
StepperBASIC

Programming Reference Manual

for use with 5645/5445/5345 Microstep Indexer

Rev F

AUTOMATION TECHNOLOGY GROUP

MOTION TECHNOLOGY DIVISION

110 Fordham Road
Wilmington, MA 01887

(978) 988-9800
Fax (978) 988-9940

Part# 903-564502-03
List Price $65 U.S.

August, 1997
Rev F

Table of Contents...

1 Conventions 1-1

1.1 Variable Names . 1-1

1.2 Characters . 1-3

1.3 Operators Used in Programming . 1-4

1.4 Constants . 1-6

1.5 Notation Conventions . 1-7

1.6 StepperBASICTM Instruction Types . 1-8

1.7 Interface Requirements . 1-10

1.7.1 Setting Up Communications . 1-10

1.8 Programming . 1-14

1.8.1 Programming Modes . 1-14

1.8.2 Program Memory and Filing . 1-15

1.8.3 Writing and Editing Programs in StepperBASIC 1-15

1.8.4 Writing and Editing Programs Using the Screen Editor 1-17

1.8.5 Program Header . 1-18

1.9 Error Messages . 1-20

1.9.1 Syntax Errors . 1-20

1.9.2 Runtime Errors . 1-22

1.9.3 System Errors . 1-23

2 Using StepperBASIC Functions 2-1

2.1 Scan Functions . 2-1

2.1.1 Setting the SCAN Trigger Condition 2-2

2.1.2 Setting the SCAN Output Action 2-2

2.1.3 Enabling and Disabling SCANs 2-3

2.2 Homing Routines . 2-4

2.3 Using the Software Overtravel Limit Function 2-4

2.3.1 Setting up the Software Overtravel Function 2-5

2.4 Using the Position Check Function . 2-7

StepperBASIC Reference Manual Rev F

2.5 Using the Position Verification and Correction Function 2-10

2.6 Stall Detection Function . 2-13

2.7 Using the WHEN Statement . 2-17

2.8 Electronic Gearing . 2-19

2.9 Making the Motor Move . 2-23

2.9.1 Descriptions of Motion Statements 2-25

2.10 Registration Functionality . 2-29

3 StepperBASIC Instructions 3-1

4 Quick Reference 4-1

Appendix A ASCII Codes A-1

Appendix B Input Statements B-1

Index

Rev F StepperBASIC Reference Manual

1 Conventions

Introduction This chapter contains a summary of conventions used with Pacific
Scientific StepperBASIC™. Topics covered are:

• Variable names

• Characters

• Operators used in programming

• Constants

• Notation conventions

• StepperBASIC instruction types

• Getting started

• Programming

• Error messages

1.1 Variable Names

Introduction Variables areused with BASIC functions and statements for
general programming tasks. There are three basic types of
variables:

• INTEGER

• FLOAT

• FLAG

Variable names are the values acted upon by functions. The
variables are predefined or user-defined.

Note: Variable names are not case sensitive.

Type of Variable Characteristic

Integer 4 byte 2’s complement

Float 4 byte IEEE single precision

Flag single bit flag

Rev F StepperBASIC Reference Manual 1 - 1

These three types of variables are organized into two groups:

• Global - meanings and usage defined by Real Time Software

• User - available for user-defined purposes

All three types occur in both groups. Unlike standard BASIC,
Pacific Scientific StepperBASIC variable names are pre-defined.

Note: No variable names other than pre-defined names may be
used. Arrays maynot be used.

Examples

Type of Variable Pre-defined Names

Integer INT1, INT2, INT3, ..., INT32

Floating point FLT1, FLT2, FLT3, ..., FLT32

Flag FLG1, FLG2, FLG3, ..., FLG8

Global variables Global variables are used to communicate with Real Time
Software. The Real Time Software is that part of the software
which directly controls the motion of the motor. Values of global
variables can be set to control the operation of the motor when
used in conjunction with other commands such as theCALL
command. Other global variables report the current status of
various aspects of motor operation.

Some Global variables areRead-Only. This means that the value
of these variables cannot be changed by the user directly. For
instance, the variable namedINPUTS is the current state of
discrete inputs. This value can be printed or used in an
expression, but a new value cannot be assigned toINPUTS by a
Pacific Scientific StepperBASIC program. The only way to
change the value ofINPUTS is to actually change the voltage
level at the connector pins used for the discrete inputs.

Note: Global variables are treated the same as user variables
within expressions and programs.

1 - 2 StepperBASIC Reference Manual Rev F

1.2 Characters

Along with Pacific Scientific StepperBASIC instructions,
alphabetic and numeric characters are used in creating programs.

Alphabetic Any alphabetic character is legal in StepperBASIC. Program
instructions arenot case sensitive. Alpha characters may be typed
in either upper or lower case. StepperBASIC processes all text in
upper case after compilation. The drive does not recognize case
when the text is part of a string, that is text bracketed by quotes
for printout or display.

Numeric The digits 0 through 9 are legal for use in StepperBASIC.

Character Name Example

Space PRINT “Hello”, “ ”, FLT1

= Equal sign of
assignment symbol

FLT1 = VELOCITY

+ Plus sign INT1 = INT2 + 3

- Minus sign INT1 = RUN.SPEED - 100

∗ Asterisk or
multiplication symbol

FLT1 = 6.28 * FLT3

/ Slash or division
symbol

FLT1 = INDEX.DIST/4096

< > Not equal IF VELOCITY < > 0 GOTO 100

< Less than IF VELOCITY < 100 GOTO 10

> Greater than IF POSITION > 0 GOTO 10

(Open parenthesis
INT1 = 3 * (INT2 ∗ INT3)

) Closed parenthesis

, Comma PRINT FLT1, FLT2

; Semicolon PRINT “No line feed”;

” Quote

. Period, dot or
decimal point

ACCEL.RATE = 10

‘ Single quote ‘This is a comment

Rev F StepperBASIC Reference Manual 1 - 3

1.3 Operators Used in Programming

Introduction The operators used by StepperBASIC arearithmetic, relational
and logical, and are evaluated in that order of precedence.
However, operations within parentheses are performed first.
Inside the parentheses the usual order of precedence occurs.

Arithmetic The arithmetic operators are:

Arithmetic Operator Description of
Operation

Example

- (one variable) Negation of value -3

∗, / Multiplication/Division 4.21∗3, 10.5/2

+ , - (two variables) Addition/Subtraction 27 + 8, 19 -2

Note: When multiple arithmetic operators are used in an
expression, they are performed in the order of precedence given in
the table; that is, multiplication is performed before addition, and
so on. Also, integer division is not supported.

Example Precedence may be altered by the use of parentheses. For example:

INT1 = 2 + 3 ∗ 5

will assign the value 17 (2 + 15) to the variableINT1 . The
statement:

INT1 = (2 + 3) ∗ 5

will assign the value 25 (5∗ 5) to the variableINT1 .

1 - 4 StepperBASIC Reference Manual Rev F

Relational Relational operators are used inIF-THEN-ELSE , WHILE-WEND,
andFOR-NEXTstatements. The result of a comparison of two
values with these relational operators is recorded by Pacific
Scientific StepperBASIC as either true or false. The relational
operators are:

Relational
Operator

Description of
Operation Example

= Equality 10 IF INT1 = 9 THEN 20

< > Inequality 50 IF FLT1 < > 9 THEN 15

< Less than 30 IF INT2 < 151 THEN 100

> Greater than 10 IF FLT1 > INT2 THEN 20

<= Less than or
equal to

10 IF FLT1 <= INT2 THEN 20

>= Greater than or
equal to

10 IF INT3 >= INT5 THEN 20

Note: Arithmetic operators are performed before relational
operators in an executing program line. Relational operators are
performed in the order of precedence shown in the table.

Rev F StepperBASIC Reference Manual 1 - 5

Logical Logical operators are used inIF-THEN-ELSE , WHILE-WEND,
andFOR-NEXTstatements. The logical operators are:

Logical
Operator Description of Operation Example

NOT Condition must not be
true

NOT FLG1

AND Both conditions must be
true

FLG2 AND (INT2 = 5)

OR Either or both conditions
must be true

FLG1 OR DIR

XOR Either butnot both
conditions must be true

FLG5 XOR FLG6

Note: Logical operators are performed in the order of
precedence given in the table. Arithmetic operators are evaluated
before relational operators.

1.4 Constants

Introduction Two types of constants may be used with Pacific Scientific
StepperBASIC:

• String constants

• Numeric constants

String These constants are used withPRINT andINPUT statements. A
string constant is a sequence of alphanumeric characters enclosed
within quotation marks.

Example “Hello There”

“3.14159”

1 - 6 StepperBASIC Reference Manual Rev F

Numeric These constants are used in numeric expressions, in assignment
statements and in print statements. There are two types of
numeric constants:

• integer

• float

Integer Numbers with no values to the right of the decimal point.

Float Numbers with values to the right of the decimal point.

1.5 Notation Conventions

The following notation conventions are used in this manual when
explaining StepperBASIC language use.

Notation Named Indicates

<return> “return” surrounded by
angle brackets

the user should press the carriage return
key on the keyboard

[] square brackets the entry within the brackets is optional

... three dots the entry may be repeated multiple times

CAPS capital letters (upper
case)

entries which must be entered exactly as
shown

lc lower case letters user-supplied information

Caps/lc bold typeface capital
and lower case letters

information sent to the terminal screen

/ slash (preceding a
computer command)

a global command or an address
command within a global command

: colon separation between multiple commands
entered on the same line

^C control C stops operation of program

/^C slash, control C a global control C (used to stop all
programs in all controllers)

Rev F StepperBASIC Reference Manual 1 - 7

1.6 StepperBASIC Instruction Types

Introduction Pacific Scientific StepperBASIC consists of programming
statements or functions, and arithmetic operations permitted in the
BASIC programming language. A complete list of these
instructions is given in Section 4, “Quick Reference,” of this
manual.

Statements Statements are of two types,BASICandStepperBASIC:

• BASICstatements control the flow of instructions within a
program. They direct the execution of functions, for example
comparing function results and going to specific points in the
program based on the comparison, prompting for input,
printing results of functions, and so on. An example of a
BASIC statement is:

GOTO 100

• Pacific Scientific StepperBASICstatements control the motion
of the motor in real time. Motion statements command the
motor to move at constant velocity, to move at a specified
position, etc. An example of a Pacific Scientific
StepperBASIC statement is:

GO.ABS

Commands Commands normally operate on the program currently residing in
the controller’s memory and are not normally used within a
program. In general, if a command is used in a program the
command will operate properly but the program will be stopped.
For example, if theLIST command appears in a program, the
program will stop operating and list the program. An example of
a command is:

DELETE 120 - 300

1 - 8 StepperBASIC Reference Manual Rev F

Functions BASIC functions perform a computation and return a value that
can be used in arithmetic expressions. For example, BASIC
functions convert decimal numbers to integers and convert an
ASCII code to its equivalent screen display character. An
example of a function is:

INT1 = INKEY()

Pre-defined
variable types

Variables arethe values acted upon by functions, or as the result
of arithmetic operations. Variables can be further categorized as
Read/Write (R/W) or Read Only (R/O). Pre-defined variables are
reserved for use with specific Pacific Scientific functions. These
pre-defined variables are either:

• Floating points— numbers with values to the right of the
decimal place. Used with functions that require decimal
numbers, for example theVELOCITY variable contains the
motor speed in revolutions-per-minute.

or

• Integers— integers used with functions that require integers,
for example the number of steps to move the motor. Some
pre-defined variables are read-only, that is they cannot be
altered from the keyboard or by the program. TheINPUTS
variable, for instance, is dependent solely on the state of the
programmable inputs at the connector interface and cannot be
altered from the keyboard.

Parameters The 5xx5 Indexer/Drive contain a large number of pre-defined
parameters which specify constraints on motion control and mode
control functions. Parameters are functionally analogous to
variables except once set, they typically remain constant.

Rev F StepperBASIC Reference Manual 1 - 9

1.7 Interface Requirements

Terminal types: You can select two types of interface terminal for controlling the
unit.

Display-only A display-only “dumb” terminal allows you to type programs and
commands, but will not save programs externally (the program can
be saved in the drive memory).

Note: The T-10C terminal, available from Pacific Scientific, is a
display-only terminal that allows you to enter values and run
downloaded programs.

Computer A computer terminal allows you to save and work on programs
externally from the controller. In addition, you can use utilities
such as the PacCom Toolkit for editing programs, downloading
programs, and terminal emulation. An example of this type of
terminal is an IBM AT PC.

Terminal
requirements

The requirements for the terminal are:

• RS-232, RS-485, or RS-422 serial communication on board

• 9600 baud transmission rate

1.7.1 Setting Up Communications

Introduction This section covers downloading programs and terminal emulation
using the communications utilities in the PacCom Toolkit.

PacCom
installation
procedure

1. With power disconnected from the unit, verify that the power
and earth ground connections to J1 are correctly installed.

2. Disconnect the 9-pin connector from J7 to ensure that the
enable input is disconnected.

3. Set up the PC for terminal emulation:

a. Turn On the computer.

b. Load MS-DOS boot up.

1 - 10 StepperBASIC Reference Manual Rev F

Note: User keyboard entries are indicated in boldface, and
individual key presses, such as <enter>, are in brackets. Prompts
and selections displayed in the StepperBASIC program are
enclosed in quotes.

c. Insert the PacComTM diskette in the A drive, then type
A:<enter> to select drive A.

4. Load PacCom, version 3.1 or higher. For further information,
refer to the PacCom Software Toolkit Instruction Manual.

a. Typepaccom <enter>. The Main Menu is displayed.

b. Press<enter> at “Select Hardware.”

c. Use the arrows to move to “5645.”

Note: This selection is also appropriate for the 5345/5445.

d. Press<enter>.

e. Use arrows to move to “Terminal Emulator”, then press
<enter>.

5. Power up the unit per the RS-232 or RS-422/RS-485 procedure.

Power up
procedure -
RS-232

Perform the following procedure for single units controlled from
the terminal under RS-232.

1. Apply power to the controller.

2. Verify that the POWER status indicator on the drive front
panel is On.

3. Verify that the PC display shows the following (versions
higher than 2.3 are acceptable):

Pacific Scientific

Charlestown, MA

StepperBASIC Version X.X

Copyright © 1988. 1991

OK

Program Loaded Properly

Variables Loaded into RAM

Rev F StepperBASIC Reference Manual 1 - 11

Pack Function Executing ...

Pack Function Done.

where (X.X) is the Version Number

6. Verify operation by typing the following:

RUN.SPEED = 10<enter>

DIR = 0 <enter>

GO.VEL <enter>

The motor rotates slowly (10 RPM) in the clockwise direction.

7. Stop motor motion by pressing the<Ctrl> and<c> keys.

Continue testing and programming as appropriate for your
application.

8. Press the<Ctrl><e> keys to return to the PacCom Main
Menu for access to other PacCom tools.

Upon successful completion of these procedures, the unit is
ready to be programmed.

Power up
procedure -
RS-422/RS-485

Perform the following procedure for multiple unit control under
RS-422/RS-485. Follow the steps outlined here to log onto and
test each indexer/drive individually.

1. Apply power to all indexer/drives.

2. Verify that the POWER status indicator on each drive front
panel is On. No cursor or message is displayed on the PC
screen when operating under RS-422/RS-485.

3. Type/x <enter> with the address for the first unit for log on
in the x position.

For example, to log on to a drive with address 1, type/ 1
<enter>.

Note: Unique addresses must be set for each unit on the bus.
If incorrect or duplicate addresses are set, erratic
performance will occur. Refer to Section 2.6.2, ”Setting Up
Serial Addresses Using Switch S2”, in the Installation Manual
to set addresses.

1 - 12 StepperBASIC Reference Manual Rev F

4. The OK prompt is displayed. If you do not see this prompt,
check:

- that you set a unique address

- that you logged on to a valid address

- that the serial cable is properly installed

- the PacCom steps used in setting up the PC

Caution
Do not continue with this procedure until proper serial link

communication has been established.

5. Make sure that the Enable input J7-5 is open and plug the
9-pin connector cable into J7.

6. Enable the drive by connecting Enable J7-5 to ground.Be
ready to disconnect the Enable from ground quickly if
there is unwanted motion or excessive noise from the
motor.

7. Verify operation by typing the following:

RUN.SPEED= 10 <enter>

DIR = 0 <enter>

GO.VEL <enter>

The motor rotates slowly (10 RPM) in the clockwise direction.

8. Stop motor motion by pressing<Ctrl> <c> .

9. Repeat steps 3 to 8 for the other indexer/drives in your
installation.

10. Press<Ctrl> <e> to return to the PacCom Main Menu.

Upon successful completion of these procedures, the
indexer/drive is ready to be programmed.

Rev F StepperBASIC Reference Manual 1 - 13

1.8 Programming

Introduction The Pacific Scientific 5xx5 Indexer/Drives control motor velocity
and position. The user interacts with the controller via a computer
or a standard “dumb” terminal. The computer or terminal is
connected to the controller by one of two serial communications
ports:

• RS-232

• RS-485

Using the computer or terminal, they user may “talk” to the
controller by:

• entering BASIC commands via a programming language
(StepperBASIC) similar to standard “BASIC” computer
programming language.

• executing a StepperBASIC program stored in the memory of
the controller by typingRUN<return>.

Note: The controller can hold only one program and has no file
system.

1.8.1 Programming Modes

Mode types StepperBASIC operates in one of two possible modes,Immediate
or Program.

Immediate In the immediate mode, statements and commands are executed
when you press <enter> at the end of a line. Results are displayed
immediately, but the instructions cannot be recalled or stored after
they have been used. Use this mode when storing a program is not
needed; for instance, during installation you would typeGO.VEL
<enter> to check the motor for excessive vibration. The motor
runs at default velocity until you typeSTOP<enter>.

Program The program mode is the program writing and running mode of
the indexer/drive. This mode requires StepperBASIC instructions
preceded by line numbers. To run the program you must enter the
RUNcommand. Programs created are savable and can be recalled
for repeated use.

1 - 14 StepperBASIC Reference Manual Rev F

1.8.2 Program Memory and Filing

Introduction The drive has two types of memory,RAMandnon-volatile
battery-backed RAM. The unit operates out of RAM; non-volatile
battery-backed RAM is used for storage (SAVEandSAVEVAR) or
program retrieval (LOADandLOADVAR):

RAM memory The drive uses RAM memory for programming and running in the
direct mode. This memory isvolatile, that is, it is only available
when the unit has power, and it is lost if power is removed from
the system.

12K (12000 bytes) of memory is available for programming.

Non-volatile

battery-backed

RAM

The drive uses non-volatile battery-backed RAM memory for
program storage. This memory isnon-volatile, meaning that it is
retained if power is removed from the drive.

12K (12000 bytes) of memory is available for storage.

Note: As an alternative, you may choose to upload to PacCom for
storage (if using a computer for terminal emulation).

1.8.3 Writing and Editing Programs in StepperBASIC

Line format StepperBASIC programs are comprised of lines of instructions,
each starting with a line number and ending when <enter> is
pressed. Line numbers are usually in increments of 10 (10, 20, 30,
and so on), to allow you to insert lines that may have been
overlooked without renumbering all subsequent lines:

Example 20 RUN.SPEED = 200<enter>

30 ACCEL.RATE = 1000 <enter>

40 PRINT INT1 <enter>

50 IF INT1 = 6 THEN 90 <enter>

.

Rules Start each line with a number followed by a space.

Use numbers from 1 to 65500

Do not type more than 132 characters on a line.

Rev F StepperBASIC Reference Manual 1 - 15

Multiple
statements

Multiple instructions may be put on a single line. For ease in
reading, you may separate each instruction by a colon (:), although
this is not required. The program will run faster and take less
memory with no colons. All instructions on the line will be
executed with the same line number.

An example of program line syntax is as follows:

line number statement [[:statement] ...] <return>

Program lines may not be preceded by the global command prefix
“/”. Thus, there can be no global edits.

If the following line is typed:

/2 INT1=1 : PRINT INT1

a new line 2 will not be added to the program of each controller.
Rather, the following will occur:

• Unit 2 will be logged on and all others will be logged off

• The local variable “INT1” of the controller with address 2 will
be assigned the value of 1

• The value of the variable “INT1” will be printed immediately

Typing in
PacCom

Type your program as if you are typing on a word processor, then
download the program to the drive using the download utility
provided by PacCom.

After a change is made to the program while in PacCom editor,
the program must be saved each time.

Note: While in the PacCom editor mode, there will beno syntax
checking. Syntax checking is only done when downloading the
program to the drive.

1 - 16 StepperBASIC Reference Manual Rev F

1.8.4 Writing and Editing Programs Using the Screen Editor

Line format StepperBASIC programs are comprised of lines of instructions,
each starting with a line number and ending when <enter> is
pressed. Line numbers are usually in increments of 10 (10, 20, 30,
and so on), to allow you to insert lines that may have been
overlooked without renumbering all subsequent lines:

Example 20 RUN.SPEED = 200<enter>

30 ACCEL.RATE = 1000 <enter>

40 PRINT INT1 <enter>

50 IF INT1 = 6 THEN 90 <enter>

Rules Start each line with a number followed by a space. Or use the
AUTOcommand to automatically display the next line number
each time you press <enter> when typing in the lines of your
program.

Use numbers from 1 to 65500

Do not type more than 132 characters on a line.

Editing Once a program has been entered, it may be edited in one of the
following ways:

• a new line may be added to the program

• an existing line may be modified

• an existing line may be deleted

New lines The line number must be legal and at least one non-blank
character must follow the line number in the line.

Existing line

(modifying)

If a line number that already exists in the program is typed, the
existing line is replaced with the text of the newly entered line
when <return> is entered.

Rev F StepperBASIC Reference Manual 1 - 17

Existing line

(deleting)

If you type the line number of the line to be deleted with no
characters following the number, that line will be deleted when
<return> is pressed.

To delete an entire program, type:

NEW<return>.

Note: NEWwill clear memory prior to entering a new program.

1.8.5 Program Header

To insure that variables previously programmed do not affect
current program, initialize all variables at the start of each
program. This shuts off any forgotten variables that may affect the
current program.

For example, if the Stall Jump Go To Line variable was not set to
zero in memory as follows:

STALL.JUMP = 1000

The variables would still try to jump to a line 1000 upon a stall. If
the current program does not have a line 1000, the program stops
execution upon a stall and displays an error message.

Procedure 1. Type the following immediate mode “header” before the
program:

STEPSIZE = 1

MIN.SPEED = 100

GEARING = 0

ENABLE = 1

RMT.START = 2

PWR.ON.ENABLE = 1

PWR.ON.OUTPUTS = 255

PREDEF.INP = 0 : PREDEF.OUT = 0

POS.CHK1.OUT = 0 : POS.CHK2.OUT = 0 :
POS.CHK3.OUT = 0

OUTPUTS = 255

CW.OT.ON = 0 : CCW.OT.ON = 0

CLR.SCAN1 : CLR.SCAN2

1 - 18 StepperBASIC Reference Manual Rev F

HOME.ACTIVE = 1

HMPOS.OFFSET = 0

ACCEL.RATE = 1000

MAX.DECEL = 10000

STALL.STOP = 0

STALL.JUMP = 0

POS.VERIFY.JUMP = 0

2. Type in your program, programming variables as needed.

3. When through with the program, type theSAVEVARcommand
to save the correct variables and type theSAVEcommand to
save the final version of your program to memory in case
power is cycled.

Other variables Other variables need not be included in this header because they
are covered as follows:

CCW.OT, CCW.OT.JUMP, CW.OT, CW.OT.JUMP—
Covered byCW(CCW).OT.ON

DIR, RUN.SPEED — Must be set up as needed beforeGO.VEL
or SEEK.HOME

ENCODER, RATIO— Covered byGEARING = 0

INDEX.DIST — Must be set up as needed beforeGO.INCR

JOG.SPEED— Covered byPREDEF.INP = 0

POS.CHKn— Covered byPOS.CHKx.OUT = 0

SKn.JUMP, SKn.OUTPUT, SKn.STOP,
SKn.TRIGGER— Covered byCLEAR.SKn

TARGET.POS— Must be set up as needed beforeGO.ABS

WAIT.TIME — Must be set up as needed beforePAUSE

Rev F StepperBASIC Reference Manual 1 - 19

1.9 Error Messages

Introduction There are three types of errors:

• syntax

• runtime

• system

Errors are displayed on the terminal screen indicating the type of
error and the error code. All possible errors are listed in the tables
below.

1.9.1 Syntax Errors

Introduction A syntax error is an error in the syntax of an entered command.
Syntax errors may appear on the screen when a program is being
entered or when a program is running.

Error
Code # Error Explanation

1 Command terminator Not used.

2 Command missing Program line does not begin with
a valid BASIC statement or
command.

3 Number missing BASIC was expecting a number.

4 Invalid list Not used.

5 Statement not entered BASIC was expecting a
statement.

6 Assignment not entered BASIC was expecting an equal
(=) sign.

7 THEN not entered The “THEN” of an
IF-THEN-ELSE statement was
omitted.

1 - 20 StepperBASIC Reference Manual Rev F

Error
Code # Error Explanation

8 TO not entered The “TO” of a FOR-NEXT
statement was omitted.

9 Variable not entered A variable was omitted.

10 Close parenthesis not
entered

A closed parenthesis “)” was
omitted.

11 Open parenthesis not
entered

An open parenthesis “(” was
omitted.

12 Invalid factor BASIC was expecting a
constant, variable, function, “(”
or NOT.

13 Unknown identifier Not used.

14 Quote not entered A quote (”) was omitted.

15 Digit not entered A number contains a character
which is not a digit.

16 Comma or semicolon
not entered

A comma (,) or semicolon (;)
was omitted.

20 Error in WHEN
statement

Syntax of WHEN statement is
incorrect.

Rev F StepperBASIC Reference Manual 1 - 21

1.9.2 Runtime Errors

Introduction A runtime error is an error that occurs during program execution.
Coded runtime errors and their causes are:

Error
code # Error Explanation

1 Stack overflow Too many operations caused the
size of the stack to overflow the
amount of available memory.

2 Divide by 0 You may not divide by zero.

3 Exceeding FOR-NEXT Too many FOR-NEXT loops are
nested.

4 No matching NEXT A “FOR” statement has no
matching “NEXT” statement.

5 No matching FOR A “NEXT” statement has no
matching “FOR” statement.

6 Exceeded WHILE nest Too many WHILE-WEND loops
are nested.

7 No matching WEND A “WHILE” statement has no
matching “WEND” statement.

8 No matching WHILE A “WEND” statement has no
matching “WHILE”.

9 No line to go to A “GOTO” or “GOSUB” cannot
find the line number to which to
go.

10 Exceeded GOSUB nest Too many GOSUB-RETURNs
are nested.

11 No matching GOSUB A “RETURN” is encountered
before a GOSUB.

12 S-Curve Error This is a profile generator error.

13 Registration overrun Registration re-triggers before
registration GOSUB completes
execution.

1 - 22 StepperBASIC Reference Manual Rev F

1.9.3 System Errors

Introduction A system error is a serious error which can only be fixed by
changes to the software system. Coded system errors are as
follows:

Error
Code # Error Explanation

1 Line without a line
number

There is no line number
associated with the line. Thus,
the integrity of the program is
lost.

2 Invalid token A token cannot be converted
back into a known symbol while
attempting to list a program.

3 No more program
memory

The program cannot be fit into
the available memory.

4 Renumber table
overflow

Occurs during a “RENUM”
command. The temporary
number table size is exceeded.

5 GOTO table overflow Occurs when a program is
running and the GOTO table
overflows. The GOTO table is
used to store line number
positions so they only have to be
looked up once.

Rev F StepperBASIC Reference Manual 1 - 23

2 Using StepperBASIC Functions

In this chapter This chapter provides an in-depth description of how to perform
certain actions using StepperBASIC. These include the following:

• Scan functions

• Homing routines

• Overtravel limits

• POSITION check function

• Position verification and correction function

• Stall detection function

• Using theWHENstatement

• Electronic gearing

• Making the motor move

• Registration functionality

2.1 Scan Functions

Introduction The purpose of the SCAN functions is to allow you to specify an
action to be taken when a given discrete input condition is
satisfied. The specified input condition is tested every millisecond
and the specified action is performed immediately as soon as the
condition is satisfied.

Similar functionality can be performed by anIF...THEN
statement in your Pacific Scientific StepperBASIC program.
However, using aSCANfunction has two key advantages:

1. The SCAN response will be much faster than the
IF...THEN response because the SCAN condition is tested
every millisecond and the SCAN action is performed as soon
as the condition is satisfied.

2. When the SCAN function is used, there is no need to have a
program loop that regularly tests the specified condition.
Once the SCAN function is set up and turned on, the SCAN
condition will be automatically tested every millisecond until
the SCAN function is turned OFF.

Rev F StepperBASIC Reference Manual 2 - 1

2.1.1 Setting the SCAN Trigger Condition

The SCAN input condition, which is also referred to as the SCAN
Trigger Condition, is specified using the variable SKn.TRIGGER.
The first digit ofSKn.TRIGGER specifies which one of the
sixteen discrete inputs the SCAN is checking. The second digit of
SKn.TRIGGER specifies whether the SCAN condition is satisfied
when the input is equal to zero or whether the SCAN condition is
satisfied when the input is equal to 1.

For example:

SKn.TRIGGER = 51

sets the SCAN condition as input 5 (INP5) being equal to 1.

