NOTE

Progress is an on-going commitment at Sheffield Automation, LLC. We continually strive to offer the most advanced products in the industry; therefore, information in this document is subject to change without notice. The illustrations and specifications are not binding in detail. Sheffield Automation, LLC shall not be liable for any technical or editorial omissions occurring in this document, nor for any consequential or incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any Sheffield Automation, LLC product until the use of such product is completely understood. It is the responsibility of the user to make certain proper operation practices are understood. Sheffield Automation, LLC products should be used only by qualified personnel and for the express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service Department, Sheffield Automation, LLC, 660 South Military Road, P.O. Box 1658, Fond du Lac, WI 54936-1658. Sheffield Automation, LLC can be reached by telephone at (920) 921–7100.

Release 2903
Part Number M.1301.5522
© 2001-2003 Sheffield Automation, LLC

Windows 95, 98, NT, Microsoft, and MS-DOS are registered trademarks of Microsoft Corporation.
Pentium and PentiumPro are trademarks of Intel Corporation.
PiC900, PiCPro, MMC, MMC for PC, PiCServoPro, PiCTune, PiCProfile, LDO Merge, PiCMicroTerm and PiC Programming Pendant are trademarks of Giddings & Lewis, LLC
Table of Contents: MMC for PC Hardware Manual

1 Safety Precautions ... 1
 1.1 System Safety .. 1
 1.1.1 User Responsibility ... 1
 1.1.2 Safety Instructions ... 1
 1.2 Safety Signs ... 2
 1.3 Warning Labels .. 3
 1.4 Safety First ... 4
 1.5 Safety Inspection .. 4
 1.5.1 Before Starting Operations .. 4
 1.6 After Shutdown .. 4
 1.7 Operating Safely .. 4
 1.8 Electrical Service & Maintenance Safety .. 5
 1.9 Safe Cleaning Practices ... 6

2 Introduction ... 7
 2.1 Computer Workstation Requirements ... 8
 2.1.1 Recommendations for MMC for PC Controller 8
 2.2 Major Components .. 9
 2.2.1 SERCOS Board ... 9
 2.2.2 Analog Servo Board .. 10
 2.2.3 Analog Servo Interface Unit (ASIU) .. 13
 2.2.3.1 ASIU Components .. 14
 2.2.3.2 ASIU Axis I/O .. 15

3 Installation of the MMC for PC Board and Software Suite 17
 3.1 Installing the MMC for PC Board ... 17
 3.2 Installing the Software Suite .. 20
 3.3 Installing the Support Software ... 20
 3.4 Removing the Software Suite .. 30

4 Installing the ASIU Module ... 31
 4.1 Mounting Procedure for the ASIU ... 31

5 Power and Environment Requirements ... 33
 5.1 General Power and Environment Requirements .. 33
 5.2 ASIU Control Cabinet Specifications .. 33
 5.3 Power Distribution for External Power Supply .. 34
 5.3.1 MMC for PC Board External Power Supply Distribution 34
 5.3.2 ASIU External Power Supply Distribution 35
 5.4 24V Power Supply Sizing .. 37
 5.4.1 MMC for PC Board 24V Power Supply Sizing 37
 5.4.2 ASIU Power Supply Sizing ... 37
 5.5 Grounding the System .. 40
 5.6 Controlling Heat Within the System .. 41
 5.7 Handling MMC for PC System Components ... 42
6 Wiring Guidelines - MMC for PC to Application .. 43
6.1 Recommended Signal Separation .. 43
6.2 Differential Devices for Analog and Encoder Signals Connected to the ASIU 46
7 MMC for PC Setup Procedures .. 47
7.1 Preparation for Maintenance or Setup ... 47
7.2 Connecting the MMC for PC System .. 49
 7.2.1 Connecting the MMC for PC Board to an Application 49
 7.2.2 Connecting the ASIU to an Application ... 49
7.3 Connecting an ASIU Network ... 50
7.4 Troubleshooting the MMC for PC Battery .. 51
8 Connections to External Devices ... 53
8.1 Connections to External Devices - MMC for PC ... 53
 8.1.1 Optional External Power and Keyswitch Connections 53
 8.1.2 Block I/O Port ... 54
 8.1.3 Motion Control Connections for MMC for PC SERCOS Board 55
 8.1.3.1 SERCOS Receive and Transmit Ports ... 55
 8.1.4 Motion Control Connections for MMC for PC Analog Servo Board 56
 8.1.4.1 ASIU Connector .. 56
8.2 Connections to External Devices - ASIU .. 57
 8.2.1 General I/O Port ... 57
 8.2.2 Power Connection .. 60
 8.2.3 Axis Connectors .. 61
 8.2.4 Auxiliary I/O Connector .. 66
9 MMC for PC Diagnostics ... 71
9.1 Description of MMC for PC Diagnostic Symbols ... 73
 9.1.1 Scan ... 73
 9.1.2 Access .. 74
 9.1.3 Battery .. 74
 9.1.4 Diagnostic .. 75
 9.1.5 Diagnostic Error Text .. 75
 9.1.6 Connection Status ... 76
 9.1.7 Status Unknown .. 77
10 ASIU Diagnostics .. 79
10.1 Power-On Diagnostics .. 79
 10.1.1 Power LED ... 79
 10.1.2 Scan LED .. 79
 10.1.3 Diagnostic LEDs ... 79
10.2 Run-Time Diagnostics .. 80
1 Safety Precautions

READ AND UNDERSTAND THIS SECTION IN ITS ENTIRETY BEFORE UNDERTAKING INSTALLATION OR ADJUSTMENT OF MMC for PC CONTROL EQUIPMENT

The advice contained in this section will help users to operate and maintain the equipment in a safe manner at all times.

PLEASE REMEMBER THAT SAFETY IS EVERYONE’S RESPONSIBILITY

1.1 System Safety

The basic rules of safety set forth in this section are intended as a guide for the safe operation of equipment. This general safety information, along with explicit service, maintenance and operational materials, make up the complete instruction set. All personnel who operate, service or are involved with this equipment in any way should become totally familiar with this information prior to operating.

1.1.1 User Responsibility

It is the responsibility of the user to ensure that the procedures set forth here are followed and, should any major deviation or change in use from the original specifications be required, appropriate procedures should be established for the continued safe operation of the system. It is strongly recommended that you contact your OEM to ensure that the system can be safely converted for its new use and continue to operate in a safe manner.

1.1.2 Safety Instructions

1. Do not operate your equipment with safety devices bypassed or doors removed.

2. Only qualified personnel should operate the equipment.

3. Never perform service or maintenance while automatic control sequences are in operation.

4. To avoid shock or serious injury, only qualified personnel should perform maintenance on the system.
5.

ATTENTION- DANGER TO LIFE

Do not touch the main power supply fuses or any components internal to the power modules while the main power supply switch is ON. Note that when the main power switch is OFF, the incoming supply cable may be live.

6. **GROUNDING (Protective Earth)**
 The equipment must be grounded (connected to the protective earth connection) according to OEM recommendations and to the latest local regulations for electrical safety. The grounding (protective earth) conductor must not be interrupted inside or outside the equipment enclosures. The wire used for equipment grounding (connection to protective earth) should be green with a yellow stripe.

7. If there is any doubt at all as to the safety of the equipment, you should set the main power switch to OFF and contact your OEM for advice.

1.2 **Safety Signs**

The purpose of a system of safety signs is to draw attention to objects and situations which could affect personal or plant safety. It should be noted that the use of safety signs does not replace the need for appropriate accident prevention measures. Always read and follow the instructions based upon the level of hazard or potential danger.
1.3 Warning Labels

Hazard warning

Danger Electric
Shock Risk

When you see this safety sign on a system, it gives a warning of a hazard or possibility of a hazard existing. The type of warning is given by the pictorial representation on the sign plus text if used.

The safety color is black on a yellow background with a black symbol. To ignore such a caution could lead to severe injury or death arising from an unsafe practice. If voltage levels are included in the text they must indicate the maximum level of the hazard in normal or fault condition.

Danger, Warning, or Caution warning

Symbol plus DANGER, WARNING or CAUTION:
These notices provide information intended to prevent potential personal injury and equipment damage.

Hot Surface warning

Symbol plus HOT SURFACE:
These notices provide information intended to prevent potential personal injury.

LED Radiation warning

Symbol plus LED RADIATION. DO NOT STARE INTO BEAM. CLASS 2 LED PRODUCT:
These notices provide information intended to prevent potential personal injury.
1.4 Safety First

Sheffield Automation equipment is designed and manufactured with consideration and care to generally accepted safety standards. However, the proper and safe performance of the equipment depends upon the use of sound and prudent operating, maintenance and servicing procedures by trained personnel under adequate supervision.

For your protection, and the protection of others, learn and always follow these safety rules. Observe warnings on machines and act accordingly. Form safe working habits by reading the rules and abiding by them. Keep these safety rules handy and review them from time to time to refresh your understanding of them.

1.5 Safety Inspection

1.5.1 Before Starting Operations

1. Ensure that all guards and safety devices are installed and operative and all doors which carry warning labels are closed and locked.

2. Ensure that all personnel are clear of those areas indicated as potentially hazardous.

3. Remove (from the operating zone) any materials, tools or other objects that could cause injury to personnel or damage the system.

4. Make sure that the control system is in an operational condition.

5. Make certain that all indicating lights, horns, pressure gauges or other safety devices or indicators are in working order.

1.6 After Shutdown

Make certain all controlled equipment in the plant is safe and the associated electrical, pneumatic or hydraulic power is turned off. It is permissible for the control equipment contained in enclosures to remain energized provided this does not conflict with the safety instructions found in this section.

1.7 Operating Safely

1. Do not operate the control system until you read and understand the operating instructions and become thoroughly familiar with the system and the controls.

2. Never operate the control system while a safety device or guard is removed or disconnected
3. Where access to the control system is permitted for manual operation, only those doors which provide that access should be unlocked. They should be locked immediately after the particular operation is completed.

4. Never remove warnings that are displayed on the equipment. Torn or worn labels should be replaced.

5. Do not start the control system until all personnel in the area have been warned.

6. Never sit or stand on anything that might cause you to fall onto the control equipment or its peripheral equipment.

7. Horseplay around the control system and its associated equipment is dangerous and should be prohibited.

8. Know the emergency stop procedure for the system.

9. For maximum protection when carrying out major servicing requiring the system to be powered down, the power source should be locked using a lock for which only you have the key. This prevents anyone from accidentally turning on the power while you are servicing the equipment.

10. Never operate the equipment outside specification limits.

11. Keep alert and observe indicator lights, system messages and warnings that are displayed on the system.

12. Do not operate faulty or damaged equipment. Make certain proper service and maintenance procedures have been performed.

1.8 Electrical Service & Maintenance Safety

1. **ALL ELECTRICAL OR ELECTRONIC MAINTENANCE AND SERVICE SHOULD BE PERFORMED BY TRAINED AND AUTHORIZED PERSONNEL ONLY.**

2. It should be assumed at all times that the POWER is ON and all conditions treated as live. This practice assures a cautious approach which may prevent accident or injury.

3. To remove power:
 - LOCK THE MAIN SWITCH IN THE OPEN POSITION.
 - USE A LOCK TO WHICH ONLY YOU HAVE THE KEY.

4. Make sure the circuit is safe by using the proper test equipment. Check test equipment regularly.

5. Capacitors take time to discharge. Care should be taken in manual discharging of capacitors.
6. There may be circumstances where troubleshooting on live equipment is required. Under such conditions, special precautions must be taken:
 - Make sure your tools and body are clear of the areas of equipment which may be live.
 - Extra safety measures should be taken in damp areas.
 - Be alert and avoid any outside distractions.
 - Make certain another qualified person is in attendance.

7. Before applying power to any equipment, make certain that all personnel are clear of associated equipment.

8. Control panel doors should be unlocked only when checking out electrical equipment or wiring. On completion, close and lock panel doors.

9. All covers on junction panels should be fastened closed before leaving any job.

10. Never operate any controls while others are performing maintenance on the system.

11. Do not bypass a safety device.

12. Always use the proper tool for the job.

13. Replace the main supply fuses only when electrical power is OFF (locked out).

1.9 Safe Cleaning Practices

1. Do not use toxic or flammable solvents to clean control system hardware.
2. Turn off electrical power (lock out) before cleaning control system assemblies.
3. Keep electrical panel covers closed and power off when cleaning an enclosure.
4. Always clean up spills around the equipment immediately after they occur.
5. Never attempt to clean a control system while it is operating.
6. Never use water to clean control equipment unless you are certain that the equipment has been certified as sealed against water ingress. Water is a very good conductor of electricity and the single largest cause of death by electrocution.
2 Introduction

This document contains information for the MMC for PC Control System.

Block I/O information can be found in the Block I/O Modules Manual. Software information can be found in the PiCPro Software Manual, the Function/Function Block Reference Guide, ASFB Manuals or on-line.

The MMC for PC board offers a complete solution to both machine and motion control directly from a PC. The board conforms to the PCI Bus Standard.

The major components of the MMC for PC motion control system are a PCI board, (analog servo or SERCOS), the MMC for PC Analog Servo Interface Unit (ASIU) and related connecting hardware. An optional mezzanine type MMC for PC Option Module is also available to facilitate network connections.

For SERCOS motion control, connections are made from the MMC for PC SERCOS board to SERCOS drives using a pair of fiber optic SMA connectors (one for transmitting signals and one for receiving signals.).

For analog motion control, an ASIU is connected directly to the MMC for PC Analog Servo board using a standard category 5 cable with RJ45 connectors. The MMC for PC Analog Servo board can also communicate with up to eight ASIUs by connecting one ASIU to the MMC for PC Analog Servo board and connecting additional ASIUs.

The MMC for PC is controlled by PiC Pro for Windows software that runs under the Windows NT or Windows 2000 Operating System. Ladder logic programming is used for machine control.

