

KOLLMORGEN

Con i processori più veloci e gli algoritmi di controllo avanzati disponibili oggi, il principio comunemente accettato dell'accoppiamento del motore all'inerzia di carico non è più rilevante.

Questo metodo superato aumenta i costi e aggiunge massa inutile in applicazioni in cui l'inerzia di carico è elevata e il fabbisogno di coppia continua è ridotto. Ma l'inerzia del motore è solo una delle considerazioni nello sviluppo di una soluzione con prestazioni ottimali che richiede buone larghezza di banda e rigidità di asservimento.

ORIGINI DELLA REGOLA

In passato si riteneva che l'accoppiamento inerziale risolvesse il problema del controllo stabile di un carico azionato collegato ad un servomotore. Negli anni '70, quando i servomotori a spazzole hanno cominciato a sostituire i sistemi idraulici nel mondo delle macchine utensili, i progettisti calcolavano le esigenze di inerzia di carico, coppia e velocità sulla base delle prestazioni attese della macchina. Nel selezionare un motore che soddisfacesse i requisiti di coppia e velocità necessari, se il rapporto di inerzia da motore a carico non era vicino ad 1:1 si prendeva in considerazione l'idea di sostituire un motore con inerzia più elevata o utilizzare un riduttore (che avrebbe ridotto l'inerzia riflessa provata dal servomotore), aumentando così il costo del sistema. Anche se si verifica un trasferimento di potenza ottimale quando si accoppiano le inerzie, questo non garantisce un funzionamento efficiente del

sistema. Idealmente, l'inerzia totale del sistema deve essere ridotta per consumare meno energia. Un motore più grande, tuttavia, aumenta le esigenze di coppia per accelerare l'inerzia aggiuntiva del motore.

Nel dimensionamento delle applicazioni ci sono altre considerazioni oltre all'accoppiamento inerziale. Durante la transizione da motori idraulici ad elettrici, l'analisi rapida dei sistemi meccanici e di controllo completi era limitata dalla tecnologia disponibile. La costruzione di questi servosistemi a circuito chiuso comprende elementi che influiscono fortemente sulle prestazioni della macchina, come il motore, il dispositivo di retroazione collegato, l'accoppiamento al carico e le capacità di regolazione dei circuiti di asservimento. Per fornire buone prestazioni, i circuiti di asservimento sono regolati in modo da funzionare con la larghezza di banda e rigidità di asservimento desiderate, il che

consente di ottimizzare la risposta ai comandi del controller con un superamento minimo. Il servomotore è controllato da un servoazionamento che utilizza circuiti di corrente, velocità e posizione. Ciascun circuito è regolato al fine di creare una migliore risposta del sistema tramite stabilità, reazioni rapide alle interruzioni di coppia o velocità e funzionamento regolare. Nei primi anni, per regolare i circuiti di asservimento si utilizzavano componenti discreti e potenziometri per modificare il guadagno dei circuiti in base alla sperimentazione. I limiti degli strumenti analitici e della potenza di elaborazione, insieme ai componenti discreti, imponevano un rapporto inerziale molto simile tra motore e carico. Anche con il miglioramento di processori e analisi e lo sviluppo di circuiti di asservimento a regolazione digitale, persisteva la vecchia regola del rapporto 1:1.

Pagina 2 White Paper

KOLLMORGEN

PROGRESSI TECNOLOGICI

Con l'avvento della tecnologia dei motori brushless, dei magneti NeFeB ad energia elevata e dei circuiti di regolazione digitali, il protocollo di accoppiamento inerziale ha dovuto affrontare nuove complicazioni. I magneti ad alta energia situati sul rotore hanno ridotto significativamente l'inerzia del motore a confronto con i loro predecessori a spazzole. I motori che soddisfacevano le capacità di coppia continua e di picco richieste presentavano maggiore disadattamento inerziale tra carico e motore. Mentre i

circuiti di regolazione digitali del servomotore hanno reso molto più facile la regolazione dei guadagni e dei filtri per ottenere un controllo stabile, le velocità ridotte del processore, la bassa risoluzione dei dispositivi di retroazione ed altri fattori limitanti hanno portato allo sviluppo di opzioni di motori brushless con inerzia aggiuntiva.