2.1.2 Setting the SCAN Output Action

There are three actions which can be performed when the SCAN
Trigger Condition is satisfied. Any combination of these actions
can be specified. The four available output actions are:

1. Turn a specified output ON or OFF. This action is specified
using the variableSKn.OUTPUT.

2. Stop the motor. This action is specified by setting the variable
SKn.STOP to 1. If SKn.STOP is set to zero, the motor will
not be stopped when the SCAN Trigger Condition is satisfied.

3. Jump to a specified line of the StepperBASIC program. This
action is specified using the variableSKn.JUMP. If
SKn.JUMP is set to zero, then the StepperBASIC program
will not be affected when the SCAN Trigger Condition is
satisfied. IfSKn.JUMP is set to a non-zero value the
program will commence execution at the instruction specified
by theSKn.JUMP program line.

Note: Use of the SCAN jump (SKn.JUMP) functions may
absolutely require the execution of theRESET.STACKstatement
to ensure internal program control is restored if the SCAN input
has been triggered during execution of a subroutine or looping
construct.

2 - 2 StepperBASIC Reference Manual Rev F

2.1.3 Enabling and Disabling SCANs

SCAN functions are enabled or disabled as follows:

• The SCAN function is enabled by executingSET.SCANn.

• The SCAN function is disabled by executingCLR.SCANn.

Example As an example, suppose you have an End of Travel Limit Switch.
If this switch is activated, then all motion must stop, an output
must be turned on and a message must be displayed on the screen
of the terminal. The following segment will perform this function:

10 SK1.TRIGGER = 10

20 SK1.STOP = 1

30 SK1.JUMP = 2000

40 SK1.OUTPUT = 11

50 SET.SCAN1

.

.

.

2000 PRINT “End of Travel Limit Switch activated”

2010 IF INP 1 = 0 THEN 2010

2020 GOTO 100

Line 10 specifies the SCAN trigger condition as input 1 going to a
low voltage.

Line 20 specifies that the motor will stop when the SCAN
condition is satisfied.

Line 40 specifies that Output 1 will be turned Off when the Scan
condition is satisfied.

Line 50 enables the SCAN function.

Line 2000 prints a message on the terminal screen. This message
will be displayed when the SCAN condition is satisfied.

Line 2010 waits until 1 goes to a high voltage before proceeding
to line 2020.

Line 2020 jumps to line 100 which should be a program restart
routine in this example.

Rev F StepperBASIC Reference Manual 2 - 3

2.2 Homing Routines

Pacific Scientific StepperBASIC is an absolute positioning system.
It maintains a position counter (POS.COMMAND) and is capable of
moving the motor shaft to any absolute position. The position
counter has a range of approximately -32,000 revolutions to
+32,000 revolutions of the motor shaft.

Electrical home The position at which the position counter (POS.COMMAND)
equals zero is called the electrical home position. The electrical
home position can be established by executing theSEEK.HOME
function. After theSEEK.HOMEfunction is performed, the motor
will be at the electrical home position andPOS.COMMANDwill be
zero. All absolute positions will then be referenced to this
electrical home position.

Note: Refer to Section 2.9, “Making the Motor Move”, for more
information onSEEK.HOME.

At any point, you may move to the electrical home position by
executing theGO.HOMEfunction. This function is exactly
equivalent to settingTARGET.POSto zero and executing the
GO.ABS(go to absolute position) function.

2.3 Using the Software Overtravel Limit Function

Introduction The software overtravel limit function is used to prevent the motor
from traveling outside predefined limits. Two independent
overtravel limits may be specified, one for limiting travel in the
clockwise direction and the other for limiting travel in the
counterclockwise direction.

Note: Either one or both or these limits may be enabled at any
time.

2 - 4 StepperBASIC Reference Manual Rev F

Overtravel limit
exceeded

If either the clockwise and/or the counterclockwise overtravel limit
function is enabled the internal software constantly checks the
motor position and compares it to the overtravel limits. If the
motor position exceeds the overtravel limit (and that overtravel
limit is enabled) then the controller will decelerate the motor to a
stop and will prevent further motion in the direction for which the
limit was exceeded.

In addition, a program line number may be specified for each of
the two limits. If a program line number is specified then the
program will jump to that line when the corresponding overtravel
limit is exceeded. This allows you to write a recovery routine for
an overtravel error.

2.3.1 Setting up the Software Overtravel Function

To use the overtravel limit function set up the following variables:

VARIABLE DESCRIPTION

CW.OT Specifies the maximum clockwise position

CW.OT.ON Specifies whether or not the clockwise
overtravel checking is enabled

CW.OT.JUMP Specifies the line number to be jumped to
when the clockwise overtravel limit is exceeded

CCW.OT Specifies the maximum counterclockwise
position

CCW.OT.ON Specifies whether or not the counterclockwise
overtravel checking is enabled

CCW.OT.JUMP Specifies the line number to be jumped to
when the counterclockwise overtravel limit is
exceeded

Note: If you do not want the program to jump to a new line
number when the overtravel limit is exceeded, then you must set
the jump destination (CW.OT.JUMPor CCW.OT.JUMP) equal to
zero.

Rev F StepperBASIC Reference Manual 2 - 5

OT.ERROR Note: The variableOT.ERRORis set by the internal software to
reflect the status of the overtravel function.OT.ERRORalways
has one of the following values:

VALUE DESCRIPTION

0 No overtravel detected

1 Clockwise overtravel detected

2 Counterclockwise overtravel detected

Example 10 POS.COMMAND = 0

20 CW.OT = 100000

30 CW.OT.JUMP = 200

40 CW.OT.ON = 1

50 CCW.OT = -100000

60 CCW.OT.JUMP = 300

70 CCW.OT.ON = 1

80 DIR = 0

90 STEPSIZE = 25

100 MIN.SPEED = 25

110 ACCEL.RATE = 5000

120 RUN.SPEED = 100

130 GO.VEL

140 GOTO 110

.

.

.

200 PRINT “Clockwise Overtravel”

210 DIR = 1

215 GO.VEL

220 GOTO 110

300 PRINT “Counterclockwise Overtravel”

310 DIR = 0

315 GO.VEL

320 GOTO 110

2 - 6 StepperBASIC Reference Manual Rev F

Explanation This example sets up a clockwise overtravel limit of 100000
microsteps and a counterclockwise overtravel limit of -100000
microsteps. The example sets the clockwise jump line number to
200 and sets the counterclockwise jump line number to 300. The
two limit checks are turned on and the motor is commanded to
turn at 100 rpm in the clockwise direction.

When the clockwise overtravel limit is exceeded the motor will
decelerate to a stop and the program will transfer control to line
200. At line 200 a message is printed, the motor direction is
reversed and control is passed back to line 110.

When the counterclockwise overtravel limit is exceeded the motor
will decelerate to a stop and the program will transfer control to
line 300. At line 300 a message is printed, the motor direction is
reversed and control is passed back to line 110.

This process will continue until the program is aborted.

2.4 Using the Position Check Function

Introduction The position check function is used to allow the internal software
to automatically turn On (set to 0) or turn Off (set to 1) an output
discrete (OUT1, OUT2and/orOUT3) based upon the motor’s
position.

Note: Up to three position check functions may be defined at any
time.

When a position check function has been defined, the internal
software checks the motor position every 2.048 msec and either
turns On or turns Off the appropriate discrete output depending
upon whether the motor position is greater than or less than the
specified check position.

Rev F StepperBASIC Reference Manual 2 - 7

Three
independent
position checks

To set up the position check function, two variables must be
specified for each of the three position checks which may be
defined.

VARIABLE DESCRIPTION

POS.CHKn Specifies the position check value

POS.CHKn.OUT Specifies whether or not position check is
enabled and if enabled, whether Output n
(OUTn) is to be turned On or Off.
POS.CHKn.OUTmay be set to one of three
values:

0 Position check n is disabled

10 OUTn= 0 if the motor position is
greater thanPOS.CHKn

OUTn= 1 if the motor position is
less thanPOS.CHKn

11 OUTn= 1 if the motor position is
greater thanPOS.CHKn

OUTn= 0 if the motor position is
less thanPOS.CHKn

The value of n can be 1, 2 or 3.

Note: Once a position check has been enabled by setting
POS.CHKn.OUT(where n’s value is 1, 2, or 3) equal to 10 or 11
the corresponding output cannot be changed by the program (e.g.
OUTn = 1) until that position check has been disabled.

2 - 8 StepperBASIC Reference Manual Rev F

Example 10 POS.COMMAND = 0

20 POS.CHK1 = -5000

30 POS.CHK2 = 0

40 POS.CHK3 = 5000

50 POS.CHK1.OUT = 10

60 POS.CHK2.OUT = 11

70 POS.CHK3.OUT = 10

80 TARGET.POS = -10000

90 GO.ABS

100 TARGET.POS = 10000

110 GO.ABS

120 GOTO 80

Line 10 defines the current position as home.

Lines 20 through 40 set position check 1 to -5000, position check
2 to 0 and position check 3 to 5000.

Lines 50 through 70 turn On all position checks and specify the
output states.

Lines 80 through 120 command the motor to move from -10000 to
+10000 continuously.

Rev F StepperBASIC Reference Manual 2 - 9

2.5 Using the Position Verification and Correction

Function

Introduction For incremental and absolute moves, Pacific Scientific
StepperBASIC compares incremental distance traveled by the
encoder to the distance commanded on the motor shaft.

Setting up for
Position
Verification

There are five variables associated with the Position Verification.
These are:

VARIABLE DESCRIPTION

POS.VERIFY.TIME User defined variable which specifies the
amount of wait time in milliseconds after the
positioning move is finished before it looks at
the encoder position. This will allow for any
ringing to settle.

POS.VERIFY.CORRECTION A read only variable that gives the difference
between the rotor position and the position
command in number of microsteps,NOT
ENCODER COUNTS. It is to be used as the
correction distance.

POS.VERIFY.ERROR This is a flag that is tripped when the rotor error
between the rotor position and the commanded
position is greater than that allowed by the
POS.VERIFY.DEADBAND.

POS.VERIFY.DEADBAND Is the allowable error in microsteps (± this
number) in a system. If the error between the
commanded position and the position measured
by the encoder exceeds this value, the
POS.VERIFY.ERRORflag will be tripped.

POS.VERIFY.JUMP Causes the program to jump to a new line when
the POS.VERIFY.DEADBANDis exceeded.
This will allow the correction to be made based
upon the commands at the line jumped to.

2 - 10 StepperBASIC Reference Manual Rev F

Related
Commands

VARIABLE DESCRIPTION

ENCODER Should be set to the number of PPR (pulses per revolution) of
your encoder.

STEP.DIR.INPUT Set up the encoder port for an encoder or step and direction
inputs from another control.
Note: If STEP.DIR.INPUT = 1 for accepting step and
direction inputs,ENCODERneeds to be set to Stepsize * 50.

IN.POSITION Flag controlled by the internal software that indicates when the
motor is in position. This flag is set by the internal software to 1
or 0. It will be set to 1 when the following conditions are true:
* Motor commanded to be stopped (the last move is completed).
* POS.VERIFY.DEADBANDhas not been exceeded.

Example 10 STEPSIZE = 25

20 MIN.SPEED = 5

30 RUN.SPEED = 1000

40 ACCEL.RATE = 5000

50 ENCODER = 1250

60 INDEX.DIST = 20000

70 POS.VERIFY.TIME = 200

80 POS.VERIFY.DEADBAND = 10

90 POS.VERIFY.JUMP = 1000

100 POS.COMMAND = 0

110 ENCDR.POS = 0

120 GO.INCR

130 IF MOVING THEN 130

140 GOTO 2000

Rev F StepperBASIC Reference Manual 2 - 11

1000 PRINT “I AM CORRECTING”

1010 INDEX.DIST = POS.VERIFY.CORRECTION

1020 GO.INCR

1030 IF MOVING THEN 1030

1040 IF POS.VERIFY.ERROR THEN 1010 ELSE 2000

2000 PRINT “FINAL POSITION IS ” POS.COMMAND

2010 PRINT “FINAL ENCODER POSITION IS ”
ENCDR.POS

2020 END

Explanation Line 10 sets the software stepsize variable (both
software and hardware stepsize should be the same).

Line 20 sets the start/stop speed to 5 rpm.

Line 30 sets the run speed to 1000 rpm.

Line 40 sets the acceleration rate to 5000 rpm/sec.

Line 50 sets the encoder variable to 1250 ppr.

Line 60 sets an incremental move of 20000
microsteps (4 revs).

Line 70 sets a wait time of 200 msec before reading the encoder
position.

Line 80 sets the maximum microstep difference
allowed for measured encoder counts versus
commanded microsteps counts to 10 counts.

Line 90 moves the program execution to line 1000
when the POS.VERIFY.ERROR is tripped.

Line 100 sets the position counter to 0 (zero).

Line 110 sets the encoder counter to 0 (zero).

Line 120 initiates an incremental move.

Line 130 holds the program executions until the move is
completed.

Line 140 causes the program to jump to line 2000.

2 - 12 StepperBASIC Reference Manual Rev F

Explanation
(cont�d)

Line 1000 will print “I AM CORRECTING” if the error
had exceeded thePOS.VERIFY.DEADBANDlimit set in
line 80.

Line 1010 sets an incremental correction move
equal to thePOS.VERIFY.CORRECTIONvariable.

Line 1020 initiates the incremental correction move.

Line 1030 holds the program as long as the move is not completed.

Line 1040 checks if there is a position error after the correction
move has been completed and if there is an error it will correct
again otherwise it will force the execution of the program to go to
line 2000.

Line 2000 will print the final encoder position after the motor
rotation has stopped.

Line 2010 will terminate the program execution.

2.6 Stall Detection Function

Introduction The Stall Detection Command, detects a stall
condition based upon the users allowable difference
between the motor commanded position and the actual
rotor position. The encoder could be in/on the
motor or the load axis.

Rev F StepperBASIC Reference Manual 2 - 13

Setting Up For
Stall Detection

There are four variables associated with the Stall Detection
function:

VARIABLE DESCRIPTION

STALL.DEADBAND Sets the maximum step difference allowed between the
commanded and measured steps (commanded position
versus rotor or encoder counts).

STALL.STOP Stops the motor at the rate set byMAX.DECELwhen a
stall is detected (theSTALL.ERROR FLAG= 1, tripped).

STALL.ERROR Flag controlled by the internal software that indicates a
stall has occurred (theSTALL.DEADBANDvariable had
exceeded). It is reset back to zero at the start of the next
move.

STALL.JUMP A variable that moves the program execution to a new line
whenSTALL.ERROR is tripped (stall occurs).

Related
instructions

VARIABLE DESCRIPTION

MAX.DECEL A variable that sets the maximum deceleration rate in
rpm/sec at which the motor will decelerate to stop.

The encoder position and the position command are sampled at 8
msec intervals. The value at each sample is compared to the last
sample only. If the difference is larger than the
STALL.DEADBANDvalue,STALL.ERRORwill be set to 1.

Due to the 8 msec sample rate and since the error does not
accumulate, there are limitations in the size of the
STALL.DEADBAND.

2 - 14 StepperBASIC Reference Manual Rev F

Maximum The following equation is used to calculate the maximum
deadband allowed as a function of rotor speed.

MaximumSTALL.DEADBAND= 8 * RPM * (#step/rev)/60000

Note: If a larger value is used, the indexer will not detect a stall
condition.

Minimum The minimum value for the stall deadband can be calculated using
the following equation:

Minimum STALL.DEADBAND= 4 * STEPSIZE

In general stepper motors will lose 4 full steps at once when they
stall. The above equation will allow 4 full steps of error before a
stall is being detected.

Example 10 STEPSIZE = 25

20 MIN.SPEED = 5

30 ACCEL.RATE = 1000

40 MAX.DECEL = 1000

50 RUN.SPEED = 800

60 INDEX.DIST = 75000

70 ENCODER = 1250

80 STALL.DEADBAND = 100

90 STALL.JUMP = 1000

100 STALL.STOP = 1

110 POS.COMMAND = 0

120 ENCDR.POS = 0

130 GO.INCR

140 IF MOVING THEN 140

150 GOTO 110

1000 PRINT “ MOTOR STALLED ”CINT (ENCDR.POS) “
STEPS FROM START.”

1010 END

Rev F StepperBASIC Reference Manual 2 - 15

Explanation Line 10 sets the software stepsize variable to 25.

Line 20 through 50 sets the move profile parameters.

Line 60 sets an incremental move to 75000 steps (15 revs).

Line 70 sets the encoder to 1250 ppr.

Line 80 sets the allowable error to 100.

Line 90 will force the program to jump to line 1000 and
start executing if a stall is detected (STALL.ERROR= 1).

Line 100 will cause the motor to stop using theDECEL.RATE
of 1000 rpm/sec if a stall is detected (STALL.ERROR= 1).

Line 110 and 120 will reset the position command and the
encoder counters to zero (0).

Line 130 will initiate the incremental move.

Line 140 will hold the program until the motion is
completed.

Line 150 will take the program back to line 110.

Line 1000 will print MOTOR STALLED XXXXXX STEPS
FROM START, if a stall is detected (STALL.ERROR= 1).

2 - 16 StepperBASIC Reference Manual Rev F

2.7 Using the WHEN Statement

TheWHENstatement is used to get extremely fast response to
certain input conditions. When the Pacific Scientific
StepperBASIC program encounters aWHENstatement, it tests the
specified condition every 1.024 msec and as soon as the condition
is satisfied, the specified output action is initiated.

When the StepperBASIC program encounters aWHENstatement,
the program will not proceed to the next line of the program until
theWHENcondition is satisfied. When theWHENcondition is
satisfied and the specified action has been performed, theWHEN
statement is complete. In order to execute this function again you
must execute anotherWHENstatement.

For example, if you desire the motor to rotate at 1000 RPM until
Input 3 is pulled low (INP3 = 0) at which point the motor is to be
decelerated to 500 RPM, you use the following program:

10 RUN.SPEED = 1000

20 GO.VEL

30 RUN.SPEED = 500

40 WHEN INP3 = 0, GO.VEL

In this example, line 40 causes Input 3 to be checked every 1.024
msec. As soon as Input 3 is seen to be low (INP3 = 0) the
program will execute aGO.VEL (go at velocity) move.

The syntax for using theWHENstatement is:

[line number] WHEN condition, action

Condition The condition specifies what condition must be satisfied before the
action is performed. The condition may be any one of the
following:

• Checking for an input to be equal to 0 or 1.

• Checking for the position command to be greater than or less
than some value.

• Checking for the position to be greater than or less than some
value.

• Checking for the Encoder position to be greater than or less
than some value.

Rev F StepperBASIC Reference Manual 2 - 17

Action The action specifies what operation is to be taken when the
condition is satisfied. The action may be any one of the following:

• Setting an Output equal to 0 or 1.

• SettingRATIO equal to a new value.

• TurningGEARINGON/OFF

• TurningREG.FUNCON/OFF

• Performing any one of the following functions:

GO.ABS GO.HOME

GO.INCR GO.VEL

PAUSE UPD.MOVE

SEEK.HOME STOP.MOTION

• Allowing program execution to continue to the next instruction
(with no action performed).

On the 1.024 msec sample that theWHENcondition is satisfied and
the action is performed the values ofPOS.COMMAND, and
ENCDR.POSare stored in the variablesWHENPCMD, and
WHEN.ENCPOSrespectively. The values of these variables may
be used for even greater synchronization.

The following list is a sampling of some possibleWHENstatements:

50 WHEN INP1 = 1, GO.VEL

60 WHEN INP3 = 0, OUT4 = 1

100 WHEN POS.COMMAND < INT6, STOP.MOTION

320 WHEN ENCDR.POS > INT3, GO.INCR

360 WHEN INP6 = 1, RATIO = FLT4

870 WHEN POSITION > 40960, CONTINUE

900 WHEN REG.FLAG, OUT2 = 1

950 WHEN INP5, REG.FUNC = 1

2 - 18 StepperBASIC Reference Manual Rev F

Example The following program is an example of using theWHEN
statement. This program executes an incremental move as soon as
INP3 goes low. It then waits forINP3 to go high again. When
INP3 goes high, the program goes back to waiting forINP3 to
go low so that it can perform another incremental move.

The response time fromINP3 going low to the motor motion
starting will be approximately 1 msec.

10 INDEX.DIST = 40960

20 WHEN INP3 = 0, GO.INCR

30 WHEN INP3 = 1, CONTINUE

40 GOTO 20

2.8 Electronic Gearing

Introduction Electronic gearing allows you to control the movement of the
motor shaft from an external source. Gearing usually is done with
encoder inputs. However, it can be performed using Step/Dir
inputs also.

To use electronic gearing, you must provide an external encoder or
differential Step/Dir source. This external source is used as a
master reference for electronic gearing must provide differential,
line driver type outputs in quadrature form. The receiver IC is an
SN75175.

Rev F StepperBASIC Reference Manual 2 - 19

The encoder inputs must be wired up as follows:

Encoder Signal Pin Number

CHA (STEP) J6-2

CHA (STEP) J6-3

CHB (DIR) J6-4

CHB (DIR) J6-5

Encoder +5V J6-8

Encoder GND J6-9

Note: An external power supply may be used to power
up the encoder. If this is done then the power supply ground must
be connected to J6-9.

That also applies if a differential Step/Dir source was used as a
“MASTER”, then a GND (common) from this source must be
connected to J6-9.

Encoder position When an external reference (source) has been connected the
encoder position variable (ENCDR.POS) is updated by the internal
software every 1.024 msec. The value of the
encoder position is contained in the variableENCDR.POS. This
variable continues to be updated even if electronic gearing is
turned off.

Setting the
electronic gear
ratio

The variableRATIO is used to specify the electronic gear ratio.

VARIABLE DESCRIPTION

RATIO Specifies the electronic gear ratio in terms of motor shaft to
encoder (Step @ Dir) shaft movement. The line count
of the master encoder must be specified in order to use the
RATIO variable.

Note: The actual gear ratio will be specified by the most recently
specified value.

2 - 20 StepperBASIC Reference Manual Rev F

Related
instructions

VARIABLE DESCRIPTION

STEPSIZE Step size must be >= 5 for gearing.

STEP.DIR.INPUT Set up the encoder port to see an encoder or step @
direction inputs.

ENCODER Should be set to the number of PPR of the installed
encoder.

Turning electronic
gearing ON and
OFF

• Bi-directional electronic gearing is enabled by setting
GEARINGequal to 1.

• Electronic gearing is disabled by settingGEARINGequal to 0.

• Electronic gearing, in the clockwise direction only, is enabled
by settingGEARINGequal to 2.

• Electronic gearing, in the counterclockwise direction only, is
enabled by settingGEARINGequal to 3.

Note: TheSTOP.MOTIONinstruction will not stop the motor
motion resulting from gearing. Therefore, turn gearing off
(GEARING= 0) before stopping motion.

• The variableMOVINGdoes not recognize moving caused by
GEARING.

• If directional limits are set, gearing motion in the allowed
direction occurs only when the master encoder returns to the
point where it originally reversed direction.

• Other motion commands could result in motion in the
disabled gearing direction.

• The variable (read only)VELOCITY will return the actual
speed at which the motor is running.

Note: The minimum step size required is 5.

Rev F StepperBASIC Reference Manual 2 - 21

Example 10 STEPSIZE = 25

20 STEP.DIR.INPUT = 0

30 ENCODER = 1250

40 RATIO = 2

50 GEARING = 1

60 WHEN INP1 = 1, CONTINUE

70 GEARING = 0

Line 10 sets the step size to 25 (both hardware and software
should be the same settings).

Line 20 configure J6 inputs for encoder type signal.

Line 30 the installed encoder provides a 1250 PPR (5000
quadrature counts per rev).

Line 40 sets 2 motor shaft turns per encoder shaft
revolution.

Line 50 Turn gearing ON.

Line 60 Holds the program at this line until input 1
goes high.

Line 70 Turns OFF gearing.

Using the STEP
and DIR Outputs

The controller’s STEP @ DIR out (J7), generates differential
signals as long as there is motion in progress.

These output signals can be used to drive two other controllers.
The two controllers (slaves) will follow the master’s exact profile
(speed and direction).

These output signals are fed back to the same controller (J6) when
registration functionality is required. Refer to Section 2.10,
“Registration Functionality” for additional information.

2 - 22 StepperBASIC Reference Manual Rev F

2.9 Making the Motor Move

Introduction There are six different statements which you can use to make the
motor move:

• GO.VEL

• GO.INCR

• GO.ABS

• GO.HOME

• SEEK.HOME

• GEARING

Each of these provides a different type of movement, described as
follows. The instructionGEARINGis covered in Section 2.8,
“Electronic Gearing”

Program
execution

These instructions, except forSEEK.HOME, do not wait for
completion before continuing to the next line. For example, after a
GO.INCR is encountered, the program immediately goes to the
next line even though the move is still executing.

(TheSEEK.HOMEfunction waits for completion of the move
before the program continues to the next line.)

Rev F StepperBASIC Reference Manual 2 - 23

Common
variables

Common variables for motion instructions are as follows. Specific
instructions are given in the appropriate instruction section.

1. ENABLE= 1. Also, enable the hardware, pulling the Enable
input low. If not done, motion instructions are ignored.

2. RUN.SPEEDwill determine the motor speed.

3. ACCEL.RATE(and optionallyDECEL.RATE) will determine
the acceleration rate and the deceleration rate.

4. MIN.SPEED sets the initial velocity step

5. STEPSIZE sets the amount of rotation per input step (Both
hardware and software should be the same)

Note: RUN.SPEED, ACCEL.RATE, andMIN.SPEED are not
required forGEARING.

RUN.SPEEDandACCEL.RATEcan be changed while a move is
in progress usingUPD.MOVE(Update Move).

Stopping the
motor

There are several ways to stop the motor after a motion statement
has been executed.

• Wait for the motion to be completed.

Note: This does not apply to theGO.VEL statement.

• Type <Ctrl><C> .

• Pull the Remote Stop input low
(J5-5 withPREDEF.INP13 = 1)

• Remove theENABLEinput from the control

Note: This will disable the motor current and torque but may not
cease motion.

• Execute aSTOP.MOTIONstatement.

Note: Either LIMIT(-) (J5-3 withPREDEF.INP11 = 1) or
LIMIT (+) (J5-2 with PREDEF.INP10 = 1) inputs pulled low.

2 - 24 StepperBASIC Reference Manual Rev F

The program stops the motor if:

• A scan triggers and a scan stop is active (SKn.STOP = 1) .

• A software overtravel has occurred.

• A stall occurs causing aSTALL.STOP.

Continuous
motion

CONTINUOUS.MOTIONenables motion to proceed continuously
over multiple motion instructions.

2.9.1 Descriptions of Motion Statements

GO.VEL This statement causes the motor to move at the specified run speed
(RUN.SPEED). The direction of rotation is specified by theDIR
variable as follows:

Value Functionality

DIR = 0 Motor rotates clockwise

DIR = 1 Motor rotates counterclockwise

After theGO.VEL statement has been executed, the motor will
continue to rotate at the specifiedRUN.SPEEDuntil one of the
STOPconditions described above occurs or until anotherGO.VEL
statement is executed.

If anotherGO.VEL statement is executed, then motor will
accelerate (or decelerate) to the new value ofRUN.SPEED. If the
new value ofRUN.SPEEDis zero, the motor will decelerate to a
stop and theGO.VEL move will be complete.

Note: If you terminate theGO.VEL move by settingRUN.SPEED
equal to zero and executing aGO.VEL statement than you must
setRUN.SPEEDequal to a non-zero value before attempting to
execute another motion statement.

Rev F StepperBASIC Reference Manual 2 - 25

GO.INCR This statement causes the motor to rotate a specified amount
(INDEX.DIST). The software uses a trapezoidal velocity profile
to rotate the motor. The acceleration rate is specified by
ACCEL.RATEand the slew speed is specified byRUN.SPEED
andMIN.SPEED sets the initial velocity step.

Direction The direction of rotation is determined by the sign of
INDEX.DIST :

Value Functionality

INDEX.DIST > 0 Motor rotates clockwise

INDEX.DIST < 0 Motor rotates counterclockwise

2 - 26 StepperBASIC Reference Manual Rev F

GO.ABS This statement causes the motor to move to an absolute position.
This absolute position is specified by the variableTARGET.POS.
The absolute position is relative to the HOME position (i.e. the
place wherePOS.COMMAND= 0).

The direction of motor rotation is determined by the value of
TARGET.POSand the current value ofPOS.COMMAND.

Value Functionality

TARGET.POS >
POS.COMMAND

Motor rotates clockwise

TARGET.POS <
POS.COMMAND

Motor rotates
counterclockwise

TheGO.HOMEstatement is exactly equivalent to:

TARGET.POS = 0 : GO.ABS

GO.HOME This statement moves the motor to the zero, home position
(electrical home wherePOS.COMMAND= 0).

Direction Direction of motor rotation is specified by the current value of
POS.COMMANDrelative to 0 (zero):

Value Functionality

POS.COMMAND
> 0

Motion goes in negative direction to 0
(zero)

POS.COMMAND
< 0

Motion goes in positive direction to 0
(zero)

Rev F StepperBASIC Reference Manual 2 - 27

SEEK.HOME This statement causes the motor to move to mechanical home
position, as defined by an external limit switch connected to J5-8.

Upon initiation, the following steps occur:

1. The motor moves as specified byDIR (direction),
RUN.SPEED, ACCEL.RATE.

2. When the switch is found , it changes state (the variable
HOME.ACTIVEshould be set to correspond to the desired
state change).

3. The motor decelerates to a stop.

4. Direction reverses and the motor moves slowly (defined by
MIN.SPEED) until the switch changes again.

5. Motion is stopped. This position is defined as mechanical
home. If no offset is programmed (see following), this
position is also defined as electrical home (where
POS.COMMAND= 0).