The MMC for PC is able to operate when the host PC is shut off. This is accomplished through a connection with an optional external +24VDC power supply.
2.1 Computer Workstation Requirements

2.1.1 Recommendations for MMC for PC Controller

Table 1: Recommendations for MMC for PC Controller

<table>
<thead>
<tr>
<th>Computer</th>
<th>Minimally, 133 MHz Pentium processor with Windows NT4.0, 2000 or Professional Edition XP with PCI network card (ISA network cards are not recommended)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory</td>
<td>Consult operating system for additional memory needs</td>
</tr>
<tr>
<td>Monitor</td>
<td>800 X 600 or higher resolution, 16 bit or greater color</td>
</tr>
<tr>
<td>Disk drives</td>
<td>Typically, 100 MB of hard disk space required</td>
</tr>
</tbody>
</table>

IMPORTANT

Power saver option in BIOS should not be set when using an MMC for PC. Setting this option will cause a communications error when the computer is shut down.
2.2 Major Components

2.2.1 SERCOS Board

The SERCOS board provides connection capability to one SERCOS ring with up to 32 slaves. Three types of SERCOS boards are available (8, 16, or 32 slaves). The major components of the SERCOS board are illustrated in Figure 1 and include:

- A standard half size 32 bit 5 volt 33Mhz PCI card
- A 32-bit RISC processor running at 128 Mhz (includes numeric coprocessor)
- One SERCOS port that includes a fiber optic input connection and an output connection for one SERCOS ring.
- +24V Power connector
- A 9-Pin Block I/O interface port
- A lithium coin cell backup battery

Figure 1: Component View of MMC for PC SERCOS Control Board
2.2.2 Analog Servo Board

The major components of the Analog Servo board are illustrated in Figure 3 and include the following:

- A standard half size 32 bit 5 volt 33Mhz PCI card
- An 32-bit RISC processor running at 128 Mhz (includes numeric coprocessor)
- A RJ45 connector for communication with ASIUs
- A 9-Pin Block I/O interface port
- A lithium coin cell backup battery
Figure 3: Component View of MMC for PC Analog Servo Board

- PCI Card
- 32-bit RISC Processor
- RJ45 Connector (to ASIU)
- +24V Power Connector and Lockout Switch Input
- Block I/O Interface Port
- PCI Connector
- Battery Holder
- Battery
Figure 4: End Bracket Faceplate for Analog Board
2.2.3 **Analog Servo Interface Unit (ASIU)**

The Analog Servo Interface Unit (ASIU) provides servo axis interface signals and general purpose I/O for the MMC for PC Analog Board. The ASIU is available in two models:

- ASIU-A2 (2 1/2 servo axis unit)
- ASIU-A4 (4 1/2 servo axis unit)

Communication between the ASIU and the MMC for PC Analog Board (mounted in a Personal Computer) is accomplished through the use of a 10Base-T Ethernet interface. The MMC for PC Analog Board can communicate with up to eight ASIUs by connecting the ASIUs together.

Figure 5: Analog Servo Interface Unit (ASIU)
2.2.3.1 ASIU Components

Major external components of the ASIU include:

- Two RJ45 connectors and associated communications circuitry to communicate with the MMC for PC Analog Board and other ASIUs.

- A screwdriver-actuated rotary switch (0 through 9) that allows the user to define the ASIU address. Addresses 1 through 8 define valid ASIUs, and addresses 0 and 9 effectively remove the ASIU from the system (the two RJ45 connectors are still active, but the ASIU will not be seen by the MMC for PC Analog Board).

- A 3-pin power connector to supply 24VDC to the ASIU.

- A General I/O port connector for connecting 16 inputs and 16 outputs to user devices.

- An Auxiliary I/O Port for connecting one quadrature incremental encoder, five fast DC inputs, one analog input channel and twelve DC inputs to user devices.

- Four Axis connectors are available on the ASIU-A4 and two are available on the ASIU-A2. Axis connections include one analog output, one encoder input, two DC outputs and one DC input to user devices.

LED indicators include the following:

- Scanning (Green) – Indicates CPU is communicating with the ASIU.

- Power (Green) – Indicates +5V is OK.

- Diagnostic (Yellow) – On briefly during startup. If it remains ON, ASIU has failed startup diagnostics.

- Link OK (Green) – Located near each of two RJ45 connectors. These LEDs indicate that the attached RJ45 cable is wired correctly and both ends are powered up.

- Collision (Red) – Located in the cut-out area of the plastic faceplate. Indicates that 2 or more ASIUs are at the same address.

- Transmit (Green) – Located in the cut-out area of the plastic faceplate. Indicates that this ASIU is sending a packet of information.
• Receive (Green) – Located in the cut-out area of the plastic faceplate. Indicates that this ASIU is receiving a packet of information.

2.2.3.2 ASIU Axis I/O

The ASIU provides conventional analog/digital interfacing for two or four drives.

Typical signals needed to interface to an analog drive are provided by the ASIU. The drive command is in the form of an analog voltage (±10V). Feedback is accepted from quadrature type encoders with RS422 style differential outputs. Digital I/O (+24 VDC) is used for drive enable, reset, and fault signals.

The ASIU is offered in both 2 1/2 (ASIU-A2) and 4 1/2 (ASIU-A4) axis configurations. An axis is considered to be an analog output with a corresponding encoder input. In each configuration shown below, note that there is an extra encoder input. This is referred to as a half axis.

Table 2: Available Axis I/O for ASIU

<table>
<thead>
<tr>
<th>Available I/O</th>
<th>ASIU-A2</th>
<th>ASIU-A4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog Inputs</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Analog Outputs</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Encoder Inputs</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>Axis DC Inputs</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Axis DC Outputs</td>
<td>4</td>
<td>8</td>
</tr>
<tr>
<td>Axis Fast DC Inputs</td>
<td>3</td>
<td>5</td>
</tr>
</tbody>
</table>
NOTES
3 Installation of the MMC for PC Board and Software Suite

3.1 Installing the MMC for PC Board

1. Shut down and turn off your computer, monitor and all attached peripherals.

2. Unplug each component from the wall electrical outlet or surge protector/power strip.

3. Disconnect all power to the computer and MMC for PC control system.

4. Remove the computer cover as described in the documentation for your specific computer.

5. Locate an empty 32-bit PCI bus expansion slot in which to install the MMC for PC board.

6. At the back of the computer, the empty expansion slot should have a metal cover that is secured to the computer frame. Remove the screw that secures the expansion slot cover and remove the cover.

WARNING

Before you install an MMC for PC board in the computer, make sure that power is disconnected from the computer and to the devices the MMC for PC is wired to. Make sure the computer is adequately grounded before installing an MMC for PC board. Any attempt to operate or service the computer without adequate ground may result in serious personal injury and/or damage to the MMC for PC board and control system.
7. Remove the MMC for PC board from its anti-static bag.

8. Refer to Figure 6. Position the MMC for PC board over the empty expansion slot so the external connectors face the back of the computer and PCI Connector edge of the board is over the slot. Insert the board with the bottom edge level to the slot. *Never insert the board at an angle.* Carefully push the board straight down until the board is fully seated in the slot. Visually inspect the connection.
9. Attach the MMC for PC chassis to the back of the computer frame by reinserting and securing the screw from the expansion slot cover.

IMPORTANT

It is very important that the board is firmly attached to the computer frame. Failure to do so may cause poor connections to external devices or damage to the board.

10. Reattach and secure the screws for the computer cover.

11. Plug in all power cords and turn on the monitor. Turn on the computer. If you do not get the proper start-up display, check all connections and make the necessary changes.
3.2 Installing the Software Suite

The MMC for PC Software Suite CD contains 3 different software packages: PiCPro for Windows Monitor Edition, Giddings & Lewis OPC Server and MMC for PC Support Software. At a minimum you must install the MMC for PC Support Software.

Instructions for installing the Support Software are provided in the following section titled "Installing the Support Software". It is recommended that you install this package first. The other three software packages are optional. They only have to be installed if there is a need to use them. The software packages can be installed in any order. To install any of these packages do the following:

1. Log in as a user with administrative privileges.
2. Insert the CD-ROM. Setup should launch automatically. If this does not happen, click the Start button on the Task bar, select Settings, select Control Panel, open Add/Remove Programs Icon and click Install.
3. Follow the instructions on the screen and select the appropriate item to install.

3.3 Installing the Support Software

This section describes procedures to install the Support Software required to support the MMC for PC hardware on Windows 2000™ and WindowsNT™. These programs include the driver, NT Socket Server, and a status program, which allow you to view the basic functions and settings of the hardware.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>If you have difficulty installing the Support Software, enter BIOS set-up and turn off all interrupts for the PCI slot that the MMC for PC is plugged into. Also, in BIOS, there may be a setting to indicate that the PC operating system is Plug and Play compatible. Set this to YES for Windows 2000 or to NO for WindowsNT.</td>
</tr>
</tbody>
</table>

1. Make sure the MMC for PC board is installed in the PC.
2. Log in as a user with administrator privileges.
3. Power on the PC. If you are using Windows 2000, a "Found New Hardware" wizard will appear. Click on the Cancel button.

4. Insert the CD-ROM. Setup should launch automatically. If this does not happen, click the Start button on the Task bar, select Settings, select Control Panel, open the Add/Remove Programs Icon and click Install. From the list of selections, double click on Install MMC for PC Support Software and the "Welcome" window will be displayed.
NOTE

If you do not want to continue with the installation of the MMC for PC Support software, click on the Cancel button. The following window will be displayed. Click on the Resume button if you want to continue installing the software. Click on the Exit Setup button if you want to exit the software installation procedure. This option is available in all of the Support Software installation windows.
5. The "Read Me File" window will be displayed. This window includes a description of the installation procedure, an uninstall procedure and basic information on troubleshooting and support links. Click on the **Next** button to continue.

OR

5. The "Read Me File" window will be displayed. This window includes a description of the installation procedure, an uninstall procedure and basic information on troubleshooting and support links. Click on the **Next** button to continue.

MMC for PC Support Software for Windows 2000

This installation installs the software required to support the MMC for PC hardware on Windows 2000. These programs include the driver, NT Socket Server, and a status program, which allow you to view the basic functions and settings of the hardware.

If there are problems try entering BIOS setup and turn off all interrupts for the PCI slot the 'MMC for PC' board is plugged in to.

The following steps install the software.

1. Make sure the MMC for PC board is installed in the PC.
2. Log in as a user with administrator privileges.

MMC for PC Support Software for Windows NT

This installation installs the software required to support the MMC for PC hardware on Windows NT. These programs include the driver, NT Socket Server, and a status program, which allow you to view the basic functions and settings of the hardware.

The following steps install the software.

1. Make sure the MMC for PC board is installed in the PC.
2. Log in as a user with administrator privileges.
6. The "License" window will be displayed. This window displays a description of the Giddings & Lewis license agreement. Read and understand the license agreement.

7. Click in the **Accept the license agreement** box. A check mark will appear in the box and the Next button will be available to choose. Click on the **Next** button.
8. The "Choose Destination Location" window is displayed. The Support Software can be installed in a default destination folder or in a folder of your choice. Follow the directions given in the window. Click **Next** to continue the software installation.
9. The "Start Installation" window will appear. Click on the Next button to begin installation of the Support Software.
Installation of the MMC for PC Board and Software Suite

10. The "Installing" window will be displayed and the Support Software will be installed in the directory chosen in step 8 of this installation procedure.
11. The "Installation Complete" window will be displayed when the software installation is completed successfully. Click on the **Finish** button.

12. The "Install" window will be displayed. Click on the **OK** button to restart the system and finish the software installation.
13. After the system restart is complete, click on the MMC for PC Status icon located in the lower right hand corner of the Windows 2000 or NT taskbar (near the Time icon). The MMC for PC Status Dialog Box will appear indicating the hardware connection status.
The button on the dialog is used to start or stop the ladder scan of the MMC for PC. When it is used to stop the scan, the following prompt appears requesting confirmation of the desire to stop the scan.

![MMCSstatus](image)

NOTE

The MMC for PC Status Dialog Box does not terminate when the "Close" or "X" buttons are clicked. This dialog box remains as an icon in the status area of the Windows desktop. This dialog box can be terminated and the status icon can be removed from the Windows desktop by using the task manager.

If the MMC for PC Status Dialog Box is terminated and its icon is removed from the Windows desktop, it can be restarted from the Windows "Start" menu under "Startup" by selecting MMC for PC Status.

3.4 Removing the Software Suite

1. At the Windows desktop, click on **Start**, choose **Settings**, click on **Control Panel** and double-click on **Add/Remove Programs**.

2. Select "MMC for PC Support Software" and click the **Add/Remove** button. Follow the uninstaller instructions.

3. Repeat steps 1 and 2 as needed for each of the following: OPC Data Access x.x Components, PiCPro for Windows Vx.x Monitor Edition and Giddings & Lewis OPC Server Vx.x.
4 Installing the ASIU Module

4.1 Mounting Procedure for the ASIU

Mount the unit to your cabinet using the mounting slots on the ASIU. The ASIU may be mounted vertically or horizontally. The recommended size of mounting hardware is #10 bolts with #10 star washers (to ensure proper ground connection) as shown in Figure 7.

Figure 7: ASIU Mounting Dimensions

NOTE: Add the side cover and screw head thicknesses to the unit’s dimensions for total width.
5 Power and Environment Requirements

5.1 General Power and Environment Requirements

Protect the MMC for PC system from all the following:

- conductive fluids and particles
- corrosive atmosphere
- explosive atmosphere

Power is supplied to the MMC for PC PCI card from a PCI bus or an external +24VDC supply (not supplied). This arrangement allows the MMC for PC module to run when the host computer is shut off. When the host computer is shut off, a PCI power fail signal prevents input signals from being received by the MMC for PC card. The power draw for the MMC for PC card is approximately 7 watts.

The ASIU is suitable for operation in a pollution degree 2 environment (i.e., normally, only non-conductive pollution occurs). It is not required that the ASIU be installed in a control cabinet. However, installation of the ASIU in a control cabinet is recommended because a cabinet will protect the ASIU from dust and mechanical damage.

Install the system rack away from all sources of strong electromagnetic noise. Such noise can interfere with ASIU operation.

Diagrams and recommendations in this section may be modified if necessary so the wiring conforms to current NEC standards or government regulations.

5.2 ASIU Control Cabinet Specifications

If a control cabinet is used, the following guidelines should be followed:

- It should have a rating of NEMA-12 or better. A cabinet with this rating protects its contents from dust and mechanical damage.
- It must be large enough to provide adequate air circulation for the ASIU, drives, and other components. Always allow for adequate air flow through the ASIU vents.
- It must have a rigid vertical surface to mount the ASIU on.
- The door should open fully for easy access.

IMPORTANT

Post warnings according to National, State, or local codes for the voltage present in the control cabinet.
5.3 Power Distribution for External Power Supply

5.3.1 MMC for PC Board External Power Supply Distribution

The PC in which the MMC for PC board is installed should be located away from all sources of strong electromagnetic noise. Such noise can interfere with MMC for PC operation.

The power distribution drawing in Figure 8 shows an example for the power supply from an external +24VDC source.

The DC power source is connected to the MMC for PC system through a 4-pin connector. It plugs into the power connector of the MMC for PC. The negative (-) side from the power source and the ground from the PC must be connected to the Single-Point Ground (SPG).

Figure 8: Example of 24 VDC Power Distribution to an MMC for PC System
5.3.2 ASIU External Power Supply Distribution

The ASIU requires an external DC power source. The power distribution drawing in Figure 9 shows an ASIU connected to a µDSM Drive. The drive’s 24 VDC power is supplied by the ASIU in this example. If the drive has its own external 24 VDC supply, the +24 V line would not be connected.

The DC power source is connected to the ASIU system through a 3-pin connector. It plugs into the power connector of the ASIU. The ground from the power source and ground from the ASIU must be connected to the Single-Point Ground (SPG).

