AKD™, AKD™ BASIC, AKD™ PDMM

Manual de instalación

Edición: J, Agosto de 2012

Válido para AKD, AKD BASIC Revisión de hardware D Válido para AKD BASIC-E/S Revisión de hardware DA Válido para AKD PDMM Revisión de hardware DB

Número de parte 903-200003-08

Traducción del documento original

Patentes pendientes

Mantenga todos los manuales como un componente del producto durante la vida útil del producto. Pase todos los manuales a futuros usuarios y dueños del producto.

Registro de revisiones del documento

Revisión	Comentarios
-, 11/2009	Versión beta
-, 12/2009	Correcciones de E/S digital, varias actualizaciones
A, 03/2010	Conector de terminación de CAN "opcional", datos del freno dinámico actualizados, señales del resolver renombradas, certificado de CE, descripción de X9 actualizada, datos técnicos completados
B, 06/2010	Varias actualizaciones, erratas, dimensiones corregidas, diagramas de tiempo de encendido/apagado
C, 07/2010	Diagramas de tiempo de encendido/apagado, erratas, diseño de tapa
D, 01/2011	Revisión de hardware C, Certificación de STO, cambio en el nivel de voltaje de las entradas digitales
E, 04/2011	Especificación de E/S analógica extendida, suministro de red de fase simple o doble actualizada
F, 10/2011	PROFINET RT, Modbus TCP, varias actualizaciones, diseño de tapa actualizado
G, 03/2012	AKD PDMM agregado, restricción del suministro de red de 270 V de CA eliminada, esquema de número de partes extendido, EnDat 2.2 en X9, capítulo PARADA actualizado, planos de dimensiones
H, 05/2012	AKD-T-IC agregado, señales de tarjeta opcional de E/S agregadas, códigos de error de PDMM actualizados
J, 08/2012	Novedad de Smart Abs (Tamagawa), novedad de BiSS C, asignación de pines de X21 y X22 actualizada

Revisión de hardware (HR)

AKD	AKD-M	AKD-T-IC	Firmware	WorkBench	KAS IDE	Comentarios
Α	-	-	de 1.3	de 1.3	-	AKD Inicie la revisión
С	-	-	de 1.5	de 1.5	-	Con certificación STO, publicado por PROFINET RT
D	DB	DA	de 1.6	de 1.6	de 2.5	Revisión del tablero de control 9, AKD PDMM Inicie la revisión, AKD BASIC-IC Inicie la revisión

Marcas comerciales

- AKD es una marca registrada de Kollmorgen™
- EnDat es una marca registrada de Dr. Johannes Heidenhain GmbH
- EtherCAT es una marca registrada y una tecnología patentada, autorizada por Beckhoff Automation GmbH
- Ethernet/IP es una marca registrada de ODVA, Inc.
- Ethernet/IP Communication Stack: copyright (c) 2009, Rockwell Automation
- HIPERFACE es una marca registrada de Max Stegmann GmbH
- PROFINET es una marca registrada de PROFIBUS y PROFINET International (PI)
- SIMATIC es una marca registrada de SIEMENS AG
- Windows es una marca registrada de Microsoft Corporation

Patentes actuales

- Patente estadounidense 5 162 798 (usada en la tarjeta de control R/D)
- Patente estadounidense 5 646 496 (usada en la tarjeta de control R/D e interfaz de retroalimentación de 1 Vp-p)
- Patente estadounidense 6 118 241 (usada en el frenado dinámico simple de tarjeta de control)
- Patente estadounidense 8 154 228 (frenado dinámico para motores eléctricos)

• Patente estadounidense 8 214 063 (autoajuste de sistema de control basado en la respuesta de frecuencia)

Los cambios técnicos que mejoran el rendimiento del dispositivo pueden llevarse a cabo sin aviso previo.

Impreso en los Estados Unidos de América

Este documento es propiedad intelectual de Kollmorgen™. Todos los derechos reservados. Ninguna parte de esta obra, bajo concepto alguno, podrá reproducirse (por fotocopia, microfilm ni ningún otro método) ni almacenarse, procesarse, copiarse ni distribuirse por medios electrónicos sin el permiso por escrito de Kollmorgen™.

1 Tabla de contenidos

	abla de contenidos	4
2 G	eneral	10
2.1	Acerca de este manual	11
2.2	Grupo de destino	11
2.3	Notas para la edición impresa (versión en papel)	11
2.4	Uso del formato PDF	12
2.5	Abreviaturas utilizadas	12
2.6	Símbolos utilizados	14
2.7	Normas empleadas	15
3 S	eguridad	. 16
3.1	Instrucciones de seguridad	17
3.2	Use según se indica	18
3.3	Uso prohibido	18
4 A	orobaciones	. 19
	Conformidad con UL/cUL	
4	.1.1 Marcas de UL	20
4.2	Conformidad con CE	22
4	.2.1 Directivas y estándares europeos para la creación de equipos	23
4	.2.2 Declaración de conformidad de CE	24
4.3	Desactivación de torque por seguridad (STO)	25
5 M	anipulación	. 26
5.1	Transporte	27
5.2	Empaque	27
5.3	Almacenamiento	27
5.4		
	Mantenimiento y limpieza	28
5.5	Mantenimiento y limpieza Desinstalación	
5.5 5.6	Desinstalación	28
5.6	Desinstalación	28
5.6 6 Pa	Desinstalación	. 28 . 28
5.6 6 Pa 6.1	Desinstalación	. 28 . 28
5.6 6 Pa 6.1 6.2	Desinstalación Reparación y eliminación aquete Empaque suministrado	28 29 30
5.6 6 Pa 6.1 6.2 6.3	Desinstalación Reparación y eliminación aquete Empaque suministrado Placa de identificación	28 29 30 31
5.6 6 Pa 6.1 6.2 6.3	Desinstalación Reparación y eliminación aquete Empaque suministrado Placa de identificación Esquema de números de parte	28 29 30 30 31
5.6 6 Pa 6.1 6.2 6.3 7 Da	Desinstalación Reparación y eliminación aquete Empaque suministrado Placa de identificación Esquema de números de parte atos y descripción técnica	28 29 30 31 32
5.6 6 Pa 6.1 6.2 6.3 7 Da 7.1	Desinstalación Reparación y eliminación aquete Empaque suministrado Placa de identificación Esquema de números de parte atos y descripción técnica La familia AKD de unidades digitales	28 29 30 30 31 32 33
5.6 6 Pa 6.1 6.2 6.3 7 Da 7.1 7.2	Desinstalación Reparación y eliminación aquete Empaque suministrado Placa de identificación Esquema de números de parte atos y descripción técnica La familia AKD de unidades digitales Condiciones ambientales, ventilación y posición de montaje	
5.6 6 Pa 6.1 6.2 6.3 7 Da 7.1 7.2 7.3	Desinstalación Reparación y eliminación aquete Empaque suministrado Placa de identificación Esquema de números de parte atos y descripción técnica La familia AKD de unidades digitales Condiciones ambientales, ventilación y posición de montaje Datos mecánicos	
5.6 6 Pa 6.1 6.2 6.3 7 Da 7.1 7.2 7.3 7.4	Desinstalación Reparación y eliminación aquete Empaque suministrado Placa de identificación Esquema de números de parte atos y descripción técnica La familia AKD de unidades digitales Condiciones ambientales, ventilación y posición de montaje Datos mecánicos Entradas/salidas	. 28 . 28 . 29 . 30 . 31 . 32 . 35 . 35 . 35
5.6 6 Pa 6.1 6.2 6.3 7 Da 7.1 7.2 7.3 7.4 7.5	Desinstalación Reparación y eliminación aquete Empaque suministrado Placa de identificación Esquema de números de parte atos y descripción técnica La familia AKD de unidades digitales Condiciones ambientales, ventilación y posición de montaje Datos mecánicos Entradas/salidas Datos eléctricos de AKD-xzzz06	
5.6 6 Pa 6.1 6.2 6.3 7 Da 7.1 7.2 7.3 7.4 7.5 7.6	Desinstalación Reparación y eliminación aquete Empaque suministrado Placa de identificación Esquema de números de parte atos y descripción técnica La familia AKD de unidades digitales Condiciones ambientales, ventilación y posición de montaje Datos mecánicos Entradas/salidas Datos eléctricos de AKD-xzzz06 Datos eléctricos de AKD-xzzz07	28 28 29 30 31 31 32 33 35 35 37 38
5.6 6 Pa 6.1 6.2 6.3 7 Da 7.1 7.2 7.3 7.4 7.5 7.6 7.7	Desinstalación Reparación y eliminación aquete Empaque suministrado Placa de identificación Esquema de números de parte atos y descripción técnica La familia AKD de unidades digitales Condiciones ambientales, ventilación y posición de montaje Datos mecánicos Entradas/salidas Datos eléctricos de AKD-xzzz06 Datos de rendimiento	

7.9.2 Fusión de suministro de 24 V externos	40
7.9.3 Fusión de la resistencia regenerativa externa	40
7.10 Sistema de puesta a tierra	40
7.11 Conectores	42
7.12 Requisitos de cables y alambres	44
7.12.1 General	44
7.12.2 Requisitos y secciones transversales de cables	44
7.13 Freno dinámico	45
7.13.1 Circuito del regenerador	45
7.13.1.1 Descripción funcional	
7.13.1.2 Datos técnicos para AKD-xzzz06	46
7.13.1.3 Datos técnicos para AKD-xzzz07	47
7.14 Comportamiento del encendido y el apagado	49
7.14.1 Comportamiento del encendido en la operación estándar	
7.14.2 Comportamiento del apagado	51
7.14.2.1 Comportamiento del apagado con el comando DRV.DIS	
7.14.2.2 Comportamiento del apagado con una entrada digital (detención controlada)	52
7.14.2.3 Comportamiento del apagado con una entrada de activación de hardware (detención no	
controlada)	52
7.14.2.4 Comportamiento del apagado en el caso de una falla	53
7.15 Parada/Parada de emergencia/Desactivación de emergencia	56
7.15.1 Detención	56
7.15.2 Parada de emergencia	57
7.15.3 Desactivación de emergencia	57
7.16 Desactivación de torque por seguridad (STO)	58
7.16.1 Datos de características de seguridad	58
7.16.2 Use según se indica	58
7.16.3 Uso prohibido	58
7.16.4 Instrucciones de seguridad	59
7.16.5 Datos técnicos y disposición de pines	59
7.16.6 Gabinete	59
7.16.7 Cableado	59
7.16.8 Descripción funcional	61
7.16.8.1 Diagrama de señales (secuencia)	61
7.16.8.2 Circuito de control (ejemplo)	62
7.16.8.3 Prueba funcional	63
7.16.8.4 Circuito de alimentación principal (ejemplo)	64
7.17 Protección contra riesgo de descarga eléctrica	
7.17.1 Corriente de fuga	
7.17.2 Dispositivo protector de corriente residual (RCD)	
7.17.3 Aislamiento de transformadores	
8 Instalación mecánica	67
8.1 Instrucciones de seguridad	68
8.2 Guía de instalación mecánica	68
8.3 Ilustraciones mecánicas de ancho estándar	69
8.3.1 Diseño del gabinete de control de AKD-xzzz06, ancho estándar	69

	8.3.2	Diseño del gabinete de control de AKD-xzzz07, ancho estándar	70
		Dimensiones de AKD-xzzz06, ancho estándar	
		Dimensiones de AKD-xzzz07, ancho estándar	
8		straciones mecánicas de ancho extendido	
		Diseño del gabinete de control, ejemplo con AKD-M00306	
		Diseño del gabinete de control, ejemplo con AKD-M00307	
		Dimensiones de AKD-xzzz06, ancho extendido	
	8.4.4	Dimensiones de AKD-xzzz07, ancho extendido	76
9		ación eléctrica	
		strucciones de seguridad	
ç		ía para la instalación eléctrica	
9		bleado	
		mponentes de un sistema servo	
		scripción general de la conexión AKD-B, AKD-P, AKD-T	
		Asignación de los conectores AKD-x00306, AKD-x00606	
		Asignación de los conectores AKD-x01206	
		Asignación de los conectores AKD-x02406 y AKD-xzzz07	
		Diagrama de conexión AKD-x00306, AKD-x00606	
		Diagrama de conexión AKD-x01206	
		Diagrama de conexión AKD-x02406 y AKD-xzzz07	
ç		scripción general de la conexión AKD-M	
		Asignación de los conectores AKD-M00306, AKD-M00606	
		Asignación de los conectores AKD-M01206	
		Asignación de los conectores AKD-M00307, AKD-M00607, AKD-M01207	
		Diagrama de conexión AKD-M00306, AKD-M00606	
	9.6.5	Diagrama de conexión AKD-M01206	91
	9.6.6	Diagrama de conexión AKD-M00307, AKD-M00607 y AKD-M01207	92
9	9.7 Re	ducción de ruido de EMI	93
	9.7.1	Recomendaciones para reducir el ruido de EMI	93
	9.7.2	Proteger con barra colectora de protección externa	94
	9.7	2.1 Concepto de protección	94
	9.7	2.2 Barra colectora de protección	95
	9.7.3	Conexión de la protección para la unidad	96
	9.7	3.1 Placas de conexión a tierra	96
	9.7	3.2 Abrazaderas de conexión de protección	97
	9.7	3.3 Conector de motor X2 con conexión de protección	97
9	9.8 Cc	nexión de alimentación eléctrica	97
	9.8.1	Conexión a las diversas redes de alimentación principal AKD-xzzz06 (120 V a 240 V)	97
	9.8.2	Conexión a las diversas redes de alimentación principal AKD-xzzz07 (240 V a 480 V)	99
	9.8.3	Alimentación auxiliar de 24 V (X1)	100
	9.8.4	Conexión de alimentación principal (X3, X4)	101
	9.8	4.1 Conexión de tres fases (todos los tipos de AKD)	101
	9.8	4.2 Conexión de una fase (AKD-x00306 hastaAKD-x01206 solamente)	102
,	9.9 Re	sistencia regenerativa externa (X3)	103
,	9.10 E	nlace de bus de CC (X3)	104
	11 C	onexión del motor	105

9.11.1 Potencia del motor (X2)	106
9.11.1.1 Longitud del cable ≤ 25 m	106
9.11.1.2 Longitud del cable >25 m	106
9.11.2 Freno de contención del motor (X2)	107
9.12 Conexión de retroalimentación	108
9.12.1 Conector de retroalimentación (X10)	109
9.12.2 Resolver	110
9.12.3 SFD	111
9.12.4 Encoder con BiSS	112
9.12.4.1 BiSS (Modo A) analógico	112
9.12.4.2 BiSS (Modo C) digital	113
9.12.5 Encoder senoidal con EnDat 2.1	114
9.12.6 Encoder con EnDat 2.2	115
9.12.7 Encoder senoidal con hiperfaz	116
9.12.8 Encoder senoidal	117
9.12.9 Encoder incremental	118
9.12.10 Encoder Smart Abs de Tamagawa	119
9.13 Engranaje electrónico, operación maestro/esclavo	120
9.13.1 Características técnicas y asignación de pines	120
9.13.1.1 Entrada del conector X7	120
9.13.1.2 Entrada al conector X9	121
9.13.1.3 Salida del conector X9	121
9.13.2 Conexión de señal de encoder de comando	122
9.13.2.1 Entrada incremental del encoder de 5 V (X9)	122
9.13.2.2 Entrada incremental del encoder de 24 V (X7)	122
9.13.2.3 Encoder con entrada EnDat 2.2 de 5 V (X9)	123
9.13.3 Conexión de señal de pulso/dirección	124
9.13.3.1 Entrada de pulso/dirección de 5 V (X9)	124
9.13.3.2 Entrada de pulso/dirección de 5V (X7)	124
9.13.4 Conexión de señal ascendente/descendente	125
9.13.4.1 Entrada ascendente/descendente de 5 V (X9)	125
9.13.4.2 Entrada ascendente/descendente de 24 V (X7)	125
9.13.5 Salida del encoder emulado (EEO)	126
9.13.6 Control maestro-esclavo	127
9.14 Conexión de E/S	128
9.14.1 Conectores de E/S X7 y X8 (todas las variantes de AKD)	128
9.14.2 Conectores de E/S X21, X22, X23 y X24 (unidades solo con tarjeta de opción de E/S)	130
9.14.3 Conectores de E/S X35 y X36 (AKD-M solamente)	132
9.14.4 Entrada analógica (X8, X24)	133
9.14.5 Salida analógica (X8, X23)	134
9.14.6 Entradas digitales (X7/X8)	135
9.14.6.1 Entradas digitales 1 y 2	137
9.14.6.2 Entradas digitales 3 a 7	137
9.14.6.3 Entrada digital 8 (ACTIVAR)	137
9.14.7 Salidas digitales (X7/X8)	
9.14.7.1 Salidas digitales 1 y 2	

9.1	4.7.2 Contactos del relevador con FALLA	
9.14.	8 Entradas digitales con opción de E/S (X21, X22)	140
	9 Salidas digitales con opción de E/S (X23/X24)	
9.1	4.9.1 Salidas digitales 21 a 24, 26 a 29	142
9.1	4.9.2 Salidas del relevador digital 25, 30	143
9.14.	10 Entradas digitales (X35/X36) con AKD-M	144
9.14.	11 Salidas digitales (X35/X36) con AKD-M	146
9.1	4.11.1 Salidas digitales 21 y 22	146
9.15 P	Pantalla LED	147
9.16 C	Conmutadores rotativos (S1, S2, RS1)	148
9.16.	1 Conmutadores rotativos S1 y S2 conAKD-B, -P, -T	148
9.16.	2 Conmutador rotativo RS1 con AKD-M	148
9.17 B	Botones (B1, B2, B3)	149
9.17.	1 Botón B1 con AKD-B, -P, -T	149
9.17.	2 Botones B1, B2, B3 con AKD-M	149
9.18 R	Ranura para tarjeta SD	150
9.18.	1 Ranura para tarjeta SD con tarjeta de opción de E/S	150
9.18.	2 Ranura de tarjeta SD con AKD-M	152
9.19 lı	nterfaz de servicio (X11, X32)	153
9.19.	1 Asignación de pin X11, X32	153
9.19.	2 Protocolos de bus de servicio X11, X32	153
9.19.	3 Posibles configuraciones de red	153
9.19.	4 Configurar la dirección IP AKD-B, AKD-P, AKD-T	154
9.19.	5 Configurar la Dirección IP AKD-M	156
9.19.	6 Modbus TCP	157
9.20 lı	nterfaz de bus de la CAN (X12/X13)	157
9.20.	1 Activación del bus de la CAN con AKD (modelos CC)	158
9.20.	2 Tasa de baudios para el bus de la CAN	159
9.20.	3 Dirección de nodos para bus de la CAN	160
9.20.	4 Terminación del bus de la CAN	160
9.20.	5 Cable del bus de la CAN	160
9.20.	6 Cableado del bus de la CAN	162
9.21 lı	nterfaz de bus de movimiento (X5/X6/X11)	
9.21.	1 Pines X5, X6, X11	163
9.21.	2 Protocolos de bus X5, X6, X11	163
9.21.	3 EtherCAT	164
9.2	21.3.1 Activación de ETHERCAT con modelos AKD-CC	164
9.21.	4 SynqNet	166
9.21.	5 PROFINET	166
9.21.	6 Ethernet/IP	166
10 Con	figuración	171
10.1 lı	nstrucciones de seguridad	172
10.2 C	Configuración AKD-B, AKD-P, AKD-T	173
10.2.	1 Software de configuración WorkBench	173
10.2.	2 Use según se indica	173
10.2.	3 Descripción de software	174

10.2.4 Requisitos de hardware	174
10.2.5 Sistemas operativos	174
10.2.6 Instalación en Windows 2000/XP/VISTA/7	175
10.2.7 Prueba inicial de la unidad AKD-B, AKD-P, AKD-T	176
10.2.7.1 Desempaque, montaje y cableado de la unidad AKD	176
10.2.7.2 Cableado mínimo para la prueba de la unidad sin carga	176
10.2.7.3 Configurar la dirección IP	177
10.2.7.4 Confirmar conexiones	177
10.2.7.5 Instale e inicie WorkBench	178
10.2.7.6 Configure la dirección IP en WorkBench	178
10.2.7.7 Active la unidad mediante el asistente de instalación	178
10.3 Instale AKD-M	179
10.3.1 Software de configuración KAS IDE	
10.3.2 Use según se indica	
10.3.3 Descripción de software	
10.3.4 Requisitos de hardware	
10.3.5 Sistemas operativos	
10.3.6 Instalación en Windows XP/7	
10.3.7 Prueba inicial de la unidad AKD-M	
10.3.7.1 Desempaque, montaje y cableado de la unidad AKD PDMM	
10.3.7.2 Cableado mínimo para la prueba de la unidad sin carga	
10.3.7.3 Configurar la dirección IP	
10.3.7.4 Confirmar conexiones	
10.3.7.5 Instale e inicie KAS IDE	
10.3.7.6 Configure la dirección IP en KAS IDE	
10.3.7.7 Comenzar un proyecto nuevo	
10.4 Mensajes de falla y advertencia	
10.4.1 Mensajes de falla y advertenciaAKD	
10.4.2 Mensajes de falla adicionales AKD-T	
10.4.3 Mensajes de error y alarma adicionales AKD-M	
10.4.3.1 Errores	
10.4.3.2 Alaimas 10.5 Resolución de problemas de la unidad AKD	
ndice	213

2 General

2.1	Acerca de este manual	11
2.2	Grupo de destino	11
2.3	Notas para la edición impresa (versión en papel)	11
2.4	Uso del formato PDF	12
2.5	Abreviaturas utilizadas	12
2.6	Símbolos utilizados	14
2.7	Normas empleadas	

2.1 Acerca de este manual

Este manual, Manual de instalación de AKD, describe la serie de unidades digitales AKD e incluye la información necesaria para instalar cuidadosamente una unidad AKD. Una versión digital de este manual (en formato pdf) está disponible en el DVD incluido con la unidad. Las actualizaciones del manual se pueden descargar del sitio web de Kollmorgen™ (www.kollmorgen.com).

Este documento completa todos los requisitos para un "Manual de instrucciones" de acuerdo con las Directivas sobre maquinarias de la Comunidad Europea (2006/42/EC).

Los documentos adicionales incluyen los siguientes:

- Guía del usuario de AKD. Este manual describe cómo usar la unidad en situaciones normales. Además, ofrece sugerencias para maximizar el rendimiento del sistema con AKD. La Guía del usuario incluye la Guía de referencia para los parámetros y comandos de . Esta guía ofrece documentación para los comandos y los parámetros que se emplean para programar la unidad AKD.
- Comunicación de CAN-BUS de AKD. Este manual describe cómo usar la unidad en aplicaciones CANopen.
- Comunicación de EtherCAT de AKD. Este manual describe cómo usar la unidad en aplicaciones EtherCAT.
- Comunicación de PROFINET RT de AKD. Este manual describe cómo usar la unidad en aplicaciones PROFINET RT.AKD
- Comunicación de Ethernet/IP de AKD. Este manual describe cómo usar la unidad en aplicaciones Ethernet/IP.
- Comunicación de SyngNet de AKD. Este manual describe cómo usar la unidad en aplicaciones SyngNet.AKD
- Manual de accesorios. Este manual brinda documentación para los elementos accesorios, tales como cables y resistencias regenerativas con AKD. Existen variantes regionales de este manual.

2.2 Grupo de destino

Este manual está dirigido a personal que posea los siguientes conocimientos:

- Transporte: solamente personal que posea el conocimiento de manejar componentes con electrostática.
- Desempaque: solamente personal con conocimientos de electricidad puede realizar esta tarea.
- Instalación: solamente personal con conocimientos de electricidad puede realizar esta tarea.
- Pruebas básicas: solamente personal apto con conocimientos de ingeniería eléctrica y tecnología de la unidad.

El personal apto debe conocer y observar las siguientes normas:

- ISO 12100, IEC 60364 y IEC 60664
- Regulaciones nacionales sobre prevención de accidentes

ADVERTENCIA Durante el funcionamiento, existen peligros que pueden causar la muerte, lesiones graves o daños al material. Para poner en funcionamiento de manera segura la unidad AKD, debe cumplir todas las instrucciones de seguridad que se tratan en este manual. El operario de sistemas que use la unidad AKD debe exigir que todo el personal que trabaje con la unidad lea y comprenda el manual antes de usar la unidad.