La maggiore potenza di elaborazione ha consentito all'analisi complessa la creazione di un'accurata modellazione matematica e simulazione delle risposte del sistema. Le capacità moderne comprendenti potenti strumenti di servoazionamento integrati creano analisi interattive di sistemi meccanici complessi, semplificando l'ottimizzazione dei servosistemi. L'analisi avanzata consente inoltre al progettista della macchina di comprendere in dettaglio l'impronta precisa del sistema meccanico e come risolvere i limiti delle prestazioni.

La maggiore potenza di elaborazione ha consentito all'analisi complessa la creazione di un'accurata modellazione matematica e simulazione delle risposte del sistema.

Pagina 3 White Paper

CEDEVOLEZZA: LA ROVINA DELLE SOLUZIONI A LARGHEZZA DI BANDA ELEVATA

La cedevolezza in un sistema meccanico è la naturale elasticità dei meccanismi tra il carico azionato e il motore, che crea tempi di risposta rallentati che causano una riduzione della larghezza di banda del sistema. Se si aggiunge al sistema un grosso disadattamento inerziale il problema viene amplificato, come nei casi di un motore di piccole dimensioni con coppia sufficiente a spostare un carico particolarmente elevato, ma collegato tramite un dispositivo di accoppiamento. Quando il piccolo motore applica rapidamente coppia al grosso carico, il carico esita a rispondere, poiché gli oggetti a riposo tendono a rimanere a riposo. Il ritardo è causato dalla cedevolezza dell'accoppiamento tra il motore e il carico, che causa una

sovraelongazione nel controllo prima che il carico cominci a muoversi. Quando il carico entra finalmente in sincronia con il motore, l'inerzia elevata supera la velocità prevista, facendo sì che il motore di dimensioni ridotte si adatti rallentando. Quando il sistema regola la velocità eccessiva dell'inerzia elevata, la velocità prevista viene superata nuovamente, facendo sì che il piccolo motore si adatti un'altra volta. Questa ciclicità crea risonanza e instabilità del sistema.

È possibile creare simulazioni e modelli matematici della maggior parte dei sistemi meccanici utilizzando diverse frequenze di eccitazione per identificare rapidamente la risposta di frequenza, dove si verifica risonanza. La

larghezza di banda di un sistema non può mai superare il punto di anti-risonanza iniziale del sistema. L'obiettivo dell'aumento della larghezza di banda è spingere più in alto la frequenza di risonanza iniziale, identificando e risolvendo la causa della risonanza. In un sistema cedevole, man mano che la cedevolezza o elasticità aumenta, la frequenza del punto di risonanza iniziale si riduce, diminuendo la larghezza di banda. Quando il carico azionato è accoppiato direttamente al motore per ridurre al minimo la cedevolezza, il disadattamento è attenuato, consentendo l'aumento della frequenza di risonanza iniziale e creando un sistema a larghezza di banda più ampia.

$$J_{e} = \frac{J_{mtr} J_{load}}{J_{mtr} + J_{load}} \qquad F_{e}$$
 Man mano che il rapporto tra quindi se J_{mtr} diminuisce, anc frequenza di risonanza. Anch frequenza. La frequenza di a del carico è costante, ma aur queste equazioni è espressa

$$J_{e} = rac{J_{mtr} J_{load}}{J_{mtr} + J_{load}}$$
 $F_{antires} = \sqrt{rac{K}{J_{load}}}$ $F_{res} = \sqrt{rac{K}{J_{e}}}$

Man mano che il rapporto tra J_{load} e J_{mtr} aumenta J_e si avvicina a J_{mtr} quindi se J_{mtr} diminuisce, anche J_e diminuisce, causando l'aumento della frequenza di risonanza. Anche aumentare K causa l'aumento della frequenza. La frequenza di anti-risonanza non cambia perché l'inerzia del carico è costante, ma aumenta di rigidità. Nota: la frequenza (F) per queste equazioni è espressa in rad/sec.

MAGGIORE RIGIDITÀ E MINORE INERZIA DEL SISTEMA

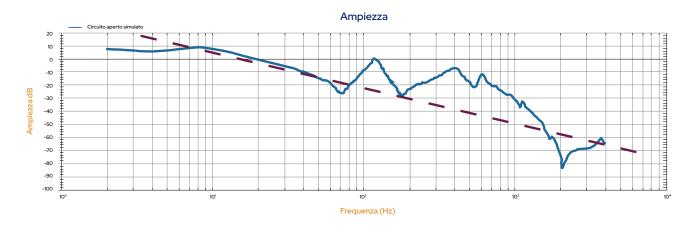
I modelli matematici che rappresentano un sistema meccanico indicano che la soluzione migliore per un sistema economico e a larghezza di banda più ampia consiste nell'aumentare la rigidità meccanica e ridurre l'inerzia totale del sistema.

