
Motion

Application Specific Function Block Manual

Part Number M.1300.7191

Version 12.0.1
Giddings & Lewis
Controls, Measurement and Sensing

NOTE

Progress is an on-going commitment at Giddings & Lewis. We continually strive to offer the most
advanced products in the industry; therefore, information in this document is subject to change without
notice. The illustrations and specifications are not binding in detail. Giddings & Lewis shall not be
liable for any technical or editorial omissions occurring in this document, nor for any consequential or
incidental damages resulting from the use of this document.

DO NOT ATTEMPT to use any Giddings & Lewis product until the use of such product is completely
understood. It is the responsibility of the user to make certain proper operation practices are
understood. Giddings & Lewis products should be used only by qualified personnel and for the
express purpose for which said products were designed.

Should information not covered in this document be required, contact the Customer Service
Department, Giddings & Lewis, 660 South Military Road, P.O. Box 1658, Fond du Lac, WI 54936-
1658. Giddings & Lewis can be reached by telephone at (920) 921–7100.

DISCLAIMER: All programs in this release (application demos, application specific function
blocks (ASFB's), etc.), are provided "AS IS, WHERE IS", WITHOUT ANY WARRANTIES,
EXPRESS OR IMPLIED. There may be technical or editorial omissions in the programs and
their specifications. These programs are provided solely for user application development and
user assumes all responsibility for their use. Programs and their content are subject to change
without notice.

M.1300.7191

Release 0201

©1993, 94, 95, 96, 97, 98, 99, 2000, 2001Giddings & Lewis, LLC
IBM is a registered trademark of International Business Machines Corporation.
Windows 95, 98, NT, Microsoft, and MS-DOS are registered trademarks of Microsoft Corporation.
Pentium and PentiumPro are trademarks of Intel Corporation.
ARCNET is a registered trademark of Datapoint.
PiC900, PiCPro, MMC, PiCServoPro, PiCTune, PiCProfile, LDO Merge, PiCMicroTerm and PiC Progrmming Pendant are
trademarks of Giddings & Lewis, LLC

Table of Contents: Motion ASFB Manual

CHAPTER 1-Application Specific Function Block Guidelines 1-1

Installation.. 1-1

Revisions ... 1-1

Network 1 .. 1-1
Network 2 .. 1-1
Network 3 .. 1-2

ASFB Input/Output Descriptions... 1-2

Network 4 .. 1-2

Using ASFBs... 1-2

CHAPTER 2-Motion ASFBs ... 2-1

ADDCKSUM... 2-6
BYTE2HEX... 2-7
CHKCKSUM... 2-8
DWOR2HEX ... 2-9
HEX2BYTE... 2-10
HEX2DWOR ... 2-11
HEX2WORD ... 2-12
M_CHK1 ... 2-13
M_CHK101 ... 2-14
M_CHK109 ... 2-15
M_CHK49 ... 2-16
M_CHK57 ... 2-17
M_CHK65 ... 2-18
M_CHK73 ... 2-19
M_CHK9 ... 2-20
M_CLOS1.. 2-21
M_CLOS9.. 2-23
M_CLS101... 2-25
M_CLS109... 2-27
M_CRSFIN.. 2-29
M_DATCAP.. 2-31
M_DATCPT .. 2-36
M_DNJOGC .. 2-40
M_DNPOSC .. 2-41
M_DNSTAT .. 2-43
M_DSMCOM .. 2-45

RS232 Connections.. 2-50
RS422/RS485 Connections.. 2-50

M_DW2BOO... 2-51
M_ERROR... 2-52
TOC-1

M_FHOME.. 2-53
M_INCPTR.. 2-56
M_JOG... 2-57
M_LHOME.. 2-58
M_LINCIR... 2-61
M_PRTCAM ... 2-65
M_PRTREL ... 2-66
M_PRTSLP.. 2-67
M_RATREL .. 2-68
M_RATSLP ... 2-69
M_RDTUNE.. 2-71
M_RGSTAT .. 2-72
M_RSET49 .. 2-74
M_RSET57 .. 2-75
M_RSET65 .. 2-76
M_RSET73 .. 2-77
M_SCRVLC .. 2-78
M_SRCMON ... 2-84
M_SRCPRC... 2-86
M_SRCRDL .. 2-88
M_SRCWT .. 2-90
M_SRCWTL.. 2-92

ERR Output.. 2-93
SERR Output ... 2-95
BSER Output ... 2-97

M_STATUS... 2-98
M_WTTUNE ... 2-100
S_CLOS1 ... 2-102
S_CLOS9 ... 2-104
S_ERRORC ... 2-106
S_FHOME ... 2-108
S_IO_C .. 2-110
S_LHOME ... 2-112
WORD2HEX ... 2-115

APPENDIX A-M_DSMCOM Commands.. A-1

Exception Responses ... A-1
Host Command Set .. A-2
Common Product Line Commands.. A-3
General Commands.. A-4
Position Loop Commands.. A-5
Velocity Loop Commands ... A-6
Torque Current Conditioning Commands ... A-7
 Motor Commands ... A-8
Motor Commands (Continued) .. A-9
Motor Commands (Continued) .. A-10
TOC-2

Digital I/O Commands... A-11
Analog I/O Commands .. A-12
Analog I/O Commands (Continued).. A-13
Serial Port Commands ... A-14
Operating Mode Commands .. A-15
Operating Mode Commands (Continued).. A-16
Alternative Operating Mode Commands... A-17
Alternative Operating Mode Commands (Continued)............................. A-18
Runtime Command and Control Commands... A-19
Runtime Status Commands.. A-20
Runtime Status Commands (Continued) ... A-21
Runtime Data Commands .. A-22
Runtime Data Commands (Continued).. A-23
Runtime Data Collection Commands .. A-24
Runtime Data Collection Commands (Continued) A-25

APPENDIX B-Press Transfer ASFBs ... B-1

M_PRF2MV .. B-6
M_PRF1MV .. B-17
M_PRFERR ... B-18
M_PROFL ... B-21
M_PRFDWL.. B-23
M_SETVAJ ... B-24
M_SC_ACC... B-26
M_CNST_V... B-27
M_SC_DEC ... B-28

Index .. Index-1
TOC-3

NOTES
TOC-4

CHAPTER 1 Application Specific Function Block
Guidelines

Installation

The following guidelines are recommended ways of working with Application
Specific Function Blocks (i.e. ASFBs) from Giddings & Lewis.

The Applications CD includes the ASFB package as follows:

• .LIB file(s) containing the ASFB(s)

• source .LDO(s) from which the ASFB(s) was made

• example LDO(s) with the ASFB(s) incorporated into the ladder
which you can then use to begin programming from or merge with
an existing application ladder

When you install the Applications CD, the ASFB paths default to:

C:\Program Files\Giddings & Lewis\Applications vxx.x.r\ASFB

and

C:\Program Files\Giddings & Lewis\Applications vxx.x.r\Examples

where vxx.x is the PiCPro for Windows version number that these ASFBs and examples were built
under. The .r is the revision number of the Application software itself.

The .LIB files and source .LDO files are put in the ASFB subdirectory. The exam-
ple .LDO files are put in the Examples subdirectory.

Revisions

The first four networks of each ASFB source ladder provide the following infor-
mation:

Network 1

The first network just informs you that the ASFB is provided to assist your
application development.

Network 2

The second network is used to keep a revision history of the ASFB. Revisions can
be made by Giddings & Lewis personnel or by you.

The network identifies the ASFB, lists the requirements for using this ASFB, the
name of the library the ASFB is stored in, and the revision history.
 1-1

The revision history includes the date, ASFB version (see below), the version of
PiCPro used while making the ASFB, and comments about what the revision
involved.

When an ASFB is revised, the number of the first input (EN_ _ or
RQ_ _) to the function block is changed in the software declarations table. The
range of numbers available for Giddings & Lewis personnel is 00 to 49. The range
of numbers available for you is 50 to 99. See chart below.

Network 3

The third network describes what you should do if you want to make a revision to
the ASFB.

ASFB Input/Output Descriptions

Network 4

The fourth network describes the ASFB and defines all the inputs and outputs to
the function block.

Using ASFBs

When you are ready to use the ASFB in your application, there are several
approaches you can take as shown below.

• Create a new application LDO starting with the example LDO for the
ASFB package. The advantage is that the software declarations table for
the ASFB has been entered for you.

• If you already have an application LDO, copy and paste the example LDO
into yours. The software declaration tables for both LDOs will also merge.

Revision Giddings & Lewis
revisions

User
revisions

1st EN00 EN50
2nd EN01 EN51

. . .

. . .

. . .
50th EN49 EN99
 1-2

CHAPTER 2 Motion ASFBs
The motion support function blocks are contained in the libraries as shown. They
are used to aid in the application of servo and digitizing axes. Included with these
library files are other example LDO files as listed. The motion support function
blocks are described in alphabetical order.

The SERCOS motion function blocks are also shown. They are used to aid in the
application of SERCOS servo and digitizing axes. Their names start with S_.
They are written to replace the corresponding M_ motion function block, when the
axes use SERCOS control rather than analog control.

Library
Function
Block Description

M_COMMON
BYTE2HEX Places the data type byte into hexadecimal notation.
DWOR2HEX Places the data type double word into hexadecimal notation.
HEX2BYTE Places the hexadecimal notation into a byte.
HEX2DWOR Places the hexadecimal notation into a double word.
HEX2WORD Places the hexadecimal notation into a word.
M_DW2BOO Places the data type double word into 32 booleans
WORD2HEX Places the data type from word into hexadecimal notation.

M_DATA
M_DATCAP Captures axis information on an interrupt basis.
M_DATCPT Captures axis information on an interrupt basis to printable

text file
M_ERROR Returns E-stop, C-stop, and programming errors for a servo

axis or E-stop errors for a digitizing axis.
M_INCPTR Increment buffer pointers for M_DATCPT (not used in your

LDO).
M_PRTCAM Creates a text file for the CAM input of RATIOCAM.
M_PRTREL Creates a text file for the REAL input of RATIO_RL.
M_PRTSLP Creates a text file for the SLOPE input of RATIOSLP.
M_RATREL Calculates ending ratio and slope for use in ratio real profile.
M_RATSLP Calculates ending ratio and slope for use in ratio slope pro-

file.
M_RDTUNE Reads tuning parameters for a closed loop axis.
M_RGSTAT Returns registration information for a closed loop or digitiz-

ing axis.
M_STATUS Returns status information (for example, position and fol-

lowing error) for a closed loop, time, or digitizing axis.
M_WTTUNE Changes tuning parameters on a closed loop axis
 2-1

M_DEVNET
M_DNJOGC Jogs a Centurion DeviceNet drive axis
M_DNPOSC Moves a Centurion DeviceNet drive to a position

(either absolute or incremental)
M_DNSTAT Obtains the DeviceNet module status

M_DRVCOM
ADDCKSUM Support routine for M_DSMCOM. (Not used in your LDO.)
CHKCKSUM Support routine for M_DSMCOM. (Not used in your LDO.)
M_DSCOM Allows interfacing between the PiC and one or more

Centurion DS100/200 servo drives.
M_INIT

M_CHK1 Checks to see which servo axes (1 to 8) have been
initialized.

M_CHK101 Checks to see which servo axes 101 to 108 (17 to 24) have
been initialized.

M_CHK109 Checks to see which servo axes 109 to 116 (25 to 32) have
been initialized.

M_CHK49 Checks to see which digitizing axes (49 to 56) have been ini-
tialized.

M_CHK57 Checks to see which digitizing axes (57 to 64) have been ini-
tialized.

M_CHK65 Checks to see which digitizing axes (65 to 72) have been ini-
tialized.

M_CHK73 Checks to see which digitizing axes (73 to 80) have been
initialized.

M_CHK9 Checks to see which servo axes (9 to 16) have been
initialized.

M_CLOS1 Closes the loop on servo axes 1 to 8.
M_CLOS9 Closes the loop on servo axes 9 to 16.
M_CLS101 Closes the loop on servo axes 101 to 108 (17 to 24).
M_CLS109 Closes the loop on servo axes 109 to 116 (25 to 32).
M_RSET49 Resets E-stop errors on digitizing axes 49 to 56.
M_RSET57 Resets E-stop errors on digitizing axes 57 to 64.
M_RSET65 Resets E-stop errors on digitizing axes 65 to 72.
M_RSET73 Resets E-stop errors on digitizing axes 73 to 80.
 2-2

M_MOVE
M_JOG Jogs a closed loop axis.
M_LINCIR Performs linear, circular, and simultaneous endpoint arrival

moves on closed loop axes.
M_SCRVLC Provides the interface from the application .LDO to the

RATIO_RL function in order to perform linear coordinated,
circular, or third axis departure (simultaneous endpoint
arrival) moves with S-curve acceleration and deceleration.

M_PROFL
M_CNST_V Constant velocity segment.
M_PRF1MV One slave move for master.
M_PRF2MV Two slave moves for master
M_PRFDWL Slave dwell in profile.
M_PRFERR Check for profile errors.
M_PROFL Make profile for 1 move
M_SC_ACC Acceleration segment.
M_SC_DEC Deceleration segment
M_SETVAJ Set velocity, acceleration, and jerk values.

M_REF
M_CRSFIN Implements coarse, medium and fine resolvers.
M_FHOME Performs a home cycle on a closed loop axis using the fast

input as the reference switch.
M_LHOME Performs a home cycle on a closed loop axis using a discrete

input as the reference switch.
M_SERCOS

M_SRCMON Monitors up to five SERCOS IDNs.
M_SRCPRC Executes a SERCOS procedure command function.
M_SRCRDL Reads a list of SERCOS IDNs.
M_SRCWT Writes and reads up to five SERCOS IDNs.
M_SRCWTL Writes a list of SERCOS IDNs.
 2-3

S_ASFB
S_CLOS1 Closes the loop on SERCOS servo axes 1 to 8 (to replace

M_CLOS1)
S_CLOS9 Closes the loop on SERCOS servo axes 9 to 16 (to replace

M_CLOS9)
S_ERRORC Returns e-stop, c-stop, and programming errors for a SER-

COS servo axis or e-stop errors for a SERCOS digitizing
axis; SERCOS ring and slave errors are also returned (to
replace M_ERROR for SERCOS axis).

S_FHOME Performs a home cycle on a SERCOS servo axis using the
fast input as the reference switch (to replace M_FHOME for
SERCOS axis)

S_IO_C Allows control of the discrete I/O for a SERCOS servo axis
with a Centurion drive.

S_LHOME Performs a home cycle on a SERCOS servo axis using a dis-
crete input as the reference switch (to replace M_LHOME
for SERCOS axis)
 2-4

Example LDOs

The following example LDOs are included:

M_CAMREL An example .LDO that uses the M_RATREL function block
to convert a RATIOCAM profile to a RATIO_RL profile.

M_CAMSLP An example .LDO that uses the M_RATSLP function block
to convert a RATIOCAM profile to a RATIOSLP profile.
The M_PRTSLP function block is then used to print the
RATIOSLP profile.

M_CAPTUR An example .LDO that shows how to use the M_DATCAP
function block.

M_COORD An example .LDO that uses the M_LINCIR function block
to perform linear and circular coordinated moves on a pair
of axes.

M_DSM_EX An example .LDO that uses the M_DSMCOM function
block to communicate with Centurion drives through a
serial communications board in rack 0, slot 10, channel 2.

M_EXAMPL An example .LDO that shows how to use the M_CHK1,
M_CHK49, M_CLOS1, M_CRSFIN, M_ERROR,
M_FHOME, M_JOG, M_LHOME, M_RGSTAT,
M_RSET49, and M_STATUS function blocks.

M_PRF_EX An example .LDO that shows how to use the M_PRF2MV
function block to configure a slave profile for a RATIO_RL
move.

M_TUNE An example .LDO that shows how to use the M_RDTUNE
and M_WTTUNE function blocks.

MMC_DND An example .LDO that controls a Centurion DeviceNet
drive axis. The axis is homed, jogged or moved to a position
(either an absolute position or a relative distance).
 2-5

ADDCKSUM
Add checksum to string USER/M_DRVCOM

This function appends the one-byte checksum to the end of an input string.This is a
support routine and is not used in your LDO.

⁄ƒƒ NAME ƒø
≥ADDCKSUM ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥STRG ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs:EN (BOOL) - enables execution

STRG(STRING) - input string

Outputs: OK (BOOL) - execution complete

 2-6

BYTE2HEX
Converts a byte to a hex value USER/M_COMMON

This function block places the hexadecimal notation of the value at BYTE into
the string at STRG.

Example: If 27 is entered at the BYTE input, 1B will be reported at STRG.

⁄ƒƒ NAME ƒø
≥BYTE2HEX ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥BYTE √ƒ
≥ ≥
¥STRG ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

BYTE (BYTE) - value to convert

STRG(STRING) - converted value

Outputs: OK (BOOL) - execution complete

 2-7

CHKCKSUM
Check checksum in string USER/M_DRVCOM

This function checks the checksum in an input string. This is a support routine and
is not used in your LDO.

⁄ƒƒ NAME ƒø
≥CHKCKSUM ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥STRG OUT√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs:EN (BOOL) - enables execution

STRG(STRING) - input string to check

Outputs: OK (BOOL) - execution complete

 OUT (BOOL) - checksum OK output
 2-8

DWOR2HEX
Converts a double word to a hex value USER/M_COMMON

This function block places the hexadecimal notation of the value at DWOR into
the string at STRG.

Example: If 845,621 is entered at the DWOR input, CE735 will be reported at
STRG.

⁄ƒƒ NAME ƒø
≥DWOR2HEX ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥DWOR √ƒ
≥ ≥
¥STRG ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs:EN (BOOL) - enables execution

DWOR (DWOR) - value to convert

STRG (STRING) - converted value

Outputs: OK (BOOL) - execution complete
 2-9

HEX2BYTE
Converts a hex value to a byte USER/M_COMMON

This function block places the hexadecimal notation of the string at STRG into the
output at BYTE.

Example: If 1B is entered at the STRG input, 27 will be reported at the BYTE
output.

⁄ƒƒ NAME ƒø
≥HEX2BYTE ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥STRG BYTE√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STRG (STRING) - hexadecimal value to convert

Outputs: OK (BOOL) - execution complete

BYTE (BYTE) - converted value
 2-10

HEX2DWOR
Converts a hex value to a double word USER/M_COMMON

This function block places the hexadecimal notation at STRG into the output at
DWOR.

Example: If CE735 is entered at the STRG input, 845,621 will be reported at the
DWOR output.

⁄ƒƒ NAME ƒø
≥HEX2DWOR ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥STRG DWOR√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STRG (STRING) - hexadecimal value to convert

Outputs: OK (BOOL) - execution complete

DWOR (DWOR) - converted value
 2-11

HEX2WORD
Converts a hex value to a word USER/M_COMMON

This function block places the hexidecimal notation at STRG into the output at
WORD.

Example: If 26,854 is entered at the STRG input, 68E6 will be reported at the
WORD output.

⁄ƒƒ NAME ƒø
≥HEX2WORD ≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥STRG WORD√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

STRG (STRING) - hexadecimal value to convert

Outputs: OK (BOOL) - execution complete

WORD (WORD) - converted value
 2-12

M_CHK1
Check for Servo Axis Initialized USER/M_INIT

This function block checks to see which servo axes numbered from 1 to 8 have
been initialized by the user's servo setup function

The OK output of the STRTSERV function should be wired directly to the enable
(EN01) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other motion
functions.

⁄ƒƒ NAME ƒø
≥ M_CHK1 ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
≥ A1I√ƒ
≥ ≥
≥ A2I√ƒ
≥ ≥
≥ A3I√ƒ
≥ ≥
≥ A4I√ƒ
≥ ≥
≥ A5I√ƒ
≥ ≥
≥ A6I√ƒ
≥ ≥
≥ A7I√ƒ
≥ ≥
≥ A8I√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A1I (BOOL) - set if axis number 1 has been
 initialized

A2I (BOOL) - set if axis number 2 has been
initialized

A3I (BOOL) - set if axis number 3 has been
initialized

A4I (BOOL) - set if axis number 4 has been
initialized

A5I (BOOL) - set if axis number 5 has been
initialized

A6I (BOOL) - set if axis number 6 has been
initialized

A7I (BOOL) - set if axis number 7 has been
initialized

A8I (BOOL) - set if axis number 8 has been
initialized
 2-13

M_CHK101
Check for Servo Axis Initialized USER/M_INIT

This function block checks to see which servo axes numbered from 101 to 108
(servo axes 17 to 24) have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN01) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other motion
functions.

⁄ƒƒ NAME ƒø
≥ M_CHK101≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
≥ A101√ƒ
≥ ≥
≥ A102√ƒ
≥ ≥
≥ A103√ƒ
≥ ≥
≥ A104√ƒ
≥ ≥
≥ A105√ƒ
≥ ≥
≥ A106√ƒ
≥ ≥
≥ A107√ƒ
≥ ≥
≥ A108√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A101 (BOOL) - set if axis number 101 has been
initialized (servo axis 17).

A102 (BOOL) - set if axis number 102 has been
initialized (servo axis 18).

A103 (BOOL) - set if axis number 103 has been
 initialized (servo axis 19).

A104 (BOOL) - set if axis number 104 has been
initialized (servo axis 20).

A105 (BOOL) - set if axis number 105 has been
 initialized (servo axis 21).

A106 (BOOL) - set if axis number 106 has been
 initialized (servo axis 22).

A107 (BOOL) - set if axis number 107 has been
 initialized (servo axis 23).

A108 (BOOL) - set if axis number 108 has been
initialized (servo axis 24).
 2-14

M_CHK109
Check for Servo Axis Initialized USER/M_INIT

This function block checks to see which servo axes numbered from 109 to 116
(servo axes 25 to 32) have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN01) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other motion
functions.

⁄ƒƒ NAME ƒø
≥ M_CHK101≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
≥ A109√ƒ
≥ ≥
≥ A110√ƒ
≥ ≥
≥ A111√ƒ
≥ ≥
≥ A112√ƒ
≥ ≥
≥ A113√ƒ
≥ ≥
≥ A114√ƒ
≥ ≥
≥ A115√ƒ
≥ ≥
≥ A116√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A109 (BOOL) - set if axis number 109 has been
initialized (servo axis 25).

A110 (BOOL) - set if axis number 110 has been
initialized (servo axis 26).

A111 (BOOL) - set if axis number 111 has been
 initialized (servo axis 27).

A112 (BOOL) - set if axis number 112 has been
initialized (servo axis 28).

A113 (BOOL) - set if axis number 113 has been
initialized (servo axis 29).

A114 (BOOL) - set if axis number 114 has been
 initialized (servo axis 30).

A115 (BOOL) - set if axis number 115 has been
 initialized (servo axis 31).

A116 (BOOL) - set if axis number 116 has been
initialized (servo axis 32).
 2-15

M_CHK49
Check for Digitizing Axis Initialized USER/M_INIT

This function block checks to see which digitizing axes numbered from 49 to 56
have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN01) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other functions.

⁄ƒƒ NAME ƒø
≥ M_CHK49 ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
≥ A49I√ƒ
≥ ≥
≥ A50I√ƒ
≥ ≥
≥ A51I√ƒ
≥ ≥
≥ A52I√ƒ
≥ ≥
≥ A53I√ƒ
≥ ≥
≥ A54I√ƒ
≥ ≥
≥ A55I√ƒ
≥ ≥
≥ A56I√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A49I (BOOL) - set if axis number 49 has been
initialized

A50I (BOOL) - set if axis number 50 has been
 initialized

A51I (BOOL) - set if axis number 51 has been
initialized

A52I (BOOL) - set if axis number 52 has been
 initialized

A53I (BOOL) - set if axis number 53 has been
 initialized

A54I (BOOL) - set if axis number 54 has been
 initialized

A55I (BOOL) - set if axis number 55 has been
 initialized

A56I (BOOL) - set if axis number 56 has been
 initialized
 2-16

M_CHK57
Check for Digitizing Axis Initialized USER/M_INIT

This function block checks to see which digitizing axes numbered from 57 to 64
have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN00) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other functions.

⁄ƒƒ NAME ƒø
≥ M_CHK57 ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
≥ A57I√ƒ
≥ ≥
≥ A58I√ƒ
≥ ≥
≥ A59I√ƒ
≥ ≥
≥ A60I√ƒ
≥ ≥
≥ A61I√ƒ
≥ ≥
≥ A62I√ƒ
≥ ≥
≥ A63I√ƒ
≥ ≥
≥ A64I√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A57I (BOOL) - set if axis number 57 has been
initialized

A58I (BOOL) - set if axis number 58 has been
initialized

A59I (BOOL) - set if axis number 59 has been
initialized

A60I (BOOL) - set if axis number 60 has been
initialized

A61I (BOOL) - set if axis number 61 has been
initialized

A62I (BOOL) - set if axis number 62 has been
initialized

A63I (BOOL) - set if axis number 63 has been
initialized

A64I (BOOL) - set if axis number 64 has been
initialized
 2-17

M_CHK65
Check for Digitizing Axis Initialized USER/M_INIT

This function block checks to see which digitizing axes numbered from 65 to 72
have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN00) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other functions.

⁄ƒƒ NAME ƒø
≥ M_CHK65 ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
≥ A65I√ƒ
≥ ≥
≥ A66I√ƒ
≥ ≥
≥ A67I√ƒ
≥ ≥
≥ A68I√ƒ
≥ ≥
≥ A69I√ƒ
≥ ≥
≥ A70I√ƒ
≥ ≥
≥ A71I√ƒ
≥ ≥
≥ A72I√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A65I (BOOL) - set if axis number 65 has been
initialized

A66I (BOOL) - set if axis number 66 has been
initialized

A67I (BOOL) - set if axis number 67 has been
initialized

A68I (BOOL) - set if axis number 68 has been
initialized

A69I (BOOL) - set if axis number 69 has been
initialized

A70I (BOOL) - set if axis number 70 has been
initialized

A71I (BOOL) - set if axis number 71 has been
initialized

A72I (BOOL) - set if axis number 72 has been
initialized
 2-18

M_CHK73
Check for Digitizing Axis Initialized USER/M_INIT

This function block checks to see which digitizing axes numbered from 73 to 80
have been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN00) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other functions.

⁄ƒƒ NAME ƒø
≥ M_CHK73 ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
≥ A73I√ƒ
≥ ≥
≥ A74I√ƒ
≥ ≥
≥ A75I√ƒ
≥ ≥
≥ A76I√ƒ
≥ ≥
≥ A77I√ƒ
≥ ≥
≥ A78I√ƒ
≥ ≥
≥ A79I√ƒ
≥ ≥
≥ A80I√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A73I (BOOL) - set if axis number 73 has been
initialized

A74I (BOOL) - set if axis number 74 has been
initialized

A75I (BOOL) - set if axis number 75 has been
initialized

A76I (BOOL) - set if axis number 76 has been
initialized

A77I (BOOL) - set if axis number 77 has been
initialized

A78I (BOOL) - set if axis number 78 has been
initialized

A79I (BOOL) - set if axis number 79 has been
initialized

A80I (BOOL) - set if axis number 80 has been
initialized
 2-19

M_CHK9
Check for Servo Axis Initialized USER/M_INIT

This function block checks to see which servo axes numbered from 9 to 16 have
been initialized by the user's servo setup function.

The OK output of the STRTSERV function should be wired directly to the enable
(EN00) input of this function.

The outputs of this function will remain set even after the function is no longer
enabled.

The outputs of this function can be used to ensure the correct setup information has
been used. They can also be used as conditional contacts to qualify other motion
functions.

⁄ƒƒ NAME ƒø
≥ M_CHK9 ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
≥ A9I√ƒ
≥ ≥
≥ A10I√ƒ
≥ ≥
≥ A11I√ƒ
≥ ≥
≥ A12I√ƒ
≥ ≥
≥ A13I√ƒ
≥ ≥
≥ A14I√ƒ
≥ ≥
≥ A15I√ƒ
≥ ≥
≥ A16I√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

Outputs: OK (BOOL) - execution complete

A9I (BOOL) - set if axis number 9 has been
initialized

A10I (BOOL) - set if axis number 10 has been
initialized

A11I (BOOL) - set if axis number 11 has been
initialized

A12I (BOOL) - set if axis number 12 has been
initialized

A13I (BOOL) - set if axis number 13 has been
initialized

A14I (BOOL) - set if axis number 14 has been
initialized

A15I (BOOL) - set if axis number 15 has been
initialized

A16I (BOOL) - set if axis number 16 has been
initialized
 2-20

M_CLOS1
Close Loop on Servo Axes 1 to 8 USER/M_INIT

This function block is used to reset the E-stop, C-stop, and programming errors on
servo axes 1 through 8 when the machine start input is pulsed. It closes the loop on
servo axes 1 through 8 after the machine start input is pulsed and a programmable
time delay has elapsed. It drops the loop closed flag if an E-stop fault occurs.

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the
current state of the electrical E-stop status as shown below.

⁄ƒƒ NAME ƒø
≥ M_CLOS1 ≥
≥ ≥
¥EN01 CLSD√ƒ
≥ ≥
¥MSTR A1C√ƒ
≥ ≥
¥DELY A2C√ƒ
≥ ≥
≥ A3C√ƒ
≥ ≥
≥ A4C√ƒ
≥ ≥
≥ A5C√ƒ
≥ ≥
≥ A6C√ƒ
≥ ≥
≥ A7C√ƒ
≥ ≥
≥ A8C√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

MSTR (BOOL) - machine start input

DELY (TIME) - amount of time that will elapse after
a positive transition of MSTR until the loops will be
closed

Outputs: CLSD (BOOL) - one or more of axes 1 to 8 have their
position loops closed

A1C (BOOL) - set when the loop is closed on axis 1

A2C (BOOL) - set when the loop is closed on axis 2

A3C (BOOL) - set when the loop is closed on axis 3

A4C (BOOL) - set when the loop is closed on axis 4

A5C (BOOL) - set when the loop is closed on axis 5

A6C (BOOL) - set when the loop is closed on axis 6

A7C (BOOL) - set when the loop is closed on axis 7

A8C (BOOL) - set when the loop is closed on axis 8

ESTOPACT

MACHSTRT
 P ENxx
 2-21

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical
E-stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended ladder logic for the E-stop handling of
the M_CLOS1 application. Please refer to MMC2_EX.LDO for an example of
M_CLOS1.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time at DELY is normally in the range from 500 ms to 2 sec.

On a positive transition of MSTR, this function will reset all E-stop, C-stop, and
programming errors on axes 1 through 8.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, the loops will be closed on axes 1 to 8. CLSD will be energized
if one or more axes 1 to 8 have their position loops closed. The delay allows the
drive some time to power up before it starts controlling the axis.

If an E-stop fault occurs on any of axis 1 to 8, its loop closed output (A1 to A8)
will be dropped. CLSD is true as long as one or more of axes 1 to 8 have their
position loops closed.
 2-22

M_CLOS9
Close Loop on Servo Axes 9 to 16 USER/M_INIT

This function block is used to reset the E-stop, C-stop, and programming errors on
servo axes 9 through 16 when the machine start input is pulsed. It closes the loop
on servo axes 9 through 16 after the machine start input is pulsed and a program-
mable time delay has elapsed. It drops the loop closed flag if an E-stop fault
occurs.

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the
current state of the electrical E-stop status as shown below.

⁄ƒƒ NAME ƒø
≥ M_CLOS9 ≥
≥ ≥
¥EN00 CLSD√ƒ
≥ ≥
¥MSTR A9C√ƒ
≥ ≥
¥DELY A10C√ƒ
≥ ≥
≥ A11C√ƒ
≥ ≥
≥ A12C√ƒ
≥ ≥
≥ A13C√ƒ
≥ ≥
≥ A14C√ƒ
≥ ≥
≥ A15C√ƒ
≥ ≥
≥ A16C√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

MSTR (BOOL) - machine start input

DELY (TIME) - amount of time that will elapse after
a positive transition of MSTR until the loops will be
closed

Outputs:CLSD (BOOL) - one or more of axis 9 to 16 have their
position loops closed

A9C (BOOL) - set when the loop is closed on axis 9

A10C (BOOL) - set when the loop is closed on
axis 10

A11C (BOOL) - set when the loop is closed on
axis 11

A12C (BOOL) - set when the loop is closed on
axis 12

A13C (BOOL) - set when the loop is closed on
axis 13

A14C (BOOL) - set when the loop is closed on
axis 14

A15C (BOOL) - set when the loop is closed on
axis 15

A16C (BOOL) - set when the loop is closed on
axis 16
 2-23

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical
E-stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended ladder logic for the E-stop handling of
the M_CLOSx application. Please refer to MMC2_EX.LDO for an example of
M_CLOS1 usage that applies to M_CLOS9 as well.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time at DELY is normally in the range from 500 ms to 2 sec.