2.3 Notas para la edición impresa (versión en papel)

Con cada producto, se incluye una versión impresa del manual. Por razones ecológicas, se redujo el tamaño del documento y se imprimió en DIN A5.

NOTA

Si experimenta dificultades para leer el tamaño de la fuente de la versión impresa reducida, puede imprimir y usar la versión en PDF en formato 1:1 DIN A4. Puede encontrar la versión en PDF en el CD-ROM que acompaña el producto y en el sitio web de Kollmorgen™.

2.4 Uso del formato PDF

Este documento incluye varias funciones que facilitan la navegación.

Referencias cruzadas	La tabla de contenidos y el índice incluyen referencias cruzadas activas.
Tabla de contenidos e índice	Las líneas son referencias cruzadas activas. Haga clic en la línea y accederá a la página correspondiente.
Números de página/capítulo en el texto	Los números de página/capítulo con referencias cruzadas son enlaces activos.

2.5 Abreviaturas utilizadas

Abreviatura	Significado
AGND	Conexión a tierra analógica
CE	Communité Européenne (Comunidad Europea)
СОМ	Interfaz de serie para un equipo personal
DCOMx	Línea de comunicación para entradas digitales (con x= 7 u 8)
Disco	Almacenamiento magnético (diskette, disco duro)
EEPROM	Memoria programable eléctricamente borrable
CE	Compatibilidad electromagnética
F-SMA	Conector de cable de fibra óptica conforme a IEC 60874-2
KAS	Instrumento de automatización Kollmorgen
KAS IDE	Software de configuración (entorno de desarrollo integrado del instrumento de automatización Kollmorgen) utilizado para unidades AKD PDMM
LED	Diodo de emisión de luz
LSB	Byte menos significativo (o bit)
MSB	Byte más significativo (o bit)
NI	Pulso cero
PC	Equipo personal
PE	Conexión a tierra de protección
PLC	Control lógico programable
PWM	Modulación de ancho de pulso
RAM	Memoria de acceso aleatorio (memoria volátil)
R _{Freno} /R _B	Resistencia regenerativa (también denominada resistencia de frenado)
RBext	Resistencia regenerativa externa
RBint	Resistencia regenerativa interna
RCD	Dispositivo de corriente residual
RES	Resolver
ROD	Encoder incremental (A cuad B)
S1	Operación continua

Abreviatura Significado	
STO	Desactivación de torque por seguridad
VCA	Voltios, corriente alternativa
V de CC	Voltios, corriente continua

2.6 Símbolos utilizados

Símbolos de advertencia

Símbolo	Indicación
▲ PELIGRO	Indica una situación de peligro que, si no se evita, puede ocasionar lesiones graves o la muerte.
ADVERTENCIA	Indica una situación de peligro que, si no se evita, podría ocasionar lesiones graves o la muerte.
▲ PRECAUCIÓN	Indica una situación de peligro que, si no se evita, podría ocasionar lesiones leves a moderadas.
AVISO	Indica una situación que, si no se evita, podría ocasionar daños a la propiedad.
NOTA	Este no es un símbolo de seguridad.
	Este símbolo indica notas importantes.

Símbolos de ilustraciones

Símbolo	Descripción	Símbolo	Descripción
	Conexión a tierra	*	Diodo
,,,,,	Puesta a masa	中	Relevadores
	Conexión a tierra de protección		Desconexión de relevadores retrasada
Image: Control of the	Resistor		Contacto normalmente abierto
ф	Fusible	<u> </u>	Contacto normalmente cerrado

2.7 Normas empleadas

Estándar	Contenido
ISO 4762	Tornillos de cabeza hueca hexagonal
ISO 11898	Vehículos para carretera — Red de área de controlador (CAN)
ISO 12100	Seguridad de la maquinaria: Conceptos básicos, principios generales para el diseño
ISO 13849	Seguridad de la maquinaria: Piezas relacionadas con la seguridad de los sistemas de control
IEC 60085	Aislamiento eléctrico: evaluación térmica y mantenimiento de designación
IEC 60204	Seguridad de la maquinaria: Equipamiento eléctrico de la maquinaria
IEC 60364	Instalaciones eléctricas de bajo voltaje
IEC 60439	Conjuntos de conmutador y equipo de control de bajo voltaje
IEC 60529	Grado de protección internacional (código IP)
IEC 60664	Coordinación de aislamiento para equipos dentro de los sistemas de bajo voltaje
IEC 60721	Clasificación de condiciones medioambientales
IEC 61000	Compatibilidad electromagnética (CE)
IEC 61131	Controladores programables
IEC 61491	Equipos eléctricos de máquinas industriales: enlace de datos en serie para comunicaciones en tiempo real entre controles y unidades.
IEC 61508	Seguridad funcional de sistemas eléctricos/electrónicos/programables relativos a la seguridad electrónica
IEC 61800	Sistemas de unidades de alimentación eléctrica con velocidad ajustable
IEC 62061	Seguridad funcional de sistemas eléctricos/electrónicos/programables relativos a la seguridad electrónica
IEC 82079	Preparación de las instrucciones de uso: estructura, contenido y presentación
ANSI Z535	Seguridad del producto (símbolos, colores, información)
UL 840	Norma UL para la seguridad en la coordinación de aislamiento, incluidas las distancias de aislamiento y de fuga de equipos eléctricos
UL 508C	Norma UL para la seguridad de equipos de conversión de energía

ANSI - American National Standard Institute, Inc. (Instituto Nacional Estadounidense de Estándares).

IEC - International Electrotechnical Commission (Comisión Electrotécnica Internacional).

ISO - International Organization for Standardization (Organización Internacional de Normalización).

UL - Underwriters Laboratories

3 Seguridad

3.1	Instrucciones de seguridad	. 17
3.2	Use según se indica	.18
3.3	Uso prohibido	. 18

3.1 Instrucciones de seguridad

▲ PELIGRO

Durante el funcionamiento, existen riesgos que pueden ocasionar lesiones graves, daños materiales o la muerte. No abra ni toque el equipo durante el funcionamiento. Mantenga todas las cubiertas y puertas del gabinete cerradas durante el funcionamiento. Solo las personas calificadas pueden manipular el equipo durante la instalación y puesta en servicio.

- Durante el funcionamiento, las unidades pueden tener componentes activos al descubierto, según el nivel de protección de la caja.
- Las conexiones de control y suministro pueden estar activas incluso si el motor no está girando.
- Las unidades pueden tener superficies calientes durante el funcionamiento. El disipador térmico puede alcanzar temperaturas superiores a los 80 °C.

A ADVERTENCIA

Existe peligro de formación de arco eléctrico. El arco eléctrico puede dañar los contactos y causar lesiones al personal. No desarme ninguna conexión eléctrica en la unidad mientras está activa.

Espere al menos 7 minutos después de desconectar la unidad del suministro de energía principal antes de tocar secciones que puedan estar activas en el equipo (por ejemplo contactos) o eliminar cualquier conexión. Los capacitores pueden presentar voltajes peligrosos hasta por siete minutos después de desconectar el suministro de energía. Mida siempre el voltaje en el enlace de bus de CC hasta que el voltaje sea inferior a 40 V antes de manipular los componentes.

APRECAUCIÓN La manipulación incorrecta de la unidad puede ocasionar lesiones al personal o daños materiales. Lea esta documentación antes de instalar o poner en funcionamiento la unidad. Es esencial que cumpla con la información y los datos técnicos en relación con los requisitos de conexión (placa de identificación y documentación).

> Solo el personal adecuadamente calificado puede realizar actividades, como transporte, instalación, puesta en funcionamiento y mantenimiento. Las personas calificadas son aquellas familiarizadas con el transporte, el ensamblaje, la instalación, la puesta en servicio y el funcionamiento del producto, y aquellos que cuentan con las calificaciones adecuadas para su trabajo. El personal calificado debe conocer las siguientes normas y cumplir con ellas:

- IEC 60364 e IEC 60664
- Regulaciones nacionales sobre prevención de accidentes

APRECAUCIÓN El fabricante de la máquina debe elaborar una evaluación de riesgos de la máquina y tomar las medidas apropiadas para garantizar que los movimientos imprevistos no ocasionen lesiones al personal ni daños materiales.

APRECAUCIÓN No está permitido modificar este dispositivo sin la autorización del fabricante.

AVISO

Compruebe el número de revisión del hardware del producto (consulte la etiqueta del producto). Este número de revisión debe coincidir con el número de revisión del hardware en la portada del manual.

AVISO

Las unidades contienen componentes sensibles a la electrostática que pueden dañarse por causa de la manipulación incorrecta. Descargue la electricidad electroestática de su cuerpo antes de tocar la unidad. Evite el contacto con materiales altamente aislantes (tejidos artificiales, película de plástico, etc.). Ubique la unidad en una superficie conductiva.

3.2 Use según se indica

Las unidades son componentes integrados a máquinas o plantas eléctricas y solo pueden operarse como componentes integrales de esas máquinas o plantas. El fabricante de la máquina usada con una unidad debe generar una evaluación de riesgo para la máquina y tomar las medidas adecuadas para garantizar que los movimientos no ocasionen lesiones al personal ni daños materiales.

Gabinete y cableado

Las unidades solo deben operarse en un gabinete de control cerrado adecuado para las condiciones ambientales => p. 32. Es posible que sea necesario recurrir a ventilación o enfriamiento para mantener la temperatura por debajo de 40 °C.

Use solo conductores de cobre para el cableado. Las secciones transversales del conductor pueden obtenerse de la norma IEC 60204 (alternativamente para las secciones transversales de AWG: Tabla NEC 310-16, 75 °C columna).

Suministro de energía

Las unidades de la serie AKD pueden suministrarse de la siguiente forma:

- AKD-xzzz06: redes de suministro industrial de 1 o 3 fases (no superior a corriente nominal simétrica de 200 kA a 120 V y 240 V).
- AKD-xzzz07: redes de suministro industrial de 3 fases (no superior 200 kA de corriente nominal simétrica de 240 V, 400 V y 480 V).

La conexión a otros tipos de voltaje de redes de suministro es posible con un transformador de aislamiento adicional (=> p. 97).

Los sobrevoltajes periódicos entre las fases (L1, L2, L3) y la carcasa de la unidad no deben superar la intensidad máxima de 1000 V. Conforme a IEC 61800, los picos de voltaje ($< 50 \,\mu s$) entre las fases no deben superar los 1000 V. Los picos de voltaje ($< 50 \,\mu s$) entre una fase y la carcasa no deben superar los 2000 V.

Las mediciones de filtro de CE para AKD-xzzz06 deben ser implementados por el usuario.

Voltaje nominal del motor

La familia de unidades AKD está destinada exclusivamente a la conducción de servomotores sincrónicos adecuados con funcionamiento de torsión, velocidad o posición en bucle cerrado. El voltaje nominal de los motores debe ser, como mínimo, tan elevado como el voltaje del enlace de bus de CC dividido por $\sqrt{2}$ producido por la unidad ($U_{nMotor} >= U_{CC}/\sqrt{2}$).

Desactivación de torque por seguridad

Revise la sección "Use según se indica" en el capítulo STO (=> p. 58) antes de usar esta función de seguridad (conforme a ISO 13849 categoría 3).

3.3 Uso prohibido

No está previsto otro uso diferente del que se describe en el capítulo "Use según se indica" y eso podría ocasionar lesiones al personal y daños al equipo. La unidad no puede usarse con una máquina que no cumple con las normas o directivas nacionales correspondientes. También se prohíbe el uso de la unidad en los siguientes entornos:

- áreas con riesgo de explosión
- ambientes con ácidos conductores de electricidad o corrosivos, soluciones alcalinas, aceites, vapores, polvos
- aplicaciones marítimas y de buques

4 Aprobaciones

4.1	Conformidad con UL/cUL	. 20
4.2	Conformidad con CE	. 22
4.3	Desactivación de torque por seguridad (STO)	. 25

4.1 Conformidad con UL/cUL

Esta unidad está enumerada en UL (Underwriters Laboratories Inc.), número de archivo **E141084**, Vol. 3, Sec. 5. USL, CNL – Equipo de conversión de voltaje (NMMS, NMMS7) – Modelos AKD seguidos de B, P, S, M o F, seguidos de 003, 006, 012 y 024, seguidos de 06 o 07, seguidos de sufijos adicionales.

USL

Indica: investigado para la norma de Estados Unidos sobre equipos de conversión de energía, UL 508C, tercera edición, revisado el 15 de febrero de 2008.

CNL

Indica: investigación para la norma de Canadá sobre equipos de control industrial, CAN/CSA - C22.2 n.º 14-2005, segunda edición, revisado en abril de 2008.

Nota:

CNL = Normas Nacionales de Canadá, enumerado.

USL = Normas de Estados Unidos, enumerado.

4.1.1 Marcas de UL

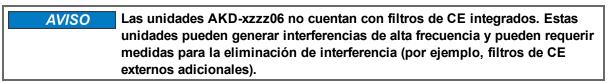
- Estas unidades son de accionamiento por motor de frecuencia ajustable y tipo abierto que ofrecen control
 de velocidad variable a los motores y proporcionan protección de sobrecarga y control de límite de
 corriente.
- Estos dispositivos están destinados para el uso en un ambiente de contaminación de grado 2.
- La identificación de los terminales en el controlador está codificada de modo que puedan identificarse en las instrucciones. Las instrucciones identificarán las conexiones de alimentación para el suministro de energía, carga, control y conexión a tierra.
- La protección contra cortocircuitos de estado sólido no proporciona protección de ramales del circuito. La protección de ramales del circuito debe proporcionarse de acuerdo con el Código Eléctrico Nacional y cualquier código local adicional o equivalente.
- Este producto puede utilizarse en un circuito en condiciones de suministrar como máximo 200 000 A de corriente nominal simétrica, 240 V (AKD-xzzz06) / 480 V (AKD-xzzz07) voltios máximos, cuando está protegido por "fusibles" o equivalente.
- Se recomiendan los siguientes tipos de fusible:

Modelo	Clase de fusible	Clasificación	Clasificación máx. del fusible
AKD-x00306	J	600 VCA, 200 kA	10 A
AKD-x00606	J	600 VCA, 200 kA	15 A
AKD-x01206	J	600 VCA, 200 kA	15 A
AKD-x02406	J	600 VCA, 200 kA	30 A
AKD-x00307	J	600 VCA, 200 kA	6 A
AKD-x00607	J	600 VCA, 200 kA	10 A
AKD-x01207	J	600 VCA, 200 kA	15 A
AKD-x02407	J	600 VCA, 200 kA	30 A

- Estas unidades proporcionan protección contra sobrecarga del motor de estado sólido al 125 % de la corriente FLA nominal.
- Use cable de cobre de 75 °C, como mínimo.

• La siguiente tabla ilustra los requisitos de torsión para los conectores de cableado del inductor:

Modelo	Conector de la red eléctrica	Conector de fase de motor	Conector de entrada de 24 V de CC
AKD-x00306	5-7 in-lb	5-7 in-lb	4 in-lb
AKD-x00606	5-7 in-lb	5-7 in-lb	4 in-lb
AKD-x01206	5-7 in-lb	17.78 cm-lb	4 in-lb
AKD-x02406	17.78 cm-lb	17.78 cm-lb	4 in-lb
AKD-x00307	17.78 cm-lb	17.78 cm-lb	4 in-lb
AKD-x00607	17.78 cm-lb	17.78 cm-lb	4 in-lb
AKD-x01207	17.78 cm-lb	17.78 cm-lb	4 in-lb
AKD-x02407	17.78 cm-lb	17.78 cm-lb	4 in-lb


[•] Máxima temperatura del aire ambiente de 40 °C" o equivalente

4.2 Conformidad con CE

La conformidad con la directiva de CE de la Comunidad Europea 2004/108/CE y la directiva de bajo voltaje 2006/95/CE es obligatoria para el suministro de unidades dentro de la Comunidad Europea.

La unidades han sido probadas por un laboratorio de pruebas autorizado en una configuración definida, mediante los componentes de sistema descritos en esta documentación. Cualquier divergencia de la configuración y la instalación descritas en esta documentación implica que el usuario será responsable de realizar nuevas mediciones a fin de garantizar la conformidad con los requisitos regulatorios.

AKD-xzzz06

Con filtros de CE externos para la emisión de ruido, las unidades cumplen con los requisitos de inmunidad al ruido de la segunda categoría ambiental (ambiente industrial) para un producto de la categoría C2 (cable de motor menor a 10 metros).

Con un cable de motor de 10 metros o de mayor longitud y filtros de CE externos, la unidad cumple con el requisito de categoría C3.

AKD-xzzz07

La unidad cumple con los requisitos de inmunidad al ruido para la segunda categoría ambiental (ambiente industrial). Para la emisión de ruido, la unidad cumple con el requisito para un producto de la categoría C2 (cable de motor menor a 10 metros).

Con un cable de motor de 10 metros o de mayor longitud, la unidad servo cumple con el requisito para la categoría C3.

4.2.1 Directivas y estándares europeos para la creación de equipos

Las unidades son componentes diseñados para ser implementados en máquinas o plantas eléctricas para uso industrial. Cuando las unidades se incorporan a máquinas o plantas, no se deben utilizar hasta que se haya determinado que la máquina o el equipo cumpla con los requisitos de la

- Directiva de maguinaria de CE (2006/42/CE)
- Directiva de CE de la Comunidad Europea (2004/108/CE)
- Directiva de bajo voltaje de CE (2006/95/CE)

Estándares que deben aplicarse para la conformidad con la directiva de maquinaria de CE (2006/42/CE)

- CEI 60204-1 (Seguridad y equipos eléctricos en máquinas)
- ISO 12100 (Seguridad de las máquinas)

A PRECAUCIÓN El fabricante de la máquina debe generar una evaluación de riesgo de la máquina y debe implementar las medidas adecuadas para garantizar que los movimientos imprevistos no puedan ocasionar lesiones o daños a ninguna persona o ningún bien.

Estándares que deben aplicarse para la conformidad con la directiva de bajo voltaje de CE (2006/95/CE)

- CEI 60204-1 (Seguridad y equipos eléctricos en máquinas)
- CEI 60439-1 (Ensambles del sistema de conmutación y del sistema de control de bajo voltaje)

Estándares que deben aplicarse para la conformidad con la directiva de CE de la Comunidad Europea (2004/108/CE)

- CEI 61000-6-1/2 (Inmunidad a interferencias en áreas residenciales e industriales)
- CEI 61000-6-3/4 (Generación de interferencia en áreas residenciales e industriales)

El fabricante de la máquina/planta es responsable de garantizar que cumpla con los límites exigidos por las reglamentaciones de CE. En este manual, se incluyen recomendaciones para la correcta instalación para CE (como protección, puesta a tierra, tratamiento de conectores y diagrama de cableado).

El fabricante de la máquina/planta debe comprobar si se deben aplicar otros estándares o directivas de CE a la máquina/planta.

Kollmorgen™ solo garantiza la conformidad del sistema servo con los estándares mencionados en este capítulo si los componentes (motor, cables, obturadores, etc.) son los proporcionados por Kollmorgen™.

4.2.2 Declaración de conformidad de CE

EC Declaration of Conformity

KOLLMORGEN

Document No.: GL-11/29/50/11

We, the company

KOLLMORGEN Corp 201 Rock Road Radford, VA 24141 USA

hereby in sole responsibility declare the conformity of the product series

Servo drive AKD (types AKD-x0030x ... AKD-x0240x)

with the following directives:

- EC Directive 2006/42/EG
 Directive for machinery
 Used harmonized standards
 EN 61800-5-2 (04/2008)
 EN ISO 13849-1 (07/2007)
 EN ISO 13849-2 (12/2003)
- EC Directive 2004/108/EC Electromagnetic compatibility Used harmonized standard EN61800-3 (07/2005)
- EC Directive 2006/95/EC
 Electrical devices for use in special voltage limits
 Used harmonized standard EN61800-5-1 (04/2008)

Year of EC-Declaration 2009

Issued by: Engineering Manager

Steven Mcclellan

Radford, 15.05.2012

Steven Mc Clellen

Legally valid signature

The above-mentioned company has the following technical documentation for examination:

- Proper operating instructions
- Setup Software
- Diagrams / software source codes (for EU authority only)
- Test certificates (for EU authority only)
- Other technical documentation (for EU authority only)

The special technical product documentation has been created.

Responsible person for documentation:

Lars Lindner, Kollmorgen Europe GmbH, Ratingen, Germany, Phone: +49(0)2102/9394-0

4.3 Desactivación de torque por seguridad (STO)

Una entrada digital adicional (STO) libera la etapa de salida de potencia de la unidad siempre que se aplique una señal de 24 V a esta entrada. Si la entrada de STO tiene un circuito abierto, ya no se proporcionará energía al motor, ésta perderá toda la torsión y se detendrá.

La implementación de seguridad de STO en la unidad AKD está certificada por IFA (Institut für Arbeitsschutz der Deutschen Gesetzlichen Unfallversicherung). La implementación del circuito de seguridad utilizada para la función de seguridad "Desactivación de torque por seguridad" en la unidad es adecuada para SIL2 conforme a IEC 61508-2 y PLd, Cat. 3 conforme a ISO 13849-1. Los subsistemas (unidades AKD) se describen por completo para la técnica de seguridad con los datos de características:

Dispositivo	Modo de operación	ISO 13849-1	IEC 61508-2	PFH [1/h]	SFF [%]
STO	Canal único de STO	PLd, Cat. 3	SIL2	0	20

5 Manipulación

5.1	Transporte	27
5.2	Empaque	27
5.3	Almacenamiento	27
5.4	Mantenimiento y limpieza	28
5.5	Desinstalación	28
	Reparación y eliminación	

5.1 Transporte

Realice el transporte de AKD de acuerdo con IEC 61800-2 de la siguiente forma:

- Realice el transporte solo con personal calificado en el empague reciclable original del fabricante.
- Evite las descargas durante el transporte.
- Realice el transporte solo dentro de los rangos de temperatura especificados: -25 a +70 °C, máx. velocidad de cambio 20 K/hora, clase 2K3.
- Realice el transporte solo dentro de la humedad especificada: humedad relativa máxima del 95 %, sin condensación, clase 2K3.

AVISO

Las unidades contienen componentes sensibles a la electricidad electrostática que pueden dañarse por causa de la manipulación incorrecta. Descargue la electrostática de su cuerpo antes de tocar la unidad. Evite el contacto con materiales altamente aislantes, como tejidos artificiales y películas de plástico. Ubique la unidad en una superficie conductiva.

Si el empaque se daña, revise la unidad para detectar daños visibles. Informe al transportista y al fabricante sobre cualquier daño en el empaque o el producto.

5.2 Empaque

El empaque de AKD incluye cartón reciclable con insertos y una etiqueta en la parte externa de la caja.

Modelo AKD	Dimensiones del empaque (mm) alto x ancho x largo	Peso total AKD -B, -P, -T (kg)	Peso total AKD -M (kg)
hasta AKD-x00606	113 x 250 x 222	1.7	1.9
AKD-x01206	158 x 394 x 292	3.4	3.6
AKD-x02406	158 x 394 x 292	5	-
AKD-x00307 y AKD-x00607	158 x 394 x 292	4.3	4.5
AKD-x01207	158 x 394 x 292	4.3	4.5
AKD-x02407	158 x 394 x 292	6.7	-

5.3 Almacenamiento

Almacene el sistema AKD acuerdo con IEC 61800-2 de la siguiente forma:

- Almacene solo en el empaque reciclable original del fabricante.
- Almacene a la máxima altura de apilamiento o una inferior:
 - Modelos AKD-x0306 a 0606: 8 cajas de cartón
 - Todos los demás modelos: 6 cajas de cartón
- Almacene solo dentro de los rangos de temperatura especificados: -25 a +55 °C, velocidad máx. de cambio 20 K/hora, clase 1K4.
- Almacene solo dentro de la humedad especificada: humedad relativa del 5 al 95 %, sin condensación, clase 1K3.
- Almacene de acuerdo con los siguientes requisitos de duración:
 - Menos de 1 año: sin restricción.
 - Más de 1 año: los capacitores deben reformarse antes de configurar y operar la unidad. Para reformar los capacitores, elimine todas las conexiones eléctricas y aplique 120 VCA monofásicos durante aproximadamente 30 minutos a los terminales L1/L2.