If an offset is needed, you can programHMPOS.OFFSETto add
an additional incremental move when the mechanical home
position is reached. This position is electrical home
(POS.COMMAND= 0).

RUN.SPEED

(RPM)

SLOPE =

ACCEL.RATE (RPM/S)

SWITCH CHANGES

STATE

VELOCITY

TIME

MIN.SPEED

(RPM)

MIN.SPEED

(RPM)

2 - 28 StepperBASIC Reference Manual Rev F

2.10 Registration Functionality

Introduction In motion control terms, registration provides the ability to execute
a preset move with reference to an external event while the motor
is executing another move. This done by beginning with the
executing of a long move which would, under normal conditions,
cause the index to go beyond the registration mark.
As the move proceeds, the sensor detects the presence of the
registration mark. It then aborts the current move and, without
stopping, begins the Registration Move to the precise position.

Setting up for
registration

To utilize the 5xx5 registration functionality, attach the differential
registration signal to J6-6 and J6-7 (CHZ andCHZ). If the source
of registration signal does not provide a differential TTL levels,
refer to “Connecting to Registration Input” on the following page.
The registration function will trigger when the Z input goes
negative relative to theZ input. Also, connect theSTEPandDIR
outputs to theSTEPandDIR inputs (refer to Wiring the
controller).

Wiring the
Controller

The table below shows wiring connections for 5xx5 indexers:

J6 J7

pin 2 pin 1

pin 3 pin 2

pin 4 pin 3

pin 5 pin 4

VELOCITY

DISTANCE

TIME

REGISTRATION

MARK APPLIED

IF NO REGISTRATION

MARK

REGISTRATION

MARK ENABLED

Rev F StepperBASIC Reference Manual 2 - 29

Connecting to
Registration
Input

The registration inputs, Z andZ, on the stepper indexers connect
to a different line receiver. It is necessary to apply a voltage across
the receiver having one polarity in the active state and the opposite
polarity in the inactive state. If the source is a single-ended device
such as a proximity or photo sensor, one of the circuits shown
below should be used to provide the required input:

Note: The return used for the sensor source should be connected
to the controller’s return at a single point.

75174 DIFFERENTIAL LINE

DRIVER OR EQUIVALENT

+

+

-

-
+

-

+

-

2 - 30 StepperBASIC Reference Manual Rev F

Related
instructions

There are six variables associated with theREG.FUNCfunction.
They are:

VARIABLE DESCRIPTION

STEP.DIR.INPUT This variable must be set = 1. It will configure J6 to aSTEP
andDIR input.

STEPSIZE Both software and hardware setup should be the same (1, 2, 5,
25 or 125).

ENCODER Based upon the designatedSTEPSIZE, theENCODERvariable
setting should be as follows:

STEPSIZE ENCODER

1 50

2 100

5 250

25 1250

125 6250

REG.DIST The distance that is moved automatically after the Registration
input is applied (REG.FLAG= 1 andREG.FUNC= 1). It will
perform a move like theGO.INCR but with microsecond
response to the input.

REG.FUNC Setting up this variable = 1 will enable(activate) the
registration function and it will allow for a registration move
set up theREG.DIST to be performed if a registration input
was applied (REG.FLAG= 1). Setting up this variable = 0 will
disable the registration function and no registration distance
will be performed even if a registration input was applied.

REG.FLAG Flag indicates the status of the registration input.
REG.FLAG= 1 —-Input has triggered
REG.FLAG= 0 —- Input has not triggered
This flag can be cleared in two ways:
1) SettingREG.FLAG= 0
2) SettingREG.FUNC= 1

Rev F StepperBASIC Reference Manual 2 - 31

Example 10 STEPSIZE = 25

20 ENCODER = 1250

30 MIN.SPEED = 5

40 ACCEL.RATE = 5000

50 RUN.SPEED = 750

60 REG.DIST = 15000

70 INDEX.DIST = 25000

80 GO.INCR

90 REG.FUNC = 1

100 IF MOVING THEN 100

110 GOTO 80

Line 10 sets the software step size to 25 (the hardware
step size switch should be the same).

Line 20 sets the encoder variable to 1250 ppr.

Line 30 through 50 set the motion parameters.

Line 60 sets registration distance of 3 revs.

Line 70 and 80 perform an incremental move of 5 revs.

Line 90 enables the registration function to automatically move a
registration distance once the registration input is triggered
(REG.FLAG= 1).

Line 100 holds the program until the move is completed.

Line 110 forces the program to go to line 80.

2 - 32 StepperBASIC Reference Manual Rev F

3 StepperBASIC Instructions

Introduction This section is an alphabetical reference to StepperBASIC
instructions:

• commands

• functions

• parameters

• statements

• variables

The name and type of each instruction is listed at the top of the
page. The instruction is then described based on the following
categories:

Purpose: The purpose of the instruction

Syntax: The complete notation of the instruction

Related instructions: Other StepperBASIC commands that are
similar to this particular instruction

Programming guidelines: Pertinent information about the
instruction and its use in StepperBASIC

Program segment: Possible use of the instruction in a program

Rev F StepperBASIC Reference Manual 3 - 1

ABS

function

Purpose The Absolute Value function,ABS(x) , converts the associated value
to an absolute value. If the value is negative, it is converted to a
positive value. If the value is positive, it is not changed.

Syntax ABS(x)

Programming
guidelines

Enter the argument (the value) in parentheses immediately following
the term ABS.

Program
segment

Program line

10 INT1 = -1000

20 PRINT ABS(INT1)

RUN <enter>

Program prints “1000".

3 - 2 StepperBASIC Reference Manual Rev F

ACCEL.RATE

parameter

(integer)

Purpose ACCEL.RATE(Acceleration Rate) sets the rate at which the motor
will accelerate/decelerate to change speed.

IMPORTANT NOTE

The value of this variable is saved in NVRAM
when the SAVEVAR command is executed.

Syntax ACCEL.RATE = x

where x is the desired acceleration rate in RPM/sec and it depends on
step size with range and resolution as follows:

Range

Stepsize Range

1 17.46 to 1,000,000 RPM/sec

2 17.46 to 1,000,000 RPM/sec

5 6.98 to 1,000,000 RPM/sec

25 5.59 to 1,000,000 RPM/sec

125 2.24 to 1,000,000 RPM/sec

Note: Below these values,ACCEL.RATEis set to 0.

Resolution

Stepsize Resolution

1 4.6 RPM

2 4.6 RPM

5 1.8 RPM

25 1.5 RPM

125 0.58 RPM

Rev F StepperBASIC Reference Manual 3 - 3

ACCEL.RATE (continued)

Default x = 1000

Related
instructions

MAX.DECEL— alternative deceleration rate for special condition
stopping.

DECEL.RATE— deceleration rate whenDCL.TRACK.ACL disable.

DCL.TRACK.ACL — enables same deceleration rate as acceleration.

GO.ABS— causes the motor to move to the position specified by
TARGET.POS.

GO.HOME— moves the motor shaft to the electrical home position.

GO.INCR — moves the motor shaft an incremental index from the
current position.

GO.VEL — moves the motor shaft at constant speed.

RUN.SPEED— sets the commanded velocity in RPM.

UPD.MOVE— updates the commanded motion (currently in progress)
using specifiedACCEL.RATE, DECEL.RATEandRUN.SPEED.

Programming
guidelines

• Program variable whenever there is a change in the rate of
motion, including negative motion.

• If ACCEL.RATE= 0 and a move is initiated, the motor runs at
MIN.SPEED.

• Set theACCEL.RATEparameter prior to issuing any motion
command statement.

• ACCEL.RATEcan be updated using theUPD.MOVE
statement.

Program
segment

Program line

10 ‘Set stepsize equal to 25

20 STEPSIZE = 25

30 RUN.SPEED = 300

40 ‘Set an incremental move of 25000 microsteps

50 INDEX.DIST = 25000

60 GO.INCR

3 - 4 StepperBASIC Reference Manual Rev F

AUTO

command

Purpose AUTOautomatically generates program line numbers, presenting a new
line number after each program line is added.

Syntax AUTO[line number [, increment]]

Related
instructions

RENUM— renumbers program lines.

Programming
guidelines

If the new line number does not appear, the previous line was not
successfully added to the program because of a syntax error. Retype
the line number and instruction correctly to remedy this.

TheAUTOcommand stays in effect until the user types:

<Cntl><c>

or until a line typed in by the user contains a syntax error.

Program
segment

Program line

AUTO 100, 50 <enter>

Generates line numbers 100, 150, 200, ...

AUTO <enter>

Generates line numbers 10, 20, 30, ...

Rev F StepperBASIC Reference Manual 3 - 5

CCW.OT

parameter

(integer)

Purpose CCW.OT(Counterclockwise Overtravel) sets the counterclockwise
software overtravel limit in motor steps.

When the counterclockwise overtravel variable is turned On
(CCW.OT.ON= 1) and the set distance is surpassed, the motor
decelerates to a stop and further counterclockwise motion is prevented.
An error code is generated and an overtravel jump occurs if
programmed.

Note: Please refer to Section 2.3,“Setting Up Overtravel Function”,
for additional information.

Syntax CCW.OT = x

Stepsize Steps

1 -33,554,432< x < 33,554,431

2 -67,108,864< x < 67,108,863

5 -67,108,864< x < 67,108,863

25 -268,435,456< x < 268,435,455

125 -536,870,912< x < 536,870,911

Default x = 0

Related
instructions

CCW.OT.JUMP— sets the line number destination if overtravel
exceeded.

CCW.OT.ON— turns on counterclockwise overtravel checking.

OT.ERROR— displays value for the appropriate direction if an
overtravel error occurs.

See also corresponding clockwise variables,CW.OT, CW.OT.ONand
CW.OT.JUMP.

3 - 6 StepperBASIC Reference Manual Rev F

CCW.OT (continued)

Programming
guidelines

1. SetCCW.OTto the desired distance in motor position. This distance
is based onPOS.COMMAND= 0.

2. ProgramCCW.JUMPfor a line number destination if desired.

3. ProgramCCW.OT.ON= 1 to turn On overtravel checking.

Program
segment

Program line

10 PREDEF.INP = 0

20 ENABLE = 1

30 STEPSIZE = 25

40 MIN.SPEED = 100

50 RUN.SPEED = 1000

60 ACCEL.RATE = 1000

70 POS.COMMAND = 0

80 CW.OT = 25000

90 CCW.OT = -25000

100 CW.OT.ON = 1

110 CCW.OT.ON = 1

120 CW.OT.JUMP = 1000

130 CCW.OT.JUMP = 1000

140 GO.VEL

150 WHILE MOVING : WEND

160 PRINT “ERROR”

170 END

1000 PRINT “CW & CCW OT JUMP OK”

1010 PRINT “OT.ERROR = ”; OT.ERROR

1020 DIR = NOT DIR

1030 GOTO 80

RUN <enter>

The motor oscillates between position + 25000 and -25000.

Rev F StepperBASIC Reference Manual 3 - 7

CCW.OT.JUMP

parameter

(integer)

Purpose CCW.OT.JUMP(Counterclockwise Overtravel Error Jump Location)
specifies the jump location for counterclockwise overtravel errors.

If CCW.OT.JUMPis equal to zero, the program will not jump when a
counterclockwise overtravel occurs.

Note: Refer to Section 2.3,“Setting Up the Software Overtravel
Function”, for additional information.

Syntax CCW.OT.JUMP = x

where x is the line number of counterclockwise overtravel error
handler.

CCW.OT.JUMP= 0 prevents the program from jumping when a
counterclockwise overtravel error occurs.

Default x = 0

Related
instructions

CCW.OT— sets the counterclockwise software overtravel limit

CCW.OT.ON—turns On/Off counterclockwise overtravel checking

OT.ERROR— displays value for the appropriate direction if an
overtravel error occurs.

See also corresponding clockwise variables,CW.OTandCW.OT.ON.

Programming
guidelines

1. ProgramCCW.OT.ON= 1 to turn On overtravel checking.

2. SetCCW.OTto the desired distance in motor position. This distance
is based onPOS.COMMAND.

3 - 8 StepperBASIC Reference Manual Rev F

CCW.OT.ON

variable

(integer)

Purpose CCW.OT.ON(Counterclockwise Overtravel Check Enable) works with
CCW.OTandCCW.OT.JUMPto turn On the counterclockwise
software overtravel limit function.

CCW.OT.ONspecifies whether the counterclockwise overtravel
checking is turned On or Off. You can setCCW.OT.ONto 0 or 1.

Note: Please refer to Section 2.3,“Setting Up Overtravel Function”,
for additional information.

Syntax CCW.OT.ON = 1 Turns counterclockwise overtravel check On

CCW.OT.ON = 0Turns counterclockwise overtravel check Off

Related
instructions

CCW.OT.JUMP — sets the line number destination of overtravel
exceeded.

CCW.OT— counterclockwise software overtravel limit.

OT.ERROR— displays value for the appropriate direction if an
overtravel error occurs.

See also corresponding clockwise variables,CW.OT, CW.OT.ON, and
CW.OT.JUMP.

Programming
guidelines

1. SetCCW.OTto the desired distance in motor position. This distance
is based onPOS.COMMAND= 0.

2. ProgramCCW.JUMPfor a line number destination, if desired.

3. ProgramCCW.OT.ON= 1 to turn overtravel checking On.

Rev F StepperBASIC Reference Manual 3 - 9

CHR ()

function

Purpose CHRconverts an ASCII code to its equivalent character

Syntax CHR (n)

Related
instructions

INKEY — returns the key or control code corresponding to a key
pressed or control entered from the keyboard.

Programming
guidelines

n is a value from 0 to 255.

Refer to Appendix A, “ASCII Codes”, for a table of ASCII values.

Program
segment

Program line

10 PRINT CHR (66)

RUN <enter>

The upper case letter B will be printed.

3 - 10 StepperBASIC Reference Manual Rev F

CINT

function

Purpose The convert to integer function,CINT(x) , converts x to an integer by
rounding the fractional portion. If the fractional portion is greater than
.5, x is rounded up to the next integer; if less than .5, x is rounded
down to the existing integer portion.

Syntax CINT (x)

Range -32,768 to 332,767

Related
instructions

INT — converts a constant or variable into the largest integer that is
less than or equal to x.

Program
segment

Program line

PRINT CINT (45.67)

The value 46 will be printed

PRINT CINT (-12.11)

The value -12 will be printed

PRINT CINT (VELOCITY)

The value 1000 will be printed if the motor is moving at 1000 RPM

Rev F StepperBASIC Reference Manual 3 - 11

CLEAR

command

Purpose CLEARis an immediate mode instruction that setsFLGn, FLTn, and
INTn variables to 0.

Note: CLEARdoes not affect program text or global variables.

Syntax CLEAR

Related
instructions

FLGn — flag variable cleared byCLEAR.

FLTn — float variable cleared byCLEAR.

INTn — integer variable cleared byCLEAR.

Programming
guidelines

ProgramCLEARfrom immediate mode to set all user-specified
variables in RAM to 0. Variables in the program are not affected.

3 - 12 StepperBASIC Reference Manual Rev F

CLR.SCANn

statement

Purpose CLR.SCANn (Clear Scan 1 or 2) turns Off scan 1 or scan 2.

Note: Refer to Section 2.1,“Enabling and Disabling SCANs” for
additional information.

Syntax CLR.SCANn

where n = 1 or 2

Related
instructions

SET.SCANn — activates scan 1 or scan 2.

SKn.JUMP — sets the jump line number.

SKn.TRIGGER — sets the scan trigger input.

SKn.OUTPUT— sets an output action.

SKn.GOSUB— sets the gosub line number.

SKn.STOP — stops the motor usingMAX.DECELvalue.

Programming
guidelines

• ProgramCLR.SCANnat the point in the program where you
wish to turn the scan off.

• To turn the scan On again, programSET.SCANn.

• Refer toSET.SCANn for scan information.

Rev F StepperBASIC Reference Manual 3 - 13

CLR.SCANn (continued)

Program
segment

Program line

5 ‘Set scan to occur when input 2 goes to low voltage.

10 SK1.TRIGGER = 20

15 ‘Stop motor when scan input seen.

20 SK1.STOP = 1

25 ‘Do not jump.

30 SK1.JUMP = 0

35 ‘Turn output 1 On when scan input seen.

40 SK1.OUTPUT = 11

45 ‘Begin checking for scan input.

50 SET.SCAN1

55 ‘Turn motor at 1000 RPM.

60 RUN.SPEED = 1000

65 ‘Perform motion.

70 GO.VEL

75 ‘Wait for 5 seconds.

80 WAIT.TIME = 5

85 ‘Pause.

90 PAUSE

95 ‘Turn Off scan 1.

100 CLR.SCAN1

RUN <enter>

Scan1 looks for input 2 going low. Scan1 will be active for only
five seconds after motor starts to move.

3 - 14 StepperBASIC Reference Manual Rev F

CONT

command

Purpose CONT(Continue after Stop) is an immediate mode instruction that
causes resumption of a program interrupted by aSTOPcommand.

UsingCONTwith STOPis an effective tool for testing and debugging
programs.

Syntax CONT

Related
instructions

STOP— causes program interrupt used withCONT.

Note: Do not confuse the instructionCONTINUE, used withWHEN,
with CONT.

Programming
guidelines

ProgramCONTfrom immediate mode whenever a program is
interrupted using theSTOPcommand.

Note: Do not change the program interrupted bySTOP. Program
execution will be incorrect if aSTOPinterrupted program is altered.
You may, however, change variables in immediate mode during an
activeSTOPcommand.

Rev F StepperBASIC Reference Manual 3 - 15

CONT (continued)

Program
segment

Program Line

90 ‘The program stops.

100 STOP

110 ‘Program resumes from here when CONT programmed.

120 PRINT “Program”

.

.

.

RUN When the program runs, it completes up to line 100 and prints
“Break in line 100". You may now enter instructions in
immediate mode, including variable changes.

CONT Program execution continues from line 110.

3 - 16 StepperBASIC Reference Manual Rev F

CONTINUOUS.MOTION

variable

(integer)

Purpose CONTINUOUS.MOTIONenables motion to proceed continuously over
multiple motion instructions. Motion does not stop when new motion
instructions are encountered; instead, motion continues with the
parameters of the new motion instruction.

If CONTINUOUS.MOTIONis not enabled, motion stops after each
motion instruction.

When
enabled

When enabled (CONTINUOUS.MOTION= 1), the following program
segment results in one continuous move to a position one turn beyond
the absolute position of 10000.

10 CONTINUOUS.MOTION = 1

20 POS.COMMAND = 0

30 TARGET.POS = 10000

40 INDEX.DIST = 5000

50 RUN.SPEED = 200

60 GO.ABS

70 GO.INCR

POSITION = 15000

Rev F StepperBASIC Reference Manual 3 - 17

CONTINUOUS.MOTION (continued)

When
disabled

If line 10 had not enabled Continuous Motion
(CONTINUOUS.MOTION= 0), two distinct moves would occur:

Changing
variables

If new motion variables are programmed following existing motion
instructions, these new variables become effective as soon as a new
motion instruction is encountered. For example, the following
program segment generates the motion profile shown:

10 CONTINUOUS.MOTION = 1

20 POS.COMMAND = 0

30 TARGET.POS = 10000

40 RUN.SPEED = 500

50 GO.VEL

60 RUN.SPEED = 100

70 WHEN POS.COMMAND > 5000, GO.ABS

VELOCITY

TIME

POSITION = 10000 POSITION = 15000

500 RPM

100 RPM

VELOCITY

TIME

POSITION = 5000

POSITION = 15000

3 - 18 StepperBASIC Reference Manual Rev F

CONTINUOUS.MOTION (continued)

Used with
Update Move

Continuous Motion must be enabled when using Update Move
(UPD.MOVE).

Syntax CONTINUOUS.MOTION = x

Value x = 0 to disallow Continuous Motion. Once a move is in process, the
move must complete and motion stop before other moves may initiate.

x = 1 to specify Continuous Motion when new variables and
UPD.MOVEencountered.

Default x = 0

Related
instructions

UPD.MOVE— immediately update the current move in process with
new variables.

Programming
guidelines

SetCONTINUOUS.MOTION= 1 to specify Continuous Motion.

Note: Any relevant variables that the program encounters while the
motion profile is in process will be implemented for the remainder of
the profile.

Program
segment

Program line

90 ‘Specify continuous motion.

100 CONTINUOUS.MOTION = 1

110 RUN.SPEED = 2000

120 INDEX.DIST = 100000

130 GO.INCR

140 GO.INCR

RUN <enter>

Single move of 200,000 steps will be performed without any
stopping.

Rev F StepperBASIC Reference Manual 3 - 19

CW.OT

parameter

(integer)

Purpose CW.OT(Clockwise overtravel) sets the clockwise software overtravel
limit in motor steps.

When the clockwise overtravel variable is turned On (CW.OT.ON = 1)
and the set distance is surpassed, the motor decelerates to a stop and
further clockwise motion is prevented. An error code is generated and
an overtravel jump occurs if programmed.

Note: Refer to Section 2.3,“Setting Up the Software Overtravel
Function” for additional information.

Syntax CW.OT = x

Range

Stepsize Steps

1 -33,554,432< x < 33,554,431

2 -67,108,864< x < 67,108,863

5 -67,108,864< x < 67,108,863

25 -268,435,456< x < 268,435,455

125 -536,870,912< x < 536,870,911

Default x = 0

Related
instructions

CW.OT.JUMP— sets the line number destination if overtravel
exceeded.

CW.OT.ON— turns on clockwise overtravel checking.

OT.ERROR— displays value for the appropriate direction if an
overtravel error occurs.

See also corresponding clockwise variables,CCW.OT, CCW.OT.ON
andCCW.OT.JUMP.

3 - 20 StepperBASIC Reference Manual Rev F

CW.OT (continued)

Programming
guidelines

1. SetCW.OTto the desired distance in motor position. This distance
is based onPOSITION = 0.

2. ProgramCW.JUMPfor a line number destination if desired.

3. ProgramCW.OT.ON= 1 to turn On overtravel checking.

Rev F StepperBASIC Reference Manual 3 - 21

CW.OT.JUMP

parameter

(integer)

Purpose CW.OT.JUMP(Clockwise Overtravel Error Jump) sets the line the
program jumps to upon an overtravel error.

This variable works withCW.OTandCW.OT.ONto implement the
clockwise software overtravel limit function.

If you setCW.OT.JUMPequal to zero then the program will not jump
when a clockwise overtravel occurs.

Note: Refer to Section 2.3,“Setting Up the Software Overtravel
Function” for more information.

Syntax CW.OT.JUMP = x

Value x = line number of clockwise overtravel error handler

x = 0 to prevent jumping upon a clockwise overtravel error

Default x = 0

Related
instructions

CCW.OT— counterclockwise overtravel limit.

CCW.OT.ON— turns On counterclockwise overtravel checking

CW.OT.ON— turns On clockwise overtravel checking.

CW.OT— clockwise overtravel limit.

OT.ERROR— displays value for appropriate direction if overtravel
occurs.

Programming
guidelines

1. ProgramCW.OT.ON= 1 to turn ON overtravel checking.

2. SetCW.OT to desired distance in motor position. This distance is
based onPOS.COMMAND= 0.

3 - 22 StepperBASIC Reference Manual Rev F

CW.OT.ON

parameter

(integer)

Purpose CW.OT.ON(Clockwise Overtravel Check Enable) specifies whether
the clockwise overtravel checking is turned On or Off. You can set
CW.OT.ONto 0 or 1.

Note: Refer to Section 2.3,“Setting Up Software Overtravel Function”
for additional information.

Syntax CW.OT.ON = 1Turns Clockwise Overtravel Enable On

CW.OT.ON = 0Turns Clockwise Overtravel Enable Off

Related
instructions

CW.OT.JUMP— sets the line number destination of overtravel
exceeded.

CW.OT— clockwise software overtravel limit.

OT.ERROR— displays value for the appropriate direction if an
overtravel error occurs.

See also corresponding clockwise variables,CCW.OT, CCW.OT.ON,
andCCW.OT.JUMP.

Programming
guidelines

1. SetCW.OTto the desired distance in motor position. This distance is
based onPOS.COMMAND= 0.

2. ProgramCW.JUMPfor a line number destination if desired.

3. ProgramCW.OT.ON= 1 to turn overtravel checking On.

Rev F StepperBASIC Reference Manual 3 - 23

DCL.TRACK.ACL

variable

(integer)

Purpose DCL.TRACK.ACL (Deceleration Tracks Acceleration) enables the
acceleration rate equal to the deceleration rate. If disabled,
deceleration is a separate value to be set usingDECEL.RATE.

Syntax DCL.TRACK.ACL = x

Value x = 0 to turn OFF Deceleration Tracks Acceleration to use
DECEL.RATE.

x = 1 to turn ON Deceleration Tracks Acceleration. The program uses
the acceleration rate to decelerate.

Note: DCL.TRACK.ACL is automatically turned Off when a
DECEL.RATEis specified.

Default x = 1

Related
instructions

DECEL.RATE— sets the deceleration rate for motion.

ACCEL.RATE— sets the acceleration rate when speed is increased.

3 - 24 StepperBASIC Reference Manual Rev F

DCL.TRACK.ACL (continued)

Program
segment

Program line

90 ‘Disable deceleration track acceleration.

100 DCL.TRACK.ACL = 0

110 ACCEL.RATE = 1000000

120 DECEL.RATE = 1000

130 RUN.SPEED = 10000

140 INDEX.DIST = 10000

150 GO.INCR

RUN <enter>

Line 100 disables deceleration track acceleration when line 150 is
encountered. Trapezoidal move profile is performed with
deceleration rate different from acceleration.

Rev F StepperBASIC Reference Manual 3 - 25

DECEL.RATE

parameter

(integer)

Purpose DECEL.RATE(Deceleration Rate) sets the deceleration performed at
the end of a move.

Syntax DECEL.RATE = x

where x is the desired deceleration rate in RPM/ sec.

Stepsize Range

1 17.46 to 1,000,000 RPM/sec

2 17.46 to 1,000,000 RPM/sec

5 6.98 to 1,000,000 RPM/sec

25 5.59 to 1,000,000 RPM/sec

125 2.24 to 1,000,000 RPM/sec

Stepsize Resolution

1 4.6 RPM/sec

2 4.6 RPM/sec

5 1.8 RPM/sec

25 1.5 RPM/sec

125 0.58 RPM/sec

Default x = 1000

Related
instructions

DCL.TRACK.ACL — specifies deceleration rate different than
acceleration.

3 - 26 StepperBASIC Reference Manual Rev F

DECEL.RATE (continued)

Programming
guidelines

SpecifyDCL.TRACK.ACL = 0 then setDECEL.RATEto the desired
value.

To switch from deceleration atDECEL.RATEto deceleration at the
acceleration rate, programDCL.TRACK.ACL = 1.

Program
segment

Program line

90 ‘Disables deceleration tracks acceleration.

100 DCL.TRACK.ACL = 0

110 ACCEL.RATE = 1000000

120 DECEL.RATE = 1000

130 RUN.SPEED = 10000

140 INDEX.DIST = 10000

150 GO.INCR

RUN <enter>

Line 100 disables deceleration track acceleration when line 150 is
encountered. Trapezoidal move profile is performed with
deceleration rate different from acceleration.

Rev F StepperBASIC Reference Manual 3 - 27

DELETE

command

Purpose DELETEremoves one or more lines from a program.

Syntax DELETE [line number1] - [line number 2]

Where line number1 designates the first line number to be deleted and
line number2 designates the last line number to be deleted.

Note: A line may also be deleted by typing the line number followed by
<Return>.

Example
program

Program line

DELETE

This results in an error message because no line number was
specified.

DELETE 25

Deletes line 25 from the program.

DELETE 20-50

Deletes lines 20 through 50 from the program.

DELETE -50

Deletes all lines from the beginning of the program through line 50.

3 - 28 StepperBASIC Reference Manual Rev F

DIR

parameter

(integer)

Purpose DIR (Direction) sets the direction the motor turns when a GO.VEL or
SEEK.HOMEfunction is executed.

The step counter (POS.COMMAND) increases with moves in the set
direction and decreases with moves in the opposite direction.

Note: Refer to Section 2.9,“Description of Motion Statements” for
additional information.

IMPORTANT NOTE:

The value of this valuable is saved in NVRAM
when the SAVEVAR command is executed.

Syntax DIR = x

Value x = 0 rotation isclockwisewhen looking at the motor shaft end-first

x = 1 rotation iscounterclockwisewhen looking at the motor shaft

end-first

Default x = 0

Related
instructions

GO.VEL — moves the motor shaft at a constant speed

POS.COMMAND— displays steps and can also be set to a value.

RUN.SPEED— sets the commanded velocity

SEEK.HOME— causes the motor to find its home position based upon
a limit switch connected to INP16.

Programming
guidelines

Note: DIR does not define direction for theGO.INCR motion
function. The sign ofINDEX.DIST defines direction for this function.

Rev F StepperBASIC Reference Manual 3 - 29

DIR (continued)

Program
segment

Program line

10 DIR = 0

20 SEEK.HOME

30 DIR = NOT DIR

40 RUN.SPEED = 250

50 GO.VEL

Lines 10 and 20 determine the clockwise direction for rotation to find
the home position.

Lines 30 through 50 determine the rotation move in constant speed of
250 RPM in the counterclockwise direction.

3 - 30 StepperBASIC Reference Manual Rev F

ENABLE

parameter

(integer)

Purpose ENABLEallows or prevents power flow to the motor.

Syntax ENABLE = x

Value x = 0 to disable the drive

x = 1 to enable the drive

Default x = 1

Related
instructions

PWR.ON.ENABLE— automatically enables the drive upon power up.