On a positive transition of MSTR, this function will reset all E-stop, C-stop, and
programming errors on axes 9 through 16.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, the loops will be closed on axes 9 to 16. CLSD will be ener-
gized if one or more of axes 9 to 16 have their position loops closed. The delay
allows the drive some time to power up before it starts controlling the axis.

If an E-stop fault occurs on any of axis 9 to 16, its loop closed output (A9 to A16)
will be dropped. CLSD is true as long as one or more of axes 9 to 16 have their
position loops closed.

ESTOPACT

MACHSTRT
 P ENxx
 2-24

M_CLS101
Close Loop on Servo Axes 101-108 (17th to 24th) USER/M_INIT

This function block is used to reset the E-stop, C-stop, and programming errors on
servo axes called 101 through 108 (the 17th to the 24th defined axes) when the
machine start input is pulsed. It closes the loop on servo axes 101 through 108 after
the machine start input is pulsed and a programmable time delay has elapsed. It
drops the loop closed flag if an E-stop fault occurs.

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the
current state of the electrical E-stop status as shown below.

⁄ƒƒ NAME ƒø
≥M_CLS101 ≥
≥ ≥
¥EN00 CLSD√ƒ
≥ ≥
¥MSTR A101√ƒ
≥ ≥
¥DELY A102√ƒ
≥ ≥
≥ A103√ƒ
≥ ≥
≥ A104√ƒ
≥ ≥
≥ A105√ƒ
≥ ≥
≥ A106√ƒ
≥ ≥
≥ A107√ƒ
≥ ≥
≥ A108√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution
MSTR (BOOL) - machine start input
DELY (TIME) - amount of time that will elapse after
a positive transition of MSTR until the loops will be
closed
Outputs: CLSD (BOOL) - one or more of axes 101 to 108 have
their position loops closed
A101 (BOOL) - set when the loop is closed on
axis called 101 (the 17th defined axis)
A102 (BOOL) - set when the loop is closed on
axis called 102 (the 18th defined axis)
A103 (BOOL) - set when the loop is closed on
axis called 103 (the 19th defined axis)
A104 (BOOL) - set when the loop is closed on
axis called 104 (the 20th defined axis)
A105 (BOOL) - set when the loop is closed on
axis called 105 (the 21st defined axis)
A106 (BOOL) - set when the loop is closed on
axis called 106 (the 22nd defined axis)
A107 (BOOL) - set when the loop is closed on
 axis called 107 (the 23rd defined axis)
A108 (BOOL) - set when the loop is closed on
axis called 108 (the 24th defined axis)
 2-25

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical
E-stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended ladder logic for the E-stop handling of
the M_CLOSx application. Please refer to MMC2_EX.LDO for an example of
M_CLOS1 usage that applies to M_CLS101 as well.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time at DELY is normally in the range from 500 ms to 2 sec.

On a positive transition of MSTR, this function will reset all E-stop, C-stop, and
programming errors on axes 101 to 108.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, the loops will be closed on axes 101 to 108. CLSD will be
energized if one or more of axes 101 to 108 have their position loops closed. The
delay allows the drive some time to power up before it starts controlling the axis.

If an E-stop fault occurs on any of axis 101 to 108, its loop closed output
(A101 to A108) will be dropped. CLSD is true as long as one or more of axes
101 to 108 have their position loops closed.

ESTOPACT

MACHSTRT
 P ENxx
 2-26

M_CLS109
Close Loop on Servo Axes 109-116 (25th to 32nd USER/M_INIT

This function block is used to reset the E-stop, C-stop, and programming errors on
servo axes called 109 through 116 (the 25th to the 32nd defined axes) when the
machine start input is pulsed. It closes the loop on servo axes 109 through 116 after
the machine start input is pulsed and a programmable time delay has elapsed. It
drops the loop closed flag if an E-stop fault occurs.

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the
current state of the electrical E-stop status as shown below.

⁄ƒƒ NAME ƒø
≥M_CLS109 ≥
≥ ≥
¥EN00 CLSD√ƒ
≥ ≥
¥MSTR A109√ƒ
≥ ≥
¥DELY A110√ƒ
≥ ≥
≥ A111√ƒ
≥ ≥
≥ A112√ƒ
≥ ≥
≥ A113√ƒ
≥ ≥
≥ A114√ƒ
≥ ≥
≥ A115√ƒ
≥ ≥
≥ A116√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution
MSTR (BOOL) - machine start input
DELY (TIME) - amount of time that will elapse after
a positive transition of MSTR until the loops will be
closed
Outputs: CLSD (BOOL) - one or more of axes 109 to 116 have
their position loops closed
A109 (BOOL) - set when the loop is closed on
axis called 109 (the 25th defined axis)
A110 (BOOL) - set when the loop is closed on
axis called 110 (the 26th defined axis)
A111 (BOOL) - set when the loop is closed on
axis called 111 (the 27th defined axis)
A112 (BOOL) - set when the loop is closed on
axis called 112 (the 28th defined axis)
A113 (BOOL) - set when the loop is closed on
axis called 113 (the 29th defined axis)
A114 (BOOL) - set when the loop is closed on
axis called 114 (the 30th defined axis)
A115 (BOOL) - set when the loop is closed on
axis called 115 (the 31st defined axis)
A116 (BOOL) - set when the loop is closed on
axis called 116 (the 32nd defined axis)
 2-27

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical
E-stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended ladder logic for the E-stop handling of
the M_CLOSx application. Please refer to MMC2_EX.LDO for an example of
M_CLOS1 usage that applies to M_CLS109 as well.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time at DELY is normally in the range from 500 ms to 2 sec.

On a positive transition of MSTR, this function will reset all E-stop, C-stop, and
programming errors on axes 109 to 116.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, the loops will be closed on axes 109 to 116. CLSD will be
energized if one or more of axes 109 to 116 have their position loops closed. The
delay allows the drive some time to power up before it starts controlling the axis.

If an E-stop fault occurs on any of axis 109 to 116, its loop closed output
(A109 to A116) will be dropped. CLSD is true as long as one or more of axes
109 to 116 have their position loops closed.

ESTOPACT

MACHSTRT
 P ENxx
 2-28

M_CRSFIN
Coarse, Medium and Fine Resolver USER/M_REF

This function block reads coarse, medium, and fine resolvers and then part refer-
ences the fine axis to the value calculated by using coarse, medium and fine.
Three separate combinations of resolvers can be used: coarse, medium, and fine;
coarse and fine; or medium and fine.

This function block should be one-shot after the axes have been initialized by the
user's servo setup function.

The value entered at C_AX is the axis number for the coarse resolver, or 0 if you
are not using a coarse resolver.

The value entered at M_AX is the axis number for the medium resolver, or 0 if you
are not using a medium resolver.

The value entered at F_AX is the axis number for the fine resolver. This is also the
axis that will be part referenced by this function block.

The value entered at CRAT is the coarse to medium ratio if coarse, medium and
fine resolvers are being used, or the coarse to fine ratio if only coarse and fine
resolvers are being used.

The value entered at MRAT is the medium to fine ratio.

⁄ƒƒ NAME ƒø
≥ M_CRSFIN≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥C_AX ERR√ƒ
≥ ≥
¥M_AX FPOS√ƒ
≥ ≥
¥F_AX CVAL√ƒ
≥ ≥
¥CRAT MVAL√ƒ
≥ ≥
¥MRAT FVAL√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

C_AX (USINT) - coarse resolver axis number

M_AX (USINT) - medium resolver axis number

F_AX (USINT) - fine resolver axis number

CRAT (DINT) - coarse to medium or coarse to

fine ratio

MRAT (DINT) - medium to fine ratio

Outputs:OK (BOOL) - execution complete without error

ERR (INT) - error number

FPOS (DINT) - position that the fine axis has
been part referenced to

CVAL (DINT) - value read from the coarse resolver

MVAL (DINT) - value read from the medium

resolver

FVAL (BOOL) - value read from the fine resolver
 2-29

The OK output indicates execution complete without error. If the OK output is not
set, then an error has occurred and the error code will be stored in the ERR output.
A listing of possible errors is shown below:

The FPOS output will show the final value that the fine axis has been part refer-
ence to.

The CVAL output will show the value read from the coarse resolver.

The MVAL output will show the value read from the medium resolver.

The FVAL output will show the value read from the fine resolver.

ERR Description
0 No error
1 The OK from the READ_SV function for the fine axis was not set
2 The OK from the READ_SV function for the medium axis was not

set
3 The OK from the READ_SV function for the coarse axis was not set
4 M_AX and C_AX inputs are both zero
5 M_AX was non-zero, but MRAT was zero
6 C_AX was non-zero, but CRAT was zero
7 The fine axis is moving or drifting
8 The medium axis is moving or drifting
9 The coarse axis is moving or drifting
10 The fine axis position was not between 0 and 3999
11 The medium axis position was not between 0 and 3999
12 The coarse axis position was not between 0 and 3999
13 An error occurred in the calculations for coarse, medium and fine
14 An error occurred in the calculations for coarse and fine
15 An error occurred in the calculations for medium and fine
16 The OK from the part reference function for F_AX did not get set
 2-30

M_DATCAP
Captures Axis Information USER/M_DATA

⁄ƒƒ NAME ƒø
≥ M_DATCAP≥
≥ ≥
¥EN00 IDNE√ƒ
≥ ≥
¥INIT IERR√ƒ
≥ ≥
¥SRCE ELEM√ƒ
≥ ≥
¥QTY CDNE√ƒ
≥ ≥
¥SIZE SNDE√ƒ
≥ ≥
¥STRT SFAL√ƒ
≥ ≥
¥ONCE SERR√ƒ
≥ ≥
¥SEND ≥
≥ ≥
¥RDSK ≥
≥ ≥
¥SDIR ≥
≥ ≥
¥FILE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

INIT (BOOL) - initializes data capture memory area

SRCE (STRUCT(0..7)) - defines axis number and
variable number to capture

QTY (USINT) - defines the number of variables to
capture (This is the same as the number of elements
used in the SRCE array.)

SIZE (UINT) - defines the number of samples to
be captured

STRT (BOOL) - starts data capture

ONCE (BOOL) - set to capture data once; reset
to capture data continuously

SEND (BOOL) - starts save of captured data
to RAMDISK or workstation

RDSK (BOOL) - set if data will be saved to the
RAMDISK or reset if data will be saved to the
workstation

SDIR (STRING) - the subdirectory on the
workstation or RAMDISK to send the data to (an eight
character maximum)

FILE (STRING) - the file name that the data will be
saved as (a 12 character maximum)

Outputs: IDNE (BOOL) - initialization complete without error

IERR (USINT) - error number that occurred during
initialization

ELEM (UINT) - the element number currently
being captured

CDNE (BOOL) - capture done

SDNE (BOOL) - file send done

SFAL (BOOL) - file send failed

SERR (INT) - error number that occurred during
file send
 2-31

This function block is considered obsolete. It requires the CAP2ASC.EXE DOS
utility to extract the data captured. The M_DATCPT function block performs the
same data capture operations as M_DATCAP with the same function block inputs
and outputs except M_DATCPT creates an output file that is already in a directly
viewable ASCII text format (it is a tab-delimited variable format).

This function block captures axis information on an interrupt basis and stores it in
a structure. The structure can then be written out to a binary file on the RAMDISK
or the workstation. In order to manipulate the data, convert this binary file to an
ASCII text file using the CAP2ASC.exe which is included with the Motion ASFB
examples. On your PC, type:

CAP2ASC filename

where filename is the name you assigned to the binary file. You can then view and/
or edit this ASCII file using a text editing program or import it into a
spreadsheet.

The EN00 input of this function block should be set every scan.

On a positive transition of the INIT input, the values entered at the SRCE input are
examined. The SRCE input is an array of structures and must have the following
members:

Name Data Type Definition
SRCE STRUCT(0..7) Defines axis and variables to capture
.AXIS USINT Defines the axis to capture data for
.VAR USINT Defines the variable to capture
 2-32

The SRCE(X).VAR input must be one of the following values:

 * The variables in the READ_SV function are reported in ladder units
(LU). The variables in DATCAP function block are reported in feedback
units (FU).

SRCE(X).VAR Definition
1 Actual Position (variable 1 of READ_SV)*
2 Fast input occurred
3 Commanded position (variable 3 of READ_SV)*
4 Position error (variable 4 of READ_SV)*
5 Filter error (variable 5 of READ_SV)*
6 Command change (variable 6 of READ_SV)*
7 Position change (variable 7 of READ_SV)*
8 Feedback position (variable 8 of READ_SV)*
9 Prefilter commanded
10 Prefilter command change
11 Remaining master offset
12 Remaining slave offset
 2-33

If an error is found at the SRCE input, then IDNE will not be set and IERR will
hold a number describing the error that occurred. If no errors are found at the
SRCE input, then IDNE will be set. A listing of possible errors at IERR are shown
below:

The QTY input defines the number of variables that will be captured. This is the
same as the number of array elements used in the SRCE input.

The SIZE input defines the number of samples to capture.

When the STRT input is on, if ONCE is also on, the data will be captured once.
When the STRT input is on, if ONCE is off, then the data will be captured continu-
ously until the STRT input drops.

While the data is being captured, the ELEM output will show the current element
number being captured. When data capture is complete, the CDNE output will be
set.

Once the data has been captured, it can be sent to a file on the RAMDISK or work-
station. The data will be sent when the SEND input is pulsed. If the RDSK input is
ON when the SEND input is pulsed, then the captured data will be sent to the
PiC900 RAMDISK. If the RDSK input is OFF when the SEND input is pulsed,
then the captured data will be sent to the workstation C: drive.

The file will be saved with the name entered at FILE. This must be of the form
FILENAME.EXT.

The SDIR input defines the subdirectory where the file will be located. The subdi-
rectory must not exceed eight characters.

IERR Description
0 No error
1 The function block has not stopped capturing data from a previous

data capture initialization.
2 An axis number in the structure is invalid
3 The limit of eight variables in the array of structures has been

exceeded.
4 Parameter number in the structure is out of range.
5 The initialization was done before the STRTSERV function was

called.
6 Reserved
7 Reserved
8 Reserved
9 The total number of bytes to capture exceeds 7992.
 2-34

When the file has been successfully sent, the SDNE output will be set. If an error
occurred in writing the file, then SFAL will be set and SERR will contain a number
describing the error that occurred. A list of errors is shown below:

SERR Description
0 No error

1 to 99 Error occurred on file open
101 to 199 Error occurred on file write
201 to 299 Error occurred on file write
301 to 399 Error occurred on file write
401 to 499 Error occurred on file write
501 to 599 Error occurred on file close
 2-35

M_DATCPT
Capture Axis data to file USER/M_DATA

⁄ƒƒ NAME ƒø
≥ M_DATCPT≥
≥ ≥
¥EN00 IDNE√ƒ
≥ ≥
¥INIT IERR√ƒ
≥ ≥
¥SRCE ELEM√ƒ
≥ ≥
¥QTY CDNE√ƒ
≥ ≥
¥SIZE SNDE√ƒ
≥ ≥
¥STRT SFAL√ƒ
≥ ≥
¥ONCE SERR√ƒ
≥ ≥
¥SEND ≥
≥ ≥
¥RDSK ≥
≥ ≥
¥SDIR ≥
≥ ≥
¥FILE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

INIT (BOOL) - initializes data capture memory area

SRCE (STRUCT(0..7)) - defines axis number and
variable number for each item to capture

QTY (USINT) - number of variables to capture
(This is the same as the number of elements
used in the SRCE array.)

SIZE (UINT) - number of samples to be captured

STRT (BOOL) - starts the data capture

ONCE (BOOL) - set to capture data once; reset
to capture data continuously

SEND (BOOL) - starts save of captured data
to specified file

RDSK (BOOL) - set if data will be saved to the
RAMDISK or reset if data will be saved to the
PC hard disk.

SDIR (STRING) - name of subdirectory (an eight
character maximum)

FILE (STRING) - the file name that the data will be
saved as (8.3 format)

Outputs: IDNE (BOOL) - initialization complete without error

IERR (USINT) - initialization error number

ELEM (UINT) - the element number currently
being captured

CDNE (BOOL) - capture done

SDNE (BOOL) - file send done

SFAL (BOOL) - file send failed

SERR (INT) - error number that occurred during
file send
 2-36

This function block captures axis information on an interrupt basis and stores it in
a structure. The structure can then be written out to a text file on the RAMDISK or
the workstation. This text file is directly viewable with any text editor. It is also tab
delimited so its possible to import it into some spreadsheet applications. This func-
tion block provides simpler control of CAPTINIT and CAPSTAT. Both of these
standard functions are documented in the PiCPro Function Block Reference Guide
and in on-line Help.

The EN00 input of this function block should be set every scan.

On a positive transition of the INIT input, the values entered at the SRCE input are
examined. The SRCE input is an array of structures and must have the following
members:

The SRCE(X).VAR input must be one of the following values:

* The variables in the READ_SV function are reported in ladder units (LU). The
variables in DATCAP function block are reported in feedback units (FU).

Name Data Type Definition
SRCE STRUCT(0..7) Defines axis and variables to capture
.AXIS USINT Defines the axis to capture data for
.VAR USINT Defines the variable to capture

SRCE(X).VAR Definition
1 Actual Position (variable 1 of READ_SV)*
2 Fast input occurred
3 Commanded position (variable 3 of READ_SV)*
4 Position error (variable 4 of READ_SV)*
5 Filter error (variable 5 of READ_SV)*
6 Command change (variable 6 of READ_SV)*
7 Position change (variable 7 of READ_SV)*
8 Feedback position (variable 8 of READ_SV)*
9 Prefilter commanded position
10 Prefilter command change
11 Remaining master offset
12 Remaining slave offset
13 Command change (variable 6 of READ_SV)
14 Position change (variable 7 of READ_SV)
15 Prefilter command change
 2-37

If an error is found at the SRCE input, then IDNE will not be set and IERR will
hold a number describing the error that occurred. If no errors are found at the
SRCE input, then IDNE will be set. A listing of possible errors at IERR are shown
below:

The QTY input defines the number of variables that will be captured. This is the
same as the number of array elements used in the SRCE input.

The SIZE input defines the number of samples to capture.

When the STRT input is on, if ONCE is also on, the data will be captured once.
When the STRT input is on, if ONCE is off, then the data will be captured continu-
ously until the STRT input drops.

While the data is being captured, the ELEM output will show the current element
number being captured. When data capture is complete, the CDNE output will be
set.

Once the data has been captured, it can be sent to a file on the RAMDISK or work-
station. The data will be sent when the SEND input is pulsed. If the RDSK input is
ON when the SEND input is pulsed, then the captured data will be sent to the
PiC900 RAMDISK. If the RDSK input is OFF when the SEND input is pulsed,
then the captured data will be sent to the workstation C: drive.

The file will be saved with the name entered at FILE. This must be of the form
FILENAME.EXT.

The SDIR input defines the subdirectory where the file will be located. The subdi-
rectory must not exceed eight characters.

IERR Description
0 No error
1 The function block has not stopped capturing data from a previous

data capture initialization.
2 An axis number in the structure is invalid
3 The limit of eight variables in the array of structures has been

exceeded.
4 Parameter number in the structure is out of range.
5 The initialization was done before the STRTSERV function was

called.
6 Reserved
7 Reserved
8 Reserved
9 The total number of bytes to capture exceeds 7992.
 2-38

When the file has been successfully sent, the SDNE output will be set. If an error
occurred in writing the file, then SFAL will be set and SERR will contain a number
describing the error that occurred. A list of errors is shown below:

SERR Description
0 No error

1 to 99 Error occurred on file open.
(See Appendix B in the Software Manual)

101 to 199 Error occurred on file write
201 to 299 Error occurred on file close
 2-39

M_DNJOGC
Jog DeviceNet Axis USER/M_DEVNET

This function block is used to allow a manual jog (move at a velocity) of a Centu-
rion DeviceNet Drive axis.

Before this function block can be used, the axis must be enabled and placed into
servo lock.

If the enable is active, triggering job plus (JPLS) or jog minus (JMNS) input will
cause the specified DeviceNet axis to move at the indicated rate in the correspond-
ing direction. When the input is deactivated, motion will stop.

This function block should be used only to allow an operator to manually move an
axis on a machine. It is not designed for any other purpose.

Important - If the enable is disabled while a move is underway the axis will con-
tinue to move until the jog switch is deactivated.

The JPLS input enables a move in the positive direction for the selected axis.

The JMNS input enables a move in the negative direction for the selected axis.

Rate is programmed in RPM * 65,536. An example: for 100 RPM, Rate =
6553600.

If both the JPLS and the JMNS inputs are set; motion will stop until both inputs are
dropped and one is again selected.

⁄ƒƒ NAME ƒø
≥ M_DNJOGC≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥JPLS JACT√ƒ
≥ ≥
¥JMNS WRC√ƒ
≥ ≥
¥RATE CDI0√ƒ
≥ ≥
¥WDB CDI1√ƒ
≥ ≥
¥ZERV CDI2√ƒ
≥ ≥
≥ CMD√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs:EN00 (BOOL) - enables execution

JPLS (BOOL) - jog in the PLUS direction (CW)

JMNS (BOOL) - jog in the MINUS direction (CCW)

RATE (DINT) - rate or velocity (programmed as RPM * 65536)

WDB (BOOL) - DeviceNet write data busy flag

ZERV (BOOL) - axis zero velocity - axis has stopped

Outputs: OK (BOOL) - function block is active

JACT (BOOL) - axis jog is active

WRC (BOOL) - write data/command to the drive

CDI0 (BOOL) - command data index - bit 0

CDI1 (BOOL) - command data index - bit 1

CDI2 (BOOL) - command data index - bit 2

CMD (DWORD) - command data value
 2-40

M_DNPOSC
Move DN Axis to Position USER/M_DEVNET

This function block is used to allow a position / index move with a Centurion
DeviceNet Drive axis.

Before this function block can be used, the axis must be enabled and placed into
servo lock.

If the enable is active, triggering (STRT) input will cause the specified DeviceNet
axis to move at the indicated rate to the position endpoint (POS). The axis will
travel an incremental distance if the ABSO input is deactivated. The axis will
travel to an absolute position if the ABSO input is activated.

Important - If the enable is disabled while a move is underway, the axis will con-
tinue to move until it has reached its endpoint.

⁄ƒƒ NAME ƒø
≥ M_DNPOSC≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥STRT STAT√ƒ
≥ ≥
¥RATE STRI√ƒ
≥ ≥
¥POS WRC√ƒ
≥ ≥
¥ABSO CDI0√ƒ
≥ ≥
¥FDBK CDI1√ƒ
≥ ≥
¥WDB CDI2√ƒ
≥ ≥
¥ZERV CDI3√ƒ
≥ ≥
¥INPO CDI4√ƒ
≥ ≥
¥HOME CMD√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs:EN00 (BOOL) - enables execution

STRT (BOOL) - start the axis move

RATE (DINT) - rate or velocity (programmed as RPM * 65536)

POS (DINT) - command position in FU

ABSO (BOOL) - absolute or incremental position
(set indicates absolute)

FDBK (DWORD) - actual position (feedback) from the drive

WDB (BOOL) - DeviceNet write data busy flag

ZERV (BOOL) - axis is at zero velocity - axis has stopped

INPO (BOOL) - axis is in position - axis is at its commanded
position

HOME (BOOL) - axis is homed

Outputs: OK (BOOL) - function block is active

STAT (INT) - axis status value

STRI (BOOL) - start move indicator

WRC (BOOL) - write data/command to the drive

CDI0 (BOOL) - command data index - bit 0

CDI1 (BOOL) - command data index - bit 1

CDI2 (BOOL) - command data index - bit 2

CDI3 (BOOL) - command data index - bit 3

CDI4 (BOOL) - command data index - bit 4 (not used)

CMD (DWORD) - command data value
 2-41

The Position command (POS) is entered in feedback counts. (Example: for an
8000 counts/rev encoder and an incremental move, Position = 16000 will result in
a move of 2 revolutions).

Rate is programmed in RPM * 65,536. For example, for 100 RPM, Rate =
6553600.

The axis status (STAT) will indicate the status of the axis based on the following
code:

1 = Axis is Positioning

2 = Absolute mode: the command is equal to current position

3 = Incremental mode: the command is equal to zero

4 = Rate is equal to zero

5 = Absolute mode and axis is not Homed
 2-42

M_DNSTAT
DeviceNet Module Status USER/M_DEVNET

This function block obtains the DeviceNet network and interface status conditions.
Those conditions are presented in outputs as bytes and booleans.

ONLI is set if the DeviceNet module is communicating with nodes.

NSC is the status of the DeviceNet module network interface.

0 = network interface is offline.

1 = network interface is offline due to a network fault.

2 = network interface is offline due to a configuration fault.

3 = network interface is online and no faults are detected.

4 = network interface is online but one or more network services have failed.

5 = network interface is online and is exchanging data; no faults are detected.

6 = network interface is online and is exchanging data; one or more network ser-
vices is receiving an idle indication; no faults are detected.

7 = network interface is online but one or more previously active network services
have been suspended; no faults are detected.

IFC is the status of the DeviceNet module data exchange interface.

0 = data exchange interface is closed.

1 = data exchange interface is open

2 = data exchange interface is faulted due to a "heartbeat" timeout.

WARN is set when the communication warning threshold has been exceeded.

⁄ƒƒ NAME ƒø
≥ M_DNSTAT≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥SLOT FAIL√ƒ
≥ ≥
≥ ONLI√ƒ
≥ ≥
≥ NSC√ƒ
≥ ≥
≥ IFSC√ƒ
≥ ≥
≥ WARN√ƒ
≥ ≥
≥ NPWR√ƒ
≥ ≥
≥ NBUS√ƒ
≥ ≥
≥ EVLO√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs:EN00 (BOOL) - enables execution

SLOT (USINT) - slot number for the DeviceNet module

Outputs: OK (BOOL) - execution complete

FAIL (BOOL) - failure getting the DeviceNet status

ONLI - (BOOL) - DeviceNet module is online

NSC (BYTE) - DeviceNet Network Status Code

IFSC (BYTE) - DeviceNet Interface Status Code

WARN (BOOL) - DeviceNet communication error warning

NPWR (BOOL) - No DeviceNet bus power

NBUS (BOOL) - No DeviceNet bus connection

EVLO (BOOL) - DeviceNet event was lost due to full event
queue
 2-43

NPWR is set when DeviceNet bus power is not present.

NBUS is set when DeviceNet bus is not connected.

EVLO is set when an event was lost due to a full event queue in the DeviceNet
module. This flag is cleared when the DeviceNet interface is closed (FB_CLS).

For more information regarding how this information is gathered or the meaning
of any of the outputs, consult the FB_STA function description.
 2-44

M_DSMCOM
Centurion DSM Serial Communication USER/M_DRVCOM

The M_DSMCOM function block allows the PiC to interface with from 1 to 32
Centurion DSM100 servo drives via RS232 or RS422/RS485 serial communica-
tion links. With this function block, various drive parameters can be read and writ-
ten. These parameters are listed in Appendix A.

⁄ƒƒ NAME ƒø
≥ M_DSMCOM≥
≥ ≥
¥EN00 DONE√ƒ
≥ ≥
¥PORT FAIL√ƒ
≥ ≥
¥ADDR FERR√ƒ
≥ ≥
¥INIT OERR√ƒ
≥ ≥
¥SEND DERR√ƒ
≥ ≥
¥CMD RNUM√ƒ
≥ ≥
¥WDAT ≥
≥ ≥
¥WNUM ≥
≥ ≥
¥RDAT ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs:EN00 (BOOL) - enables execution

PORT (STRING) - identifies the serial
communication port

ADDR (USINT) - identifies the Centurion servo

drive address

INIT (BOOL) - (one-shot) initializes M_DSMCOM

SEND (BOOL) - (one-shot) executes read or write
command

CMD (UINT) - command to execute

WDAT (memory area) source of data for the write

command
memory area is a STRING, ARRAY, or
STRUCTURE

WNUM (USINT) - number of bytes of data in

WDAT

RDAT (memory area) - destination of data returned
by the read command
memory area is a STRING, ARRAY, or
STRUCTURE

Outputs: DONE (BOOL) - command executed without error

FAIL (BOOL) - command encountered an error

FERR (UINT) - PiC format error number

OERR (UINT) - operation error number

DERR (UINT) - Centurion drive error number

RNUM (USINT) - number of bytes of data in RDAT
 2-45

Inputs

The EN00 input of this function block should be set every scan.

The PORT input identifies the serial communication port. If the PiC user port is
used, the reserved name USER:$00 is entered. If a serial communication module is
used, the name assigned to the port by the ASSIGN function block should be
entered. The string can be no longer than 10 characters, with up to eight characters
for the name followed by a ":" and the null character"$00".

The ADDR input identifies the Centurion servo drive address. The drive address is
set using the sixteen position rotary addressing switch on the drive or via software
using DSMPro. The range is 0 to 32.

The INIT input initializes the M_DSMCOM function block. The DONE output
will be set when the initialization has successfully completed. This initialization
must be executed before a read or write is executed.

The SEND input executes a read or write command.

To execute a read command:

1. Move the command number into the CMD input.

2. One-shot the SEND input.

When the DONE output goes high:

• RDAT will hold the data read.

• RNUM will hold the number of bytes of data read.

To execute a write command:

1. Move the command number into the CMD input.

2. Move the data to write into the WDAT input.

3. Move the number of bytes of data into the WNUM input.

4. One-shot the SEND input.

When the DONE output goes high, the command is complete.

NOTE: Never send a new command until any previous command or initialization
has completed. Completion is indicated by the DONE (or FAIL) output going high.

The CMD input specifies which read or write command to execute. See Appendix
A for a list of all the available commands.
 2-46

The WDAT input is the data to be written to the drive. The type and number of data
depends on the write command being executed. There are two ways to handle the
data to this input:

1. If your application will only be writing one specific command or different com-
mands that are all the same data type, use a structure whose member(s) is/are the
correct data type(s) to be sent.
For example, the write command 0DDH Analog Output Write Value expects an
unsigned byte value followed by a signed word value. With this command, you
could enter a structure at the WDAT input whose first member is an USINT and
whose second member is an INT.

2. If your application will be writing different commands that are different data
types, use a structure with one member that is the largest data type and use the
PiCPro datatype conversion functions to convert any data to the data type of the
structure member before sending the data.

The WNUM input is the number of bytes of data in WDAT.

The RDAT input is the data read from the drive. Following the successful comple-
tion of a read command, the memory area pointed to by the RDAT input holds the
data read from the drive. The RNUM output will indicate the number of bytes of
data read. The type and number of data depends on the read command being exe-
cuted. Again, there are two ways to handle this data.

1. If your application will only be reading one specific command or different com-
mands that are all the same data type, use a structure whose member(s) is/are the
correct data type(s) to be sent.
For example, the read command 042H Gear Ratio reads two signed word val-
ues. With this command, you could enter a structure at the RDAT input with two
INT members.

2. If your application will be reading different commands that are different data
types, use a structure with one member that represents the largest data type and
use the PiCPro conversion functions to convert any data to its correct data type
after reading it.
 2-47

Outputs

The DONE output will be set if the initialization or a read or write command is
completed successfully. The FAIL output will be set if an error occurs during the
execution of the initialization or a read or write command.

The FERR output will identify errors encountered by the M_DSMCOM function
block when using the PiC serial communications function blocks. These errors are
defined in Appendix B. The OERR output will identify errors detected when a read
or write command is executed. They are described below.

The DERR output will identify errors reported by the Centurion drive in a
response to a command. They are described below.

The RNUM output indicates the number of bytes of data in RDAT after a read
command has executed.