5.4 Mantenimiento y limpieza

La unidad no requiere mantenimiento. Si abre la unidad, se anulará la garantía.

La limpieza del interior de la unidad solo puede realizarla el fabricante. Para limpiar el exterior de la unidad:

- Carcasa: limpie con alcohol isopropílico o una solución de limpieza similar.
- Parrilla de protección del ventilador: limpie con un cepillo seco.

AVISO

No sumerja ni pulverice la unidad.

Desinstalación

Si debe desinstalarse una unidad (para el reemplazo, por ejemplo), quite la unidad de la siguiente forma:

1. Desconecte el interruptor principal del gabinete del conmutador y los fusibles que alimentan el sistema.

A ADVERTENCIA

Después de desconectar la unidad del suministro de energía principal, espere, al menos, siete minutos antes de tocar secciones posiblemente activas del equipo (por ejemplo, contactos) o desarmar cualquier conexión. Mida siempre el voltaje en el enlace de bus de CC y espere hasta que el voltaje sea inferior a 40 V antes de tocar o manipular la unidad.

- 2. Quite los conectores. Por último, desconecte la posible conexión a tierra.
- 3. Compruebe la temperatura.

A PRECAUCIÓN Durante la operación, el disipador térmico de la unidad puede alcanzar temperaturas superiores a los 80 °C (176 °F). Antes de tocar el dispositivo, compruebe la temperatura y espere hasta que se haya enfriado a 40 °C (104 °F).

4. Desinstalación. Quite la unidad e interrumpa el suministro de energía de la placa de montaje con conexión a tierra.

5.6 Reparación y eliminación

Solo el fabricante puede reparar la unidad. La apertura del dispositivo anula la garantía. Desinstale la unidad tal como se describe en "Desinstalación" (=> p. 28)envíe la unidad en el empaque original al fabricante (vea la tabla de abajo).

De acuerdo con las directivas WEEE-2002/96/EC y leyes similares, el fabricante acepta la devolución de dispositivos y accesorios viejos para una eliminación profesional. Los costos de transporte están a cargo del remitente. Envíe los dispositivos a las direcciones de los fabricantes que se muestran en la tabla de abajo.

EE. UU.	Europa
Kollmorgen™	KOLLMORGEN Europe GmbH
201 West Rock Road	Pempelfurtstr. 1
Radford, VA 24141	D-40880 Ratingen

6 Paquete

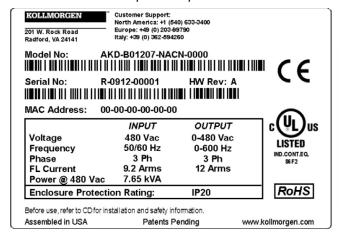
6.1	Empaque suministrado	. 30
6.2	Placa de identificación	. 30
6.3	Esquema de números de parte	. 31

6.1 Empaque suministrado

Cuando vuelve a solicitarte una unidad de la serie AKD, el paquete de la unidad incluye los siguientes elementos:

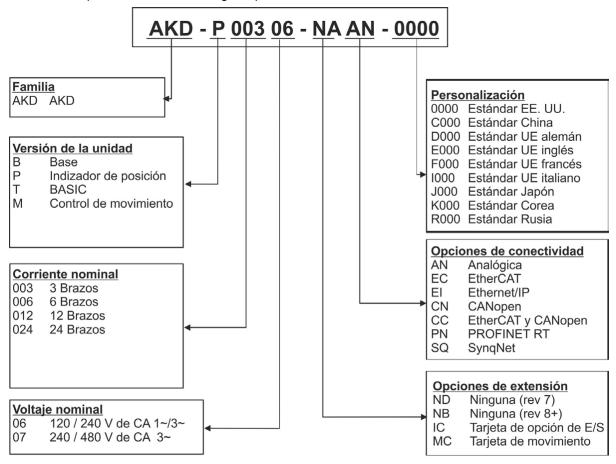
- AKD
- Copia impresa del Manual de instalación de AKD (solo UE)
- Copia impresa del Inicio rápido de AKD (no en UE)
- Copia impresa de la tarjeta de advertencias y fallas (no en UE)
- DVD, que incluye el software de instalación, WorkBench, y toda la documentación del producto en formato digital.
- Conectores de acoplamiento X1, X2, X3, X4 (si se requiere), X7 y X8, X35 y X36 (si se requiere)
- Placa de conexión a tierra, con AKD, tipo de voltaje 07, con tipo de voltaje 06 para UE solamente

NOTA Los conectores de acoplamiento SubD y RJ45 no se incluyen en el empaque.


Los accesorios se venden por separado

Los accesorios deben solicitarse por separado si se requieren; consulte el manual de accesorios de su región:

- filtros de CE para 24 V y voltaje de suministro principal, categorías C2 o C3
- Resistencia regenerativa externa
- Cable del motor. Los cables del motor ensamblados están disponibles en todas las regiones.
- Cable de alimentación. Los cables de alimentación ensamblados están disponibles en todas las regiones.
- Inductor del motor, para cables del motor superiores a 25 m
- Conector de terminación CAN (con unidades CAN solamente)
- Cable de servicio a la red
- Cable de suministro de energía, cables de control y cables de bus de campo (como longitudes de corte)


6.2 Placa de identificación

La placa de identificación que se muestra a continuación está conectada al lateral de la unidad, las entradas de datos de muestra son para un tipo de 12 A.

6.3 Esquema de números de parte

El número de parte es idéntico al código de pedido.

Personalización: este código se refiere a la versión de idioma del material impreso y especiales del cliente.

Opciones de conectividad: Los modelos de unidad con opción de conectividad de CC cuentan con conectores de bus de campo EtherCAT (X5 y X6) y CANopen (X12 y X13). Un parámetro de software (DRV.TYPE) le permite seleccionar las características que admite la unidad; no puede usar EtherCAT y CANopen simultáneamente. PROFINET es posible con unidades de indexador de posición solamente (versión P).

7 Datos y descripción técnica

7	7.1	La familia AKD de unidades digitales	33
7	7.2	Condiciones ambientales, ventilación y posición de montaje	35
7	7.3	Datos mecánicos	35
-	7.4	Entradas/salidas	36
7	7.5	Datos eléctricos de AKD-xzzz06	37
-	7.6	Datos eléctricos de AKD-xzzz07	38
-	7.7	Datos de rendimiento	39
7	7.8	Torsiones de ajuste recomendadas	39
-	7.9	Fusión	40
-	7.10	Sistema de puesta a tierra	40
-	7.11	Conectores	42
-	7.12	Requisitos de cables y alambres	44
-	7.13	Freno dinámico	45
7	7.14	Comportamiento del encendido y el apagado	49
7	7.15	Parada/Parada de emergencia/Desactivación de emergencia	56
	7.16	Desactivación de torque por seguridad (STO)	58
-	7.17	Protección contra riesgo de descarga eléctrica	65

7.1 La familia AKD de unidades digitales

Versiones AKD disponibles

Variante (corta)	Corriente de salida	Descripción	Carcasa	Conectividad
AKD-B***	De 3 a 24 A	La unidad base está controlada por comandos de velocidad y torque analógico (engranaje electrónico).	Estándar	Analógica, SynqNet
AKD-P**	De 3 a 24 A	La unidad de indexador de posición agrega la capacidad de controlar varias velocidades, procesar E/S, tomar decisiones y agregar retrasos de tiempo, y modificar variables del proceso de la unidad base.	Estándar	Analógica, CANopen, EtherCAT, PROFINET RT, Ethernet/IP
AKD-M***-MC	De 3 a 12 A	Unidad principal PDMM/EtherCAT del controlador de movimiento. Incluye los cinco idiomas de IEC 61131, red de tuberías y PLC abierta. Esta variante de unidad se denomina AKD PDMM.	Ancho extendido	EtherCAT
AKD-T***	De 3 a 24 A	Programabilidad BASIC simple incorporada a la unidad base. Esta variante de unidad se denomina AKD BASIC.	Estándar	Analógica, PROFINET RT, Ethernet/IP
AKD-T***-IC	De 3 a 24 A	AKD BASIC con expansión de E/S.	Ancho extendido	Analógica, expansión de E/S

Características estándar

- Rango de voltaje de suministro de 120 V a 480 V ±10 %
- Varias dimensiones de carcasa según las opciones de hardware y corriente.
- Bus de movimiento incorporado.
- Canal de servicio TCP/IP incorporado.
- SFD, Tamagawa Smart-Abs, resolver, Comcoder, encoders 1Vp-p Sin-Cos, compatibilidad con encoders incrementales incorporados.
- Compatibilidad con protocolos ENDAT 2.1 & 2.2, BiSS o HIPERFACE incorporados.
- Emulación de encoder incorporada.
- Compatibilidad con retroalimentación secundaria
- Desactivación de torque por seguridad (STO) conforme a IEC 61508 SIL 2 incorporada.
- Puede usarse con servomotores sincrónicos, motores lineales y máquinas de inducción.

Sección de energía

- Suministro monofásico o trifásico, rango de voltaje de 120 a 480 V ±10 %, 50 a 400 Hz ±5 % o CC.
- Conexión a una alimentación de mayor voltaje solo con un transformador de aislamiento, => p. 99
- Rectificador puente B6, circuito de arranque suave integral.
- Suministro de fase única posible con disminución de potencia de salida.
- Fusibles suministrados por el usuario.
- Punto de inicio de protección próximo a la unidad.
- Rango de voltaje de conexión bus de CC 170 a 680 V de CC; puede conectarse en paralelo.
- Módulo de transistor bipolar de puerta aislada con etapa de salida y medición de corriente variable.
- Circuito de regenerador con distribución dinámica de energía generada entre varias unidades del mismo circuito de conexión bus de CC.
- Resistencia regenerativa interna para todos los modelos AKD-xzzz07 de 240/480 V de CA (solo los modelos AKD-xzzz06 de 120/240 V de CA 3 A y 6 A carecen de resistencia regenerativa interna); resistencias regenerativas externas si se requieren.

Seguridad integrada

- Distancias apropiadas de aislamiento/transporte y aislamiento eléctrico para separación eléctrica segura, conforme a IEC 61800-5-1, entre las conexiones de motor/alimentación de entrada y la electrónica de señal
- Arranque suave, detección de sobrevoltaje, protección de cortocircuitos, supervisión de interrupción de fases.
- Supervisión de temperatura de la unidad y el motor.
- Protección de sobrecarga del motor: mecanismo de reducción de voltaje
- Desactivación de torque por seguridad SIL 2 conforme a IEC 61508, => p. 58.

Voltaje de suministro auxiliar de 24 V de CC

Desde un suministro aprobado de energía de 24 V ±10 % externa, de seguridad.

Configuración de parámetros y operación

• Uso del software de configuración WorkBench para la configuración mediante TCP/IP o KAS IDE para configuración de AKD PDMM.

Control digital total

- Controlador de corriente digital (670 ns)
- Controlador de velocidad digital ajustable (62,5 µs)
- Controlador de posición de opción de software (125 μs)

Entradas/Salidas

- 1 entrada analógica programable => p. 133
- 1 salida analógica programable => p. 134
- 7 entradas digitales programables => p. 135
- 2 salidas digitales programables => p. 138
- 1 entrada de activación => p. 135
- 1 entrada STO => p. 58
- entradas y salidas digitales adicionales según variantes (por ejemplo AKD PDMM)

Tarjetas de opción

Las tarjetas de opción integradas afectan el ancho del dispositivo.

- IC: entradas y salidas digitales adicionales.
- MC: tarjeta del controlador de movimiento con entradas y salidas digitales adicionales. Extiende AKD a tipo AKD PDMM (esquema de número de parte: AKD-M), una unidad principal para sistemas de unidad sincronizada de varios ejes.

Conectividad

- Entradas/salidas (=> p. 128)
- Salida de alimentación del encoder (=> p. 126)
- Interfaz de servicio (=> p. 153)
- CANopen (=> p. 157), opcional
- Interfaz de bus de movimiento (=> p. 163)
 - SynqNet (=> p. 166), opcional
 - EtherCAT (=> p. 164), opcional
 - PROFINET RT (=> p. 166), opcional
 - Ethernet/IP (=> p. 166), opcional

7.2 Condiciones ambientales, ventilación y posición de montaje

Almacenamiento	=> p. 27
Transporte	=> p. 27
Temperatura ambiente	0 a +40 °C en condiciones nominales
en funcionamiento	+40 a +55 °C con disminución de potencia de corriente continua de 4 % según Kelvin
Humedad en	Humedad relativa del 5 al 85 %, sin condensación, clase 3K3
funcionamiento	
Altitud del sitio	Hasta 1000 metros por encima del nivel medio del mar sin restricción
	1000 a 2500 metros por encima del nivel medio del mar con disminución de potencia
	del 1,5 %/100 m
Nivel de	Contaminación de nivel 2 conforme a IEC 60664-1
contaminación	
Vibraciones	Clase 3M1 conforme a IEC 60721-3-3
Protección de la caja	IP 20 conforme a IEC 60529
Posición de montaje	Vertical, => p. 69
Ventilación	Ventilador incorporado
AVISO	La unidad se apaga (falla F234, => p. 189; el motor no tiene torsión) en caso
	de observarse una temperatura excesivamente alta en el gabinete de control.
	Asegúrese de que se suministre suficiente ventilación forzada dentro del
	gabinete de control.

7.3 Datos mecánicos

Datos mecánicos	Unidades	AKD- x00306	AKD- x00606	AKD- x01206	AKD- x02406
Peso (variantes de ancho estándar)	kg	1.1		2	3.7
Peso (variantes de ancho extendido)	kg	1.3		2.2	-
Altura, sin conectores	mm	16	88	196.3	237.7
Altura, con conector de servicio	mm	200		225	280
Ancho estándar de la parte frontal/posterior	mm	53/59		75.3/78.3	97/100
Ancho extendido de la parte frontal/posterior	mm	84/89		90/95	-
Profundidad, sin conectores	mm	15	56	187	228
Profundidad, con conectores	mm	18	35	< 215	<265

Datos mecánicos	Unidades	AKD- x00307	AKD- x00607	AKD- x01207	AKD- x02407
Peso (variantes de ancho estándar)	kg	2.7		5.3	
Peso (variantes de ancho extendido)	kg	2.9		-	
Altura, sin conectores	mm		256		306
Altura, con conector de servicio	mm	290		340	
Ancho estándar de la parte frontal/posterior	mm	67/70		101.3/105	
Ancho extendido de la parte frontal/posterior	mm	95/100		-	
Profundidad, sin conectores	mm		185		228
Profundidad, con conectores	mm	<225		<265	

7.4 Entradas/salidas

Interfaz	Datos eléctricos
Entradas analógicas	 ±12 V de CC Proporción de rechazo de modo común: > 30 dB a 60 Hz Resolución 16 bits y monotónica completa No linealidad < 0,1 % de escala completa Desplazamiento de desvío máx. 250 μV/°C Impedancia de entrada > 13 kΩ
Salidas analógicas	 ±10 V de CC Máx. 20 mA Resolución 16 bits y monotónica completa No linealidad < 0,1 % de escala completa Desplazamiento de desvío máx. 250 μV/°C Protección contra cortocircuito a AGND Impedancia de salida > 110 Ω
Entradas digitales	 ACTIVADO: 3,5 a 30 V de CC, 2 a 15 mA DESACTIVADO: -2 a 2 V de CC, máx. 15 mA Aislamiento galvánico para 250 V de CC
Salidas digitales	 Máx. 30 V de CC, 100 mA Prueba de cortocircuitos Aislamiento galvánico para 250 V de CC
Salidas de relevador	 Máx. 30 V de CC, 1A Máx. 42 V de CC, 1 A Tiempo apertura/cierre 10 ms Aislamiento 400 V de CC contacto/bobina

7.5 Datos eléctricos de AKD-xzzz06

Datos eléctricos	Unidades	AKD- x00306	AKD- x00606	AKD- x01206	AKD- x02406
V 6 · 1 · · · · · · · · ·	.,		20 V a 240 V ±		3 x 240 V
Voltaje de suministro nominal	V	1 x 12	1 x 120 V a 240 V ±10 %		±10 %
Frecuencia de entrada de suministro nominal	Hz	50 Hz a 400 Hz ±5 % o CC			;
Potencia de entrada nominal para la operación de S1	kVA	1.2	2.38	3.82	7.6
Corriente de entrada nominal					
a 1 x 120 V	А	5.0	9.9	12	N/D
a 1 x 240 V	Α	5.0	9.9	12	N/D
a 3 x 120 V	Α	2.3	4.6	9.2	N/D
a 3 x 240 V	Α	2.3	4.6	9.2	18.3
Frecuencia de conexión/desconexión permitida	1/h		3	30	
Corriente de entrada máx.	Α	10	10	10	20
Voltaje de enlace de bus de CC nominal (Demora en activación de bus 3 ph 1 s)	V		170 a	a 340	
Corriente de salida continua (±3%)					
a 120 V	Brazos	3	6	12	N/D
a 240 V	Brazos	3	6	12	24
Corriente de salida máxima (para 5 s, ± 3 %)	Brazos	9	18	30	48
Potencia de salida continua					
a 1 x 120 V	W	312.5	625	1250	N/D
a 1 x 240 V	W	625	1250	2500	N/D
a 3 x 120 V	W	312.5	625	1250	N/D
a 3 x 240 V	W	625	1250	2500	5000
Potencia de salida máxima (para 1 s)					
a 1 x 120 V	kVA	0.937	1.875	3.125	N/D
a 1 x 240 V	kVA	1.875	3.750	6.250	N/D
a 3 x 120 V	kVA	0.937	1.875	3.125	N/D
a 3 x 240 V	kVA	1.875	3.750	6.250	10
Datos técnicos para circuito del regenerador	_		=> t	o. 45	
Inductancia mínima del motor					
a 120 V	mH	1.3	0.6	0.5	0.3
a 240 V	mH	2.5	1.3	1	0.6
Inductancia máxima del motor	mH	250	125	100	60
Disipación térmica, desactivación de etapa de salida	W	máx. 20	máx. 20	máx. 20	máx. 25
Disipación térmica a corriente nominal	W	31	57	137	175
Emisión de ruido (ventilador de baja/alta velocidad)	dB(A)	N/D	33/39	37/43	41/56
Suministro de voltaje auxiliar	V	24 V (±1	0 %, comprue	be la caída d	e voltaje)
-corriente tipos B, P, T sin/con freno del motor	Α	0.5 / 1.7	0.6 / 1.8	0.7 / 1.9	1.0 / 2.5
-corriente tipo M sin/con freno del motor	Α	0.8 / 2.0	0.9 / 2.1	1.0 / 2.2	-

7.6 Datos eléctricos de AKD-xzzz07

Datos eléctricos	Unidade- s	AKD- x00307	AKD-x00607	AKD- x01207	AKD- x02407	
Voltaje de suministro nominal	V		3 x 240 V a 48	30 V ±10 %		
Frecuencia de entrada de suministro nominal	Hz	CA	CA con 50 Hz a 400 Hz ±5 % o CC			
Potencia de entrada nominal para la operación de S1	kVA	2.24	4.49	7.65	15.2	
Corriente de entrada nominal						
a 3 x 240 V	Α	2.7	5.4	9.2	18.3	
a 3 x 400 V	Α	2.7	5.4	9.2	18.3	
a 3 x 480 V	Α	2.7	5.4	9.2	18.3	
Frecuencia de conexión/desconexión permitida	1/h		30			
Corriente de entrada máx.	Α	10	10	10	20	
Voltaje de enlace de bus de CC nominal (Demora en activación de bus 3 ph 1 s)	V=		340 a	680		
Corriente de salida continua (±3%)						
a 240 V	Brazos	3	6	12	24	
a 400 V	Brazos	3	6	12	24	
a 480 V	Brazos	3	6	12	24	
Corriente de salida máxima (para 5 s, ± 3 %)	Brazos	9	18	30	48	
Potencia de salida continua						
a 3 x 240 V	kVA	0.6	1.25	2.5	5	
a 3 x 400 V	kVA	1	2	4.2	8.3	
a 3 x 480 V	kVA	1.2	2.5	5	10	
Potencia de salida máxima (para 1 s)						
a 3 x 240 V	kVA	1.8	3.75	6.25	10	
a 3 x 400 V	kVA	3	6.75	10.4	16.7	
a 3 x 480 V	kVA	3.6	7.5	12.5	20	
Datos técnicos para circuito del regenerador	_		=> p.	45		
Inductancia mínima del motor						
a 240 V	mH	3.2	1.6	1.3	0.6	
a 400 V	mH	5.3	2.6	2.1	1	
a 480 V	mH	6.3	3.2	2.5	1.2	
Inductancia máxima del motor	mH	600	300	250	120	
Disipación térmica, desactivación de etapa de salida	W	máx. 20	máx. 20	máx. 20	máx. 25	
Disipación térmica a corriente nominal	W	102	129	153	237	
Emisión de ruido (ventilador de baja/alta velocidad)	dB(A)	34/43	34/43	44/52	48/58	
Suministro de voltaje auxiliar	V=	24 V (±	10 %, comprueb	e la caída de	voltaje)	
-corriente tipos B, P, T sin/con freno del motor	A=	1 / 2.5	1 / 2.5	1 / 2.5	2/4	
-corriente tipo M sin/con freno del motor	A=	1.3 / 2.8	1.3 / 2.8	1.3 / 2.8		

7.7 Datos de rendimiento

AKD-xzzz06

Datos de rendimiento	Unidades	hasta AKD- x00606	AKD- x01206	AKD- x02406
Frecuencia de conexión de etapa de salida	kHz	10	8	8
Velocidad de aumento de voltaje dU/dt	kV/μs	2.5	5 4.3	
Ancho de banda del controlador de corriente	kHz	2,5 a 4	2a3	
Ancho de banda del controlador de velocidad (escalable)	Hz	0 a 1000	0 a 800	0 a 600
Ancho de banda del controlador de posición (escalable)	Hz	1 a 250		

AKD-xzzz07

Datos de rendimiento	Unidades	AKD- x00307	AKD- x00607	AKD- x01207	AKD- x02407
Frecuencia de conexión de etapa de salida	kHz	8	8	6	8
Velocidad de aumento de voltaje dU/dt	kV/μs		7.2		
Ancho de banda del controlador de corriente	kHz	2,5	2a3		a 3
Ancho de banda del controlador de velocidad (escalable)	Hz	0 a 800	0 a 600		
Ancho de banda del controlador de posición (escalable)	Hz		1 a 250		

7.8 Torsiones de ajuste recomendadas

	Torsión de ajuste/Nm				
Conector	hasta AKD- x00606	AKD- x01206	AKD-x02406 y AKD- xzzz07		
X1	0,22 a 0,25	0,22 a 0,25	0,22 a 0,25		
X2	0,5 a 0,6	0,7 a 0,8	0,7 a 0,8		
X3	0,5 a 0,6	0,5 a 0,6	0,7 a 0,8		
X4	-	-	0,7 a 0,8		
X7, X8, X21, X22, X23, X24, X35, X36	0,2 a 0,25	0,2 a 0,25	0,2 a 0,25		
bloqueo PE	1.7	1.7	1.7		

Consulte "Conformidad con UL/cUL" (=> p. 20) para obtener los valores en pulgadas-libras.

7.9 Fusión

Fusibles de EE. UU.:

Clase J, 600 VCA 200 kA, tiempo de retardo. El fusible debe estar enumerado en UL y CSA; el reconocimiento de UL no es suficiente.

Fusibles de la UE:

tipos gRL o gL, 400 V/500 V, tiempo de retardo

Portafusibles

Combinados con los bloques de fusibles estándar, los portafusibles con protección para los dedos deben usarse conforme a IEC 60529.