ENABLED— displays drive enable state.

FAULTCODE— indicates if the controller is faulted.

Programming
guidelines

To enable, that is, allow power to flow to the motor, verify that the
following conditions are all true:

1. Drive is not faulted.

2. Enable input J7-5 connected to I/O RTN.

3. ENABLEvariable set to 1.

If any of these conditions is false, power will not flow into the motor.
Therefore, when conditions 1 and 2 are true, theENABLEvariable may
be used to control whether or not power flows into the motor.

Note: When the controller is turned on, theENABLEvariable is set
equal to the valuePWR.ON.ENABLE.

Rev F StepperBASIC Reference Manual 3 - 31

ENABLED

variable

(integer)

(read only)

Purpose ENABLEDindicates whether controller is enabled.

Syntax x = ENABLED

0 = controller disabled

1 = controller enabled

Related
instructions

ENABLE— variable to enable drive in program.

FAULTCODE— indicates if the controller has faulted.

Programming
guidelines

To enable, that is, allow power to flow to the motor, verify that the
following conditions are all true:

1. Drive is not faulted.

2. Enable input J7-5 connected to I/O RTN.

3. ENABLEvariable programmed.

.

3 - 32 StepperBASIC Reference Manual Rev F

ENCDR.POS

variable

(integer)

Purpose ENCDR.POS(Encoder Position) displays encoder position. For
example, with a 1024 line encoder, each increment ofENCDR.POSis
equal to 1/4096 of a revolution of the encoder shaft.

Note: Refer to Sections 2.5, 2.6, 2.8, and 2.10 for additional
information.

Syntax x = ENCDR.POS

Value x = + 2,147,483,647 encoder line count

Related
instructions

ENCODER— sets the line count of the master encoder.

STEP.DIR.INPUT — specifies encoder or step/direction input.

ENC.FREQ— displays encoder frequency.

Programming
guidelines

• Install an incremental quadrature encoder with differential line
driver-type outputs on the master motor. Refer to Section
2.5.5, “J6 Encoder/Step and Direction Input Connection” in the
Installation Manual.

• Install the encoder input from the master and verify that it is
set to the correctENCODERline count.

• ENCDR.POScan also be used when the J6 Encoder Interface
is converted for step and direction input. Refer to
STEP.DIR.INPUT .

Note: The maximum encoder frequency is 500 kHz.

Rev F StepperBASIC Reference Manual 3 - 33

ENC.FREQ

variable

(float)

(read only)

Purpose ENC.FREQ(Encoder Frequency) displays the encoder frequency in
pulses per second.

Syntax x = ENC.FREQ

Maximum
frequency

500 kHz

Related
instructions

STEP.DIR.INPUT — specifies encoder or step/direction input.

ENCODER— sets the line count of the master encoder.

Programming
guidelines

The value returned is a floating point variable. To convert the value to
an integer, useCINT.

ENC.FREQis updated every 160 msec and represents the average
frequency over the preceding 160 msec interval.

Program
segment

Program line

10 ENCODER = 1024

20 PRINT ”ENC.FRE Q = ” CINT (ENC.FREQ)

Assuming the master encoder is moving at a rate of 3000 RPM, the
output for this program will be:

ENC.FREQ = 204800

Note: ENC.FREQ= (ENCODERx Speed (RPM) x 4) / 60

3 - 34 StepperBASIC Reference Manual Rev F

ENCODER

parameter

(integer)

Purpose ENCODERspecifies the number of line counts per revolution for the
installed encoder. This variable must be specified if using electronic
gearing, position verification and correction, stall detection, and
registration function.

Note: An incremental quadrature encoder with differential line driver
type outputs must be used. Refer to Sections 2.5, 2.6, 2.8 and 2.10 for
additional information.

IMPORTANT NOTE:

The value of this valuable is saved in NVRAM
when the SAVEVAR command is executed.

Syntax ENCODER = x

Range x = 200 to 10000

Default x = 1000

Related
instructions

GEARING— turns On or Off electronic gearing.

RATIO — the electronic gearing ratio of motor shaft movement to
encoder shaft movement using encoder line count.

STEP.DIR.INPUT — selects quadrature encoder or step and
direction inputs J6.

Rev F StepperBASIC Reference Manual 3 - 35

ENCODER (continued)

Program
segment

Program line

5 ‘Installed encoder is 500 lines per revolution

10 ENCODER = 500

15 ‘Ratio is 0.5 for a half turn of the motor shaft per encoder
revolution

20 RATIO = 0.5

25 ‘ Turn On electronic gearing

30 GEARING = 1

3 - 36 StepperBASIC Reference Manual Rev F

END

statement

Purpose ENDterminates the execution of a program

Syntax END

Programming
guidelines

This statement may be used anywhere in a program to cause the
program to terminate and stop the motor. This statement may be used
as the last line of the program.

Note: An error will not occur if theENDstatement is not used.

TheCONTcommand will not work after execution of anEND
statement it will, however, continue following aSTOPstatement.

To restart the program following anENDstatement, theRUNcommand
must be used.

Related
instructions

STOP— Stops program and motion.

CONT— causes the program to continue after aSTOPcommand is
encountered.

Rev F StepperBASIC Reference Manual 3 - 37

FAULTCODE

variable

(integer)

Purpose FAULTCODEflags general drive or microprocessor fault occurrence.
This code occurs whenever the MICROPROCESSOR FAULT LED is
lit.

Syntax x = FAULTCODE

Value x = 0 displayed if no fault present or is entered to clear fault code after

source of faulting has been removed

x = 1 displayed if drive faulted

x = 2 displayed if an error occurred while loading the program from

the NVRAM to RAM.

x = 3 displayed if an error occurred while loading the variables from

the NVRAM to RAM.

Programming
guidelines

• Program a fault code in an expression to detect faults that
occur during operation.

• If fault occurs, resetFAULTCODEby programming
FAULTCODE= 0. If a drive fault occurred, cycle power only.
If the fault recurs, troubleshoot as follows:

1. Check correct connections to motor. See Section 2.5.1 in the
Installation Manual.

2. Check for voltage drops in line voltage. Voltage must be at 115
volts + 20%.

For further help, contact Pacific Scientific Application Engineering at
(978) 988-9800 from 8 am to 5 pm Eastern Standard Time, or contact
your Pacific Scientific distributor.

3 - 38 StepperBASIC Reference Manual Rev F

FLGn

variable

Purpose FLGn (Flag variables 1 to 8) are flag, that is 0 or 1, variables you
define as part of your program.

Syntax FLGn = x

Range x = 0 or 1

Default FLGn = 0

Related
instructions

FLTn — thirty-two floating point user-defined variables.

INTn —thirty-two integer user-defined variables.

CLEAR— clearsFLGn, FLTn , andINTn variables in immediate
mode.

Programming
guidelines

Set the individual variable to 0 or 1 as required.

Note: Flags are not saved in NVRAM by SAVEVAR. If you cycle
power you will loose the state of the FLG variables.

Program
segment

Program line

100 FLG7 = 1

Flag 7 is 1.

.

.

.
1000 IF FLG 7 = 1 THEN STOP.MOTION

Stop motor if flag 7 is 1.

Rev F StepperBASIC Reference Manual 3 - 39

FLTn

variable

(float)

Purpose FLTn (Floating point variables 1 to 32) are decimal variables you
define as part of your program.

Syntax FLTn = x where n = 1 to 32

Range + 3 x 10-39 to + 1.7 x 1038

Default FLTn = 0

Resolution IEEE Single Precision Floating Point

Related
instructions

FLGn — eight flag (0 to 1) user-defined variables.

INTn — thirty-two integer user-defined variables.

CLEAR— clearsFLGn, FLTn , andINTn variables in immediate
mode.

SAVEVAR— FLT1...FLT32 are saved in NVRAM memory.

Programming
guidelines

Set the individual variable equal to a floating value within the range.

Program
segment

Program line

.

.

100 RATIO = FLT9 + FLT3

Set ratio equal to sum of float variable 9 and 3.
.

.

3 - 40 StepperBASIC Reference Manual Rev F

FOR...NEXT

statement

Purpose FOR...NEXT allows a series of statements to be executed in a loop a
given number of times.

Syntax FOR variable start value TO end value [STEP increment]

.

.

.

NEXT = [variable]

Programming
guidelines

An integer or floating point is used as a counter. The first expression
is the initial value of the counter variable, and the second expression is
the final value of the counter variable. The program lines following the
FORstatement are executed until the correspondingNEXTstatement is
encountered. Then the counter variable is incremented (or decremented
if STEP is negative) bySTEP. The BASIC interpreter software checks
to see if the counter variable is greater than (or less than) the final
value. If the value of the counter variable is not greater than (not less
than) the final value, the BASIC interpreter software executes the
statement following theFORstatement and the loop is repeated.

If the variable is greater (smaller) than the final value, execution
continues with the statement following theNEXTstatement.

Note: If STEP is not specified, the default value of +1 is assumed.

Rev F StepperBASIC Reference Manual 3 - 41

FOR ... NEXT (continued)

If STEP is negative, the final value of the counter is less than the
initial value. The variable is decreased by the value ofSTEPeach time
through the loop, and the loop is executed until the variable is less than
the final value. The body of the loop is skipped if the initial value
times the sign of the step is greater than the final value times the sign
of the step.

TheNEXTstatement can optionally include the name of the control
variable used in theFORstatement.FORloops can be nested up to a
limit of eight. EachNEXTstatement encountered at runtime must
correspond to the most recently encounteredFORstatement. The value
of the expression is evaluated prior to the start of loop execution.
Changing any variable used in the expressions within the loop will not
affect the number of loops performed. The final expression is evaluated
before the initial value expression.

Program
segment

Program line

20 FOR INT1 = 2 to 5

30 PRINT INT1;

40 NEXT

RUN <return>

3 - 42 StepperBASIC Reference Manual Rev F

FREE

command

Purpose FREEdisplays the number of free bytes of program memory.

Syntax FREE

Programming
guidelines

When writing a program of several hundred lines, check the size of the
program periodically to ensure that it does not exceed the 12K byte
size of NVRAM.

Program
segment

Program line

FREE

Screen displays 500 bytes used, 11500 bytes free.

OK

Rev F StepperBASIC Reference Manual 3 - 43

GEARING

parameter

(integer)

Purpose GEARINGturns electronic gearing on or off and sets allowed direction
of motion. Electronic gearing slaves the motion of the controller’s
motor to a master encoder signal.

Note: Refer to Section 2.8,“Electronic Gearing”, for more information.

Syntax GEARING = x

Value

Value Description

x = 0 Gearing is Off

x = 1 Gearing is On

x = 2 Follow clockwise master encoder
inputs only

x = 3 Follow counterclockwise master
encoder inputs only

Default x = 0

Related
instructions

ENCODER— sets the line count of the master encoder.

RATIO— the electronic gearing ratio of motor shaft movement to
encoder shaft movement using encoder line count.

ENCDR.POS— displays the encoder position.

STEPSIZE — sets the full or microstep rate for the drive.

STEP.DIR.INPUT — specifies encoder or step/direction input.

3 - 44 StepperBASIC Reference Manual Rev F

GEARING (continued)

Programming
guidelines

• STEPSIZE must be >= 5 for gearing.

Note: Gearing usually is done with encoder inputs. However, it can
be performed using Step/Dir inputs also. Refer toSTEP.DIR.INPUT .

• Install an encoder input from the master and verify that it is set
to the correctENCODERline count. Refer to Section 2.5.5, “J6
Encoder/Step and Direction Input Connection” in the
Installation Manual.

• SpecifyRATIO before programmingGEARING.

Note: Turn Off gearing before stopping motion. The instruction
STOP.MOTIONwill not stop motor motion resulting from gearing.

• The variableMOVINGdoes not recognize moving caused by
GEARING.

• If directional limits are set, gearing motion in the allowed
direction occurs only when the master encoder returns to the
point where it originally reversed direction.

Note: Other motion commands could result in motion in the disabled
gearing direction.

Program
segment

Program line

5 ‘Installed encoder is 500 lines per revolution.

10 ENCODER = 500

15 ‘Ratio is 0.5 for a half turn of the motor shaft per encoder
revolution.

20 RATIO = 0.5

25 ‘SetsGEARINGequal to the value ofINP1 (J4-2). If INP1 is
zero then electronic gearing is turned Off (GEARING= 0); if
INP1 is one then electronic gearing is turned On (GEARING=
1).

30 WHILE (1)

35 GEARING = INP1

40 ‘Monitor INP1 continually.

45 WEND

Rev F StepperBASIC Reference Manual 3 - 45

GO.ABS

statement

Purpose GO.ABS(Go Absolute) moves the motor shaft to the position
specified byTARGET.POS. This position is based on a zero position
at electrical home.

The motor speed follows a trapezoidal velocity profile as specified by
ACCEL.RATEandRUN.SPEED, with deceleration equal to the
acceleration rate. Direction of travel depends on current position and
target position only (DIR has no effect).

Note: The program does not wait forGO.ABScompletion. After the
program initiates this move it immediately goes to the next instruction.

If CONTINUOUS.MOTIONis enabled, you may perform multiple
motion instructions with no stop between moves.

Variables may be changed during a move usingUPD.MOVE.

Note: Refer to Section 2.9,“Making the Motion Move”, for more
information.

Syntax GO.ABS

Related
instructions

MIN.SPEED — sets the start/stop speed for making the move

RUN.SPEED— run speed for the move.

ACCEL.RATE— acceleration rate for the move.

DECEL.RATE— deceleration rate for the move.

TARGET.POS— target position forGO.ABS.

CONTINUOUS.MOTION— enables multiple motion instructions with
no stop between moves.

UPD.MOVE— update current move in process with new variables.

3 - 46 StepperBASIC Reference Manual Rev F

GO.ABS (continued)

Programming
guidelines

• Set appropriateRUN.SPEED, MIN.SPEED, ACCEL.RATE,
DECEL.RATE, andTARGET.POSvariables.

• EnableCONTINUOUS.MOTIONfor multiple motion
instructions.

• Program parameter changes during a move usingUPD.MOVE.

Program
segment

Program line

5 ‘Set run speed to 1,000 RPM.

10 RUN.SPEED = 1000

15 ‘Set acceleration rate to 1,000 RPM /
second.

20 ACCEL.RATE = 1000

25 ‘Set deceleration rate to 100,000
RPM/second.

30 DECEL.RATE = 100000

35 ‘Set target position to 10000 steps from
the electrical home position.

40 TARGET.POS = 10000

45 ‘Move motor to target position.

50 GO.ABS

55 ‘Hold execution of program to line 60
until move is completed.

60 WHILE MOVING : WEND

Rev F StepperBASIC Reference Manual 3 - 47

GO.HOME

statement

Purpose GO.HOMEmoves the motor to the electrical home position. This
moves the motor shaft to home without sensing the home switch
(position determined previously withSEEK.HOME).

The motor speed follows a trapezoidal velocity profile as specified by
ACCEL.RATE, RUN.SPEED, andDECEL.RATE.

Note: The program does not wait forGO.HOMEcompletion. After the
program initiates this move it immediately goes to the next instruction.

GO.HOMEperforms the same action as settingTARGET.POSto zero
and executing aGO.ABS function.

If CONTINUOUS.MOTIONis enabled, you may perform multiple
motion instructions with no stop between moves.

Note: Refer to Section 2.9,“Homing Routine”, for additional
information.

Syntax GO.HOME

Related
instructions

MIN.SPEED — sets the start/stop speed for making the move.

RUN.SPEED— run speed for the move.

ACCEL.RATE— acceleration rate for the move.

DECEL.RATE— deceleration rate for the move.

TARGET.POS— target position forGO.ABS.

POS.COMMAND— redefines the current absolute position to be the
specified absolute position.

SEEK.HOME— causes homing routine using mechanical switch.

HMPOS.OFFSET— determines offset from mechanical home to
establish electrical home.

CONTINUOUS.MOTION— enables multiple motion instructions with
no stop between moves.

UPD.MOVE— updates current move in process with new variables.

3 - 48 StepperBASIC Reference Manual Rev F

GO.HOME (continued)

Programming
guidelines

• Set appropriateRUN.SPEED, MIN.SPEED, ACCEL.RATE,
DECEL.RATE, andTARGET.POSvariables.

• EnableCONTINUOUS.MOTIONfor multiple motion functions.

• Program parameter changes during a move usingUPD.MOVE.

Program
segment

Program line

5 ‘Set run speed to 1000 RPM

10 RUN.SPEED = 1000

15 ‘Set acceleration rate to 1,000
RPM/second.

20 ACCEL.RATE = 1000

25 ‘Go to the electrical home position.

30 GO.HOME

35 ‘Hold program execution at line 40 until
move completes.

40 WHILE MOVING : WEND

Rev F StepperBASIC Reference Manual 3 - 49

GO.INCR

statement

Purpose GO.INCR (Go Incremental) moves the motor shaft an incremental
distance.

Distance, as specified inINDEX.DIST , may be positive or negative.
The motor speed follows a trapezoidal velocity profile as specified by
ACCEL.RATE, RUN.SPEED, andDECEL.RATE.

Note: The program does not wait for motion completion. After the
program initiates this move it immediately goes to the next instruction.

If CONTINUOUS.MOTIONis enabled, you may perform multiple
motion instructions with no stop between moves.

Parameters may be changed during a move usingUPD.MOVE.

Note: Refer to Section 2.9,“Making the Motor Move”, for additional
information.

Syntax GO.INCR

Related
instructions

MIN.SPEED — sets the start/stop speed for making the move

RUN.SPEED— run speed for the move.

ACCEL.RATE— acceleration rate for the move.

DECEL.RATE— deceleration rate for the move.

INDEX.DIST — index distance for each move cycle.

CONTINUOUS.MOTION— enables multiple motion instructions with
no stop between moves.

UPD.MOVE— updates current move in process with new variables.

3 - 50 StepperBASIC Reference Manual Rev F

GO.INCR (continued)

Programming
guidelines

Set appropriateRUN.SPEED, MIN.SPEED, ACCEL.RATE, and
DECEL.RATEvariables.

Note: Set direction of the motor usingINDEX.DIST . Positive values
move clockwise and negative values move counterclockwise. Direction
is not affected byDIR .

EnableCONTINUOUS.MOTIONfor multiple motion functions.

Program parameter changes during a move usingUPD.MOVE.

Program
segment

Program line

5 ‘Set acceleration rate to 100,000 RPM /second.

10 ACCEL.RATE = 100000

15 ‘Set run speed to 1,000 RPM.

20 RUN.SPEED = 1000

25 ‘Set the incremental index distance to 25,000 steps.

30 INDEX.DIST = 25000

35 ‘Perform index distance move.

40 GO.INCR

Rev F StepperBASIC Reference Manual 3 - 51

GOSUB...RETURN

statement

Purpose GOSUB...RETURN(Go to subroutine) branches program execution to
a subroutine, executes it, and returns..

Syntax GOSUB line number

.

.

.

RETURN

Programming
guidelines

• Subroutines may be located anywhere in the program. They
may be nested to a limit of 8; i.e. up to 8GOSUBs can be
executed without an interveningRETURNstatement. An
attempt to exceed the nesting limit will result in a run-time
error.

• To test a subroutine without running the rest of the program,
issue a RUN command with the starting line number of the
subroutines as the line number parameter. When theRETURN
statement of the subroutine is executed, BASIC will return to
immediate mode, with the error message “RETURN without
GOSUB”.

Caution

Do Not useGOSUB...RETURN in immediate mode. The
program may not execute correctly if this is done.

3 - 52 StepperBASIC Reference Manual Rev F

GOSUB ... RETURN (continued)

Program
segment

Program line

10 PRINT “BEGINNING”

20 GOSUB 100

30 PRINT “ENDING”

40 END

100 PRINT “THIS IS THE SUBROUTINE”

110 RETURN

RUN <enter>

The screen displays:

BEGINNING

THIS IS THE SUBROUTINE

ENDING

Rev F StepperBASIC Reference Manual 3 - 53

GOTO

statement

Purpose GOTOcauses software to jump to a specific line number and continue
executing.

Syntax GOTO line number

Programming
guidelines

TheGOTOstatement should only be used where necessary. It is good
programming practice to use structured control statements
(FOR...NEXT , IF...THEN...ELSE , WHILE...WEND) instead of
GOTOstatements because a program with manyGOTOstatements is
difficult to read and debug.

GOTOis a simple statement used to change the flow of program
execution. If theGOTOstatement is used to start execution after the
program has stopped, the user should ensure that the nesting levels of
subroutines,FOR ...NEXT loops, are not altered.

Program
segment

Program line

10 INT1 = 1

15 ‘Execution leaves off here.

20 GOTO 65

.

.

.

65 ‘Execution continues here.

70 RUN.SPEED = 100

.

.

.

110 PRINT INT1

3 - 54 StepperBASIC Reference Manual Rev F

GO.VEL

statement

Purpose GO.VEL (Go Velocity) moves the motor shaft at a constant speed.

The motor accelerates and reaches maximum speed as specified by
ACCEL.RATEandRUN.SPEED, with direction determined byDIR .
Stop motion by:

• ProgrammingSTOP.MOTIONfor deceleration at rate set by
MAX.DECEL.

• Applying a Stop Motion input for deceleration at rate set by
MAX.DECEL.

• ProgrammingRUN.SPEED= 0 for deceleration at rate set by
DECEL.RATE(or ACCEL.RATEif DECEL.RATEnot set).

Note: After the program initiates aGO.VEL it immediately goes to the
next instruction.

If CONTINUOUS.MOTIONis specified, you may perform multiple
motion instructions with no stop between moves.

Variables may be changed during a move usingUPD.MOVE.

Note: Refer to Section 2.9,“Making the Motor Move” for more
information.

Syntax GO.VEL

Rev F StepperBASIC Reference Manual 3 - 55

GO.VEL (continued)

Related
instructions

RUN.SPEED— run speed for the move.

ACCEL.RATE— acceleration rate for the move.

MAX.DECEL— maximum deceleration rate to stop motion.

DECEL.RATE— deceleration rate for the move ifRUN.SPEED= 0
set to stop move.

MIN.SPEED — minimum speed for application.

STOP.MOTION— stops motor motion using deceleration rate
specified byMAX.DECEL.

CONTINUOUS.MOTION— enables multiple motion instructions with
no stop between moves.

UPD.MOVE— updates current move in process with new variables.

Programming
guidelines

• Set appropriateRUN.SPEED, MIN.SPEED, ACCEL.RATE,
andMAX.DECELvariables.

• Change theRUN.SPEEDvariables in the lines following
GO.VEL to change the run speed accordingly.

• Set direction usingDIR .

Program
segment

Program line

5 ‘Set minimum speed for application

10 MIN.SPEED = 25

15 ‘Set acceleration rate to 100,000 RPM /second.

20 ACCEL.RATE = 100000

25 ‘Set run speed to 1,000 RPM.

30 RUN.SPEED = 1000

35 ‘Go to RUN.SPEED velocity.

40 GO.VEL

45 ‘Stop motion with input 1.

50 WHEN INP7 = 0, STOP.MOTION

3 - 56 StepperBASIC Reference Manual Rev F

HMPOS.OFFSET

parameter

(integer)

Purpose HMPOS.OFFSET(Home Position Offset) is the offset distance from
the mechanical home position.

When theSEEK.HOMEhoming function is performed, the motor
moves to mechanical home position as designated by the home switch
connected to input J5-8. The motor then moves theHMPOS.OFFSET
distance away from the home switch. This final position, known as
electrical home, is set to zero in thePOS.COMMANDcounter to
provide the zero reference home for further moves.

IMPORTANT NOTE:

The value of this variable is saved in NVRAM
when the SAVEVAR command is executed.

Syntax HMPOS.OFFSET = x

Value x = - 4,096,000 to + 4,096,000 steps (direction relative to
POS.COMMAND)

Default x = 0

Related
instructions

SEEK.HOME— causes homing routine using mechanical switch.

PRINT POS.COMMAND— displays current step position.

Programming
guidelines

• Connect limit switch for homing to J5-8.

• ProgramSEEK.HOMEto perform the homing with the home
position offset.

• SaveHMPOS.OFFSETin NVRAM, if desired, using
SAVEVAR.

Rev F StepperBASIC Reference Manual 3 - 57

HOME.ACTIVE

parameter

(integer)

Purpose HOME.ACTIVEmatches the software to the mechanical home switch
used forSEEK.HOME:

• If HOME.ACTIVE= 0, the home (mechanical) switch opens at
the home position, opening J5-8 from ground.

• The home switch is closed (pulled low) when the mechanical
switch contact is not in position.

• If HOME.ACTIVE= 1, the home (mechanical) switch closes at
the home position, connecting J5-8 to ground (pulled low).
The home switch is open when the mechanical switch contact is
not in position.

Note: Refer to Section 2.9.1,“Descriptions of Motion Statements” for
additional information.

IMPORTANT NOTE:

The value of this variable is saved in NVRAM
when the SAVEVAR command is executed.

Syntax HOME.ACTIVE = x

Value x = 0 if switch normally closed, triggering open

x = 1 if switch normally open, triggering closed

Default x = 0

Related
instructions

GO.HOME— moves the motor to electrical home position

SEEK.HOME— causes homing routine using mechanical switch.

HMPOS.OFFSET— sets additional move necessary for offset.

3 - 58 StepperBASIC Reference Manual Rev F

IF...THEN...ELSE

statement

Purpose IF...THEN ... ELSE statements control program execution
based on the evaluation of logical expressions. The
IF...THEN...ELSE decision structure permits the execution of
program statements or allows branching to other parts of the program
based on the evaluation of the expression.

Syntax IF expressionTHEN statement [ELSE statement]

IF expressionGOTOline number [ELSE line number]

TheELSE clause must be on the same line as theIF-THEN statement

Note: A statement can be any Pacific Scientific StepperBASIC
statement or any series of StepperBASIC statements separated by
colons.

Programming
guidelines

• If the expression is TRUE (not zero), the statement following
theTHENis executed, otherwise, the statement following the
ELSE is executed, if specified.

• If no ELSE is used, then the statement following the
IF-THEN is executed.

• The “GOTO” syntax is also used as a short form of “THEN
GOTO”. If the number ofELSE clauses do not match the
number of IF statements, eachELSE is matched with the
closest unmatchedTHEN or GOTOstatement.

Note: IF...THEN...ELSE statements may be nested up to a limit
of eight.

Program
segment

Program line

400 IF INT4 > INT7 GOSUB 1000 ELSE GOSUB 2000

1000 PRINT “INT4 > INT7"

1010 RETURN

2000 PRINT “INT4 <= INT7"

2010 RETURN

Rev F StepperBASIC Reference Manual 3 - 59

INDEX.DIST

parameter

(integer)

Purpose INDEX.DIST sets the distance the motor rotates during each index
when aGO.INCR function is performed.

Note: Refer to Section 2.9.1,“Descriptions of Motion Statements” for
additional information.

IMPORTANT NOTE:

The value of this variable is saved in NVRAM
when the SAVEVAR command is executed.

Syntax INDEX.DIST = ± x where positive values move clockwise and
negative values move counterclockwise.

Stepsize Range

1 -33,554-432< x < 33,554,431

2 -67,108,864< x < 67,108,863

5 -67,108,864< x < 67,108,863

25 -268,435,456< x < 268,435,455

125 -536,870,912< x < 536,870,911

Default x = 5,000

Related
instructions

GO.INCR — performs an incremental move from the current position.

Programming
guidelines

• SpecifyINDEX.DIST prior to issuing aGO.INCR command.

3 - 60 StepperBASIC Reference Manual Rev F

INKEY

function

Purpose INKEY returns the key or control code corresponding to a key pressed
or control entered from the keyboard. This function is useful to control
program flow based on key presses, such as “Y” or “N”.

Syntax x =INKEY ()

Value Refer to Appendix A, “ASCII Codes”, for an ASCII code table of
values.

Related
instructions

CHR (x) — Converts an ASCII code to its equivalent character.

Programming
guidelines

INKEY () returns a string character.

If no character is pending in the serial buffer, a null string (length zero)
is returned.

If several characters are pending, only the first is returned.

Once a character is read from the buffer, it is removed from the buffer.

Use this instruction to control program flow, as shown in the example.

The control characters <Ctrl><s>, <Ctrl><q>, and <Ctrl><c> are not
returned byINKEY () .

Rev F StepperBASIC Reference Manual 3 - 61

INKEY (continued)

Program
segment

Program line

5 ‘Test integer 1 four times.

10 FOR INT1 = 1 TO 4

15 INT2 = 0

20 WHILE INT2 = 0

25 ‘Read zero, or a character when entered.

30 INT2 = INKEY ()

35 ‘Loop until a character is entered.

40 WEND

45 ‘Print value.

50 PRINT “Your key value is”; INT2

60 NEXT

RUN <enter>

The program prints:

Your key value is 97

Your key value is 98

Your key value is 99

Your key value is 100

3 - 62 StepperBASIC Reference Manual Rev F

INPn

variable

(integer)

(read only)

Purpose INPn (Inputs 1 to 16) displays the state of a specific discrete input.
This is a read-only variable determined by the voltage level applied to
the input pin.

Syntax x = INPn

Value x = 0 to read specific input On (pulled low)

x = 1 to read specific input Off (open circuit/high)

Default x = 1

Related
instructions

INPUTS — allows you to read all 16 inputs in a word.

PREDEF.INPn — predefines input 10 to 15 functionality as follows:

Input Functionality Input Functionality

Input 10 Limit+ Input 13 Stop

Input 11 Limit- Input 14 Jog+

Input 12 Start Input 15 Jog-

Note: Home switch (input 16) is automatically predefined if a
SEEK.HOMEis active.