OERR Description
0 No error
1 Checksum error - invalid checksum in the drive response
2 Timeout error - drive did not respond in time
3 Read or write attempted before initialization
4 Invalid PORT name
5 CMD input out of range
6 ADDR input out of range
7 WNUM input out of range
8 Invalid address in drive response
9 Invalid function in drive response
10 Invalid data in drive response
11 Invalid drive response

DERR Description
0 No error
1 Invalid data
2 Command not enabled
3 EEPROM write error
4 Data accepted after limiting to minimum
5 Data accepted after limiting to maximum
6 Command disabled when drive is enabled
7 Flash programming error
8 Invalid function code
9 Command disabled when drive is disabled
 2-48

Application Notes

1. The M_DSMCOM function block must only be entered in the LDO once for
each serial port being used.

2. A read or write command must not be attempted until the function block initial-
ization is complete.

3. A read or write command must not be attempted until a previous read or write
command is complete.

4. If no data is being sent with a command (which is the normal mode for most
read commands), the WNUM input must be zero.
 2-49

Connections

RS232 Connections

In single drive applications where the communications link is less than 50 feet, a
three wire RS232 serial communication link may be used. The pinout is shown
below.

RS422/RS485 Connections

Typically, the M_DSMCOM function block will be used with RS422/RS485 serial
communication. RS422/RS485 provides superior noise immunity, allows commu-
nication links greater than 50 feet, and allows multiple drive connections to one
PiC.

A four wire daisy chain connection is made between a PiC Serial Communications
Module and the DSM100 drives.

Example LDO with the M_DSMCOM Function Block

 Please refer to the example ASFB M_DSM_EX.LDO ladder.

Drive J5 Serial Port
9-pin D Connector

PiC User Port
10-pin Screw Terminal Connector

2 RCV 10 TD
3 XMT 9 RD
5 COM 8 GRD

Last
DSM100

J5 Connector
8 XMT -
4 XMT +
1 RCV +
7 RCV -

First
DSM100

J5 Connector
8 XMT -
4 XMT +
1 RCV +
7 RCV -

PiC Serial
Communications

Module Channel 1
7
5
6
8

 11 Shield

RD1_DIF-
RD1_DIF+
TD1_DIF+
TD1_DIF-

Represents 100 ohm resistors which must be
installed at each end of the daisy chain connection.
 2-50

M_DW2BOO
Convert DWORD to BOOLs USER/M_COMMON

This function block converts a DWORD to 32 BOOLs.

⁄ƒƒ NAME ƒø
≥M_DW2BOO ≥
≥ ≥
¥EN00 OK√ƒ
¥IN O0√ƒ
≥ O1√ƒ
≥ O2√ƒ
≥ O3√ƒ
≥ O4√ƒ
≥ O5√ƒ
≥ O6√ƒ
≥ O7√ƒ
≥ O8√ƒ
≥ O9√ƒ
≥ O10√ƒ
≥ O11√ƒ
≥ O12√ƒ
≥ O13√ƒ
≥ O14√ƒ
≥ O15√ƒ
≥ O16√ƒ
≥ O17√ƒ
≥ O18√ƒ
≥ O19√ƒ
≥ O20√ƒ
≥ O21√ƒ
≥ O22√ƒ
≥ O23√ƒ
≥ O24√ƒ
≥ O25√ƒ
≥ O26√ƒ
≥ O27√ƒ
≥ O28√ƒ
≥ O29√ƒ
≥ O30√ƒ
≥ O31√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

IN (DWORD) - the data to convert

Outputs: OK (BOOL) - execution complete
O0 (BOOL) - bit 0 of IN (least significant bit of IN)
O1 (BOOL) - bit 1 of IN
O2 (BOOL) - bit 2 of IN
O3 (BOOL) - bit 3 of IN
O4 (BOOL) - bit 4 of IN
O5 (BOOL) - bit 5 of IN
O6 (BOOL) - bit 6 of IN
O7 (BOOL) - bit 7 of IN
O8 (BOOL) - bit 8 of IN
O9 (BOOL) - bit 9 of IN
O10 (BOOL) - bit 10 of IN
O11 (BOOL) - bit 11 of IN
O12 (BOOL) - bit 12 of IN
O13 (BOOL) - bit 13 of IN
O14 (BOOL) - bit 14 of IN
O14 (BOOL) - bit 15 of IN
O16 (BOOL) - bit 16 of IN
O17 (BOOL) - bit 17 of IN
O18 (BOOL) - bit 18 of IN
O19 (BOOL) - bit 19 of IN
O20 (BOOL) - bit 20 of IN
O21 (BOOL) - bit 21 of IN
O22 (BOOL) - bit 22 of IN
O23 (BOOL) - bit 23 of IN
O24 (BOOL) - bit 24 of IN
O25 (BOOL) - bit 25 of IN
O26 (BOOL) - bit 26 of IN
O27 (BOOL) - bit 27 of IN
O28 (BOOL) - bit 28 of IN
O29 (BOOL) - bit 29 of IN
O30 (BOOL) - bit 30 of IN
O31 (BOOL) - bit 31 of IN (most significant bit)
 2-51

M_ERROR
Axis Error Checking USER/M_DATA

This function is used to report servo E-stop, C-stop and programming error conditions in
the ladder. These conditions may be caused by the servo software or defined by the
programmer. If defined by the programmer they will be triggered using the E-STOP or
C_STOP functions. All of these errors for the defined axis are reported in one location

The enable input of this function should be directly connected to the rail with a
wire, causing this function block to be executed each scan.

The boolean outputs can be used as flags in the ladder to report error conditions.

The word outputs can be converted to a HEX display by using the Module Monitor
Edit View List command and inserting the variables. An option will be given on
the format to display them. The variable’s value during animation will be dis-
played in HEX format if the variable provided has 16#0 for its initial value. The
default format during animation is decimal.

After monitoring them in HEX, referring to the tables in the manual of functions
E_ERRORS, C_ERRORS and P_ERRORS will help identify the exact problem.

⁄ƒƒ NAME ƒø
≥ M_ERROR ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
¥AXIS ESTO√ƒ
≥ ≥
≥ CSTO√ƒ
≥ ≥
≥ PSTO√ƒ
≥ ≥
≥ E_ER√ƒ
≥ ≥
≥ C_ER√ƒ
≥ ≥
≥ P_ER√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

AXIS (USINT) - identifies axis

Outputs: OK (BOOL) - execution complete

ESTO (BOOL) - indicates an E-stop is active
when set

CSTO (BOOL) - indicates an C-stop is active
when set

PSTO (BOOL) - indicates a programming error
has occurred when set

E_ER (WORD) - identifies E-stop errors

C_ER (WORD) - identifies C-stop errors

P_ER (WORD) - identifies programming errors
 2-52

M_FHOME
Performs a Home Cycle using a Fast Reference USER/M_REF

This function block performs a fast reference cycle on an axis, followed by a hom-
ing (position) move to a designated location.

Before this function can be used, the axis must be initialized and the position loop
closed.

⁄ƒƒ NAME ƒø
≥ M_FHOME ≥
≥ ≥
¥EN01 HCMP√ƒ
≥ ≥
¥STRT HACT√ƒ
≥ ≥
¥AXIS QUE√ƒ
≥ ≥
¥PLUS SWPO√ƒ
≥ ≥
¥RATE ERR√ƒ
≥ ≥
¥DIM ≥
≥ ≥
¥OPTN ≥
≥ ≥
¥BKOF ≥
≥ ≥
¥HOME ≥
≥ ≥
¥HDIM ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

STRT (BOOL) - enables the home cycle

AXIS (USINT) - identifies axis

PLUS (BOOL) - indicates direction of home cycle

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

DIM (DINT) - reference dimension for the nearest
resolver null or the next encoder index mark when
the reference switch is set (entered in LUs)

OPTN (WORD) - provides referencing options (0 or
1) 0=No option 1=Ignore index or null

BKOF (BOOL) - selects backoff of reference switch
option

HOME (BOOL) - selects homing after referencing
option

HDIM (DINT) - home location to move to after
reference is complete

Outputs: HCMP (BOOL) - home cycle is complete

HACT (BOOL) - home cycle is being executed

QUE (USINT) - number of move for queue

SWPO (DINT) - distance in feedback units (FUs)
from the reference switch to the index mark of an
encoder or the null of a resolver

ERR (BYTE) - report an error 1-4 if input data is
invalid
 2-53

The reference cycle will cause the selected axis to move in the designated direction
until the reference switch is sensed. In a fast reference this reference switch is
wired to the fast input of the selected axis on the feedback module in the PiC900.
When the fast input occurs, the position of the axis is latched by the hardware on
the encoder module independent of the ladder scan. When the reference switch is
sensed the axis will reference (assign a value) to the next index mark of an encoder
or the nearest null of a resolver. After the value is assigned, the axis will decelerate
to a stop and set the reference done flag.

If the HOME input is on when the reference done has been sensed, the home move
will automatically be triggered to position the axis at a desired location.

If the BKOF input is on when the reference is requested, and the axis is on the ref-
erence switch, the axis will move in the opposite direction until the reference
switch opens and will then move back onto the reference switch. If the BKOF
input is not on the axis will move in the specified direction until it sees an off to on
transition of the limit switch.

This function block is used to perform a fast reference, immediately followed by a
position move to a selected home position. It should be executed every scan unless
a home cycle will only be performed when the machine is started. In that case a
normally closed contact of the output of HCMP may be used.

The inputs to this function block are basically the same as for the FAST_REF func-
tion. There are three additional inputs listed below.

The BKOF input selects the backoff reference switch option.

The HOME input selects the homing after referencing option.

The HDIM input assigns the home dimension to move to.

If the axis is sitting on the limit switch when the home cycle is requested, and the
BKOF input is on, the axis will move in the opposite direction of that indicated by
the PLUS input until the switch opens and then will complete the home cycle in
the normal manner.
 2-54

The SWPO output is used to determine if the reference switch location will allow
for repeatable referencing. If the reference switch is not properly located in rela-
tionship to the index marker of an encoder or the null of a resolver it could possi-
bly reference a revolution off. To prevent this, the value reported by this output
should be as follows:

• For an encoder system the value of this output should be greater than 25%
and less than 75% of the total counts (FUs) per revolution. Example: For
8000 FUs/Rev, the value should be >2000 and <6000.

• For a resolver system the value of this output should be less than 25% or
greater than 75% of the total counts (FUs) per revolution. Example: For
4000 FUs/Rev, the value should be <1000 or >3000.

If the value is out of range either the reference switch will have to be moved or the
transducer coupling shifted.

The ERR output indicates that invalid data was entered on one of the inputs. The
possible errors are listed below:

ERR Description
0 No error
1 The queue was not empty when the reference was requested
2 An error occurred in backing off of the reference switch
3 An error occurred in referencing
4 An error occurred in homing
 2-55

M_INCPTR
Increment buffer pointers USER/M_DATA

This function block increments the buffer pointers for M_DATCPT.

⁄ƒƒ NAME ƒø
≥M_INCPTR ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥P √ƒ
≥ ≥
¥TOTB ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs:EN00 (BOOL) - enable

P (STRUCT) - pointer for data buffer

TOTB (UINT) - total bytes to increment

Outputs: OK (BOOL) - increment of pointers ok

 2-56

M_JOG
Jogs a Closed Loop Axis USER/M_MOVE

This function is designed to simplify the task of doing a manual jog (velocity)
move on a closed loop axis. The manual jog is defined as a move that would be
triggered by the operator physically pressing a switch or a button to move an axis
on the machine to a different location, without actually running a cycle.

Before this function block can be used, the axis must be initialized and placed in
servo lock.

If the enable input is active, triggering the jog plus (JPLS) or jog minus (JMNS)
input will cause the specified axis to move at the indicated rate in the correspond-
ing direction. When the input is deactivated motion will stop.

This function block is used to jog an axis that has been initialized and placed in
servo lock with the close loop function. It checks the queue of the selected axis to
be certain that no other moves are being executed.

This function block should be used to allow the operator to manually move an axis
on the machine. It is not designed for any other purpose.

The JPLS input enables a move in the positive direction for the selected axis.

The JMNS input enables a move in the negative direction for the selected axis.

If both the JPLS and JMNS inputs are set, motion will stop until one of them is
dropped. At that time motion will resume in the direction still selected.

⁄ƒƒ NAME ƒø
≥ M_JOG ≥
≥ ≥
¥EN01 JACT√ƒ
≥ ≥
¥JPLS N0_Q√ƒ
≥ ≥
¥JMNS QUE√ƒ
≥ ≥
¥RATE ≥
≥ ≥
¥AXIS ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

JPLS (BOOL) - enables a jog in the plus direction

JMNS (BOOL) - enables a jog in the minus direction

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

AXIS (USINT) - identifies axis

Outputs: JACT (BOOL) - indicates jogging is active when set;
indicates no motion is occurring when not set

NO_Q (BOOL) - active queue for the specified axis
was not available

QUE (USINT) - number of move for queue

IMPORTANT

If the enable is disabled while a move is under way, the move
will end.
 2-57

M_LHOME
Performs a Home Cycle using a Ladder Reference USER/M_REF

This function block performs a ladder reference cycle on an axis, followed by a
homing (position) move to a designated location.

Before this function block can be used, the axis must be initialized and the position
loop closed.

The reference cycle will cause the selected axis to move in the designated direction
until the reference switch is sensed. In a ladder reference this reference switch is
wired to an input module in the PiC900 and updated each scan of the ladder. When
the reference switch is sensed the axis will reference (assign a value) to the next

⁄ƒƒ NAME ƒø
≥ M_LHOME ≥
≥ ≥
¥EN01 HCMP√ƒ
≥ ≥
¥STRT HACT√ƒ
≥ ≥
¥AXIS QUE√ƒ
≥ ≥
¥PLUS SWPO√ƒ
≥ ≥
¥RATE ERR√ƒ
≥ ≥
¥DIM ≥
≥ ≥
¥OPTN ≥
≥ ≥
¥BKOF ≥
≥ ≥
¥HOME ≥
≥ ≥
¥HDIM ≥
≥ ≥
¥RFSW ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

STRT (BOOL) - enables the home cycle

AXIS (USINT) - identifies axis

PLUS (BOOL) - indicates direction of home cycle

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

DIM (DINT) - reference dimension for the nearest
resolver null or the next encoder index mark when
the reference switch is set (entered in LUs)

OPTN (WORD) - provides referencing options (0 or
1) 0=No option 1=Ignore index or null

BKOF (BOOL) - selects backoff of reference switch
option

HOME (BOOL) - selects homing after referencing
option

HDIM (DINT) - home location to move to after
reference is complete

RFSW (BOOL) - reference switch on axis

Outputs:HCMP (BOOL) - home cycle is complete

HACT (BOOL) - home cycle is being executed

QUE (USINT) - number of move for queue

SWPO (DINT) - distance in feedback units (FUs)
from the reference switch to the index mark of an

encoder or the null of a resolver.

ERR (BYTE) - report an error 1-4 if input data is
invalid
 2-58

index mark of an encoder or the nearest null of a resolver. After the value is
assigned the axis will decelerate to a stop and set the reference done flag.

If the HOME input is on when the reference done has been sensed the home move
will automatically be triggered to position the axis at a desired location.

If the BKOF input is on when the reference is requested and if the axis is on the
reference switch the axis will move in the opposite direction until the reference
switch opens, and will then move back onto the reference switch. If the BKOF
input is not on the axis will move in the specified direction until it sees an off to on
transition of the limit switch.

This function block is used to perform a ladder reference, immediately followed by
a position move to a selected home position. It should be executed every scan
unless a home cycle will only be performed when the machine is started. In that
case a normally closed contact of the output of HCMP may be used.

The inputs to this function block are similar to those of the FAST_REF function.
There are four additional inputs listed below.

The BKOF input selects the backoff reference switch option.

The HOME input selects the homing after referencing option.

The HDIM input assigns the home dimension to move to.

The RFSW input is the reference switch.

If the axis is sitting on the limit switch when the home cycle is requested, and the
BKOF input is on, the axis will move in the opposite direction of that indicated by
the PLUS input until the switch opens and then will complete the home cycle in
the normal manner.

The SWPO output is used to determine if the reference switch location will allow
for repeatable referencing. If the reference switch is not properly located in rela-
tionship to the index marker of an encoder or the null of a resolver it could possi-
bly reference a revolution off. To prevent this, the value reported by this output
should be as follows:

• For an encoder system the value of this output should be greater than 25%
and less than 75% of the total counts (FUs) per revolution. Example: For
8000 FUs/Rev, the value should be >2000 and <6000.

• For a resolver system the value of this output should be less than 25% or
greater than 75% of the total counts (FUs) per revolution. Example: For
4000 FUs/Rev, the value should be <1000 or >3000.

If the value is out of range either the reference switch will have to be moved or the
transducer coupling shifted.

The ERR output indicates that invalid data was entered on one of the inputs. The
possible errors are listed below:
 2-59

ERR Description
0 No error
1 The queue was not empty when the reference was requested
2 An error occurred in backing off of the reference switch
3 An error occurred in referencing
4 An error occurred in homing
 2-60

M_LINCIR
Performs Linear and Circular Moves USER/M_MOVE

This function block performs linear, circular, or third axis departure (simultaneous
endpoint arrival) moves on a set of axes.

Before this function can be used, the axes must be initialized, the position loop
must be closed, and a queue must be available on all axes to be used in the move.

This function block provides the interface from the application .LDO to the
RATIO_RL and CORD2RL functions in order to perform linear coordinated, cir-
cular, and third axis departure (simultaneous endpoint arrival) motions.

⁄ƒ NAME ƒƒø
≥ M_LINCIR≥
≥ ≥
¥EN01 QUED√ƒ
≥ ≥
¥STRT ERR√ƒ
≥ ≥
¥INC ≥
≥ ≥
¥TIME ≥
≥ ≥
¥RATE ≥
≥ ≥
¥CCW ≥
≥ ≥
¥LIN ≥
≥ ≥
¥CIRC ≥
≥ ≥
¥DEP ≥
≥ ≥
¥NDPT ≥
≥ ≥
¥CEN1 ≥
≥ ≥
¥CEN2 ≥
≥ ≥
¥BNDW ≥
≥ ≥
¥OVRD ≥
≥ ≥
¥PATH ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

STRT (BOOL) - enables the coordinated move

INC (WORD) - defines incremental or absolute
mode (0=absolute, 1=incremental)

TIME (BOOL) - defines if move is feedrate or time
of move (0=feedrate, 1=time of move)

RATE (DINT) - feedrate or time of move

CCW (BOOL) - defines direction of circular move
(0=clockwise, 1=counter-clockwise)

LIN (WORD) - defines which axes to move in a
linear mode

CIRC (WORD) - defines which axes to move in
a circular mode

DEP (WORD) - defines which axes to move in a
simultaneous endpoint arrival mode

NDPT (DINT(0..16)) - endpoints or distances to
move

CEN1 (DINT) - circle center for lowest numbered
circular axis

CEN2 (DINT) - circle center for highest numbered
circular axis

BNDW (DINT) - circular endpoint bandwidth

OVRD (USINT) - feedrate override percentage

PATH (USINT) - path number

Outputs: QUED (BOOL) - move was queued without error

ERR (INT) - error number describing error that
occurred when the move was queued
 2-61

Up to four separate paths of coordinated motion can be controlled. Each path of
motion requires a separate instantiation of the M_LINCIR function block. Each
path must control a unique set of axes. Only one M_LINCIR function block per
path can be used within the application .LDO.

This function block can control up to 16 axes.

The EN01 input of this function block must be set every scan.

The STRT input must be one-shot. When it is one-shot, the function block will
start the coordinated move, or enter it in the queue for the axes. It is the user's
responsibility to ensure that there is a queue available on all of the axes involved in
the move before pulsing this input.

The INC input defines whether each axis should move in the absolute or incremen-
tal mode. One bit of this WORD is reserved for each of the sixteen possible axes.
Bit 0 is set if axis 1 is incremental, or reset if axis 1 is absolute, bit 1 is set if axis 2
is incremental, reset if axis 2 is absolute, etc..

The TIME input defines whether the move should be executed as a path feedrate
move or a time of move. This input should be reset for path feedrate, or set for time
of move.

If the TIME input is reset, then the RATE input is the path feedrate for the move in
ladder units/minute. If the TIME input is set, then the RATE input is the time for
the move in milliseconds.

The CCW input is only used for circular moves. If it is reset, then the move is
clockwise, if it is set, then the move is counter-clockwise.

The LIN input defines which axes in the move are to be moved in a linear mode.
One bit of the WORD is reserved for each of the sixteen axes. The bit must be set
for the axis to do a linear move. Axes who have their bits set will be included in the
calculations for the path feedrate.

The CIRC input defines which axes in the move are to be moved in a circular
mode. One bit of the WORD is reserved for each of the sixteen axes. The bit must
be set for the axis to do a circular move. Axes who have their bits set will be
included in the calculations for the path feedrate.

The DEP input defines which axes in the move are to be moved in a simultaneous
endpoint arrival mode. One bit of the WORD is reserved for each of the sixteen
axes. The bit must be set for the axis to move. Axes who have their bits set will not
be included in the calculations for the path feedrate, but they will arrive at their
endpoints simultaneously with the axes that are.

The LIN, CIRC, and DEP words may never have the same bits set in them at a
time. You must always set a bit for every axis ever used in the path, even if the axis
is not to move in this particular move. In this case, you would set either the LIN or
DEP bit for the axis, set the INC bit for the axis, and program an endpoint of zero
for the axis.
 2-62

The NDPT array holds the endpoints for the axes used in the move. The 0th ele-
ment is not used. If the INC bit is set for the axis, this is the distance to move, if the
INC bit is reset for the axis, then this is the position to move to. The endpoints are
entered in ladder units.

The CEN1 and CEN2 inputs define the circle centers if a circular move is being
performed. The CEN1 input is the center for the lowest numbered circular axis,
and the CEN2 input is the center for the highest numbered circular axis. The cen-
ters are always programmed as an incremental distance from the starting point of
the circle, even if the INC bit for the axes is not set. The centers are entered in lad-
der units. For example, if a circle were being done with axes 4 and 6, then CEN1
would be the center for axis 4, and CEN2 would be the center for axis 6.

The BNDW input defines a bandwidth for circular moves. When a circular move is
requested, the distance from the start point to the center point and the distance
from the endpoint to the center point are compared for both axes. If these distances
differ by more than the bandwidth entered here, then the move will not execute and
error 14 will be returned on the ERR output. This bandwidth is entered in ladder
units.

The OVRD input defines the feedrate override value. This can be changed at any
time, even if the STRT input is not energized. This adjusts the actual feedrate or
time to be from 0 to 255 percent of the programmed feedrate or time.

The PATH input defines the number of the path. Up to four totally independent
paths of coordinated motion can be defined. This must be a number from 1 to 4.
This should not be changed once it is set.

The QUED output will be set for one scan when STRT is pulsed and the move has
been successfully queued on all axes defined. If an error occurred in queueing the
move, this output will be reset when STRT is pulsed, and an error code will be
stored in the ERR output.

The ERR output will be non-zero if an error occurs in queueing a move. A list of
error codes is shown on the following table.

Note: WRITE_SV variable 25 Fast Queuing is enabled for the selected axes
when STRT is set. Fast queuing will remain on for those axes until
turned off by you.
 2-63

ERR Description
0 No error
1 No bits were set in the LIN, CIRC, or DEP WORDs
2 The same bit was set in the LIN and CIRC WORDs
3 The same bit was set in the DEP and CIRC WORDs
4 The same bit was set in the LIN and DEP WORDs
5 The number of bits set in the CIRC WORD was not 0 or 2
6 Not used
7 Not used
8 The time of move or feedrate was negative
9 The time of move or feedrate was zero
10 The feedrate was too high or the time was too low to calcu-

late
11 The feedrate was too low or the time was too high to calcu-

late
12 An axis that was selected was not initialized by the servo

setup function
13 The STRTSRV function has not been called
14 Endpoint not on circle

1XX When the distance to move was converted to feedback
units, it was too positive to fit into 32 bits. XX = Axis
number

2XX When the distance to move was converted to feedback
units, it was too negative to fit into 32 bits. XX = Axis
number

3XX The path feedrate or time entered causes an axis to exceed
its velocity limit from servo setup. XX = Axis number

32766 The time axis could not be started
32767 One of the OKs on the RATIO_RL functions did not get set
 2-64

M_PRTCAM
Creates a RATIOCAM text file USER/M_DATA

This function block creates a text file for a RATIOCAM CAM structure. The file
can be created on either the RAMDISK in the PiC or on the PC running PiCPro.

A positive transition of RQ00 requests that the data specified by the CAM input be
converted to ASCII code, concatenated, and written to the RAMDISK or to the
PiCPro port.

The CAM input is an array of structures and must have the following members:

The FILE input requires a string data type variable with the filename as an initial
value. The format is "FILENAME.EXT".

The SDIR input requires a string data type. If a sub directory is desired, the initial
value can have up to eight characters. A "\" is not required. If a subdirectory is not
desired, the initial value should be left blank.

⁄ƒ NAME ƒƒø
≥ M_PRTCAM≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥STRT HACT√ƒ
≥ ≥
¥CAM FAIL√ƒ
≥ ≥
¥RAMD ERR√ƒ
≥ ≥
¥FILE ≥
≥ ≥
¥SDIR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - request file generation and write

CAM (STRUC 0..) - CAM structure input of the
RATIOCAM function

RAMD (BOOL) - If enabled, allows file to be
written to the RAMDISK. If disabled, file is written
to the PC running PiCPro.

FILE (STRING) - name of the file

SDIR (STRING) - identifies the subdirectory
where the file will be written to.

Outputs:DONE (BOOL) - set when the file is generated and
written, reset when RQ00 goes on.

FAIL (BOOL) - set if an error occurs and reset when
RQ00 goes on.

ERR (INT) - number of error that occurred. These
errors are defined in Appendix B.

Name Data Type Definition
CAM STRUCT (0..998) The structure of the RATIOCAM profile
.M INT Master segment size
.S INT Slave segment size
 2-65

M_PRTREL
Creates a RATIO_RL text file USER/M_DATA

This function block creates a text file for a RATIO_RL structure. The file can be
created on either the RAMDISK in the PiC or on the PC running PiCPro.

A positive transition of RQ00 requests that the data specified by the REAL input
be converted to ASCII code, concatenated, and written to the RAMDISK or to the
PiCPro port.

The REAL input is an array of structures and must have the following members:

The FILE input requires a string data type variable with the filename as an initial
value. The format is "FILENAME.EXT".

The SDIR input requires a string data type. If a sub directory is desired, the initial
value can have up to eight characters. A "\" is not required. If a subdirectory is not
desired, the initial value should be left blank.

⁄ƒ NAME ƒƒø
≥ M_PRTREL≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥REAL FAIL√ƒ
≥ ≥
¥RAMD ERR√ƒ
≥ ≥
¥FILE ≥
≥ ≥
¥SDIR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - request file generation and write

REAL (STRUC 0..) - REAL structure input of the
RATIO_RL function

RAMD (BOOL) - If enabled, allows file to be
written to the RAMDISK. If disabled, file is written
to the PC running PiCPro.

FILE (STRING) - name of the file

SDIR (STRING) - identifies the subdirectory
where the file will be written to.

Outputs:DONE (BOOL) - set when the file is generated and
written, reset when RQ00 goes on.

FAIL (BOOL) - set if an error occurs and reset when
RQ00 goes on.

ERR (INT) - number of error that occurred. These
errors are defined in Appendix B.

Name Data Type Definition
REAL STRUCT (0..998) The structure of the RATIO_RL profile
.M DINT Master segment size
.S DINT Slave segment size
.LEN LREAL Length or K1
.AMPL LREAL Amplitude or K2
.STANGL LREAL Start angle or K3
.SPARE LREAL Spare for future use
.FLAGS DWORD Flags
 2-66

M_PRTSLP
Creates a RATIOSLP text file USER/M_DATA

This function block creates a text file for a RATIOSLP structure. The file can be
created on either the RAMDISK in the PiC or on the PC running PiCPro.

A positive transition of RQ00 requests that the data specified by the SLPE input be
converted to ASCII code, concatenated, and written to the RAMDISK or to the
PiCPro port.

The REAL input is an array of structures and must have the following members:

The FILE input requires a string data type variable with the filename as an initial
value. The format is "FILENAME.EXT".

The SDIR input requires a string data type. If a sub directory is desired, the initial
value can have up to eight characters. A "\" is not required. If a subdirectory is not
desired, the initial value should be left blank.

⁄ƒ NAME ƒƒø
≥ M_PRTSLP≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥SLPE FAIL√ƒ
≥ ≥
¥RAMD ERR√ƒ
≥ ≥
¥FILE ≥
≥ ≥
¥SDIR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - request file generation and write

SLPE (STRUC 0..) - SLPE structure input of the
 RATIOSLP function

RAMD (BOOL) - If enabled, allows file to be
written to the RAMDISK. If disabled, file is written
to the PC running PiCPro.

FILE (STRING) - name of the file

SDIR (STRING) - identifies the subdirectory
where the file will be written to.

Outputs:DONE (BOOL) - set when the file is generated and
written, reset when RQ00 goes on.

FAIL (BOOL) - set if an error occurs and reset when
RQ00 goes on.

ERR (INT) - number of error that occurred. These
errors are defined in Appendix B.

Name Data Type Definition
SLPE STRUCT (0..998) The structure of the RATIOSLP profile
.M INT Master segment size
.S INT Slave segment size
.SLP DINT Slope of segment
.SR DINT Start ratio
.FLAGS DWORD Default flags
 2-67

M_RATREL
Calculates Ending Ratio and Slope USER/M_DATA

This function block calculates the ending ratio, slope, and K2 (slope/2) used in the
ratio real structure from the master distance, slave distance, and starting ratio.

This function block calculates the ending ratio and slope to be used with the
RATIO_RL structure as one segment of the RATIO_RL profile. Refer to the
documentation in the PiC900 software manual regarding RATIO_RL for more
information.

The slave and master segments (S and M) are entered in feedback units.

The starting ratio for the first segment of a RATIO_RL profile is normally zero.
The starting ratio is called LEN or K1 in the ratio real documentation.

The formulas used by this function for calculation are as follows:

ER = (2S / M) - SR

SLP = (ER - SR) / M

K2 = SLP / 2

where ER is the ending ratio, SR is the starting ratio, S is the slave distance, M is
the master distance, SLP is the slope, and K2 is the slope divided by 2. K2 is the
AMPL structure member of the RATIO_RL REAL structure for a linear move.

The ending ratio is not an input to the RATIO_RL structure. However the ending
ratio of one segment is normally used as the starting ratio of the next segment.

⁄ƒƒ NAME ƒø
≥M_RATREL ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥S ER√ƒ
≥ ≥
¥M SLP√ƒ
≥ ≥
¥SR K2√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

S (DINT) - slave distance

M (DINT) - master distance

SR (LREAL) - starting ratio

Outputs:OK (BOOL) - execution complete

ER (LREAL) - ending ratio

SLP (LREAL) - slope

K2 (LREAL) - slope output divided by 2
 2-68

M_RATSLP
Calculates Ending Ratio and Slope USER/M_DATA

This function block calculates the ending ratio and slope used in the ratio slope
structure from the master distance, slave distance, and starting ratio.

This function block calculates the ending ratio and slope to be used with the
RATIOSLP structure as one segment of the RATIOSLP profile. Refer to the
documentation in the PiC900 software manual regarding RATIOSLP for more
information. The slave and master segments (S and M) are entered in feedback
units.

The starting ratio for the first segment of a slope profile is normally zero. Non zero
starting ratios must already be multiplied by the scaling factor of 16777216 before
being used as an input to this function.

The formulas used by this function for calculation are as follows:

ER = (2S / M) - SR

SLP = (ER - SR) / M

where ER is the ending ratio, SR is the starting ratio, S is the slave distance, M is
the master distance, and SLP is the slope.