Ejemplos:

Bussmann: portafusibles modulares serie CH, tamaño de fusible 0 a 30 A clase J, tripolares: CH30J3 Ferraz: portafusibles Ultrasafe, tamaño de fusible 0 a 30 A clase J, tripolares: US3J3I

7.9.1 Fusión de suministro de energía externa

Modelo de la unidad	Clasificación máx. de amperios	Ejemplo clase J Cooper Bussmann	Ejemplo clase J Ferraz Shawmut
AKD-X00306	10A (Tiempo de retardo)	LPJ10/DFJ10	AJT10/HSJ10
AKD-X00606	15A (Tiempo de retardo)	LPJ15/DFJ15	AJT15/HSJ15
AKD-X01206	15A (Tiempo de retardo)	LPJ15/DFJ15	AJT15/HSJ15
AKD-X02406	30A (Tiempo de retardo)	LPJ30/DFJ30	AJT30/HSJ30
AKD-X00307	6A (Tiempo de retardo)	LPJ6/DFJ6	AJT6/HSJ6
AKD-X00607	10A (Tiempo de retardo)	LPJ10/DFJ10	AJT10/HSJ10
AKD-X01207	15A (Tiempo de retardo)	LPJ15/DFJ15	AJT15/HSJ15
AKD-X02407	30A (Tiempo de retardo)	LPJ30/DFJ30	AJT30/HSJ30

7.9.2 Fusión de suministro de 24 V externos

			Ejemplo clase J Ferraz Shawmut
todos los AKD	8 A (Tiempo de retardo)	LPJ8/DFJ8	AJT8/HSJ8

7.9.3 Fusión de la resistencia regenerativa externa

		Ejemplo clase FWP-xx Cooper Bussmann
todos los AKD	en proceso	en proceso

7.10 Sistema de puesta a tierra

Hay varias redes de puesta a tierra en la unidad:

AGND	Puesta a tierra analógica		٦
------	---------------------------	--	---

DCOM7, DCOM8	Línea común para entradas digitales en conector de E/S X7, X8
DCOM21.x, DCOM22.x	Línea común para entradas digitales en conector de E/S X21, X22 (tarjeta de opción de E/S solamente)
DCOM35, DCOM36	Línea común para entradas digitales en conector de E/S X35, X36 (AKD-M solamente)
GND	Suministro de 24 V, entrada STO, freno de contención
0 V	Puesta a tierra digital interna, salida de emulación del encoder, canal de servicio

7.11 Conectores

Los datos de corriente y voltaje dados son los valores más bajos permitidos por UL y CE.

Tipos AKD-xzzz06 (Voltaje de suministro principal de 120 V a 240 V)

Conector	Tipo	Máx. sección transversal ¹	Corriente permitida ²	Voltaje permitido ³
Señales de control X7/X8	Amphenol, ELXP1010S1 / 1010S2	1.5 mm², 16 awg	10 A	250 V
Señales de control X21/X22*	Amphenol, ELXP0810S3 / 0810S2	1.5 mm², 16 awg	10 A	250 V
Señales de control X23/X24*	Amphenol, ELXP1410S3 / 1410S2	1.5 mm², 16 awg	10 A	250 V
Señales de control X35/X36**	Amphenol, ELXP0810S3 / 0810S2	1.5 mm², 16 awg	10 A	250 V
Voltaje auxiliar X1	Phoenix, MC1.5/3-STF-3.81	1.5 mm², 16 awg	8 A	160 V
Motor X2 (3 a 6 A)	Phoenix, IC 2.5/6-STF-5.08	2.5 mm², 14 awg	10 A	300 V
Motor X2 (12 a 24 A)	Phoenix, PC 5/6-STF-7.62	10 mm², 10 awg	30 A	600 V
Energía X3 (3 a 6 A)	Phoenix, MVSTBW2.5/7-STF-5.08	2.5 mm², 12 awg	10 A	300 V
Energía X3 (12A)	Phoenix, MSTB2,5HC/8-STF-5,08	2.5 mm², 12 awg	16 A	300 V
Energía X3 (24 A)	Phoenix, PC 5/4-STF-7,62	10 mm², 10 awg	30 A	600 V
Energía X4 (24 A)	Phoenix, PC 5/4-STF-7,62	10 mm², 10 awg	30 A	600 V
Retroalimentación X10	SubD 15 pin HD (hembra)	0,5 mm², 21 awg	1 A	< 100 V
Puerto de servicio X11, X32*	RJ45	0,5 mm², 21 awg	1 A	< 100 V
Bus de movimiento X5, X6	RJ45	0,5 mm², 21 awg	1 A	< 100 V
CAN Entrada/Salida X12/13	RJ25	0,5 mm², 21 awg	1 A	< 100 V
Emulación de encoder X9	SubD 9 pin (macho)	0,5 mm², 21 awg	1 A	< 100 V

Tipos AKD-xzzz07 (Voltaje de suministro principal de 240 V a 480 V)

Conector	Tipo	Máx. sección transversal ¹	Corriente permitida ²	Voltaje permitido ³
Señales de control X7/X8	Amphenol, ELXP1010S1 / 1010S2	1.5 mm², 16 awg	10 A	250 V
Señales de control X21/X22*	Amphenol, ELXP0810S3 / 0810S2	1.5 mm², 16 awg	10 A	250 V
Señales de control X23/X24*	Amphenol, ELXP1410S3 / 1410S2	1.5 mm², 16 awg	10 A	250 V
Señales de control X35/X36**	Amphenol, ELXP0810S3 / 0810S2	1.5 mm², 16 awg	10 A	250 V
Voltaje auxiliar X1	Phoenix, MC1.5/3-STF-3.81	1.5 mm², 16 awg	8 A	160 V
Motor X2	Phoenix, PC 5/6-STF-7.62	10 mm², 10 awg	30 A	600 V
Energía X3, X4	Phoenix, PC 5/4-STF-7,62	10 mm², 10 awg	30 A	600 V
Retroalimentación X10	SubD 15 pin HD (hembra)	0,5 mm², 21 awg	1 A	< 100 V
Puerto de servicio X11, X32*	RJ45	0,5 mm², 21 awg	1 A	< 100 V
Bus de movimiento X5, X6	RJ45	0,5 mm², 21 awg	1 A	< 100 V
CAN Entrada/Salida X12/13	RJ25	0,5 mm², 21 awg	1 A	< 100 V
Emulación de encoder X9	SubD 9 pin (macho)	0,5 mm², 21 awg	1 A	< 100 V

Instalación de AKD | 7 Datos y descripción técnica

 $^{^{1}}$ conexión de línea simple 2 conexión de línea simple con sección transversal del conductor recomendada (=> p. 44)

³voltaje nominal con nivel de contaminación 2

^{*} con tarjeta de opción de E/S "IC" solamente

^{**} con variante AKD-M solamente

7.12 Requisitos de cables y alambres

7.12.1 General

Para obtener información sobre características químicas, mecánicas y eléctricas de los cables, consulte el manual de accesorios o póngase en contacto con el servicio de atención al cliente.

Para alcanzar la longitud máxima de cable permitida, debe usar material de cable con los siguientes requisitos de capacitancia (fase a protección):

• Cable de motor: menos de 150 pF/m

• Cable de resolver/encoder: menos de 120 pF/m

Los cables del motor con una longitud superior a 25 m pueden requerir el uso de un obturador de motor.

7.12.2 Requisitos y secciones transversales de cables

La tabla que aparece a continuación describe los requisitos de cable y las secciones transversales de la interfaz recomendada para sistemas de eje único de acuerdo con IEC 60204. Para sistemas de varios ejes, cumpla con las condiciones de operación específicas de su sistema.

Interfaz	Sección transversal	Requisitos de cables
Conexión CA	hasta AKD-x006: 1,5 mm² (16	600 V, mínimo 75 °C
	awg)	
	AKD -x012: 2,5 mm² (14 awg)	
	AKD -x024: 4 mm² (12 awg)	
enlace de bus de CC,	hasta AKD-x006: 1,5 mm² (16	1000 V, mínimo 75 °C, con protección
resistencia	awg)	para longitudes >0,20 m
regenerativa	AKD -x012 a 24: 2,5 mm² (14 awg)	
Cables de motor sin	hasta AKD-x006: 1,5 mm² (16	600 V, mínimo 75 °C, con protección,
obturador, máx. 25 m	awg)	capacidad <150 pF/m
	AKD -x012: 2,5 mm² (14 awg)	
	AKD -x024: 4 mm² (12 awg)	
Cables de motor con	hasta AKD-x006: 1,5 mm² (16	600 V, mínimo 75 °C, con protección,
obturador, 25 a 50 m	awg)	capacidad <150 pF/m
	AKD -x012: 2,5 mm² (14 awg)	
	AKD -x024: 4 mm² (12 awg)	
Resolver, máx. 100 m	4 x 2 x 0,25 mm ² (24 awg)	pares trenzados, con protección,
		capacitancia < 120 pF/m
SFD, máx. 50 m	1 x 2 x 0,25 mm ² (24 awg)	pares trenzados, con protección
	1 x 2 x 0,25 mm ² (21 awg)	
Encoder, máx. 50 m	7 x 2 x 0,25 mm ² (24 awg)	pares trenzados, con protección
Comcoder, máx. 25 m	8 x 2 x 0,25 mm² (24 awg)	pares trenzados, con protección
E/S analógicas, máx.	0.25 mm² (24 awg)	pares trenzados, con protección
30 m		
E/S digitales, máx. 30	0,5 mm² (21 awg)	línea simple
m		
Freno de contención	mín. 0,75 mm² (19 awg)	600 V, mínimo 75 °C, con protección
(motor)		
+24 V/GND, máx. 30 m	máx. 2,5 mm² (14 awg)	línea simple

7.13 Freno dinámico

El freno dinámico es un método para desacelerar un sistema servo mediante la disipación de la energía mecánica impulsada por la fuerza contra electromotriz del motor. AKD tiene un modo de freno dinámico avanzado que funciona completamente en el hardware. Cuando está activado, la unidad acorta las terminales del motor en fase con la fuerza contra electromotriz (eje q) pero sigue funcionando con el bucle de corriente sin fuerza (eje d) con corriente 0. Esto hace que toda la corriente de freno dinámico detenga la corriente y garantiza la detención/amp más rápida de la corriente de las terminales del motor.

- Cuando no se limita la corriente, la energía mecánica se disipa en la resistencia del motor.
- Cuando se limita la corriente, la energía es devuelta a los capacitores del bus de la unidad.
- La unidad también limita la corriente máxima de terminal de motor de freno dinámico a través del parámetro *DRV.DBILIMIT* para garantizar que la carga del cliente, el motor y la unidad no observen fuerzas/corrientes excesivas.

La utilización y la forma en que AKD utiliza el freno dinámico depende del modelo de desactivación (*DRV.DISMODE*).

7.13.1 Circuito del regenerador

Cuando la cantidad de energía devuelta genera un voltaje del capacitor de bus lo suficientemente alto, la unidad activa el circuito del regenerador para comenzar a vaciar la energía de la resistencia regenerativa (también denominada resistencia regenerativa o de freno). Este resistor puede ser interno o estar conectado externamente a la unidad, según el modelo y el cableado de la unidad.

AKD-x00306 a AKD-x00606

No cuenta con una resistencia regenerativa interna. Según los requisitos de la aplicación, se puede conectar un resistor externo.

AKD-x01206 a AKD-x02406 y AKD-xzzz07

Con un resistor interno más la capacidad de conectar un resistor externo según los requisitos de la aplicación.

NOTA En el Manual de accesorios de AKD, se describen las resistencias regenerativas externas.

7.13.1.1 Descripción funcional

Cuando la cantidad de energía devuelta genera un voltaje del capacitor del bus lo suficientemente alto, la unidad activa el interruptor de freno para comenzar a vaciar la energía devuelta en la resistencia regenerativa.

1. Unidades individuales, no acopladas a través del circuito de enlace de bus de CC (+CC, -CC)

Cuando la energía retroalimentada del motor tiene una potencia máxima o promedio que supera el nivel preestablecido para la clasificación de potencia del regenerador, la unidad emite la advertencia "n521 Regen Over power" (Potencia excesiva del regenerador). Después de que se emite la advertencia, si la potencia supera el nivel de falla, el circuito de regenerador se apagará.

Con el circuito del regenerador apagado, se supervisa el voltaje de enlace de bus de CC interno. La unidad informa una falla de sobrevoltaje si se supera el umbral del bus de CC. La etapa de potencia de la unidad se desactiva y la carga se detiene con el mensaje de falla "F501 Bus Over voltage" (F501: Sobrevoltaje de bus) (=> p. 189). Se abre el contacto de falla (terminales X8/9-10) (=> p. 139) debido a esta falla.

2. Varias unidades acopladas a través del enlace de bus de CC (+CC, -CC)

Con el circuito de regenerador incorporado, varias unidades de la misma serie se pueden operar desde un enlace de bus de CC común (=> p. 104), sin ninguna medida adicional. El 90 % de la potencia combinada de todas las unidades acopladas siempre está disponible para potencia continua y máxima. El apagado en una condición de sobrevoltaje tiene lugar según se describe en 1. (arriba) para la unidad que tiene el umbral de apagado inferior (resultante de tolerancias).

NOTA	Observe el tiempo de regeneración (unos minutos) para el circuito de freno
	dinámico después de la carga completa con potencia de regeneración
	máxima.

7.13.1.2 Datos técnicos para AKD-xzzz06

Los datos técnicos para el circuito del regenerador dependen del tipo de unidad y el voltaje de la red de alimentación.

Los voltajes de suministro, las capacitancias y los voltajes de encendido son todos valores nominales.

Circuito de frenos			Voltaje de suministro
Tipo	Datos clasificados Unidade		120 V / 240 V
		s	
AKD-	Umbral de encendido del circuito del	V	380
xzzz06	regenerador		
todos los	Límite de sobrevoltaje	V	420
tipos	Ciclo máximo de tareas de regeneración	%	15*

Tipo	Datos clasificados	Unidade s	120 V / 240 V
AKD-	Resistencia regenerativa externa	Ohmio	33
x00306	Potencia del regenerador continua máxima, resistor externo	kW	0.77
	Potencia del regenerador máxima, externa (1 s)	kW	5.4
	Energía de absorción en capacitores (+/- 20 %)	Ws	60 / 20
	Capacitancia de bus de CC	μF	940
AKD-	Resistencia regenerativa externa	Ohmio	33
x00606	Potencia del regenerador continua máxima, resistor externo	kW	1.5
	Potencia del regenerador máxima, resistor externo (1 s)	kW	5.4
	Energía de absorción en capacitores (+/- 20 %)	Ws	60 / 20
	Capacitancia de bus de CC	μF	940
AKD-	Resistencia regenerativa interna	Ohmio	15
x01206	Potencia continua, resistor interno	W	100
	Potencia del regenerador máxima, resistor interno (0,5 s)	kW	11.7
	Resistencia regenerativa externa	Ohmio	33
	Potencia del regenerador continua máxima, resistor externo	kW	3
	Potencia de regenerador de absorción, resistor externo (1 s)	kW	5.4
	Energía almacenable en capacitores (+/- 20 %)	Ws	160 / 55
	Capacitancia de bus de CC	μF	2460
AKD-	Resistencia regenerativa interna	Ohmio	8
x02406	Potencia continua, resistor interno	W	200
	Potencia del regenerador máxima, resistor interno (0,5 s)	kW	22
	Resistencia regenerativa externa	Ohmio	15
	Potencia del regenerador continua máxima, resistor externo	kW	6
	Potencia del regenerador máxima, resistor externo (1 s)	kW	11.8
	Energía de absorción en capacitores (+/- 20 %)	Ws	180 / 60
	Capacitancia de bus de CC	μF	2720

^{*} depende de la potencia de la resistencia regenerativa conectada

Circuito de fre	nos		Voltaje	de suministro
Tipo	Datos clasificados	Unidade- s	240 V	400 V / 480 V
AKD-xzzz07 todos los	Umbral de encendido del circuito del regenerador	V	380	760
tipos	Límite de sobrevoltaje	V	420	840
	Ciclo máximo de tareas de regeneración	%		15*
Гіро	Datos clasificados	Unidade- s	240 V	400 V / 480 V
AKD-x00307	Resistencia regenerativa interna	Ohmio		33
	Potencia continua, resistor interno	W		80
	Potencia del regenerador máxima, resistor interno (0,5 s)	kW	5.5	22.1
	Resistencia regenerativa externa	Ohmio		33
	Potencia del regenerador continua máxima, resistor externo	kW	0.77	1.5
	Potencia del regenerador máxima, externa (1 s)	kW	5,4	21.4
	Energía de absorción en capacitores (+/- 20 %)	Ws	5	35 / 20
	Capacitancia de bus de CC	μF	235	
AKD-x00607	Resistencia regenerativa interna	Ohmio	33	
	Potencia continua, resistor interno	W		100
	Potencia del regenerador máxima, resistor interno (0,5 s)	kW	5.4	21.4
	Resistencia regenerativa externa	Ohmio		33
	Potencia del regenerador continua máxima, resistor externo	kW	1.5	3
	Potencia del regenerador máxima, resistor externo (1 s)	kW	5.4	21.4
	Energía de absorción en capacitores (+/- 20 %)	Ws	5	35 / 20
	Capacitancia de bus de CC	μF	μF 235	
AKD-x01207	Resistencia regenerativa interna	Ohmio 33		33
	Potencia continua, resistor interno	W	100	
	Potencia del regenerador máxima, resistor interno (0,5 s)	kW	5.4	21.4
	Resistencia regenerativa externa	Ohmio		33
	Potencia del regenerador continua máxima,	kW	3	6

resistor externo

Capacitancia de bus de CC

externo (1 s)

Potencia del regenerador máxima, resistor

Energía de absorción en capacitores (+/- 20 %)

kW

Ws

μF

5.4

10

21.4

70 / 40

470

Tipo	Datos clasificados	Unidade- s	240 V 400 V / 480 V		
AKD-x02407	Resistencia regenerativa interna	Ohmio		23	
	Potencia continua, resistor interno	W		200	
	Potencia del regenerador máxima, resistor interno (0,5 s)	kW	7.7	30.6	
	Resistencia regenerativa externa	Ohmio	23		
	Potencia del regenerador continua máxima, resistor externo	kW	6	12	
	Potencia del regenerador máxima, resistor externo (1 s)	kW	7.7	30.6	
	Energía de absorción en capacitores (+/- 20 %)	Ws	15	110 / 60	
	Capacitancia de bus de CC	μF	·	680	

^{*} depende de la potencia de la resistencia regenerativa conectada

7.14 Comportamiento del encendido y el apagado

En este capítulo, se describe el comportamiento del encendido y el apagado de AKD.

Comportamiento de la función "freno de contención"

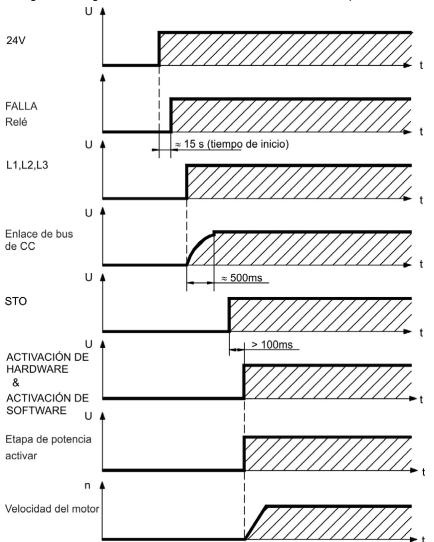
Las unidades que tienen activada una función de freno de contención tienen un cronograma especial para apagar o encender la etapa de salida (=> p. 107). Los eventos que eliminan la señal DRV.ACTIVE generan la aplicación del freno de contención. Como sucede con todos los circuitos electrónicos, se aplica la regla general de que existe la posibilidad de que el módulo de freno de contención interno falle.

La seguridad funcional; p. ej., con carga suspendida (ejes verticales), requiere un freno mecánico adicional que debe operarse de forma segura, por ejemplo mediante un control de seguridad.

Si la velocidad desciende por debajo del umbral *CS.VTHRESH* o se agota el tiempo de espera durante un procedimiento de detención, se aplica el freno. Defina el parámetro MOTOR.BRAKEIMM en 1 con ejes verticales, para aplicar el freno de contención del motor (=> p. 107) inmediatamente después de la falla o la desactivación de hardware.

Comportamiento ante una condición de subvoltaje

El comportamiento en una condición de subvoltaje depende de la configuración de VBUS.UVMODE.


VBUS.UVMODE	Modo de subvoltaje de bus de CC. Consulte la Guía del usuario de <i>AKD</i> para configurar el parámetro.
0	La unidad informará una falla de subvoltaje F502 cada vez que se produzca una condición de subvoltaje.
1 (valor predeterminado)	La unidad informará una advertencia n502 si no está activada. La unidad informará una falla si la unidad está activada cuando se produce la condición o se realiza un intento de activación mientras se existe una condición de bajo voltaje.

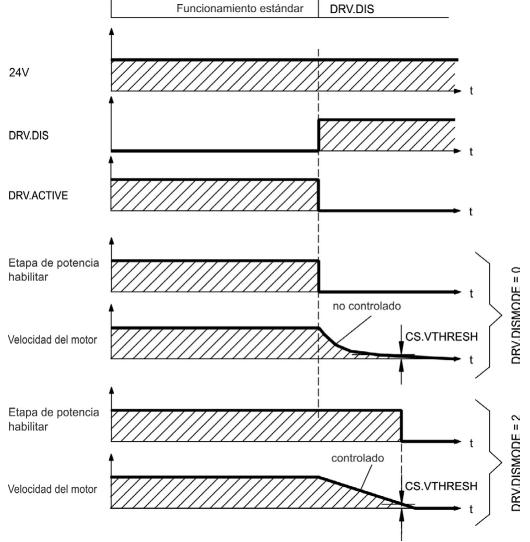
Función de seguridad STO

Con la función de seguridad STO del personal, la unidad puede estar protegida cuando está detenida mediante su electrónica interna, de manera que aún cuando se suministra energía, el eje de la unidad está protegido contra el reinicio no intencional. En el capítulo "Desactivación de torque por seguridad (STO)", se describe cómo utilizar la función STO (=> p. 58).

7.14.1 Comportamiento del encendido en la operación estándar

El siguiente diagrama ilustra la secuencia funcional correcta para encender la unidad.

La falla F602 se produce cuando STO (=> p. 58) no tiene corriente cuando se activa el hardware.

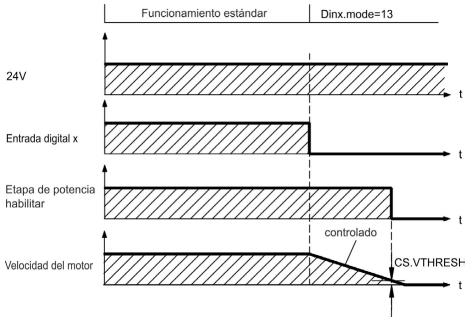

7.14.2 Comportamiento del apagado

NOTA	El suministro de 24 V de la unidad debe ser constante. La entrada de
	activación de hardware desactiva la etapa de alimentación de inmediato. Las
	entradas digitales configuradas y los comandos de bus de campo se
	pueden utilizar para realizar detenciones controladas.

7.14.2.1 Comportamiento del apagado con el comando DRV.DIS

El botón de activación/desactivación de WorkBench ejecuta un comando *drv. dis* internamente en la unidad. Consulte la Guía del usuario de *AKD* para configurar entradas y comandos de software. A veces, esta señal de activación de denomina "Activación de software".

DRV.DISMODE	DRV.DISMODE controla el comportamiento del comando <i>drv.dis</i> ejecutado mediante WorkBench, o la terminal , o bus de campo. Consulte la Guía del usuario de <i>AKD</i> para obtener información sobre la configuración.
0	Desactiva el eje de inmediato, si la velocidad desciende por debajo del umbral CS. VTHRESH o se agota el tiempo de espera, se aplica el freno. Categoría de detención 0 según la norma CEI 60204(=> p. 56).
2	Se utiliza para la detención controlada para desactivar la unidad, si la velocidad desciende por debajo del umbral <i>CS.VTHRESH</i> o se agota el tiempo de espera, se aplica el freno. Categoría de detención 1 según la norma CEI 60204(=> p. 56).