Devices connected to the hardware may have their own power sources for input data or output control signals. You can use other wiring setups, provided that each one is:

- at the correct voltage and current levels for the module and the device.
- connected to the same Single-Point Ground that the ASIU uses.

It is recommended that the same main disconnect switch be used for the MMC for PC system and for all devices in the application.
It is recommended that the same main disconnect switch be used for the ASIU system and for all devices in the application.

WARNING

No matter how the system is installed, before you connect the ASIU to the application, make sure that power is off to the system and to the devices the ASIU is wired to.
5.4 24V Power Supply Sizing

5.4.1 MMC for PC Board 24V Power Supply Sizing

The MMC for PC board can be powered by either the PCI bus or an external 24 VDC power supply. When the PC is on, the MMC for PC draws 300 mA from the PC’s 24 VDC supply. When the PC is off, the MMC for PC board draws 300 mA from the external 24 VDC power supply.

5.4.2 ASIU Power Supply Sizing

An external 24 VDC supply is required to power the ASIU’s internal circuitry and external I/O. The 24 VDC is distributed internally to three different buses or sections. When you size your power supply, you must ensure that the supply is large enough to handle the total load and that the maximum current capability of each bus is not exceeded. Table 3 shows the distribution of the 24 VDC power within the ASIU system:

Table 3: 24 VDC Power Distribution in ASIU System

<table>
<thead>
<tr>
<th>Power Bus</th>
<th>Supplying Current To:</th>
<th>Maximum Current</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Module Circuitry</td>
<td>.35 A</td>
</tr>
<tr>
<td>2</td>
<td>General I/O</td>
<td>5 A</td>
</tr>
<tr>
<td>3</td>
<td>Axis Auxiliary I/O</td>
<td>1 A</td>
</tr>
</tbody>
</table>

In most cases, one power supply can be used for the entire ASIU. However, depending upon the drives, and external I/O used in your application, you may split the power distribution into two or more power supplies. For example, the Axis I/O on an ASIU can be powered from the ASIU, from the drive or from another external power supply.

The worksheet in Table 4 can be used to size the power supply required by your application.
CAUTION

A possible ignition hazard within the ASIU exists if the maximum currents listed for Bus 2 or Bus 3 are exceeded or if excessive current is drawn at the 24 V line going into the ASIU. If these currents might be exceeded (due to improper wiring or external device failure), circuit breakers or fuses should be used in series with the 24 VDC going to and coming from the ASIU. Specifically, the circuit breakers or fuses should be sized for 10 A total on the 24V line coming into the ASIU, 1 A total from the +24 VDC OUT pins of the AXIS and AUXILIARY I/O connectors, and 5 A total from the I/O 24V pins of the GENERAL I/O connector. For maximum protection, use fast blow fuses. When using molded cables supplied by Sheffield Automation to connect the ASIU to the drives, no overload protection is required.

Table 4: 24 VDC Power Supply Sizing Worksheet

<table>
<thead>
<tr>
<th>Line</th>
<th>ASIU Component</th>
<th>Max Current (mA)</th>
<th>Actual Current (mA)</th>
<th>Number of I/O</th>
<th>Col A Subtotal (mA)</th>
<th>Col B Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ASIU-A2 or ASIU-A4 (Power Bus 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>2</td>
<td>General Inputs</td>
<td>7.5</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>General Outputs</td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Subtotal, Power Bus 2 (Add Column A, Lines 2 thru 7, 5000 mA max)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Axis inputs</td>
<td>7.5</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Axis outputs</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Auxiliary inputs</td>
<td>7.5</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Fast inputs</td>
<td>7.5</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Current supplied by AXIS +24 VDC Out pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Current supplied by AUX +24 VDC Out pins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Subtotal Power Bus 3 (Add Column A, Lines 9-17, 1000 mA max)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Total Power (Add Column A, Lines 1, 8 and 18)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5 provides an example of how to use the worksheet to calculate the maximum current required for a theoretical four axes ASIU.

Table 5: 24 VDC Power Supply Sizing Example

<table>
<thead>
<tr>
<th>Line</th>
<th>ASIU Component</th>
<th>Max Current (mA)</th>
<th>Actual Current (mA)</th>
<th>Number of I/O</th>
<th>Col A Subtotal (mA)</th>
<th>Col B Current (mA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>One ASIU-A2 or One ASIU-A4 (Power Bus 1)</td>
<td></td>
<td></td>
<td></td>
<td>350</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>General Inputs</td>
<td>7.5</td>
<td>7.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>General Outputs</td>
<td>250</td>
<td>250</td>
<td>8</td>
<td>2000</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>250</td>
<td>150</td>
<td>4</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>250</td>
<td>100</td>
<td>4</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Subtotal, Power Bus 2 (Add Column A, Lines 2 thru 7, 5000 mA max)</td>
<td>3120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Axis inputs</td>
<td>7.5</td>
<td>7.5</td>
<td>4</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Axis outputs</td>
<td>100</td>
<td>100</td>
<td>2</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
<td>100</td>
<td>40</td>
<td>2</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>100</td>
<td>25</td>
<td>4</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td></td>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Auxiliary inputs</td>
<td>7.5</td>
<td>7.5</td>
<td>16</td>
<td>120</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Fast inputs</td>
<td>7.5</td>
<td>7.5</td>
<td>5</td>
<td>37.5</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Current supplied by AXIS +24 VDC Out pins</td>
<td>100</td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>17</td>
<td>Current supplied by AUX +24 VDC Out pins</td>
<td>300</td>
<td></td>
<td></td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Subtotal Power Bus 3 (Add Column A, Lines 9-17) 1000 mA max</td>
<td>967.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Total Power (Add Column A, Lines 1, 8 and 18)</td>
<td>4437.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.5 Grounding the System

The ground of the MMC for PC system power source must be connected directly to a *Single Point Ground* (SPG) tie block. The tie block should be made of brass or copper, bolted or brazed to the control cabinet. If the tie block is bolted rather than brazed, scrape away paint and grease at the point of contact. Put star washers between the tie block and the cabinet to ensure good electrical contact.

Metal enclosures of power supplies, drives, etc., should also have good electrical contact with the SPG.

<table>
<thead>
<tr>
<th>IMPORTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Single Point Ground should be the only common point for all the ground lines. If not, ground loops may cause current flow between components of the system which can interfere with proper operation of the MMC for PC board.</td>
</tr>
</tbody>
</table>

Devices to be connected directly to the Single Point Ground include:

1. Plant safety ground.
2. The metal panel or cabinet of the host PC or in which the ASIU is mounted.
3. "Common" or "0 V" lines from power supplies that provide external power to the I/O modules and the devices to which they are connected.
4. Chassis grounds from the devices themselves, such as device drivers, machinery, and operator interface devices.
5. AC common line from the noise filter, if any.
6. The ground of the power source of the computer workstation, if any, from which you monitor the system operation. An AC outlet in the control cabinet is recommended.
7. Single point grounds from other control cabinets, if any, in the system.
5.6 Controlling Heat Within the System

Table 6: Operating Limits for the MMC for PC System

<table>
<thead>
<tr>
<th>Temperature</th>
<th>5 to 55°C (41 to 131°F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Relative humidity</td>
<td>5 to 95%, non-condensing</td>
</tr>
</tbody>
</table>

Make sure that the MMC for PC system is not in an environment that raises the temperature above the Operating Limits shown above. Also protect the MMC for PC system from electrical noise.

The ASIU hardware case is designed to promote air circulation and dissipate heat. The ASIU can be mounted vertically or horizontally to take advantage of this design. Normally no fans or air conditioners are needed. However, if the environment outside the control cabinet is hot or humid, you may need to use a fan, heat exchanger, dehumidifier or air conditioner to provide the correct operating environment.
Make sure that components installed in the cabinet with the ASIU do not raise the temperature above system limits and that any hot spots do not exceed specifications. For example, when heat-generating components such as transformers, drives or motor controls are installed, separate them from the system by doing one of the following:

- Place them near the top of the control cabinet so their heat output rises away from the ASIU.
- Put them in another control cabinet above or to one side of the cabinet with the ASIU. This protects the ASIU from both heat and electrical noise.

The ASIU itself is a source of heat, though in most installations its heat dissipates without harmful effects. System heat is generated from power dissipated by:

- field side input/output components
- other components within the ASIU

IMPORTANT

If the MMC for PC system is operated outside the recommended limits, it may be damaged. This will void the warranty.

5.7 Handling MMC for PC System Components

Packaging protects the MMC for PC’s internal circuitry against damage in shipping and handling.

The case protects the ASIU’s internal circuitry against mechanical damage in shipping and handling.

However, like any electronics device, the circuitry can be destroyed by:

- moisture condensing inside the package
- static discharge
- exposure to a magnetic field strong enough to induce a current in the circuitry
- vibration and other related hazards

There is no need to open the ASIU case. There are not any serviceable parts inside the case.
6 Wiring Guidelines - MMC for PC to Application

The MMC for PC board relies on electrical signals to report what is going on in the application and to send commands to it. The MMC for PC Analog Board relies on the ASIU to provide electrical signals to report what is going on in the application and to send commands to it. In addition, signals are constantly being exchanged within the system. The MMC for PC system is designed for use in industrial environments, but some guidelines should be followed.

6.1 Recommended Signal Separation

Sheffield Automation recommends separation of low level signals from high voltage or high current lines. This includes 1) block I/O and network wiring between the MMC for PC board and the ASIU, and 2) encoder, analog, communications and fast DC inputs to the ASIU. Maintain at least one inch of separation around signals.

Figure 10 and Figure 11 illustrate the recommended connections for the Optional External Power Supply when using EMC compliant products. Note that a capacitor is connected to the +24 VDC supply. To prevent excessive conducted emissions from a DC power source (typically +24 V) used for digital I/O, a 1000 picofarad capacitor should be used. Connect the capacitor from the +24 VDC to COMMON at the distribution terminals.
Figure 10: Recommended EMC Compliant Connections for the MMC for PC Board

Figure 11: Recommended EMC Compliant Connections for the ASIU
If the ASIU is mounted inside a control cabinet, connect the shields of shielded cables at the ASIU. Figure 12 illustrates shielded cable entering/leaving the cabinet.

Figure 12: Connecting Shielded Cable

The two different methods of terminating shields are used to accommodate two different immunity requirements. Immunity required inside an enclosure is considered lower because cables are typically less than three meters in length and/or can be separated from each other and from noise sources.

Immunity required external to an enclosure is considered higher because the user may have less control over the noise environment. Low level signal cables that can be external to an enclosure are tested at a 2 KV level for electrical fast transients (EFTs). Low level signals that can be less than three meters in length or can be separated from noise sources are tested at a 1 KV level.

Under the stated conditions, there will be no disturbance of digital I/O or encoder operation. For analog signals, there may be momentary disturbances but there will be self-recovery when the noise subsides.

Do not operate transmitters, arc welding equipment, or other high noise radiators within one meter of an enclosure that has the door open. Continue to equip inductive devices, if they are in series with a mechanical contact or switch, with arc suppression circuits. These devices include contactors, solenoids and motors. Shield all cables that carry heavy current near the system, using continuous foil wrap or conduit grounded at both ends. Such cables include power leads for high-frequency welders and for pulse-width-modulated motor drives.
6.2 Differential Devices for Analog and Encoder Signals Connected to the ASIU

A differential device receives or sends one signal over two wires (typically a shielded twisted pair). The input/output voltage at the second terminal is the inverse of the first. Information is received/sent as the difference between the two voltages. A differential digital pulse train is illustrated in Figure 13.

![Figure 13: Differential Digital Pulse Train](image)

The advantages of using differential signals are:

1. A differential signal is less susceptible to electromagnetic noise. Static or other interference affects both of the twisted-pair wires equally, so the difference between the normal and inverted voltage remains unchanged. A differential signal can be transmitted over a much longer distance or in a much noisier environment than a single-ended one.

2. ASIU hardware circuitry can detect signal loss from an encoder if the signal is differential. The application program can be set to shut down the application if such an error is detected.

WARNING

Use care when wiring I/O devices to the MMC for PC system and when plugging in cables. Wiring the wrong device to the connector or plugging a connector into the wrong location could cause intermittent or incorrect machine operation or damage to equipment.

IMPORTANT

Always use differential drivers or differential inputs.
7 MMC for PC Setup Procedures

7.1 Preparation for Maintenance or Setup

<table>
<thead>
<tr>
<th>In order to:</th>
<th>Do the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn off the entire application.</td>
<td>Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the MMC for PC.</td>
</tr>
<tr>
<td>Wire the I/O to the application.</td>
<td>Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the MMC for PC.</td>
</tr>
<tr>
<td>Download an application program into the memory.</td>
<td>Make sure power is on.</td>
</tr>
<tr>
<td>Stop the scan.</td>
<td>From the PC Workstation - use the Stop Scan commands in the MMC for PC PiCPro software.</td>
</tr>
</tbody>
</table>
Table 8: Preliminary Maintenance or Setup Procedures - ASIU

<table>
<thead>
<tr>
<th>In order to:</th>
<th>Do the following:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turn off the entire application.</td>
<td>Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the ASIU.</td>
</tr>
<tr>
<td>Wire the I/O to the application.</td>
<td>Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the ASIU.</td>
</tr>
<tr>
<td>Connect/disconnect the ASIU with the MMC for PC Analog Board.</td>
<td>Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the ASIU.</td>
</tr>
<tr>
<td>Connect/disconnect the ASIU with other ASIUs.</td>
<td>Turn off main disconnect (which should also turn off all external power supplies to the application); unplug the DC power to the ASIUs.</td>
</tr>
</tbody>
</table>
7.2 Connecting the MMC for PC System

7.2.1 Connecting the MMC for PC Board to an Application

1. Turn off the main disconnect switch in the system control cabinet. If some devices are not powered from the control cabinet, turn them off also.
2. Attach the connectors according to the appropriate wiring diagrams.
3. Turn on power to the system.

7.2.2 Connecting the ASIU to an Application

1. Turn off the main disconnect switch in the control cabinet. If some devices are not powered from the control cabinet, turn them off also.
2. Attach the connectors according to your diagrams.
3. Turn on power to the system including the MMC for PC Analog Board. The following occurs:
 - The PWR light goes on and stays on.
 - The DIAG light goes on, then goes off when the ASIU passes it’s diagnostic tests.
 - The SCAN light goes on.
 - The application starts to work under control of the system.
4. If an application program is not in system memory of the MMC for PC Analog Board, use the download command in the PiCPro software to place it there.
7.3 Connecting an ASIU Network

The MMC for PC Analog Board communicates with the ASIUs using a subset of the 10Base-T Ethernet protocol. Connection to the first ASIU is made from the MMC for PC Analog Board to the IN RJ45 connector on the first ASIU. Refer to Figure 14.