⁄ƒƒ NAME ƒø
≥M_RATSLP ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥S ERR√ƒ
≥ ≥
¥M ER√ƒ
≥ ≥
¥SR SLP√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

S (INT) - slave distance

M (INT) - master distance

SR (DINT) - starting ratio

Outputs:OK (BOOL) - execution complete without error

ERR (INT) - error number

ER (DINT) - ending ratio

SLP (DINT) - slope
 2-69

The ending ratio and slope that are outputs of this function have been multiplied by
the scaling factor of 16777216. The ending ratio is not an input to the RATIOSLP
structure. However, the ending ratio of one segment is normally used as the
starting ratio of the next segment.

Note: An M value of zero results in an error due to an attempt to divide by 0.
No master distance can have a value of zero in a RATIOSLP profile.

ERR Description
1 The calculation for ER failed when S was between -64 and +63 (inclusive)

2 The calculation for ER failed when S was less than -64 or greater than +63

3 The calculation for SLP failed
 2-70

M_RDTUNE
Reads tuning parameters USER/M_DATA

This function block allows you to read all six tuning parameters from the
TUNEREAD function in a single function.

This function block requires the numeric processor or a 486 DX processor.

The proportional gain for AXIS will be returned in P. P is in ladder units per
minute per ladder unit of following error (LU / MIN / LUFE).

The integral gain for AXIS will be returned in I. I is in ladder units per minute per
ladder units of following error times minutes (LU / MIN / LUFE * MIN).

The derivative gain for AXIS will be returned in D. D is in ladder units per minute
per ladder unit of following error per minute (LU / MIN / LUFE / MIN).

The analog output offset voltage for AXIS will be returned in OFST. OFST is in
millivolts.

The slow speed filter value for AXIS will be returned in FILT. FILT is in millisec-
onds.

The feedforward percentage for AXIS will be returned in FFWD. FFWD will be
from 0 to 100.

⁄ƒƒ NAMEƒƒø
≥M_RDTUNE ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥AXIS P√ƒ
≥ ≥
≥ I√ƒ
≥ ≥
≥ D√ƒ
≥ ≥
≥ OFST√ƒ
≥ ≥
≥ FILT√ƒ
≥ ≥
≥ FFWD√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

AXIS (USINT) - identifies axis

Outputs: OK (BOOL) - execution complete

P (DINT) - proportional gain

I (DINT) - integral gain

D (DINT) - derivative gain

OFST (DINT) - analog output offset

FILT (DINT) - slow speed filter value

FFWD (DINT) - feedforward percentage

 2-71

M_RGSTAT
Returns Registration Data USER/M_DATA

This function block obtains information about registration. The information gath-
ered is distance between fast inputs, fast input position, registration reference
change, number of good marks, number of bad marks, total number of marks, and
the state of STATUSSV flags.

This function block should be enabled every scan.

The input at AXIS determines which axis the output information is for. AXIS can
be a closed loop or digitizing axis.

The STAT input is the status word read from the STATUSSV function. STA-
TUSSV can only be called once per scan, so its output is used as an input to this
function.

The OK output will not be set if the axis has not been initialized.

The DIST output is the distance between the most recent fast input and the previ-
ous fast input in ladder units.

⁄ƒƒ NAMEƒƒø
≥M_RGSTAT ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥AXIS DIST√ƒ
≥ ≥
¥STAT FPOS√ƒ
≥ ≥
≥ CHNG√ƒ
≥ ≥
≥ DSTL√ƒ
≥ ≥
≥ FOCR√ƒ
≥ ≥
≥ FINP√ƒ
≥ ≥
≥ GDMK√ƒ
≥ ≥
≥ NMGD√ƒ
≥ ≥
≥ BDMK√ƒ
≥ ≥
≥ NMBD√ƒ
≥ ≥
≥ TOTL√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

AXIS (USINT) - axis number

STAT (WORD) - status word from STATUSSV
function

Outputs:OK (BOOL) - execution complete

DIST (DINT) - fast input distance

FPOS (DINT) - fast input position

CHNG (DINT) - registration/referencing
position change

DSTL (BOOL) - indicates distance plus
tolerance has been exceeded

FOCR (BOOL) - fast input occurred

FINP (BOOL) - fast input on

GDMK (BOOL) - good mark detected

NMGD (DINT) - number of good registration marks

BDMK (BOOL) - bad mark detected

NMBD (DINT) - number of bad registration marks

TOTL (DINT) - total number of fast inputs that
have occurred
 2-72

The FPOS output is the actual position of the axis at the point where the most
recent fast input occurred in ladder units.

The CHNG output is the amount the position of the axis has changed in ladder
units due to registration or the last machine reference.

The DSTL output will be set if the distance from the last mark exceeds the value of
DIST + TOLR whether or not a mark has occurred. It will be reset when any mark
occurs.

The FOCR output will be set if a fast input has occurred since the last time the
STATUSSV function was called.

The FINP output is set if the fast input is on, and reset if the fast input is off.

The GDMK output will be set if a good mark has been detected since the last time
the STATUSSV function was called.

The NMGD output holds the total number of good registration marks that have
been detected.

The BDMK output will be set if a bad mark has been detected since the last time
the STATUSSV function was called.

The BAD output holds the number of bad registration marks that have been
detected.

The TOTL output holds the total number of fast input transitions that have
occurred.
 2-73

M_RSET49
Reset Errors on Digitizing Axes 49 to 56 USER/M_INIT

This function block is used to reset the E-stop errors on digitizing axes 49 through
56 when the machine start input is pulsed.

This function block should be enabled every scan.

The machine start input must go through a positive transition (off to on) to reset
the errors.

On a positive transition of MSTR, this function will reset all E-stop errors on axes
49 through 56.

⁄ƒƒ NAME ƒø
≥M_RSET49 ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
¥MSTR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

MSTR (BOOL) - machine start input

Outputs: OK (BOOL) - execution complete
 2-74

M_RSET57
Reset Errors on Digitizing Axes 57 to 64 USER/M_INIT

This function block is used to reset the E-stop errors on digitizing axes 57 through
64 when the machine start input is pulsed.

This function block should be enabled every scan.

The machine start input must go through a positive transition (off to on) to reset
the errors.

On a positive transition of MSTR, this function will reset all E-stop errors on axes
57 through 64.

⁄ƒƒ NAME ƒø
≥M_RSET57 ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
¥MSTR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

MSTR (BOOL) - machine start input

Outputs: OK (BOOL) - execution complete
 2-75

M_RSET65
Reset Errors on Digitizing Axes 65 to 72 USER/M_INIT

This function block is used to reset the E-stop errors on digitizing axes 65 through
72 when the machine start input is pulsed.

This function block should be enabled every scan.

The machine start input must go through a positive transition (off to on) to reset
the errors.

On a positive transition of MSTR, this function will reset all E-stop errors on axes
65 through 72.

⁄ƒƒ NAME ƒø
≥M_RSET65 ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
¥MSTR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

MSTR (BOOL) - machine start input

Outputs: OK (BOOL) - execution complete
 2-76

M_RSET73
Reset Errors on Digitizing Axes 73 to 80 USER/M_INIT

This function block is used to reset the E-stop errors on digitizing axes 73 through
80 when the machine start input is pulsed.

This function block should be enabled every scan.

The machine start input must go through a positive transition (off to on) to reset
the errors.

On a positive transition of MSTR, this function will reset all E-stop errors on axes
73 through 80.

⁄ƒƒ NAME ƒø
≥M_RSET73 ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
¥MSTR ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

MSTR (BOOL) - machine start input

Outputs: OK (BOOL) - execution complete
 2-77

M_SCRVLC
Performs Linear and Circular Moves with S-Curve USER/M_MOVE

⁄ƒƒ NAMEƒƒø
≥ M_SCRVLC≥
≥ ≥
¥EN01 QUED√ƒ
≥ ≥
¥STRT ERR√ƒ
≥ ≥
¥INC ≥
≥ ≥
¥TIME ≥
≥ ≥
¥RATE ≥
≥ ≥
¥CCW ≥
≥ ≥
¥LIN ≥
≥ ≥
¥CIRC ≥
≥ ≥
¥DEP ≥
≥ ≥
¥NDPT ≥
≥ ≥
¥CEN1 ≥
≥ ≥
¥CEN2 ≥
≥ ≥
¥BNDW ≥
≥ ≥
¥OVRD ≥
≥ ≥
¥PATH ≥
≥ ≥
¥ACCL ≥
≥ ≥
¥JERK ≥
≥ ≥
¥MAXF ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

STRT (BOOL) - enables the coordinated move

INC (WORD) - defines incremental or absolute
mode for up to 16 axes (0=absolute, 1=incremental)

TIME (BOOL) - defines if move is feedrate or time
of move (0=feedrate, 1=time of move)

RATE (DINT) - feedrate or time of move

CCW (BOOL) - defines direction of circular move
(0=clockwise, 1=counter-clockwise)

LIN (WORD) - defines which axes to move in a
linear mode

CIRC (WORD) - defines which axes to move in a
circular mode

DEP (WORD) - defines which axes to move in a
simultaneous endpoint arrival mode

NDPT (DINT(0..16)) - endpoints or distances to
move

CEN1 (DINT) - circle center for lowest numbered
circular axis

CEN2 (DINT) - circle center for highest numbered
circular axis

BNDW (DINT) - circular endpoint bandwidth

OVRD (USINT) - feedrate override percentage

PATH (USINT) - path number

ACCL (LREAL) - path acceleration in ladder
units/min2

JERK (LREAL) - path jerk in ladder units/min3

MAXF (DINT) - maximum path feedrate in ladder
units/minute

Outputs: QUED (BOOL) - move was queued without error

ERR (INT) - error number describing error that
occurred when the move was queued
 2-78

The M_SCRVLC function block provides the interface from the application .LDO
to the RATIO_RL function in order to perform linear coordinated, circular, or third
axis departure (simultaneous endpoint arrival) moves with S-curve acceleration
and deceleration. Before this function can be used, the axes must be initialized, the
position loop must be closed, and a queue must be available on all axes to be used
in the move.

Up to four separate paths of coordinated motion can be controlled. Each path of
motion requires a separate instantiation of the M_SCRVLC function block. Each
path must control a unique set of axes. Only one M_SCRVLC function block per
path can be used with the application .LDO.

This function block can control up to 16 axes.

Note: This function block requires a numeric processor or a 486 DX
processor in the PiC900 and version 6.2 or higher of PiCPro.

Inputs

The EN01 input of this function block must be set every scan.

The STRT input must be one-shot. When it is one-shot, the function block will
start the coordinated move, or enter it in the queue for the axes. It is the user's
responsibility to ensure that there is a queue available on all of the axes involved in
the move before pulsing this input.

The INC input defines whether each axis should move in the absolute or incremen-
tal mode. One bit of this WORD is reserved for each of the sixteen possible axes.
Bit 0 is set if axis 1 is incremental, or reset if axis 1 is absolute, bit 1 is set if axis 2
is incremental, reset if axis 2 is absolute, etc..

The TIME input defines whether the move should be executed as a path feedrate
move or a time of move. This input should be reset for path feedrate, or set for time
of move.

If the TIME input is reset, then the RATE input is the path feedrate for the move in
ladder units/minute. It the TIME input is set, then the RATE input is the time for
the move in milliseconds.

The RATE is the path feedrate or the time for the move to execute depending on
the TIME input.

The CCW input is only used for circular moves. If it is reset, then the move is
clockwise, if it is set, then the move is counter-clockwise.

The LIN input defines which axes in the move are to be moved in a linear mode.
One bit of the WORD is reserved for each of the sixteen axes. The bit must be set
for the axis to do a linear move. Axes who have their bits set will be included in the
calculations for the path feedrate.

The CIRC input defines which axes in the move are to be moved in a circular
mode. One bit of the WORD is reserved for each of the sixteen axes.
 2-79

The bit must be set for the axis to do a circular move. Axes who have their bits set
will be included in the calculations for the path feedrate.

The DEP input defines which axes in the move are to be moved in a simultaneous
endpoint arrival mode. One bit of the WORD is reserved for each of the sixteen
axes. The bit must be set for the axis to move. Axes who have their bits set will not
be included in the calculations for the path feedrate, but they will arrive at their
endpoints simultaneously with the axes that are.

Note: The LIN, CIRC, and DEP words may never have the same bits set in
them at a time. You must always set a bit for every axis ever used in
the path, even if the axis is not to move in this particular move. In this
case, you would set either the LIN or DEP bit for the axis, set the INC
bit for the axis, and program an endpoint of zero for the axis.

The NDPT array holds the endpoints for the axes used in the move. The 0th
element is not used. If the INC bit is set for the axis, this is the distance to move, if
the INC bit is reset for the axis, then this is the position to move to. The endpoints
are entered in ladder units.

The CEN1 and CEN2 inputs define the circle centers if a circular move is being
performed. The CEN1 input is the center for the lowest numbered circular axis,
and the CEN2 input is the center for the highest numbered circular axis. The cen-
ters are always programmed as an incremental distance from the starting point of
the circle, even if the INC bit for the axes is not set. The centers are entered in lad-
der units. For example, if a circle were being done with axes 4 and 6, then CEN1
would be the center for axis 4, and CEN2 would be the center for axis 6.

The BNDW input defines a bandwidth for circular moves. When a circular move is
requested, the distance from the start point to the center point and the distance
from the endpoint to the center point are compared for both axes. If these distances
differ by more than the bandwidth entered here, then the move will not execute and
error 14 will be returned on the ERR output. This bandwidth is entered in ladder
units.

The OVRD input defines the feedrate override value. This can be changed at any
time, even if the STRT input is not energized. This adjusts the actual feedrate or
time to be from 0 to 255 percent of the programmed feedrate or time.

The PATH input defines the number of the path. Up to four totally independent
paths of coordinated motion can be defined. This must be a number from 1 to 4.
This should not be changed once it is set.

The ACCL is the path acceleration in ladder units/min2.

The JERK is the path jerk in ladder units/min3.

The MAXF is the maximum path feedrate in ladder units/min. This should not be
changed once it is set.
 2-80

Outputs

The QUED output will be set for one scan when STRT is pulsed and the move has
been successfully queued on all axes defined. If an error occurred in queueing the
move, this output will be reset when STRT is pulsed, and an error code will be
stored in the ERR output.

The ERR output will be non-zero if an error occurs in queueing a move. A list of
error codes is shown below:

ERR Description
0 No error
1 No bits were set in the LIN, CIRC, or DEP WORDs
2 The same bit was set in the LIN and CIRC WORDs
3 The same bit was set in the DEP and CIRC WORDs
4 The same bit was set in the LIN and DEP WORDs
5 The number of bits set in the CIRC WORD was not 0 or 2
6 Not used
7 Not used
8 The time of move or feedrate was negative
9 The time of move or feedrate was zero
10 The feedrate was too high or the time was too low to

calculate
11 The feedrate was too low or the time was too high to

calculate
12 An axis that was selected was not initialized by the servo

setup function
13 The STRTSRV function has not been called
14 Endpoint not on circle

1XX When the distance to move was converted to feedback units,
it was too positive to fit into 32 bits. XX = Axis number

2XX When the distance to move was converted to feedback units,
it was too negative to fit into 32 bits. XX = Axis number

3XX The path feedrate or time entered causes an axis to exceed its
velocity limit from servo setup. XX = Axis number

32766 The time axis could not be started
32767 One of the OKs on the RATIO_RL functions did not get set

or the OK on the time axis distance move did not get set
 2-81

Calculating ACCL and JERK

This section explains how to calculate the ACCL and JERK inputs for the function
block.

The drawing below illustrates an S-curve acceleration.

From 0 to t1, the axis will be in constant jerk
From t1 to t2, the axis will be in constant acceleration.
From t2 to tm, the axis will again be in constant jerk.

The formulas below show the relationship between tm, t1, t2, and s.

Vm = Maximum path velocity

tm = The total time it takes to get to velocity Vm if the axis starts at
0.

s = The percentage of time (tm) spent in constant jerk.

V
el

o
ci

ty

Vm

Time

t1

t2

tm

= constant jerk

= constant
acceleration

0

(t1 - t2)

(0 - t1, t2 - tm)

t1 tm t2–
1
2
--- s tm××

= =

t2 tm
1
2
--- s tm××

 –=
 2-82

For a 10% S-curve, 10% of the time (tm) is spent in constant jerk.
This means that s = 0.1.
For a 20% S-curve, 20% of the time (tm) is spent in constant jerk.
This means that s = 0.2, etc.

If you know Vm, tm, and s, then you can calculate jerk and acceleration using the
following formulas.

The units for JERK are ladder units per minute3; therefore, Vm is in ladder units
per minute and tm is in minutes. The units for ACCL are ladder units per minute2.

JERK
2 Vm×

s tm2 1 0.5 s)×–(×
---=

ACCL
Vm

tm 1 0.5 s)×–(×
---=
 2-83

M_SRCMON
Monitors up to five SERCOS IDNs USER/M_SERCOS

⁄ƒƒ NAMEƒƒø
≥M_SRCMON ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥SRS FAIL√ƒ
≥ ≥
¥IDNA MODA√ƒ
≥ ≥
¥P_A MODB√ƒ
≥ ≥
¥IDNB MODC√ƒ
≥ ≥
¥P_B MODD√ƒ
≥ ≥
¥IDNC MODE√ƒ
≥ ≥
¥P_C ERR√ƒ
≥ ≥
¥IDND SERR√ƒ
≥ ≥
¥P_D BSER√ƒ
≥ ≥
¥IDNE I_FL√ƒ
≥ ≥
¥P_E ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

SRS (STRUCT) - slot, ring, and slave to monitor

IDNA (UINT) - number of first IDN to monitor

P_A (BOOL) - set for Product IDN, reset for
System IDN

IDNB (UINT) - number of second IDN to monitor

P_B (BOOL) - set for Product IDN, reset for System
IDN

IDNC (UINT) - number of third IDN to monitor

P_C (BOOL) - set for Product IDN, reset for
System IDN

IDND (UINT) - number of fourth IDN to monitor

P_D (BOOL) - set for Product IDN, reset for
System IDN

IDNE (UINT) - number of fifth IDN to monitor

P_E (BOOL) - set for Product IDN, reset for
System IDN

Outputs: OK (BOOL) - execution complete

FAIL (BOOL) - execution failure

MODA (REAL) - value of first IDN

MODB (REAL) - value of second IDN

MODC (REAL) - value of third IDN

MODD (REAL) - value of fourth IDN

MODE (REAL) - value of fifth IDN

ERR (INT) - SERCOS error*

SERR (UINT) - SERCOS slave error*

BSER (INT) - SERCOS block specific error*

I_FL (UINT) - indicates the IDN that failed
(1 through 5 corresponding to A through E) if
an error occurs during a read

*See error tables at end of the M_SRCWTL function
block section.
 2-84

The M_SRCMON function block monitors up to five SERCOS IDNs for a single
SERCOS slave. The operation data for each IDN is continuously read as long as
the EN00 input is energized.

The IDNA through IDNE inputs can be used or left blank. When the EN00 input
transitions from off to on, the attributes of each IDN are read and saved in the
function block. These attributes are used to scale the data being monitored into
engineering units for the output. If the IDNA through IDNE inputs are changed
while monitoring, the EN00 input must be dropped and then re-energized so that
the attributes for each IDN are read again.

The SRS input is used to indicate which SERCOS slave to monitor. Slot, ring, and
slave are used instead of an axis number so that this function block can be used in
phase 2 initialization if desired. The SRS structure must be declared as follows:

If FAIL is set, ERR or BSER will be non-zero indicating the type of error. If
ERR = 128 indicating Slave Error, SERR will be non-zero indicating the type of
slave error.

Name Data Type Definition
SRS STRUCT
.SLOT UINT Slot number of the SERCOS

module
.RING UINT Ring number on the module
.SLAVE UINT Slave number on the ring

END_STRUCT
 2-85

M_SRCPRC
Executes SERCOS procedure command function USER/M_SERCOS

The M_SRCPRC function block executes a SERCOS procedure command func-
tion for a single SERCOS slave. The RQ00 input of this function block should be
one-shot to initiate the procedure command function. While the procedure com-
mand function is executing within the SERCOS slave, the ACTV output will be
set. If the procedure command function completes without error, the DONE output
will be set and the ACTV output will be reset. If the procedure command function
fails, the FAIL output will be set and the ACTV output will be reset. The DONE or
FAIL output will remain set until the RQ00 input is one-shot again.

The SRS input is used to indicate which SERCOS slave is to execute the procedure
command function. Slot, ring, and slave are used instead of an axis number so that
this function can be used in phase 2 initialization if desired. The SRS structure
must be declared as shown in the following table:

⁄ƒƒ NAMEƒƒø
≥ M_SRCPRC≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥SRS FAIL√ƒ
≥ ≥
¥IDN ACTV√ƒ
≥ ≥
¥PROD ERR√ƒ
≥ ≥
≥ SERR√ƒ
≥ ≥
≥ BSER√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - requests execution of a procedure
command function (one-shot)

SRS (STRUCT) - slot, ring, and slave number of the
SERCOS slave to execute the procedure command
function

IDN (UINT) - IDN number of procedure command
function

PROD (BOOL) - set for Product IDN, reset for
System IDN

Outputs:DONE (BOOL) - procedure command
function complete

FAIL (BOOL) - procedure command function failure

ACTV (BOOL) - set while the procedure command
function is active

ERR (INT) - SERCOS error*

SERR (UINT) - SERCOS slave error*

BSER (INT) - SERCOS block specific error*

*See error tables at end of the M_SRCWTL
function block section.
 2-86

If FAIL is set, ERR or BSER will be non-zero indicating the type of error.

If ERR = 128 indicating slave error, SERR will be non-zero indicating the type of
slave error.

Name Data Type Definition
SRS STRUCT
.SLOT UINT Slot number of the SERCOS module
.RING UINT Ring number on the module
.SLAVE UINT Slave number on the ring

END_STRUCT
 2-87

M_SRCRDL
Reads SERCOS IDNs USER/M_SERCOS

The M_SRCRDL function block reads a list of up to 400 IDNs and saves the list to
the PiC RAMDISK or workstation as an ASCII file along with the name, units,
and operation data limits for each IDN in the list. Each IDN appears in a single line
in the file. The data for each IDN is separated by tabs. This function block can be
used in conjunction with M_SRCWTL to read and write lists of IDNs to and from
a SERCOS slave.

The IDN number specified with the IDN and PROD inputs must return a list of
IDNs in order to use this function block.

The RQ00 input must be one-shot. While the function block is reading the list of
IDNs, the ACTV output will be set. If the read completes without error, the DONE
output will be set and the ACTV output will be reset. If an error occurs during
reading, the FAIL output will be set and the ACTV output will be reset. The
DONE or FAIL output will remain set until the RQ00 input is one-shot again.

⁄ƒƒ NAMEƒƒø
≥ M_SRCRDL≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥SRS FAIL√ƒ
≥ ≥
¥IDN ACTV√ƒ
≥ ≥
¥PROD ERR√ƒ
≥ ≥
¥FILE SERR√ƒ
≥ ≥
≥ BSER√ƒ
≥ ≥
≥ IOER√ƒ
≥ ≥
≥ NUM√ƒ
≥ ≥
≥ CURR√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - requests execution (one-shot)

SRS (STRUCT) - slot, ring, and slave number

IDN (UINT) - IDN number that will return a list
of IDNs

PROD (BOOL) - set for Product IDN, reset for
System IDN

FILE (STRING [80]) - filename of the file to save to

Outputs: DONE (BOOL) - execution complete

FAIL (BOOL) - execution failed

ACTV (BOOL) - set while executing

ERR (INT) - SERCOS error*

SERR (UINT) - SERCOS slave error*

BSER (INT) - SERCOS block specific error*

IOER (INT) - I/O function block error (See
Appendix B in the Software Manual.)

NUM (UINT) - number of IDNs in the list

CURR (UINT) - current member being read

*See error tables at end of the M_SRCWTL
function block section.
 2-88

The NUM output indicates the total number of IDNs that exist in the list being
read. The CURR output indicates the current member of the list being read and
will range from 0 to NUM.

The SRS input is used to indicate from which SERCOS slave the list of IDNs will
be read. Slot, ring, and slave are used instead of an axis number so that this func-
tion block can be used in phase 2 initialization if desired. The SRS structure must
be declared as follows:

FILE is a string containing the full file specification of the file in which the list of
IDNs is saved. This string must be terminated by the null character $00, (i.e.
RAMDISK:\IDNFILE.DAT$00).

If FAIL is set ERR, BSER, or IOER will be non-zero indicating the type of error. If
ERR = 128 indicating Slave Error, SERR will be non-zero indicating the type of
slave error.

Name Data Type Definition
SRS STRUCT
.SLOT UINT Slot number of the SERCOS module
.RING UINT Ring number on the module
.SLAVE UINT Slave number on the ring

END_STRUCT
 2-89

M_SRCWT
Writes and reads SERCOS IDNs USER/M_SERCOS

⁄ƒƒ NAMEƒƒø
≥ M_SRCWT ≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥SRS FAIL√ƒ
≥ ≥
¥IDNA ACTV√ƒ
≥ ≥
¥P_A ERR√ƒ
≥ ≥
¥WODA SERR√ƒ
≥ ≥
¥IDNB BSER√ƒ
≥ ≥
¥P_B FIDN√ƒ
≥ ≥
¥WODB RODA√ƒ
≥ ≥
¥IDNC RODB√ƒ
≥ ≥
¥P_C RODC√ƒ
≥ ≥
¥WODC RODD√ƒ
≥ ≥
¥IDND RODE√ƒ
≥ ≥
¥P_D ≥
≥ ≥
¥WODD ≥
≥ ≥
¥IDNE ≥
≥ ≥
¥P_E ≥
≥ ≥
¥WODE ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - requests execution (one-shot)
SRS (STRUCT) - slot, ring, and slave number
IDNA (UINT) - number of first IDN to write
P_A (BOOL) - set for Product IDN, reset for
System IDN
WODA (REAL) - value of operation datum
for IDNA
IDNB (UINT) - number of second IDN to write
P_B (BOOL) - set for Product IDN, reset for
System IDN
WODB (REAL) - value of operation datum
for IDNB
IDNC (UINT) - number of third IDN to write
P_C (BOOL) - set for Product IDN, reset for
System IDN
WODC (REAL) - value of operation datum
for IDNC

IDND (UINT) - number of fourth IDN to write
P_D (BOOL) - set for Product IDN, reset for
System IDN
WODD (REAL) - value of operation datum
for IDND
IDNE (UINT) - number of fifth IDN to write
P_E (BOOL) - set for Product IDN, reset for
System IDN
WODE (REAL) - value of operation datum for IDNE
Outputs: DONE (BOOL) - set when the writes and reads
are complete
FAIL (BOOL) - set if write or read fails
ACTV (BOOL) - set when operation is in process
ERR (INT) - SERCOS error*
SERR (UINT) - SERCOS slave error*
BSER (INT) - SERCOS block specific error*
FIDN (UINT) - the IDN the operation failed on
RODA (REAL) - value of operation datum read
back from IDNA
RODB (REAL) - value of operation datum read
back from IDNB
RODC (REAL) - value of operation datum read back
from IDNC
RODD (REAL) - value of operation datum read back
from IDND
RODE (REAL) - value of operation datum read back
from IDNE
*See error tables at end of M_SRCWTL function
block section.
 2-90

The M_SRCWT function block writes and reads up to five SERCOS IDNs.

The M_SRCWT function block will write and read back operation data to a maxi-
mum of five IDNs on a SERCOS slave. The operation data for each IDN is written
and read once when the RQ00 input is energized.

The IDNA through IDNE inputs can be used or left blank. When the RQ00 input
transitions from off to on, the attributes of each IDN are read and saved in the
function block. These attributes are used to scale the data at the input to the correct
units for the SERCOS slave. After the attributes are read the operation data is writ-
ten and read back again to verify that the write was successful. While this process
is happening, the ACTV output will remain set. If the process completes without
error, the DONE output will be set and the ACTV output will be reset. If an error
occurs, the FAIL output will be set and the ACTV output will be reset.

The RQ00 input must be one-shot each time you wish to write data to the SERCOS
slave. A second request cannot be made while the first one is still active. If this
happens, the second request will be ignored.

The SRS input is used to indicate which SERCOS slave to write to. Slot, ring, and
slave are used instead of an axis number so that this function can be used in phase
2 initialization if desired. The SRS structure must be declared as follows:

If FAIL is set, ERR or BSER will be non-zero indicating the type of error. If ERR
= 128 indicating Slave Error, SERR will be non-zero indicating the type of slave
error.

Name Data Type Definition
SRS STRUCT
.SLOT UINT Slot number of the SERCOS module
.RING UINT Ring number on the module
.SLAVE UINT Slave number on the ring

END_STRUCT
 2-91

M_SRCWTL
Writes SERCOS IDNs USER/M_SERCOS

The M_SRCWTL function block writes a list of SERCOS IDNs.

The M_SRCWTL function block reads a list of IDNs from an ASCII file on the
PiC RAMDISK or workstation and writes the operation data from the list to a
SERCOS slave. The ASCII file must be of the same format used for the
M_SRCRDL function block. M_SRCWTL can be used in conjunction with
M_SRCRDL to read and write lists of IDNs to and from a SERCOS slave.

The RQ00 input to this function must be one-shot. While the function block is
writing the list of IDNs, the ACTV output will be set. If the write completes with-
out error, the DONE output will be set and the ACTV output will be reset. If an
error occurs during the write, the FAIL output will be set and the ACTV output
will be reset. The DONE or FAIL output will remain set until the RQ00 input is
one-shot again.

The CURR output indicates the current IDN being written to the SERCOS slave.
This will continually update while the function block is active.

The SRS input is used to indicate which SERCOS slave the list of IDNs will be
written to. Slot, ring, and slave are used instead of an axis number so that this func-
tion can be used in phase 2 initialization if desired. The SRS structure must be
declared as shown in the following table

⁄ƒƒ NAMEƒƒø
≥M_SRCWTL ≥
≥ ≥
¥RQ00 DONE√ƒ
≥ ≥
¥SRS FAIL√ƒ
≥ ≥
¥FILE ACTV√ƒ
≥ ≥
≥ ERR√ƒ
≥ ≥
≥ SERR√ƒ
≥ ≥
≥ BSER√ƒ
≥ ≥
≥ IOER√ƒ
≥ ≥
≥ CURR√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: RQ00 (BOOL) - requests execution (one-shot)

SRS (STRUCT) - slot, ring, and slave number

FILE (STRING [80]) - filename

Outputs: DONE (BOOL) - execution complete

FAIL (BOOL) - execution failed

ACTV (BOOL) - execution active

ERR (INT) - SERCOS error*

SERR (UINT) - SERCOS slave error*

BSER (INT) - SERCOS block specific error*

IOER (INT) - I/O function block error (See Appendix B in the
Software Manual.)

CURR (UINT) - current IDN being written

*See error tables at end of the this function block section.
 2-92

:

FILE is a string containing the full file specification of the file in which the list of
IDNs is saved. This string must be terminated by the null character $00 (i.e. RAM-
DISK:\IDNFILE.DAT$00).

If FAIL is set ERR, BSER, or IOER will be non-zero indicating the type of error. If
ERR = 128 indicating Slave Error, SERR will be non-zero indicating the type of
slave error.

M_SERCOS Function Block Errors

There are three types of error outputs that can appear on the M_SERCOS function
blocks. They are described in the three tables that follow.

ERR Output

Table 1 contains the list of SERCOS errors that can appear at the ERR output of
the M_SERCOS function blocks.