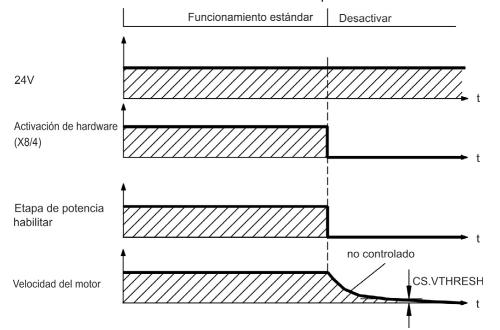


Si la velocidad desciende por debajo del umbral *CS.VTHRESH* o se agota el tiempo de espera, se aplica el freno (=> p. 107).

7.14.2.2 Comportamiento del apagado con una entrada digital (detención controlada)

Se trata de una detención de categoría 2 según la norma CEI 60204 (=> p. 56).

Se puede configurar una entrada digital para llevar al motor a una detención controlada y luego desactivar la unidad y aplicar el freno de contención (si existe). Consulte la Guía del usuario de *AKD* para obtener información sobre cómo configurar las entradas digitales.



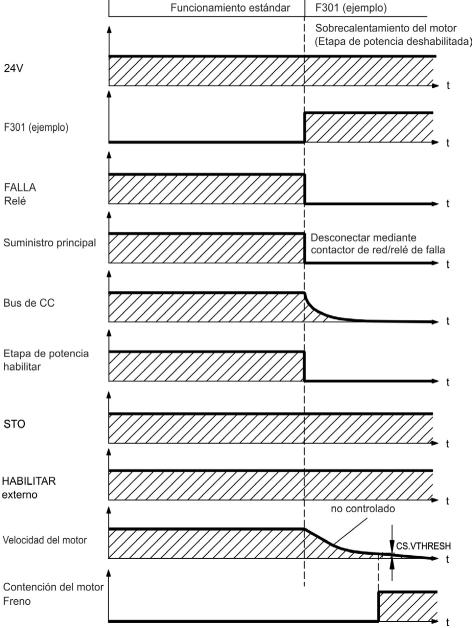
Si la velocidad desciende por debajo del umbral *CS.VTHRESH* o se agota el tiempo de espera, se aplica el freno (=> p. 107).

7.14.2.3 Comportamiento del apagado con una entrada de activación de hardware (detención no controlada)

Se trata de una detención de categoría 0 según la norma CEI 60204 (=> p. 56).

La entrada de activación de hardware desactiva la etapa de alimentación de inmediato.

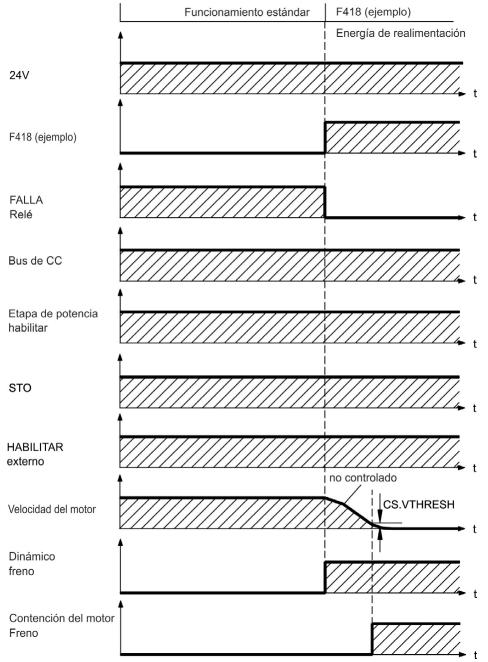
Si la velocidad desciende por debajo del umbral *CS.VTHRESH* o se agota el tiempo de espera, se aplica el freno de contención del motor (=> p. 107). Defina el parámetro MOTOR.BRAKEIMM en 1 con ejes verticales, para aplicar el freno de contención del motor inmediatamente después de la desactivación de hardware.


7.14.2.4 Comportamiento del apagado en el caso de una falla

El comportamiento de la unidad siempre depende del tipo de falla y la configuración de diversos parámetros (DRV.DISMODE, VBUS.UVFTHRESH y CS.VTHRESH, entre otros, consulte la Guía del usuario de *AKD* o la ayuda de WorkBench para obtener más información). Consulte la sección *Mensajes de advertencia y de fallas de la unidad y correcciones* de la Guía del usuario de *AKD* para obtener una tabla que describe el comportamiento específico de cada falla.

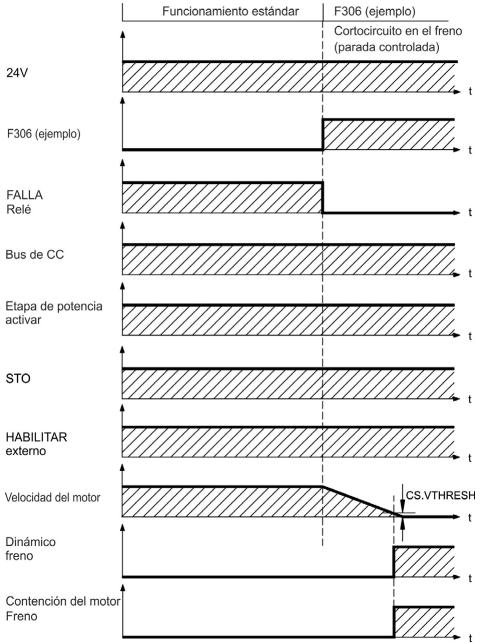
En las siguientes páginas, se muestran ejemplos de comportamientos de fallas posibles.

Comportamiento del apagado para fallas que ocasionan la desactivación inmediata de la etapa de alimentación


Se trata de una categoría de detención 0 según la norma CEI 60204 (=> p. 56).

Si la velocidad desciende por debajo del umbral *CS.VTHRESH* o se agota el tiempo de espera, se aplica el freno de contención del motor (=> p. 107). Defina el parámetro MOTOR.BRAKEIMM en 1 con ejes verticales, para aplicar el freno de contención del motor inmediatamente después de las fallas.

Comportamiento del apagado para fallas que activan el freno dinámico


Se trata de una categoría de detención 0 según la norma CEI 60204 (=> p. 56).

Si la velocidad desciende por debajo del umbral *CS.VTHRESH* o se agota el tiempo de espera, se aplica el freno (=> p. 107).

Comportamiento del apagado para fallas que ocasionan una detención controlada

Se trata de una categoría de detención 1 según la norma CEI 60204 (=> p. 56).

Si la velocidad desciende por debajo del umbral *CS.VTHRESH* o se agota el tiempo de espera, se aplica el freno (=> p. 107).

7.15 Parada/Parada de emergencia/Desactivación de emergencia

Las funciones de control de Parada, Parada de emergencia y Desactivación de emergencia están definidas por la norma IEC 60204. Las notas relacionadas con los aspectos de segundad de estas funciones pueden encontrarse en ISO 13849 e IEC 62061.

NOTA

El parámetro DRV.DISMODE debe definirse en 2 para implementar las diferentes categorías de detención. Consulte la Guía del usuario de AKD para configurar el parámetro.

ADVERTENCIA La seguridad funcional; p. ej., con carga suspendida (ejes verticales), requiere un freno mecánico adicional que debe operarse de forma segura, por ejemplo mediante un control de seguridad.

> Defina el parámetro MOTOR.BRAKEIMM en 1 con ejes verticales para aplicar el freno de contención del motor (=> p. 107) inmediatamente después de que se produzcan fallas o desactivación de hardware.

7.15.1 Detención

La función de detención apaga la máquina durante la operación normal. La función de detención está definida por IEC 60204.

La categoría Detención debe determinarse mediante una evaluación de NOTA riesgo de la máquina.

La función de detención debe tener prioridad sobre las funciones de inicio asignadas. Están definidas las siguientes categorías de detención:

Categoría detención 0

El apagado se realiza mediante la desconexión inmediata del suministro de energía a la maquinaria de la unidad (este es un apagado no controlado). Con la función de seguridad STO aprobada (=> p. 58), la unidad puede detenerse usando sus componentes electrónicos internos (IEC 61508 SIL2).

Categoría detención 1

Apagado controlado, mediante el cual se mantiene el suministro de energía a la maquinaria de la unidad para realizar el apagado y el suministro de energía solo se interrumpe cuando se completó el apagado.

Categoría detención 2

Apagado controlado, mediante el cual se mantiene el suministro de energía a la maquinaria de la unidad.

Las categorías de detención 0 y 1 operarse en forma independiente del modo de operación, por lo que una Categoría de detención 0 debe tener prioridad.

Si es necesario, debe suministrarse la conexión de dispositivos de protección y bloqueos. Si corresponde, la función de detención debe señalar su estado a la lógica de control. Un reinicio de la función de detención no debe crear una situación de peligro.

7.15.2 Parada de emergencia

La función Parada de emergencia se usa para realizar el apagado más rápido posible de la máquina en una situación de peligro. La función Parada de emergencia está definida por la norma IEC 60204. Los principios de los dispositivos de parada de emergencia y los aspectos funcionales están definidos en ISO 13850.

La función Parada de emergencia se activará mediante las acciones manuales de una sola persona. Debe ser completamente funcional y estar disponible permanentemente. El usuario debe comprender cómo operar este mecanismo (sin consultar referencias o instrucciones).

NOTA

La categoría Parada de la Parada de emergencia debe determinarse mediante una evaluación de riesgo de la máquina.

Además de los requisitos de parada, la Parada de emergencia debe cumplir con los siguientes requisitos:

- La Parada de emergencia debe tener prioridad sobre todas las demás funciones y controles en todos los modos de operación.
- El suministro de energía a cualquier maquinaria de la unidad que podría causar situaciones peligrosas debe desconectarse lo más rápido posible, sin causar ningún otro riesgo (Categoría de detención 0) o debe controlarse de tal modo que cualquier movimiento que cause peligro se detenga lo más rápido posible (Categoría de detención 1).
- La restauración no debe iniciar un reinicio.

7.15.3 Desactivación de emergencia

La función Desactivación de emergencia se usa para desconectar el suministro de energía eléctrica de la máquina. Esto se realiza para prevenir a los usuarios de cualquier riesgo de energía eléctrica (por ejemplo impacto eléctrico). Los aspectos funciones de la Desactivación de emergencia se definen en IEC 60364-5-53. La función Desactivación de emergencia se activará mediante las acciones manuales de una sola persona.

NOTA El resultado de una evaluación de riesgos de la máquina determina la necesidad de una función de Desactivación de emergencia.

La Desactivación de emergencia se realiza al desactivar la energía del suministro mediante dispositivos de conexión electromecánica. Esto ocasiona una detención de categoría 0. Si esta categoría de detención no es posible en la aplicación, la función Desactivación de emergencia debe reemplazarse por otras medidas (por ejemplo por protección contra el tacto directo).

7.16 Desactivación de torque por seguridad (STO)

Una entrada digital adicional (STO) libera la etapa de salida de potencia de la unidad siempre que se aplique una señal de 24 V a esta entrada. Si la entrada de STO tiene un circuito abierto, ya no se proporcionará energía al motor, ésta perderá toda la torsión y se detendrá.

STO de entrada (X1/3)

- La conexión a tierra flotante de referencia es GND
- -24 V ±10 %, 20 mA

NOTA Esta entrada no es compatible con IEC 61131-2.

Por lo tanto, puede obtener una detención de categoría 0 (=> p. 56) al utilizar la entrada de STO sin conectar un contactor de red.

Ventajas de la función de STO:

- Debido a que la fase de alimentación principal permanece activa, el enlace del bus DC permanece cargado.
- Solo se activan los voltajes bajos; por lo tanto, no hay desgaste del contacto.
- Será necesario realizar muy poco cableado.

La implementación de seguridad de STO en la unidad AKD está certificada. La implementación del circuito de seguridad utilizada para la función de seguridad "Desactivación de torque por seguridad" de la unidad es adecuada para SIL 2, conforme a IEC 61508-2 y PLd / CAT3, conforme a ISO 13849-1.

7.16.1 Datos de características de seguridad

Los sistemas secundarios (KC1) se describen con los siguientes datos característicos:

Dispositivo	Modo de operación	ISO 13849-1	IEC 61508-2	PFH [1/h]	SFF [%]
STO	Canal único de STO	PL d, CAT 3	SIL 2	0	20

7.16.2 Use según se indica

La función de STO tiene como finalidad exclusiva proporcionar una detención funcional segura del sistema de movimiento. Para lograr esta seguridad funcional, el cableado de los circuitos de seguridad deben cumplir con los requisitos de IEC 60204, ISO 12100 e ISO 13849.

7.16.3 Uso prohibido

No se debe utilizar la función STO si la unidad debe quedar inactiva debido a los siguientes motivos:

- 1. Operaciones de limpieza, mantenimiento y reparaciones, períodos prolongados de inactividad. En estos casos, se debe desconectar todo el sistema de alimentación y se debe asegurar (interruptor principal).
- 2. Situaciones de emergencia. En una situación de emergencia, se apaga el contactor de red (mediante el botón de emergencia).

7.16.4 Instrucciones de seguridad

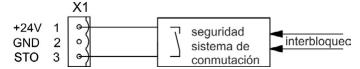
A ADVERTENCIA

Las unidades con carga suspendida deben tener un bloqueo mecánico de seguridad adicional (por ejemplo, un freno de contención del motor). La unidad no puede contener la carga cuando el STO está activo. Si la carga no está cargada correctamente, se pueden producir lesiones graves.

A PRECAUCIÓN Si la función de seguridad STO se activa automáticamente mediante un sistema de control, asegúrese de supervisar la salida del control para detectar una posible falla. La supervisión se puede emplear para evitar que una salida defectuosa active la función STO de manera no intencional. Dado que la función STO es un sistema de canal único, no se reconocerá una conexión errónea.

A PRECAUCIÓN

No es posible utilizar un freno controlado si la función activar STO controlada por la unidad está apagada. Si es necesario utilizar la función de freno controlado antes de utilizar la función de STO, se debe frenar la unidad y separar la STO de entrada con retardo de la alimentación de +24 V.


A PRECAUCIÓN La función de STO no proporciona una separación eléctrica de la salida de potencia. Si es necesario contar con acceso a los terminales de energía del motor, se debe desconectar la unidad de alimentación principal y se debe considerar el tiempo de descarga del circuito inmediato. Habrá peligro de descarga eléctrica y lesiones personales.

AVISO

Utilice la siguiente secuencia funcional cuando se utilice la función STO:

- 1. Frene la unidad de manera controlada (punto de referencia de velocidad = 0 V).
- 2. Cuando la velocidad sea igual a 0 rpm, desconecte la unidad (activación = 0 V).
- 3. Si tiene una carga suspendida, bloquee la unidad en forma mecánica.
- 4. Active la función de STO.

7.16.5 Datos técnicos y disposición de pines

Pin	Señal	Descripción	
1	+24	Voltaje auxiliar de +24 V de CC	
2	GND	GND de alimentación de 24 V	
3	STO	Habilitación de STO (Desactivación de torque por seguridad)	

7.16.6 Gabinete

Dado que la unidad cumple con IP20, debe seleccionar un gabinete que permita una operación segura de la unidad. El gabinete debe, al menos, cumplir con las disposiciones de IP54.

7.16.7 Cableado

Si va a pasar cables fuera del gabinete específico (IP54), éstos se deberán colocar de manera duradera (con firmeza), deberán estar protegidos contra daños externos (por ejemplo, mediante la colocación de los cables en un conducto), deberán estar colocados en diversos cables forrados o se los deberá proteger en forma individual mediante la puesta a tierra de las conexiones.

El cableado que deba permanecer dentro de un gabinete específico deberá cumplir con los requisitos establecidos en la norma IEC 60204-1.

7.16.8 Descripción funcional

Cuando no se necesita la función STO (desactivación de torque por seguridad), la entrada se debe conectar directamente con +24 V. A continuación, la función se omite y no se puede utilizar. Si está activada la función STO, la STO de entrada debe estar conectada con la salida de un control de seguridad o relevador de seguridad que al menos cumpla con los requisitos de PLd, CAT 3 conforme a la norma ISO 13849 (diagrama de conexiones: => p. 62). Estados posibles de la unidad conforme a la función STO:

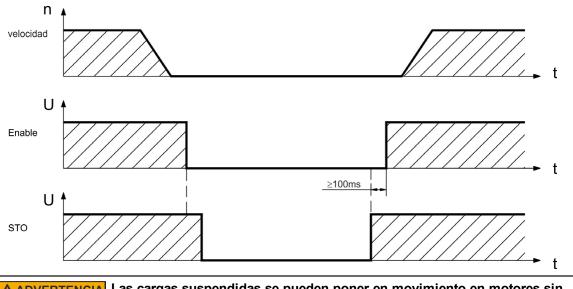
STO	ACTIVACIÓN	Pantalla	El motor tiene torsión	SIL 2 de seguridad
0 V	0 V	n602	no	sí
0 V	+24 V	F602	no	sí
+24 V	0 V	modo de operación	no	no
+24 V	+24 V	modo de operación con 'dot'	sí	no

Cuando está conectada la función STO durante la operación de separación de STO de entrada de 24 V, el motor reduce la marcha sin control y la unidad muestra la falla F602.

	Æ F	PRE	CAU	CIÓN	I
--	------------	-----	-----	------	---

No es posible utilizar un freno controlado si la función activar STO controlada por la unidad está apagada. Si es necesario utilizar la función de freno controlado antes de utilizar la función de STO, se debe frenar la unidad y separar la STO de entrada con retardo de la alimentación de +24 V.

A PRECAUCIÓN La función de STO no proporciona una separación eléctrica de la salida de potencia. Si es necesario contar con acceso a los terminales de energía del motor, se debe desconectar la unidad de alimentación principal y se debe considerar el tiempo de descarga del circuito inmediato. Habrá peligro de descarga eléctrica y lesiones personales.

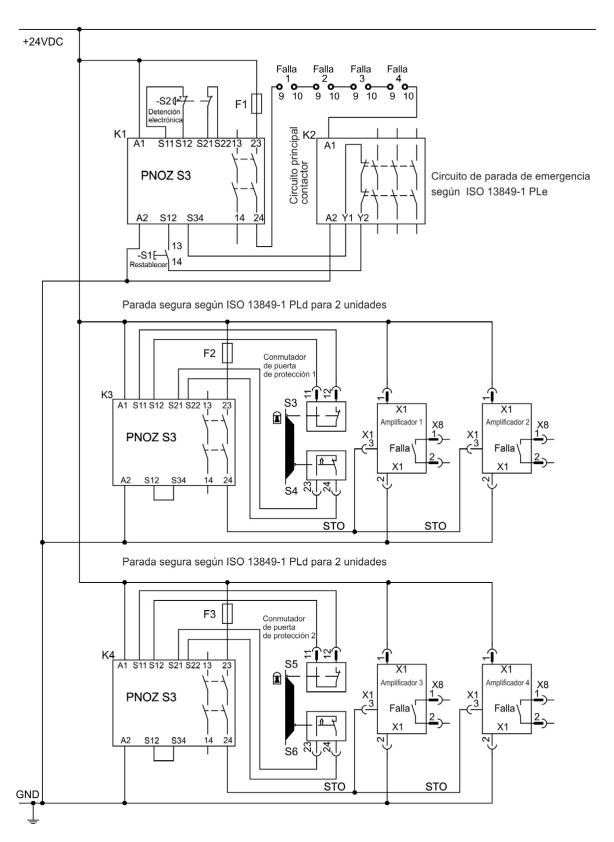

Dado que la función STO es un sistema de canal único, no se reconocerá la conexión errónea. Cuando se realiza el cableado del STO de entrada dentro de un gabinete, los cables y el gabinete deben cumplir con los requisitos de la norma IEC 60204-1. Si va a tender cables ubicados fuera del gabinete específico, dichos cables se deberán colocar en forma duradera y se los deberá proteger contra los daños externos.

7.16.8.1 Diagrama de señales (secuencia)

El diagrama de abajo muestra cómo utilizar la función STO para parar la unidad en forma segura y hacerla funcionar sin inconvenientes.

- 1. Frene la unidad de manera controlada (punto de referencia de velocidad = 0 V).
- 2. Cuando la velocidad sea igual a 0 rpm, desconecte la unidad (activación = 0 V).

3. Active la función STO (STO = 0 V).



ADVERTENCIA Las cargas suspendidas se pueden poner en movimiento en motores sin freno, ya que el motor pierde toda la torsión cuando la función STO está conectada (STO abierta o 0 V). Utilice los motores con un freno de contención incorporado.

7.16.8.2 Circuito de control (ejemplo)

En el ejemplo, se muestra un circuito de control con dos áreas de trabajo separadas conectadas a un circuito de parada de emergencia (circuito de alimentación principal: => p. 64). Para cada área de trabajo, la "parada segura" de las unidades se activa mediante una pantalla protectora. Los interruptores de seguridad utilizados en el ejemplo fueron fabricados por Pilz y cumplen, al menos, con PLd conforme a la norma ISO 13849-1 o SIL CL2 según la norma IEC 62061. También se pueden utilizar interruptores de seguridad de otros fabricantes.

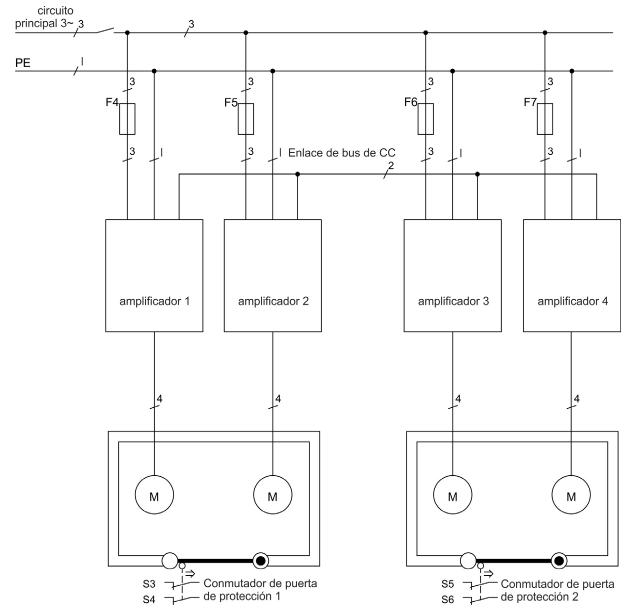
NOTA Repase las instrucciones del cableado; => p. 59.

7.16.8.3 Prueba funcional

▲ PRECAUCIÓN

Debe probar la función de bloqueo de reinicio después del arranque inicial de la unidad, después de cada interferencia con el cableado de la unidad o después de reemplazar uno o varios componentes de la unidad.

Primer método:


- 1. Detenga la unidad, con el punto de referencia 0 V. Mantenga la unidad habilitada. **PELIGRO:** ¡No ingrese al área de peligro!
- 2. Para activar la función STO, por ejemplo, active la pantalla protectora (voltaje a X1/3 0 V).
- 3. Se abre el contacto de falla, se libera el contactor neto y la unidad muestra el error F602.

Segundo método:

- 1. Detengas todas las unidades, con el punto de referencia 0 V; desactive la unidad.
- 2. Para activar la función STO, por ejemplo, active la pantalla protectora (voltaje a X1/3 0 V).
- 3. La unidad muestra la advertencia n602.

7.16.8.4 Circuito de alimentación principal (ejemplo)

Circuito de control correspondiente => p. 62.

7.17 Protección contra riesgo de descarga eléctrica

7.17.1 Corriente de fuga

La corriente de fuga mediante el conductor de PE deriva de la combinación de corrientes de fuga del cable y el equipo. El patrón de frecuencias de corriente de fuga incluye una determinada cantidad de frecuencias, mientras que los disyuntores de corriente residual definitivamente evalúan la corriente de 50 Hz. Por este motivo, la corriente de fuga no se puede medir con un multímetro convencional.

Como regla general, se puede asumir lo siguiente para la corriente de fuga en cables de poca capacidad a un voltaje principal de 400 V, según la frecuencia horaria de la etapa de salida:

I sugar = n x 20 mA + L x 1 mA/m a una frecuencia horaria de 8 kHz en la etapa de salida

I sugar = n x 20 mA + L x 2 mA/m a una frecuencia horaria de 16 kHz en la etapa de salida

(donde fuga=corriente de fuga, n=cantidad de unidades, L=longitud del cable de motor)

En el caso de otras clasificaciones de voltaje principal, la corriente de fuga varía en proporción al voltaje.