Connection from the first ASIU to the second ASIU is made from the first ASIU’s OUT connector to the second ASIU’s IN connector. Connection from ASIU to ASIU is the same for additional ASIUs.

![Figure 14: ASIU Network](image)

To be recognized by the MMC for PC Analog Board, each ASIU’s rotary switch must be set to a unique number of 1 through 8. The switch setting corresponds to that ASIUs setting in PiCPro. ASIU switch values can be random with respect to their physical location in the chain of ASIUs but no two can have the same switch setting. A setting of 0 or 9 effectively removes the ASIU from the system but does not affect communication to other ASIUs in the system.
7.4 Troubleshooting the MMC for PC Battery

If the scan display on the PC does not display RUN and the battery on the MMC for PC board is not good:

Change the battery.

1. Make sure that the board has been powered up for at least five minutes. This ensures that the on-board capacitors will retain the memory for at least ten minutes while the battery is being replaced.

2. Turn off system main disconnect (which should also turn off all external power supplies to the application).

3. Unplug the external DC power to the MMC for PC board.

4. Remove the coin cell battery from the MMC for PC board.

5. Install a new battery into the MMC for PC board. The battery type is a BR2330.

If the battery is changed, the battery display indicates the battery is good, and the scan display still does not display RUN, do the following:

1. Shut down the Windows system and turn off the computer and all auxiliary equipment.

2. Turn off power to the computer system and to the application.

3. Turn off the main disconnect (which should also turn off all external power supplies to the application).

4. Unplug the DC power to the MMC for PC.

5. If the I/O wiring is connected, remove the connector.

6. Remove the defective MMC for PC board from the computer.

7. Replace with a new MMC for PC board. Connect the I/O wiring.

8. Turn on power to check diagnostics again and make sure there are no more hardware errors.

9. If an application program is not in system memory, use the download hex command in the PiCPro software to place it there.
8 Connections to External Devices

8.1 Connections to External Devices - MMC for PC

All connectors for the MMC for PC board are located on the mounting bracket at the rear of the board. This bracket and connection points are accessible from the back of the user’s PC.

Sheffield Automation also provides many optional accessories that simplify wiring the MMC for PC to external devices. Consult Giddings and Lewis for further information on how these accessories can be applied.

8.1.1 Optional External Power and Keyswitch Connections

The external power connection is optional. It is only needed if you want to keep the MMC for PC running when the host PC is shut down. It is used to disable PiCPro communication to the MMC for PC. This is done by connecting the +R pin to the -R pin. This does not disable the OPC Server or any other ladder Ethernet function.

The required external power supply for both the MMC for PC SERCOS and MMC for PC Analog system is +24 VDC. The power supply connection is made with a 4-pin plug type screw terminal connector.

The Keyswitch connection enables or disables the control of the MMC for PC by other PCs on a network. With the Keyswitch pin connected to +12 VDC, only one PC can control the MMC for PC over the network. With the Keyswitch open or tied to 0 volts, other PCs can control the MMC for PC over the network.

Table 9 shows the pinouts for the External Power Supply and Keyswitch connections. The pins are listed as they appear from top to bottom on the connector.

Table 9: Pinout for 4-pin External Power Supply and Keyswitch Connections

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>In/Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>-R</td>
<td>Key Switch</td>
<td>In</td>
</tr>
<tr>
<td>+R</td>
<td>+12 VDC</td>
<td>Out</td>
</tr>
<tr>
<td>-V</td>
<td>24 VDC Common</td>
<td>In</td>
</tr>
<tr>
<td>+V</td>
<td>+24 VDC</td>
<td>In</td>
</tr>
</tbody>
</table>
8.1.2 Block I/O Port

The block I/O port provides up to 77 expansion block I/O units, 4-wire communication interface and up to 200 feet between block I/O units.

<table>
<thead>
<tr>
<th>Type</th>
<th>MMC for PC Block I/O 9-Pin D-Sub Female Connector</th>
<th>Block I/O Communications Connector (In from MMC for PC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pin</td>
<td>Description</td>
<td>In/Out</td>
</tr>
<tr>
<td>1</td>
<td>NC</td>
<td>In/Out</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>In/Out</td>
</tr>
<tr>
<td>Twisted Pair</td>
<td>3 Transmit Data + Out to 1 Receiver +</td>
<td>In/Out</td>
</tr>
<tr>
<td>Twisted Pair</td>
<td>4 Transmit Data - Out to 2 Receiver -</td>
<td>In/Out</td>
</tr>
<tr>
<td>Twisted Pair</td>
<td>5 Receive Data + In to 4 Driver +</td>
<td>In/Out</td>
</tr>
<tr>
<td>7</td>
<td>Shield</td>
<td>In/Out</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>In/Out</td>
</tr>
<tr>
<td>9</td>
<td>NC</td>
<td>In/Out</td>
</tr>
</tbody>
</table>

Color Code

<table>
<thead>
<tr>
<th>PIN NO.</th>
<th>TWISTED PAIR COLOR CODE</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>White</td>
</tr>
<tr>
<td>4</td>
<td>Black</td>
</tr>
<tr>
<td>5</td>
<td>Red</td>
</tr>
<tr>
<td>6</td>
<td>Black</td>
</tr>
</tbody>
</table>

Wiring Diagram
8.1.3 Motion Control Connections for MMC for PC SERCOS Board

8.1.3.1 SERCOS Receive and Transmit Ports

The SERCOS ports located at the back of the board can connect to one SERCOS ring. The connection to this ring is made through a pair of female fiber optic SMA connectors. The SERCOS board’s transmitter is connected to the first receiver in the loop and the SERCOS board’s receiver is connected to the last transmitter in the loop. Refer to Figure 15.

Figure 15: Location of SERCOS Board SERCOS Port

CAUTION

LED radiation.
DO NOT STARE INTO BEAM.
Class 2 LED product.
8.1.4 Motion Control Connections for MMC for PC Analog Servo Board

8.1.4.1 ASIU Connector

An Analog Servo Interface Unit (ASIU) supplies the I/O communication to the MMC for PC Analog Servo board. The ASIU is available in two models:

- ASIU-2 (2 1/2 axis analog servo unit)
- ASIU-4 (4 1/2 axis analog servo unit)

The MMC for PC board is connected to the ASIU by standard category 5 patch cables connected to the RJ-45 connectors. Refer to Figure 16.

The MMC for PC is connected to the first ASIU’s "IN" port. The first ASIU’s "OUT" port is connected to the second ASIU’s "IN" port. The same "IN/OUT" connections are made for additional ASIUs.

Figure 16: Location of Analog Servo Board ASIU RJ45 Connector
8.2 Connections to External Devices - ASIU

Sheffield Automation provides many optional accessories that simplify wiring the ASIU to external devices. These accessories include cables to connect the ASIU to Sheffield Automation’s line of DSM and Micro DSM drives and breakout boxes that provide screw-terminal connections to the ASIU. Consult the factory for further information.

8.2.1 General I/O Port

Refer to Table 10. The general I/O port includes:

- 16-24 VDC inputs
 - Sink or source in groups of eight
- +24 VDC and 24 V Common
- 16-24 VDC outputs
 - Source only
 - 250 mA output capacity
 - Short circuit protected
- A control relay to de-energize outputs without affecting other ASIU functions

Table 10: Pinout for ASIU General I/O Port

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>In/Out</th>
<th>Pin</th>
<th>Description</th>
<th>In/Out</th>
<th>Pin</th>
<th>Description</th>
<th>In/Out</th>
<th>Pin</th>
<th>Description</th>
<th>In/Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Dcout1</td>
<td>Out</td>
<td>16</td>
<td>Dcout16</td>
<td>Out</td>
<td>31</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Dcout2</td>
<td>Out</td>
<td>17</td>
<td>NC</td>
<td></td>
<td>32</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dcout3</td>
<td>Out</td>
<td>18</td>
<td>Outen</td>
<td>In</td>
<td>33</td>
<td>NC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Dcout4</td>
<td>Out</td>
<td>19</td>
<td>IO24v</td>
<td>Out</td>
<td>34</td>
<td>IO24v</td>
<td>Out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Dcout5</td>
<td>Out</td>
<td>20</td>
<td>IO24v</td>
<td>Out</td>
<td>35</td>
<td>DCSS2</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Dcout6</td>
<td>Out</td>
<td>21</td>
<td>DCSS1</td>
<td>In</td>
<td>36</td>
<td>IO24C</td>
<td>Out</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Dcout7</td>
<td>Out</td>
<td>22</td>
<td>IO24c</td>
<td>Out</td>
<td>37</td>
<td>DCIN9</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Dcout8</td>
<td>Out</td>
<td>23</td>
<td>DCIN1</td>
<td>In</td>
<td>38</td>
<td>DCIN10</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Dcout9</td>
<td>Out</td>
<td>24</td>
<td>DCIN2</td>
<td>In</td>
<td>39</td>
<td>DCIN11</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Dcout10</td>
<td>Out</td>
<td>25</td>
<td>DCIN3</td>
<td>In</td>
<td>40</td>
<td>DCIN12</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Dcout11</td>
<td>Out</td>
<td>26</td>
<td>DCIN4</td>
<td>In</td>
<td>41</td>
<td>DCIN13</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Dcout12</td>
<td>Out</td>
<td>27</td>
<td>DCIN5</td>
<td>In</td>
<td>42</td>
<td>DCIN14</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Dcout13</td>
<td>Out</td>
<td>28</td>
<td>DCIN6</td>
<td>In</td>
<td>43</td>
<td>DCIN15</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Dcout14</td>
<td>Out</td>
<td>29</td>
<td>DCIN7</td>
<td>In</td>
<td>44</td>
<td>DCIN16</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Dcout15</td>
<td>Out</td>
<td>30</td>
<td>DCIN8</td>
<td>In</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
There are 16 outputs on the General I/O connector. These outputs get their power internally from the ASIU. These outputs will not energize unless the control relay internal to the ASIU is activated and the scanning Ladder is turning the outputs on. Refer to Figure 17.

Figure 17: General Outputs Connected to Loads - ASIU
There are 16 general inputs on the general connector. The inputs are configured as two groups of eight. Each group can be configured as sourcing or sinking. Connect the DCSS pin to +24 V for a sinking configuration. Connect the DCSS pin to COM for a sourcing configuration. You can use the internal +24 V supply as shown in Figure 18.

Figure 18: ASIU Sink/Source General Input Configuration
8.2.2 Power Connection

You must provide a +24 VDC power supply as the power source for the ASIU. The power supply screw terminal connection (3 pin) is at the bottom of the CPU section of the ASIU. Figure 19 illustrates the pin-out for the power supply.

Figure 19: Pin Out for the 3-pin Power Supply Screw Terminal Connection

The 24 VDC applied at the ASIU input power connector also appears as an output at several points on the ASIU connectors to power the:

- devices connected to the AXIS connectors
- devices connected to the AUX I/O connector
- input devices connected to the GEN I/O connector
- axes interface
8.2.3 Axis Connectors

There are either two (ASIU-2) or four (ASIU-A4) Axis connectors. Each axis has its own 15 pin high density D connector. Each axis connector provides the following signal connections:

- One 16-bit resolution analog output (±10 VDC)
- One quadrature, incremental encoder input
- Two DC outputs (24 VDC sink or source)
- One DC input (24 VDC sink or source)
- +24 VDC output

These signals are typically connected to the drive as shown in Table 11.

Table 11: ASIU Axis Connector - Signal Connections

<table>
<thead>
<tr>
<th>ASIU Axis Signal</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analog output</td>
<td>Drive command</td>
</tr>
<tr>
<td>Encoder input</td>
<td>Drive encoder output</td>
</tr>
<tr>
<td>DC output 1</td>
<td>Drive enable input</td>
</tr>
<tr>
<td>DC output 2</td>
<td>Drive reset input</td>
</tr>
<tr>
<td>DC input 1</td>
<td>Drive fault output</td>
</tr>
<tr>
<td>DCOSS</td>
<td>+24V or COMMON (on ASIU)</td>
</tr>
</tbody>
</table>

The axis connector pinout is listed in Table 12.

Table 12: ASIU Axis Connector Pinout

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>9</td>
<td>DA-</td>
</tr>
<tr>
<td>2</td>
<td>A/</td>
<td>10</td>
<td>I/</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>11</td>
<td>+24 VDC out</td>
</tr>
<tr>
<td>4</td>
<td>B/</td>
<td>12</td>
<td>COM</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>13</td>
<td>DCOUT1</td>
</tr>
<tr>
<td>6</td>
<td>DCIN+</td>
<td>14</td>
<td>DCOUT2</td>
</tr>
<tr>
<td>7</td>
<td>DCIN-</td>
<td>15</td>
<td>DCOSS</td>
</tr>
<tr>
<td>8</td>
<td>DA+</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The metal shell of the 15-pin connector is tied to the chassis ground terminal on the ASIU power connector. Cables provided by Sheffield Automation will have the shield connected to the metal shell of the cable connector. If you use other cables, be sure to connect the shield to the metal shell of the connector.

The DC outputs can be configured for either sink or source operation. When the DCOSS pin is tied to the +24V, the outputs will be in a source configuration as shown in Figure 20.

Figure 20: ASIU Source Configuration
When the DCOSS pin is tied to COMMON, the outputs will be in a sink configuration as shown in Figure 21.

Figure 21: ASIU Sink Configuration

![Sink Configuration Diagram]
The analog output is connected to the drive command input. Twisted pair wire should be used to make the connection between the analog output and the drive as shown in Figure 22.

Figure 22: ASIU Axis Analog Output Connected to Drive Command Input

![Diagram of ASIU Axis Analog Output Connected to Drive Command Input](image)

Drives will typically have an output signal indicating that the drive is operational. This "drive ready" signal can be connected to the Axis DC Input. One of the input pins should be connected to either +24 V or COM. The remaining input pin should be tied to the input signal that will be switching. Refer to Figure 23.

Figure 23: ASIU Axis DC Input Connected to Drive Ready

![Diagram of ASIU Axis DC Input Connected to Drive Ready](image)
The encoder output signals from the drive should be connected to the encoder input on each axis. The ASIU analog section accepts RS422 level differential inputs. The encoder signals should be quadrature type. All encoder wiring between the ASIU and the drive should be twisted pair.

Figure 24: ASIU Encoder Inputs Connected to Drive Encoder Outputs

![Diagram of ASIU Axis Connector to Drive](image)
8.2.4 Auxiliary I/O Connector

There is one 44-pin AUX I/O connector on the ASIU. It provides the following inputs:

- One quadrature, incremental encoder channel (1 Mhz frequency, RS422 interface)
- Five fast DC inputs (one per encoder input) for high speed position latching
- One 12-bit resolution analog input channel
- 12 optically isolated DC inputs (6 on the ASIU-A2)
- +24 VDC output
- +5 VDC output
- Seven Shield connections

The auxiliary I/O connector pinout for the ASIU-A4 (4 axes) is listed in Table 13.