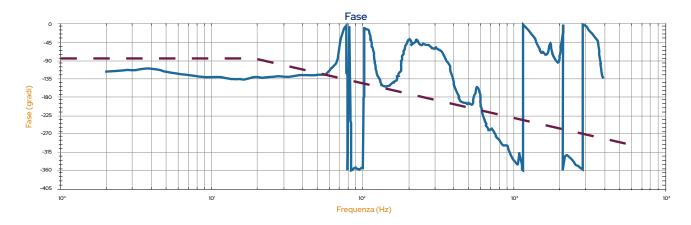
Considera una soluzione ad azionamento diretto in cui il carico è

accoppiato direttamente al motore con cedevolezza prossima allo zero. Il controllo preciso del sistema con buona larghezza di banda può essere ottenuto anche con disadattamenti inerziali superiori a 1000:1. In un sistema estremamente rigido (non cedevole), il servosistema deve essere dimensionato in modo da fornire la coppia necessaria a muovere

l'inerzia del sistema nel modo richiesto dalla specifica applicazione. Poiché le soluzioni ad azionamento diretto non sono adatte a tutte le soluzioni, saranno introdotti nel sistema elementi cedevoli. Gli attuali strumenti analitici avanzati identificano prontamente gli elementi cedevoli che riducono le prestazioni del sistema.

Pagina 4 White Paper

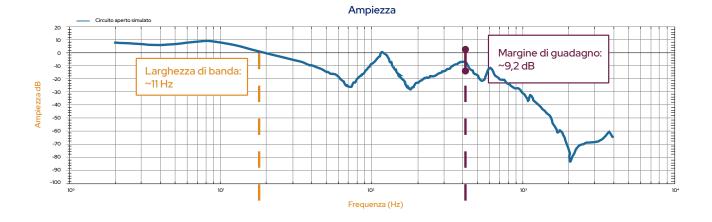

IL DIAGRAMMA DI BODE

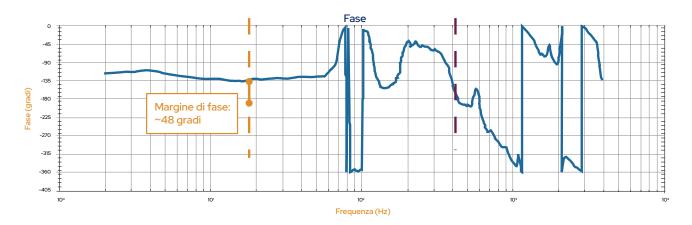

Il diagramma di Bode costituisce un potente strumento di analisi composto da due grafici che illustrano la risposta di frequenza di un segnale iniettato al fine di identificare l'ampiezza e la latenza di fase del sistema. Larghezza di banda, margini di fase e di guadagno, punti di risonanza e anti-risonanza sono solo alcuni degli elementi acquisiti in un diagramma di Bode. Il diagramma fornisce anche informazioni su disadattamento inerziale, numero di corpi collegati, livelli di attrito e identifica la larghezza di banda a circuito aperto e chiuso, i margini di fase e di guadagno e le frequenze di risonanza. Queste

informazioni sono estremamente utili per la regolazione del sistema al fine di ottenere prestazioni ottimali mediante la regolazione dei guadagni del circuito, l'installazione di diversi filtri digitali e le eventuali regolazioni ai meccanismi.

MISURAZIONI DEL DIAGRAMMA

I diagrammi di Bode sono composti da un diagramma di guadagno e di fase e hanno le caratteristiche indicate di seguito.




In un sistema perfetto, ci si aspetta che il diagramma dell'ampiezza sia una semplice pendenza negativa, -20dB/decade. Il diagramma di fase deve cominciare a -90° e scendere ad una pendenza negativa dal momento in cui l'ampiezza passa zero dB.