Por ejemplo: 2 x unidades + un cable de motor de 25 m a una frecuencia horaria de 8 kHz: 2 x 20 mA + 25 m x 1 mA/m = corriente de fuga de 65 mA.

NOTA	Dado que la corriente de fuga de PE supera los 3,5 mA, conforme a la norma
	IEC61800-5-1, se debe duplicar la conexión de PE o se debe utilizar un cable
	de conexión con una sección transversal menor que 10 mm². Utilice el
	terminal de PE y los tornillos de conexión de PE para cumplir con este
	requisito.

Se pueden utilizar las siguientes mediciones para reducir las corrientes de fuga:

- Reduzca a longitud del cable del motor.
- Utilice cables de poca capacidad (=> p. 44).

7.17.2 Dispositivo protector de corriente residual (RCD)

Conforme a la norma IEC 60364-4-41 – Disposiciones para instalación y IEC 60204: Para el equipamiento eléctrico de máquinas, se pueden utilizar dispositivos protectores de corriente residual (RCD) en tanto y en cuanto se cumplan con las normas necesarias.

AKD es un sistema de 3 fases con un puente B6. Por lo tanto, se deben utilizar los RCD sensibles a todas corrientes para detectar cualquier problema de corriente directa. Para conocer la regla general utilizada para determinar la corriente de fuga, consulte el capítulo anterior.

Corrientes residuales clasificadas en RCD:

10 a 30 mA	Protección contra "contacto indirecto" (protección personal contra incendios) para equipos móviles y fijos, además de "contacto directo".	
50 a 300 mA	Protección contra "contacto indirecto" (protección personal contra incendios) para equipos fijos	

NOTA	Recomendación: Para brindar protección contra contacto directo (con cables
	de motor de menos de 5 m) Kollmorgen™ recomienda que cada unidad se
	debe proteger de manera individual mediante un RCD de 30 mA sensible a
	todas las corrientes.

Si utiliza un RCD selectivo, el proceso de evaluación más inteligente evitará la activación falsa del RCD.

7.17.3 Aislamiento de transformadores

Cuando es absolutamente esencial tener protección contra contacto directo a pesar de una mayor corriente de fuga, o cuando se busca protección contra riesgo de descarga eléctrica, AKD también se puede operar mediante el aislamiento de un transformador (conexión esquemática => p. 97).

Para supervisar los cortocircuitos, se puede utilizar un monitor de fuga a tierra.

NOTA Mantenga la longitud del cable entre el transformador y la unidad lo más corta posible.

8 Instalación mecánica

8.1	Instrucciones de seguridad	68
8.2	Guía de instalación mecánica	68
8.3	Ilustraciones mecánicas de ancho estándar	69
84	Illustraciones mecánicas de ancho extendido	73

8.1 Instrucciones de seguridad

▲ PRECAUCIÓN	Existe peligro de descarga eléctrica por el elevado nivel de CE que podría causar lesiones si la unidad (o el motor) no tiene la conexión a tierra a CE adecuada. No utilice placas de montaje pintadas (es decir, no conductoras).
AVISO	Proteja la unidad de tensiones inadmisibles. En particular, no permita que se doblen los componentes ni que se alteren las distancias de aislamiento durante el transporte y la manipulación. Evite tocar los contactos y componentes eléctricos.
AVISO	En caso de recalentamiento, la unidad se apagará automáticamente. Asegúrese de que haya un adecuado flujo de aire fresco y filtrado en la parte inferior del gabinete de control o utilice un intercambiador de calor (" Condiciones ambientales, ventilación y posición de montaje" (=> p. 35)).
AVISO	No coloque dispositivos que generan campos magnéticos directamente al lado de la unidad. Los campos magnéticos intensos pueden afectar los componentes internos. Instale dispositivos que produzcan un campo magnético con una distancia prudente de las unidades o proteja los campos magnéticos.

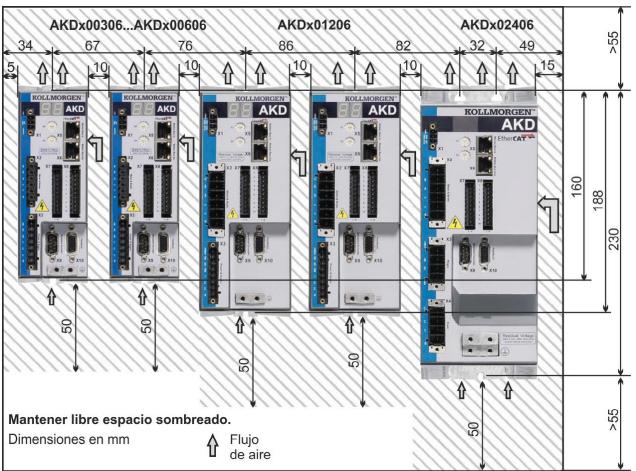
8.2 Guía de instalación mecánica

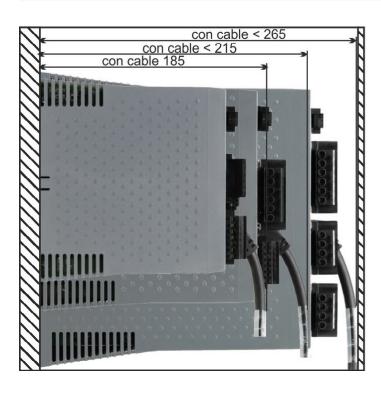
Como mínimo, necesita tener las siguientes herramientas para instalar AKD; su instalación específica podrá requerir herramientas adicionales:

- Tornillos M4 de cabeza plana hexagonales (ISO 4762)
- Llave Allen con mango en T de 3 mm
- Destornilladores N.º 2 de punta Phillips
- Destornillador plano pequeño

Las dimensiones y posiciones de los orificios de montaje dependerán de la variante de la unidad:

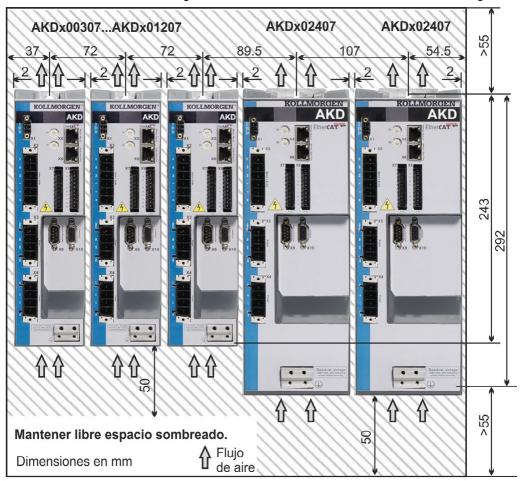
Variante de la unidad	Descripción	Carcasa
AKD-B, -P, -T	Unidades sin tarjeta opcional incorporada	Ancho estándar, => p. 69
AKD-B-IC, -T-IC, -M- MC	Unidades con tarjeta opcional incorporada (por ejemplo, E/S, MC)	Ancho extendido, => p. 73

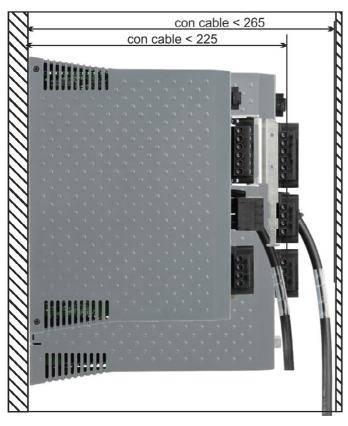

Instale la unidad de la siguiente manera:

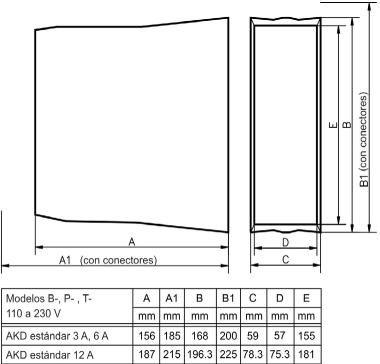

- Prepare el lugar: Monte la unidad en un gabinete controlado (=> p. 35). El lugar no debe contener materiales conductores ni corrosivos. Para conocer la posición de montaje del gabinete => p. 69 respectivamente => p. 73.
- 2. Verifique la ventilación: Verifique que la ventilación de la unidad no está obstruida y mantenga la unidad en la temperatura ambiente permitida => p. 35. Mantenga el espacio necesario entre la parte superior e inferior de la unidad => p. 69 respectivamente => p. 73.
- 3. Verifique el sistema de refrigeración: Si se utilizan sistemas de refrigeración para el gabinete de control, coloque el sistema de refrigeración de manera tal que el agua de la condensación no caiga sobre la unidad o los dispositivos periféricos.
- 4. Monte la unidad: Arme la unidad y conecte el suministro de energía en un lugar cercano en la placa de montaje con conexión a tierra y conductora en el gabinete.
- 5. Conecte la unidad a tierra: Para la protección y conexión a tierra compatible con CE, consulte => p. 93. Conecte a tierra la placa de montaje, la carcasa del motor y el CNC-GND del sistema de control.

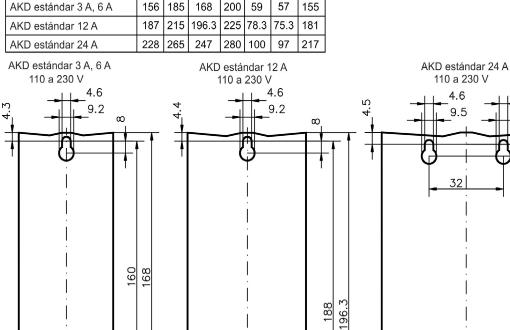
8.3 Ilustraciones mecánicas de ancho estándar

8.3.1 Diseño del gabinete de control de AKD-xzzz06, ancho estándar


Material: Tornillos de cabeza hexagonal M4 conforme a ISO 4762, llave Allen con mango en T de 3 mm




8.3.2 Diseño del gabinete de control de AKD-xzzz07, ancho estándar


Material: Tornillos de cabeza hexagonal M4 conforme a ISO 4762, llave Allen con mango en T de 3 mm

8.3.3 Dimensiones de AKD-xzzz06, ancho estándar

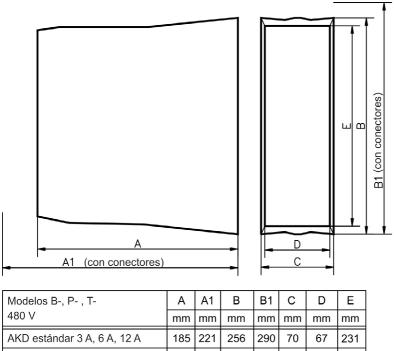
4.5

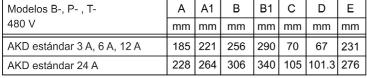
78.3

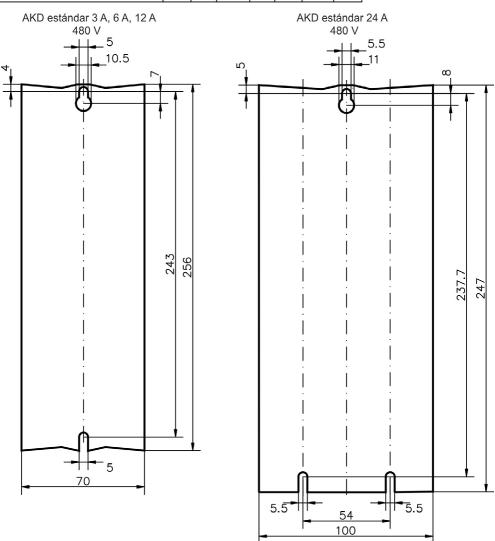
4.6

9.5

 ∞

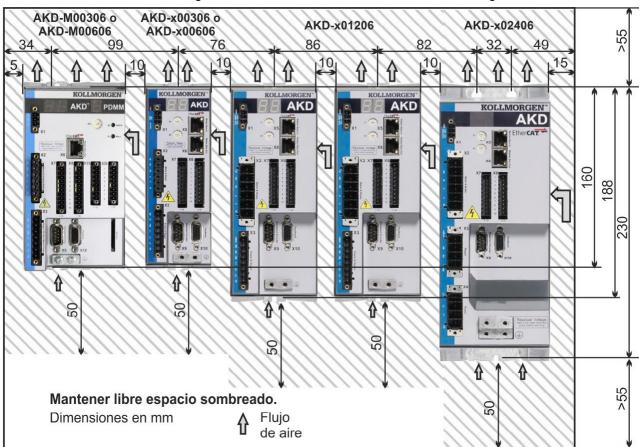

237.7

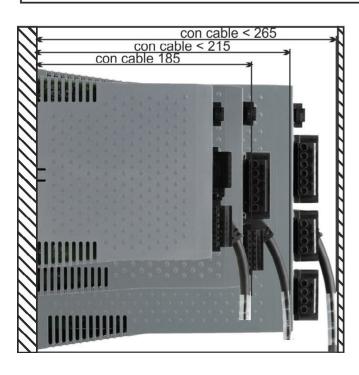

4.5


100

4.5

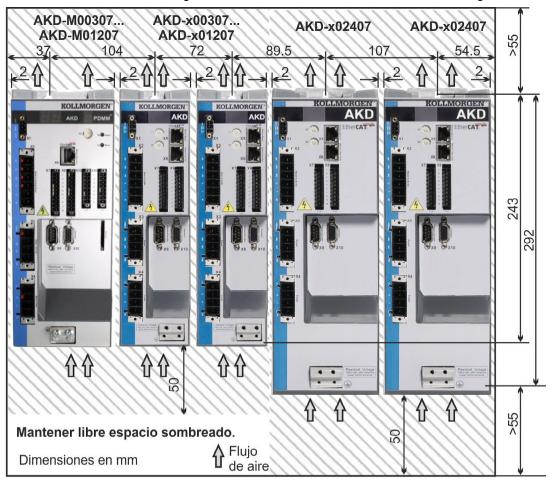
8.3.4 Dimensiones de AKD-xzzz07, ancho estándar

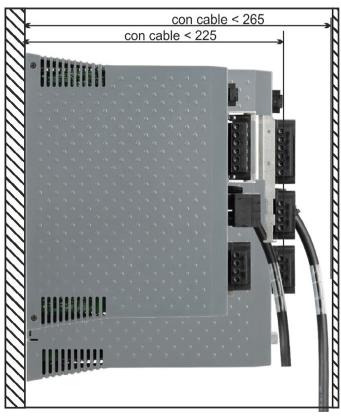


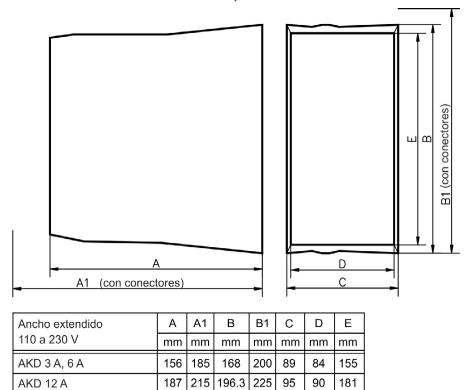


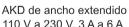
8.4 Ilustraciones mecánicas de ancho extendido

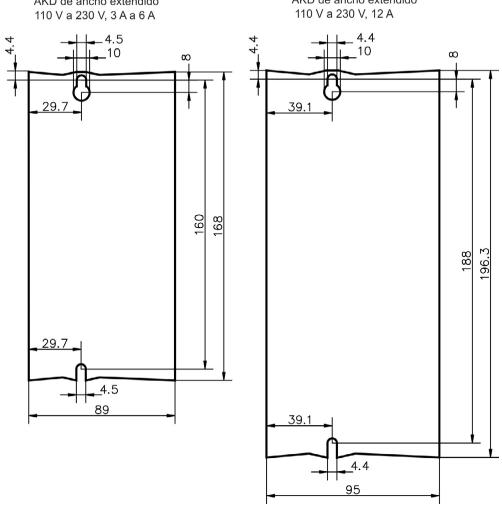
8.4.1 Diseño del gabinete de control, ejemplo con AKD-M00306


Material: Tornillos de cabeza hexagonal M4 conforme a ISO 4762, llave Allen con mango en T de 3 mm

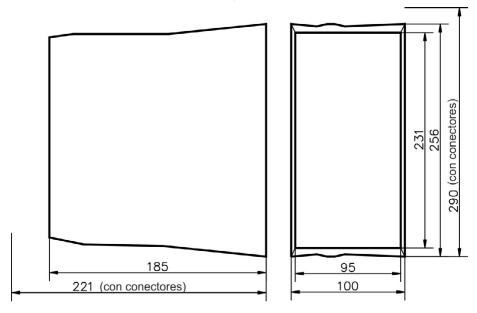


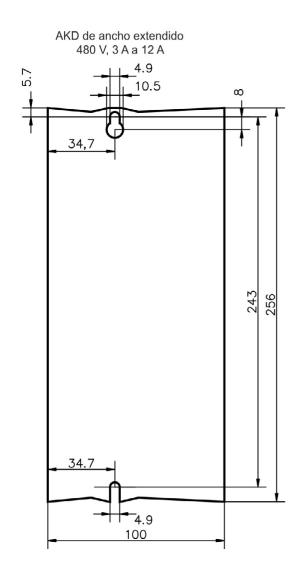

8.4.2 Diseño del gabinete de control, ejemplo con AKD-M00307


Material: Tornillos de cabeza hexagonal M4 conforme a ISO 4762, llave Allen con mango en T de 3 mm



Dimensiones de AKD-xzzz06, ancho extendido





AKD de ancho extendido

8.4.4 Dimensiones de AKD-xzzz07, ancho extendido

9 Instalación eléctrica

9.1	Instrucciones de seguridad	78
9.2	Guía para la instalación eléctrica	79
9.3	Cableado	80
9.4	Componentes de un sistema servo	81
9.5	Descripción general de la conexión AKD-B, AKD-P, AKD-T	83
9.6	Descripción general de la conexión AKD-M	88
9.7	Reducción de ruido de EMI	93
9.8	Conexión de alimentación eléctrica	97
9.9	Resistencia regenerativa externa (X3)	103
9.10	Enlace de bus de CC (X3)	104
9.11	Conexión del motor	105
9.12	Conexión de retroalimentación	108
9.13	Engranaje electrónico, operación maestro/esclavo	120
9.14	Conexión de E/S	128
9.15	Pantalla LED	147
9.16	Conmutadores rotativos (S1, S2, RS1)	148
9.17	Botones (B1, B2, B3)	149
9.18	Ranura para tarjeta SD	150
9.19	Interfaz de servicio (X11, X32)	153
9.20	Interfaz de bus de la CAN (X12/X13)	157
9.21	Interfaz de bus de movimiento (X5/X6/X11)	163

9.1 Instrucciones de seguridad

No elimine las conexiones eléctricas a la unidad mientras la misma está **A**PELIGRO activa. Existe peligro de formación de arco eléctrico que puede causar daños en los contactos y graves lesiones al personal. Espere al menos siete minutos después de desconectar la unidad del suministro de energía principal antes de tocar secciones posiblemente activas del equipo (p. ej., contactos) o desarmar cualquier conexión. Los capacitores aún pueden presentar voltajes peligrosos hasta siete minutos después de desconectar el suministro de energía. Para asegurarse, mida el voltaje en enlace de bus de CC y espere hasta que este sea inferior a 40 V. Las conexiones de control y alimentación aún pueden estar activas incluso si el motor no está girando. AVISO El voltaje de alimentación incorrecto, el motor inadecuado o el cableado incorrecto pueden dañar la unidad. Compruebe la combinación de unidad y motor. Compare el voltaje nominal y la corriente de las unidades. Implemente el cableado de acuerdo con el diagrama de conexión: => p. 85. Asegúrese de que no se supere el voltaje máximo nominal permitido en los terminales L1, L2, L3 o +CC, -CC no se supere por más del 10 % incluso en las circunstancias más desfavorables (consulte IEC 60204-1). AVISO La fusión externa excesivamente alta pondrá en peligro los cables y dispositivos. La fusión de la entrada de suministro de CA y el suministro de 24 V deben instalarse por parte del usuario; mejores valores en => p. 40. Sugerencias de uso de dispositivos de corriente residual (RCD) => p. 65. AVISO El estado de la unidad debe ser supervisado por el PLC para reconocer situaciones críticas. Realice el cableado del contacto de FALLA en serie en

NOTA

Se permite el uso del software de configuración para modificar los parámetros de la unidad. Cualquier otra modificación anulará la garantía.

el circuito de parada de emergencia de la instalación. El circuito de parada de emergencia debe operar el interruptor automático de alimentación.

9.2 Guía para la instalación eléctrica

Instale el sistema eléctrico de la unidad de la siguiente manera:

- 1. Seleccione los cables de acuerdo con IEC 60204 => p. 44.
- 2. Instale la protección y realice la conexión a tierra de la unidad.
 - Para la protección y conexión a tierra compatible con CE, consulte => p. 93 y => p. 85
 - . Realice la conexión a tierra de la placa de montaje, la carcasa del motor y CNC-GND del sistema de control.
- 3. Realice el cableado de la unidad y los conectores. Cumpla con las "Recomendaciones para reducir el ruido de EMI": => p. 93
 - Realice el cableado del contacto de FALLA en serie en el circuito de parada de emergencia del sistema.
 - Conecte las entradas y salidas del control digital.
 - Realice la conexión a tierra analógica (también si se usan buses de campo).
 - Conecte la fuente de entrada analógica, si se requiere.
 - Conecte el dispositivo de retroalimentación.
 - Conecte la opción de hardware.
 - Conecte el cable del motor.
 - Conecte la protección en ambos extremos. Use un obturador de motor si el cable tiene más de 25 m.
 - Conecte el freno de contención del motor; conecte la protección en ambos extremos.
 - Si se requiere, conecte la resistencia regenerativa externa (con fusión).
 - Conecte el suministro auxiliar (máximos valores de voltaje permitidos; consulte los datos eléctricos (=> p. 37 o => p. 38).
 - Conecte el filtro de alimentación con AKD-xzzz06 (líneas protegidas entre filtro y unidad).
 - Conecte el suministro eléctrico principal. Compruebe el valor máximo de voltaje permitido (=> p. 37 o
 => p. 38). Compruebe el uso adecuado de interruptores de corriente residual (RCD): => p. 65
 - Conecte el equipo (=> p. 153) para configurar la unidad.
- 4. Compare el cableado con los diagramas de cableado.

9.3 Cableado

El procedimiento de instalación que se describe es un ejemplo. Un procedimiento diferente puede ser apropiado o necesario según el uso de los equipos. Kollmorgen™ puede brindar cursos de capacitación para este procedimiento según solicitud.

APELIGRO

Existe peligro de arco eléctrico que puede causar lesiones corporales graves. Solamente instale y realice el cableado de equipos cuando no estén conectados, es decir, cuando no estén encendidos ni cuando el suministro eléctrico, el voltaje auxiliar de 24 V o el voltaje eléctrico de ningún otro equipo estén conectados.

Asegúrese de que el gabinete esté desconectado de forma segura (por ejemplo, con carteles de bloqueo y advertencia). Los voltajes individuales se encienden por primera vez durante la instalación.

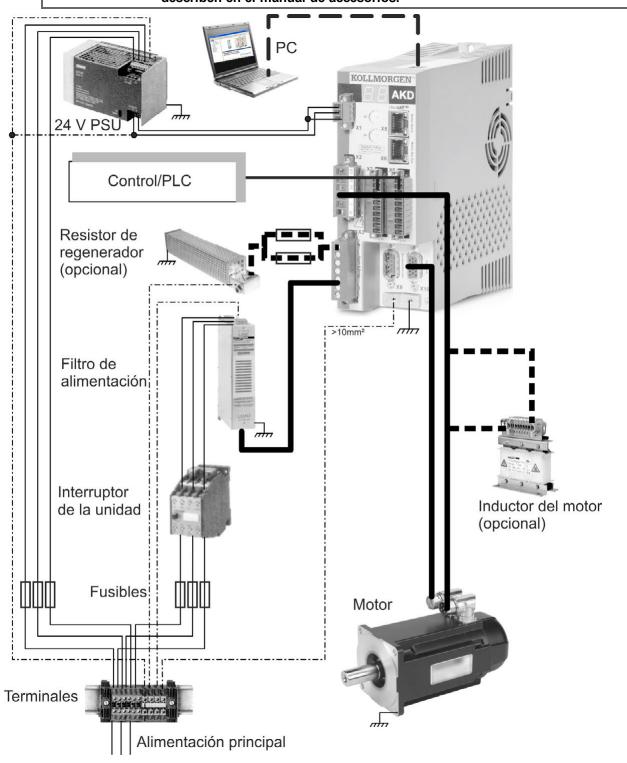
▲ PRECAUCIÓN

Solamente el personal profesional que esté calificado en ingeniería eléctrica puede instalar la unidad.