 Table 1 - List of ERR Codes

Name Data Type Definition
SRS STRUCT
.SLOT UINT Slot number of the SERCOS module
.RING UINT Ring number on the module
.SLAVE UINT Slave number on the ring

END_STRUCT

Err # Description
0 No error
1 IDN queue was busy when called.
2 Quantity specified in the .AVAIL structure member is not large enough for received

data.
3 Axis is not initialized, is not a SERCOS axis, or the slot/ring/slave specification is

incorrect.
4 Invalid data in DATA input structure
5 Error reset function could not be completed.
6 SERCOS ring 1 busy*
7 SERCOS ring 2 busy*
8 SERCOS ring 1 configuration size error**
9 SERCOS ring 2 configuration size error**
10 Function block enabled while already in process
 2-93

11 Bit 3 or bit 8 set in the procedure command acknowledgment (data status) Either oper-
ation data invalid or procedure command error

12 Not enough pool memory available
13 Change bit in status word was zero after reference complete.
14 The IDN queue was cleared during an IDN transfer, typically caused by calling the

SC_INIT function while an IDN is being read or written.
15 SERCOS module is unavailable for IDN transfer because the phase-to-phase

transition in progress is between phase 2 and phase 4.
16 Slave response timed out
17 The SERCOS module did not receive an expected AT response. SERCOS cable may

be disconnected.
18 Number of SERCOS slots equals zero.
19 The SERCOS module did not receive an expected MDT response. SERCOS cable

may be disconnected.
20 Phase 0 detected that the ring is not complete. The optic cable could be open or drive

turned off.
21 The SERCOS module firmware is outdated for the features requested from a newer

version of the motion library.
22 The SERCOS module firmware is a newer version and the motion library is outdated

and unable to interface.
23 The data (user function) is outdated for the features requested from the library or the

SERCOS module firmware.
24 The data is a newer version and the library is unable to interface.
25 A two-ring SERCOS module was specified in SERCOS setup but the module is a one-

ring SERCOS module.
30 The drive status word (bit 13=1) indicates an error.
31 An E-stop condition exists for this axis in the PiC900.
32 Incorrect phase number, contact Giddings & Lewis.
33 Incorrect address error, contact Giddings & Lewis.
34 Incorrect AT number error, contact Giddings & Lewis.
35 Variable 48 is set to 1 and you attempt to close the loop
36 OPTN input is invalid.
48 Service channel not ready when attempt to send/receive non-cyclic data
49 No data to send or receive
50 The value of the .SIZE member of the TASK input structure does not match the byte

count in the SERCOS module.
51 The value of the .SIZE member of the MAIN input structure does not match the byte

count in the SERCOS module.
65 Error occurred calculating when MDT should occur.
66 Error occurred calculating when drive data valid.
67 Error occurred calculating when feedback data valid.
68 Error occurred calculating total time required for communication cycle.
 2-94

*This busy error may occur if the SC_INIT function is not one-shotted and a second store operation is attempted
before the first one is done.

**This size error will occur if too many IDNs are defined in the SERCOS setup data.

SERR Output

Table 2 contains the list of slave errors that can appear at the SERR output of
M_SERCOS function blocks.

 Table 2 - List of SERR Error Codes

69 Error occurred calculating cyclic data memory for SERCON processor.
70 Error occurred calculating cyclic data memory for internal memory map.
71 Error occurred calculating service channel memory map.
72 Incorrect ring error, contact Giddings & Lewis.
73 Incorrect AT count error, contact Giddings & Lewis.
74 CPU on SERCOS module has too many tasks during update.
128 Slave error occurred. Read SERR output to identify error. The SLV output indicates

the slave number.
136 Slave will not respond in phase 1. The SLV output indicates the slave number.
144 Procedure command error - The slave number can be viewed at the SLV output and

the IDN number at the IDN output.

SERR # Description
0 No error

4097 This IDN does not exist.
4105 The data for this IDN may not be accessed.
8193 The name does not exist
8194 The name transmission is too short
8195 The name transmission is too long
8196 The name may not be changed
8197 The name is write-protected
12290 The attribute transmission is too short
12291 The attribute transmission is too long
12292 The attribute may not be changed
12293 The attribute is write-protected at this time
16385 The units do not exist
16386 The units transmission is too short
16387 The units transmission is too long
16388 The units may not be changed
16389 The units are write-protected at this time
20481 The minimum value does not exist
20482 The minimum value transmission is too short
 2-95

20483 The minimum value transmission is too long
20484 The minimum value may not be changed
20485 The minimum value is write-protected
24577 The maximum value does not exist
24578 The maximum value transmission is too short
24579 The maximum value transmission is too long
24580 The maximum value may not be changed
24581 The maximum value is write-protected
28674 The data is too short.
28675 The data is too long
28676 The data may not be changed.
28677 The data is write-protected at this time.
28678 The data is smaller than the minimum value.
28679 The data is larger than the maximum value.
28680 The bit pattern for this IDN is invalid.
 2-96

BSER Output

Table 3 contains the list of block specific errors that can appear at the BSER output
of M_SERCOS function blocks.

 Table 3 - Block Specific Error Codes

BSER # Description
0 No error
1 Request to execute but not in phase 2 or 4
2 IDN is a procedure command
3 Data is variable length
4 Data is reserved
5 IDN is not a procedure command
 2-97

M_STATUS
Return Axis Data USER/M_DATA

This function block obtains information for a digitizing, time, or closed loop axis.
It returns the in position flag, the queue available flag, the active queue number,
the active move type, the actual position, the commanded position, the position
error, and the filter error for the axis.This function block should be enabled every
scan.

The input at AXIS determines which axis the output information is for.

The INPS output is set whenever the following error of the axis is within the in
position limit entered in servo setup. It will be reset while the axis is in motion.

The QAVL output is set whenever the next queue or both the next and active
queues are empty. When set it means another move can be put in the axis queue.

The QUE output holds the queue number of the move in the active queue. The
queue number is assigned to each move when the move function is enabled. If no
moves are active, the QUE number will be 0.

⁄ƒƒ NAMEƒƒø
≥M_STATUS ≥
≥ ≥
¥EN01 OK√ƒ
≥ ≥
¥AXIS INPS√ƒ
≥ ≥
≥ QAVL√ƒ
≥ ≥
≥ QUE√ƒ
≥ ≥
≥ MVTP√ƒ
≥ ≥
≥ ACTL√ƒ
≥ ≥
≥ COMD√ƒ
≥ ≥
≥ PERR√ƒ
≥ ≥
≥ FERR√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN01 (BOOL) - enables execution

AXIS (USINT) - axis number

Outputs:OK (BOOL) - execution completed without error

INPS (BOOL) - set when axis is in position

QAVL (BOOL) - set when next queue is empty

QUE (USINT) - queue number of move in
active queue

MVTP (DINT) - type of move in active queue

ACTL (DINT) - actual position of axis in ladder
units

COMD (DINT) - commanded position of axis in
ladder units

PERR (DINT) - position error of axis in ladder units

FERR (DINT) - filter error of axis in ladder units
 2-98

The MVTP output holds the type of the move in the active queue. If no move is
active, this will be 0. The moves types are defined below:

The ACTL output holds the actual position of the axis in ladder units.

The COMD output holds the commanded position of the axis in ladder units.

The PERR output holds the proportional error of the axis in ladder units.

The FERR output holds the filter error of the axis in ladder units.

This function block can be used for a digitizing axis, a time axis, or a closed loop
axis. If used for a digitizing axis only the ACTL and COMD outputs are used and
there is no need to enter variables for the INPS, QAVL, QUE, MVTP, PERR, or
FERR outputs. If used for a time axis, only the ACTL output is used and there is
no need to enter variables for the INPS, QAVL, QUE, MVTP, COMD, PERR, and
FERR outputs.

The OK output will not be set if the axis has not been initialized.

MVTP Description
11 POSITION
12 DISTANCE
14 VEL_STRT
16 FAST_REF or LAD_REF
18 RATIOPRO
20 RATIOSYN or RATIO_GR
22 RATIOCAM
23 RATIOSLP
24 RATIO_RL
 2-99

M_WTTUNE
Writes tuning parameters USER/M_DATA

This function block allows you to write all six tuning parameters from the TUNE-
WRIT function in a single function.

This function block requires the numeric processor or a 486 DX processor.

The EN00 input of this function should be set every scan.

The AXIS input identifies which axis to write data to. It must be between 1 and 16
or between 101 and 116, inclusive.

Note: LU = ladder units, MIN = minutes, LUFE = ladder units of following error.

When the WT_P input is set, the proportional gain of AXIS will be changed to the
value entered at P. P is in LU / MIN / LUFE and must be between 0 and 20000.

When the WT_I input is set, the integral gain of AXIS will be changed to the value
entered at I. I is in LU / MIN / LUFE * MIN. I must be from 0 to 32000.

When the WT_D input is set, the derivative gain of AXIS will be changed to the
value entered at D. D is in LU / MIN / LUFE / MIN.

⁄ƒ NAME ƒƒø
≥ M_WTTUNE≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥AXIS ERR√ƒ
≥ ≥
¥WT_P ≥
≥ ≥
¥P ≥
≥ ≥
¥WT_I ≥
≥ ≥
¥I ≥
≥ ≥
¥WT_D ≥
≥ ≥
¥D ≥
≥ ≥
¥WTOF ≥
≥ ≥
¥OFST ≥
≥ ≥
¥WTFL ≥
≥ ≥
¥FILT ≥
≥ ≥
¥WTFF ≥
≥ ≥
¥FFWD ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

AXIS (USINT) - identifies axis

WT_P (BOOL) - enables write of proportional gain

P (DINT) - proportional gain

WT_I (BOOL) - enables write of integral gain

I (DINT) - integral gain

WT_D (BOOL) - enables write of derivative gain

D (DINT) - derivative gain

WTOF (BOOL) - enables write of analog output
offset

OFST (DINT) - analog output offset

WTFL (BOOL) - enables write of slow speed
filter value

FILT (DINT) - slow speed filter value

WTFF (BOOL) - enables write of feedforward
percentage

FFWD (DINT) - feedforward percentage

Outputs: OK (BOOL) - execution complete

ERR (INT) - error number
 2-100

When the WTOF input is set, the analog output offset voltage of AXIS will be
changed to the value entered at OFST. OFST must be from -10000 to +10000 mil-
livolts.

When the WTFL input is set, the slow speed filter value of AXIS will be changed
to the value entered at FILT. FILT must be from 0 to 10000 milliseconds.

When the WTFF input is set, the feedforward percentage of AXIS will be changed
to the value entered at FFWD. FFWD must be from 0 to 100%.

The WT_P, WT_I, WT_D, WTOF, WTFL and WTFF inputs can be one-shot. The
parameters will remain changed until the axis is re-initialized or until this function
block or the TUNEWRIT function is called again for AXIS.

The OK output will be set if the function executes without error. If an error occurs,
OK will not be set and ERR will hold a number describing the error that occurred.
A listing of errors is shown below:

ERR Description
0 No error
1 Tried to change P for AXIS number that was not initialized or is out

of range
3 Data for P is out of range or can not be calculated

101 Tried to change I for AXIS number that was not initialized or is out
of range

103 Data for I is out of range or can not be calculated
201 Tried to change D for AXIS number that was not initialized or is out

of range
203 Data for D is out of range or can not be calculated
301 Tried to change OFST for AXIS number that was not initialized or is

out of range
303 Data for OFST is out of range or can not be calculated
401 Tried to change FILT for AXIS number that was not initialized or is

out of range
403 Data for FILT is out of range or can not be calculated
501 Tried to change FFWD for AXIS number that was not initialized or

is out of range
503 Data for FFWD is out of range or can not be calculated
 2-101

S_CLOS1
Close Loop on SERCOS Servo Axes 1 to 8 USER/S_ASFB

This function block is a replacement for M_CLOS1 for SERCOS axes. It is not for
analog controlled axes.

This function block is used to reset the E-stop, C-stop, and programming errors on
SERCOS servo axes 1 through 8 when the machine start input is pulsed. It also
sends a class one diagnostics fault reset to the SERCOS drive. It closes the loop on
SERCOS servo axes 1 through 8 after the machine start input is pulsed and a pro-
grammable time delay has elapsed. If there are no E-stop faults and the drive is
enabled the loop will be closed and the closed output will be energized.

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the cur-
rent state of the electrical E-stop status as shown below.

⁄ NAME ƒƒø
≥ S_CLOS1 ≥
≥ ≥
¥EN00 CLSD√ƒ
≥ ≥
¥MSTR A1C√ƒ
≥ ≥
¥DELY A2C√ƒ
≥ ≥
≥ A3C√ƒ
≥ ≥
≥ A4C√ƒ
≥ ≥
≥ A5C√ƒ
≥ ≥
≥ A6C√ƒ
≥ ≥
≥ A7C√ƒ
≥ ≥
≥ A8C√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

MSTR (BOOL) - machine start input

DELY (TIME) - amount of time that will elapse after a positive
transition of MSTR until the loops will be closed

Outputs: CLSD (BOOL) - one or more of axes 1 to 8 have their
position loops closed

A1C (BOOL) - set when the loop is closed on axis 1

A2C (BOOL) - set when the loop is closed on axis 2

A3C (BOOL) - set when the loop is closed on axis 3

A4C (BOOL) - set when the loop is closed on axis 4

A5C (BOOL) - set when the loop is closed on axis 5

A6C (BOOL) - set when the loop is closed on axis 6

A7C (BOOL) - set when the loop is closed on axis 7

A8C (BOOL) - set when the loop is closed on axis 8
 2-102

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical E-
stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended ladder logic for the E-stop handling of
the S_CLOS1 application. Please refer to MMC4_SOI.LDO for an example of
S_CLOS1.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time DELY is normally in the range from 500 ms to 2 seconds.

On a positive transition of MSTR, this function will send a procedure command to
the SERCOS drive to reset class one diagnostic errors on axes 1 through 8.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, all E-stop, C-stop, and programming errors are reset on axes 1
through 8. If the E-stops are reset and the SERCOS drive is enabled, the loops will
be closed on axes 1 to 8. CLSD will be energized if one or more of axes 1 to 8 have
their position loops closed.

If an E-stop fault occurs on an axis 1 to 8, its loop closed output (A1 to A8) will be
dropped. CLSD is true as long as one or more of axes 1 to 8 have their position
loops closed.

ESTOPACT

MACHSTRT
 P ENxx
 2-103

S_CLOS9
Close Loop on SERCOS Servo Axes 9 to 16 USER/S_ASFB

This function block is a replacement for M_CLOS9 for SERCOS axes. It is not for
analog controlled axes.

This function block is used to reset the E-stop, C-stop, and programming errors on
SERCOS servo axes 9 through 16 when the machine start input is pulsed. It also
sends a class one diagnostics fault reset to the SERCOS drive. It closes the loop on
SERCOS servo axes 9 through 16 after the machine start input is pulsed and a pro-
grammable time delay has elapsed. If there are no E-stop faults and the drive is
enabled the loop will be closed and the closed output will be energized.

This function block can be enabled every scan. If the enable input changes from
ON to OFF during the time delay after machine start, the function block will abort
the time delay and not close the position loops.

If there are conditions that should abort the sequence to close the position loops
(such as an electrical E-stop condition during the time delay), then the enable
should include both the positive transition of the machine start input and the cur-
rent state of the electrical E-stop status as shown below.

⁄ NAME ƒƒø
≥ S_CLOS9 ≥
≥ ≥
¥EN00 CLSD√ƒ
≥ ≥
¥MSTR A9C√ƒ
≥ ≥
¥DELY A10C√ƒ
≥ ≥
≥ A11C√ƒ
≥ ≥
≥ A12C√ƒ
≥ ≥
≥ A13C√ƒ
≥ ≥
≥ A14C√ƒ
≥ ≥
≥ A15C√ƒ
≥ ≥
≥ A16C√ƒ
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

MSTR (BOOL) - machine start input

DELY (TIME) - amount of time that will elapse after a positive
transition of MSTR until the loops will be closed

Outputs: CLSD (BOOL) - one or more of axes 9 to 16 have
their position loops closed

A9C (BOOL) - set when the loop is closed on axis 9

A10C (BOOL) - set when the loop is closed on axis 10

A11C (BOOL) - set when the loop is closed on axis 11

A12C (BOOL) - set when the loop is closed on axis 12

A13C (BOOL) - set when the loop is closed on axis 13

A14C (BOOL) - set when the loop is closed on axis 14

A15C (BOOL) - set when the loop is closed on axis 15

A16C (BOOL) - set when the loop is closed on axis 16
 2-104

The reason for these two input conditions is to provide the enable at the start of the
time delay (with the P contact of the machine start signal) and to maintain the
enable during the time delay as needed (with the NC contact for the electrical E-
stop condition).

The MMC example applications located on the Applications CD (in the examples
sub-directory) illustrate the recommended ladder logic for the E-stop handling of
the S_CLOSx application. Please refer to MMC4_SOI.LDO for an example of
S_CLOSx.

The machine start input must go through a positive transition (off to on) to reset
the errors and close the loop.

The time DELY is normally in the range from 500 ms to 2 seconds.

On a positive transition of MSTR, this function will send a procedure command to
the SERCOS drive to reset class one diagnostic errors on axes 9 through 16.

The positive transition of MSTR enables a timer with a preset time of DELY. After
DELY has elapsed, all E-stop, C-stop, and programming errors are reset on axes 9
through 16. If the E-stops are reset and the SERCOS drive is enabled, the loops
will be closed on axes 9 to 16. CLSD will be energized if one or more of axes 9 to
16 have their position loops closed.

If an E-stop fault occurs on an axis 9 to 16, its loop closed output (A9 to A16) will
be dropped. CLSD is true as long as one or more of axes 9 to 16 have their position
loops closed.

ESTOPACT

MACHSTRT
 P ENxx
 2-105

S_ERRORC
Axis Error Checking Centurion SERCOS Drives USER/S_ASFB

This function block is a replacement for M_ERROR for a SERCOS axis with a
Centurion drive. It is not for an analog controlled axis.

This function block is used to report errors that occur on a SERCOS servo axis.
The types of errors include ring errors, drive errors, E-stop, C-stop and program-
ming errors. These conditions may be caused by the SERCOS hardware, SERCOS
drive, servo software or the ladder programming. If defined by the programmer,
they will be triggered using the E-STOP or C_STOP functions. All of these errors
for the defined axis are reported by this one function block.

The enable input of this function should be directly connected to the rail with a
wire, causing this function block to be executed each scan.

The boolean outputs can be used as flags in the ladder to report error conditions.

⁄ NAME ƒƒø
≥ S_ERRORC≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥AXIS DSTA√ƒ
≥ ≥
¥SLOT ESTO√ƒ
≥ ≥
¥RING RERR√ƒ
≥ ≥
≥ SV_E√ƒ
≥ ≥
≥ CSTO√ƒ
≥ ≥
≥ PSTO√ƒ
≥ ≥
≥ E_ER√ƒ
≥ ≥
≥ RE_N√ƒ
≥ ≥
≥ SV_N√ƒ
≥ ≥
≥ C_ER√ƒ
≥ ≥
≥ P_ER√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

AXIS (USINT) - identifies SERCOS axis

SLOT (USINT) - slot number for the SERCOS module

RING (USINT) - ring the axis is connected to

Outputs: OK (BOOL) - execution complete

DSTA (USINT) - indicates the drive status

ESTO (BOOL) - indicates an E-stop is active when set

RERR (BOOL) - indicates a ring error

SV_E (BOOL) - indicates a slave (drive) error

CSTO (BOOL) - indicates a C-stop is active when set

PSTO (BOOL) - indicates a programming error has occurred

E_ER(WORD) - identifies E-stop errors

RE_N (INT) - identifies ring error number

SV_N (UINT) - identifies slave (drive) error number

C_ER (WORD) - identifies C-stop errors

P_ER (WORD) - identifies programming errors
 2-106

The E_ER, C_ER and P_ER word outputs can be converted to HEX display by
using the Module Monitor Edit View List command and inserting the variables.
Alternately, they can be given an initial value of 16#0 for a hex value during ani-
mation. After monitoring them in HEX, refer to the tables in the manual of
functions E_ERRORS, C_ERRORS and P_ERRORS to help identify the exact
problem. The RE_N value (ring error number) value can be identified by refering
to the SCR_ERR function in the Function/Function Block Reference Guide. Refer
to the SERCOS drive manual for the description of errors occuring on the SV_N
value (drive error number).
 2-107

S_FHOME
Performs a SERCOS Home Cycle using a Fast Reference USER/S_ASFB

This function block is a replacement for M_FHOME for a SERCOS axis. It is not
for an analog controlled axis.

This function block performs a fast reference cycle on a SERCOS axis, followed
by a homing (position) move to a designated location.

Before this function can be used, the SERCOS axis must be initialized and the
position loop must be closed.

The reference cycle will cause the selected SERCOS axis to move in the desig-
nated direction until the reference switch is sensed.

In the Centurion SERCOS drive the reference switch is wired to the input number
two of the selected axis on the Centurion drive. This function block uses
SCA_RFIT to initialize the SERCOS drive’s fast input for the reference cycle and
to direct the SERCOS drive to latch the position upon that input.

⁄ NAME ƒƒø
≥ S_FHOME ≥
≥ ≥
¥EN00 HCMP√ƒ
≥ ≥
¥STRT HACT√ƒ
≥ ≥
¥AXIS QUE√ƒ
≥ ≥
¥PLUS SWPO√ƒ
≥ ≥
¥RATE ERR√ƒ
≥ ≥
¥DIM ≥
≥ ≥
¥OPTN ≥
≥ ≥
¥BKOF ≥
≥ ≥
¥HOME ≥
≥ ≥
¥HDIM ≥
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

STRT (BOOL) - enables the home cycle

AXIS (USINT) - identifies SERCOS axis

PLUS (BOOL) - indicates direction of home cycle

RATE (UDINT) - feedrate at which motion occurs (entered in
LU/MIN)

DIM (DINT) - reference dimension for the nearest resolver null
or the next encoder index mark when the reference switch is set
(entered in LUs)

OPTN (WORD) - provides referencing options (0 or 1) 0 = no
option, 1 = Ignore index or null

BKOF (BOOL) - selects backoff of reference switch option

HOME (BOOL) - selects homing after referencing option

HDIM (DINT) - home location to move after reference is
complete

Outputs: HCMP (BOOL) - home cycle is complete

HACT (BOOL) - home cycle is being executed

QUE (USINT) - number of moves for queue

SWPO (DINT) - distance in feedback units (FUs) from the
reference switch to the index mark of an encoder or the null of a
resolver

ERR (BYTE) - report an error 1-4 if input data is invalid
 2-108

When the fast input occurs, the position of the axis is latched by the hardware in
the drive independent of the ladder scan.

When the reference switch is sensed, the axis will reference (assign a value) to the
next index mark of an encoder or the nearest null of a resolver. After the value is
assigned, the axis will decelerate to a stop and set the reference done flag.

If the HOME input is on when the reference done has been sensed, the home move
will automatically be triggered to position the axis at a desired location.

If the BKOF input is on when the reference is requested, and the axis is on the ref-
erence switch, the axis will move in the opposite direction of that indicated by the
PLUS input until the switch opens and then will complete the home cycle in the
normal manner. If the BKOF input is not on the axis will move in the specified
direction until it sees an off to on transition of the limit switch.

This function block is used to perform a fast reference, immediately followed by a
position move to a selected home position. It should be executed every scan unless
a home cycle will only be performed when the machine is started. In that case a
normally closed contact of the output of HCMP may be used.

The SWPO output is used to determine if the reference switch location will allow
for repeatable referencing. If the reference switch is not properly located in rela-
tionship to the index marker of an encoder or the null of a resolver it could possi-
bly reference a revolution off. To prevent this, the value reported by this output
should be as follows:

• For an encoder system the value of this output should be greater than 25%
and less than 75% of the total counts (FUs) per revolution. Example: For
8000 FUs/ Rev, the value should be >2000 and <6000.

• For a resolver system the value of this output should be less than 25% or
greater than 75% of the total counts (FUs) per revolution. Example: For
4000 FUs/ Rev, the value should be <1000 or >3000.

If the value is out of range either the reference switch will have to be moved or the
transducer coupling shifted.The ERR output indicates that invalid data was entered
on one of the inputs. The possible errors are listed below:

ERR Description
0 No error
1 The queue was not empty when the reference was requested
2 An error occurred in backing off of the reference switch
3 An error occurred in referencing
4 An error occurred in homing
5 An error occurred within the SERCOS drive, either during the ini-

tialization of the SERCOS drive (its probe input) or during the mon-
itoring of the SERCOS drive while it is referencing. The SERCOS
ring and slave error values can be obtained by animating this func-
tion block after the error.
 2-109

S_IO_C
Inputs/Outputs Centurion SERCOS Drive USER/S_ASFB

This function block provides the ladder access to the inputs and outputs of a Cen-
turion SERCOS drive through the SERCOS service channel.

This function block provides the ladder access to the inputs and outputs of a Cen-
turion SERCOS drive through the SERCOS service channel. It is not for a non-
Centurion SERCOS drive and it is not for an analog controlled axis.

The enable input of this function should be directly connected to the rail with a
wire, causing this function block to be executed each scan.

⁄ NAME ƒƒø
≥ S_IO_C ≥
≥ ≥
¥EN00 OK√ƒ
≥ ≥
¥AXIS RST√ƒ
≥ ≥
¥FOT ENAB√ƒ
≥ ≥
¥RDY1 DIN1√ƒ
≥ ≥
¥BRK1 DIN2√ƒ
≥ ≥
¥OUT1 DIN3√ƒ
≥ ≥
¥OUT3 DIN4√ƒ
≥ ≥
¥OUT4 DRVR√ƒ
≥ ≥
≥ DOT1√ƒ
≥ ≥
≥ DOT2√ƒ
≥ ≥
≥ DOT3√ƒ
≥ ≥
≥ DOT4√ƒ
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

AXIS (USINT) - identifies SERCOS axis

FOT (BOOL) - force the outputs of a Centurion SERCOS drive

RDY1 (BOOL) - state to be sent to the drive ready output

BRK1 (BOOL) - state to be sent to the drive brake output

OUT1 (BOOL) - state to be sent to drive output one

OUT2 (BOOL) - state to be sent to drive output two

OUT3 (BOOL) - state to be sent to drive output three

OUT4 (BOOL) - state to be sent to drive output four

Outputs: OK (BOOL) - execution complete

RST (BOOL) - state of the drive reset input

ENAB (BOOL) - state of the drive reset input

DIN1 (BOOL) - state of the drive input one

DIN2 (BOOL) - state of the drive input two

DIN3 (BOOL) - state of the drive input three

DIN4 (BOOL) - state of the drive input four

DRVR (BOOL) - state of the drive ready signal

DRVB (BOOL) - state of the drive brake signal

DOT1 (BOOL) - state of the drive output one

DOT2 (BOOL) - state of the drive output two

DOT3 (BOOL) - state of the drive output three

DOT4 (BOOL) - state of the drive output four
 2-110

The FOT when enabled will transfer the state of the next six function block inputs
to the Centurion SERCOS drive outputs.

The digital output override IDN P0036 must be set in the drive to use this feature.
Refer to the Centurion SERCOS Drive IDN Manual.

The function block outputs can be used as flags in the ladder to report the state of
the SERCOS drive hardware.
 2-111

S_LHOME
Perform a SERCOS Home Cycle using a Ladder Reference USER/S_ASFB

⁄ NAME ƒƒø
≥ S_LHOME ≥
≥ ≥
¥EN00 HCMP√ƒ
≥ ≥
¥STRT HACT√ƒ
≥ ≥
¥AXIS QUE√ƒ
≥ ≥
¥PLUS SWPO√ƒ
≥ ≥
¥RATE ERR√ƒ
≥ ≥
¥DIM ≥
≥ ≥
¥OPTN ≥
≥ ≥
¥BKOF ≥
≥ ≥
¥HOME ≥
≥ ≥
¥HDIM ≥
≥ ≥
¥RFSW ≥
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution

AXIS (USINT) - identifies SERCOS axis

AXIS (USINT) - identifies axis

PLUS (BOOL) - indicates direction of home cycle

RATE (UDINT) - feedrate at which motion occurs
(entered in LU/MIN)

DIM (DINT) - reference dimension for the nearest resolver null
or the next encoder index mark when the reference switch is set
(entered in LUs)

OPTN (WORD) - provides referencing options (0 or 1)
0 = No option, 1 = Ignore index or null

BKOF (BOOL) - selects backoff of reference switch option

HOME (BOOL) - selects homing after referencing option

HDIM (DINT) - home location to move to after reference is
complete

RFSW (BOOL) - references switch on axis

Outputs: HCMP (BOOL) - home cycle is complete

HACT (BOOL) - home cycle is being executed

QUE (USINT) - number of move for queue

SWP0 (DINT) - distance in feedback unit (FUs) from the
reference switch to the index mark of an encoder or the null of a
resolver

ERR (BYTE) - report an error 1-4 if input data is invalid
 2-112

This function block is a replacement for M_LHOME for a SERCOS axis. It is not
for an analog controlled axis.

This function block performs a ladder reference cycle on a SERCOS axis, fol-
lowed by a homing (position) move to a designated location.

Before this function block can be used, the SERCOS axis must be initialized and
the position loop closed.

The reference cycle will cause the selected SERCOS axis to move in the desig-
nated direction until the reference switch is sensed. This function block uses
SCA_RFIT to direct the drive to ignore the fast input for the reference and to mon-
itor the position while the ladder checks for the reference switch. In a ladder refer-
ence, this reference switch is wired to an input in the MMC or in an input module
within the PiC rack and updated each scan of the ladder. When the reference
switch is sensed the SERCOS axis will reference (assign a value) to the next index
mark of an encoder or the nearest null of a resolver. After the value is assigned the
axis will decelerate to a stop and set the reference done flag.

If the HOME input is on when the reference done has been sensed the home move
will automatically be triggered to position the SERCOS axis at a desired location.

If the BKOF input is on when the reference is requested and if the axis is on the
reference switch, the axis will move in the opposite direction of that indicated by
the PLUS input until the reference switch opens, and then will complete the home
cycle in the normal manner. If the BKOF input is not on, the axis will move in the
specified direction until it sees an off to on transition of the limit switch.

This function block is used to perform a ladder reference, immediately followed by
a position move to a selected home position. It should be executed every scan
unless a home cycle will only be performed when the machine is started. In that
case a normally closed contact of the output of HCMP may be used.

The SWPO output is used to determine if the reference switch location will allow
for repeatable referencing. If the reference switch is not properly located in rela-
tionship to the index marker of an encoder or the null of a resolver it could possi-
bly reference a revolution off. To prevent this, the value reported by this output
should be as follows:

• For an encoder system the value of this output should be greater than 25%
and less than 75% of the total counts (FUs) per revolution. Example: For
8000 FUs/ Rev, the value should be >2000 and <6000.

• For a resolver system the value of this output should be less than 25% or
greater than 75% of the total counts (FUs) per revolution. Example: For
4000 FUs/ Rev, the value should be <1000 or >3000.

If the value is out of range either the reference switch will have to be moved or the
transducer coupling shifted.
 2-113

The ERR output indicates that invalid data was entered on one of the inputs. The
possible errors are listed below:

ERR Description
0 No error
1 The queue was not empty when the reference was requested
2 An error occurred in backing off of the reference switch
3 An error occurred in referencing
4 An error occurred in homing
5 An error occurred within the SERCOS drive, either during the ini-

tialization of the SERCOS drive (its probe input) or during the mon-
itoring of the SERCOS drive while it is referencing. The SERCOS
ring and slave error values can be obtained by animating this func-
tion block after the error.
 2-114

WORD2HEX
Converts a word to a hex value USER/M_COMMON

This function block places the hexadecimal notation of the value at WORD into
the string at STRG.

Example: If 26,854 is entered at the WORD input, 68E6 will be reported at STRG.

⁄ƒƒ NAME ƒø
≥ WORD2HEX≥
≥ ≥
¥EN OK√ƒ
≥ ≥
¥WOR ≥
≥ ≥
¥STRG ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN (BOOL) - enables execution

WORD (WORD) - value to convert

STRG (STRING) - Converted value

Outputs: OK (BOOL) - execution complete
 2-115

NOTES
 2-116

APPENDIX A M_DSMCOM Commands
This appendix contains the commands that can be entered at the CMD input of the
M_DSMCOM function block. These commands allow you to communicate with the
DSM100 drive over the communications port. The tables that follow contain detailed
descriptions of the commands, applicable values, responses, and exceptions.

Exception Responses

If a command is received by the drive without a communication error, but cannot
be processed normally, an exception response is generated. The table below lists
the possible exception responses.

Response
Data

Exception
Type

Description Applicable Commands

01 Invalid Data The command data parameter was unacceptable, and the
parameter was not changed in the drive.

Non-Range Variable Commands,
Low Level Commands

02 Command Not Enabled The command is disabled and is dependent on another
command for enabling.

Manufacturing,
Firmware Upgrades

03 EEPROM Write Error The command required a write to EEPROM, and the
data was not able to be written.

All

04 Data Accepted After Limiting
to Minimum

The command data was out of range, but was modified
to the minimum value.