Table 13: ASIU-A4 Auxiliary I/O Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>16</td>
<td>FASTIN1+</td>
<td>31</td>
<td>DCSSA</td>
</tr>
<tr>
<td>2</td>
<td>A/</td>
<td>17</td>
<td>FASTIN1-</td>
<td>32</td>
<td>DCIN1</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>18</td>
<td>SHIELD</td>
<td>33</td>
<td>DCIN2</td>
</tr>
<tr>
<td>4</td>
<td>B/</td>
<td>19</td>
<td>FASTIN2+</td>
<td>34</td>
<td>DCIN3</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>20</td>
<td>FASTIN2-</td>
<td>35</td>
<td>DCIN4</td>
</tr>
<tr>
<td>6</td>
<td>I/</td>
<td>21</td>
<td>SHIELD</td>
<td>36</td>
<td>DCIN5</td>
</tr>
<tr>
<td>7</td>
<td>SHIELD</td>
<td>22</td>
<td>FASTIN3+</td>
<td>37</td>
<td>DCIN6</td>
</tr>
<tr>
<td>8</td>
<td>+24 VDC out</td>
<td>23</td>
<td>FASTIN3-</td>
<td>38</td>
<td>DCSSB</td>
</tr>
<tr>
<td>9</td>
<td>+24 VDC out</td>
<td>24</td>
<td>SHIELD</td>
<td>39</td>
<td>DCIN7</td>
</tr>
<tr>
<td>10</td>
<td>COM</td>
<td>25</td>
<td>FASTIN4+</td>
<td>40</td>
<td>DCIN8</td>
</tr>
<tr>
<td>11</td>
<td>COM</td>
<td>26</td>
<td>FASTIN4-</td>
<td>41</td>
<td>DCIN9</td>
</tr>
<tr>
<td>12</td>
<td>+5 VDC out</td>
<td>27</td>
<td>SHIELD</td>
<td>42</td>
<td>DCIN10</td>
</tr>
<tr>
<td>13</td>
<td>ANLGIN+</td>
<td>28</td>
<td>FASTIN5+</td>
<td>43</td>
<td>DCIN11</td>
</tr>
<tr>
<td>14</td>
<td>ANLGIN-</td>
<td>29</td>
<td>FASTIN5-</td>
<td>44</td>
<td>DCIN12</td>
</tr>
<tr>
<td>15</td>
<td>SHIELD</td>
<td>30</td>
<td>SHIELD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The auxiliary I/O connector pinout for the ASIU-A2 (2 axes) is listed in Table 14.

Table 14: ASIU-A2 Auxiliary I/O Connector

<table>
<thead>
<tr>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
<th>Description</th>
<th>Pin</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>16</td>
<td>FASTIN1+</td>
<td>31</td>
<td>DCSSA</td>
</tr>
<tr>
<td>2</td>
<td>A/</td>
<td>17</td>
<td>FASTIN1-</td>
<td>32</td>
<td>DCIN1</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>18</td>
<td>SHIELD</td>
<td>33</td>
<td>DCIN2</td>
</tr>
<tr>
<td>4</td>
<td>B/</td>
<td>19</td>
<td>FASTIN2+</td>
<td>34</td>
<td>DCIN3</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>20</td>
<td>FASTIN2-</td>
<td>35</td>
<td>DCIN4</td>
</tr>
<tr>
<td>6</td>
<td>I/</td>
<td>21</td>
<td>SHIELD</td>
<td>36</td>
<td>DCIN5</td>
</tr>
<tr>
<td>7</td>
<td>SHIELD</td>
<td>22</td>
<td>NC</td>
<td>37</td>
<td>DCIN6</td>
</tr>
<tr>
<td>8</td>
<td>+24 VDC out</td>
<td>23</td>
<td>NC</td>
<td>38</td>
<td>NC</td>
</tr>
<tr>
<td>9</td>
<td>+24 VDC out</td>
<td>24</td>
<td>SHIELD</td>
<td>39</td>
<td>NC</td>
</tr>
<tr>
<td>10</td>
<td>COM</td>
<td>25</td>
<td>NC</td>
<td>40</td>
<td>NC</td>
</tr>
<tr>
<td>11</td>
<td>COM</td>
<td>26</td>
<td>NC</td>
<td>41</td>
<td>NC</td>
</tr>
<tr>
<td>12</td>
<td>+5 VDC out</td>
<td>27</td>
<td>SHIELD</td>
<td>42</td>
<td>NC</td>
</tr>
<tr>
<td>13</td>
<td>ANLGIN+</td>
<td>28</td>
<td>FASTIN5+</td>
<td>43</td>
<td>NC</td>
</tr>
<tr>
<td>14</td>
<td>ANLGIN-</td>
<td>29</td>
<td>FASTIN5-</td>
<td>44</td>
<td>NC</td>
</tr>
<tr>
<td>15</td>
<td>SHIELD</td>
<td>30</td>
<td>SHIELD</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NOTE

The encoder input on the auxiliary connector is identical to the encoder inputs on the axis connectors. See Figure 24.
Each encoder channel has a fast DC input associated with it. The fast input can be used to latch the encoder position. Shielded twisted pair wiring should be used for all fast input connections. The fast inputs can be connected in either a source or sink configuration. The source configuration is illustrated in Figure 25.

Figure 25: ASIU Fast Inputs Connected Using Shielded Twisted Pair (Source)

The ASIU fast input sink configuration is illustrated in Figure 26.

Figure 26: Fast Inputs Connected Using Shielded Twisted Pair (Sink)
Connections to External Devices

There are either 6 (ASIU-2) or 12 (ASIU-4) general purpose inputs on the auxiliary connector. The inputs are configured as one group of 6 for the ASIU-A2 or two groups of 6 for the ASIU-A4. Each group can be configured as sourcing or sinking. Connect the DCSS pin to +24 V for a sinking configuration. Connect the DCSS pin to COM for a sourcing configuration. You can use the internal +24 V supply as shown in Figure 27. See Table 13 and Table 14 for those connections.

Figure 27: ASIU Sink/Source Connections using Internal +24 V Supply
Or you can use an external +24 V supply as shown in Figure 28.

Figure 28: ASIU Sink/Source Connections using External DC Supply
9 MMC for PC Diagnostics

Good procedure suggests that the system should be tested each time a new application is powered up and checked regularly while running.

This section applies to both power-on and run-time diagnostics.

When the system is started, it tests itself and reports the results of the tests in the Diagnostic display that appears in an MMC for PC Status Dialog Box as shown in Figure 30.

This dialog box is accessed by clicking on the MMC for PC Status icon that is located in the lower right hand corner of the Windows 2000 or NT taskbar (near the Time icon). Refer to Figure 29.

Figure 29: Location of MMC for PC Status Icon
The MMC for PC Status Dialog Box does not terminate when the "Close" or "X" buttons are clicked. This dialog box remains as an icon in the status area of the Windows desktop. This dialog box can be terminated and the status icon can be removed from the Windows desktop by using the task manager.

If the MMC for PC Status Dialog Box is terminated and its icon is removed from the Windows desktop, it can be restarted from the Windows "Start" menu under "Startup" by selecting MMC Status.
9.1 Description of MMC for PC Diagnostic Symbols

9.1.1 Scan

The current status is displayed as one of the following:

- The start-up diagnostics are complete with no errors and the MMC for PC is scanning.

- The MMC for PC is not scanning.
9.1.2 Access

The current control connection status is displayed as:

LOCAL - This display indicates the local programmer access state and that PicPro must be run from the PC that contains the MMC for PC board.

REMOTE - This display indicates the remote programmer access state and that a version of PicPro other than the PC containing the MMC for PC can connect to the MMC for PC.

9.1.3 Battery

The current operating status of the board’s battery is displayed as:

Green - This display indicates the battery charge is good.

Red - This display indicates the battery charge is not good and the battery needs to be replaced.
9.1.4 Diagnostic

This display indicates the system has passed diagnostic testing and is ready to run or that there is system error.

If a number is shown it indicates the diagnostic error value from the MMC for PC control system (the example shows the text when no errors are present).

![Diagnostic Display](image1.png)

9.1.5 Diagnostic Error Text

This display contains text that describes the diagnostic number shown in the Diagnostic display (the example shows the text when no errors are present).

![Diagnostic Error Text Display](image2.png)
9.1.6 Connection Status

This display indicates the connection status of the application to a Windows NT socket server.

The display will toggle from *Trying to Connect* to *Not Connected* while the MMC for PC Status application is trying to connect or if the connection is lost. Possible displays are as follows:

Trying to connect - indicates the MMC for PC Status application is trying to connect to the server.

![Trying to connect](image)

Connected - indicates the MMC for PC Status application is connected to the server.

![Connected](image)

Not connected - indicates the MMC for PC Status application’s attempt to connect to the server has failed. The icon on the MMC for PC status bar will blink if communications are broken with the MMC for PC or if a diagnostic error exists.

![Not connected](image)
9.1.7 Status Unknown

This display indicates that the operating status is unknown.

It will appear in the Scan, Access and Battery displays at the same time when there is a communication failure as follows:

The question marks indicate that the status of the scan, access and battery are unknown. The text in the diagnostic, connection status and diagnostic error text change color (red for a problem, black if OK, yellow if it is the last state but may not be correct because of the loss of communication with the MMC for PC control).
10 ASIU Diagnostics

If the system has completed start-up properly, the DIAG LED on the ASIU should be off indicating that the diagnostic tests were passed.

This section covers two types of diagnostics for the ASIU: power-on and run-time.

10.1 Power-On Diagnostics

When the system is powered up, the MMC for PC Analog Board tests connected ASIUs and reports the results of the tests in the form of LED signals.

10.1.1 Power LED

If the power light (P) does not go on, or goes off during operation of the system, check that power is still connected to the ASIU. If it is, turn off the main disconnect switch and replace the ASIU.

10.1.2 Scan LED

If the SCAN LED does not go on:
1. Check that the power (P) light is ON.
2. Check that the diagnostic (D) light is OFF.
3. Check that the MMC for PC Analog Board is scanning.

10.1.3 Diagnostic LEDs

The ASIU has an LED marked D which lights up briefly while its diagnostic tests are running and then goes off. If the DIAG LED remains on, the ASIU has failed one of its tests. Follow these steps:
1. Turn off power to the system and to the application.
2. If the I/O wiring is connected, remove the connector.
3. Remove the defective ASIU from the system
4. Replace with a new ASIU. Connect the I/O wiring.
5. Turn on power to check diagnostics again.
10.2 Run-Time Diagnostics

While the ASIU is running, other tests are performed on a regular basis with their results also reported by LEDs as described in section 12.3 on page 85.
11 Troubleshooting the MMC for PC Battery

If the scan display on the PC does not display RUN and the battery on the MMC for PC board is not good:

Change the battery by doing the following:

1. Make sure that the board has been powered up for at least five minutes. This ensures that the on-board capacitors will retain the memory for at least ten minutes while the battery is being replaced.
2. Turn off system main disconnect (which should also turn off all external power supplies to the application).
3. Unplug the external DC power to the MMC for PC board.
4. Remove the coin cell battery from the MMC for PC board.
5. Install a new battery into the MMC for PC board. The battery type is a BR2330.

If the battery is changed, the battery display indicates the battery is good, and the scan display still does not display RUN, do the following:

1. Shut down the Windows system and turn off the computer and all auxiliary equipment.
2. Turn off power to the computer system and to the application.
3. Turn off the main disconnect (which should also turn off all external power supplies to the application).
4. Unplug the DC power to the MMC for PC.
5. If the I/O wiring is connected, remove the connector.
6. Remove the defective MMC for PC board from the computer.
7. Replace with a new MMC for PC board. Connect the I/O wiring.
8. Turn on power to check diagnostics again and make sure there are no more hardware errors.
9. If an application program is not in system memory, use the download command in the PiCPro software to place it there.
12 Operating the MMC for PC System

12.1 General Operation

PiCPro for Windows is the software package that allows you to program and run your application(s) in the MMC for PC System. It includes the following programs:

<table>
<thead>
<tr>
<th>Program</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladder Diagram</td>
<td>Allows you to program a ladder and save it as an .LDO file</td>
</tr>
<tr>
<td>Servo Setup</td>
<td>Allows you to program setup information for your servo application and save it as a .SRV file</td>
</tr>
<tr>
<td>SERCOS Setup</td>
<td>Allows you to program setup information for your SERCOS application and save it as a .SRC file</td>
</tr>
<tr>
<td>Project</td>
<td>Allows you to manage an application through development and production phases and then maintain the application</td>
</tr>
</tbody>
</table>

Refer to the PiC Pro for Windows Software Manual for in-depth information and detailed instructions on operating the MMC for PC software.
12.2 ASIU Operation

Figure 31: ASIU Components

- **Power Connector**
- **General I/O Port**
- **15-Pin Axis Connectors** (A3 and A4 not on ASIU-A2)
 - 1 Analog Output
 - 1 Encoder Input
 - 2 DC Outputs
 - 1 DC input
- **44-Pin Auxiliary I/O**
 - 12 DC Inputs
 - (6 DCIN on ASIU-A2)
 - 5 Fast DC Inputs
 - 1 Encoder Input
 - 1 Analog Input
- **Address Rotary Switch**
- **Scanning (S) LED**
- **Power (P) LED**
- **Diagnostic (D) LED**
- **Collision (COL) LED**
- **Transmit (TXD) LED**
- **Receive (RXD) LED**
- **RJ45 Connector Port (from MMC for PC)**
 - Link IN OK LED
- **RJ45 Connector Port (to additional ASIUs)**
 - Link OUT OK LED

Operating the MMC for PC System
12.3 LEDs

There are three sets of LEDs on the top of the ASIU. Below is a list of the LEDs and their associated function. Refer to Figure 32 for the top set of LEDs, Figure 33 for the second set of LEDs and Figure 34 for the RJ45 Connector LEDs.

Figure 32: Top Set of ASIU LEDs with Functions

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>P</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scan (S) Green</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power (P) Green</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic (D) Yellow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ON</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OFF</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Scan (S) Green

- **ON**
 - Indicates the MMC for PC Analog Board is scanning a ladder and communicating with the ASIU.
- **OFF**
 - Scan is lost and there is an orderly shut down procedure followed.

Power (P) Green

- **ON**
 - Power is on to the system. It indicates that the on-board +5 VDC supply is within tolerance.
- **OFF**
 - Power is off or the on-board +5VDC supply is not within tolerance.