Rev F StepperBASIC Reference Manual 3 - 63

INPn (continued)

Programming
guidelines

0 — indicates logic low input (ON)

1 — indicates logic high input (OFF).

Note: This is a read only variable and can not be set by the software.

Program
segment

Program line

10 MIN.SPEED = 50

20 ACCEL.RATE = 5000

30 RUN.SPEED = 300

40 WHEN INP1 = 0, GO.VEL

When input 1 is switched On, perform a Go Velocity move.

3 - 64 StepperBASIC Reference Manual Rev F

IN.POSITION

variable

(integer)

(read only)

Purpose IN.POSITION indicates whether or not the motor is considered to be
“in position”. IN.POSITION is always either 1 (true) or 0 (false).
This variable is only valid when StepperBASIC is configured to
use Position Verification. Before using this variable, please refer
to Section 2.5,“Using the Position Verification and Correction
Function.” If StepperBASIC is not configured to use Position
Verification, then IN.POSITION will always be 0 (False).

The internal software automatically sets theIN.POSITION flag equal
to 1 when the following two conditions are met:

• The last commanded move is complete

• POS.VERIFY.DEADBANDis not exceeded

If either of these conditions are not satisfied then the internal software
will automatically set theIN.POSITION flag equal to 0.

Syntax x = IN.POSITION

Value x = 0 or 1

Related
instructions

POS.VERIFY.CORRECTION— returns the number of steps
difference for the position verification error.

POS.VERIFY.DEADBAND— sets the maximum allowed difference
in motor steps (microsteps) between encoder and pulse counts that can
occur before a position verification error is triggered.

POS.VERIFY.ERROR— indicates that a position verification error
has occurred.

POS.VERIFY.JUMP — jumps to program line number upon position
verification error.

POS.VERIFY.TIME — setting time for encoder reading.

Rev F StepperBASIC Reference Manual 3 - 65

IN.POSITION (continued)

Program
segment

Program line

10 POS.VERIFY.DEADBAND = 10

20 POS.VERIFY.TIME = 100

30 GO.INCR

40 IF MOVING THEN 40

50 IF NOT IN.POSITION THEN PRINT “ERROR”

60 PRINT POS.VERIFY.CORRECTION

3 - 66 StepperBASIC Reference Manual Rev F

INPUT

statement

Purpose INPUT enables the program to prompt you for numeric input to a
running program.

Syntax INPUT [;] [“ prompt ” ;] variable

Value A semicolon after the INPUT statement keeps the cursor on the same
line after the instruction is executed.

A semicolon after the prompt causes a question mark followed by a
space to be displayed. If a comma is used rather than a semicolon, no
question mark is displayed.

Related
instructions

INKEY — enables the program to prompt for alphabetic or special
characters.

Programming
guidelines

Only integer, float, or flag variables of numeric data types (no
alphabetic characters) are allowed as input.

If you are using RS-422 or RS-485 multi-unit configuration and the
drive specified forINPUT is not logged On,INPUT is automatically
set to zero.

If the drive is logged On, then the variable is set per the value entered
at the terminal.

Note: Refer to Appendix B,“ INPUT Statement” for additional
information.

Program
segment

Program line

10 INPUT INT1

20 PRINT “ You entere d ” ; INT1

RUN <enter>

Program prompts for INT1. If you press3 <enter> the program prints
“You entered 3".

Rev F StepperBASIC Reference Manual 3 - 67

INPUTS

variable

(integer)

(read only)

Purpose INPUTS displays the state of the 16 inputs. This is a read only
variable determined by the voltage levels applied to the discrete input
pins.

Syntax x = INPUTS

Range 0 to 65535

Default 65535 (inputs disconnected/high or all inputs Off)

Value where x is a decimal value corresponding to thesum of the weighted
inputs as described by:

INPUTS = (32768 * INP16) + (16384 * INP15) + (8192 * INP14)

+ (4096 * INP13) + (2048 * INP12) + (1024 * INP11)

+ (512 * INP10) + (256 * INP9) + (128 * INP8)

+ (64 * INP7) + (32 * INP6) + (16 * INP5) + (8 * INP4)

+ (4 * INP3) + (2 * INP2) + (1 * INP1)

whereINPn = State of input as indicated by:

INPn = 1 = OFF (high)

INPn = 0 = ON (low)

Related
instructions

INPn — reads input signals for individual outputs.

PREDEF.INP10,...,15 — specifies the functionality of discrete
inputs 10 to 15.

3 - 68 StepperBASIC Reference Manual Rev F

INPUTS (continued)

Programming
guidelines

If the individual inputs are connected such that:

Instruction Value Instruction Value Instruction Value

INP16 0 INP10 1 INP4 1

INP15 0 INP9 0 INP3 0

INP14 0 INP8 1 INP2 1

INP13 0 INP7 0 INP1 0

INP12 1 INP6 1

INP11 0 INP5 0

ThenINPUTS will equal:

(2048 * 1) + (1024 * 0) + (512 * 1) + (256 * 0) + (128 * 1)

+ (64 * 0) + (32 * 1) + (16 * 0) + (8 * 1) + (4 * 0) + (2 * 1)

+ (1 * 0)

or INPUTS = 2730

If the individual INPUTS are configured as follows:

Instruction Value Instruction Value Instruction Value

INP16 0 INP10 0 INP4 0

INP15 0 INP9 1 INP3 1

INP14 0 INP8 0 INP2 0

INP13 0 INP7 1 INP1 1

INP12 0 INP6 0

INP11 1 INP5 1

Then INPUTS will equal :

(2048 * 0) + (1024 * 1) + (512 * 0) + (256 * 1) + (128 * 0)

+ (64 * 1) + (32 * 0) + (16 * 1) + (8 * 0) + (4 * 1) + (2 * 0)

+ (1 * 1)

or INPUTS = 1365

Rev F StepperBASIC Reference Manual 3 - 69

INT ()

function

Purpose: INT(x) (Convert to Largest Integer) truncates an expression to a
whole number.

Syntax: INT (x)

Related
instructions

CINT — converts x to an integer by rounding the fractional portion.

FLTn — decimal (floating point) variables you define as part of your
program.

INTn — integer variables defined as part of the program.

Program
segment

Program line

10 PRINT INT (99.89)

Prints the value 99.

10 PRINT INT (-12.11)

Prints the value -13.

3 - 70 StepperBASIC Reference Manual Rev F

INTn

variable

(integer)

Purpose INTn (integers 1 to 32) are integer variables you define as part of your
program.

IMPORTANT NOTE:

The value of this variable is saved in NVRAM
when the SAVEVAR command is executed.

Syntax INTn

where n equals 1 to 32

Range x = ± 2,147,483,648

Related
instructions

FLGn — eight flag (0 or 1) user-defined variables.

FLTn — thirty-two floating point (value to right of decimal)
user-defined variables.

CLEAR— clearsFLGn, FLTn , andINTn variables in immediate
mode.

SAVEVAR— savesINTn to NVRAM memory.

Rev F StepperBASIC Reference Manual 3 - 71

JOG.SPEED

variable

(float)

Purpose JOG.SPEEDsets the speed the motor rotates when jogging.

IMPORTANT NOTE

The value of this variable is stored in NVRAM
when the SAVEVAR command is executed.

Syntax JOG.SPEED = x

Stepsize Range

1 MIN.SPEED to 18,750.00 RPM

2 MIN.SPEED to 18,750.00 RPM

5 MIN.SPEED to 7,500.00 RPM

25 MIN.SPEED to 6,000.00 RPM

125 MIN.SPEED to 2,399.99 RPM

Programming
guidelines

• The motor will jog clockwise when no program is being run if
the JOG + discrete input (J5-6) is connected to I/O RTN. The
motor will jog counterclockwise when no program is being run
if the JOG - discrete input (J5-7) is connected to I/O RTN.

Note: The jog inputs are not active when a Pacific Scientific
StepperBASIC program is runningPREDEF.INP14 = 0 (JOG+) or
PREDEF.INP15 = 0 (JOG-).

3 - 72 StepperBASIC Reference Manual Rev F

LIST

command

Purpose LIST displays a complete program or part of a program on the
terminal screen.

Syntax LIST [line number] - [line number]

Programming
guidelines

TheLIST command displays the program lines in a standardized
output format. Extra spaces or tabs (except for character constants) will
be stripped out. Keywords and expressions are separated by a single
space, as shown in the examples of syntax in this document. To
temporarily stop the output of the LIST command on the terminal, use
<Ctrl><s>. Use <Ctrl><q> to resume the listing.

Program
segment

Program line

LIST

Lists all lines of the program.

LIST 20

Lists only line 20.

LIST 50 -

Lists all lines from 50 to the end of the program.

LIST -60

Lists all lines from the beginning of the program to line 60.

LIST 20 - 70

Lists all lines from 20 to 70.

Rev F StepperBASIC Reference Manual 3 - 73

LOAD

command

Purpose LOADcopies the program stored in NVRAM into RAM in order to
execute the program or to edit the program.

Note: This command doesnot load variables.

Syntax LOAD

Related
instructions

LOADVAR— copies stored values for global variables

SAVE— saves program in RAM to NVRAM.

SAVEVAR— stores the values of parameters into NVRAM so they
will be saved when the controller is turned off.

Programming
guidelines

TheLOADcommand can be used to restore the program to the most
recently saved version. The program stored in NVRAM is
automatically transferred into RAM when you turn on the controller.

3 - 74 StepperBASIC Reference Manual Rev F

LOADVAR

command

Purpose LOADVARcopies stored values for the global variables from NVRAM
into RAM.

Syntax LOADVAR — loads variables into RAM.

Loaded
Variables

ACCEL.RATE

MAX.DECELDIR

MIN.SPEEDENCODER

PREDEF.INP10,...,
PREDEF.INP15

FLT1, ..., FLT32

PWR.ON.ENABLEHMPOS.OFFSET

RMT.STARTHOME.ACTIVE

RUN.SPEEDINDEX.DIST

STEPSIZEINT1, ... INT32

WAIT.TIMEJOG.SPEED

Related
Instructions

SAVE— saves program from RAM to NVRAM

SAVEVAR— saves variables from RAM to NVRAM

LOAD— loads program from NVRAM to RAM

Rev F StepperBASIC Reference Manual 3 - 75

LOADVAR (continued)

Programming
guidelines

UseLOADVARto restore the values of the global variables to a set of
previously stored values. This may be done in preparation for running
a program.

When you turn on the controller, the values of the variables stored in
NVRAM are automatically transferred to RAM. If an error is
encountered during this transfer, factory default parameters are loaded.

Program
segment

Program line

LOADVAR

Variables loaded into RAM

3 - 76 StepperBASIC Reference Manual Rev F

MAX.DECEL

parameter

(integer)

Purpose MAX.DECEL(Maximum Deceleration) sets the maximum rate at
which the motor decelerates under any of the following conditions:

• STOP.MOTIONinstruction is executed

• STOPinstruction is executed

• Remote Stop (J5-5) input is activated

• <Ctrl><c> is typed on the keyboard

• SCAN1 is satisfied andSK1.STOP is set to 1

• SCAN2 is satisfied andSK2.STOP is set to 1

• STALL.STOP occurs

You can set this value to a high rate for emergency stops and use a
lower value forACCEL.RATEif your application requires it.

IMPORTANT NOTE

The value of this variable is stored in NVRAM
when the SAVEVAR command is executed.

Syntax MAX.DECEL = x

Value x = 5 to 1,000,000 RPM/second

Default x = 100,000

Related
instructions

STOP.MOTION— stops motion while allowing program execution.

SKn.STOP —stops motion when a scan is triggered.

STOP— stops motion and interrupts the program.

Programming
guidelines

• Do not set to a value below 5 RPM/second. The motor will not
stop if MAX.DECELis set to zero (0).

Rev F StepperBASIC Reference Manual 3 - 77

MIN.SPEED

parameter

(float)

Purpose MIN.SPEED (Minimum Speed) sets the minimum speed used in
making any move. It is commonly referred to as the Start/Stop Speed.

Note: Refer to Section 2.9,“Making the Motor Move” for additional
information.

IMPORTANT NOTE

The value of this variable is stored in NVRAM
when the SAVEVAR command is executed.

Syntax MIN.SPEED = x

Stepsize Range

1 4.6 to 1,171.8 RPM

2 1.8 to 1,171.8 RPM

5 1.8 to 468.7 RPM

25 1.5 to 375.0 RPM

125 0.58 to 150.0 RPM

Default x = lowest value of range for selected step size.

Programming
guidelines

SaveMIN.SPEED in NVRAM, if desired, using SAVEVAR.

3 - 78 StepperBASIC Reference Manual Rev F

MOVING

variable

(integer)

(read only)

Purpose MOVINGis read only display that is equal to 1 when the motor is
moving.

Syntax x = MOVING

Value x = 0 if the motor is not moving

x = 1 if the motor is moving

Related
instructions

PREDEF.OUT— defines output 12 to output a low signal when the
motor is moving.

Programming
guidelines

ProgramMOVINGto display the current moving status for use in an
expression.

Note: MOVINGdisplays 0 during all stops in motion, including
commanded stops that you may not be able to see. These stops may
not be visually perceptible; however,MOVINGdisplays 0 during the
stop interval.

Rev F StepperBASIC Reference Manual 3 - 79

MOVING (continued)

Program
segment

Program line

10 RUN.SPEED = 200

20 INDEX.DIST = 25000

30 GO.INCR

35 WHILE MOVING

40 PRINT ”I am moving”

50 WEND

60 PRINT ”I have stopped moving”

Line 30 will execute an incremental move.

Line 50 will cause the program to go to line 40 as long as the move
is not completed and print “I am moving”.

Line 60 will print “I have stopped moving” after the move is
completed.

3 - 80 StepperBASIC Reference Manual Rev F

NEW

command

Purpose NEWclears the program memory and sets the value of all user variables
in RAM to zero. This command does not affect the program or the
variables stored in NVRAM.

Syntax NEW <enter>

Related
instruction

LOAD— copies program stored in NVRAM into RAM

SAVE— saves program in RAM into NVRAM

Programming
guidelines

NEWis usually used to remove a program from memory before
entering a new program. TheNEWcommand erases any program lines
in RAM, and sets all user variables to 0 (as when you use the
commandCLEAR). No change is made to the NVRAM memory. Trace
mode is turned off if it was on (as when you use the command
TROFF). To intentionally clear the program and the stored variables,
useNEWfollowed bySAVE.

Program
segment

Program line

NEW

The screen displays “OK”.

Program memory in RAM is now cleared and all user variables are
set to zero.

Rev F StepperBASIC Reference Manual 3 - 81

OT.ERROR

variable

(integer)

(read only)

Purpose OT.ERRORindicates when either of the software over travel limits is
exceeded.

Note: Refer to Section 2.3.1,“Setting Up the Software Over travel
Function” for additional information.

Syntax OT.ERROR = x

x = 0 for no over travel error

x = 1 for clockwise over travel error

x = 2 for counterclockwise over travel error

Note: OT.ERRORis only set when the appropriate (clockwise or
counterclockwise) checking is turned on.

Related
instructions

CCW.OT— sets the counterclockwise software over travel limit.

CCW.OT.ON— turns on counterclockwise over travel limit.

CCW.OT.JUMP— specifies the jump location for counterclockwise
over travel errors.

CW.OT— sets the clockwise software over travel limit.

CW.OT.ON— turns on clockwise over travel checking.

CW.OT.JUMP— specifies the jump location for clockwise over travel
errors.

3 - 82 StepperBASIC Reference Manual Rev F

OUTn

parameter

(integer)

Purpose OUTn(Outputs 1 to 12) sets the state of a specific discrete output.

Syntax OUT1 = x

Value OUTn= 0 for specific outputs (1 to 12) to be On (pulled low)

OUTn= 1 for specific outputs (1 to 12) to be Off (open circuit)

Default x = 1

Related
instructions

OUTPUTS— allows you to set a group of outputs.

PREDEF.OUT— predefines output 12 for motor moving.

POS.CHKn.OUT— sets outputs 1 to 3 based on position.

PWR.ON.OUTPUTS— specifies the state of the outputs when the
controller is powered up.

Programming
guidelines

• Set the individual variable equal to 0 to output a 0 to turn On
the output or to 1 (to output a 1) to turn an output OFF.

Note: Outputs 1 to 3 are also controlled byPOS.CHKn.OUT.

Rev F StepperBASIC Reference Manual 3 - 83

OUTPUTS

parameter

(integer)

Purpose OUTPUTSspecifies the state of the 12 outputs.

Syntax OUTPUTS = x

Range 0 to 4095

Default 4095

Value where x is a decimal value corresponding to the sum of the weighted
outputs as described by:

OUTPUTS= (2048 * OUT12) + (1024 * OUT11) + (512 * OUT10)

+ (256 * OUT9) + (128 * OUT8) + (64 * OUT7)

+ (32 * OUT6) + (16 * OUT5) + (8 * OUT4)

+ (4 * OUT3) + (2 * OUT2) + (1 * OUT1)

whereOUTn= State of output as indicated by:

OUTn= 1 = OFF (high)

OUTn= 0 = ON (low)

Related
instructions

OUT1,...,12 — outputs low signals for individual outputs.

PREDEF.OUT— predefines output 12 for motor moving.

PWR.ON.OUTPUT— specifies the state of the outputs when the
controller is powered up.

3 - 84 StepperBASIC Reference Manual Rev F

OUTPUTS (continued)

Programming
guidelines

If the individual outputs are configured such that:

Instruction Value Instruction Value

OUT12 1 OUT6 1

OUT11 0 OUT5 0

OUT10 1 OUT4 1

OUT9 0 OUT3 0

OUT8 1 OUT2 1

OUT7 0 OUT1 0

ThenOUTPUTSwill be equal:

(2048 * 1) + (1024 * 0) + (512 * 1) + (256 * 0) + (128 * 1)

+ (64 * 0) + (32 * 1) + (16 * 0)+ (8 * 1) + (4 * 0) + (2 * 1)

+ (1 * 0)

or OUTPUTS= 2730

If the individual outputs are configured as follows:

Instruction Value Instruction Value

OUT12 0 OUT6 0

OUT11 1 OUT5 1

OUT10 0 OUT4 0

OUT9 1 OUT3 1

OUT8 0 OUT2 0

OUT7 1 OUT1 1

ThenOUTPUTSwill equal:

(2048 * 0) + (1024 * 1) + (512 * 0) + (256 * 1) + (128 * 0)

+ (64 * 1) + (32 * 0) + (8 * 0) + (4 * 1) + (2 * 0) + (1 * 1)

or OUTPUTS= 1365

Rev F StepperBASIC Reference Manual 3 - 85

OUTPUTS (continued)

For example: Set the variable equal to the sum of the x values for Off
(high) outputs.

• Outputs 1 to 8 Off (high):OUTPUTS= 255
(128 * 1) + (64 * 1) + (32 * 1) + (16 * 1) + (8 * 1)
+ (4 * 1) + (2 * 1)+ (1 * 1)

• All outputs On (low):OUTPUTS= 0
(2048 * 0) + (1024 * 0) + (512 * 0) + (256 * 0)
+ (128 * 0) + (64 * 0) + (32 * 0) + (16 * 0) + (8 * 0)
+ (4 * 0) + (2 * 0) + (1 * 0)

• Output 5 Off (all others On):OUTPUTS= 16
(2048 * 0) + (1024 * 0) + (512 * 0) + (256 * 0)
+ (128 * 0) + (64 * 0) + (32 * 0) + (16 * 1) + (8 * 0)
+ (4 * 0) + (2 * 0)+ (1 * 0)

3 - 86 StepperBASIC Reference Manual Rev F

PACK

command

Purpose PACKspeeds up program execution by generating theGOTOtable
before the program executes.

ThePACKcommand goes through the Pacific Scientific StepperBASIC
program and puts an entry in theGOTOtable for everyGOTO, GOSUB,
andIF-THEN-ELSE statement. This allows the program to execute
faster because this table does not need to be generated as the program
runs.

Syntax PACK

Programming
guidelines

ThePACKcommand is automatically executed when the controller is
turned On. For maximum program speed, thePACKfunction should be
executed before the program is run if the program has been changed
since the last time the program was executed.

Rev F StepperBASIC Reference Manual 3 - 87

PAUSE

statement

Purpose PAUSEcauses the program to pause the amount of time specified by
theWAIT.TIME variable. The motion of the motor is not affected.
The Remote Stop hardware input remains active while the program is
paused. Typing <Ctrl><c> on the keyboard will also abort the program
when the program is paused.

Syntax PAUSE

Related
instructions

WAIT.TIME — sets time for pause.

Programming
guidelines

ThePAUSEfunction can be used in place of software loops (e.g.
FOR...NEXT) for precise control of timing.

Program
segment

Program line

10 WAIT.TIME = 0.5

20 WHILE INP1 = 1 : WEND

30 PAUSE

40 GO.INCR

This program looks at INP1 (J4-2) and waits until this input is zero
(connected to I/O RTN). The program pauses for 0.5 second and then
performs an incremental move.

3 - 88 StepperBASIC Reference Manual Rev F

POS.CHKn

parameter

(integer)

Purpose POS.CHKn(Position Check trigger 1, 2, or 3) specifies the position at
which outputs 1, 2, and 3 are switched to the polarity designated by the
POS.CHKn.OUTparameter. Position check function as a
programmable limit switch output.

Note: Refer to Section 2.4,“Using the Position Check Function” for
additional information.

Syntax POS.CHKn = x

where n = 1, 2, or 3

Value x is any valid arithmetic expression

Range -134,217,728 to 134,217,727

Default x = 0

Related
instructions

POS.CHKn.OUT— defines output whenPOS.CHKnexceeded.

Programming
guidelines

ProgramPOS.CHKn.OUTto enable thePOS.CHKn.

Refer toPOS.CHKn.OUTfor more information.

Note: Make sure to programPOS.CHKnafter establishing electrical
home withSEEK.HOMEor POS.COMMAND. POS.CHKnis an
absolute position variables that is changed when electronic home is
changed.

Rev F StepperBASIC Reference Manual 3 - 89

POS.CHKn.OUT

variable

(integer)

Purpose POS.CHKn.OUT(Position Check Output Specifier) is used in
conjunction withPOS.CHKnto implement Position Check n. Position
Check functions as a programmable limit switch output.

Note: Refer to Section 2.4,“Using the Position Check Function”, for
additional information.

POS.CHKn.OUTcan be set to one of three values:

Value Description

0 Position check n disabled

10 Position check n enabled

If (POSITION >= POS.CHKn) thenOUTn= 0

If (POSITION < POS.CHKn) thenOUTn= 1

11 Position check n enabled

If (POSITION >= POS.CHKn) thenOUTn= 1

If (POSITION < POS.CHKn) thenOUTn= 0

Syntax POS.CHKn.OUT = 0

POS.CHKn.OUT = 10

POS.CHKn.OUT = 11

Default x = 0

Related
instructions

POS.CHKn— position to triggerPOS.CHKn.OUT.

3 - 90 StepperBASIC Reference Manual Rev F

POS.CHKn.OUT (continued)

Programming
guidelines

• OUT1 to OUT3 (Outputs 1 to 3) cannot be programmed if the
outputs are enabled usingPOS.CHK1.OUTto
POS.CHK3.OUT.

• Set thePOS.CHKnposition before programming
POS.CHKn.OUT.

Program
segment

Program line

10 POS.COMMAND = 0

20 POS.CHK1.OUT = 10

30 POS.CHK1 = 10 * 5000

40 DIR = 0

50 GO.VEL

This program will causeOUT1to be 1 until the motor rotates 10
revolutions if the Indexer is configured forSTEPSIZE = 25. At that
point, OUT1will be set to 0.

Rev F StepperBASIC Reference Manual 3 - 91

POS.COMMAND

variable

(integer)

Purpose POS.COMMAND(Position Command) is a read or write position
counter that allows you to:

• Display and use the current step position to perform absolute
distance calculations.

• Redefine the current position, or the electrical home position.

Note : Refer to Section 2.2,“Homing Routines”, for additional
information.

Syntax POS.COMMAND = x

Stepsize POS.COMMAND Value

1 -33,554,432 to 33,554,431

2 -67,108,864 to 67,108,863

5 -67,108,864 to 67,108,863

25 -268,435,456 to 268,435,455

125 536,870,912 to 536,870,911

Related
instructions

GO.HOME— moves the motor toPOS.COMMAND= 0 (electrical
home position).

SEEK.HOME— causes homing routine using mechanical switch, then
setsPOS.COMMAND= 0.

DIR — sets direction forPOS.COMMANDincrease.

WHENPCMD— specifies the motor position when theWHENcondition
is satisfied.

3 - 92 StepperBASIC Reference Manual Rev F

POS.COMMAND (continued)

Programming
guidelines

Note: Do not changePOS.COMMANDafter CCW.OT, CW.OT,
TARGET.POS, or POS.CHKnhave been programmed. These absolute
position variables change value if the electrical home position is
changed.

Program
segment

Program line

10 POS.COMMAND = 0

20 INDEX.DIST = 1000

30 GO.INCR

40 WHILE MOVING : WEND

50 IF (POS.COMMAND <> INDEX.DIST) THEN PRINT
“ERROR”

60 END

This program redefines the current position to zero and checks that the
correct distance is traveled.

Rev F StepperBASIC Reference Manual 3 - 93

POS.VERIFY.CORRECTION

parameter

(integer)

(read only)

Purpose POS.VERIFY.CORRECTIONdisplays the number of motor steps
required to complete a move that had a position verification error.
You may program a move using this correction to insure that lost steps
are made up.

Note: Refer to Section 2.5,“Using the Position Verification and
Correction Function” for additional information.

Syntax x steps = POS.VERIFY.CORRECTION

Related
instructions

POS.VERIFY.DEADBAND— sets the maximum allowed difference
in motor steps (microsteps) between encoder and pulse counts that can
occur before a position verification error is triggered.

POS.VERIFY.ERROR— indicates that a position verification error
has occurred.

POS.VERIFY.JUMP — jumps to program line number upon position
verification error.

POS.VERIFY.TIME — settling time for encoder reading.

IN.POSITION — indicates when step position is reached.

STEP.DIR.INPUT — selects quadrature encoder or step and
direction inputs to J6 (pin 2, 3, 4, 5).

Programming
guidelines

• Install an encoder and verify that it is set to the correct
ENCODERline count.

• Make sureSTEPSIZE is correct.

• UseGO.ABS, GO.INCR, or GO.HOMEfor moves. Position
verification does not work with other move instructions.

3 - 94 StepperBASIC Reference Manual Rev F

POS.VERIFY.DEADBAND

parameter

(integer)

Purpose POS.VERIFY.DEADBANDsets the maximum step difference allowed
for measured versus commanded steps (encoder versus step counts).

At the end of an absolute or incremental move, the measured versus
commanded difference is checked against the deadband variable. If the
deadband is exceeded,POS.VERIFY.ERROR,
POS.VERIFY.CORRECTION, and any programmed position verify
variables are activated.

Note: Refer to Section 2.5,“Using the Position Verification and
Correction Function” for additional information.

Syntax POS.VERIFY.DEADBAND = x

Range x = 0 to 4,294,967,296 steps (microsteps)

Default x = 0

Related
instructions

POS.VERIFY.CORRECTION— returns the number of steps
difference for the position verification error.

POS.VERIFY.ERROR— indicates that a position error has occurred.

POS.VERIFY.JUMP — jumps to program line number when position
error occurs.

POS.VERIFY.TIME — settling time for encoder reading.

IN.POSITION — indicates when step position is reached.

STEP.DIR.INPUT — selects quadrature encoder or step and
direction inputs to J6.

Rev F StepperBASIC Reference Manual 3 - 95

POS.VERIFY.DEADBAND (continued)

Programming
guidelines

Note: Due to the inherent limitations of a mechanical system, the
encoder may lead or lag the motor by 1 full motor step. Account for
this by entering aPOS.VERIFY.DEADBANDof at least 2 full steps
(or corresponding microsteps).

• Install an encoder and verify that it is set to the correct
ENCODERline count.

• UseGO.ABS,GO.INCR or GO.HOMEfor moves. Position
verification does not work with other move instructions.

• Make sureSTEPSIZE is correct.

Note: If you change step size, convert the deadband by multiplying by
the corresponding factor. For example, if you go from full step to 25
microstep and the deadband was 4, program a new deadband of 100
(that is, 4 x 25).

• SetSTEP.DIR.INPUT = 0 if using quadrature inputs to the
J6 encoder interface.

3 - 96 StepperBASIC Reference Manual Rev F

POS.VERIFY.ERROR

variable

(integer)

(read only)

Purpose POS.VERIFY.ERRORindicates an unacceptable mismatch of
commanded versus measured steps for a move. This error display is
triggered when thePOS.VERIFY.DEADBANDlimit is exceeded.

Note: Refer to Section 2.5,“Using the Position Verification and
Correction Function” for additional information.

Syntax 0 (no error) or 1 (error occurred)= POS.VERIFY.ERROR

Related
instructions

POS.VERIFY.CORRECTION— returns the number of steps
difference for the position error.

POS.VERIFY.DEADBAND—sets the maximum allowed difference in
motor steps (microsteps) between encoder and pulse counts that can
occur before a position verification error is triggered.

POS.VERIFY.JUMP — jumps to program line number upon position
verification error.

POS.VERIFY.TIME — settling time for encoder reading.

IN.POSITION — indicates when step position is reached.

STEP.DIR.INPUT — selects quadrature encoder or step and
direction inputs J6.

Rev F StepperBASIC Reference Manual 3 - 97

POS.VERIFY.ERROR (continued)

Programming
guidelines

• The position verification error is only operational for 1 move.
It is cleared upon the next move.