Range Variable Commands

05 Data Accepted After Limiting
to Maximum

The command data was out of range, but was modified
to the maximum value.

Range Variable Commands

06 Command Disabled When
Drive is Enabled

The command cannot be complied with, because the
drive is enabled.

All

07 Flash Programming Error The command required the flash memory to be altered
and an error occurred.

Flash Memory Altering Commands

08 Invalid Function Code The master function code was not recognized by the
drive.

All

09 Command Disabled When
Drive is Disabled

The command cannot be complied with, because the
drive is disabled.

All
 A-1

Host Command Set

The tables below use the following symbols to specify data widths.

Note: Every byte in the specified data field is sent in the command encoded as
two ASCII-hex characters):

On numeric parameters, the Range of Data Values field contains the range of val-
ues in user units and the resolution [denoted by (ε: xxxxxx)]. The field also con-
tains the range of command hexadecimal values expected for the parameter.

In addition, the Units field contains the multiplier for converting the user units to
the command hexadecimal values. These multipliers are presented in hexadecimal
also.

Data Signed Unsigned
8-bit data [c1]..[cn] [b1]..[bn]

16-bit data [s1]..[sn] [w1]..[wn]

32-bit data [L1]..[Ln] [d1]..[dn]
 A-2

Common Product Line Commands

These commands will remain consistent across product lines. The bit definitions
on the Powerup Status command may change between products, but the command
must return zero (00) on a successful
powerup.

Parameter Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Product Type
Identifies the type of product.

[b1] - Type
0- BCM-03

- Read 000 - [b1]

Currently only the BCM-03 is known. but is
provided for future expansion.

Write - - -

Powerup Status
The status of the drive during power up
testing. The bit definitions of the READ
Powerup Status command may change
between products, but the command will
always return zero (00) on a successful
powerup.

[b1] - Status
00 - Successful Power-Up
51 - Boot Block Checksum Error
52 - Non-Boot Block Checksum Error
53 - Uninitialized Personality EEPROM Error
54 - Personality EEPROM Read Error
55 - Personality EEPROM Data Corruption
Error
56 - Main Processor Watchdog Error
57 - Sub Processor Watchdog Error
58 - Main Processor RAM Error
59 - Sub Processor RAM Error
60 - Uninitialized Service EEPROM Error
61 - Service EEPROM Read Error
62 - Service EEPROM Data Corruption Error
63 - Main Processor A/D Converter Error
64 - Sub Processor A/D Converter Error

- Read 001 - [b1]

65 - Analog1 Output Error
66 - Gate Array Error
67 - Analog2 Output Error
68 - Inter-Processor Communication Error
69 - Sub Processor Initialization Error
70 - Sub Processor SRAM Error
71 - Sub Processor Code Loading Error
72 - Sub Processor Startup Error
73 - Sub Processor Checksum Error
74 - Personality EEPROM Write Error
75 - Service EEPROM Write Error
76 - Software Clock Error
77 - Sub Processor Communication Checksum
Error
78 - Sub Processor Sine Table Generation Error
79 - Personality Data Out Of Range
80 - Service Data Out Of Range
81 - Motor Block Checksum Error

Write - - -

Main Firmware Version
The version number of the drive’s main
firmware.

[b1] - Major Version
0..255
(00..ff)

- Read 002 - [b1] [b2]

[b2] - Minor Revision
0..255
(00..ff)

Write - - -

Boot Firmware Version
The version number of the drive’s boot
firmware.

[b1] - Major Version
0..255
(00..ff)

- Read 003 - [b1] [b2]

[b2] - Minor Revision
0..255
(00..ff)

Write - - -
 A-3

General Commands

Parameter Range of Data Values Units Command Command
Data

Response
Data

Excep-
tion
Responses

Reset Personality EEPROM
Resets the personality EEPROM to its fac-
tory settings.

[No Data] - Read - - -

Write 010 - - 03, 06

Drive Name
Identifies the drive in a multidrop system.

[b1]..[b32] - Name
Name is a 32-character string.

- Read 011 - [b1]..[b32]

Write 012 [b1]..[b32] - 03

Position Scale Value
The position scale used by the host com-
puter for scaling position variables. This
information is not necessary for drive oper-
ation. The scale is a 32 bit IEEE floating
point value.

[d1] - Value
-3.4e+38..3.4e+38 (ε: 1.19e-7)

units / count Read 013 - [d1]

(80000000..7fffffff) Write 014 [d1] - 03

Position Scale Text
The position scale text used by the host
computer to identify the units of the posi-
tion scale.

[b1]..[b8] - Name
Name is an 8-character string.

- Read 015 - [b1]..[b8]

Write 016 [b1]..[b8] - 03

Velocity Scale Value
The velocity scale used by the host com-
puter for scaling velocity variables. This
information is not necessary for drive opera-
tion. The scale is a 32 bit IEEE floating
point value.

[d1] - Value
-3.4e+38..3.4e+38 (ε: 1.19e-7)

units / RPM Read 017 - [d1]

(80000000..7fffffff) Write 018 [d1] - 03

Velocity Scale Text
The velocity scale text used by the host
computer to identify the units of the

[b1]..[b8] - Name
Name is an 8-character string.

- Read 019 - [b1]..[b8]

velocity scale. Write 01a [b1]..[b8] - 03

Acceleration Scale Value
The acceleration scale used by the host
computer for scaling acceleration variables.
This information is not necessary for drive
operation. The scale is a 32 bit IEEE float-
ing point value.

[d1] - Value
-3.4e+38..3.4e+38 (ε: 1.19e-7)

units /RPM
/second

Read 01b - [d1]

(80000000..7fffffff) Write 01c [d1] - 03

Acceleration Scale Text
The acceleration scale text used by the host
computer to identify the units of the accel-
eration scale.

[b1]..[b8] - Name
Name is an 8-character string.

- Read 01d - [b1]..[b8]

Write 01e [b1]..[b8] - 03

Torque Scale Value
The torque scale used by the host computer
for scaling torque variables. This informa-
tion is not necessary for drive operation.

[d1] - Value
-3.4e+38..3.4e+38 (ε: 1.19e-7)

units / Amp Read 01f - [d1]

The scale is a 32 bit IEEE floating point
value.

(80000000..7fffffff) Write 020 [d1] - 03

Torque Scale Text
The torque scale text used by the host com-
puter to identify the units of the torque
scale.

[b1]..[b8] - Name
Name is an 8-character string.

- Read 021 - [b1]..[b8]

Write 022 [b1]..[b8] - 03
 A-4

Position Loop Commands

Parameter Range of Data Values Units Command Command
Data

Response
Data

Excep-
tion
Responses

Position Loop Proportional Gain [w1] - Gain
0.0..31.98 (ε: 7.8e-3)

in/min/mil Read 030 - [w1]

(0000..0fff) (× 0080) Write 031 [w1] - 03, 05

Position Loop Integral Gain [w1] - Gain
0..31.98 (ε: 7.8e-3)

- Read 032 - [w1]

(0000..0fff) (× 0080) Write 033 [w1] - 03, 05

Position Loop Derivative Gain [w1] - Gain
0..31.98 (ε: 7.8e-3)

- Read 034 - [w1]

(0000..0fff) (× 0080) Write 035 [w1] - 03, 05

Position Loop Feedforward Gain [w1] - Gain
0..200 (ε: 1)

- Read 036 - [w1]

(0000..00c8) (× 0001) Write 037 [w1] - 03, 05

Integrator Zone
Maximum position error which the integra-
tor isstill active. If the position error is
greater than the I Zone, the integrator is
reset

[w1] - Zone
0..32767 (ε: 1)

counts Read 038 - [w1]

(0000..7fff) (× 0001) Write 039 [w1] - 03, 05

Position Window Size
Maximum position error which allows the
In Position flag to remain set.

[w1] - Size
0..32767 (ε: 1)

counts Read 03a - [w1]

(0000..7fff) (× 0001) Write 03b [w1] - 03, 05

Position Window Time
The minimum time which the position error
must be less than the Position Window Size
to set the In Position flag.

[b1] - Time
0..255 (ε: 1)

millisec-
onds

Read 03c - [b1]

(00..ff) (× 01) Write 03d [b1] - 03

Position Error Limit
Minimum position error which allows the
excess Position Error flag to remain clear

[d1] - Limit
1..2147483647 (ε: 1)

counts Read 03e - [d1]

(00000001..7fffffff) (×
00000001)

Write 03f [d1] - 03, 04, 05

Position Error Time
The minimum time which the position error
must be greater than the Position Error
Limit to cause an Excess Position Error
fault.

[w1] - Time
0..65535 (ε: 1)

millisec-
onds

Read 040 - [w1]

(00..ffff) (× 0001) Write 041 [w1] - 03

Gear Ratio
The ratio between the motor and master
counts for following.

[s1] - Motor
-32767..32767 (ε: 1)
(8001..7fff)

counts

(× 0001)

Read 042 - [s1] [s2]

[s2] - Master
1..32767 (ε: 1)
(0001..7fff)

master
counts

(× 0001)

Write 043 [s1] [s2] - 03, 04

Master Rotation
The rotation direction of the master
encoder in follower mode, and the polarity
of the direction input in the step/direction
mode.

[b1] - Direction
0 - forward direction (TP: Normal)

- Read 044 - [b1]

1 - reverse direction (TP: Reverse) Write 045 [b1] - 01, 03, 06

Slew Rate
The acceleration limit for the motor when
used in a follower mode.

[d1] - Rate
0..2147483647 (ε: 1)

RPM/sec Read 046 - [d1]

(00000000..7fffffff) (×
00000001)

Write 047 [d1] - 03, 05

Slew Enable
Determines if the slew rate is used in fol-
lower mode

[b1] - Flag
0 - Disabled (TP: Off)
1 - Enabled (TP: On)

- Read 048 - [b1]

Write 049 [b1] - 01, 03
 A-5

Velocity Loop Commands

Parameter Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Velocity Loop Proportional Gain [w1] - Gain
0..1000 (ε: 1)

- Read 04a - [w1]

(0000..03e8) (× 0001) Write 04b [w1] - 03, 05

Velocity Loop Integral Gain [w1] - Gain
0..1000 (ε: 1)

- Read 04c - [w1]

(0000..03e8) (× 0001) Write 04d [w1] - 03, 05

Velocity Loop Derivative Gain [s1] - Gain
-1000..1000 (ε: 1)

- Read 04e - [s1]

(fc18..03e8) (× 0001) Write 04f [s1] - 03, 04, 05

Zero Speed Limit
Maximum motor velocity which allows the
ZeroSpeed flag to remain set.

[d1] - Limit
0..32767.99998 (ε: 1.53e-5)

RPM Read 050 - [d1]

(00000000..7fffffff) (×
00010000)

Write 051 [d1] - 03, 05

Speed Window Size
Maximum motor velocity error which
allows the Speed Window flag to remain
set.

[d1] - Limit
0..32767.99998 (ε: 1.53e-5)

RPM Read 052 - [d1]

(00000000..7fffffff) (×
00010000)

Write 053 [d1] - 03, 05

Over Speed Limit
Minimum motor velocity which causes the
Overspeed fault to occur.

[d1] - Limit
0..32767.99998 (ε: 1.53e-5)

RPM Read 054 - [d1]

(00000000..7fffffff) (×
00010000)

Write 055 [d1] - 03, 05

At Speed Limit
Minimum motor velocity which causes the
At Speed flag to be set

[d1] - Limit
0..32767.99998 (ε: 1.53e-5)

RPM Read 056 - [d1]

(00000000..7fffffff) (×
00010000)

Write 057 [d1] - 03, 05

Velocity Loop Update Period
Velocity control loop execution period.

[b1] - Period
0 - 200 µsecond
1 - 400 µsecond
2 - 600 µsecond
3 - 800 µsecond

- Read 058 - [b1]

4 - 1000 µsecond
5 - 1200 µsecond
6 - 1400 µsecond
7 - 1600 µsecond

Write 059 [b1] - 01, 03, 06

Velocity Error Limit
Sets or returns the minimum velocity error
which allows the Excess Velocity Error flag
to remain clear.

[d1] - limit

0..32767.99998 (ε: 1.53e-5)

RPM Read 05A - [d1] 03, 05

(00000000..7fffffff) (×
00010000)

Write 05B [d1] -

Velocity Error Time
Sets or returns the minimum time which the
velocity error must be greater than the
Velocity Error Limit to cause an Excess
Velocity Error fault

[w1] - time

0..65535 (ε: 1.53e-5)

millisecond Read 05C - [w1] 03

(00.. ffff) (x0001) Write 05D [w1] -
 A-6

Torque Current Conditioning Commands

Parameter Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Low Pass Filter Bandwidth
Cutoff frequency of the low pass filter.

[w1] - Bandwidth
1..992 (ε: 1)

Hz Read 070 - [w1]

(0001..03e0) (× 0001) Write 071 [w1] - 03, 04, 05

Low Pass Filter Enable
Determines if the low pass filter is used in
the control loop.

[b1] - Flag
0 - Disabled (TP: Off)

- Read 076 - [b1]

1 - Enabled (TP: On) Write 077 [b1] - 01, 03

Software Positive Current Limit
User specified positive current limit for the
drive.

[w1] - Limit
0..255.992 (ε: 7.8e-3)

Amps Read 07a - [w1]

The minimum of this value, the peak rating
of the drive, the peak rating of the motor,
and the +ILIMIT analog input is used as the
limiting value.

(0000..7fff) (× 0080) Write 07b [w1] - 03, 05

Software Negative Current Limit
User specified negative current limit for the
drive.

[w1] - Limit
0..255.992 (ε: 7.8e-3)

Amps Read 07c - [w1]

The minimum of this value, the peak rating
of the drive, the peak rating of the motor,
and the -ILIMIT analog input is used as the
limiting value.

(0000..7fff) (× 0080) Write 07d [w1] - 03, 05

Continuous Current Limit
User specified current faulting value.

[w1] - Limit
0..255.992 (ε: 7.8e-3)

Amps Read 07e - [w1]

This parameter is provided to allow a fault-
ing current value which is less than the
capacity of the drive and motor.

(0000..7fff) (× 0080) Write 07f [w1] - 03, 05

PWM Frequency Switching Disable
Sets or returns the flag which indicates if
the PWM frequency changes with the speed
and current demands of the motor.

[b1] - Flag

00 - Enabled

- Read 1A8 - [b1]

01 - Disabled - Write 1A9 [b1] - 01, 03
 A-7

 Motor Commands

Note: All Motor Commands other than Motor ID are disabled and return the excep-
tion response 02 unless Motor ID is set to 65535 (ffff).

Parameter (Motor Commands) Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Motor ID
Identifies the motor in the drive’s motor
parameter table currently being used.

The word is separated into various groups
of bit fields to specify the encoder resolu-
tion, motor, type, and table ID.

[w1] - Number
0..65535
(0000..ffff)

BITS USAGE

- Read 090 - [w1]

The setting 0 (0000) indicates that no motor
has been selected, and the setting 65535
(ffff) indicates motor parameters were set
Individually and not read from the drive’s
motor parameter table.

15..12 Table ID
11..8 Encoder Resolution
7 Type (0 = synch., 1 = induct.)
6..0 Motor Number

Write 091 [w1] - 03, 06

Encoder Lines
The number of lines on the motor encoder.

[w1] - Lines
100..15000 (ε: 1)

lines/rev Read 092 - [w1]

(0064..3a98) (× 0001) Write 093 [w1] - 01, 02, 03,
06

Maximum Motor Speed
The minimum speed of the motor which
causes an Overspeed fault.

[d1] - Speed
0..32767.99998 (ε: 1.53e-5)

RPM Read 094 - [d1]

(00000000..7fffffff) (×
00010000)

Write 095 [d1] - 01, 02, 03,
06

Motor Peak Current
The peak current which the motor can han-
dle.

[w1] - Current
0..255.992 (ε: 7.8e-3)

Amps Read 096 - [w1]

(0000..7fff) (× 0080) Write 097 [w1] - 01, 02, 03,
06

Motor Continuous Current
The continuous current which the motor can
handle.

[w1] - Current
0..255.992 (ε: 7.8e-3)

Amps Read 098 - [w1]

(0000..7fff) (× 0080) Write 099 [w1] - 01, 02, 03,
06

Torque Constant
The sine wave torque constant of the motor.

[w1] - Kt
0.00024..15.9998 (ε: 2.44e-4)

N-m/Amp Read 09a - [w1]

(0001..ffff) (× 1000) Write 09b [w1] - 01, 02, 03,
06

Rotor Inertia
Jm

[w1] - Jm
0.0156..1023.98 (ε: 1.56e-2)

kg-cm2 Read 09c - [w1]

(0001..ffff) (× 0040) Write 09d [w1] - 01, 02, 03,
06

Back EMF Constant
Ke

[w1] - Ke
0.0039..255.996 (ε: 3.91e-3)

Volts /
1000 RPM

Read 09e - [w1]

(0001..ffff) (× 0100) Write 09f [w1] - 01, 02, 03,
06

Winding Resistance
The phase to phase resistance of the motor
windings at 25° C.

[w1] - Resistance
0.0039..255.996 (ε: 3.91e-3)

Ohms Read 0a0 - [w1]

(0001..ffff) (× 0100) Write 0a1 [w1] - 01, 02, 03,
06

Winding Inductance
The phase to phase inductance of the motor

windings.

[w1] - Inductance
0.0039..255.996 (ε: 3.91e-3)

mH Read 0a2 - [w1]

(0001..ffff) (× 0100) Write 0a3 [w1] - 01, 02, 03,
06

Thermostat Flag
Indicates if the motor contains a thermostat.

[b1] - Flag
0 - no thermostat present

- Read 0a4 - [b1]

1 - thermostat is present Write 0a5 [b1] - 01, 02, 03,
06
 A-8

Motor Commands (Continued)

Parameter (Motor Commands) Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Commutation Type [b1] - Type
0 - induction motor
1 - 6-step ABS/Index

- Read 0a6 - [b1]

2 - 8-step ABS/Index
3 - Hall/Index

4 - Hall/Hall

Write 0a7 [b1] - 01, 02, 03,
06

Current Feedforward [s1] - Value
-127.996..127.996 (ε: 3.91e-3)

degrees/
kRPM

Read 0a8 - [s1]

(8001..7fff) (× 0100) Write 0a9 [s1] - 02, 03, 04,
06

Thermal Time Constant
The thermal time constant for protecting
the motor.

[w1] - Time
0..65535 (ε: 1)

seconds Read 0aa - [w1]

(0000..ffff) (× 0001) Write 0ab [w1] - 02, 03, 06

Pole Count
Number of poles.

[b1] - Poles
0 - 2 Poles
1 - 4 Poles

- Read 0ac - [b1]

2 - 6 Poles
3 - 8 Poles

Write 0ad [b1] - 01, 02, 03,
06

Hall Offset
The offset of the Hall-effect sensor relative
to the rotor.

[w1] - Offset
0..359 (ε: 1)

electrical
degrees

Read 0ae - [w1]

(0000..0167) (× 0001) Write 0af [w1] - 01, 02, 03,
06

Index Offset
The offset of the motor encoder relative to
the rotor.

[w1] - Offset
0..359 (ε: 1)

electrical
degrees

Read 0b0 - [w1]

(0000..0167) (× 0001) Write 0b1 [w1] - 01, 02, 03,
06

Motor Table Information
Information about the Motor Table in the
drive. The information returned includes the
number of synchronous motors and induc-
tion motors in the table, and the table ID
number.

[b1] - Sync. Records
0..255
(00..ff)

[b2] - Induction Records
0..255

Read 0b2 - [b1] ..[b3]

(00..ff)

[b3] - Table ID
0..31
(00..1f)

Write - - -

Motor Table Record Size
Information about the Motor Table records
in the drive. The information returned
includes the synchronous motor and induc-
tion motor record sizes.

[w1] - Sync. Record Size
0..65535
(0000..ffff)

Read 0b3 - [w1] ..[w2]

[w2] - Induction Record Size
0..65535
(0000..ffff)

Write - - -

Motor Table Version
Version of the Motor Table in the drive.

[b1] - Major Version
0..255
(00..ff)

Read 0b4 - [b1]..[b2]

[b2] - Minor Revision
0..255
(00..ff)

Write - - -

Thermal Time Constant Enable
Sets or returns the flag which indicates if
the Thermal Time Constant is used for pro-
tecting the motor.

[b1] - Flag

00 - Disabled
01 - Enabled

- Read 1A6 - [b1]

Write 1A7 [b1] - 02, 03, 06
 A-9

Motor Commands (Continued)

Parameter Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Motor Forward Direction Flag
Sets or returns the motor’s forward direc-
tion when viewed from the shaft end.

[b1] - Flag

00 - clockwise

01 - counterclockwise

Read 1AA - [b1]

Write 1AB [b1] - 01, 02, 03,
06
 A-10

Digital I/O Commands

Parameter Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Digital Input Configuration Register
Determines which flag is (or flags are) con-
trolled by the specified digital input. If no
bits are set for an input, it is unassigned.

The Preset Select lines can be used together
or separately to select the desired preset.
Unassigned select lines are set to 0. The
select codes are as follows:

[b1] - Input Number
0 - Input1
1 - Input2
2 - Input3
3 - Input4

[w2] - Flag Number
Bit 0 - Torque Override (TP: TrqMode)
Bit 1 - Integrator Inhibit (TP: IntInh)
Bit 2 - Follower Enable (TP: FolEnab)

Read 0c0 [b1] [w2]

Preset C B A
 0 0 0 0
 1 0 0 1
 2 0 1 0
 3 0 1 1
 4 1 0 0
 5 1 0 1
 6 1 1 0
 7 1 1 1

Bit 3 - Forward Enable (TP: FClamp)
Bit 4 - Reverse Enable (TP: RClamp)
Bit 5 - Analog Override (TP: Overide)
Bit 6 - Preset Select Line A (TP: PreSelA)
Bit 7 - Preset Select Line B (TP: PreSelB)
Bit 8 - Preset Select Line C (TP: PreSelC)

Write 0c1 [b1] [w2] 01, 03, 06

Digital Output Configuration Register
Determines which flag is (or flags are)
monitored on the specified digital output. I f
no bits are set for an input, it is unassigned.

[b1] - Output Number
0 - Output1
1 - Output2
2 - Output3
3 - Output4

[w2] - Flag Number
Bit 0 - In-Position (TP: InPos)
Bit 1 - Within Position Window (TP: PosWin)
Bit 2 - Zero Speed (TP: 0 Speed)

Read 0c2 [b1] [w2]

Bit 3 - Within Speed Window (TP: SpdWin)
Bit 4 - Positive ILimit (TP: +ILimit)
Bit 5 - Negative ILimit (TP: -ILimit)
Bit 6 - At Speed (TP: AtSpeed)
Bit 7 - Drive Enabled (TP: DrvEnab)
Bit 8 - DC Bus Charged (TP: BusChg)
Bit 9 - Disabling Fault

Write 0c3 [b1] [w2] 01, 03, 06

Override Digital Output
Overrides the digital output control to allow
the user to write the output bits directly.

[b1] - State
0 - Normal

- Read 0c4 - [b1]

1 - Override Write 0c5 [b1] - 01

Digital Output Write Mask
Contains the bit pattern to write to the digi-
tal outputs when in override control.

[w1] - States
Bit 0 - READY Output State
Bit 1 - BRAKE Output State
Bit 2 - OUTPUT1 Output State

- Read 0c6 - [w1]

Bit 3 - OUTPUT2 Output State
Bit 4 - OUTPUT3 Output State
Bit 5 - OUTPUT4 Output State

Write 0c7 [w1] - 01

BRAKE Active Delay
The time delay between disabling the drive,
and activating the BRAKE output. Nega-
tive values indicate the time that the
BRAKE is active before disabling the drive.

[s1] - Delay
-32767..32767 (ε: 1)

(8001..7fff)

millisec-
onds

(× 0001)

Read

Write

0c8

0c9

-

[s1]

[s1]

- 03, 04

BRAKE Inactive Delay
The time delay between enabling the drive
and deactivating the BRAKE output. Neg-
ative values indicate the time that the
BRAKE is inactive before enabling the
drive.

[s1] - Delay
-32767..32767 (ε: 1)

millisec-
onds

Read 0ca - [s1]

(8001..7fff) (× 0001) Write 0cb [s1] - 03, 04
 A-11

Analog I/O Commands

Parameter (Analog I/O Com-
mands)

Range of Data Values Units Command Command
Data

Respons
e
Data

Exception
Responses

COMMAND Velocity Offset
The offset applied to the COM-
MAND analog input when being
used for velocity command.

[s1] - Offset
-10000..10000 (ε: 1)

millivolts Read 0cc - [s1]

(d8f0..2710) (× 0001) Write 0cd [s1] - 03, 04

COMMAND Velocity Scale
The scale applied to the COM-
MAND analog input when being
used for velocity command.

[s1] - Scale
-32767..32767 (ε: 1)

RPM / Volt Read 0ce - [s1]

(8001..7fff) (× 0001) Write 0cf [s1] - 03, 04

COMMAND Torque Offset
The offset applied to the COM-
MAND analog input when being
used for torque command.

[s1] - Offset
-10000..10000 (ε: 1)

millivolts Read 0d0 - [s1]

(d8f0..2710) (× 0001) Write 0d1 [s1] - 03, 04

COMMAND Torque Scale
The scale applied to the COM-
MAND analog input when being
used for torque command.

[s1] - Scale
-127.996..127.996 (ε: 3.91e-3)

Amps / Volt Read 0d2 - [s1]

(8001..7fff) (× 0100) Write 0d3 [s1] - 03, 04

Analog Output Configuration
Register
Determines which signal is moni-
tored on the specified analog output.

[b1] - Output Number
0 - Output1
1 - Output2

[b2] - Signal Number
0 - Current Command (TP: I Cmd)
1 - Current Average Command (TP: Avg I)
2 - Current Positive Peak (TP: +IPeak)
3 - Current Negative Peak (TP: -IPeak)
4 - Positive ILimit (TP: +ILimit)
5 - Negative ILimit (TP: -ILimit)
6 - Motor Velocity (TP: MtrVel)
7 - Velocity Command (TP: VelCmd)
8 - Velocity Error (TP: VelErr)
9 - Motor Position (TP: MtrPos)
10 - Position Command Slewed (TP: PosCmd)

Read 0d4 [b1] [b2]

11 - Position Error (TP: PosErr)
12 - Position Peak Positive Error (TP: +PosEPk)
13 - Position Peak Negative Error (TP: -PosEPk)
20 - Master Position (TP: MstrPos)
21 - Position Loop Output (TP: [not avail])
22 - Velocity Loop Output (TP: [not avail])
23 - Filter Output (TP: [not avail])
24 - Notch Output (TP: [not avail])
25 - R Phase Current (TP: [not avail])
26 - T Phase Current (TP: [not avail])
27 - Torque Current (TP: [not avail])
28 - Field Current (TP: [not avail])
29 - Torque Voltage (TP: [not avail])
30 - Field Voltage (TP: [not avail])
31 - Scaled A/D Command Value (TP: [not avail])
32 - Bus Voltage (TP: [not avail])

Write 0d5 [b1] [b2] 01, 03

Analog Offset
The offset applied to the specified
Analog output.

[b1] - Output Number
0 - Output1
1 - Output2

Read 0d6 [b1] [s2]

[s2] - Offset
-32767..32767 (ε: 1)
(8001..7fff)

millivolts

(× 0001)

Write 0d7 [b1] [s2] - 01, 03, 04
 A-12

Analog I/O Commands (Continued)

Parameter (Analog I/O Com-
mands)

Range of Data Values Units Command Command
Data

Respons
e
Data

Exception
Responses

Analog Scale
The scale applied to the specified
Analog output.

[b1] - Output Number
0 - Output1
1 - Output2

Drive Inter-
nal Units

Read 0d8 [b1] [s2]

[s2] - Scale
-32767..32767 (ε: 1)
(8001..7fff)

(Dependent
on selected
signal)

Write 0d9 [b1] [s2] - 01, 03, 04

Override Analog Outputs
Overrides the analog output control
to write the outputs directly.

[b1] - State

0 - Normal

1 - Override

 - Read 0da - [b1]

Write 0db [b1] - 01

Analog Output Write Value
Contains the value to write to the
analog outputs when in override
cotrol

[b1] - Output Number
0 - Output1
1 - Output2

 - Read 0dc [b1] [s2]

[s2] - Value
-10000..10000 (ε: 1)
(d8f00.2710)

millivolts

(x 0001)

Write 0dd [b1] [s2] - 01
 A-13

Serial Port Commands

Parameter Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Serial Port Baud Rate
The drive’s serial port baud rate. If the
baud rate is changed, it will not take effect
until the drive is reset.

[b1] - Rate
0 - 1200 (TP: 1200)
1 - 2400 (TP: 2400)

- Read 0de - [b1]

2 - 4800 (TP: 4800)
3 - 9600 (TP: 9600)
4 - 19200 (TP: 19200)

Write 0df [b1] - 01, 03

Serial Port Frame Format
The drive’s serial port baud rate. If the
baud rate is changed, it will not take effect
until the drive is reset.

[b1] - Frame
0 - 7 data bits, even parity, 1 stop bit (TP:
7D1SEP)
1 - 7 data bits, odd parity, 1 stop bit (TP:
7D1SOP)

- Read 0e0 - [b1]

2 - 8 data bits, no parity, 1 stop bit (TP:
8D1SNP)
3 - 8 data bits, even parity, 1 stop bit (TP:
8D1SEP)
4 - 8 data bits, odd parity, 1 stop bit (TP:
8D1SOP)

Write 0e1 [b1] - 01, 03

Software Drive ID
The ID used for drive addressing when the
rotary DIP switch is set to position "F".

[b1] - ID
0..255

- Read 0e2 - [b1]

(00..ff) Write 0e3 [b1] - 03
 A-14

Operating Mode Commands

Parameter (Operating Mode Com-
mands)

Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Encoder Output Configuration Register
The divisor for the motor encoder quadra-
ture output.

[b1] - Divisor
0 - Divide by 1 (TP: ÷ by 1)
1 - Divide by 2 (TP: ÷ by 2)

- Read 0f0 - [b1]

2 - Divide by 4 (TP: ÷ by 4)
3 - Divide by 8 (TP: ÷ by 8)

Write 0f1 [b1] - 01, 03

Command Source
The signal used for the drive’s command
source.

[b1] - Source
0 - Analog COMMAND Input (TP: Analog)
1 - Presets (TP: Presets)

Read 0f2 - [b1]

2 - Master Encoder (TP: AuxEnc)
3 - Step/Direction (TP: StepDir)
4 - Step+/Step- (TP: Step+/-)

Write 0f3 [b1] 01, 03, 06

Drive Mode
The flag which determines if the velocity
control loop is active.

[b1] - Mode
0 - Velocity (TP: Velocity)

Read 0f4 - [b1]

1 - Torque (TP: Torque) Write 0f5 [b1] 01, 03, 06

Velocity Preset
The command velocity levels used when
the drive is configured with Presets as the
Command Source, and Velocity as the drive
mode.

[b1] - Preset
0..7
(00..07)

[L2] - Velocity

-

RPM

Read 0f6 [b1] [L2]

-32767.99998..32767.99998 (ε: 1.53e-5)
(80000001..7fffffff) (×

00010000)

Write 0f7 [b1] [L2] - 01, 03, 04

Torque Preset
The command torque levels used when the
drive is configured with Presets as the Com-
mand Source, and Torque as the drive
mode.

[b1] - Preset
0..7
(00..07)

[s2] - Torque

-

Amps

Read 0f8 [b1] [s2]

-255.992..255.992 (ε: 7.81e-3)
(8001..7fff) (× 0080)

Write 0f9 [b1] [s2] - 01, 03, 04

Analog Input Acceleration Limit
The acceleration value used when the ana-
log command input changes while the drive
is in velocity mode.

[d1] - Rate
0..2147483647 (ε: 1)

RPM/sec Read 0fa - [w1]

(00000000..7fffffff) (×
00000001)

Write 0fb [w1] - 03, 05

Analog Input Deceleration Limit
The deceleration value used when the ana-
log command input changes while thedrive
is in velocity mode.