Diagnostic (D) Yellow

- **ON**
 - On briefly during startup diagnostics. If it remains ON, module has failed startup diagnostics.
- **OFF**
 - Normal operation.
Figure 33: Second Set of ASIU LEDs with Functions

<table>
<thead>
<tr>
<th></th>
<th>Collision(COL)Red</th>
<th>Transmit(TXD)Green</th>
<th>Receive(RXD)Green</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Indicates that two or more ASIUs are at the same address.</td>
<td>Indicates that the ASIU is sending a packet of information.</td>
<td>Indicates that the ASIU is receiving a packet of information.</td>
</tr>
<tr>
<td>OFF</td>
<td>Normal operation</td>
<td>Indicates that the ASIU is not sending a packet of information.</td>
<td>Indicates that the ASIU is not receiving a packet of information.</td>
</tr>
</tbody>
</table>
Figure 34: ASIU RJ45 Connector LEDs with Functions

<table>
<thead>
<tr>
<th>In Link OK (IN OK) Green</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Indicates the IN RJ45 cable is wired correctly and that both ends are powered up.</td>
</tr>
<tr>
<td>BLINKING</td>
<td>Indicates that the ASIU is transmitting or receiving information.</td>
</tr>
<tr>
<td>OFF</td>
<td>Indicates the IN RJ45 cable is not wired correctly or that both ends are not powered up.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Out Link OK (OUT OK) Green</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Indicates the OUT RJ45 cable is wired correctly and that both ends are powered up.</td>
</tr>
<tr>
<td>BLINKING</td>
<td>Indicates that the ASIU is transmitting or receiving information.</td>
</tr>
<tr>
<td>OFF</td>
<td>Indicates the OUT RJ45 cable is not wired correctly or that both ends are not powered up.</td>
</tr>
</tbody>
</table>
12.4 ASIU Output Theory of Operation (General I/O Connector)

Each of the 16 outputs on the general I/O connector is an optically isolated solid state switch rated at .250 A. The switch state is controlled by the ladder. When the ladder commands an output ON, the output supplies 24 VDC to the connected load. For safety reasons, all outputs turn off when a ladder scan loss occurs.

Power for the 16 General DC outputs is routed from the 3-pin power (PWR) connector located on the faceplate of the ASIU through the DC OUT control relay to the individual output switches. The control relay is controlled via a pin on the General I/O connector. Applying 24VDC to this pin energizes the relay thus enabling the General Outputs to be controlled by the ladder.

There are two groups of eight outputs: group A = output 1 through output 8, group B = output 9 through output 16. Each group is capable of detecting a short circuit condition. When a short circuit condition is sensed, all outputs in the group are turned off and remain off for approximately 100 ms regardless of ladder activity. After 100 ms, the ladder again controls the outputs. In addition, each output is protected with internal clamping diodes. Without clamping, high voltage transients (kickback) from inductive loads might damage the module.
12.5 Protecting from an Inductive Load

Resistive and inductive loads can be connected to the ASIU General outputs and controlled by the system with no precautions other than making sure they have a connection to the common of the DC power supply. Refer to Figure 35.

Inductive loads have an electrical "kickback" when current is stopped. This can damage or destroy the output switching device. Each output has a diode through which reverse current can be safely routed.

The internal diode works with an inductive load. When an output is energized, represented by a closed switch, current passes through the load into the common line. When the output is de-energized (by the ladder), represented by an open switch, current stops and the inductive field collapses. This creates a reverse voltage across the load called "kickback" which tries to continue the current. The voltage is in series with the DC power supply. The combined voltage appears across the output switching device in the module.

If this were the only path available, voltage across the device would peak at several hundred volts. The internal diode provides another path for current. This limits the peak reverse voltage across the load to less than 1 V. Every General output has this protection so you can connect an inductive load to any point.

Figure 35: Diagram of Internal Protection for Inductive Loads
12.6 ASIU DC Output Theory of Operation (Axis Connector)

Each axis output is an optically isolated solid state switch. The switch state is controlled by the ladder. When the switch turns on, current flows through the switch. When the switch turns off, current flow stops.

These outputs are intended to interface with the drive enable and drive reset inputs. When an output is turned on current can flow through the switch in either direction. This allows the outputs to be connected in a sink or source configuration.

For safety reasons, all outputs turn off (no current flow) when a scan loss condition occurs.

12.7 ASIU DC Input Operation (Axis, AUX, General Connectors)

The ASIU converts input power into DC power at voltages of + 5 V, + 15 V, and - 15 V and supplies them to the logic side of the system.

Each input is guaranteed "on" at 14 to 30 VDC and guaranteed "off" at 0 to 5 VDC; polarity doesn't matter. Its on/off state is converted to a corresponding logic 1 or 0. This logic state is transmitted through the system bus to the CPU module, where the processor uses it as data in the ladder program. The logic side of the input is optically isolated from the field side.

The shaded blocks in Figure 36 show the limits specified by the IEC. The lines show the maximum and minimum V/I of the inputs in this module. The voltage/current curve in this graph shows that the input module is well within the IEC Type 1 limits.
Figure 36: Input Characteristics Compared to IEC Standards

- **UHMAX**: 30 Volts
- **U NOM**: 24 Volts
- **UHMIN**: (UTMAX)
- **ULMAX**: (UTMIN)

- **“ON” REGION**
- **“OFF” REGION**
- **TRANSITION REGION**

INPUT VOLTAGE

INPUT CURRENT

- **I MIN** to **I MAX**
- **I H MIN** to **I H MAX**
Operating the MMC for PC System

IMPORTANT

Switching devices can sometimes have a leakage current that exceeds the I_{min} (current allowed when off) of an input module. In order to use such a device, an impedance (typically, a resistor) needs to be used in parallel with the input.

For example, some of the newer proximity switches use two wires instead of three. The third wire was used for a power or ground line. Without the third wire, the switch is easier to install. However, it requires more leakage current in the off state to power its internal circuitry.

As a conservative estimate, use the following formula to calculate an external resistance value. It keeps the input voltage at or below 2.4V when the switching device is in the "off" state.

\[
\frac{2.4V}{\text{Switch Leakage} - 0.75mA} \geq R
\]

If the switch leakage specification is ≤ 1.7 mA, then:

\[
\frac{2.4V}{1.7 - 0.75mA} \geq 2.5\,K\Omega
\]

Use a resistor less than or equal to 2.5 KΩ. Be sure that the wattage is adequate for the resistor when the switching device is in the "on" state remembering that:

\[
P = \frac{V_{\text{ON}}^2}{R}
\]
12.8 **ASIU Analog Output Theory of Operation (Axis Connectors)**

The ladder sends the analog output section a 16-bit digital word for each analog output channel used. Each digital word is converted to a corresponding voltage within the range of ±10 V. The voltage is buffered and brought out to a pair of I/O connections as a differential type voltage output. This output is less subject to interference from electrical noise than a single-ended output would be.

You can adjust each analog output channel in software for offset adjustments, gain scaling, and unipolar outputs.

For safety reasons, all outputs are automatically reset to 0 V when a scan loss condition occurs.

12.9 **ASIU Encoder Theory of Operation (Axis and AUX Connectors)**

The encoder section uses differential type inputs to interface with up to five independent incremental encoders. These inputs accept RS422 level quadrature signals.

A quadrature encoder sends square wave type signals. When the shaft rotates at a constant velocity, the A and B outputs are square waves and are at the same frequency. However they are out of phase with each other by 90°.

When the encoder shaft rotates in one direction, each A pulse leads the corresponding B pulse by 90°. When it rotates the other direction each A pulse lags its B pulse by 90°.

The signals illustrated in Figure 37 indicate that the encoder shaft rotates in one direction at first. Its speed of rotation decreases to 0 and then it starts rotating the other direction. The signals are shown as differential. A is the inverse of the signal A and B is the inverse of signal B.

Figure 37: Signals Transmitted by a Quadrature Encoder with Differential Outputs

![Quadrature Encoder Signals](image-url)
The maximum input frequency is 250,000 lines per second, which results in 1,000,000 Feedback Units (FUs) per second.

Figure 38: Counting Quadrature Pulses

![Diagram of counting quadrature pulses]

There is a 24-bit up/down counter for each channel. It is incremented or decremented on each A, B edge as shown in Figure 38. There is also a 24-bit latch associated with each encoder channel.

The module can be programmed so that the counter value is "latched" or stored under one of these conditions:

- an index pulse from the encoder
- a positive or negative transition of the fast input
- the next index pulse after the required transition of the fast input

Each of the five 24-bit latches has a *fast 24 VDC input* associated with it. Each input is optically isolated. This input is intended to receive a signal from a device other than an encoder. It is typically used for referencing or synchronization purposes.

Fast input characteristics include:

- the detection of a signal occurs faster than it does for the DC inputs in other modules, due to less filtering. Because of this there is also less noise immunity.
- the response to a fast input signal is independent of ladder scan time. The module can be programmed to latch a position count as soon as this input is detected.
12.10 ASIU Analog Input Operation (AUX Connector)

There is one differential analog input channel on this module. The input range is ±10 VDC. The analog input voltage is sampled every 100 µsec by a 12-bit A/D converter. The most recent conversion result is stored in an onboard register. This register can be read at any time by the ladder.

The analog input signal passes through a common mode and differential mode filter prior to being applied to the A/D converter. These filters improve the noise immunity of the module.
13 MMC for PC Option Modules

13.1 General

The MMC for PC will accept a MMC for PC Option Module for network communications, either DeviceNet, Profibus, or Digital Line Shaft (DLS). The board is mounted 0.8" above the MMC for PC board. When the MMC for PC Option Module is mounted on the MMC for PC board, the combined unit will occupy two slots. The board is located so the network connector will be positioned in a slot aperture of the host PC.

NOTE
Throughout this document, "MMC for PC Option Module" is a generic term that refers to any communication module (DeviceNet, Profibus, or Digital Line Shaft (DLS)) that can be installed on the MMC for PC board. It does not refer to a specific type of communication network or module.

13.2 Mounting the MMC for PC Option Module

1. Shut down and turn off your computer, monitor and all attached peripherals.
2. Unplug each component from the wall electrical outlet or surge protector/power strip.
3. Disconnect all power to the computer and MMC for PC control system.

WARNING
Before you mount the MMC for PC Option Module onto the MMC for PC board in the computer, make sure that power is disconnected from the computer and to the devices the MMC for PC is wired to.

Make sure the computer is adequately grounded before mounting the MMC for PC Option Module. Any attempt to operate or service the computer without adequate ground may result in serious personal injury and/or damage to the MMC for PC board and control system.
4. Remove the computer cover as described in the documentation for your specific computer.

5. Locate the MMC for PC board.

6. At the back of the computer, remove the screw that secures the MMC for PC board chassis to the back of the computer frame.

7. Remove the MMC for PC board from the slot. Refer to Figure 39.

8. Carefully pull the board straight up until the board is completely removed from the slot.

Figure 39: Removing the MMC for PC Board
9. Remove the MMC for PC Option Module from its anti-static bag.

<table>
<thead>
<tr>
<th>STATIC ELECTRICITY PRECAUTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>The MMC for PC board, the MMC for PC Option Module and the internal components of the PC are sensitive to static electricity. The following precautions reduce the possibility of damaging these components:</td>
</tr>
<tr>
<td>Wear a grounding wrist strap and attach the ground clip to the computer’s metal frame.</td>
</tr>
<tr>
<td>Before handling the MMC for PC board or the MMC for PC Option Module or touching anything inside the PC, discharge your body’s static electric charge by touching a grounded (earthed) surface. If the PC is connected to a grounded outlet, you can do this by touching the outside metal piece of the PC chassis.</td>
</tr>
<tr>
<td>Do not remove the MMC for PC Option Module from its antistatic bag until you are ready to install it.</td>
</tr>
<tr>
<td>When removing the module from the anti-static bag, hold it by the edges. Avoid touching components on the module.</td>
</tr>
<tr>
<td>Do not slide the module over any surface.</td>
</tr>
<tr>
<td>Avoid plastic, vinyl and styrofoam in your work area.</td>
</tr>
<tr>
<td>After you remove the MMC for PC Option Module from the MMC for PC board, immediately place it in an antistatic bag until it is used again.</td>
</tr>
</tbody>
</table>
10. Refer to Figure 40. At the three locations marked "A", place a nylon standoff on the solder side of the MMC for PC Option Module and secure the standoff to the module using a 4-40 x 1/4" nylon screw inserted from the component side of the module.

11. Refer to Figure 40. At the location marked "B", place a metal standoff on the solder side of the MMC for PC Option Module and secure the standoff to the module using a #4 star washer and a 4-40 x 3/8" metal screw inserted from the component side of the module.

12. Refer to Figure 40. Position the MMC for PC Option Module on the component side of the MMC for PC Board. Make sure that the connector on the MMC for PC Option Module is properly aligned with the connector on the MMC for PC board.
Figure 41: Attaching MMC for PC Option Module to the MMC for PC Board
13. Refer to Figure 41. Carefully press down on the MMC for PC Option Module so the MMC for PC Option Module standoff contacts the MMC for PC Board and the Header Pin Connector on the MMC for PC Option Module connects to the Header Socket Connector on the MMC for PC board.

14. Refer to Figure 41. At the three locations with nylon standoffs, secure the MMC for PC Option Module to the MMC for PC board using 4-40 x 1/4" nylon screws inserted from the solder side of the MMC for PC board.

15. Refer to Figure 41. At the location with the metal standoff, secure the MMC for PC Option Module to the MMC for PC board using a #4 star washer and a 4-40 x 3/8" metal screw inserted from the solder side of the MMC for PC board.

16. Carefully tighten all four screws until the MMC for PC Option Module is firmly attached to the MMC for PC board.

<table>
<thead>
<tr>
<th>IMPORTANT</th>
</tr>
</thead>
<tbody>
<tr>
<td>It is very important that the MMC for PC Option Module is firmly attached to the MMC for PC board. Failure to do so may cause poor connections to external devices or damage to the board. However, do not overtighten the screws. Overtightening the screws may cause damage to the MMC for PC Option Module or the MMC for PC board.</td>
</tr>
</tbody>
</table>

17. The Profibus Module has a support bracket attached at the factory, the DeviceNet Module and the DLS Module do not. If you are installing a DeviceNet Module or a DLS Module, you must install the supplied support bracket using the screw provided. Make sure the screw is firmly tightened.

18. Insert the MMC for PC board back into the computer and secure the bracket with the mounting screw. If you are installing a Profibus Module, also secure the Module Support Bracket with a screw. Make sure all screws are firmly tightened.

19. Reattach and secure the screws for the computer cover.

20. Plug in all power cords and turn on the monitor. Turn on the computer. If you do not get the proper start-up display, check all connections and make the necessary changes.
13.3 Network Interface Connections

13.3.1 DeviceNet Module

13.3.1.1 DeviceNet Connections

Figure 42: DeviceNet Connections

PC containing MMC for PC Board with attached MMC for PC Option Module
13.3.1.2 DeviceNet Port

Figure 43: DeviceNet Port

Table 15: Pinout for DeviceNet Port

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
<th>Standard Wire Colors</th>
<th>In/Out</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V-</td>
<td>black</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>CAN_L</td>
<td>blue</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Shield (drain)</td>
<td>bare</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>CAN_H</td>
<td>white</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>V+</td>
<td>red</td>
<td></td>
</tr>
</tbody>
</table>
13.3.1.3 DeviceNet Module LEDs

The two configuration port LEDs and the two DeviceNet port LEDs are described below.