Pagina 5 White Paper

IL CALCOLO DELLA LARGHEZZA DI BANDA: MARGINI DI FASE E DI GUADAGNO

Le larghezze di banda a circuito aperto e chiuso e i relativi margini di fase e di guadagno possono essere determinati tramite l'utilizzo di un diagramma di Bode valido. La larghezza di banda è rappresentata dalla frequenza alla quale il circuito aperto raggiunge 0 dB (~11 Hz). Il margine di fase è il numero di gradi sopra -180 gradi (~48 gradi) e il margine di guadagno è la misurazione di ampiezza corrispondente ad una fase di -180 gradi (~9.2 dB). L'esempio seguente illustra come ottimizzare con successo sia le prestazioni che i costi applicando alla soluzione una rigidità migliorata del sistema, senza preoccuparsi del disadattamento inerziale.

Una macchina di taglio laser a 3 assi è stata progettata seguendo l'approccio di accoppiamento inerziale per la selezione dei motori degli assi. Occorreva una riprogettazione per ridurre i costi e migliorare le prestazioni della macchina. Un riesame dei requisiti dell'applicazione ha indicato che soluzioni di motore alternative avrebbero potuto aumentare il punto di risonanza del sistema al fine di consentire margini

di fase e di guadagno aggiuntivi e una migliore stabilità. Il servomotore selezionato ha ridotto l'inerzia totale del sistema, aumentato la rigidità dell'asse con un maggiore diametro di albero (frequenza di risonanza più elevata) e ha fornito una maggiore densità di potenza con un ingombro minore. La maggiore rigidità dell'albero ha ridotto la cedevolezza e migliorato le prestazioni.

La tabella seguente illustra il miglioramento delle prestazioni e il risparmio sui costi grazie all'eliminazione dell'approccio di accoppiamento inerziale a favore dell'aumento della rigidità meccanica e della riduzione dell'inerzia.

Pagina 6 White Paper

ASSE	Jm originale (kg-cm²)	Jm nuovo (kg-cm²)	Inerzia di carico (kg-cm²)	Disadattamento inerziale originale	Nuovo disadattamento inerziale	% aumento	% risparmi
X	120	67,7	256,75	2,14	3,79	77%	17%
Υ	17	4,58	9,56	0,56	2,09	273%	34%
Z	121,6	80	29,4	0,24	0,37	54%	17%

CONCLUSIONI

I moderni servoazionamenti, con capacità di regolazione avanzate e modelli di servomotori con prestazioni eccellenti comprendenti retroazione ad alta risoluzione, eliminano i problemi di disadattamento inerziale da carico a motore. Il corretto dimensionamento delle applicazioni e le migliori pratiche nella progettazione di un meccanismo rigido consentono la creazione di un sistema di motion a prestazioni elevate in grado di ottenere larghezze di banda più ampie, migliori tempi di spostamento e posizionamento e un robusto controllo dinamico.

Desideri altre informazioni?

Meccatronica, teoria del controllo, tecniche di filtrazione digitale, regolazione dei circuiti di asservimento, modellazione matematica e risonanze meccaniche sono altri argomenti correlati. Kollmorgen offre un corso di più giornate sulla servoregolazione avanzata comprendente l'applicazione pratica di diagrammi di Bode e tecniche di regolazione con filtri digitali. Simili argomenti sono trattati nelle pubblicazioni seguenti:

White Paper (fare clic per leggere)

<u>Dimensionamento e selezione dei servoazionamenti</u>

La gestione energetica di un servomotore: effetti del rapporto di inerzia

Progettazione macchine integrata basata su modelli

<u>Un approccio semplificato alla progettazione delle macchine per il controllo ottimale del servomotore</u>
<u>Il mito dell'accoppiamento inerziale</u>

Per ottenere risposte, collabora con Kollmorgen

Kollmorgen è più di un fornitore. Siamo un partner e ci adoperiamo per il vostro successo. Offriamo accesso diretto engineer-to-engineer ai progettisti che hanno creato i nostri sistemi di motion e che capiscono come soddisfare esigenze specifiche di formatura dei materiali. I nostri strumenti di progettazione autoguidati aiutano a modellizzare, selezionare e ottimizzare i prodotti online. Inoltre, grazie alla nostra presenza globale strutturata in produzione, progettazione, applicazione e centri assistenza, potrete sempre contare su fornitura affidabile, competenza nella coprogettazione e assistenza personalizzata che nessun altro partner vi offre. Se intendete aggiornare una macchina esistente o progettare una macchina di prossima generazione che definirà lo stato dell'arte per i vostri clienti, noi possiamo aiutarvi a progettare l'eccezionale.

Pronti a scoprire tutte le potenzialità della vostra macchina? Visita www.kollmorgen.com