th>
<th>Carton</th>
<th>Pallet or skeleton box</th>
<th>Max. stacking height</th>
</tr>
</thead>
<tbody>
<tr>
<td>6SM45</td>
<td>X</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>6SM56</td>
<td>X</td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>6SM71K/71S</td>
<td>X</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6SM71M</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>6SM100</td>
<td>X</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

Storage: — Climate category 1K4 to EN 50178
 Storage temperature —25...+55°C, max. variation 20K/hr.
 Humidity rel. humidity 5% - 95%, no condensation
 — only in the manufacturer’s original recyclable packaging
 — max. stacking height see table under Packaging
 — Storage time unlimited

Maintenance: — Only by qualified personnel
 — The ball bearings have a grease packing which is adequate for
 20,000 hours of operation under normal conditions. The bearings
 should be replaced after 20,000 hours of operation under rated
 conditions.
 — Check the motor for bearing noise every 2500 operating hours,
 respectively each year. If any noises are heard, then the operation
 of the motor must stop, the bearings must be replaced.
 — Opening the motor invalidates the warranty.

Cleaning: — If the housing is dirty: clean with Isopropanol or similar.
 do not immerse or spray
 — If a separate fan is fitted: check the fan mesh for dirt twice a year.
 If necessary, clean the mesh with a brush.

Disposal: — The disposal should be carried out by a certified disposal company.
 Ask us for addresses.
4.2 Fault-finding

The following table is to be seen as a “First Aid” box. There can be a large number of different reasons for a fault, depending on the particular conditions in your system. The fault causes described below are mostly those which directly influence the motor. Peculiarities which show up in the control loop behaviour can usually be traced back to an error in the parameterization of the servo amplifier. The documentation for the servo amplifier and the operator software provides information on these matters.

For multi-axis systems there may be further hidden reasons for faults. Our applications department can give you further help with your problems.

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible cause</th>
<th>Measures to remove the cause of the fault</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor doesn’t rotate</td>
<td>— servo amplifier not enabled</td>
<td>— Supply ENABLE signal</td>
</tr>
<tr>
<td></td>
<td>— Break in setpoint lead</td>
<td>— Check setpoint lead</td>
</tr>
<tr>
<td></td>
<td>— Motor phases in wrong sequence</td>
<td>— Correct the phase sequence</td>
</tr>
<tr>
<td></td>
<td>— Brake not released</td>
<td>— Check brake controls</td>
</tr>
<tr>
<td></td>
<td>— Drive is mechanically blocked</td>
<td>— Check mechanism</td>
</tr>
<tr>
<td>Motor runs away</td>
<td>— Motor phases in wrong sequence</td>
<td>— Correct the phase sequence</td>
</tr>
<tr>
<td></td>
<td>— ROD cable faulty or not properly plugged in (for option -IL-)</td>
<td>— Check ROD/SSI cable</td>
</tr>
<tr>
<td>Motor oscillates</td>
<td>— Break in the shielding of the resolver cable</td>
<td>— Replace resolver cable</td>
</tr>
<tr>
<td></td>
<td>— amplifier gain too high</td>
<td>— use motor default values</td>
</tr>
<tr>
<td>Error message: brake</td>
<td>— Short-circuit in the supply voltage lead to the motor holding brake</td>
<td>— Remove the short-circuit</td>
</tr>
<tr>
<td></td>
<td>— Faulty motor holding brake</td>
<td>— Replace motor</td>
</tr>
<tr>
<td>Error message: output stage fault</td>
<td>— Motor cable has short-circuit or earth short</td>
<td>— Replace cable</td>
</tr>
<tr>
<td></td>
<td>— Motor has short-circuit or earth short</td>
<td>— Replace motor</td>
</tr>
<tr>
<td>Error message: resolver</td>
<td>— Resolver connector is not properly plugged in</td>
<td>— Check connector</td>
</tr>
<tr>
<td></td>
<td>— Break in res. cable, cable crushed or similar</td>
<td>— Check cables</td>
</tr>
<tr>
<td>Error message: motor temperature</td>
<td>— Motor thermostat has switched</td>
<td>— Wait until the motor has cooled down. Then investigate why the motor becomes so hot.</td>
</tr>
<tr>
<td></td>
<td>— Loose resolver connector or break in resolver cable</td>
<td>— Check connector, replace resolver cable if necessary</td>
</tr>
<tr>
<td>Brake does not grip</td>
<td>— Required holding torque too high</td>
<td>— Check the dimensioning</td>
</tr>
<tr>
<td></td>
<td>— Brake faulty</td>
<td>— Replace motor</td>
</tr>
<tr>
<td></td>
<td>— Motor shaft axially overloaded</td>
<td>— Check the axial load, reduce it. Replace motor, since the bearings have been damaged</td>
</tr>
</tbody>
</table>
4.3 Index

A
- Ambient temperature 9
- Assembly 19
- Axial force 10
- Axial force, diagram 23

B
- Break response times 13

C
- Commissioning 21
- Connection method 11
- Coupling 10

D
- Delivery package 41
- Dimensions 23
- Disposal 41

E
- Earthing 19

F
- Fan connection 34
- Feedback unit 11
- Flange temperature 9

H
- Holding brake 11

I
- Insulation material class 11

M
- Maintenance 41
- Manufacturer declaration 8
- Motor lead 20

N
- Nameplate 12

O
- Options 12

P
- Peak current 13
- Power derating 9
- Protection class 10
- Protective device 10

R
- Radial force 10
- Radial force, diagram 23
- Rated current 13
- Rated torque 13
- Resolver 11
- Resolver lead 20
- Rotor moment of inertia 13

S
- Safety notes 6
- Separate fan 12
- Servo amplifier 9
- Shielding 19
- Site ... 19
- Standstill current 13
- Standstill torque 13
- Storage 41
- Storage humidity 41
- Storage temperature 41
- Storage time 41
- Style 10

T
- Technical data 14
- Thermal time constant 13
- Thermostat 10
- Torque constant 13
- Transport 41

V
- Ventilation 19
- Vibration class 11
- Voltage constant 13

W
- Wiring 19
- Wiring diagram 24
Sales and Service

We are committed to quality customer service. In order to serve in the most effective way, please contact your local sales representative for assistance. If you are unaware of your local sales representative, please contact us.

Europe

Visit the European Danaher Motion web site at www.DanaherMotion.net for Setup Software upgrades, application notes, technical publications and the most recent version of our product manuals.

Danaher Motion Customer Support - Europe
Internet www.DanaherMotion.net
E-Mail support@danahermotion.net
Phone: +49(0)203 - 99 79 - 0
Fax: +49(0)203 - 99 79 - 155

North America

Visit the North American Danaher Motion web site at www.DanaherMotion.com for Setup Software upgrades, application notes, technical publications and the most recent version of our product manuals.

Danaher Motion Customer Support North America
Internet www.DanaherMotion.com
E-Mail customer.support@danahermotion.com
Phone: (815) 226 - 2222
Fax: (815) 226 - 3148