• Install an encoder and verify that it is set to the correct
ENCODERline count.

• Make sureSTEPSIZE is correct.

• UseGO.ABS, GO.INCR , or GO.HOMEfor moves. Position
verification does not work with other move instructions.

• SetSTEP.DIR.INPUT = 0 if using quadrature inputs to the
J6 encoder interface.

3 - 98 StepperBASIC Reference Manual Rev F

POS.VERIFY.JUMP

parameter

(integer)

Purpose POS.VERIFY.JUMP moves program execution to specified line when
a position verification error occurs.

Note: Refer to Section 2.5,“Using the Position Verification and
Correction Function” for additional information.

Syntax POS.VERIFY.JUMP = x

Range x = the desired line number to jump to

x = 0 for no jump

Default x = 0

Related
instructions

POS.VERIFY.CORRECTION— returns the number of steps
difference for the position error.

POS.VERIFY.DEADBAND— sets the maximum allowed difference
in motor steps (microsteps) between encoder and pulse counts that can
occur before a position verification error is triggered.

POS.VERIFY.ERROR— indicates that a position verification error
has occurred.

POS.VERIFY.TIME — settling time for encoder reading.

IN.POSITION — indicates when step position is reached.

STEP.DIR.INPUT — selects quadrature encoder or step and
direction inputs to J6.

Rev F StepperBASIC Reference Manual 3 - 99

POS.VERIFY.JUMP (continued)

Programming
guidelines

• Install an encoder and verify that it is set to the correct
ENCODERline count.

• Make sureSTEPSIZE is correct.

• UseGO.ABS, GO.INCR or GO.HOMEfor moves. Position
verification does not work with other move instructions.

• SetSTEP.DIR.INPUT = 0 if using quadrature inputs to the
J6 encoder interface.

3 - 100 StepperBASIC Reference Manual Rev F

POS.VERIFY.TIME

parameter

(integer)

Purpose POS.VERIFY.TIME establishes a settling time for the encoder
reading. If a value is not set, you may see position verification errors.

Note: Refer to Section 2.5,“Using the Position Verification and
Correction Function” for additional information.

Syntax POS.VERIFY.TIME = x

Range x = 0 to 65,536 milliseconds

Default x = 0

Related
instructions

POS.VERIFY.CORRECTION— returns the number of steps
difference for the position error.

POS.VERIFY.DEADBAND— sets the maximum allowed difference
in motor steps (microsteps) between encoder and pulse counts that can
occur before a position verification error is triggered.

POS.VERIFY.ERROR— indicates that a position verification error
has occurred.

POS.VERIFY.JUMP — jumps to program line number upon position
verification error.

Programming
guidelines

• Install an encoder and verify that it is set to the correct
ENCODERline count.

• Make sureSTEPSIZE is correct.

• UseGO.ABS, GO.INCR or GO.HOMEfor moves. Position
verification does not work with other move instructions.

• SetSTEP.DIR.INPUT = 0 if using quadrature inputs to the
J6 encoder interface.

Rev F StepperBASIC Reference Manual 3 - 101

PREDEF.INPn

parameter

(integer)

Purpose PREDEF.INPn (Predefined Input n) andPREDEF.INP (Predefined
Inputs) enable predefined functionality for discrete inputs INP10 to
INP15:

PREDEF.INPn specifies functionality for an individual input n.

PREDEF.INP specifies functionality for all inputs

IMPORTANT NOTE

The value of this variable is stored in NVRAM
when the SAVEVAR command is executed.

Syntax PREDEF.INPn = x

Value PREDEF.INPn = 0 for each individual input (n = 10 to 15) to disable
predefined functionality (enable the discrete input functionality) for the
input.

PREDEF.INPn = 1 for each individual input (10 to 15) to enable
predefined functionality as follows:

Input Function

PREDEF.INP10 Limit Clockwise

PREDEF.INP11 Limit Counterclockwise

PREDEF.INP12 Remote Start

PREDEF.INP13 Remote Stop

PREDEF.INP14 Jog Clockwise

PREDEF.INP15 Jog Counterclockwise

Default PREDEF.INPn = 0 for inputs 10 to 15

3 - 102 StepperBASIC Reference Manual Rev F

PREDEF.INPn (continued)

Syntax PREDEF.INPn = y

Range 0< y < 63

Default 63

Value

Input Function

PREDEF.INP10 Limit Clockwise

PREDEF.INP11 Limit Counterclockwise

PREDEF.INP12 Remote Start

PREDEF.INP13 Remote Stop

PREDEF.INP14 Jog Clockwise

PREDEF.INP15 Jog Counterclockwise

where y is the decimal corresponding sum of the weighted
PREDEF.INP as described by:

PREDEF.INP = (32 * PREDEF.INP15) + (16 * PREDEF.INP14)

+ (8 * PREDEF.INP13) + (4 * PREDEF.INP12)

+ (2 * PREDEF.INP11) + (1 * PREDEF.INP10)

Related
instructions

INPn — displays the state of individual inputs.

INPUTS — displays the state of the inputs as a binary-coded decimal
value corresponding to the sum of the binary number of the inputs.

Programming
guidelines

Individual - Set the desired input equal to 1 to enable the input for the
predefined functionality.

Group - Set the variable equal to the sum of the inputs of the BCD
equivalencies to enable predefined functionality for that group of
variables.

Rev F StepperBASIC Reference Manual 3 - 103

PREDEF.INP (continued)

For example:

All inputs predefined: PREDEF.INP = 63

(32 *1) + (16 * 1) + (8 * 1) + (4 * 1) + (2 * 1) + (1 * 1)

Inputs 10 and 11 only predefined: . .PREDEF.INP = 3

(32 *0) + (16 * 0) + (8 * 0) + (4 * 0) + (2 * 1) + (1 * 1)

No inputs predefined:PREDEF.INP = 0

(32 *0) + (16 * 0) + (8 * 0) + (4 * 0) + (2 * 0) + (1 * 0)

All inputs predefined except input 15:....................PREDEF.INP = 31

(32 * 0) + (16 * 1) + (8 * 1) + (4 * 1) + (2 * 1) + (1 * 1)

When through, execute the SAVEVAR command to store the variable
in NVRAM.

Refer to section 2.5.4 “J4 and J5 Discrete Input/Output Connection” in
the Installation Manual for information on the predefined inputs.

Program
segment

Program line

PREDEF.INP10 = 1

Limit (+) functionality enabled.

PREDEF.INP10 = 0

Limit (+) functionality disabled.

PREDEF.INP = 0

No inputs predefined.

PREDEF.INP = 5

Inputs 10 and 12 predefined for Limit (+) and Remote Start.

3 - 104 StepperBASIC Reference Manual Rev F

PREDEF.OUT

parameter

(integer)

Purpose PREDEF.OUT(Predefined Output 12) specifies that output 12 is
active (low) whenever the motor is moving.

IMPORTANT NOTE

The value of this variable is stored in NVRAM
when the SAVEVAR command is executed.

Syntax PREDEF.OUT = x

Value x = 0 for output 12 not predefined for moving

x = 1 for output 12 predefined for moving

Default x = 0

Related
instructions

MOVING— displays a value of 1 when the motor is moving.

Programming
guidelines

SetPREDEF.OUTequal to 1 for a low output from output 12 when
the motor is moving.

Refer to section 2.5.4, “J4 and J5 Discrete Input/Output Connection” in
the Installation Manual for information on output 12 predefined for
moving.

Rev F StepperBASIC Reference Manual 3 - 105

PRINT

statement

Purpose PRINT displays output on the terminal screen while the program is
running.

Syntax PRINT expression [[,;] expression][;]

Expressions can be:

• Variables

• Calculations with numeric variables and constants

• String constants enclosed in quotes

Programming
guidelines

Pacific Scientific StepperBASIC defines zones of 13 characters which
can be used to produce output in columns.

• If a list of expressions is separated by commas (,) or spaces
() , each subsequent expression is printed in the next
available Zone.

• If a list of expressions is separated by semicolons (;) the
Zones are ignored and consecutive expressions are printed in
the next character space.

• If the PRINT statement ends with a comma or a semicolon,
the carriage return/line feed at the end of the screen output is
suppressed.

Program
segment

Program line

10 INT1 = 25

20 PRINT ” The total is ”; INT1; ”this shift”

RUN <enter>

This program segment prints ”The total is 25 this shift”.

3 - 106 StepperBASIC Reference Manual Rev F

PWR.ON.ENABLE

variable

Purpose PWR.ON.ENABLEspecifies the value of ENABLE when the
controller is turned on.

IMPORTANT NOTE

The value of this variable is stored in NVRAM
when the SAVEVAR command is executed.

Syntax PWR.ON.ENABLE = x

Value x = 0 or 1

Related
instructions

ENABLE— allows or prevents power flow to the motor.

Programming
guidelines

If you want theENABLEflag to be equal to 1 when the controller is
turned on, setPWR.ON.ENABLEequal to 1 and execute aSAVEVAR
command. When the controller is turned on after this,ENABLEwill
automatically be set to 1. If the controller is not faulted and the
ENABLEinput (J7-5) is pulled low, then power will be allowed to flow
to the motor.

If you want theENABLEflag to be equal to 0 when the controller is
turned on, setPWR.ON.ENABLEequal to 0 and execute aSAVEVAR
command. When the controller is turned on,ENABLEwill
automatically be set to 0.

Note: To enable the controller,ENABLEmust be set to 1. There must
be no faults present and the hardware enable input must be asserted.

Rev F StepperBASIC Reference Manual 3 - 107

PWR.ON.OUTPUTS

variable

Purpose PWR.ON.OUTPUTS(power on outputs) specifies the state of the
outputs when the controller is powered up.

IMPORTANT NOTE

The value of this variable is stored in NVRAM
when the SAVEVAR command is executed.

Syntax PWR.ON.OUTPUTS = x

Range 0 to 4095

Default 4095

Value where x is a decimal value corresponding to the sum weighted outputs
as described by:

PWR.ON.OUTPUTS= (2048 * OUT12) + (1024 * OUT11)

+ (512 * 1) + (256 * OUT9) + (128 * OUT8)

+ (64 * OUT7) + (32 * OUT6) + (16 * OUT5)

+ (8 * OUT4) + (4 * OUT3) + (2 * OUT2)

+ (1 * OUT1)

whereOUTn= State of output as indicated by:

OUTn= 1 = OFF (high)

OUTn= 0 = ON (low)

3 - 108 StepperBASIC Reference Manual Rev F

PWR.ON.OUTPUTS (continued)

Programming
guidelines

If the individual outputs are configured such that:

Instruction Value Instruction Value

OUT12 1 OUT6 1

OUT11 0 OUT5 0

OUT10 1 OUT4 1

OUT9 0 OUT3 0

OUT8 1 OUT2 1

OUT7 0 OUT1 0

ThenPWR.ON.OUTPUTSwill be equal:

(2048 * 1) + (1024 * 0) + (512 * 1) + (256 * 0) + (128 * 1)

+ (64 * 0) + (32 * 1) + (16 * 0)+ (8 * 1) + (4 * 0)

+ (2 * 1) + (1 * 0)

or PWR.ON.OUTPUTS= 2730

If the individual outputs are configured as follows:

Instruction Value Instruction Value

OUT12 0 OUT6 0

OUT11 1 OUT5 1

OUT10 0 OUT4 0

OUT9 1 OUT3 1

OUT8 0 OUT2 0

OUT7 1 OUT1 1

ThenPWR.ON OUTPUTSwill be equal:

(2048 * 0) + (1024 * 1) + (512 * 0) + (256 * 1) + (128 * 0)

+ (64 * 1) + (32 * 0) + (16 * 1)+ (8 * 0) + (4 * 1)

+ (2 * 0) + (1 * 1)

or PWR.ON.OUTPUTS= 1365

Rev F StepperBASIC Reference Manual 3 - 109

PWR.ON.OUTPUTS (continued)

Set the variable equal to the sum of the x values to turn Off (high) the
desired outputs. For example:

• All outputs Off (high):PWR.ON.OUTPUTS= 4095

• All outputs On (low):PWR.ON.OUTPUTS= 0

• Output 5 Off (all others On):PWR.ON.OUTPUTS= 16

• Output 5 and 12 Off (all others On)PWR.ON.OUTPUTS= 16

When through, execute theSAVEVARcommand to store the variable
in NVRAM.

Warning

For approximately 1/2 second after power is applied to the unit, a
hardware reset pulse forces all outputs to the On (low) state. Hence,
all outputs sink current for approximately 1/2 second. At the end of
this reset pulse, the outputs are set to the state defined by the
PWR.ON.OUTPUTSvariable.

Make sure that any external machine logic takes this into account.

3 - 110 StepperBASIC Reference Manual Rev F

QRY

command/statement

Purpose QRY(Query) lists the current values of parameter and status
instructions. The values may be the default values (preset at the
factory) or the currently programmed values.

The parameters and status instructions listed are shown with default
values if appropriate.

Parameters

Parameter Default Parameter Default

ACCEL.RATE 1000 MIN.SPEED 1.465

DIR 0 PREDEF.INP 63

ENCODER 1000 PREDEF.OUT 0

FLT1,...,FLT8 as set PWR.ON.ENABLE 1

HMPOS.OFFSET 0 PWR.ON.OUTPUTS 0

HOME.ACTIVE 0 RMT.START 0

INDEX.DIST 5000 RUN.SPEED 1000

INT1,...,INT8 as set STEPSIZE 25

JOG.SPEED 1000 WAIT.TIME 1

MAX.DECEL 100000

Status
display

Status Display Default Status Display Default

ENABLE 1 OUTPUTS 0

ENABLED 0 POS.COMMAND 0

ENCDR.POS 1 STEP.DIR.INPUT 0

FAULTCODE 0 TARGET.POS 0

INPUTS 65535

Rev F StepperBASIC Reference Manual 3 - 111

QRY (continued)

Syntax QRY

Related
instructions

QRY.PRM— displays parameters values only.

QRY.STAT— displays current status values only.

Programming
guidelines

UseQRYafter programmingSAVEVARto check the values of the
parameters saved and to check current status values.

Program
segment

Program line

QRY <enter>

3 - 112 StepperBASIC Reference Manual Rev F

QRY.PRM

command/statement

Purpose QRY.PRM(Query Parameters) lists the current values of parameter
instructions. The values may be the default values (preset at the
factory) or the currently programmed values.

The parameters shown are listed with default values.

Parameters

Parameter Default Parameter Default

ACCEL.RATE 1000 MAX.DECEL 100000

DIR 0 MIN.SPEED 1.465

ENCODER 1000 PREDEF.INP 63

FLT1,...,FLT8 as set PREDEF.OUT 0

GO.FUNC 0 PWR.ON.ENABLE 1

HMPOS.OFFSET 0 PWR.ON.OUTPUTS 0

HOME.ACTIVE 0 RMT.START 0

INDEX.DIST 5000 RUN.SPEED 1000

INT1,...,INT8 as set STEPSIZE 25

JOG.SPEED 1000 WAIT.TIME 1

Syntax QRY.PRM

Related
instructions

QRY— displays parameters and current status values.

QRY.STAT— displays current status values only.

Programming
guidelines

UseQRY.PRMafter programmingSAVEVARto check the values of
the parameters saved.

Program
segment

Program line

QRY.PRM <enter>

Rev F StepperBASIC Reference Manual 3 - 113

QRY.STAT

command/statement

Purpose QRY.STAT (Query Status) lists the current values of status
instructions. The values may be the default values (preset at the
factory) or the currently programmed values.

The status instructions listed are shown with default values.

Status
display

Status Display Default Status Display Default

ENABLE 1 OUTPUTS 0

ENABLED 0 POS.COMMAND 0

ENCDR.POS 1 STEP.DIR.INPUT 0

FAULTCODE 0 TARGET.POS 0

INPUTS 65535

Syntax QRY.STAT

Related
instructions

QRY— displays parameters and status values.

QRY.PRM— displays parameters values only.

Programming
guidelines

UseQRY.STAT to check current drive status. The values displayed
are not saved inSAVEVAR.

Program
segment

Program line

QRY.STAT <enter>

3 - 114 StepperBASIC Reference Manual Rev F

RATIO

parameter

(float)

Purpose RATIO sets a ratio between an external encoder, or step and direction
source, and the motor shaft for electronic gearing motion.

Note: Refer to Section 2.8,“Electronic Gearing” for additional
information.

IMPORTANT NOTE

The value of this variable is stored in NVRAM
when the SAVEVAR command is executed.

Syntax RATIO = ± x

Range x = + 0.000001 to 100

Default x = 1

Related
instructions

GEARING— turns electronic gearing On or Off .

ENCODER— sets the line count of the master encoder.

STEP.DIR.INPUT — specifies encoder or step/direction input.

Programming
guidelines

• For an encoder input, install an encoder input from the master
and verify that it is set to the correctENCODERline count.

• A negative value forRATIO causes motion opposite to the
encoder shaft.

• For step and direction inputs, use Step/Dir signals at the J6
encoder interface.

Rev F StepperBASIC Reference Manual 3 - 115

RATIO (continued)

Program
segment

Program line

10 RATIO = 0.1

20 ENCODER = 1000

30 GEARING = 1

GEARINGis On. The motor follows the external encoder.

This program specifies that the motor shaft will turn 0.1 revolution for
each encoder shaft revolution.. The installed encoder is 1000 lines per
revolution.

3 - 116 StepperBASIC Reference Manual Rev F

REG.DIST

parameter

(integer)

Purpose REG.DIST (Registration Distance) is the distance that is moved
automatically when a Registration input is applied. This function,
specified withREG.FUNCperforms a move like aGO.INCR but with
microsecond response to the input.

Note: Refer to Section 2.10,“Registration Functionality” for
additional information.

Syntax REG.DIST = x

Value x = -134,217,728 to 134,217,727

Default x = 0

Related
instructions

ENCODER— sets the line count of the master encoder

REG.ENCPOS— encoder position when Registration input triggers.

REG.FLAG— flag to indicate that Registration input is triggered.

REG.FUNC— specifier to performREG.DIST index move when
Registration input triggers.

STEP.DIR.INPUT — configures J6 to a Step/Dir Input

Programming
guidelines

Attach differential Registration inputs to J6-6 (CH Z), and J6-7 (CHZ).

ProgramREG.FUNC= 1 to specify allowingREG.DIST .

Refer toREG.FUNCfor more information.

Note: SetSTEP.DIR.INPUT = 1 and ENCODER= STEPSIZE * 50

Rev F StepperBASIC Reference Manual 3 - 117

REG.DIST (continued)

Registration
input
connection

The following is a schematic diagram of the input connections for J6-6
and J6-7.

Note: Registration mark handling is not operational if electronic
gearing is in use. The controller must be in motion and executing a
motion command to perform the registration distance.

REGISTRATION MARK

SENSOR WITH OPEN

COLLECTOR OUTPUT

4.7K

4.7K

4.7K

+5 V

5XX5

CH Z

75175

CH Z

J6 - 6

J6 - 7

-

+

3 - 118 StepperBASIC Reference Manual Rev F

REG.ENCPOS

variable

(integer)

(read only)

Purpose REG.ENCPOS(Registration Encoder Position) specifies the encoder
position when Registration input triggers.

Note: Refer to Section 2.10,“Registration Functionality” for
additional information.

Syntax REG.ENCPOS

Range -2,147,483,648 to 2,147,483,647 encoder quadrature counts.

Related
instructions

ENCODER— sets the line count of the master encoder

REG.DIST — distance moved upon Registration input.

REG.FLAG— flag to indicate that Registration input is triggered.

REG.FUNC— specifier to performREG.DIST index move when
Registration input triggers.

STEP.DIR.INPUT —configures J6 to a Step/Dir Input

Programming
guidelines

Attach differential Registration inputs to J6-6 (CH Z), and J6-7 (CHZ).

Registration
input
connection

Please refer toREG.DIST for a schematic diagram of the input
connections for J6-6 and J6-7 andREG.FUNCfor more information.

Note: Registration mark handling is not operational if electronic
gearing is in use. The controller must be in motion and executing a
motion command to perform the registration distance.

Rev F StepperBASIC Reference Manual 3 - 119

REG.FLAG

variable

(integer)

Purpose REG.FLAG(Registration Flag) indicates that the Registration input
has triggered.

Note: Refer to Section 2.10,“Registration Functionality” for
additional information.

Syntax x = REG.FLAG

Value x = 1 indicates a Registration input triggered

Default x = 0

Related
instructions

ENCODER— sets the line count of the master encoder

REG.DIST — distance moved upon Registration input.

REG.ENCPOS— encoder position when Registration input triggers.

REG.FUNC — specifier to performREG.DIST index move when
Registration input triggers.

STEP.DIR.INPUT —configures J6 to a Step/Dir Input

3 - 120 StepperBASIC Reference Manual Rev F

REG.FLAG (continued)

Programming
guidelines

Attach differential Registration inputs to J6-6 (CH Z), and J6-7 (CHZ).

To clear the flag, setREG.FLAG= 0

Note: REG.FLAGis automatically cleared byREG.FUNC= 1.

ProgramREG.DIST for the appropriate distance after specifying
REG.FUNC= 1.

Refer toREG.FUNCfor more information.

Note: Registration mark handling is not operational if electronic
gearing is in use. The controller must be in motion and executing a
motion command to perform the registration distance.

Registration
input
connection

Please refer toREG.DIST for a schematic diagram of the input
connections for J6-6 and J6-7.

Rev F StepperBASIC Reference Manual 3 - 121

REG.FUNC

parameter

(integer)

Purpose REG.FUNC(Registration Functionality) specifies whetherREG.DIST
is the distance that is moved automatically when a Registration input is
applied. This function performs a move like aGO.INCR, but with
microsecond response to the input.

Note: Refer to Section 2.10,“Registration Functionality” for
additional information.

Syntax REG.FUNC = x

x = 1 to allowREG.DIST move upon Registration trigger.

x = 0 to disallowREG.DIST move upon Registration trigger.

Default x = 0

Related
instruction

ENCODER— sets the line count of the master encoder

REG.DIST — distance moved upon Registration input.

REG.ENCPOS— encoder position when Registration input triggers.

REG.FLAG— flag to indicate that Registration input triggered.

STEP.DIR.INPUT —configures J6 to a Step/Dir Input

3 - 122 StepperBASIC Reference Manual Rev F

REG.FUNC (continued)

Programming
guidelines

Attach differential Registration inputs to J6-6 (CH Z), and J6-7 (CHZ).

SetREG.FUNC= 1.(REG.FLAGis now cleared).

Any motion command in process is terminated upon a Registration
input.

Note: Registration mark handling is not operational if electronic
gearing is in use. The controller must be in motion and executing a
motion command to perform the registration distance.

Registration
input
connection

Please refer toREG.DIST for a schematic diagram of the input
connections for J6-6 and J6-7.

Rev F StepperBASIC Reference Manual 3 - 123

REM or �

statement

Purpose REM(Remark) enables you to include explanatory remarks or
comments in the program.

The text of theREMstatement isnot stored into the RAM. All
comments are stored asREMonly; the content is not stored. TheREM
statement is provided so that programs downloaded from other
computers may contain comments. AREMmay appear anywhere
within the line and anything following theREMis treated as a
comment. Comments may also appear at the end of any program line,
by the use of the apostrophe (‘). These will be converted toREMand
stored as above. Since the line number for a Remark statement is
stored in RAM,GOTOandGOSUBstatements may jump to these line
numbers.

Syntax REM [text of comment]

or

‘ [text of comment]

Program
segment

Program line

10 REM Beginning of loop program

15 WHILE (1)

20 REM now do the loop

25 ‘ Loop 5 times

30 FOR I = 1 to 5

40 PRINT I

50 NEXT

60 WEND

3 - 124 StepperBASIC Reference Manual Rev F

RENUM

command

Purpose RENUMrenumbers program lines.

Note: This is an immediate mode command.

Syntax RENUM[[new number] [, [existing number] [, increment]]]

‘New number’ is the first line number to be used in the new sequence;
the default is 10. ‘Existing number’ is the number of the line where
you want the renumbering to begin. The default is the first line of the
program. ‘Increment’ is the increment to be used with the new
sequence; default is 10.RENUMchanges all line number references in
GOTO, GOSUB, THEN, andELSE statements.

Programming
guidelines

Note: RENUMdoes not affectSKn.JUMP program line numbers.
Change these line numbers manually after performingRENUM.

Program
segment

Program line

6 GOSUB 41

9 GOSUB 27

11 GOSUB 93

12 END

27 PRINT “SUBROUTINE A”

28 RETURN

41 PRINT “SUBROUTINE B”

42 RETURN

93 PRINT “SUBROUTINE C”

95 RETURN

RENUM

LIST

Rev F StepperBASIC Reference Manual 3 - 125

RESET.STACK

statement

Purpose RESET.STACKclears the StepperBASIC internal stack so that the
program may be restarted from within a subroutine call or after
jumping out of aWHILE...WEND or FOR...NEXT loop.

Syntax RESET.STACK

Programming
guidelines

RESET.STACKpermits the re-initialization of the controller’s internal
stack to allow program flow to be re-directed after aborting execution.
of a subroutine,WHILE...WEND loop orFOR...NEXT loop. These
program control mechanisms all require use of the internal stack.

Use of the SCAN jump (SKn.JUMP) functions require the execution
of theRESET.STACKstatement to ensure internal program control is
restored if the SCAN input has been triggered during execution of a
subroutine or looping construct.

Program
segment

Program line

100 PRINT ”Program Restarted”

110 SK1.TRIGGER = 10

120 SK1.JUMP = 500

130 SET.SCAN1

140 FOR INT1 = 1 to 100

.

.

.

500 PRINT ”SCAN1 Triggered”

510 RESET.STACK

520 GO TO 100

3 - 126 StepperBASIC Reference Manual Rev F

RETURN

statement

Purpose RETURNends a subroutine and sends control to the instruction
following the most recentGOSUBstatement executed.

Syntax RETURN

Related
instructions

GOSUB...RETURN— statement to branch to and execute a
subroutine.

Programming
guidelines

Program aRETURNat the end of the subroutine to send execution to
the line following the most recentGOSUBexecuted.

10 GOSUB 1000

.

.

.

1000 PRINT ”PRINT VELOCITY” VELOCITY

1010 RETURN

Rev F StepperBASIC Reference Manual 3 - 127

RMT.START

parameter

(integer)

Purpose RMT.STARTdefines Remote Start input J5-4 to:

• Power up in immediate mode and initiate aGOcommand upon
a high-to-low transition at the Remote Start input.

• Power up in immediate mode and initiate aRUNcommand
upon a high-to-low transition at the Remote Start input.

• Power up running the program, and after program completion,
initiate aRUNcommand upon a high-to-low transition at the
Remote Start input.

Note: Predefined input 12 must be set to 1 for J5-4 to function as
Remote Start.

IMPORTANT NOTE

The value of this variable is stored in NVRAM
when the SAVEVAR command is executed.

Syntax RMT.START = x

Value

Value of
RMT.START

Functionality

0 To power up in immediate mode and
initiate aGOcommand upon input

1 To power up in immediate mode and
initiate aRUNcommand upon input

2 To power up running the program and,
when through, initiate aRUNcommand
upon input

Default x = 0

3 - 128 StepperBASIC Reference Manual Rev F

RMT.START (continued)

Related
instructions

GO— initiates motion as defined byGO.VEL, GO.ABSor GO.INCR.

PREDEF.INPn — specifies the functionality of discrete inputs 10 to
15.

Programming
guidelines

• SetPREDEF.INP12 = 1 to define input 1 for Remote Start.

• SetRMT.STARTto the desired value for motion function
emulation.

• SaveRMT.STARTin NVRAM, if desired, usingSAVEVAR.

Rev F StepperBASIC Reference Manual 3 - 129

RUN

command

Purpose RUNexecutes all or part of the program in RAM.

TheRUNcommand is used to begin executing the program. If no line
number is specified, the program begins executing at the lowest line
number in the program.

Syntax RUN

RUN [line number] where ‘line number’ is the line number at
which you want to start the program.

Program
segment

Program line

10 PRINT “ LINE NUMBER 10"

20 PRINT “LINE NUMBER 20"

Example 1 RUN <enter>

LINE NUMBER 10

LINE NUMBER 20

Program execution starts at the first line.

Example 2 RUN 20 <enter>

LINE NUMBER 20

Program execution starts at line 20.

3 - 130 StepperBASIC Reference Manual Rev F

RUN.SPEED

parameter

(float)

Purpose RUN.SPEEDsets the maximum speed used in making an incremental
or absolute move. It is also used to set the velocity for aGO.VEL
command.

Note: Refer to Section 2.9,“Making the Motor Move” for additional
information.

IMPORTANT NOTE

The value of this variable is stored in NVRAM
when the SAVEVAR command is executed.

Syntax RUN.SPEED = x

Stepsize Range

1 0.01 to 18,750.00 RPM

2 0.01 to 18,750.00 RPM

5 0.01 to 7,500.00 RPM

25 0.01 to 6,000.00 RPM

125 0.01 to 2,399.99 RPM

Note: If the MIN.SPEED value ishigher than theRUN.SPEED
value, the drive will default to the MIN.SPEED value.

Refer toMIN.SPEED for range information.

Default x = 1000

Rev F StepperBASIC Reference Manual 3 - 131

RUN.SPEED (continued)

Related
instructions

DIR — specifies the direction of aGO.VEL command.

GO.ABS— moves motor to target position.

GO.INCR — moves motor an index distance.

GO.VEL — moves motor at constant velocity.

MIN.SPEED — sets the minimum speed used in making a move.

Programming
guidelines

SpecifyRUN.SPEEDprior to issuing motion commands.