Table 16: DeviceNet Module LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Green</td>
<td>OFF</td>
<td>Off-line</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>On-line and connected to all nodes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing</td>
<td>On-line but connection to all nodes not established</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>ON</td>
<td>Unrecoverable Fault (duplicate MAC ID check failed, critical bus fault, etc.)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing</td>
<td>I/O connections in timed-out state or other Recoverable Fault</td>
</tr>
<tr>
<td>Scanner status</td>
<td>Green</td>
<td>OFF</td>
<td>No power or else reset asserted</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ON</td>
<td>Scanner OK and active</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing</td>
<td>Scanner OK but not active</td>
</tr>
<tr>
<td></td>
<td>Red</td>
<td>ON</td>
<td>Hardware or software error</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Flashing</td>
<td>Recoverable configuration error (invalid data downloaded)</td>
</tr>
<tr>
<td></td>
<td>Orange</td>
<td>ON</td>
<td>Configuration (download) mode</td>
</tr>
</tbody>
</table>
13.3.2 Profibus Module

13.3.2.1 Profibus Connections

Figure 44: Profibus Connections

PC containing MMC for PC Board with attached MMC for PC Option Module

To Profibus segment

Profibus Node

Profibus Node

Profibus Node

To Profibus segment
13.3.2.2 Profibus Port

Figure 45: Profibus Port

Table 17: Pinout for Profibus Port

<table>
<thead>
<tr>
<th>Pin #</th>
<th>Signal Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Chassis ground</td>
</tr>
<tr>
<td>2</td>
<td>Reserved</td>
</tr>
<tr>
<td>3</td>
<td>data +</td>
</tr>
<tr>
<td>4</td>
<td>Tx enable</td>
</tr>
<tr>
<td>5</td>
<td>Isolated ground</td>
</tr>
<tr>
<td>6</td>
<td>voltage +</td>
</tr>
<tr>
<td>7</td>
<td>reserved</td>
</tr>
<tr>
<td>8</td>
<td>data -</td>
</tr>
<tr>
<td>9</td>
<td>reserved</td>
</tr>
</tbody>
</table>
13.3.2.3 Profibus Module LEDs

The two configuration port LEDs and the two Profibus port LEDs are described below.

Table 18: Profibus Module LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>Color</th>
<th>State</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Network status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>OFF</td>
<td></td>
<td>Off-line</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td></td>
<td>On-line, no physical layer or data layer errors</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(or Profibus cable not connected)</td>
</tr>
<tr>
<td>Red</td>
<td>ON</td>
<td></td>
<td>On-line, bus error (baud rate or wiring problem)</td>
</tr>
<tr>
<td>Scanner Status</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>OFF</td>
<td></td>
<td>No power or else reset asserted, interface closed</td>
</tr>
<tr>
<td></td>
<td>ON</td>
<td></td>
<td>Scanner communicating, data exchanging, no slave</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>device errors</td>
</tr>
<tr>
<td></td>
<td>Flashing</td>
<td></td>
<td>Scanner in start-up</td>
</tr>
<tr>
<td>Red</td>
<td>ON</td>
<td></td>
<td>At least one slave faulted</td>
</tr>
<tr>
<td>Orange</td>
<td>ON</td>
<td></td>
<td>Configuration (download) mode</td>
</tr>
</tbody>
</table>
13.3.3 Digital Line Shaft (DLS) Module

13.3.3.1 DLS Connections

Figure 46: DLS Connections

Note: The DLS Module will only work with the DLS compatible 32 axis MMC for PC/SERCOS Module (Part No. M.1302.0498).
13.3.3.2 DLS Module Port

The DLS ports use RJ-45 style 8-pin connectors using 100 ohm unshielded twisted pair category 3 or 5 cable (IEEE 802.3 Section 14.4). The maximum length at the twisted pair cable segment is 25 m (82.5 ft.).

Note: The connector is also suitable for shielded cable and will ground the shield to chassis.
13.3.3.3 DLS Module LEDs

The two configuration port LEDs and the two Profibus port LEDs are described below.

Table 19: DLS Module LEDs

<table>
<thead>
<tr>
<th>In Link OK (IN OK) Green</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Indicates that there is a DLS Module properly connected and communicating with this DLS Module’s IN port.</td>
</tr>
<tr>
<td>OFF</td>
<td>Indicates that there is not a DLS Module properly connected and communicating with this DLS Module’s IN port.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Out Link OK (OUT OK) Green</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ON</td>
<td>Indicates that there is a DLS Module properly connected and communicating with this DLS Module’s OUT port.</td>
</tr>
<tr>
<td>OFF</td>
<td>Indicates that there is not a DLS Module properly connected and communicating with this DLS Module’s OUT port.</td>
</tr>
</tbody>
</table>

14 Specifications

14.1 MMC for PC Analog Board Specifications

<table>
<thead>
<tr>
<th>Servo Update Rates</th>
<th>Update Rates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8 ms</td>
</tr>
<tr>
<td>Maximum number of axes*</td>
<td>32</td>
</tr>
<tr>
<td>Maximum number of ASIUs</td>
<td>8</td>
</tr>
</tbody>
</table>

*Where two numbers are listed they represent High/Low. The High number is typical when running RATIO_GR, RATIOCAM, VEL_STRT, POSITION, DISTANCE move types etc... The Low number is typical when running time axes, servo tasks, RATIO_RL, M_LINCR, M_SCRVLCL move types etc.. The Low number types place a heavier burden on CPU time than the High number types.

<table>
<thead>
<tr>
<th>General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>Use MMC for PC Analog Package M.1300.5974</td>
</tr>
<tr>
<td>System Requirements</td>
<td>One PCI Local Bus slot, Standard 2.1 compatible, 133MHz Pentium or faster</td>
</tr>
<tr>
<td>Processor Speed</td>
<td>128MHz</td>
</tr>
<tr>
<td>Board Dimensions</td>
<td>6.6" L x 4.2" H</td>
</tr>
<tr>
<td>Flash Memory</td>
<td>1 MB</td>
</tr>
<tr>
<td>RAM Memory</td>
<td>1MB (Refer to the PiCPro for Windows Software Manual for partitioning, RAM into Application, RAM Disk and Variable Memory storage areas)</td>
</tr>
<tr>
<td>Connector Port from MMC for PC board at PC</td>
<td>RJ45 port, secured protocol</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>+20 VDC to 30 VDC (absolute maximum), 24V nominal</td>
</tr>
<tr>
<td>Input power</td>
<td>6.5 W @ 24V (.27 amps), PCI bus derived or external</td>
</tr>
</tbody>
</table>
Environmental

<table>
<thead>
<tr>
<th>Specification</th>
<th>Range/Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range</td>
<td>0°C to 55°C (32°F to 131°F)</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-40°C to 85°C (-40°F to 185°F)</td>
</tr>
<tr>
<td>Humidity</td>
<td>5 to 95%, non-condensing</td>
</tr>
</tbody>
</table>

Conformity

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE Marked</td>
<td>Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards: EN 50081-2:1993 EMC Generic Industrial Emissions EN 50082-2:1995 EMC Generic Industrial Immunity EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers Operates with emissions below EN55011/ CISPR 11 Class A limits Immune to: • Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2 • RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204 • Electrical fast transients per EN61000-4-4 • Magnetic fields per EN61000-4-8 Refer to the EMC Guidelines for more information.</td>
</tr>
<tr>
<td>UL and C/UL Listed</td>
<td>E126417</td>
</tr>
</tbody>
</table>
14.2 MMC for PC SERCOS Board Specifications

Servo Update Rates

<table>
<thead>
<tr>
<th>Update Rates</th>
<th>8 ms</th>
<th>4 ms</th>
<th>2 ms</th>
<th>1 ms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum number of axes</td>
<td>32</td>
<td>32</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>

General

| Part Number | For up to 32 axes, M.1301.4104
For up to 16 axes, M.1301.4103
For up to 8 axes, M.1301.4102 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>System Requirements</td>
<td>One PCI Local Bus slot, Standard 2.1 and 2.2 compatible 133MHz Pentium or faster</td>
</tr>
<tr>
<td>Processor Speed</td>
<td>128MHz</td>
</tr>
<tr>
<td>Board Dimensions</td>
<td>6.6" L x 4.2" H</td>
</tr>
<tr>
<td>Flash Memory</td>
<td>1 MB</td>
</tr>
<tr>
<td>RAM Memory</td>
<td>1MB (Refer to the PiCPro for Windows Software Manual for partitioning RAM into Application, RAM Disk and Variable Memory storage areas)</td>
</tr>
<tr>
<td>Connector Port from MMC for PC board at PC</td>
<td>RJ45 port, secured protocol</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>+20 VDC to 30V DC (absolute maximum), 24V nominal</td>
</tr>
<tr>
<td>Input power</td>
<td>6.5 W @ 24V (.27 amps), PCI bus derived or external</td>
</tr>
</tbody>
</table>
Environmental

<table>
<thead>
<tr>
<th>Specification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature range</td>
<td>0°C to 55°C (32°F to 131°F)</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-40°C to 85°C (-40°F to 185°F)</td>
</tr>
<tr>
<td>Humidity</td>
<td>5 to 95%, non-condensing</td>
</tr>
</tbody>
</table>

Conformity

<table>
<thead>
<tr>
<th>Certification</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CE Marked</td>
<td>Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards: EN 50081-2:1993 EMC Generic Industrial Emissions EN 50082-2:1995 EMC Generic Industrial Immunity EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers Operates with emissions below EN55011/ CISPR 11 Class A limits Immune to: •Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2 •RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204 •Electrical fast transients per EN61000-4-4 •Magnetic fields per EN61000-4-8 Refer to the EMC Guidelines for more information.</td>
</tr>
<tr>
<td>UL and C/UL Listed</td>
<td>E126417</td>
</tr>
</tbody>
</table>

Specifications
14.3 ASIU Specifications

<table>
<thead>
<tr>
<th>General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number for ASIU-2</td>
<td>M.1300.5970</td>
</tr>
<tr>
<td>Part Number for ASIU-4</td>
<td>M.1300.4422</td>
</tr>
<tr>
<td>IN and OUT RJ45 ports</td>
<td>RJ45 port, secured protocol</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>+20 VDC to 30 VDC (absolute maximum), 24V nominal</td>
</tr>
<tr>
<td>Input power</td>
<td>350 mA plus I/O power</td>
</tr>
<tr>
<td>Operating temperature range</td>
<td>5°C to 55°C (41°F to 131°F)</td>
</tr>
<tr>
<td>Storage temperature range</td>
<td>-40°C to 85°C (-40°F to 185°F)</td>
</tr>
<tr>
<td>Humidity</td>
<td>5 to 95%, non-condensing</td>
</tr>
<tr>
<td>Maximum length of cable between MMC for PC Analog board and first ASIU</td>
<td>82.5 ft. (25 m)</td>
</tr>
<tr>
<td>Maximum length of cable between two ASIUs</td>
<td>82.5 ft. (25 m)</td>
</tr>
<tr>
<td>Type of cable between MMC for PC Analog board and first ASIU</td>
<td>CAT5 straight pinned. Use shielded cable in noisy environments.</td>
</tr>
<tr>
<td>Type of cable between two ASIUs</td>
<td>CAT5 straight pinned. Use shielded cable in noisy environments.</td>
</tr>
</tbody>
</table>
Conformity

| CE Marked (Pending) | Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards:
| | EN 50081-2:1993 EMC Generic Industrial Emissions
| | EN 50082-2:1995 EMC Generic Industrial Immunity
| | EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers
| | Operates with emissions below EN55011/ CISPR 11 Class A limits
| | Immune to:
| | • Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2
| | • RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204
| | • Electrical fast transients per EN61000-4-4
| | • Magnetic fields per EN61000-4-8
| | Refer to the EMC Guidelines for more information. |

| UL and C/UL Listed (Pending) | E126417 |
| Physical size | 2.25" wide x 9.6" high x 5.3" deep
| | 57.15 mm x 243.84 mm x 134.62 mm |
Analog Output

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output channels</td>
<td>2 or 4</td>
</tr>
<tr>
<td>Resolution</td>
<td>16 bits</td>
</tr>
<tr>
<td>Output voltage range</td>
<td>±10 VDC</td>
</tr>
<tr>
<td>Maximum output current (1K Ω load)</td>
<td>±10 mA</td>
</tr>
<tr>
<td>Power on output voltage</td>
<td>0 V ±100 mV</td>
</tr>
<tr>
<td>Scan loss output voltage</td>
<td>0V ±100 mV</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.375% of FSR Drift ± 50ppm/°C</td>
</tr>
<tr>
<td>Update rate</td>
<td>68 µsec</td>
</tr>
</tbody>
</table>

Analog Input

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input channel</td>
<td>1</td>
</tr>
<tr>
<td>Resolution</td>
<td>12 bits</td>
</tr>
<tr>
<td>Input voltage range</td>
<td>±10 V</td>
</tr>
<tr>
<td>Accuracy</td>
<td>±0.2% of FSR</td>
</tr>
<tr>
<td>Sample rate</td>
<td>100 µsec</td>
</tr>
<tr>
<td>Common mode filter</td>
<td>3 dB @ 10 K Hz</td>
</tr>
<tr>
<td>Differential mode filter</td>
<td>3 dB @ 475 Hz</td>
</tr>
</tbody>
</table>
Encoder Input

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input channels</td>
<td>3 or 5</td>
</tr>
<tr>
<td>Input receiver type</td>
<td>2632 differential RS422 type receiver</td>
</tr>
<tr>
<td>Encoder signals</td>
<td>Differential quadrature</td>
</tr>
<tr>
<td>Input threshold</td>
<td>±750 mV</td>
</tr>
<tr>
<td>Maximum input voltage</td>
<td>5 V</td>
</tr>
<tr>
<td>Maximum A or B input frequency</td>
<td>250 K Hz (1 M feedback unit count rate)</td>
</tr>
<tr>
<td>Fast input voltage</td>
<td>Nominal 24 VDC, maximum 30 VDC</td>
</tr>
<tr>
<td>Guaranteed on voltage</td>
<td>15 VDC</td>
</tr>
<tr>
<td>Guaranteed off voltage</td>
<td>5 VDC</td>
</tr>
<tr>
<td>Turn on/off time</td>
<td>1 ms</td>
</tr>
</tbody>
</table>