Los cables verdes con una o más rayas amarillas solo deben usarse para la puesta a tierra de protección (PE).

NOTA

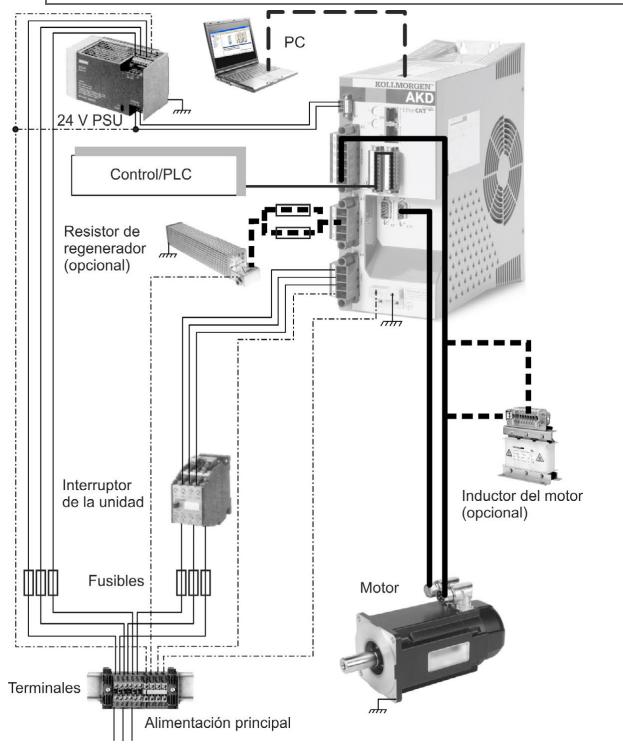
El símbolo de puesta a tierra, que encontrará en todos los diagramas de cableado, indica que debe tener cuidado para proporcionar en la conexión de conducción eléctrica el área más grande posible entre la unidad indicada y la placa de montaje del gabinete de control. Esta conexión es para una puesta a tierra efectiva de interferencia de HF y no debe confundirse con el símbolo de PE (PE = puesta a tierra de protección, medición de seguridad según IEC 60204).


NOTA	Use los siguientes diagramas de		
	conexión:		
	Descripción general (todas las	=> p. 85	
	conexiones):	=> p. 90	
	- AKD-Variante B/P/T	P	
	- AKD-Variante M	=> p. 93	
		=> p. 101	
	Protección:	=> p. 105	
	Red eléctrica:	=> p. 108	
	Motor:	=> p. 120	
	Retroalimentación:	=> p. 122	
	Engranaje electrónico:	=> p. 128	
	Emulación de encoder:	=> p. 153	
	Entradas y salidas digitales y	=> p. 157	
	analógicas:	=> p. 163	
	Interfaz de servicio:		
	Interfaz de bus de la CAN:		
	Interfaz de bus de movimiento:		

9.4 Componentes de un sistema servo

Con AKD-xzzz06

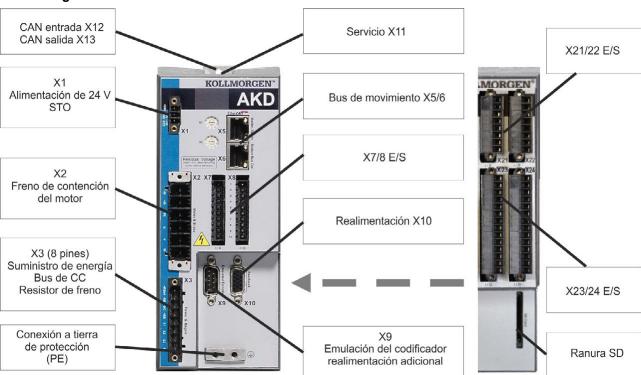
NOTA


Los cables extraídos están protegidos. La conexión a tierra eléctrica se extrae con líneas de guión y punto. Los dispositivos opcionales están conectados con líneas de puntos a la unidad. Los accesorios necesarios se describen en el manual de accesorios.

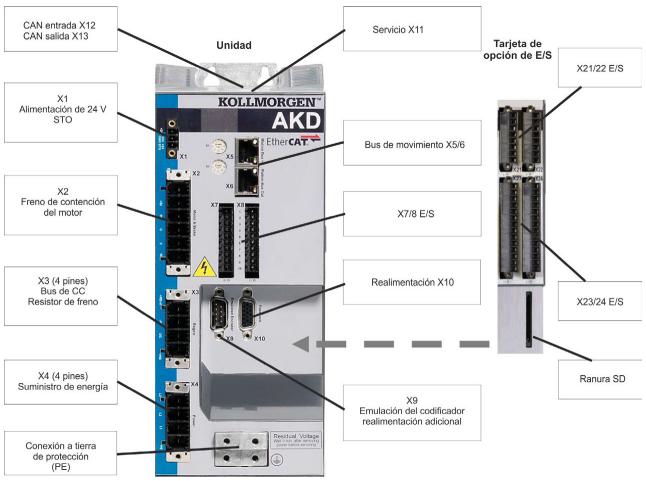
Con AKD-xzzz07

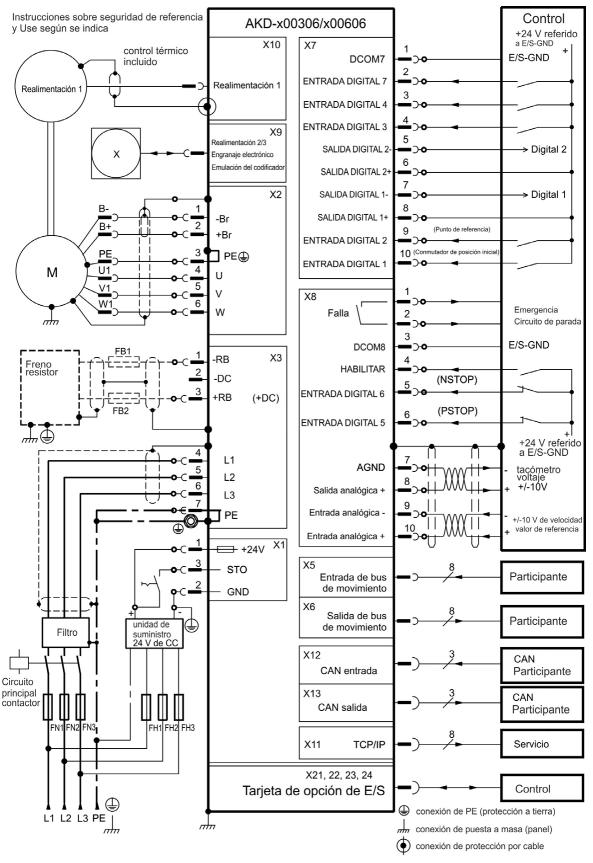
NOTA

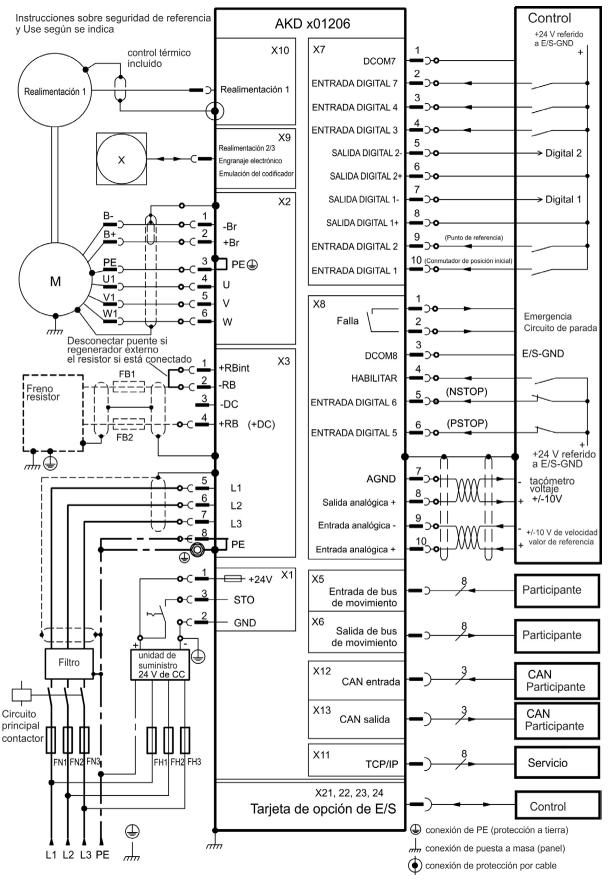
Los cables extraídos están protegidos. La conexión a tierra eléctrica se extrae con líneas de guión y punto. Los dispositivos opcionales están conectados con líneas de puntos a la unidad. Los accesorios necesarios se describen en el manual de accesorios.

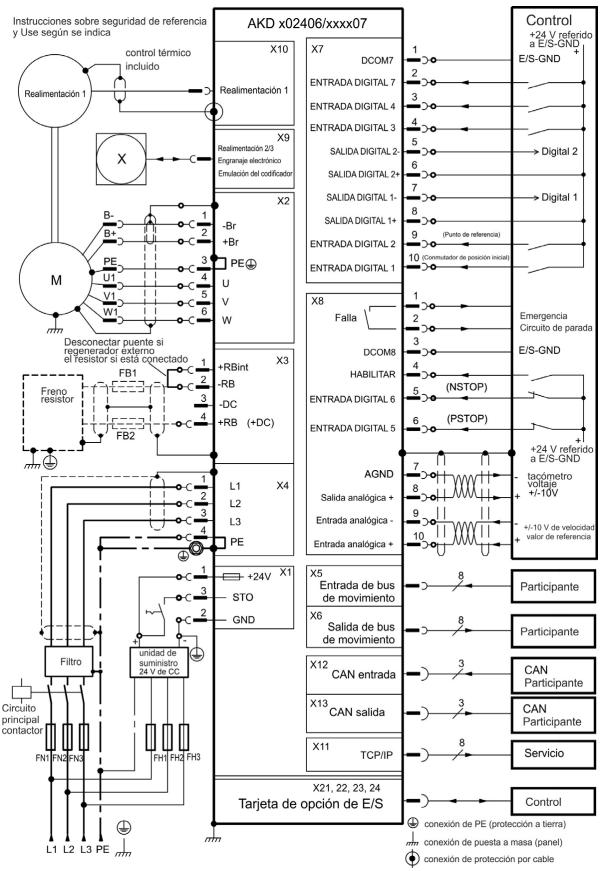


9.5 Descripción general de la conexión AKD-B, AKD-P, AKD-T

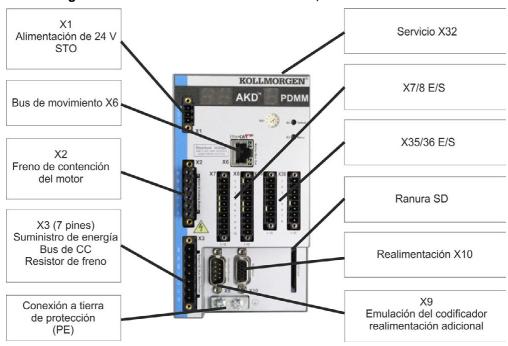

9.5.1 Asignación de los conectores AKD-x00306, AKD-x00606


9.5.2 Asignación de los conectores AKD-x01206

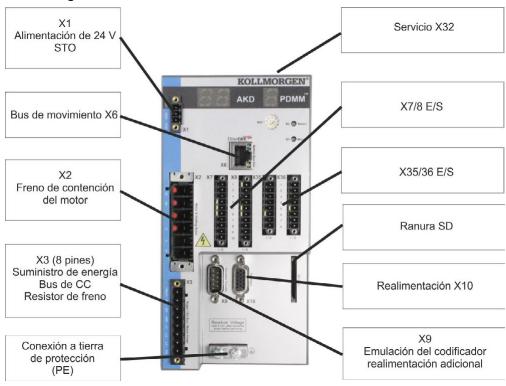

9.5.3 Asignación de los conectores AKD-x02406 y AKD-xzzz07


9.5.4 Diagrama de conexión AKD-x00306, AKD-x00606

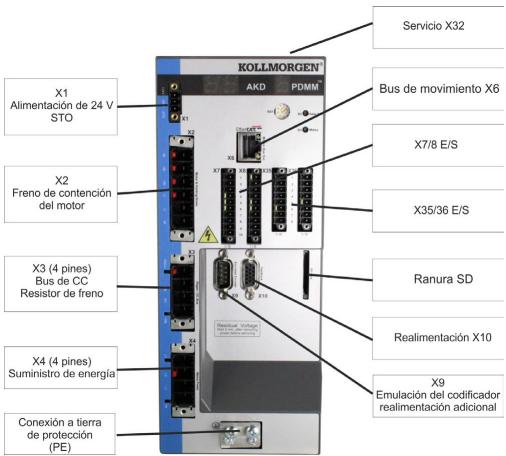
9.5.5 Diagrama de conexión AKD-x01206

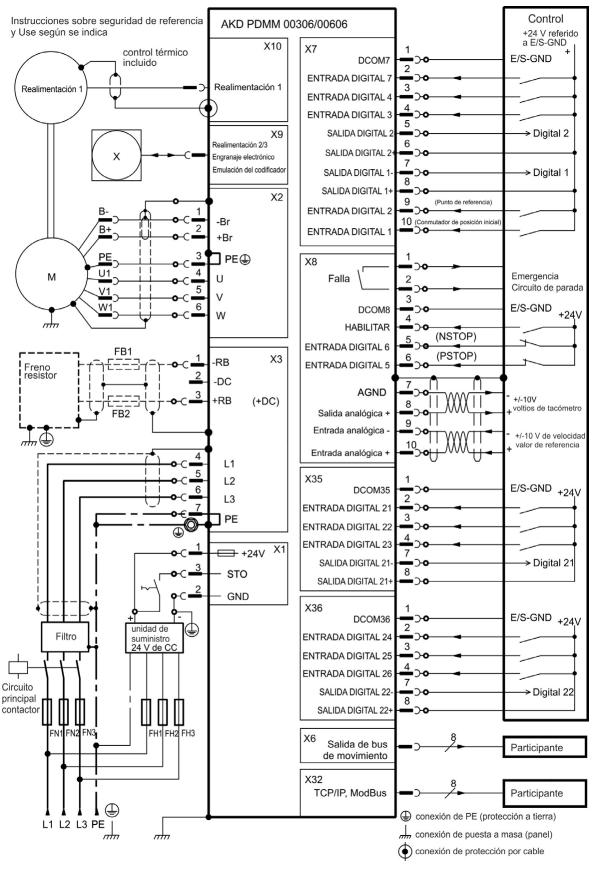


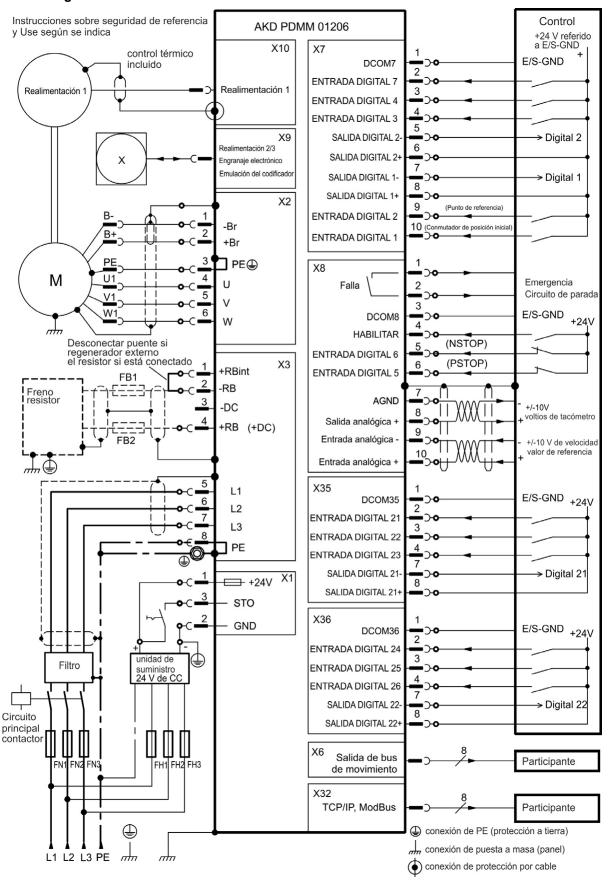
9.5.6 Diagrama de conexión AKD-x02406 y AKD-xzzz07

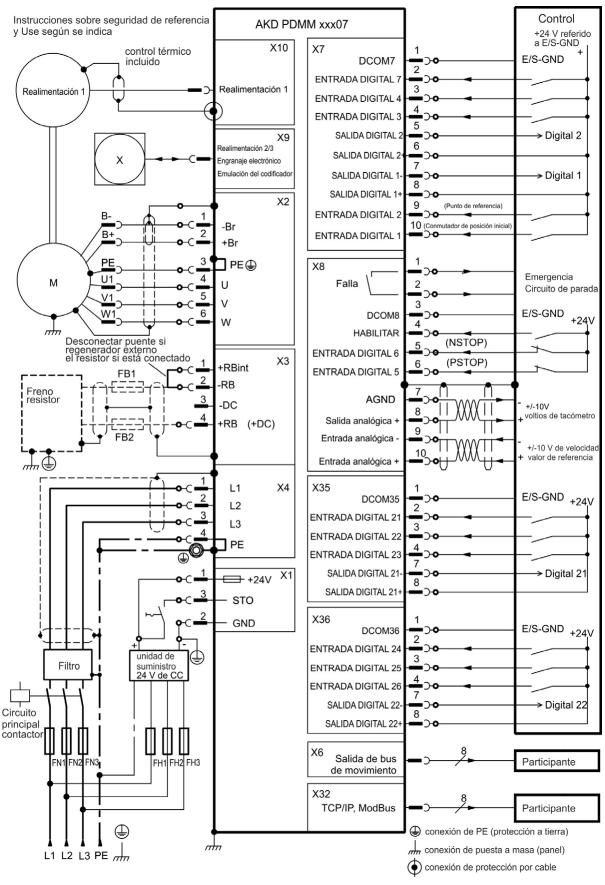


9.6 Descripción general de la conexión AKD-M


9.6.1 Asignación de los conectores AKD-M00306, AKD-M00606


9.6.2 Asignación de los conectores AKD-M01206


9.6.3 Asignación de los conectores AKD-M00307, AKD-M00607, AKD-M01207

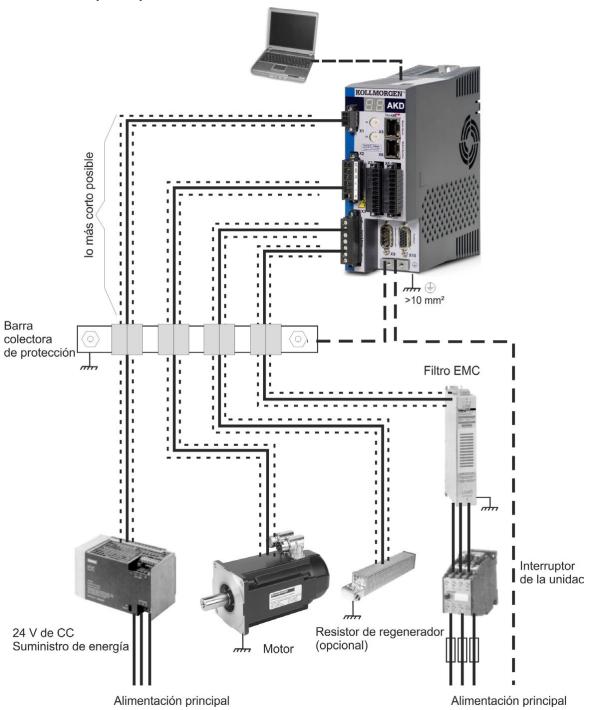

9.6.4 Diagrama de conexión AKD-M00306, AKD-M00606

9.6.5 Diagrama de conexión AKD-M01206

9.6.6 Diagrama de conexión AKD-M00307, AKD-M00607 y AKD-M01207

9.7 Reducción de ruido de EMI

9.7.1 Recomendaciones para reducir el ruido de EMI

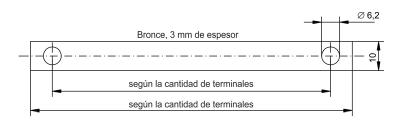

Las siguientes pautas lo ayudarán a reducir problemas con los ruidos eléctricos en su aplicación.

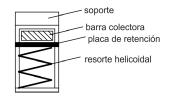
- Asegúrese de tener buenas conexiones entre los componentes del gabinete.
 Conecte el panel trasero y la puerta del gabinete al cuerpo del gabinete con varios enrejados conductivos.
 Nunca dependa de conexiones de puesta a tierra con pernos de montaje o bisagras. Realice una conexión eléctrica en toda la superficie trasera del panel de la unidad. Se prefieren los paneles de conducción eléctrica, como aluminio o acero galvanizado. En el caso de los paneles de metal pintados y recubiertos, quite todo el recubrimiento que hay detrás de la unidad.
- Asegúrese de tener una buena conexión a tierra.
 Establezca una conexión desde el gabinete hasta la conexión a tierra adecuada. Los cables de dicha conexión deben tener el mismo tamaño que aquellos de la alimentación principal o un tamaño menor.
- Utilice cables Kollmorgen™.
 La experiencia ha demostrado que aquellas personas que utilizan cables de alimentación y retroalimentación Kollmorgen™ tienen muchos menos problemas que los clientes que arman sus cables. Enrute por separado los cables de control y de energía, Kollmorgen™recomienda tener una distancia de, al menos, 200 mm para mejorar la inmunidad de la interferencia.
 Si el cable de suministro de energía del motor que se usa contiene núcleos para control de freno, dichos núcleos se deben proteger por separado.
- Realice la conexión a tierra de la protección de ambos extremos.
 Realice la conexión a tierra de la protección de áreas mayores (baja impedancia), con carcasas de conector metalizadas o abrazaderas de conexión de protección, cuando sea posible. En el caso de los cables que ingresan al gabinete, proteja los 360° del cable. No realice una simple "conexión flexible". Para obtener más información sobre los conceptos relacionados con la protección, => p. 94.
- Utilice filtros principales separados y mantenga la separación de los cables de conexión que ingresan al
 filtro principal y salen de éste (filtro de alimentación de fases).
 Ubique el filtro lo más cercano posible al punto donde la alimentación de entrada ingresa al gabinete. Si
 es necesario que se crucen los cables de conexión de alimentación de entrada y del motor, crúcelos a
 90°.
- Las líneas de retroalimentación no se pueden extender, dado que la protección quedaría interrumpida y se podría alterar el proceso de señales. Instale todos los cables de retroalimentación con una sección transversal adecuada, conforme a IEC 60204 (=> p. 44) y utilice el material para cables necesario para alcanzar la longitud máxima del cable.
- Separe los cables en forma adecuada.
 Si necesita dividir cables, use conectores con cubiertas de metal. Asegúrese de que ambas cubiertas se conectan a los 360° de los protectores. Ninguna parte del cableado debe quedar sin protección. No divida los cables en un segmento del terminal
- Utilice entradas diferentes para las señales analógicas.
 La susceptibilidad al ruido en las señales analógicas se reduce aún más al usar entradas diferenciales.
 Utilice líneas de señales protegidas, de par trenzado, que conecten los protectores en ambos extremos.
- Se deben proteger las líneas entre las unidades y los filtros y la resistencia regenerativa externa. Instale todos los cables de suministro de energía con un corte transversal adecuado, conforme a IEC 60204 (=> p. 44) y utilice el material del cable necesario para alcanzar la longitud máxima del cable.