[d1] - Rate
0..2147483647 (ε: 1)

RPM/sec Read 0fc - [d1]

(00000000..7fffffff) (×
00000001)

Write 0fd [d1] - 03, 05

Preset Input Acceleration Limit
The acceleration value used when changing
between velocity presets. This limit is only
used while the drive is in velocity mode and
the Command Source is set to Preset input.

[d1] - Rate
0..2147483647 (ε: 1)

RPM/sec Read 0fe - [d1]

(00000000..7fffffff) (×
00000001)

Write 0ff [d1] - 03, 05

Preset Input Deceleration Limit
The deceleration value used when changing
between velocity presets. This limit is only
used while the drive is in velocity mode and
the Command Source is set to Preset input.

[d1] - Rate
0..2147483647 (ε: 1)

RPM/sec Read 100 - [d1]

 (00000000..7fffffff) (×
00000001)

Write 101 [d1] - 03, 05

Tuning Direction Flag
Sets or returns the flag which indicates the
direction the motor rotates during tuning.

[b1] - Flag

00 - Bi-directional

Read 1A0 - [b1]

01 - Forward

02 - Reverse

Write 1A1 [b1] - 01, 03, 06
 A-15

Operating Mode Commands (Continued)

Parameter (Operating Mode Com-
mands)

Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Analog Input Acceleration Limits Enable
Sets or returns the flag which indicates that
acceleration limits are enabled. This flag is
only used while the drive is in velocity
mode and the Command Source is set to
analog COMMAND input.

[b1] - Flag

00 - Disabled

01 - Enabled

Read 1A2 - [b1]

Write 1A3 [b1] - 01,03

Preset Acceleration Limits Enable
Sets or returns the flag which indicates that
acceleration limits are enabled. This flag is
only used while the drive is in velocity
mode and the Command Source is set to
Preset input.

[b1] - Flag

00 - Disabled

01 - Enabled

Read 1A4 - [b1]

Write 1A5 [b1] - 01, 03

Change Direction Flag
Sets or returns the flag which indicates if
the normal direction has been changed
(reversed).

[b1] - Flag

00 - Normal

01 - Reversed

Read 1AC - [b1]

Write 1AD [b1] - 01, 03, 06
 A-16

Alternative Operating Mode Commands

Parameter (Operating Mode Com-
mands)

Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Operating Mode
The operating mode for the drive. Usually,
the drive is in Normal mode. The mode can
bechanged for tuning, encoder alignment,
and encoder resolution detection.

[b1] - Mode
0 - Normal (TP: Normal)
1 - AutoTuning (TP: Auto)

Read 102 - [b1]

2 - Manual Tuning (Velocity Step) (TP: Man
Vel)
3 - Manual Tuning (Position Step) (TP: Man
Pos)
4 - Encoder Alignment (TP: Align)
5 - Encoder Resolution Detection (TP: [not
avail])

Write 103 [b1] 01, 06

Operating Mode Status
Contains status bits for above alternative
operating modes.

[w1] - Status
Bit 0 - AutoTuning Complete
Bit 1 - Encoder Alignment Complete
Bit 2 - Motor Index Detected

Read 104 - [w1]

Bit 3 - Master Index Detected
Bit 4 - Motor Encoder Resolution Determined
Bit 5 - Master Encoder Resolution Determined

Bit 6 - AutoTune Failed

Write - - -

Autotune Maximum Current
The maximum current used in the autotun-
ing algorithim.

[w1] - Current
0.0078..255.992 (ε: 7.81e-3)

Amps Read 105 - [w1]

(0001..7fff) (× 0080) Write 106 [w1] - 03, 04, 05

Autotune Maximum Distance
The maximum distance the motor can travel
in the autotuning algorithim.

[d1] - Distance
1..2147483647 (ε: 1)

Counts Read 107 - [d1]

(00000001..7fffffff) (× 0001) Write 108 [d1] - 03, 04, 05

Manual Tune Position Period
The period of the square wave used in the
position step manual tuning mode.

[w1] - Period
1..32767 (ε: 1)

millisec-
onds

Read 109 - [w1]

(0001..7fff) (× 0001) Write 10a [w1] - 03, 04, 05

Manual Tune Position Step
The amplitude of the square wave used in
the position step manual tuning mode.

[w1] - Amplitude
1..32767 (ε: 1)

Counts Read 10b - [w1]

(0001..7fff) (× 0001) Write 10c [w1] - 03, 04, 05

Manual Tune Velocity Period
The period of the square wave used in the
velocity step manual tuning mode.

[w1] - Period
1..32767 (ε: 1)

millisec-
onds

Read 10d - [w1]

(0001..7fff) (× 0001) Write 10e [w1] - 03, 04, 05

Manual Tune Velocity Step
The amplitude of the square wave used in
the velocity step manual tuning mode.

[d1] - Amplitude
0.000015..32767.99998 (ε: 1.53e-5)

RPM Read 10f - [d1]

(00000001..7fffffff) (×
00010000)

Write 110 [d1] - 03, 04, 05

Encoder Alignment Offset
The offset of the motor encoder index pulse
relative to the rotor phase location. This
value is determined automatically in the
Encoder Alignment Operating Mode and
continually updates while in that mode. It
can also be set when not in the Encoder

[s1] - Offset
-180..179 (ε: 1)
(ff4c..00b3)

electrical
degrees

(× 0001)

Read 111 - [s1]

Alignment Operating Mode by using the
write command. (Note: The value in this
parameter does not affect the commuta-
tion. It has to be set by using the Remove
Alignment Offset command)

Write 112 [s1] - 01
 A-17

Alternative Operating Mode Commands (Continued)

Parameter (Alternative Operating Mode
Com)

Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Save Alignment Offset
Corrects the encoder alignment by copying
the Encoder Alignment Offset value into an
encoder alignment compensation parame-
ter. The alignment compensation parameter
value is used in correcting the motor
encoder input for commutation.

[No Data] (TP: ↑ to Rmv) Read - - -

Write 113 - - 03

Motor Encoder Resolution
The measured motor encoder counts
between index pulses when in the

[w1] - Resolution
0..32767 (ε: 1)

counts Read 114 - [w1]

Encoder Resolution Detection Operating
Mode.

(0000..7fff) (× 0001) Write - - -

Master Encoder Resolution
The measured master encoder counts
between index pulses when in the Encoder
Resolution Detection Operating Mode.

[w1] - Resolution
0..32767 (ε: 1)

counts Read 115 - [w1]

(0000..7fff) (× 0001) Write - - -

Motor Index Position
The last recorded position of the motor
encoder index.

[w1] - Position
0..65535 (ε: 1)

counts Read 116 - [w1]

(0000..ffff) (× 0001) Write - - -

Master Index Position
The last recorded position of the master
encoder index.

[w1] - Position
0..65535 (ε: 1)

master
counts

Read 117 - [w1]

(0000..ffff) (× 0001) Write - - -
 A-18

Runtime Command and Control Commands

Parameter Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Reset Drive
Resets the drive hardware and reboots the
drive’s processors.

[No Data] (TP: ↑to Reset) - Read - - -

Write 120 - - 06

Software Drive Enable/Disable
If set to Enable Drive and the ENABLE
input is active, the drive is enabled. If set to
Disable Drive or the ENABLE input is not
active, the drive is disabled.

[b1] - State
0 - Disable Drive (TP: Disable)

- Read 121 - [b1]

1 - Enable Drive (TP: Enable) Write 122 [b1] - 01

Torque Setpoint
The torque command value used when the
Drive Mode is Torque, and the Setpoint
Control is Enabled.

[s1] - Torque
-255.992..255.992 (ε: 7.81e-3)

Amps Read 123 - [s1]

(8001..7fff) (× 0080) Write 124 [s1] - 04

Velocity Setpoint
The velocity command value used when the
Drive Mode is Velocity, and the Setpoint
Control is Enabled.

[L1] - Velocity
-32767.99998..32767.99998 (ε: 1.53e-5)

RPM Read 125 - [L1]

(80000001..7fffffff) (×
00010000)

Write 126 [L1] - 04

Setpoint Acceleration
The acceleration value used when the
Velocity Setpoint changes, and the Setpoint
Control is Enabled.

[d1] - Rate
0..2147483647 (ε: 1)

RPM/sec Read 127 - [d1]

(00000000..7fffffff) (×
00000001)

Write 128 [d1] - 03, 05

Setpoint Control
Enables or disables the setpoint control.

[b1] - State
0 - Disable Setpoint Control (TP: Normal)

- Read 129 - [b1]

1 - Enable Setpoint Control (TP: CtlPanl) Write 12a [b1] - 01

Reset Faults
Resets the fault detection circuitry.

[No Data] (TP: ↑toReset) Read - - -

Write 12b - -
 A-19

Runtime Status Commands

Parameter (Runtime Status Commands) Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Packed Drive Status
The status of various flags in the drive.
This status is repeatedly updated.

[d1] - Status
Bit 0 - In-Position
Bit 1 - Within Position Window
Bit 2 - Zero Speed
Bit 3 - Within Speed Window
Bit 4 - Positive ILimit
Bit 5 - Negative ILimit
Bit 6 - At Speed
Bit 7 - Drive Enabled
Bit 8 - DC Bus Charged
Bit 9 - Fault Disable
Bit 10 - Fault Decel/Disable
Bit 11 - Latched Fault Warning
Bit 12 - Unlatched Fault Warning

- Read 134 - [d1]

Bit 14 - Brake Active
Bit 15 - Drive Ready
Bit 16 - Torque Mode
Bit 17- Integrator Inhibit
Bit 18 - Follower Enable
Bit 19 - Forward Clamp
Bit 20 - Reverse Clamp
Bit 21 - Analog Override
Bit 22 - Preset Select Line A
Bit 23 - Preset Select Line B
Bit 24 - Preset Select Line C
Bit 30 - Reset Faults
Bit 31 - Enable Active

Write - - -

Fault Status
Identifies the present state of the possible
fault conditions.

If a specific Fault Group Mask Is set to
unlatched warning, the appropriate bit is not
latched in this register and may clear when
the condition is removed.

If the specific Fault Group Mask is not set
to unlatched warning, the appropriate bit is
latched in this register and will remain set
until the drive is reset.

[d1] - Status
Bit 0 - +24VDC Fuse Blown
Bit 1 - +5VDC Fuse Blown
Bit 2 - Encoder Power Fuse Blown
Bit 3 - Motor Overtemperature
Bit 4 - IPM Fault (Overtemperature/Overcur-
rent/Short Circuit)
Bit 5 - Channel IM Line Break
Bit 6 - Channel BM Line Break
Bit 7 - Channel AM Line Break
Bit 8 - Bus Undervoltage
Bit 9 - Bus Overvoltage
Bit 10 - Illegal Hall State
Bit 11 - Sub processor Unused Interrupt

- Read 135 - [d1]

Bit 12 - Main processor Unused Interrupt
Bit 16 - Excessive Average Current
Bit 17 - Overspeed
Bit 18 - Excess Following Error
Bit 19 - Motor Encoder State Error
Bit 20 - Master Encoder State Error
Bit 21 - Motor Thermal Protection
Bit 22 - IPM Thermal Protection
Bit 27 - Enabled with No Motor Selected
Bit 28 - Motor Selection not in Table
Bit 29 - Personality Write Error
Bit 30 - Service Write Error
Bit 31 - CPU Communications Error

Write - - -
 A-20

Runtime Status Commands (Continued)

Parameter (Runtime Status Commands) Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Run State
Identifies the present state of the drive and
possible fault conditions. The reported
faults are only ones with Fault Mask values
set to Disable Drive or Decel, Then Disable
Drive.

This command is added to support Touch-
Pad background status polling operation.
This implies that other products which use
the touchpad will need to adhere to the fol-
lowing format.

The state values 1..127 are reserved for
fault indications. These values will cause
the fault to be shown on the touchpad.

[c1] - State
-01 - Drive Enabled
00 - Drive Ready
01 - +24VDC Fuse Blown
02 - +5VDC Fuse Blown
03 - Encoder Power Fuse Blown
04 - Motor Overtemperature
05 - IPM Fault (Overtemperature/Overcurrent/
Short Circuit)
06 - Channel IM Line Break
07 - Channel BM Line Break
08 - Channel AM Line Break
09 - Bus Undervoltage
10 - Bus Overvoltage
11 - Illegal Hall State

- Read 136 - [c1]

The values 0..-128 are reserved for non-
fault state information which is to be indi-
cated, but not shown as a fault by the touch-
pad.

12 - Sub processor Unused Interrupt
13 - Main processor Unused Interrupt
17 - Excessive Average Current
18 - Overspeed
19 - Excess Following Error
20 - Motor Encoder State Error
21 - Master Encoder State Error
22 - Motor Thermal Protection
23 - IPM Thermal Protection
28 - Enabled with No Motor Selected
29 - Motor Selection not in Table
30 - Personality Write Error
31 - Service Write Error
32 - CPU Communications Error

Write - - -

Digital Input States
Identifies the present state of the digital
inputs.

[w1] - States
Bit 0 - RESET FAULTS Input State
Bit 1 - ENABLE Input State
Bit 2 - INPUT1 Input State

- Read 137 - [w1]

Bit 3 - INPUT2 Input State
Bit 4 - INPUT3 Input State
Bit 5 - INPUT4 Input State

Write - - -

Digital Output States
Identifies the present state of the digital out-
puts.

[w1] - States
Bit 0 - READY Output State
Bit 1 - BRAKE Output State
Bit 2 - OUTPUT1 Output State

- Read 138 - [w1]

Bit 3 - OUTPUT2 Output State
Bit 4 - OUTPUT3 Output State
Bit 5 - OUTPUT4 Output State

Write - - - -
 A-21

Runtime Data Commands

Parameter (Runtime Data Commands) Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Reset Peaks
Resets the peak detection firmware for posi-
tive position error peak, negative position
error peak, positive torque current, and neg-
ative current.

[No Data] (TP: ↑toReset) - Read - - -

Write 140 - -

COMMAND Input
The command input value before scaling
and offsetting.

[s1] - Value
-10000.. 10000 (ε: 1)

millivolts Read 141 - [s1]

(d8f0..2710) (× 0001) Write - - -

Positive ILimit Input
The +ILimit input value.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 142 - [s1]

(8001..7fff) (× 0080) Write - - -

Negative ILimit Input
The -ILimit input value.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 143 - [s1]

(8001..7fff) (× 0080) Write - - -

Analog Output
The analog output values.

[b1] - Number
0 - Output 1
1 - Output 2

Read 144 [b1] [s2]

[s2] - Value
-10000..10000 (ε: 1)
(d8f0..2710)

millivolts

(× 0001)

Write - - -

Motor Position
The value of the motor encoder register.

[L1] - Value
-2147483647..2147483647 (ε: 1)

Counts Read 145 - [L1]

(80000001..7fffffff) (×
00000001)

Write - - -

Master Position
The value of the master input register.

[L1] - Value
-2147483647..2147483647 (ε: 1)

Master
Counts

Read 146 - [L1]

(80000001..7fffffff) (×
00000001)

Write - - -

Position Command
The position command input to the position
loop, which is the master position, after
gearing and slew rate limiting.

[L1] - Value
-2147483647..2147483647 (ε: 1)

Counts Read 147 - [L1]

(80000001..7fffffff) (×
00000001)

Write - - -

Position Error
The difference between the Position Com-
mand and the Motor Position.

[L1] - Value
-2147483647..2147483647 (ε: 1)

Counts Read 148 - [L1]

(80000001..7fffffff) (×
00000001)

Write - - -

Position Positive Peak Error
The maximum amount the Position Com-
mand lead the Motor Position.

[L1] - Value
0..2147483647 (ε: 1)

Counts Read 149 - [L1]

(00000000..7fffffff) (×
00000001)

Write - - -

Position Negative Peak Error
The maximum amount the Position Com-
mand lagged the Motor Position.

[L1] - Value
-2147483647..0 (ε: 1)

Counts Read 14a - [L1]

(80000001..00000000) (×
00000001)

Write - - -

Velocity Command
The command value to the velocity loop.

[L1] - Value
-32767.99998..32767.99998 (ε: 1.53e-5)

RPM Read 14b - [L1]

(80000001..7fffffff) (×
00010000)

Write - - -

Motor Velocity
The feedback value to the velocity loop.

[L1] - Value
-32767.99998..32767.99998 (ε: 1.53e-5)

RPM Read 14c - [L1]

(80000001..7fffffff) (×
00010000)

Write - - -
 A-22

Runtime Data Commands (Continued)

Parameter (Runtime Data Commands) Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Responses

Velocity Error
The difference between Velocity Command
and Motor Velocity.

[L1] - Value
-32767.99998..32767.99998 (ε: 1.53e-5)

RPM Read 14d - [L1]

(80000001..7fffffff) (×
00010000)

Write - -

Current Command
The command value to the current loop.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 14e - [s1]

(8001..7fff) (× 0080) Write - - -

Average Current
The average value of the Current Com-
mand(?).

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 14f - [s1]

(8001..7fff) (× 0080) Write - - -

Current Positive Peak
The largest positive value of the Current
Command(?).

[s1] - Value
0.0..255.992 (ε: 7.81e-3)

Amps Read 150 - [s1]

(0000..7fff) (× 0080) Write - - -

Current Negative Peak
The largest negative value of the Current
Command(?).

[s1] - Value
-255.992..0.0 (ε: 7.81e-3)

Amps Read 151 - [s1]

(8001..0000) (× 0080) Write - - -

Bus Voltage
The measured voltage of the DC bus.

[w1] - Value
0..32767 (ε: 1)

Volts Read 152 - [w1]

(0000..7fff) (× 0001) Write - - -

Field Current
The calculated field current for induction
motors.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 153 - [s1]

(8001..7fff) (× 0080) Write - - -

Torque Current
The calculated torque current.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 154 - [s1]

(8001..7fff) (× 0080) Write - - -

R-Phase Current
The calculated R-Phase current.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 155 - [s1]

(8001..7fff) (× 0080) Write - - -

T-Phase Current
The calculated T-Phase current.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Amps Read 156 - [s1]

(8001..7fff) (× 0080) Write - - -

Field Voltage Command
The field voltage command for induction
motors.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Volts Read 157 - [s1]

(8001..7fff) (× 0080) Write - - -

Torque Voltage Command
The torque voltage command.

[s1] - Value
-255.992..255.992 (ε: 7.81e-3)

Volts Read 158 - [s1]

(8001..7fff) (× 0080) Write - - -

Average Motor Current
The average current seen by the motor.

[s1] - Value
0.0..255.992 (ε: 7.81e-3)

Amps Read 159 - [s1]

(0000..7fff) (× 0080) Write - - -
 A-23

Runtime Data Collection Commands

Parameter (Runtime Data Collection
Commands)

Range of Data Values Units Command Com-
mand
Data

Response
Data

Excep-
tion
Response
s

Channel 1 Source
The signal values returned in channel 1 of
Collected Data.

[b1] - Signal Number
0 - Current Command
1 - Current Average Command
2 - Current Positive Peak
3 - Current Negative Peak
4 - Positive ILimit
5 - Negative ILimit
6 - Motor Velocity
7 - Velocity Command
8 - Velocity Error
9 - Motor Position
10 - Position Command Slewed
11 - Position Error
12 - Position Peak Positive Error
13 - Position Peak Negative Error

Read 160 - [b1]

20 - Master Position
21 - Position Loop Output
22 - Velocity Loop Output
23 - Filter Output
24 - Notch Output
25 - R Phase Current
26 - T Phase Current
27 - Torque Current
28 - Field Current
29 - Torque Voltage
30 - Field Voltage
31 - Scaled A/D Command Value
32 - Bus Voltage

Write 161 [b1] 01

Channel 2 Source
The signal values returned in channel 2 of
Collected Data.

[b1] - Signal Number
See Channel 1 Source for selections

Read 162 - [b1]

Write 163 [b1] 01

Trigger Source
The signal used to trigger the data collec-
tion depending on the Trigger Mode.

[b1] - Signal Number
See Channel 1 Source for selections

Read 164 - [b1]

Write 165 [b1] 01

Timebase
The time between samples returned in
Collected Data.

[w1] - Value
0.0..13107.0 (ε: 0.2)

millisec-
onds

Read 166 - [w1]

(0000..ffff) (× 0005) Write 167 [w1] -

Trigger Mode
Determines how data is collected when
Arm Triggering command is sent.

[b1] - Mode
0 - Trigger immediately

Read 168 - [b1]

1 - Trigger on positive transition of trigger
source
2 - Trigger on negative transition of trigger
source.

Write 169 [b1] - 01

Trigger Threshold
The value which must be crossed on the
Trigger Source when the Trigger Mode is
set to trigger in a transition.

[s1] - Value Drive Inter-
nal Units

Read 16a - [s1]

(8001..7fff) (Depen-
dent on
selected
trigger
source)

Write 16b [s1] - 04

Arm Triggering
Arms the data collection to begin collecting
data when the next trigger event occurs.

[No Data] Read - - -

Write 16c - -

Trigger Status
The status of the data collection process.

[b1] - Status
0 - Waiting for Trigger to Occur

Read 16d - [b1]

1 - Triggered, Collecting Data
2 - Data Collection Complete

Write - - -
 A-24

Runtime Data Collection Commands (Continued)

Collected Data
The data collected from the last trigger
event.

[b1] - Group
0 - Channel 1, Samples 1 through 16
1 - Channel 1, Samples 17 through 32
2 - Channel 1, Samples 33 through 48
3 - Channel 1, Samples 49 through 64
4 - Channel 1, Samples 65 through 80
5 - Channel 1, Samples 81 through 96
6 - Channel 1, Samples 97 through 112
7 - Channel 1, Samples 113 through 128

Read 16e [b1] [s2].. [s17]

8 - Channel 2, Samples 1 through 16
9 - Channel 2, Samples 17 through 32
a - Channel 2, Samples 33 through 48
b - Channel 2, Samples 49 through 64
c - Channel 2, Samples 65 through 80
d - Channel 2, Samples 81 through 96
e - Channel 2, Samples 97 through 112
f - Channel 2, Samples 113 through 128

[s2]..[s17]
Requested data

Error Code

4 - Data Accepted After Limiting to Minimum.

Write - - - 04
 A-25

NOTES
 A-26

APPENDIX B Press Transfer ASFBs
Introduction

This set of Application Specific Function Blocks (ASFBs) is designed to generate
a profile for a slave axis in a press application. As the master axis moves, the slave
axis moves in, dwells, and moves out in one master rotation (i.e., 360 degrees). A
variation that could be supported as well would be for the slave axis to move in
and dwell for each master rotation and that motion is repeated several times before
the slave moves out to its initial position.

This profile can have different shapes. It can be triangular (the slave accelerates
and decelerates without achieving a constant velocity) or trapezoidal (the slave
accelerates to a maximum velocity for a portion of its motion before it deceler-
ates). The acceleration and deceleration can also be configured for an ‘scurve’
where the corners of the motion transitions are smoothed.

To obtain a slave axis profile for two slave moves for one master axis rotation, the
M_PRF2MV function block is called from the main application ladder. This func-
tion block has a number of inputs to direct the profile generation:

• RR - an array of structures configured in the format required by the
RATIO_RL function block. This set of functions blocks is designed for a
RATIO_RL application. RATIO_RL usage is detailed in the PiCPro func-
tion block reference guide. This structure has the following format:

• MAST_DIS - the distance of the master motion in this segment (in FU).

• SLAV_DIS - the distance of the slave motion in this segment (in FU).

• K1 - the K1 coefficient in the polynomial equation for RATIO_RL.

• K2 - the K2 coefficient in the polynomial equation for RATIO_RL.

• K3 - the K3 coefficient in the polynomial equation for RATIO_RL.

• SPARE - reserved for future use.

• FLAGS - indicate the execution of the polynomial function of RATIO_RL.

This RR input to the function block must be defined as an array of struc-
tures in the calling function (which is usually the main application ladder).
The actual size required for this array will depend upon the type of profile
required; an scurve profile will have more segments than a simpler con-
stant acceleration profile. The number of segments within the profile will
be as follows for each move: acceleration portion (1 for no scurve, 3 with
scurve), constant velocity portion (0 or triangular, 1 for trapezoidal), decel-
eration portion (1 for no scurve, 3 with scurve), and dwell portion (1 if a
dwell is required). For example, for the application of M_PRF2MV, the
size of the RR array must be at least 17 to encompass the various combi-
nations because 16 segments will be required.
B-1

The sizing of this array is very important. If the array is sized too small,
run-time errors within the application are likely to occur (because other
variables in PiC memory will be written during the calculations since the
internal function blocks will assume enough memory has been allocated by
the main application ladder).

• MOV1 and MOV2 - an input structure describes each of the two slave
moves required. This structure provides the following information for each
move:

• STRT_ANG - the angle of the master axis at the start of the slave’s move (in
degrees).

• STOP_ANG - the angle of the master axis at the end of the slave’s move (in
degrees).

• SLV_MOVE - the distance of the slave move (specified in input units that
can be scaled).

• MAX_V - the maximum velocity that can be allowed for this slave move
(specified as a ratio of slave FU to master FU).

• PCT_J - the percent of maximum possible jerk to be used for this slave
move (in a range of 0.0 to 100.0). A value of zero means no jerk, and there-
fore, no scurve.

• PCT_A - the percent of maximum possible acceleration to be used for this
slave move (in a range of 0.0 to 100.0).

• TRI_ONLY - a boolean flag to indicate a triangular profile is desired.

• SCURVE - a boolean flag to indicate the smoothed scurve accel/decel is
desired.

• MDST - the number of master feedback units in one cycle or rotation.

• MSCL - the number of master feedback units per input unit in the input
MOVx structure (i.e., the start and stop angles).

• SSCL - the number of slave feedback units per input unit in the input
MOVx structure (i.e., the slave distance moved between two master
angles).

• VLIM - the maximum allowable velocity for this master/slave application
(specified as a ratio of slave FU to master FU). This limit is one that would
reflect the inherent machine limitations. The individual move structures
specify the maximum velocity that is desired for that specific move; that
velocity for a move cannot exceed this VLIM value. This VLIM value
would be one that is entered once for the application; the velocities for the
individual moves could be specified via the user interface.
B-2

The input move structure can indicate the intent of a triangular slave move
(TRI_ONLY). However, if the other parameters result in a trapezoidal profile
achieving the required slave motion, this function block will generate the appropri-
ate trapezoidal profile and it will set a boolean output that indicates this change in
behavior. If the main ladder must get a triangular profile then it can take the appro-
priate actions, such as providing the user interface with a signal that the move
parameters must be specified again. If the main ladder will tolerate either triangu-
lar or trapezoidal profile but it prefers the triangular profile then this is supported.

If the combination of parameters prevents the generation of a profile then the func-
tion block returns an appropriate error indicator. The main ladder must make sure
that no errors were detected before trying to apply the generated profile.

The input move structure can direct the profile shape by specifying the percent of
maximum acceleration (PCT_A). 100% of maximum acceleration would approxi-
mate a step function - immediately get to the maximum velocity for the slave’s
move (in most cases an unacceptable response for the slave). 0% of maximum
acceleration would obtain the minimum slope for the slave’s acceleration and still
achieve the required slave motion. Values within this range obtain an intermediate
behavior.

There is no separate deceleration rate provided as an input, so the deceleration por-
tion of the profile will use the same parameters as the acceleration portion. How-
ever, there is an internal function block to generate the deceleration portion of the
profile so it could be possible (but not supported at this time) for the generated pro-
file to contain different acceleration and deceleration configurations.

The input move structure can indicate the intent of smoothed scurve acceleration
and deceleration portions of the slave profile (SCURVE). This also requires a per-
centage of jerk to be specified (PCT_J). Maximum jerk (100%) would obtain no
scurve behavior because there would be only constant acceleration. Minimum jerk
(0.1%) would obtain the smoothest acceleration portion of the profile with no con-
stant acceleration but with the highest peak acceleration rate.
B-3

This is the set of function blocks whose purpose is to generate a slave profile for a
press application.

• M_PRF2MV - this function block generates a slave axis profile for two
slave moves for one master axis rotation. It will in turn call the
M_PRFERR, M_PROFL and M_PRFDWL function blocks for each of the
two slave axis moves in the profile.

• M_PRF1MV - this function block generates a slave axis profile for one
slave move for one master axis rotation. It will in turn call the
M_PRFERR, M_PROFL and M_PRFDWL function blocks to generate the
profile. The M_PRF1MV function block has the same inputs as
M_PRF2MV except that only one move is handled in the profile rather
than two.

• M_PRFERR - this function block checks the validity of the input move’s
parameters.

• M_PROFL - this function block generates the portion of the profile when
the slave is moving. It will in turn call the M_SETVAJ, M_SC_ACC,
M_CNST_V and M_SC_DEC function blocks.

• M_PRFDWL - this function block generates the portion of the profile
when the master axis is moving but the slave is not. This block is required
because the RATIO_RL profile must account for all the master counts so
that the profile can be repeated (i.e., for each master rotation, the slave per-
forms the same profile). Therefore if the slave is moving only part of the
time (which will occur in many press applications), then a portion of the
profile contains the master’s motion that has no corresponding slave
motion. Also, because the real to integer calculations being performed dur-
ing the generation of the profile might result in rounding, there could be a
few counts of master or slave axis motion that could not be incorporated
into the main part of the profile. Those remaining counts, if any, can be
accounted for during this portion of the profile.

• M_SETVAJ - this function block calculates the acceleration, velocity and
jerk to be used for this move. This function block also determines whether
the move’s parameters can support a triangular profile or whether it must
be a trapezoidal profile.

• M_SC_ACC - this function block adds the acceleration portion of the pro-
file into the main structure (for a RATIO_RL). Depending on the move’s
parameters, the acceleration will be constant acceleration or it will be an
scurve (i.e., smoothed acceleration).

• M_CNST_V - this function block adds the constant velocity portion of the
trapezoidal profile into the main structure (for a RATIO_RL). The constant
velocity portion is the ‘flat top’ of the profile. A triangular profile does not
have a constant velocity portion.
B-4

• M_SC_DEC - this function block adds the deceleration portion of the pro-
file into the main structure (for a RATIO_RL). Depending on the move’s
parameters, the deceleration will be constant deceleration or it will be an
scurve (i.e., smoothed deceleration).

If a specific application requires a different combination of slave moves for one (or
more) master moves, these function blocks are the ‘building blocks’ for that appli-
cation. The M_PRF1MV function block illustrates how to convert a defined move
of a slave axis (i.e., the move structure) into a profile for RATIO_RL. Its contents
can be merged into your application and then modified to concatenate other slave
moves, each with its own definition specified in a move structure, into the single
profile. Note that if a longer profile is to be generated you must make sure that the
array of structures for the profile in the application is adequately sized.

The following flow chart shows the relationship of the function blocks to each
other.

Note: The M_PRF2MV function block contains two each of M_PRFERR,
M_PROFL, and M_PRFDWL. There is one of these function blocks
for each of the two moves.

M_PRF2MV
(for two moves)

M_PRFERR
(profile error checks for a move)

M_PROFL
(profile data for a move)

M_PRFDWL
(profile dwell)

M_SC_ACC
(s curve
acceleration)

M_SETVAJ
(set velocity,
acceleration,
and jerk)

M_SC_DEC
(s curve
deceleration)

M_CNST_V
(constant
velocity
move)

M_PRF1MV
(for one move)
B-5

M_PRF2MV
2 slave moves for master USER/M_PROFL

The M_PRF2MV function block sets up 2 slave moves in the master cycle.

This function block is designed for a rotary master axis such as a press. It sets up a
two move Ratio Real profile, with dwell segments after each. The moves can be
different directions or the same, and different directions or the same. Either move
can use smoothed "S-Curve" acceleration by input selection. Either move can be

⁄ NAME ƒø
≥M_PRF2MV ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥RR ERR1√
≥ ≥
¥MOV1 TRP1√
≥ ≥
¥MOV2 AMX1√
≥ ≥
¥MDST VMX1√
≥ ≥
¥MSCL ERR2√
≥ ≥
¥SSCL TRP2√
≥ ≥
¥VLIM AMX2√
≥ ≥
≥ VMX2√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution
(Typically one-shot)

RR (STRUCTURE) - Array of Structures to be used
for profile.
MOV1 (STRUCTURE) - Structure containing 1st
move’s input data.