General, Auxiliary and Axis DC Inputs

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configuration</td>
<td>The general inputs are divided into two groups of eight. Each group can be configured for sourcing or sinking. The auxiliary inputs are divided into two groups of six inputs. Each group can be configured for sourcing or sinking. The axis inputs have one input per axis. Each input can be configured for sourcing or sinking. Operates with IEC Type 1 inputs (per IEC 1131=2).</td>
</tr>
<tr>
<td>Input voltage</td>
<td>Nominal 24 VDC, maximum 30 VDC</td>
</tr>
<tr>
<td>Guaranteed on voltage</td>
<td>15 VDC</td>
</tr>
<tr>
<td>Guaranteed off voltage</td>
<td>5 VDC</td>
</tr>
<tr>
<td>Turn on/off time</td>
<td>1 ms</td>
</tr>
</tbody>
</table>
General DC Outputs

<table>
<thead>
<tr>
<th>Specification</th>
<th>Specification Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of outputs</td>
<td>16 outputs</td>
</tr>
<tr>
<td>Input voltage</td>
<td>Nominal 24 VDC, 30 VDC maximum</td>
</tr>
<tr>
<td>Configuration</td>
<td>Two groups of eight solid-state switches.</td>
</tr>
<tr>
<td>Protection of logic circuits</td>
<td>Optical isolation between the logic and field side, transient suppression on the 24V external supply</td>
</tr>
<tr>
<td>Maximum current</td>
<td>.25 A per output</td>
</tr>
<tr>
<td>Voltage range</td>
<td>+20 VDC to 30V DC (absolute maximum), 24V nominal</td>
</tr>
<tr>
<td>Switch characteristics</td>
<td>Solid-state switches</td>
</tr>
<tr>
<td>Time delay on for resistive loads</td>
<td>50 µsec max</td>
</tr>
<tr>
<td>Time delay off for resistive loads</td>
<td>50 µsec max</td>
</tr>
<tr>
<td>Leakage current in off state</td>
<td>0.5 mA max</td>
</tr>
<tr>
<td>Switch voltage, maximum ON</td>
<td>1 VDC max</td>
</tr>
<tr>
<td>Short circuit protection for each group</td>
<td>15 A (max) pulses for about 130 µsec every 100 msec until short is removed</td>
</tr>
<tr>
<td>Scan loss response</td>
<td>Outputs turn off</td>
</tr>
</tbody>
</table>

Axis DC Outputs

<table>
<thead>
<tr>
<th>Specification</th>
<th>Specification Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of outputs</td>
<td>2 outputs per axis</td>
</tr>
<tr>
<td>Configuration</td>
<td>Each set of axis outputs can be configured as sourcing or sinking.</td>
</tr>
<tr>
<td>Maximum current</td>
<td>100 mA per output</td>
</tr>
<tr>
<td>Voltage range</td>
<td>24 VDC nominal, 5 to 30 VDC range</td>
</tr>
<tr>
<td>Scan loss response</td>
<td>Outputs turn off</td>
</tr>
</tbody>
</table>

Auxiliary DC Output

<table>
<thead>
<tr>
<th>Specification</th>
<th>Specification Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5 VDC</td>
<td>150 mA maximum current available. Connections to this point should be over short distances and away from electric noise signals.</td>
</tr>
</tbody>
</table>
14.4 MMC for PC Option Modules Specifications

14.4.1 DeviceNet Module Specifications

<table>
<thead>
<tr>
<th>General</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
</tr>
<tr>
<td>Function</td>
</tr>
<tr>
<td>DeviceNet Port</td>
</tr>
<tr>
<td>Supply Voltage Range</td>
</tr>
<tr>
<td>Supply Current (steady state)</td>
</tr>
<tr>
<td>Peak Supply Current</td>
</tr>
<tr>
<td>Vibration (per IEC 68-2-6)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Shock (per IEC 68-2-27)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Environmental</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Ambient Temperature</td>
</tr>
<tr>
<td>Non-operating Ambient Temperature</td>
</tr>
<tr>
<td>Operating Humidity</td>
</tr>
</tbody>
</table>
Conformity

<table>
<thead>
<tr>
<th>CE Marked</th>
<th>Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EN 50081-2:1993 EMC Generic Industrial Emissions</td>
</tr>
<tr>
<td></td>
<td>EN 50082-2:1995 EMC Generic Industrial Immunity</td>
</tr>
<tr>
<td></td>
<td>EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers</td>
</tr>
<tr>
<td></td>
<td>Operates with emissions below EN55011/ CISPR 11 Class A limits</td>
</tr>
<tr>
<td></td>
<td>Immune to:</td>
</tr>
<tr>
<td></td>
<td>• Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2</td>
</tr>
<tr>
<td></td>
<td>• RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204</td>
</tr>
<tr>
<td></td>
<td>• Electrical fast transients per EN61000-4-4</td>
</tr>
<tr>
<td></td>
<td>• Magnetic fields per EN61000-4-8</td>
</tr>
<tr>
<td></td>
<td>Refer to the EMC Guidelines for more information.</td>
</tr>
<tr>
<td>UL and C/UL Listed</td>
<td>File No. E126417 NRAQ Programmable Controllers</td>
</tr>
</tbody>
</table>

Specifications
General

<table>
<thead>
<tr>
<th>Part Number</th>
<th>M.1300.5984</th>
</tr>
</thead>
<tbody>
<tr>
<td>Function</td>
<td>Interfaces to a Profibus network with up to 31 other nodes, without a repeater.</td>
</tr>
<tr>
<td>Profibus Port</td>
<td>9-pin D-sub female connector</td>
</tr>
<tr>
<td>Supply Voltage Range</td>
<td>4.75 V to 5.25 V</td>
</tr>
<tr>
<td>Supply Current (steady state)</td>
<td>500 mA maximum (250mA typical)</td>
</tr>
<tr>
<td>Peak Supply Current</td>
<td>750 mA</td>
</tr>
<tr>
<td>Vibration (per IEC 68-2-6)</td>
<td>10-57 Hz (constant amplitude .15 mm)</td>
</tr>
<tr>
<td></td>
<td>57 - 2000 Hz (acceleration 2 g)</td>
</tr>
<tr>
<td>Shock (per IEC 68-2-27)</td>
<td>Four shocks per axis (15g/11 msec)</td>
</tr>
</tbody>
</table>

Environmental

Operating Ambient Temperature	0°C to 60°C (32°F to 140°F)
Non-operating Ambient Temperature	-25°C to 70°C (-13°F to 158°F)
Operating Humidity	5 to 95% non-condensing
Conformity

<table>
<thead>
<tr>
<th>CE Marked</th>
<th>Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EN 50081-2:1993 EMC Generic Industrial Emissions</td>
</tr>
<tr>
<td></td>
<td>EN 50082-2:1995 EMC Generic Industrial Immunity</td>
</tr>
<tr>
<td></td>
<td>EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers</td>
</tr>
<tr>
<td></td>
<td>Operates with emissions below EN55011/ CISPR 11 Class A limits</td>
</tr>
<tr>
<td></td>
<td>Immune to:</td>
</tr>
<tr>
<td></td>
<td>• Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2</td>
</tr>
<tr>
<td></td>
<td>• RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204</td>
</tr>
<tr>
<td></td>
<td>• Electrical fast transients per EN61000-4-4</td>
</tr>
<tr>
<td></td>
<td>• Magnetic fields per EN61000-4-8</td>
</tr>
<tr>
<td></td>
<td>Refer to the EMC Guidelines for more information.</td>
</tr>
<tr>
<td>UL and C/UL Listed</td>
<td>File No. E126417 NRAQ Programmable Controllers</td>
</tr>
</tbody>
</table>

Specifications
14.4.3 Digital Line Shaft (DLS) Module Specifications

<table>
<thead>
<tr>
<th>General</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Part Number</td>
<td>M.1301.8981</td>
</tr>
<tr>
<td>Function</td>
<td>Interfaces up to 8 Digital Line Shaft Modules as part of a cluster of up to 8 MMC for PC systems.</td>
</tr>
<tr>
<td>DLS Ports</td>
<td>Two RJ45 Shielded Connectors, one for Input, one for Output.</td>
</tr>
<tr>
<td>Supply Voltage Range</td>
<td>4.75 V to 5.25 V</td>
</tr>
<tr>
<td>Supply Current (steady state)</td>
<td>500 mA maximum (250mA typical)</td>
</tr>
<tr>
<td>Peak Supply Current</td>
<td>750 mA</td>
</tr>
<tr>
<td>Vibration (per IEC 68-2-6)</td>
<td>10-57 Hz (constant amplitude .15 mm)</td>
</tr>
<tr>
<td></td>
<td>57 - 2000 Hz (acceleration 2 g)</td>
</tr>
<tr>
<td>Shock (per IEC 68-2-27)</td>
<td>Four shocks per axis (15g/11 msec)</td>
</tr>
</tbody>
</table>

Environmental	
Operating Ambient Temperature	0° C to 55° C (32° F to 131° F)
Non-operating Ambient Temperature	-25° C to 70° C (-13° F to 158° F)
Operating Humidity	5 to 95% non-condensing
Conformity

<table>
<thead>
<tr>
<th>CE Marked (Pending)</th>
<th>Conforms to Directives 73/23/EEC, 89/336/EEC, 92/31/EEC, 93/68/EEC by conforming to the following standards:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EN 50081-2:1993 EMC Generic Industrial Emissions</td>
</tr>
<tr>
<td></td>
<td>EN 50082-2:1995 EMC Generic Industrial Immunity</td>
</tr>
<tr>
<td></td>
<td>EN 61131-2:1994/A11:1996 Low voltage directive requirements for programmable controllers</td>
</tr>
<tr>
<td></td>
<td>Operates with emissions below EN55011/ CISPR 11 Class A limits</td>
</tr>
<tr>
<td></td>
<td>Immune to:</td>
</tr>
<tr>
<td></td>
<td>• Electrostatic discharge (4K V contact mode, 8K V air discharge) per EN61000-4-2</td>
</tr>
<tr>
<td></td>
<td>• RF electromagnetic fields per EN61000-4-3, ENV 50141, and ENV50204</td>
</tr>
<tr>
<td></td>
<td>• Electrical fast transients per EN61000-4-4</td>
</tr>
<tr>
<td></td>
<td>• Magnetic fields per EN61000-4-8</td>
</tr>
<tr>
<td></td>
<td>Refer to the EMC Guidelines for more information.</td>
</tr>
</tbody>
</table>

| UL and C/UL Listed | File No. E126417 NRAQ Programmable Controllers |
INDEX

Numerics
24-bit latch 94
24-bit up/down counter 94

A
analog input
 theory of operation 95
analog output
 theory of operation 93
analog output to drive connections 64
analog servo board 10
analog servo I/O axis configuration 15
analog servo module 15
ASIU
 connecting to an application 49
ASIU control cabinet
 specifications 33
auxiliary I/O
 connector 66
 general purpose inputs 69
 pinout 66
available I/O 15
axis connectors
 pinout 61
axis DC input to drive ready connection 64
Axis I/O 15

C
cables 57
components 13
configuration
 sink 62
 source 62
connections
 analog output to drive 64
 ASIU network 50
 axis DC input to drive 64
 encoder inputs to drive encoder output 65
 fast inputs 68
 general purpose inputs 59
connector
 auxiliary I/O 66
 axis 61
 motion control 56
 power 60
to ASIU 56
current
 leakage 92

D
DC input
 theory of operation 90
DC output theory 90
DeviceNet
 LEDs 105
DeviceNet configuration port 105
diagnostic
 LED 85
 power-on 79
 run-time 80
differential devices 46
dimensions
 mounting 31
distribution
 power 37
DLS configuration port 111
download hex 49, 51, 81

E
electrical service & maintenance safety 5
encoder
 error detection 46
 quadrature 15, 93
 theory of operation 93
encoder inputs to drive encoder output connections 65
environment requirements
 system 33

F
fast input 94
 characteristics 94
 connection 68
 sink configuration 68
 source configuration 68

G
general inputs
 sinking/sourcing 59
general purpose inputs
 connections 59
ground
 single point 40
grounding
 protective earth 2
 system 40

H
heat control 41
hex
 download 49, 51, 81

I
I/O 15
I/O for ASIU 15
I/O, General
 Output operation 88
IEC 90
IEC Standards 91
inductive load
 internal diode 89
 protection from 89
inspection
 safety 4
internal diode
 and inductive loads 89

K
kickback 89

L
ladder logic 7
latch
 24-bit 94
 counter value 94
LED
 +5 VDC 85
 collision 86
 Diagnostic 79
 diagnostic 85
 diagnostics and troubleshooting 79
 Link OK 87, 111
 power 79
 Receive 86
 scan 79, 85
 transmit 86
LEDs
 ASIU 85

DeviceNet 105
Profibus 108

M
manual cleaning procedure 6
MMC for PC
 analog servo board 10
 connecting to an application 49
 overview 7
 power 55
 SERCOS board 9
models 13
module
 analog servo 15
mounting
 dimensions 31

N
network
 connections for ASIU 50

O
operating limits 41
operation
 ASIU 84
 safety 4
 setup procedures 47
overview
 MMC for PC 7

P
peak reverse voltage 89
pinout
 auxiliary I/O 66
 axis connector 61
port
 DeviceNet configuration 105
 DLS configuration 111
 Profibus configuration 108
 SERCOS 55
 SERCOS receive 55
 SERCOS transmit 55
ports illustrated 13
Power
 general and environment requirements 33
 power
ASIU external power distribution 35
connection 60
distribution
 basic 34
distribution in ASIU system 37
LED 79
 optional external power and keyswitch connection 53
power connector for ASIU 14
power requirements
 system 33
power supply
 sizing worksheet 38, 39
power-on diagnostics 79
procedure
 manual cleaning 6
Profibus
 LEDs 108
 Profibus configuration port 108
protection for inductive loads 89
protective earth
 grounding 2
Q
quadrature
 encoder 15, 93
R
resistive load 89
rotary switch for address definition 14
run-time diagnostics 80
S
safety
 cleaning 6
 electrical service & maintenance 5
 inspection 4
 operation 4
 signs 2
 system 1
Scan 79
scan
 LED 85
scan LED 79
SERCOS board 9
SERCOS port 55
shielded twisted pair wiring 68
shields 45
signs
 safety 2
single point ground (SPG)
 diagram 35
sink configuration 62
sizing
 power supply 38, 39
source configuration 62
specifications 112
 ASIU 116
 ASIU control cabinet 33
 DeviceNet Module 121
 Digital Line Shaft (DLS) Module 125
 Fieldbus Modules 121
 MMC for PC Analog Board 112
 Profibus Module 123
 SERCOS Board 114
static electricity precautions 99
switch
 main disconnect 35, 36, 47
 wiring modules 48
system
 environment requirements 33
 grounding 40
 power requirements 33
 power supply 34
T
theory of operation
 analog input 95
 DC input 90
 encoder 93
troubleshooting 51, 81
V
voltage
 peak reverse 89
W
warning label
 danger, warning, caution 3
 hazard 3
 LED radiation 3
wiring
 shield twisted pair 68