3 - 132 StepperBASIC Reference Manual Rev F

SAVE

command

Purpose SAVEsaves the program from RAM in NVRAM so that the program
is not lost when power is removed.

Syntax SAVE

Related
instructions

SAVEVAR— saves specified variable to NVRAM.

LOAD— copies saved program from NVRAM to RAM.

LOADVAR— transfers saved variables from NVRAM to RAM.

NEW— clears the program memory

Programming
guidelines

• Complete programs are saved. Portions of a program cannot
be designated to be saved.

• Recover the program from NVRAM using theLOADcommand
or by cycling power.

• SAVEcan be used as an instruction within a program, if
desired. It will not stop program execution.

Program
segment

Program line

SAVE

OK

Program Saved in NVRAM.

The program is now saved in NVRAM. When you turn the drive
off the program will remain in NVRAM. When the controller is
turned back on, the saved program will be loaded into RAM
automatically.

Rev F StepperBASIC Reference Manual 3 - 133

SAVEVAR

command/statement

Purpose SAVEVARsaves anINTn or FLTn variable or a complete group of
variables from RAM to NVRAM memory. This is done so that the
variable or group of variables is not lost when power is removed.

Syntax SAVEVAR (INTn or FLTn)

SAVEVARwith no variable specified for group of variables

Allowed
variables

The variables that can be saved are as follows. If no variable is
specified afterSAVEVAR, all of these variables are saved.

ACCEL.RATE MAX.DECEL

DIR MIN.SPEED

ENCODER PREDEF.INP

FLT1,...,FLT32 PREDEF.OUT

HMPOS.OFFSET PWR.ON.ENABLE

HOME.ACTIVE PWR.ON.OUTPUTS

INDEX.DIST RMT.START

INT1,...,INT32 RUN.SPEED

JOG.SPEED STEPSIZE

WAIT.TIME

Related
instructions

SAVE— saves program from RAM to NVRAM.

LOADVAR— transfers variables from NVRAM to RAM.

LOAD— copies the program stored in NVRAM into RAM in order to
execute or edit the program.

3 - 134 StepperBASIC Reference Manual Rev F

SAVEVAR (continued)

Programming
guidelines

• For anINTn or FLTn, program the variable name, in
parentheses, only. Do not include its assigned value.
Note: You must set the new variable value separately, preceding
SAVEVAR(INTn or FLTn).

• ProgramSAVEVARwith no specified variable to save all
allowed variables.

• Check saved variables usingQRY.PRM.

• TheSAVEVARcommand can be executed from within a
program.

• To insure that variables from previous programs do not affect
the current program, initialize all variables at the start of each
program as described in Section 1.8.5, “Program Header to
Initialize Variables”.

Program
segment

Program line

10 INT6 = 100

20 SAVEVAR (INT6)

Set integer 6 to 100.

Save value in integer 6 to non-volatile memory -when the unit is
power cycled, the saved value is loaded into RAM as the current
variable.

Rev F StepperBASIC Reference Manual 3 - 135

SEEK.HOME

statement

Purpose SEEK.HOMEmoves the motor to search for a mechanical limit switch.
When the switch is encountered, the motor homes in and stops on the
exact switch position. This position,defined as electrical home, is set
to zero in thePOS.COMMANDcounter to provide the zero reference
home for further motion.

The sequence of events, illustrated by a linear motion slide drive, is as
follows:

1. Motor moves toward limit switch based on direction
specified byDIR and speed specified byRUN.SPEED.

2. When the limit switch is triggered, input J5-8 changes
state and the motor stops. (HOME.ACTIVEspecifies the
polarity of the limit switch). At this point the motor has
overshot the edge of the limit switch.

3 - 136 StepperBASIC Reference Manual Rev F

SEEK.HOME (continued)

3. The motor reverses direction and moves slowly, as
specified byMIN.SPEED, toward the edge of the limit
switch (the motor went beyond the switch in step 2).

4. The switch triggers again, and the motor immediately
stops and establishes this position as the mechanical home
position, thePOS.COMMANDcounter is set to zero. In
this case, the mechanical home position is equal to the
electrical home position.

5. If you defined an offset usingHMPOS.OFFSET, an
additional move is performed, and electrical home is
established at this new position. In this case, mechanical
home is not equal to electrical home.

Rev F StepperBASIC Reference Manual 3 - 137

SEEK.HOME (continued)

Homing
velocity
profile

Note: Refer to Section 2.2,“Homing Routines”, and Section 2.9,
“Making the Motor Move” for additional information.

Syntax SEEK.HOME

Related
instructions

HOME.ACTIVE— matches mechanical switch triggering polarity to
software.

DIR — sets the direction the motor moves during initial move for
SEEK.HOME.

RUN.SPEED— sets the speed the motor moves during initial move to
find limit switch.

MIN.SPEED — sets the low speed used after the motor changes
direction when the switch is found the first time.

POS.COMMAND— displays current step position.

HMPOS.OFFSET— determines additional move necessary for offset.

GO.HOME— moves the motor to electrical home position.

CW.OTandCCW.OT— limits motion if initial SEEK.HOMEmotion is
in wrong direction.

RUN.SPEED

(RPM)

SLOPE =

ACCEL.RATE (RPM/S)

SWITCH CHANGES

STATE

VELOCITY

TIME

MIN.SPEED

(RPM)

MIN.SPEED

(RPM)

3 - 138 StepperBASIC Reference Manual Rev F

SEEK.HOME (continued)

Programming
guidelines

• Connect the mechanical switch for homing to J5-8.

• SetDIR to 0 or 1 for clockwise or counterclockwise rotation
to move toward the limit switch.

• SetHOME.ACTIVEto 0 or 1 to set the software to look for an
open or closed input, respectively, when the switch triggers.

• If desired, setCW.OTor CCW.OTtravel limits.

• If desired, set an offset from the mechanical position using
HMPOS.OFFSET.

• SEEK.HOMEholds program execution on the current line until
function completion.

Program
segment

Program line

5 ‘Sets the minimum motor speed.

10 MIN.SPEED = 100

15 ‘Sets the acceleration rate at 40,000 RPM/s.

20 ACCEL.RATE = 40000

25 ‘Sets the run speed to 200 RPM.

30 RUN.SPEED = 200

35 ‘Sets theSEEK.HOMEfunction to interpret the home position
as input J5-8 closed.

40 HOME.ACTIVE = 1

45 ‘Sets the direction of rotation counterclockwise (when looking
at the motor shaft end-first) so that the motor moves the
elevator towards the home switch.

50 DIR = 1

55 ‘Perform the homing function.

60 SEEK.HOME

Rev F StepperBASIC Reference Manual 3 - 139

SET.SCANn

statement

Purpose SET.SCANn (set scan 1 or 2) activates the scan function to respond to
trigger inputs. When the input occurs, the current program line
completes, and if programmed, any or all of the following occur:

• Jump to another program line

• Move to a subroutine

• Stop motion

• Output a signal

Two inputs can be checked for scanning, usingSET.SCAN1 and
SET.SCAN2.

Performing a scan function is similar to checking an input in an
IF...THEN loop statement, but the function has the added
advantages of:

• Faster response because input is checked every millisecond.

• Elimination of a program loop to check the input. The scan
function runs “transparently” while the other program
instructions execute. Once a scan is set up and turned On, it
checks for the trigger input continuously until turned Off.

Note: Refer to Section 2.1.3,“Enabling and Disabling SCANs” for
additional information.

Syntax SET.SCANn where n = 1 or 2

Related
instructions

The predefined variables used withSET.SCANn are:

SKn.ENCPOS— records encoder position when scan triggers.

SKn.TRIGGER — sets the scan trigger input.

SKn.JUMP — sets the jump line number.

SKn.OUTPUT— sets an output action.

SKn.STOP — stops the motor.

CLR.SCANn— turns off scanning.

3 - 140 StepperBASIC Reference Manual Rev F

SET.SCANn (continued)

Programming
guidelines

Follow these guidelines for effective programming of the set scan
function:

Warning

Do not use a scan for an emergency stop to prevent personal injury.
Use a hard-wired switch connected to the power source for an
emergency stop.

Note: If both Scan 1 and Scan 2 are triggered at the same time
(within the same millisecond), only one of the scans will trigger.

Procedure 1. Set up theSKn.TRIGGER for the input to trigger the scan.

2. SetSKn.STOP, SKn.JUMP, SKn.OUTPUT, to stop, jump, and
output as desired.

3. Set theSET.SCANn.

4. To turn Off a scan, program aCLR.SCANn.

Multiple set
scans for
repeated
triggering

TheSET.SCANn instruction works forone scan only, triggering when
the designated input is seen, but not more times if the input is seen
again.

To repeatedly use a scan input in your program, make sure that your
program repeats or loops to theSET.SCANn function.

For example, in the program segment:

.

.
60 SK1.TRIGGER = 30

70 SK1.JUMP = 500

80 SET.SCAN1

90 GO.INCR

100 IF MOVING PRINT “Moving”

110 PAUSE.

.

.
500 PRINT “Program interrupted”

510 PAUSE

520 GOTO 80

Rev F StepperBASIC Reference Manual 3 - 141

SET.SCANn (continued)

A low input 3 applied after line 80 will trigger the scan. However,
when the program loops back to line 90 a second time, a repeat
application of input 3 willnot cause the scan to occur again.

Making the line 520GOTOstatement go to line 80 to revisit the scan
would enable the scan to be used repeatedly.

Stack overflow errors may occur if you have aGOSUB...RETURNor
WHILE...WEND statement in a program so that a scan could trigger
within either of these loops.

Program
segment

Program line

5 ‘Set scan to occur when input 1 goes to low voltage (INP1 =
0)

10 SK1.TRIGGER = 10

15 ‘Stop motor when scan input seen

20 SK1.STOP = 1

25 ‘Jump to line 2000 when scan input seen..

30 SK1.JUMP = 2000

35 ‘Turn output 1 On when scan input seen.

40 SK1.OUTPUT = 11

45 ‘Begin checking for scan input.

50 SET.SCAN1

.

.
1995 ‘Print message when scan input seen.

2000 PRINT “End of travel limit switch has
activated”

2005 ‘Wait until input 1 goes high before proceeding.

2010 IF INP 1 = 0 THEN 2010

2015 ‘Repeat the program.

2020 GOTO 50

3 - 142 StepperBASIC Reference Manual Rev F

Skn.ENCPOS

variable

(integer)

(read only)

Purpose SKn.ENCPOSrecords the encoder position when a SCAN1 or SCAN2
is triggered.SKn.ENCPOSis equivalent to anENCDR.POSat the
scan trigger point.

Note: Refer to Section 2.1,“Scan Functions”, for additional
information.

Syntax SKn.ENCPOS

where n = 1 or 2

Range -2,147,483,648 to 2,147,483,648

Related
instructions

SET.SCANn — activates SCAN1 or SCAN2.

SKn.TRIGGER — sets the scan trigger input.

SKn.JUMP — sets the jump line number.

SKn.OUTPUT— sets an output action.

SKn.POS — reads the motor position.

SKn.STOP — stops the motor.

CLR.SCANn— turns off scanning.

Rev F StepperBASIC Reference Manual 3 - 143

SKn.JUMP

parameter

(integer)

Purpose SKn.JUMP (Scan Jump 1 or 2) sets a program line destination to jump
to when a scan is triggered.

SK1.JUMP andSK2.JUMP are the respective scan 1 or scan 2 jump
variables.

Note: Refer to Section 2.1,“Scan Functions” for additional
information.

Syntax SKn.JUMP = x

Value x = the desired line number destination

x = 0 for no jump

Range x = 0 to 65,536

Related
instructions

SET.SCANn — activates scan 1 or scan 2.

SKn.TRIGGER — sets the scan trigger input.

SKn.OUTPUT— sets an output action.

SKn.STOP — stops the motor.

CLR.SCANn— turns off scanning.

SKn.ENCPOS— records encoder position when scan triggers.

RESET.STACK— clears the internal stack so that the program may
be restarted.

3 - 144 StepperBASIC Reference Manual Rev F

SKn.JUMP (continued)

Programming
guidelines

ProgramSKn.JUMP = x for the line number at the desired location.

Note: When a scan is triggered, the program line that is executing
completes before the jump occurs.

Set upSKn.JUMP = 0 if no jump is desired.

If there is a possibility that the SCAN trigger will occur while a
subroutine,FOR...NEXT or WHILE...WEND loop is executing, it is
extremely important that aRESET.STACKinstruction is executed to
insure the internal program control is maintained. This should be
executed either on or shortly after the instruction at the jump
destination.

Refer toSET.SCANn for scan information and an example program.

Rev F StepperBASIC Reference Manual 3 - 145

SKn.OUTPUT

parameter

(integer)

Purpose SKn.OUTPUTspecifies which of the programmable outputs is to be
turned On or turned Off when the corresponding scan condition is
satisfied.

The first digit ofSKn.OUTPUTspecifies which of the programmable
outputs will be affected when the Scan condition is satisfied. The first
digit can be from 1 to 8, corresponding toOUT1throughOUT8.

The second digit specifies whether the output will be turned ON(0) or
turned OFF(1).

If you do not want any of the outputs affected when the Scan condition
is satisfied, you must setSKn.OUTPUTequal to 0.

Note: Refer to Section 2.1,“Scan Functions” for additional
information.

Syntax SKn.OUTPUT = x,y where n = 1 or 2

Range x = 1 to 12 (# of output), y = 0 (low,ON) or 1 (high,OFF)

Value Scan Output Action

0 Scan output action disabled

10 OUT1 turned On when Scan condition satisfied

11 OUT1 turned Off when Scan condition satisfied

20 OUT 2 turned On when Scan condition satisfied

21 OUT2 turned Off when Scan condition satisfied

30 OUT3 turned On when Scan condition satisfied

31 OUT3 turned Off when Scan condition satisfied

Note: The same conditions apply for values through 120 and 121.

3 - 146 StepperBASIC Reference Manual Rev F

SKn.OUTPUT (continued)

Related
instructions

SET.SCANn — activates scan 1 or scan 2.

SKn.JUMP — sets the jump line number.

SKn.TRIGGER — sets the scan trigger input.

SKn.ENCPOS— records encoder position when scan triggers.

SKn.STOP — stops the motor.

CLR.SCAN— turns off scanning.

Rev F StepperBASIC Reference Manual 3 - 147

SKn.STATUS

variable

(integer)

(read only)

Purpose SKn.STATUS indicates the status of the SCAN function.

Note: Refer to Section 2.1,“Scan Functions” for additional
information.

Syntax SKn.STATUS = x where n = 1 or 2

Range x = 0, 1 or 2

Value of
SKn.STATUS

Interpretation

0 Scan function is not active. Value after
executingCLR.SCANnstatement.

1 Scan function is active but not triggered.
Value after executingSET.SCANn
statement, but before triggering occurs.

2 Scan function has been triggered.

Default x = 0

Related
instructions

SET.SCANn — activates scan 1 or scan 2.

SKn.JUMP — sets the jump line number.

SKn.TRIGGER — sets the scan trigger input.

SKn.ENCPOS— records encoder position when scan triggers.

SKn.STOP — stops the motor.

CLR.SCAN— turns off scanning.

3 - 148 StepperBASIC Reference Manual Rev F

SKn.STOP

parameter

(integer)

Purpose SKn.STOP is set to 1 to stop motion when a scan is triggered. The
deceleration rate is set byMAX.DECEL.

SK1.STOP andSK2.STOP are the respective scan 1 or scan 2 stop
motion variables.

Note: Refer to Section 2.1.2,“Setting the Scan Output Action” for
additional information.

Syntax SKn.STOP = x

Value x = 1 to stop motion

x = 0 to turn Off scan stop motion

Related
instructions

SET.SCANn — activates scan 1 or scan 2.

SKn.JUMP — sets the jump line number.

SKn.TRIGGER — sets the scan trigger input.

SKn.OUTPUT— sets an output action.

CLR.SCANn— turns off scanning.

MAX.DECEL— sets the deceleration rate for special stopping
conditions.

SKn.ENCPOS— records encoder position when scan triggers.

Programming
guidelines

ProgramSKn.STOP = 1 to stop motion when the scan triggers.

Note: When a scan is triggered, motion is stopped immediately. The
program line that is executing when the scan triggers does not
complete.

Set upSKn.STOP = 0 to disable scan stop motion so that motion will
continue when the scan triggers.

Refer toSET.SCANn for scan information and an example program.

Rev F StepperBASIC Reference Manual 3 - 149

SKn.TRIGGER

variable

(integer)

Purpose SKn.TRIGGER specifies the scan triggers condition. Two
independent scans are available and both may be activated at the same
time.

The first digit ofSKn.TRIGGER specifies which of the programmable
inputs will be affected when the Scan condition is satisfied. The first
digit can be from 1 to 8, corresponding toINP1 throughINP8 .

The second digit specifies whether the input will be checked against 0
or checked against 1.

Note: Refer to Section 2.1.1,“Setting the SCAN trigger Condition” for
additional information.

Syntax SKn.TRIGGER = x,y

where n = 1 or 2

Range x = 1 to 16 (# of input), y =0 (low,ON) or 1 (high,OFF)

Value Scan Condition

10 INP1 equals 0

11 INP1 equals 1

20 INP2 equals 0

21 INP2 equals 1

30 INP3 equals 0

31 INP3 equals 1

Note: The same conditions apply for values through 160 and 161.

Default x = 0

3 - 150 StepperBASIC Reference Manual Rev F

SKn.TRIGGER (continued)

Related
instructions

SET.SCANn — activates scan 1 or scan 2.

SKn.JUMP — sets the jump line number.

SKn.OUTPUT— sets an output action.

SKn.ENCPOS— records encoder position when scan triggers.

SKn.STOP — stops the motor.

CLR.SCANn— turns off scanning.

Programming
guidelines

Set up theSKn.TRIGGER before the other scan instructions.

Note: SKn.TRIGGER checks for an input state, not for a transition
to a state. This means that the input must be set to the appropriate Off
state after theSET.SCANn has triggered. If, for instance, you
perform a scan triggering it with the correct input, then clear the scan.
Upon reprogramming anotherSET.SCANn you will immediately
trigger the scan. If this is not desired, make sure to set the input Off
before repeating theSET.SCANn.

Refer toSET.SCANn for scan information and an example program.

Rev F StepperBASIC Reference Manual 3 - 151

/ (Slash)

command

Purpose This command is used for two things:

• To log on to a specific controller when using the RS-485 serial
link to communicate with the controllers.

• A prefix for global commands when using the RS-485 serial
link to communicate with the controllers.

Is used when there are two or more 5xx5 units connected in parallel to
the same terminal, using the RS-485 serial port of each unit. A set of
switches on the 5xx5 specifies the address of the 5xx5; an address of
31 is taken to mean this is a single module configuration. Commands
can be given either to all units connected (Global commands), or can
be directed to just one unit (Address specify).

Global
Command

All commands which can be used in immediate mode are allowed to
be specified after the / character. Every 5xx5 will react to the
command just as it would in single unit mode, with the exception that
there will be no output produced to the terminal (in order to prevent
multiple access to a shared hardware signal line). Commands whose
only purpose is to produce output (such asLIST) will do nothing.

Address
Specify

The / character followed by the unit number sets the address as the
only unit to respond to immediate mode commands. Once received, the
addressed unit is the only one to react to or respond to commands
received. The address specification remains in effect until another
address specification is given. Address specifications may be
temporarily overridden with a Global command. This command can be
given even to units running programs, in order to stop a single unit.
See theINPUT andPRINT statements for additional notes about using
multiple units.

3 - 152 StepperBASIC Reference Manual Rev F

/ (Slash) (continued)

Syntax /n <Return>

where ‘n’ is the address of the controller that you want to log on to.

/x <Return>

where ‘x’ is a global command that is to be executed by every
controller connected to the RS-485 serial link.

Program
segment

Program line

/STOP

Tell all units to stop motion

/GO.VEL

Tell all units to begin motion

/^C

(Global control-c) All units abort motion

/3

Set address to unit 3

/2:LIST

Set address to unit 2, and list program of unit 2

Rev F StepperBASIC Reference Manual 3 - 153

STALL.DEADBAND

parameter

(integer)

Purpose STALL.DEADBANDsets the maximum step difference allowed
between commanded and measured steps (step counts versus encoder
counts).

During a move, this difference is checked against the deadband
variable. Exceeding this value, interpreted as a stall, activates any
programmed stall variables.

Note: Refer to Section 2.6,“Stall Detection Function” for additional
information.

Syntax STALL.DEADBAND = x

Range x = 0 to 4,294,967,296 full or microsteps

Default x = 0

Related
instructions

STALL.STOP — stops the motor when the deadband is exceeded.

STALL.JUMP — jumps to program line number when deadband is
exceeded.

STALL.ERROR— indicates that a stall has occurred when deadband
is exceeded.

MAX.DECEL— sets the maximum deceleration rate

Programming
guidelines

• Install an encoder and verify that it is set to the correct
ENCODERline count.

• Make sureSTEPSIZE is correct. (Both hardware and software)
If you change step size, convert the deadband by multiplying by
the corresponding factor. For example, if you go from full step to
25 microstep and the deadband was 4, program a new deadband of
100 (4 x 25).

• Program stall stop, jump, or error as desired.

3 - 154 StepperBASIC Reference Manual Rev F

STALL.DEADBAND (continued)

Note: STALL.DEADBANDmay be exceeded even without a stall.
Due to the inherent limitations of a mechanical system, the motor may
lead or lag the encoder by up to 2 full motor steps. Account for this
by entering aSTALL.DEADBANDof at least 4 full steps (or
corresponding microsteps).

Program
segment

Program line

10 STEPSIZE = 1

20 STEP.DIR.INPUT = 0

30 ENCODER = 1000

40 STALL.DEADBAND = 10

50 STALL.JUMP = 100

60 STALL.STOP = 1

70 GO.VEL

80 IF MOVING THEN 80

100 PRINT “STALL HAS OCCURRED”

110 PRINT “MOTOR SHOULD HAVE STOPPED”

120 END

Rev F StepperBASIC Reference Manual 3 - 155

STALL.ERROR

variable

(integer)

(read only)

Purpose STALL.ERRORindicates that a stall has occurred.

Note: Refer to Section 2.6,“Stall Detection Function” for additional
information.

Syntax x = STALL.ERROR

where x = 0 (no stall)

x = 1 (stall occurred)

Related
instructions

STALL.DEADBAND= range — sets the maximum allowed difference
in motor steps (microsteps) between encoder and pulse counts that can
occur before a stall is triggered

STALL.JUMP = line number — jumps to program line number upon
stall

STALL.STOP = flag — stops the motor when stall occurs

Programming
guidelines

• Stall error is only operational for 1 move. It is cleared upon
the next move.

• Install an encoder and verify that it is set to the correct
ENCODERline count

• Make sureSTEPSIZE is correct (Both hardware and software)

3 - 156 StepperBASIC Reference Manual Rev F

STALL.JUMP

parameter

(integer)

Purpose STALL.JUMP moves program execution to a specified line in the
program when a stall occurs.

Note: Refer to Section 2.6,“Stall Detection Function” for additional
information.

Syntax STALL.JUMP = x

x = the desired line number

x = 0 for no jump

Range x = 0

Related
instructions

STALL.DEADBAND— sets the maximum allowed difference in motor
steps (microsteps) between encoder and pulse counts that can occur
before a stall is triggered.

STALL.ERROR— indicates that a stall has occurred.

STALL.STOP — stops the motor when stall occurs.

Programming
guidelines

• Install an encoder and verify that it is set to the correct
ENCODERline count.

• Make sureSTEPSIZE is correct. (Both hardware and software)

Rev F StepperBASIC Reference Manual 3 - 157

STALL.STOP

parameter

(integer)

Purpose STALL.STOP stops the motor at a rate set byMAX.DECELwhen a
stall occurs.

Note: Refer to Section 2.6,“Stall Detection Function” for additional
information.

Syntax STALL.STOP

Value x = 0 (Off) Disables the stop on STALL triggered.

x = 1 (On) Enables the stop on STALL triggered.

Default x = 0

Related
instructions

STALL.DEADBAND— sets the maximum allowed difference in motor
steps (microsteps) between encoder and pulse counts that can occur
before a stall is triggered.

STALL.ERROR— indicates that a stall has occurred.

STALL.JUMP — sets the jump line number.

MAX.DECEL— maximum deceleration rate used forSTALL.STOP.

Programming
guidelines

• Install an encoder and verify that it is set to the correct
ENCODERline count.

• Make sureSTEPSIZE is correct. (Both hardware and software)

3 - 158 StepperBASIC Reference Manual Rev F

STALL.STOP (continued)

Program
segment

Program line

10 STEPSIZE = 1

20 STEP.DIR.INPUT = 0

30 ENCODER = 1000

40 STALL.DEADBAND = 10

50 STALL.JUMP = 100

60 STALL.STOP = 1

70 GO.VEL

80 IF MOVING THEN 80

100 PRINT “STALL HAS OCCURRED”

110 PRINT “MOTOR SHOULD HAVE STOPPED”

120 END

Rev F StepperBASIC Reference Manual 3 - 159

STEP.DIR.INPUT

parameter

(integer)

Purpose STEP.DIR.INPUT (Step/Direction Input) determines whether
connector J6 is configured as an encoder input or as a step and
direction input. When configured as a step/direction input, the drive
functions as a follower under electronic gearing.

Note: Refer to Sections 2.5, 2.6, 2.8, and 2.10 for additional
information.

Syntax STEP.DIR.INPUT = x

Value x = 0 results in connector pins J6-2 to J6-5 being quadrature encoder
inputs for A,A, B, andB.

x = 1 results in connector pins J6-2 to J6-5 being step,step, direction
anddirection signals for external control.

Default x = 0

Related
instructions

STEPSIZE — full or microstep rate for the drive.

ENCODER— sets the line count of the master encoder.

Programming
guidelines

To useSTEP.DIR.INPUT specified for step and direction for
Electronic Gearing:

1. SetSTEP.DIR.INPUT = 1 to configure J6 for step and direction
input.

2. Connect the step and direction inputs at the J6 interface. Refer to
Section 2.5.5, “J6 Encoder/Step and Direction”.

3 - 160 StepperBASIC Reference Manual Rev F

STEP.DIR.INPUT (continued)

3. SetENCODERas follows:

ENCODER= # steps (or microsteps) per revolution/4
where the number of steps or microsteps per revolution
refers to the incoming step and direction inputs at the J6
encoder interface.

Stepsize Encoder

1 50

2 100

5 250

25 1250

125 6250

4. ProgramGEARINGand associated instructions as desired (refer to
GEARING).

Rev F StepperBASIC Reference Manual 3 - 161

STEPSIZE

parameter

(integer)

Purpose STEPSIZE sets the microstep rate assumed for the associated drive.
The stepsize for the drive is determined by the DIP switch located on
the top of the drive for the 5645 and the bottom of the drive for the
5445 and 5345.

IMPORTANT NOTE:

The value of this variable is stored in NVRAM
when the SAVEVAR command is executed.

Syntax STEPSIZE = x

Value Stepsize

1 Full step

2 Half step

5 1/5 step

25 1/25 step

125 1/125 step

Default x = 25

Related
instructions

GEARING—turns On or Off electronic or uni-directional electronic
gearing.

Note: STEPSIZE must be >= 5 for Gearing.

3 - 162 StepperBASIC Reference Manual Rev F

STEPSIZE (continued)

Programming
guidelines

Note: ChangingSTEPSIZE will automatically change values of
RUN.SPEED, ACCEL.RATE, etc. Check these values and reprogram
if desired.

1. Set the Step Size for the drive from the DIP switch (refer to section
2.6.1.1, “Step Set Up” in the Installation Manual).

2. Program theSTEPSIZE.

3. Program aSAVEVAR.

4. Cycle power.

SaveSTEPSIZE to NVRAM, if desired.

Caution

Changing STEPSIZE without performing the above procedure will
cause unpredictable results.

Rev F StepperBASIC Reference Manual 3 - 163

STOP

statement

Purpose STOPstops motion and interrupts the program. The program
continues whenCONTis programmed.

UsingSTOPwith CONTis an effective tool for testing and debugging
programs.

Syntax STOP

Related
instructions

CONT— causes program to continue fromSTOPline.

STOP.MOTION— stops motion while allowing program execution.

END— stops the program while allowing motion to continue.

Programming
guidelines

Program a line withSTOPwherever you wish to have the program
stop so you can program in immediate mode and abort any
commanded motion, exceptGEARING.

A <Ctrl><c> entered from the terminal while the program is running
has the same effect as aSTOPstatement encountered within the
program.

Note: Do not change the program interrupted bySTOP. Program
execution will be incorrect if aSTOPinterrupted program is altered.
You may, however, change variables in immediate mode during an
activeSTOPcommand.

3 - 164 StepperBASIC Reference Manual Rev F

STOP.MOTION

statement

Purpose STOP.MOTIONstops motor motion while allowing continued program
execution. Deceleration is as specified by theMAX.DECELvariable.

Syntax STOP.MOTION

Related
instructions

STOP— stops motion and interrupts the program.

MAX.DECEL— specifies the rate of deceleration forSTOP.MOTION
and other special stopping conditions.

Programming
guidelines

Program a line withSTOP.MOTIONwherever you wish to stop the
motor while continuing the program.

Program
segment

Program line

5 ‘Set run speed to 1,000 RPM.

10 RUN.SPEED = 1000

15 ‘Set acceleration rate to 10,000 RPM/second.

20 ACCEL.RATE = 10000

25 ‘Set deceleration rate to 1,000,000 RPM/second.

30 MAX.DECEL = 1000000

35 ‘Start motor.