MOV2 (STRUCTURE) - Structure containing 2nd
move’s input data.

MDST (DINT) - Master feedback units/cycle.

MSCL (REAL) - Master feedback units/input unit.

SSCL (REAL) - Slave feedback units/input unit..

VLIM (REAL) - Maximum allowable velocity.

Outputs: OK (BOOL) - execution completed without error.

ERR1 (BYTE) - Error number for First Move.

TRP1 (BOOL) - Move 1 changed to a trapezoid to
achieve move.

AMX1 (REAL) - Maximum acceleration rate calcu-
lated for move 1.

VMX1 (REAL) - Maximum velocity rate calculated
for move 1.

ERR2 (BYTE) - Error number for Second move.

TRP2 (BOOL) - Move 2 changed to a trapezoid to
achieve move.

AMX2 (REAL) - Maximum acceleration rate calcu-
lated for move 2.

VMX2 (REAL) - Maximum velocity rate calculated
for move 2.
B-6

trapezoidal or triangular, again by input selection (smoothing can be used in either
case).

This function block controls the setup for the profile. The successful call of this
function block results in a filled array of structures for a Ratio_Real profile which
is ready to be started by a call of RATIO_RL using the array of structures set up
herein. The format for the RATIO REAL structure is shown in Table 2-1.
B-7

Table 2-1. Ratio Real Structure

The shape of the profile is determined by the input parameters. There are two sep-
arate moves in this profile, with zero-speed slave dwells after each. The format for
the MOV1 and MOV2 structures is shown in Table 2-2. MOV2 has the same struc-
ture format as MOV1.

Name Data Type Definition
RR STRUCTURE Array of Structures to be used

for profile
.MAST_DIS DINT Master move distance in

feedback units
.SLAV_DIS DINT Slave move distance relative to

Master
.K1 LREAL VELOCITY co-efficient for

polynomial
.K2 LREAL ACCELERATION co-efficient

for polynomial (A/2)
.K3 LREAL JERK co-efficient for polyno-

mial (J/6)
.SPARE LREAL Spare. Reserved for possible

future features.
.FLAGS DWORD Move type flags. Bits 2 & 3 = 0

for polynomial
B-8

Table 2-2. Move Structure

Maximum velocity can be limited to allow an automatically adjusting profile
which will be triangular until the maximum velocity is reached. It will then spread
into a trapezoid using the minimum acceleration to achieve the move.

It is also possible to set up each move as a constant accel/decel triangular move or
a trapezoidal move using operator inputs for the desired shape. Acceleration can be
adjusted to change the shape from triangular to nearly rectangular by increasing
the acceleration percent.

For any such profile, the acceleration can be "smoothed" by adjusting the jerk per-
cent. This will not change the basic shape of the profile, but will change the accel-
eration and deceleration portions of the move to resemble an "S-Curve".

The percentage of jerk corresponds inversely to the portion of the Acceleration (or
Deceleration) segment of the move which will be smoothed, until 100% equals no
S-Curve. At minimum jerk, there is no constant accel portion. This will correspond
to the highest acceleration rate. Maximum velocity during a move is not affected
by "smoothing" or jerk, nor is the average acceleration. It only affects how the
acceleration (and deceleration) will be applied to obtain this velocity.

The first portion of the ASFB checks the input data for any detectable errors. The
bit assignments for ERR1 and ERR2 are shown in Table 2-3. The function
BYT2BOOL is helpful in checking for specific errors.

Name Data Type Definition
MOV1 STRUCTURE Structure containing move's input data
.STRT_ANG REAL Angle of master axis at start of slave move
.STOP_ANG REAL Angle of master axis at end of slave move
.SLV_MOVE REAL Distance of slave move
.MAX_V REAL Maximum desired velocity of the slave axis
.PCT_J REAL Percent of maximum possible jerk to be used
.PCT_A REAL Percent of maximum possible accel to be used
.TRI_ONLY BOOL Triangular profile desired
.SCURVE BOOL Smoothed scurve acc/dec desired
B-9

Table 2-3. Error Definitions

Assuming no errors, the data is separated and scaled for both the Master & Slave
moves. This data is checked, then fed into the appropriate Move or Dwell function
block.

Final error checking is done before returning OK.

Example Profiles

The following four examples illustrate the effects of jerk on a triangular profile.
As can be seen, the lower the jerk percentage the smoother the profile. If either a
smaller or a slightly larger acceleration rate is given, the profile will look the same
because the slave must still move the same distance for the same master motion.
However if a large enough acceleration rate is given for the maximum velocity
limits and the respective master and slave distances specified in the input move
structure then the generated profile will become trapezoidal and the output boolean
variable will be set to indicate that change in behavior.

1.Triangular profile with no scurve (and 50% acceleration).

2. Triangular profile with scurve and 5% jerk.

3. Triangular profile with scurve and 50% jerk.

4. Triangular profile with scurve and 95% jerk.

Fault Bit Number Description
0 Starting angle is not within -180 to 360 degrees
1 Ending angle is not within -180 to 360 degrees
2 Acceleration percent value not within 0.0 to 100.0
3 Jerk percentage value not within 0.0 to 100.0
4 Desired velocity limit higher than allowed
5 Desired velocity limit is zero
6 Master Move 1 overlaps Master Move 2
7 Cannot set-up move with input parameters given
B-10

The following six examples illustrate the effects of acceleration and jerk on a trap-
ezoidal profile. As can be seen, the higher the acceleration percentage the steeper
the acceleration curve. Also, just as for the triangular profile, the lower the jerk
percentage the smoother the profile.

1. Trapezoidal profile with no scurve and 50% acceleration.

2. Trapezoidal profile with scurve, 50% acceleration and 5% jerk.

3. Trapezoidal profile with scurve, 50% acceleration and 50% jerk.

4. Trapezoidal profile with scurve, 50% acceleration and 95% jerk.

5. Trapezoidal profile with scurve, 10% acceleration and 50% jerk.

6. Trapezoidal profile with scurve, 90% acceleration and 50% jerk.
B-11

Figure 2-1. Triangular no scurve, 50% accel

0

20

40

60

80

100

120

140

160

1 68 13
5

20
2

26
9

33
6

40
3

47
0

53
7

60
4

67
1

73
8

80
5

87
2

93
9

10
06

10
73

11
40

12
07

12
74

time

o
u

tp
u

t

output

Triangular scurve, 50% accel, 5% jerk

0

20

40

60

80

100

120

140

160

1 68 13
5

20
2

26
9

33
6

40
3

47
0

53
7

60
4

67
1

73
8

80
5

87
2

93
9

10
06

10
73

11
40

12
07

12
74

time

o
u

tp
u

t

output
B-12

Triangular scurve, 50% accel, 50% jerk

0

20

40

60

80

100

120

140

160

1 68 13
5

20
2

26
9

33
6

40
3

47
0

53
7

60
4

67
1

73
8

80
5

87
2

93
9

10
06

10
73

11
40

12
07

12
74

time

o
u

tp
u

t

output

Triangular scurve, 50% accel, 95% jerk

0

20

40

60

80

100

120

140

160

1 68 13
5

20
2

26
9

33
6

40
3

47
0

53
7

60
4

67
1

73
8

80
5

87
2

93
9

10
06

10
73

11
40

12
07

12
74

time

o
u

tp
u

t

output
B-13

Trapezoidal no scurve, 50% accel

0

20

40

60

80

100

120

1 68 13
5

20
2

26
9

33
6

40
3

47
0

53
7

60
4

67
1

73
8

80
5

87
2

93
9

10
06

10
73

11
40

12
07

12
74

time

o
u

tp
u

t

output

Trapezoidal scurve, 50% accel 5% jerk

0

20

40

60

80

100

120

1 68 13
5

20
2

26
9

33
6

40
3

47
0

53
7

60
4

67
1

73
8

80
5

87
2

93
9

10
06

10
73

11
40

12
07

12
74

time

o
u

tp
u

t

output
B-14

Trapezoidal scuve, 50% accel 50% jerk

0

20

40

60

80

100

120

1 68 13
5

20
2

26
9

33
6

40
3

47
0

53
7

60
4

67
1

73
8

80
5

87
2

93
9

10
06

10
73

11
40

12
07

12
74

time

o
u

tp
u

t

output
B-15

Trapezoidal scurve, 10% accel 50% jerk

0

20

40

60

80

100

120

140

160

1 68 13
5

20
2

26
9

33
6

40
3

47
0

53
7

60
4

67
1

73
8

80
5

87
2

93
9

10
06

10
73

11
40

12
07

12
74

time

o
u

tp
u

t

output

Trapezoidal scurve, 90% accel, 50% jerk

0

10

20

30

40

50

60

70

80

90

1 67 13
3

19
9

26
5

33
1

39
7

46
3

52
9

59
5

66
1

72
7

79
3

85
9

92
5

99
1

10
57

11
23

11
89

12
55

time

o
u

tp
u

t

output
B-16

M_PRF1MV
One slave move for master USER/M_PROFL

The M_PRF1MV function block sets up a single slave move in the master cycle.

The M_PRF1MV function block does the same processing as M_PRF2MV except
that it processes only one slave move for the master cycle rather than two slave
moves. Refer to the M_PRF2MV description for more information.

Note: Fault bit number 6 (Table 2-3: Error Definitions) is not used by
M_PRF1MV.

⁄ NAME ƒø
≥M_PRF1MV ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥RR ERR1√
≥ ≥
¥MOV1 TRP1√
≥ ≥
¥MDST AMX1√
≥ ≥
¥MSCL VMX1√
≥ ≥
¥SSCL ≥
≥ ≥
¥VLIM ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

RR (STRUCTURE) - Array of Structures to be used
for profile.
MOV1 (STRUCTURE) - Structure containing 1st
move’s input data.

MDST (DINT) - Master feedback units/cycle.

MSCL (REAL) - Master feedback units/input unit.

SSCL (REAL) - Slave feedback units/input unit..

VLIM (REAL) - Maximum allowable velocity.

Outputs: OK (BOOL) - execution completed without error.

ERR1 (BYTE) - Error number for move.

TRP1 (BOOL) - Move changed to a trapezoid to
achieve move.

AMX1 (REAL) - Maximum acceleration rate calcu-
lated for move.

VMX1 (REAL) - Maximum velocity rate calculated
for move.
B-17

M_PRFERR
Check for profile errors USER/M_PROFL

The M_PRFERR function block checks the validity of the move’s parameters that
have been passed into a function block.

This function block checks the validity of the move’s parameters which have been
passed into a function block. It is originally designed specifically for a rotary mas-
ter and a linear slave axis. The format for the MOVE structure is shown in
Table 2-4.

⁄ NAME ƒø
≥M_PRFERR ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥MOVE ERR√
≥ ≥
¥VLIM ENUM√
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

MOVE (STRUCT) - Structure containing 1st move’s
input data.

VLIM (REAL) - Maximum allowable velocity.

Outputs: OK (BOOL) - execution completed without error.

ERR (BOOL) - Error flag.

ENUM (BYTE) - Error number.
B-18

Table 2-4. MOVE Structure

If any of the values are invalid, then a fault is flagged (ERR). All faults found are
coded into a byte which is passed to the calling ladder. Use BYT2BOOL to decode
faults. Only the first 6 bits are set in this function block. The upper 2 bits are used
and set in the calling ladder. The Error Definitions are shown in Table 2-5.

Name Data Type Definition
 MOVE STRUCT Structure of input data for

move
.STRT_ANG REAL Angle of master axis at start

of slave move
.STOP_ANG REAL Angle of master axis at end

of slave move
.SLV_MOVE REAL Distance of slave move
.MAX_V REAL Maximum desired velocity

of the slave axis
.PCT_J REAL Percent of maximum possi-

ble jerk to be used
.PCT_A REAL Percent of maximum possi-

ble accel to be used
.TRI_ONLY BOOL Triangular profile desired
.SCURVE BOOL Smoothed scurve acc/dec

desired
B-19

Table 2-5. Error Definitions

Fault Bit Number Description
0 Starting angle is not within -180 to 360 degrees
1 Ending angle is not within -180 to 360 degrees
2 Acceleration percent value not within 0.0 to 100.0
3 Jerk percentage value not within 0.0 to 100.0
4 Desired velocity limit higher than allowed
5 Desired velocity limit is zero
B-20

M_PROFL
Make profile for 1 move USER/M_PROFL

⁄ NAME ƒø
≥ M_PROFL ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥MDST TRPZ√
≥ ≥
¥SDST SEGS√
≥ ≥
¥RR MRND√
≥ ≥
¥MAXV SRND√
≥ ≥
¥MSCL ERR√
≥ ≥
¥SSCL AMAX√
≥ ≥
¥ACCP VMAX√
≥ ≥
¥JERK MAST√
≥ ≥
≥ SLAV√
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

MDST (REAL) - Master distance for this move.

SDST (REAL) - Slave distance for this move.

RR (STRUCT) - Array of structures to be used for
profile.

MAXV (REAL) - Maximum desired velocity.

MSCL (REAL) - Master feedback units/input unit.

SSCL (REAL) - Slave feedback units/input unit.

ACCP (REAL) - Percent of maximum possible accel
to be used.

JERK (REAL) - Percent of maximum possible jerk to
be used

Outputs: OK (BOOL) - execution completed without error.

TRPZ (BOOL) - Move changed to a trapezoid to
achieve move.

SEGS (USINT) - Total number of structures used for
this move.

MRND (DINT) - Master move rounding error
detected in FUs.

SRND (DINT) - Slave move rounding error detected
in FUs.

ERR (BOOL) - Cannot achieve the move with the
given inputs.

AMAX (REAL) - Maximum acceleration rate calcu-
lated for move.

VMAX (REAL) - Maximum velocity rate calculated
for move.

MAST (DINT) - Number of master feedback units
used in move.

SLAV (DINT) - Number of Master feedback units
used in move.
B-21

The M_PROFL function sets up one move

Maximum velocity can be limited to allow an automatically adjusting profile
which will be triangular until the maximum velocity is reached. It will then spread
into a trapezoid using the minimum acceleration to achieve the move.

It is also possible to set up each move as a constant accel/decel triangular move or
a trapezoidal move using operator inputs for the desired shape. Acceleration can be
adjusted to change the shape from triangular to nearly rectangular by increasing
the acceleration percent.

For any such profile, the acceleration can be "smoothed" by adjusting the jerk per-
cent. This will not change the basic shape of the profile, but will change the accel-
eration and deceleration portions of the move to resemble an "S-Curve". The
percentage of jerk corresponds inversely to the portion of the Acceleration (or
Deceleration) segment of the move which will be smoothed, until 100% equals no
S-Curve. At minimum jerk, there is no constant accel portion. This will correspond
to the highest acceleration rate. Maximum velocity during a move is not affected
by "smoothing" or jerk, nor is the average acceleration. It only affects how the
acceleration (and deceleration) will be applied to obtain this velocity.

The format for the RATIO_RL structure is shown in Table 2-1.
B-22

M_PRFDWL
Slave dwell in profile USER/M_PROFL

This M_PRFDWL function block takes the array of structures pointer and fills the
next structure with the necessary data for a Slave dwell in the profile. The Master
distance will be adjusted by any rounding errors detected when the preceding
move was calculated. The only slave motion will be any slave rounding errors
detected. These will be applied at the end of the dwell.

There is no acceleration or jerk or initial velocity in a dwell move.

⁄ NAME ƒø
≥M_PRFDWL ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥MDST SEGS√
≥ ≥
¥MSCL ≥
≥ ≥
¥RR ≥
≥ ≥
¥MEXT ≥
≥ ≥
¥SEXT ≥
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

MDST (REAL) - Master distance for dwell.

MSCL (REAL) - Master scale factor.

RR (STRUCTURE) - Array of structures used for the
profile.

MEXT (DINT) - Extra master feedback units.

SEXT (DINT) - Extra slave feedback units.

Outputs: OK (BOOL) - execution completed without error

SEGS (USINT) - Total number of structures used for
move.
B-23

M_SETVAJ
Set vel, acc, jerk values USER/M_PROFL

The M_SETVAJ function block calculates the acceleration, maximum velocity,
and jerk to be used for this move.

The M_SETVAJ ASFB calculates the acceleration, maximum velocity, and jerk to
be used for this move. Separate calls can be used if acceleration and deceleration
are to be different. The distance that the master will move during the acceleration
(and deceleration) is also calculated. If Accel is not the same as decel, care must be
used to avoid invalid setup of the Ratio Real. Use MAXV for K1 of Decel. It is
easy to have s-curve on either the acceleration or deceleration rather than both. The
value of this is to allow the axis to accel or decel faster when inertia is lower, and
allow more time for critical moves (i.e., a larger portion of a triangular move for
the decel when concerned with a loaded part slipping out of the holding mecha-
nism while the accel has no such concern).

MAXV is the maximum velocity that the profile will reach, and is the ending
velocity for the accel portion of the move.

MACC is the distance that the Master axis will move during the accel.

⁄ NAME ƒø
≥M_SETVAJ ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥VLMT MAXV√
≥ ≥
¥MDST MAXA√
≥ ≥
¥SDST MAXJ√
≥ ≥
¥ACCP MACC√
≥ ≥
¥JERK TRPZ√
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

 VLMT (REAL) - Maximum desired velocity.

MDST (REAL) - Master distance for this move.

SDST (REAL) - Slave distance for this move.

ACCP (REAL) - Percent of maximum possible acccel
to be used.

JERK (REAL) - Percent of maximum possible jerk to
be used.

Outputs: OK (BOOL) - execution completed without error.

MAXV (USINT) - Maximum velocity calculated for
move.

MAXA (LREAL) - Maximum acceleration rate calcu-
lated for move.

MAXJ (LREAL) - Maximum jerk calculated for
move.

MACC (LREAL) - Master distance during accelera-
tion (and deceleration).

TRPZ (BOOL) - Move changed to a trapezoid to
achieve move.
B-24

For any such move profile, the acceleration can be "smoothed" by adjusting the
jerk percent. This will change the acceleration (and deceleration) portions of the
move to resemble an "S-Curve".

The percentage of jerk corresponds inversely to the portion of the Acceleration (or
Deceleration) segment of the move which will be smoothed, until 100% equals no
S-Curve. At minimum jerk, there is no constant accel portion. This will correspond
to the highest acceleration rate. Maximum velocity during a move is not affected
by "smoothing" or jerk, nor is the average acceleration. It only affects how the
acceleration (and deceleration) will be applied to obtain this velocity.
B-25

M_SC_ACC
Acceleration segment USER/M_PROFL

The M_SC_ACC function block adds the acceleration portion of the move to the
profile.

The M_SC_ACC ASFB adds the necessary segments for the acceleration portion
of the profile. If the JERK input is not equal to zero, there will be three segments
for the acceleration. If the JERK input is zero, there will be one segment required.

⁄ NAME ƒø
≥M_SC_ACC ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥AMAX SDST√
≥ ≥
¥VMAX SEGS√
≥ ≥
¥JERK SCUR√
≥ ≥
¥MDST AERR√
≥ ≥
¥RR VERR√
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

 AMAX (LREAL) - Maximum acceleration rate calcu-
lated for the move.

VMAX (LREAL) - Maximum velocity calculated for
the move.

JERK (LREAL) - Maximum jerk calculated for this
move.

MDST (LREAL) - Master distance during accelera-
tion.

RR (STRUCTURE) - Array of structures to be used
for profile.

Outputs: OK (BOOL) - Execution of function completed with-
out error.

SDST (DINT) - Slave distance during acceleration.

SEGS (USINT) - Total number of segments used for
acceleration.

SCUR (BOOL) - If set, acceleration uses an S curve
move.

AERR (BOOL) - If set, acceleration equals 0.

VERR (BOOL) - If set, velocity equals 0..
B-26

M_CNST_V
Constant velocity segment USER/M_PROFL

The M_CNST_V function block fills a Ratio Real structure with the necessary dis-
tances and polynomial co-efficients for a Constant Velocity move. The initial
velocity is filled by an earlier function call.

A constant velocity move requires the initial velocity, K1 to be non-zero, and the
initial and final values of both acceleration, K2/2, and Jerk, K3/6, to be zero.

The Master Move Distance cannot be zero for a RATIO_RL segment, therefore if
this would be the case, then no constant velocity move is set up.

⁄ NAME ƒø
≥M_CNST_V ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥MDST SEGS√
≥ ≥
¥RR CVSG√
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

 MDST (REAL) - Master distance for this move.

RR (STRUCT) - Array of Structures to be used for
profile.

Outputs: OK (BOOL) - Execution of function completed with-
out error.

SEGS (USINT) - Total number of segments used for
profile.

CVSG (BOOL) - A valid Constant Velocity structure
was used flag.
B-27

M_SC_DEC
Deceleration segment USER/M_PROFL

The M_SC_DEC function block adds the deceleration portion of the move to the
profile.

The M_SC_DEC ASFB adds the necessary segments for the deceleration portion
of the profile. If the JERK input is not equal to zero, there will be three segments
for the deceleration. If the JERK input is zero, there will be one segment required.

⁄ NAME ƒø
≥M_SC_DEC ≥
≥ ≥
¥EN00 OK√
≥ ≥
¥DMAX SDST√
≥ ≥
¥VMAX SEGS√
≥ ≥
¥JERK SCUR√
≥ ≥
¥MDST DERR√
≥ ≥
¥RR VERR√
≥ ≥
≥ ≥
¿ƒƒƒƒƒƒƒƒƒŸ

Inputs: EN00 (BOOL) - enables execution (Typically one-
shot)

 DMAX (LREAL) - Maximum acceleration rate calcu-
lated for the move.

VMAX (LREAL) - Maximum velocity calculated for
the move.

JERK (LREAL) - Maximum jerk calculated for this
move.

MDST (LREAL) - Master distance during accelera-
tion.

RR (STRUCTURE) - Array of structures to be used
for profile.

Outputs: OK (BOOL) - Execution of function completed with-
out error.

SDST (DINT) - Slave distance during acceleration.

SEGS (USINT) - Total number of segments used for
acceleration.

SCUR (BOOL) - If set, acceleration uses an S curve
move.

DERR (BOOL) - If set, acceleration equals 0.

VERR (BOOL) - If set, velocity equals 0.
B-28

Index
A

Acceleration Scale Text A-4
Acceleration Scale Value A-4
ADDCKSUM 2-6
Alternative Mode Status A-17
Analog Input Acceleration Limit A-15
Analog Input Acceleration Limits Enable A-

16
Analog Input Deceleration Limit A-15
Analog Offset A-12
Analog Output A-22
Analog Output Configuration Register A-12
Analog Scale A-13
Arm Triggering A-24
ASFB 1-1

using 1-2
At Speed Limit A-6
Autotune Maximum Current A-17
Autotune Maximum Distance A-17
Average Current A-23
Average Motor Current A-23
Average Time Constant A-9

B

Back EMF Constant A-8
Boot Firmware Version A-3
BRAKE Active Delay A-11
BRAKE Inactive Delay A-11
Bus Voltage A-23
BYTE2HEX 2-7

C

Change Direction Flag A-16
Channel 1 Source A-24
Channel 2 Source A-24
CHKCKSUM 2-8
Collected Data A-25
COMMAND Input A-22
Command Source A-15
COMMAND Torque Offset A-12
COMMAND Torque Scale A-12
COMMAND Velocity Offset A-12
COMMAND Velocity Scale A-12

Commands, Common Product Line A-3
Commutation Type A-9
Continuous Current Limit A-7
Current Command A-23
Current Feedforward A-9
Current Negative Peak A-23
Current Positive Peak A-23

D

Digital Input Configuration Register A-11
Digital Input States A-21
Digital Output Configuration Register A-11
Digital Output States A-21
Digital Output Write Mask A-11
Drive Mode A-15
Drive Name A-4
DWOR2HEX 2-9

E

Encoder Alignment Offset A-17
Encoder Lines A-8
Encoder Output Configuration Register A-15

F

Fault Status A-20
Field Current A-23
Field Voltage Command A-23
Firmware, Main Version A-3

G

Gear Ratio A-5

H

Hall Offset A-9
HEX2BYTE 2-10
HEX2DWORD 2-11
HEX2WORD 2-12

I

Index Offset A-9
Installation 1-1
Integrator Zone A-5

L

Low Pass Filter Bandwidth A-7
Low Pass Filter Enable A-7
Index-1

M

M_CHK1 2-13
M_CHK101 2-14
M_CHK109 2-15
M_CHK49 2-16
M_CHK57 2-17
M_CHK65 2-18
M_CHK73 2-19
M_CHK9 2-20
M_CLOS1 2-21
M_CLOS9 2-23
M_CLS101 2-25
M_CLS109 2-27
M_CNST_V B-27
M_CRSFIN 2-29
M_DATCAP 2-31
M_DATCPT 2-36
M_DNJOGC 2-40
M_DNPOSC 2-41
M_DNSTAT 2-43
M_DW2BOO 2-51
M_ERROR 2-52
M_FHOME 2-53
M_INCPTR 2-56
M_JOG 2-57
M_LHOME 2-58
M_LINCIR 2-61
M_PRF1MV B-17
M_PRF2MV B-6
M_PRFDWL B-23
M_PRFERR B-18
M_PROFL B-21
M_PRTCAM 2-65
M_PRTREL 2-66
M_PRTSLP 2-67
M_RATREL 2-68
M_RATSLP 2-69
M_RDTUNE 2-71
M_RGSTAT 2-72
M_RSET49 2-74
M_RSET57 2-75
M_RSET65 2-76
M_RSET73 2-77
M_SC_ACC B-26
M_SC_DEC B-28
M_SCRVLC 2-78

M_SETVAJ B-24
M_SRCMON 2-84
M_SRCPRC 2-86
M_SRCRDL 2-88
M_SRCWT 2-90
M_SRCWTL 2-92
M_STATUS 2-98
M_WTTUNE 2-100
Manual Tune Position Period A-17
Manual Tune Position Step A-17
Manual Tune Velocity Period A-17
Manual Tune Velocity Step A-17
Master Encoder Resolution A-18
Master Index Position A-18
Master Position A-22
Maximum Motor Speed A-8
Motor Continuous Current A-8
Motor Encoder Resolution A-18
Motor Forward Direction Flag A-10
Motor ID A-8
Motor Index Position A-18
Motor Peak Current A-8
Motor Position A-22
Motor Table Information A-9
Motor Table Record Size A-9
Motor Table Version A-9
Motor Velocity A-22

N

Negative Current Limit Input A-22

O

Operating Mode A-17
Over Speed Limit A-6
Override Analog Outputs A-13
Override Digital Output A-11

P

Packed Drive Status A-20
Pole Count A-9
Position Command A-22
Position Error A-22
Position Error Limit A-5
Position Error Time A-5
Position Loop Derivative Gain A-5
Position Loop Feedforward Gain A-5
Index-2

Position Loop Integral Gain A-5
Position Loop Proportional Gain A-5
Position Negative Peak Error A-22
Position Positive Peak Error A-22
Position Scale Text A-4
Position Scale Value A-4
Position Window Size A-5
Position Window Time A-5
Positive Current Limit Input A-22
Powerup Status A-3
Preset Acceleration Limits Enable A-16
Preset Input Acceleration Limit A-15
Preset Input Deceleration Limit A-15
Press Transfer ASFBS Introduction B-1
Product Type A-3

R

Reset Drive A-19
Reset Faults A-19
Reset Peaks A-22
Reset Personality NVRAM A-4
revision

history 1-1
range 1-2

Rotor Inertia A-8
R-Phase Current A-23
Run State A-21

S

S_CLOS1 2-102
S_CLOS9 2-104
S_ERRORC 2-106
S_FHOME 2-108
S_IO_C 2-110
S_LHOME 2-112
Save Alignment Offset A-18
Serial Port Baud Rate A-14
Serial Port Frame Format A-14
Setpoint Acceleration A-19
Setpoint Control A-19
Slew Enable A-5
Slew Rate A-5
Software Drive Enable/Disable A-19

Software Drive ID A-14
Software Negative Current Limit A-7
Software Positive Current Limit A-7
Speed Window Size A-6

T

Thermal Time Constant Enable A-9
Thermostat Flag A-8
Timebase A-24
Torque Constant A-8
Torque Current A-23
Torque Preset A-15
Torque Scale Text A-4
Torque Scale Value A-4
Torque Setpoint A-19
Torque Voltage Command A-23
T-Phase Current A-23
Trigger Mode A-24
Trigger Source A-24
Trigger Status A-24
Trigger Threshold A-24
Tuning Direction Flag A-15

V

Velocity Command A-22
Velocity Error A-23
Velocity Loop Derivative Gain A-6
Velocity Loop Integral Gain A-6
Velocity Loop Proportional Gain A-6
Velocity Loop Update Period A-6
Velocity Preset A-15
Velocity Scale Text A-4
Velocity Scale Value A-4
Velocity Setpoint A-19

W

Winding Inductance A-8
Winding Resistance A-8
WORD2HEX 2-115

Z

Zero Speed Limit A-6
Index-3

NOTES
Index-4

	Table of Contents: Motion ASFB Manual
	CHAPTER 1 Application Specific Function Block Guidelines
	Installation
	Revisions
	Network 1
	Network 2
	Network 3

	ASFB Input/Output Descriptions
	Network 4

	Using ASFBs

	CHAPTER 2 Motion ASFBs
	Example LDOs
	ADDCKSUM
	BYTE2HEX
	CHKCKSUM
	DWOR2HEX
	HEX2BYTE
	HEX2DWOR
	HEX2WORD
	M_CHK1
	M_CHK101
	M_CHK109
	M_CHK49
	M_CHK57
	M_CHK65
	M_CHK73
	M_CHK9
	M_CLOS1
	M_CLOS9
	M_CLS101
	M_CLS109
	M_CRSFIN
	M_DATCAP
	M_DATCPT
	M_DNJOGC
	M_DNPOSC
	M_DNSTAT
	M_DSMCOM
	Inputs
	Outputs
	Application Notes
	Connections
	RS232 Connections
	RS422/RS485 Connections

	Example LDO with the M_DSMCOM Function Block

	M_DW2BOO
	M_ERROR
	M_FHOME
	M_INCPTR
	M_JOG
	M_LHOME
	M_LINCIR
	M_PRTCAM
	M_PRTREL
	M_PRTSLP
	M_RATREL
	M_RATSLP
	M_RDTUNE
	M_RGSTAT
	M_RSET49
	M_RSET57
	M_RSET65
	M_RSET73
	M_SCRVLC
	Inputs
	Outputs
	Calculating ACCL and JERK

	M_SRCMON
	M_SRCPRC
	M_SRCRDL
	M_SRCWT
	M_SRCWTL
	M_SERCOS Function Block Errors
	ERR Output
	SERR Output
	BSER Output

	M_STATUS
	M_WTTUNE
	S_CLOS1
	S_CLOS9
	S_ERRORC
	S_FHOME
	S_IO_C
	S_LHOME
	WORD2HEX

	APPENDIX A M_DSMCOM Commands
	Exception Responses
	Host Command Set
	Common Product Line Commands
	General Commands
	Position Loop Commands
	Velocity Loop Commands
	Torque Current Conditioning Commands
	Motor Commands
	Motor Commands (Continued)
	Motor Commands (Continued)
	Digital I/O Commands
	Analog I/O Commands
	Analog I/O Commands (Continued)
	Serial Port Commands
	Operating Mode Commands
	Operating Mode Commands (Continued)
	Alternative Operating Mode Commands
	Alternative Operating Mode Commands (Continued)
	Runtime Command and Control Commands
	Runtime Status Commands
	Runtime Status Commands (Continued)
	Runtime Data Commands
	Runtime Data Commands (Continued)
	Runtime Data Collection Commands
	Runtime Data Collection Commands (Continued)

	APPENDIX B Press Transfer ASFBs
	Introduction
	M_PRF2MV
	Example Profiles

	M_PRF1MV
	M_PRFERR
	M_PROFL
	M_PRFDWL
	M_SETVAJ
	M_SC_ACC
	M_CNST_V
	M_SC_DEC

	Index