40 GO.VEL

45 ‘If input 1 is low then go to line 55. Otherwise, go back to line
50.

50 IF INP1 = 1 THEN 50

55 ‘Stop the motor.

60 STOP.MOTION

Rev F StepperBASIC Reference Manual 3 - 165

TARGET.POS

parameter

(integer)

Purpose TARGET.POS(Target Position) sets the target position that is the
destination when aGO.ABS function is called.

The target position is the absolute position relative to the electrical
home position.

Note: Refer to Section 2.9.1,“Description of Motion Statements” for
additional information.

IMPORTANT NOTE:

The value of this variable is stored in NVRAM
when the SAVEVAR command is executed.

Syntax TARGET.POS = x

Stepsize Range

1 -33,554,432< x < 33,554,431

2 -67,108,864< x < 67,108,863

5 -67,108,864< x < 67,108,863

25 -268,435,456< x < 268,435,455

125 -536,870,912< x < 536,870,911

Related
instructions

POS.COMMAND— displays or redefines position.

STEPSIZE — full or microstep rate for the drive.

SEEK.HOME— causes homing routine using mechanical switch.

GO.ABS— moves motor shaft to position specified byTARGET.POS.

GO.HOME— moves motor shaft to electrical home.

MOVING— flag turned on when the motor is moving.

3 - 166 StepperBASIC Reference Manua l Rev F

TARGET.POS (continued)

Programming
guidelines

Note: Do not program a new value forPOS.COMMANDafter
TARGET.POS has been programmed. Target Position is an absolute
position variable based on the existingPOS.COMMANDposition.

Program
segment

Program line

10 STEPSIZE = 25

20 MIN.SPEED = 25

30 ACCEL.RATE = 500

40 RUN.SPEED = 1000

50 POS.COMMAND = 0

60 TARGET.POS = 100000

70 GO.ABS

80 IF MOVING THEN 80

90 IF (POS.COMMAND <> TARGET.POS) THEN 200

100 END

200 PRINT “ERROR”

210 END

This program will set the target for motion to 100,000 microsteps, and
then move to target position.

Rev F StepperBASIC Reference Manua l 3 - 167

TIME

variable

(float)

Purpose TIME is a continually running internal software timer that counts from
0 to 67.10886 seconds.

If you enter a value forTIME, the timer resets to continue from this
new time. For example, whenTIME = 2 is executed, the timer resets
to the 2 second point before continuing to count up to 67.10886
seconds, go to zero, and repeat the cycle.

Syntax TIME = xx.xxx

Range 0 to 67.10886 seconds, timer updated every 1.024 msec

Default x = 0

Programming
guidelines

• SetTIME equal to a value that represents the starting time for
the count.

• To get an accurate reading of the time of a given event, such
as a switch closing, set a floating point variable equal toTIME
and thenPRINT that variable. Do this because thePRINT
statement takes a relatively long time to execute.

• To time events longer than 67.10886 seconds, use a counter to
count the number of times the timer resets.
Program division of the desired time by 67.10886 for the number
of timer resets. Then, determine the remainder. Using these
values, program the desired motion for the appropriate number of
time intervals plus the remainder.

3 - 168 StepperBASIC Reference Manua l Rev F

TIME (continued)

Program
segment

Program line

10 IF INP1 = 1 THEN 10

20 TIME = 0

30 IF INP1 = 0 THEN 30

40 FLT1 = TIME

50 PRINT FLT1

This program waits until input 1 is equal to zero (connected to I/O
RTN). It then measures the length of time that the input remains
connected to I/O RTN. The program then displays this on the terminal
screen.

Rev F StepperBASIC Reference Manua l 3 - 169

TRON and TROFF

command

Purpose To enable or disable tracing of the executing program lines for use in
debugging your program.

TRONstands forTRaceON.
TROFFstands forTRaceOFF.

Syntax TRONto enable tracing

or

TROFFto disable tracing

Programming
guidelines

TRONenables the printing of each program line as that line is
executed by the BASIC interpreter software. This is useful when you
are trying to find out if your program is working properly.TROFF
disables the trace. The lines that are printed when executing a
program after aTRONcommand appear just as they would in aLIST
command. Tracing is disabled when you first turn on the controller.
Tracing is also disabled when you execute aNEWCommand.

Note: Tracing will slow down program execution time.

Program
segment

Program line

TRON

5 PRINT “BEGINNING NOW”

15 Print “ENDING NOW”

20 END

RUN <enter>

TROFF

This program turns tracing on and then prints ”Beginning Now”.
The program then prints ”Ending Now” before turning tracing off.

3 - 170 StepperBASIC Reference Manua l Rev F

UPD.MOVE

statement

Purpose UPD.MOVEupdates a move in process with new variables. This allows
you to change motion “on the fly” without having to stop motion and
restart the motion function again with new variables.

Syntax UPD.MOVE

Related
instructions

ACCEL.RATE— limits the maximum commanded acceleration rate.

CONTINUOUS.MOTION— specifies continuous motion allowing
variable changing without stopping the move.

DCL.TRACK.ACL — specifies that the acceleration rate is equal to
the deceleration rate.

DECEL.RATE— limits the maximum commanded deceleration rate.

DIR — sets the direction the motor turns when aGO.VEL or a
SEEK.HOMEfunction is executed.

RUN.SPEED— sets the commanded velocity.

Programming
guidelines

SetCONTINUOUS.MOTION= 1 to specify continuous motion, then
implement continuous motion withUPD.MOVE.

Move functions that are updated withUPD.MOVEareGO.ABS,
GO.HOME, GO.INCR, andGO.VEL

Update desiredACCEL.RATE, DECEL.RATE, RUN.SPEED, and
DIR (for GO.VEL moves only).

DCL.TRACK.ACL must be equal to zero to setDECEL.RATE
independently.

Rev F StepperBASIC Reference Manua l 3 - 171

UPD.MOVE (continued)

Program
segment

Program line

110 CONTINUOUS.MOTION = 1

120 POS.COMMAND = 0

130 RUN.SPEED = 2000

140 INDEX.DIST = 100000

150 GO.INCR

160 RUN.SPEED = 100

170 WHEN POSITION > 5000, UPD.MOVE

This program waits until the position is greater than 5000, then
updates move causing the run speed to drop to 100 RPM.

3 - 172 StepperBASIC Reference Manua l Rev F

VELOCITY

variable

(float)

(read only)

Purpose VELOCITY indicates the actual speed at which the motor shaft is
running averaged over a 128 msec interval. This is a read only variable.

Syntax x = VELOCITY

Stepsize Range

1 0.01 to 18,750.00 RPM

2 0.01 to 18,750.00 RPM

5 0.01 to 7,500.00 RPM

25 0.01 to 6,000.00 RPM

125 0.01 to 2,399.99 RPM

Related
instructions

RUN.SPEED— Programmed speed realistically represented by
VELOCITY.

Rev F StepperBASIC Reference Manua l 3 - 173

VELOCITY (continued)

Program
segment

Program line

10 STEPSIZE = 1

20 RUN.SPEED = 1000

30 MIN.SPEED = 50

40 ACCEL.RATE = 1000

50 DIR = 0

60 GO.VEL

70 WAIT.TIME = 5 : PAUSE

80 IF (RUN.SPEED - VELOCITY) * 100 > 1 THEN
90 ELSE 80

90 PRINT “VELOCITY FOLLOWING ERROR”

This program checks mismatch betweenRUN.SPEEDand
VELOCITY. If greater than 1%, print error message.

3 - 174 StepperBASIC Reference Manua l Rev F

VER

command

Purpose VERis an immediate mode instruction that displays the version
number of the software.

Syntax VER <enter>

Program
segment

VER<enter>

Returns :

Pacific Scientific

Charlestown, MA

StepperBASIC Version X.X

Copyright © 1988. 1991 (YYYY)

OK

where x.x is the version number

and YYYY is the version check sum no.

Rev F StepperBASIC Reference Manua l 3 - 175

WAIT.TIME

parameter

(float)

Purpose WAIT.TIME sets the amount of time in seconds that the program
pauses when thePAUSEstatement is executed.

IMPORTANT NOTE:

The value of this variable is stored in NVRAM
when the SAVEVAR command is executed.

Syntax WAIT.TIME = x

Range x = 0.001 to 67.10886 seconds

Default x = 1

Related
instructions

PAUSE— causes the program to wait as specified byWAIT.TIME

Program
segment

Program line

10 WAIT.TIME = 0.5

20 IF INP1 = 1 THEN 20

30 PAUSE

40 GO.INCR

This program looks at INP1 (J4-2) and waits until this input is zero
(connected to I/O RTN). The program pauses for 0.5 second and then
performs an incremental move.

3 - 176 StepperBASIC Reference Manua l Rev F

WHEN

statement

Purpose WHENis used for very fast output responses to certain input conditions.

You specify the condition and action. Upon encountering theWHEN,
program execution waits until the defined condition is satisfied. Then
the program immediately executes the action and continues with the
next line of the program.

TheWHENstatement provides latching of several variables when the
WHENcondition is satisfied. These variables are:WHEN.ENCPOS,
WHENPCMD.

The software checks for the defined condition every 1.024 millisecond
and performs the action within 1.024 millisecond of condition
satisfaction.

Note: Refer to Section 2.7,“Using theWHENStatement” for additional
information.

Syntax WHEN condition, action

The condition must be:

• INPn = 1 or 0

• POS.COMMAND> value

• POS.COMMAND< value

• ENCDR.POS> value

• ENCDR.POS< value

Rev F StepperBASIC Reference Manua l 3 - 177

WHEN (continued)

The action must be:

• OUTn= 1 or 0

• RATIO = value

• Any of the following:

GEARING

GO.ABS

GO.HOME

GO.INCR

GO.VEL

PAUSE

REG.FUNC

SEEK.HOME

STOP.MOTION

• CONTINUE(CONTINUEallows program execution to
continue at the next program line.

• UPD.MOVE

Related
instructions

WHEN.ENCPOS— specifies the encoder position (ENCPOS) latched
when theWHENcondition is satisfied.

WHENPCMD— specifies the motor position command
(POS.COMMAND) latched when theWHENcondition is satisfied.

Programming
guidelines

Program theWHENstatement followed by the valid condition and
action separated by a comma.

3 - 178 StepperBASIC Reference Manua l Rev F

WHEN.ENCPOS

variable

(integer)

(read only)

Purpose WHEN.ENCPOS(When Encoder Position) records the encoder position
at the time theWHENstatement becomes true. This value is checked
for at 1.024 millisecond time intervals.

Syntax x = WHEN.ENCPOS

Value x is -2,147,483,648 to 2,147,483,647 external encoder counts.

Related
instructions

WHEN— provides fast response to certain input conditions

ENCDR.POS— provides the encoder position

Program
segment

Program line

10 ‘Latch encoder position when input 6 goes low

20 WHEN INP6 = 0, OUT6 = 0

30 PRINT “WHEN Encoder position is ”
WHEN.ENCPOS

Rev F StepperBASIC Reference Manua l 3 - 179

WHENPCMD

variable

(integer)

(read only)

Purpose WHENPCMD(When Position Command) specifies the motor position
when theWHENcondition is satisfied.

Syntax x = WHENPCMD

Related
instructions

POS.COMMAND— contains the current position command.

WHEN— provides fast response to certain input conditions

Program
segment

Program line

10 ‘Latch encoder position when input 1 goes low

20 WHEN INP1 = 0, CONTINUE

30 PRINT ”WHEN POS.COMMAND IS” WHENPCMD

3 - 180 StepperBASIC Reference Manua l Rev F

WHILE...WEND

statement

Purpose WHILE...WEND tells the program to execute a series of statements as
long as an expression after theWHILE statement is true.

If the expression is true, then the loop statements betweenWHILE and
WENDare executed. The expression is evaluated again and if the
expression is still true, then the loop statements are executed again.
This continues until the expression is no longer true. If the expression
is not true, then the BASIC interpreter software executes the statement
immediately following theWENDstatement.

Syntax WHILE expression

.

(loop statements)

.

WEND

expression is any numeric or boolean expression

Programming
guidelines

WHILE...WEND loops may be nested, up to a limit of 8. EachWEND
is matched to the most recentWHILE. UnmatchedWHILE or WEND
statements cause run-time errors.

Rev F StepperBASIC Reference Manua l 3 - 181

WHILE ... WEND (continued)

Program
segment

Program line

10 INT1 = 3

20 WHILE INT1 > 1

30 PRINT ”INT1 =” INT1

40 INT1 = INT1 - 1

50 WEND

60 END

RUN <enter>

This program will print out the following:

INT1 = 3

INT1 = 2

3 - 182 StepperBASIC Reference Manua l Rev F

4 Quick Reference

Introduction This section contains commands, functions, parameters, statements
and variables for Pacific Scientific StepperBASIC. Below is a
summary of the list of instructions.

Name Type Default Value Page #

ABS function 3-2

ACCEL.RATE parameter (integer) SAVEVAR 3-3

AUTO command 3-5

CCW.OT parameter (integer) 0 3-6

CCW.OT.JUMP parameter (integer) 3-8

CCW.OT.ON parameter (integer) 3-9

CHR() function 3-10

CINT function 3-11

CLEAR command 3-12

CLR.SCANn statement 3-13

CONT command 3-15

CONTINUOUS.MOTION variable (integer) 3-17

CW.OT parameter (integer) 3-20

CW.OT.JUMP parameter (integer) 3-22

CW.OT.ON parameter (integer) 3-23

DCL.TRACK.ACL variable (integer) 1 3-24

DECEL.RATE parameter (integer) 3-26

DELETE command 3-28

DIR parameter (integer) SAVEVAR 3-29

ENABLE parameter (integer) 3-31

ENABLED variable (integer R/O) 3-32

Rev F StepperBASIC Reference Manua l 4 - 1

Name Type Default Value Page #

ENCDR.POS variable (integer) 3-33

ENC.FREQ variable (float R/O) 3-34

ENCODER parameter (integer) SAVEVAR 3-35

END statement 3-37

FAULTCODE variable (integer) 3-38

FLGn user variable (flag) 3-39

FLTn user variable (float) SAVEVAR 3-40

FOR...NEXT statement (integer) 3-41

FREE command 3-43

GEARING parameter (integer) 0 3-44

GO.ABS statement 3-46

GO.HOME statement 3-48

GO.INCR statement 3-50

GOSUB...RETURN statement 4-52

GOTO statement 3-54

GO.VEL statement 3-55

HMPOS.OFFSET parameter (integer) SAVEVAR 3-57

HOME.ACTIVE parameter (integer) SAVEVAR 3-58

IF...THEN...ELSE statement 3-59

INDEX.DIST parameter (integer) SAVEVAR 3-60

INKEY() function 3-61

INPn variable (integer R/O) 3-63

IN.POSITION variable (integer R/O) 3-65

INPUT statement 3-67

INPUTS variable (integer R/O) 3-68

INT() function 3-70

4 - 2 StepperBASIC Reference Manua l Rev F

Name Type Default Value Page #

INTn user variable (integer) SAVEVAR 3-71

JOG.SPEED variable (float) SAVEVAR 3-72

LIST command 3-73

LOAD command 3-74

LOADVAR command 3-75

MAX.DECEL parameter (integer) SAVEVAR 3-77

MIN.SPEED parameter (float) SAVEVAR 3-78

MOVING variable (integer R/O) 3-79

NEW command 3-81

OT.ERROR variable (integer R/O) 3-82

OUTn parameter (integer) 3-83

OUTPUTS parameter (integer) SAVEVAR 3-83

PACK command 3-87

PAUSE statement 3-88

POS.CHKn parameter (integer) 0 3-89

POS.CHKn.OUT parameter (integer) 0 3-90

POS.COMMAND variable (integer) 3-92

POS.VERIFY.CORRECTION parameter (integer R/O) 3-94

POS.VERIFY DEADBAND parameter (integer) 3-95

POS.VERIFY.ERROR variable (integer R/O) 3-97

POS.VERIFY.JUMP parameter (integer) 3-99

POS.VERIFY.TIME parameter (integer) 3-101

PREDEF.INP parameter (integer) SAVEVAR 3-102

PREDEF.OUT parameter (integer) SAVEVAR 3-105

PRINT statement 3-106

Rev F StepperBASIC Reference Manua l 4 - 3

PWR.ON.ENABLE parameter (integer) SAVEVAR 3-107

Name Type Default Value Page #

PWR.ON.OUTPUTS parameter (integer) SAVEVAR 3-108

QRY command/statement 3-111

QRY.PRM command/statement 3-113

QRY.STAT command/statement 3-114

RATIO parameter (float) SAVEVAR 3-115

REG.DIST parameter (integer) 3-117

REG.ENCPOS variable (integer R/O) 3-119

REG.FLAG variable (integer) 3-120

REG.FUNC parameter (integer) 3-122

REM statement 3-124

RENUM command 3-125

RESET.STACK statement 3-126

RETURN statement 3-127

RMT.START parameter (integer) SAVEVAR 3-128

RUN command 3-130

RUN.SPEED parameter (float) SAVEVAR 3-131

SAVE command 3-133

SAVEVAR command/statement 3-134

SEEK.HOME statement 3-136

SET.SCANn statement 3-140

SKn.ENCPOS variable (integer R/O) 3-143

SKn.JUMP parameter (integer) 3-144

SKn.OUTPUT parameter (integer) 3-146

SKn.STATUS variable (integer R/O) 3-148

4 - 4 StepperBASIC Reference Manua l Rev F

SKn.STOP parameter (integer) 3-149

SKn.TRIGGER parameter (integer) 3-150

Name Type Default Value Page #

/ (slash) command 3-152

STALL.DEADBAND parameter (integer) 3-154

STALL.ERROR variable (integer, R/O) 3-156

STALL.JUMP parameter (integer) 3-157

STALL.STOP parameter (integer) 3-158

STEP.DIR.INPUT parameter (integer) 3-160

STEPSIZE parameter (integer) 3-162

STOP statement 3-164

STOP.MOTION statement 3-165

TARGET.POS parameter (integer) SAVEVAR 3-166

TIME variable (float) 3-168

TRON and TROFF command 3-170

UPD.MOVE statement 3-171

VELOCITY variable (float R/O) 3-173

VER command 3-175

WAIT.TIME parameter (float) SAVEVAR 3-176

WHEN statement 3-177

WHEN.ENCPOS variable (integer R/O) 3-179

WHENPCMD variable (integer R/O) 3-180

WHILE...WEND statement 3-181

Rev F StepperBASIC Reference Manua l 4 - 5

Appendix A ASCII Codes

ASCII Code Result ASCII Code Result ASCII Code Result ASCII Code Result

0 ^@ NUL 32 64 @ 96 ‘

1 ^A SOH 33 ! 65 A 97 a

2 ^B STX 34 \ 66 B 98 b

3 ^C ETX 35 # 67 C 99 c

4 ^D EOT 36 $ 68 D 100 d

5 ^E ENQ 37 % 69 E 101 e

6 ^F ACK 38 & 70 F 102 f

7 ^G BEL 39 ‘ 71 G 103 g

8 ^H BS 40 (72 H 104 h

9 ^I HT 41) 73 I 105 i

10 ^J LF 42 * 74 J 106 j

11 ^K VT 43 + 75 K 107 k

12 ^L FF 44 , 76 L 108 l

13 ^M CR 45 - 77 M 109 m

14 ^N SO 46 . 78 N 110 n

15 ^O SI 47 / 79 O 111 o

16 ^P DLE 48 0 80 P 112 p

17 ^Q DC1 49 1 81 Q 113 q

18 ^R DC2 50 2 82 R 114 r

19 ^S DC3 51 3 83 S 115 s

20 ^T DC4 52 4 84 T 116 t

21 ^U NAK 53 5 85 U 117 u

22 ^V SYN 54 6 86 V 118 v

23 ^W ETB 55 7 87 W 119 w

24 ^X CAN 56 8 88 X 120 x

25 ^Y EM 57 9 89 Y 121 y

26 ^Z SUB 58 : 90 Z 122 z

27 ^[ESC 59 ; 91 [123 {

28 ^\ FS 60 < 92 \ 124 |

29 ^] GS 61 = 93] 125 }

30 ^^ RS 62 > 94 ^ 126 ~

31 ^_ US 63 ? 95 _ 127

Rev F StepperBASIC Reference Manua l A - 1

Appendix B INPUT Statement

Introduction This appendix is intended to provide additional information on the
INPUT statement.

INPUTstatement

execution

When a StepperBASIC program executes theINPUT statement,
the following sequence of events occur:

1. The character input buffer of the 5645 controller is cleared.

2. a. If there is no user-defined prompt (within “ ”), the
controller will transmit a question mark followed by a
space (?_).

b. If there is a user-defined prompt string, the prompt is
transmitted followed by a question mark and a space.

c. If the prompt string is followed by a comma instead of a
semi-colon, the prompt is transmitted but the question
mark is suppressed.

3. Numeric Data Characters received by the controller are placed
in the input character buffer. They are also echoed back
(transmitted by the controller) one at a time after they are
received.

Note: Line feeds received by the 5645 are ignored.

4. Step 3 is repeated until a carriage return is transmitted to the
5645.

5. When a carriage return is transmitted to the 5645, the numeric
input data is terminated. After its reception the 5645
transmits a line feed followed by a carriage return, unless a
semicolon appears just afterINPUT, in which case the line
feed and carriage return are suppressed.

6. If the numeric response is a valid numeric value, then the
input data is placed in the specified variable. Otherwise, the
INPUT process is repeated from Step 1.

Rev F StepperBASIC Reference Manua l B - 1

Variations of

INPUTstatement

options

Note: “?_” in these examples represents a question mark
followed by a blank space. The underscore character “_” is used
to illustrate the blank space. In all instances, characters received
by the 5645 will be echoed (transmitted) after they are received.

TheseINPUT statements will cause the 5645 to transmit a line
feed followed by a carriage return, after a carriage return is
received by the controller, to terminate the input data string.

10 INPUT INT1

will transmit the prompt: ?_

20 INPUT “Please Enter INT1" ; INT1

will transmit the prompt: Please Enter INT1?_

30 INPUT “Please Enter INT1" , INT1

will transmit the prompt: Please Enter INT1_

TheseINPUT statements will suppress the 5645’s transmission of
a line feed and carriage return, after a carriage return is received
by the controller, to terminate the input data string.

40 INPUT ; INT1

will transmit the prompt: ?_

50 INPUT ; “Please Enter INT1" ; INT1

will transmit the prompt: Please Enter INT1?_

60 INPUT ; “Please Enter INT1" , INT1

will transmit the prompt: Please Enter INT1_

B - 2 StepperBASIC Reference Manua l Rev F

StepperBASIC Index

A

ABS(), 3-2
ACCEL.RATE, 4-3
Alphabetic characters, 1-3
Arithmetic operators, 1-4
ASCII codes, A-1
AUTO, 3-5

B

BASIC statements, 1-8

C

CCW.OT, 2-6, 3-6
CCW.OT.JUMP, 2-6, 3-8
CCW.OT.ON, 2-6, 3-9
Characters, 1-3
CHR(), 3-10
CINT, 3-11
CLEAR, 3-12
CLR.SCANn, 2-3, 3-13
Clockwise overtravel checking, 2-5
Commands, 1-8
Communication, 1-10
Computer, 1-10
Connection, registration, 2-32
Constants, 1-6
CONT, 3-15
CONTINUOUS.MOTION, 2-26, 3-17
Conventions, 1-1

Counterclockwise overtravel
checking, 2-5
CW.OT, 2-5, 3-20
CW.OT.JUMP, 2-5, 3-22
CW.OT.ON, 2-5, 3-23

D

DCL.TRACK.ACL, 3-24
DECEL.RATE, 3-26
DELETE, 3-28
DIR, 2-19, 3-29
Display only, 1-10

E

Editing programs, 1-15, 1-17
Editor screen, 1-17
Electrical home, 2-4
Electronic gearing, 2-21
Electronic gear ratio, 2-22
ENABLE, 3-31
ENABLED, 3-32
ENCDR.POS, 3-33
ENC.FREQ, 3-34
ENCODER, 2-12, 2-22, 2-32, 3-35
Encoder, 2-12

inputs, 2-21
position, 2-21
output, 2-17

END, 3-37

Rev F StepperBASIC Reference Manua l Index - 1

Error messages, 1-20
Runtime, 1-22
Syntax, 1-20
System, 1-23

F

FAULTCODE, 3-38
Flag variables, 1-1
FLGn, 3-39
FLTn, 3-40
Float variables, 1-1, 1-9
FOR...NEXT, 3-41
FREE, 3-43
Functions, 1-9, 2-1

G

GEARING, 3-44
Gearing, electronic, 2-15
Getting started, 1-10
Global variables, 1-2
GO.ABS, 2-28, 3-46
GO.HOME, 2-28, 3-48
GO.INCR, 2-27, 3-50
GOSUB...RETURN, 3-52
GOTO, 3-54
GO.VEL, 2-26, 3-55

H

Header, program, 1-18
HMPOS.OFFSET, 3-57
HOME.ACTIVE, 3-58
Homing routines, 2-4

I

IF...THEN...ELSE, 3-59
Immediate mode, 1-14
INDEX.DIST, 2-20, 3-60
INKEY(), 3-61
INPn, 3-63
IN.POSITION, 2-12
INPUT, 3-67, B-1
INPUTS, 3-68
Installation, 1-10
Instruction types, 1-8
Interface requirements, 1-10
INT(), 4-70
INTn, 4-71

J

JOG.SPEED, 4-74

L

Line format, 1-15
LIST, 3-74
LOAD, 3-74
LOADVAR, 3-75
Logical operators, 1-6

M

MAX.DECEL, 2-15, 3-77
Memory,

Non-volatile, 1-15
RAM, 1-15

Modes, programming, 1-14
Motion statements, 2-27
Motor movement, 2-25

Index - 2 StepperBASIC Reference Manua l Rev F

Motor, stopping, 2-26
Multiple statements, 1-16

N

NEW, 3-81
Notation, 1-7
Numeric,

characters, 1-3
constants, 1-6

O

Operators, 1-4
OT.ERROR, 2-6, 3-82
OUTn, 3-83
OUTPUTS, 3-84
Overtravel limit, 2-5

P

PACK, 3-87
Parameters, 1-9
PAUSE, 3-88
POS.CHKn, 2-8, 3-89
POS.CHKn.OUT, 2-9, 3-90
POS.COMMAND, 3-92
Position Check Function, 2-8
Position Verification and

Correction Function, 2-11
POS.VERIFY.CORRECTION, 2-11,
3-94
POS.VERIFY.DEADBAND, 2-11,
3-95
POS.VERIFY.ERROR, 2-11, 3-97
POS.VERIFY.JUMP, 2-11, 3-99
POS.VERIFY.TIME, 2-11, 3-101

Power up,
RS-232, 1-11
RS-422/485, 1-11

PREDEF.INPn, 3-102
PREDEF.OUT, 3-105
Predefined variables, 1-9
PRINT, 3-106
Program header, 1-18
Programming, 1-14

modes, 1-14
writing/editing, 1-15

PWR.ON.ENABLE, 3-107
PWR.ON.OUTPUTS, 3-108

Q

QRY, 3-111
QRY.PRM, 3-113
QRY.STAT, 3-114
Quick reference, 4-1

R

RATIO, 2-22, 3-115
REG.DIST, 2-32, 3-117
REG.ENCPOS, 3-119
REG.FLAG, 2-33, 3-120
REG.FUNC, 2-32, 3-122
Registration functionality, 2-30
Relational operators, 1-5
REM, 3-124
RENUM, 3-125
RESET.STACK, 3-126
RETURN, 3-127
RMT.START, 3-128
RS-232 communication, 1-11
RS-485 communication, 1-12

Rev F StepperBASIC Reference Manua l Index - 3

RUN, 3-130
RUN.SPEED, 3-131
Runtime errors, 1-22

S

SAVE, 3-133
SAVEVAR, 3-134
SCAN,

enable/disable, 2-3
functions, 2-1

Screen editor, 1-17
SEEK.HOME, 2-4, 2-29, 3-136
SET.SCANn, 2-3, 3-140
Setting SCAN output, 2-2
Setting SCAN trigger, 2-2
SKn.ENCPOS, 3-143
SKn.JUMP, 2-2, 3-144
SKn.OUTPUT, 2-2, 3-146
SKn.STATUS, 3-148
SKn.STOP, 2-2, 3-149
SKn.TRIGGER, 2-2, 3-150
/ (slash), 3-152
STALL.DEADBAND, 2-14, 3-154
Stall Detection function, 2-14
STALL.ERROR, 2-15, 3-156
STALL.JUMP, 2-15, 3-157
STALL.STOP, 2-14, 3-158
Statements, 1-8
STEP.DIR.INPUT, 2-12, 2-32, 3-160
STEP/DIR outputs, 2-24
STEPSIZE, 2-33, 3-162
StepperBASIC,

functions, 2-1
STOP, 3-164
STOP.MOTION, 3-165
Stopping motor, 2-19, 2-25

String constants, 1-6
Syntax errors, 1-20
System errors, 1-23

T

TARGET.POS, 3-166
Terminal

requirements, 1-10
types, 1-10

TIME, 3-168
TRON and TROFF, 3-170
Typing, Paccom, 1-16

U

UPD.MOVE, 3-171
User variables, 1-2

V

Variable names, 1-1
VELOCITY, 3-173
VER, 3-175

W

WAIT.TIME, 3-176
Warranty, i
WHEN, 3-177
WHEN statements, 2-18
WHEN.ENCPOS, 3-179
WHENPCMD, 3-180
WHILE...WEND, 3-181
Wiring, controller, 2-31
Writing programs, 1-12

Index - 4 StepperBASIC Reference Manua l Rev F