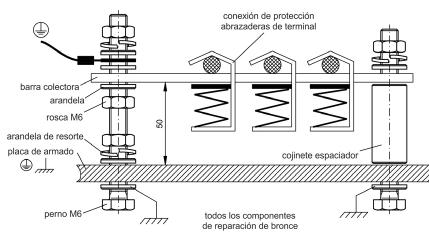
9.7.2 Proteger con barra colectora de protección externa

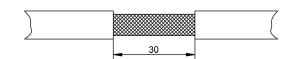
El filtrado de CE debe ser realizado en forma externa por el usuario, si es necesario, lo que requiere el uso de cables protegidos.Kollmorgen™ recomienda utilizar una conexión de protección en el punto de partida, por ejemplo, con una barra colectora de protección.

9.7.2.1 Concepto de protección


9.7.2.2 Barra colectora de protección




Los protectores del cable de suministro de energía (entrada de línea, cable del motor y resistencia regenerativa externa) se pueden direccionar a una barra colectora adicional mediante abrazaderas de protección.


Kollmorgen™ recomienda utilizar las abrazaderas de protección Weidmüller KLBÜ.

A continuación, se describe una situación posible de configuración de una barra colectora para las abrazaderas de protección.

1. Corte una barra colectora a la longitud necesaria de una barra de bronce (10 x 3 mm de corte transversal) y realice orificios, como se indica. Todas las abrazaderas de protección necesarias se deben poder encajar entre los orificios perforados.

▲ PRECAUCIÓN

Existe un riesgo de lesión debido a la fuerza de los resortes helicoidales. Use pinzas.

- 2. Junte el resorte helicoidal y la placa de soporte y pase la barra colectora por la apertura del soporte.
- 3. Monte la barra colectora con las abrazaderas de protección colocadas en la placa de armado. Utilice cojinetes espaciadores de metal o tornillos con roscas y accesorios para mantener un espacio de 50 mm. Conecte a tierra la barra colectora con un solo conductor con una sección transversal de, al menos, 2,5 mm².
- 4. Quite la cubierta externa del cable hasta una longitud aproximada de 30 mm, con cuidado de no dañar la protección trenzada. Empuje la abrazadera de protección hacia arriba y direccione el cable hacia ésta con la barra colectora.

AVISO

Asegúrese de tener buen contacto entre la abrazadera de protección y la protección trenzada.

9.7.3 Conexión de la protección para la unidad

Puede conectar la protección del cable directamente a la unidad; para ello, debe utilizar placas de conexión a tierra, abrazaderas de conexión de protección y un conector de motor con aliviador de tensión y placa de conexión a tierra.

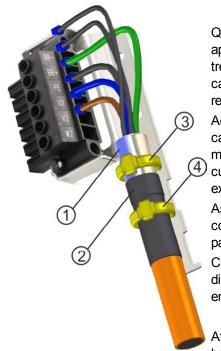
9.7.3.1 Placas de conexión a tierra

Monte las placas de conexión a tierra a la unidad como se muestra en las fotos que aparecen a continuación.

AKD-x0306 hasta tipos x1206: Placa de conexión a tierra en forma de L (solo en los Estados Unidos)

AKD-x02406 y tipos zzz07: placa plana de conexión a tierra

9.7.3.2 Abrazaderas de conexión de protección



Utilice abrazaderas de conexión de protección (consulte el manual de accesorios). Se unen a la placa de conexión a tierra y garantizan el contacto óptimo entre la protección y la placa de conexión a tierra.

Kollmorgen™ recomienda utilizar abrazaderas de protección Phoenix Contact SK14 con un rango de abrazaderas de 6 a 13 mm.

9.7.3.3 Conector de motor X2 con conexión de protección

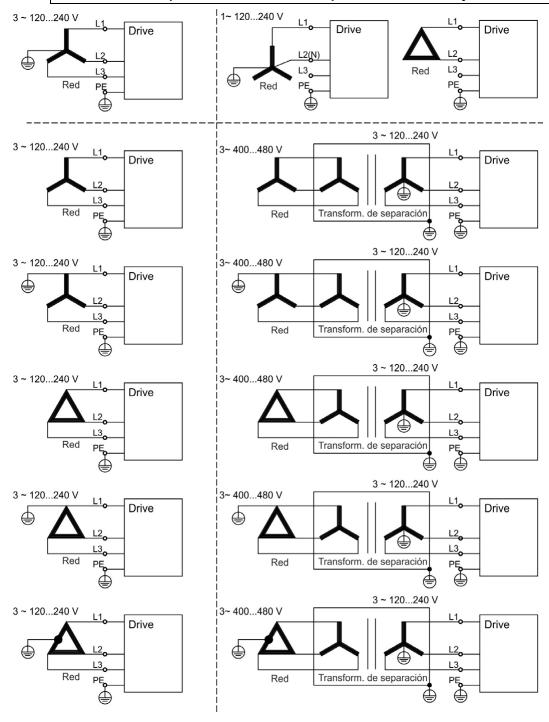
Puede realizar una conexión alternativa de la conexión de alimentación del motor; para ello, debe unir el conector con el aliviador de tensión.

Quite la cubierta externa del cable hasta una longitud aproximada de 120 mm, con cuidado de no dañar la protección trenzada. Empuje la protección trenzada (1) hacia atrás del cable y asegúrelo con una envoltura de goma (2) o un cable retráctil.

Acorte todos los cables aproximadamente 20 mm, excepto el cable protector de conexión a tierra (PE) (verde/amarillo), de modo que el cable PE sea ahora el cable más largo. Quite la cubierta de todos los cables y coloque los casquillos en los extremos del cable.

Asegure la protección trenzada del cable hasta el recubrimiento con un sujetacables (3) y utilice un segundo sujetacables (4) para sujetar el cable por encima de la manga de goma.

Coloque el cableado al conector como se muestra en el diagrama de conexiones. Enchufe el conector a la toma ubicada en la parte frontal de AKD.

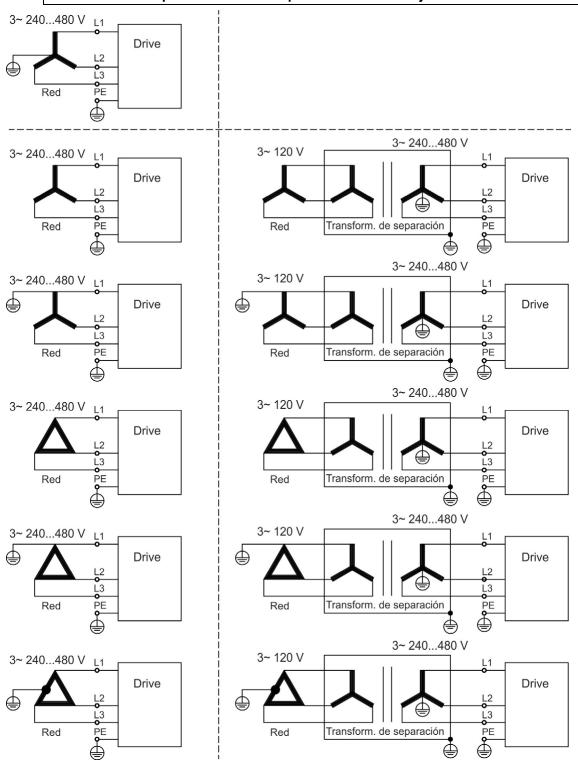

Atomille el conector en su lugar. De esta manera, garantiza que haya contacto conductivo en un área de superficie amplia entre la protección trenzada y el panel frontal.

9.8 Conexión de alimentación eléctrica

9.8.1 Conexión a las diversas redes de alimentación principal AKD-xzzz06 (120 V a 240 V)

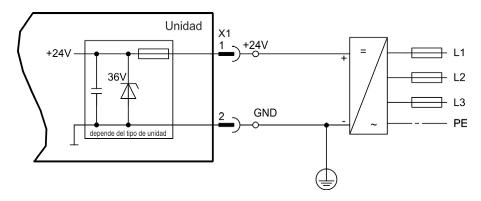
En esta página se muestran todas las variaciones de conexión posibles para las diferentes redes de alimentación eléctrica.

ADVERTENCIA Si la unidad no está conectada a tierra correctamente, hay peligro de que se produzca una descarga eléctrica con graves lesiones al personal como resultado. Es necesario utilizar siempre un transformador de aislamiento para redes de 400 a 480 V para obtener un voltaje máximo de 240 V +10 %.



9.8.2 Conexión a las diversas redes de alimentación principal AKD-xzzz07 (240 V a 480 V)

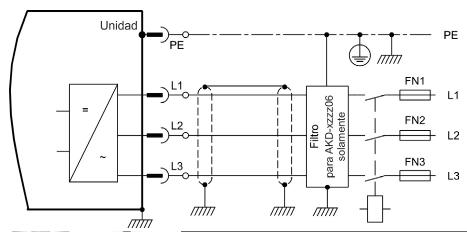
En esta página se muestran todas las variaciones de conexión posibles para las diferentes redes de alimentación eléctrica.


ADVERTENCIA

Si la unidad no está conectada a tierra correctamente, hay peligro de que se produzca una descarga eléctrica con graves lesiones al personal como resultado. Es necesario utilizar siempre un transformador de aislamiento para redes de 120 V para obtener un voltaje mínimo de 240 V +10 %.

9.8.3 Alimentación auxiliar de 24 V (X1)

En el siguiente diagrama, se describe el suministro de energía externa de 24 V de CC, aislada en forma eléctrica, por ejemplo, mediante un transformador de aislamiento. La calificación de corriente necesaria dependerá del uso del freno del motor y tarjeta de opción => p. 37 o => p. 38).



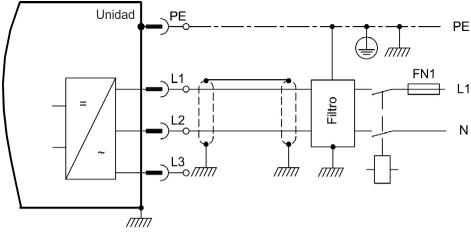

Р	in	Señal	Descripción		
Ľ	1	+24	Voltaje auxiliar de +24 V de CC		
	2	GND	GND de alimentación de 24 V		
(3	STO	Habilitación de STO (Desactivación de torque por seguridad)		

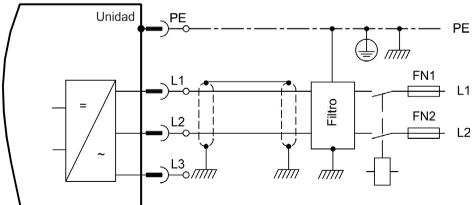
9.8.4 Conexión de alimentación principal (X3, X4)

9.8.4.1 Conexión de tres fases (todos los tipos de AKD)

- En forma directa a la red de alimentación de 3 fases, redes de alimentación => p. 97
- El filtro para AKD-xzzz06 será proporcionado por el usuario.
- La conexión de fusibles (por ejemplo, la instalación de fusibles) será proporcionada por el usuario => p.

AKD-x00306 hastaAKD-x00606 (X3)			
Pin	Señal	Descripción	
4	L1	Línea 1	
5	L2	Línea 2	
6	L3	Línea 3	
7 PE		Conexión a tierra de protección	

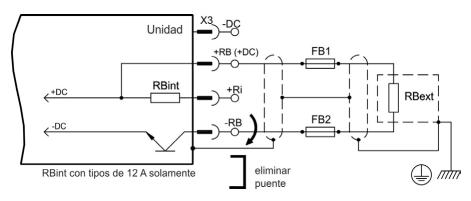

AKD-x01206 (X3)					
Pin	Señal	Descripción			
5	L1	Línea 1			
6	L2	Línea 2			
7	L3	Línea 3			
8	PE	Conexión a tierra de protección			



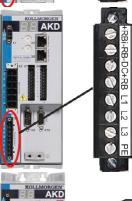
AKD-x02406	AKD-x02406 y AKD-xzzz07 (X4)			
Pin	Señal	Descripción		
1	L1	Línea 1		
2	L2	Línea 2		
3 L3	L3	Línea 3		
4 PE		Conexión a tierra de protección		

9.8.4.2 Conexión de una fase (AKD-x00306 hastaAKD-x01206 solamente)

- Directamente a la red de alimentación de una fase (=> p. 97
- Redes de alimentación => p. 97
- Dejar el circuito abierto L3
- El filtro será proporcionado por el usuario.
- La conexión de fusibles (por ejemplo, la instalación de fusibles) será proporcionada por el usuario => p. 40


AKD-x00306 hastaAKD-x00606 (X3)				
Pin	Señal	Descripción		
4 L1		Línea 1		
5	L2 (N)	Neutro o línea 2		
7	PE	Conexión a tierra de protección		

AKD-x0 ²	AKD-x01206 (X3)				
Pin	Señal	Descripción			
5	L1	Línea 1			
6	L2 (N)	Neutro o línea 2			
8	PE	Conexión a tierra de protección			

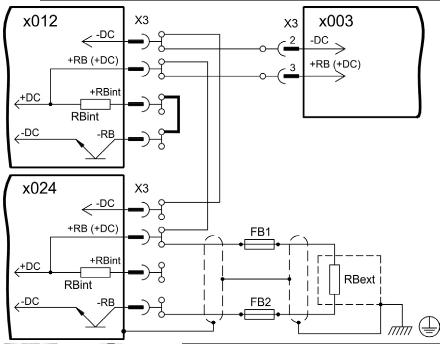

9.9 Resistencia regenerativa externa (X3)

Para conocer los datos técnicos del circuito de freno "Freno dinámico" (=> p. 45). La conexión de fusibles (por ejemplo, la instalación de fusibles) será proporcionada por el usuario "Fusión" (=> p. 40).

Α	AKD-x00306 hastaAKD-x00606 (X3)			
	Pin	Señal	Descripción	
	1	-RB	Resistencia regenerativa externa negativa	
	3	+RB	Resistencia regenerativa externa positiva	

AKD-x	AKD-x01206 (X3)				
Pin	Señal	Descripción			
1	+Rbint	Resistencia regenerativa interna positiva			
2	-RB	Resistencia regenerativa externa negativa			
4	+RB	Resistencia regenerativa externa positiva			

AKD-x024	AKD-x02406 y AKD-xzzz07 (X3)				
Pin	Señal	Descripción			
2	-RB	Resistencia regenerativa externa negativa			
4	+RB	Resistencia regenerativa externa positiva			


9.10 Enlace de bus de CC (X3)

El enlace de bus de CC se puede conectar en paralelo de manera que la potencia del regenerador se divida entre todas las unidades que están conectadas con el mismo circuito de enlace de bus de CC.

Todas las unidades deben tener su propia conexión de alimentación al voltaje principal, incluso si se utiliza un enlace de bus de CC.

AVISO

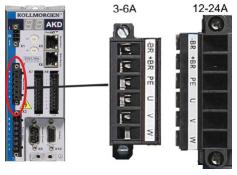
La unidad se puede destruir si los voltajes de enlace de bus de CC son diferentes. Solo las unidades con la alimentación principal de la misma unidad principal (voltaje y fase principal idéntica) pueden estar conectadas por el enlace de bus de CC. Utilice núcleos únicos sin protección (corte transversal => p. 44) con una longitud máxima de 200 mm. Para longitudes mayores, utilice cables protegidos.

AKD-x00306 hastaAKD-x00606 (X3)				
Pin	Señal	Descripción		
2	-CC	Bus con enlace de CC negativo		
3 +CC (+RB)		Bus con enlace de CC positivo		

AKD-x01206 (X3)						
Pin	Señal	Descripción				
3	-CC	Bus con enlace de CC negativo				
4	+CC (+RB)	RB) Bus con enlace de CC positivo				

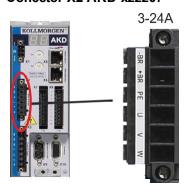
AKD-x02406 y AKD-xzzz07 (X3)						
Pin	Señal	Descripción				
3	-CC	Bus con enlace de CC negativo				
4 +CC (+RB)		Bus con enlace de CC positivo				

9.11 Conexión del motor


Junto con el cable de alimentación del motor y el bobinado del motor, la salida de alimentación de la unidad forma un circuito oscilante. Las características, como capacidad de los cables, longitud de los cables, inductancia del motor y frecuencia (=> p. 37 o => p. 38), determinan el voltaje máximo del sistema.

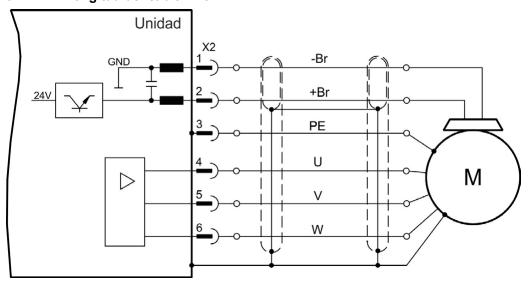
AVISO

El aumento de voltaje dinámico puede reducir la vida operativa del motor y, en el caso de motores no adecuados, puede provocar descargas en el bobinado del motor.

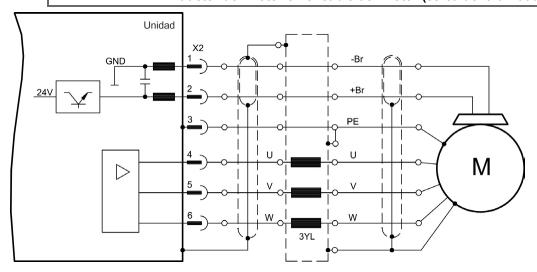

- Solo instale motores con clase de aislamiento F (acc. hasta IEC60085) o superior.
- Solo instale cables que cumplan con los requisitos de => p. 44.

Conector X2 AKD-xzzz06

Pir	Señal	Descripción			
1	-BR	Freno de contención del motor, negativo			
2	+BR	Freno de contención del motor, positivo			
3	PE	Conexión a tierra de protección (carcasa del			
		motor)			
4	U	Fase del motor U			
5	V	Fase del motor V			
6	W	Fase del motor W			


Conector X2 AKD-xzzz07

Pin Señal		Descripción			
1	-BR	Freno de contención del motor, negativo			
2	+BR	Freno de contención del motor, positivo			
3	PE	Conexión a tierra de protección (carcasa del motor)			
4	U	Fase del motor U			
5	V	Fase del motor V			
6	W	Fase del motor W			

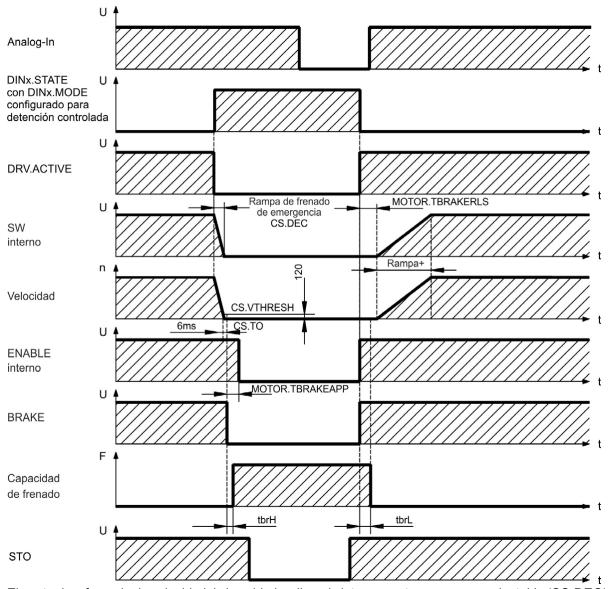

9.11.1 Potencia del motor (X2)

9.11.1.1 Longitud del cable ≤ 25 m

9.11.1.2 Longitud del cable >25 m AVISO Si tiene ca

Si tiene cables de motor prolongados, las corrientes de fuga ponen en peligro la etapa de potencia de salida de la unidad. En el caso de cables cuyas longitudes oscilan entre 25 m y 50 m, se debe realizar un cableado del inductor del motor en el cable del motor (cerca de la unidad).

9.11.2 Freno de contención del motor (X2)


La unidad puede controlar, de forma directa, un freno de contención de 24 V en el motor.

A PRECAUCIÓN El freno solo funciona con un nivel de voltaje suficiente de 24 V (=> p. 37 o => p. 38). Compruebe la caída de voltaje, mida el voltaje en la entrada de los frenos y compruebe la función de los frenos (con y sin frenos).

> Esta función no garantiza seguridad funcional. La seguridad funcional requiere un freno mecánico externo y adicional, operado por un controlador de seguridad.

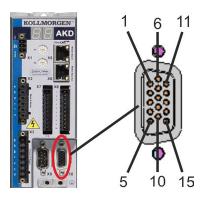
> La activación de hardware (conector X8 pin 4) no inicia una parada controlada, pero apaga la etapa de alimentación de inmediato. Configure el parámetro MOTOR.BRAKEIMM en 1 con ejes verticales, para aplicar el freno de inmediato después de una falla o la desconexión del hardware.

La función del freno se debe activar mediante un parámetro. El siguiente diagrama muestra las relaciones funcionales y de tiempo entre la señal de parada controlada, el punto de referencia de velocidad, la velocidad y la fuerza de frenado. Todos los valores se pueden ajustar con parámetros; los valores del diagrama son los valores predeterminados.

El punto de referencia de velocidad de la unidad es llevado internamente a una rampa ajustable (CS.DEC) a 0 V. Con los valores predeterminados, la salida del freno se enciende cuando la velocidad alcanza las 120 rpm (CS.VTHRESH) durante, al menos, 6 minutos (CS.TO). Los tiempos de elevación (t_{brH}) y caída (t_{brL}) del freno

de contención incorporado al motor son diferentes para los distintos tipos de motor (consulte el manual del motor).

9.12 Conexión de retroalimentación

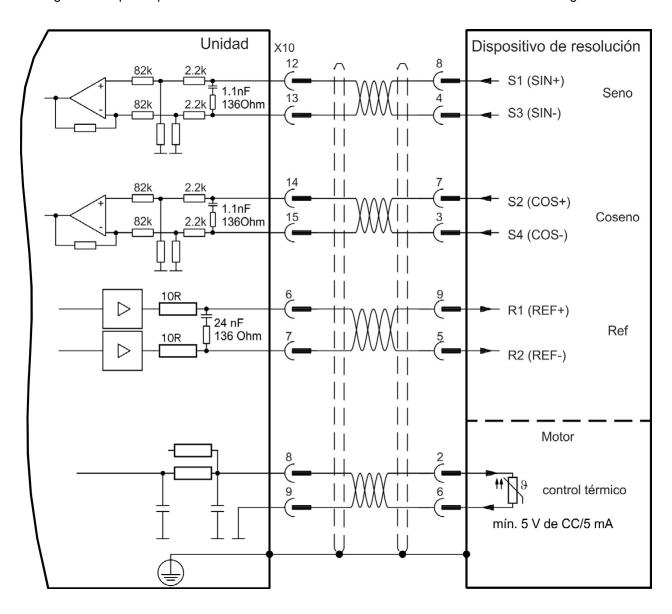

Cada sistema servo cerrado generalmente requiere, al menos, un dispositivo de retroalimentación para enviar los valores reales desde el motor hasta la unidad. Según el tipo de dispositivo de retroalimentación utilizado, la información se enviará nuevamente a la unidad mediante medios digitales o analógicos.

AKD admite los tipos más comunes del dispositivo de retroalimentación. Se pueden utilizar dos dispositivos de retroalimentación a la vez y todas las retroalimentaciones se conectan a X10. Las funciones de retroalimentación se asignan con parámetros en WorkBench, el software de configuración. También se realizan el escalamiento y otras configuraciones en WorkBench. Para obtener una descripción detallada de los parámetros, consulte la ayuda en línea de WorkBench.

En la tabla que aparece a continuación, se proporciona una descripción general de los tipos de retroalimentación compatibles, los parámetros correspondientes y una referencia al diagrama de conexión correspondiente a cada caso.

Tipos de retroalimentación	Cableado	Conector	FBTYPE
Resolver	=> p. 110	X10	40
SFD	=> p. 111	X10	41
Encoder SinCos BiSS A (analógico)	=> p. 112	X10	32
Encoder SinCos BiSS C (digital)	=> p. 113	X10	34
Encoder SinCos ENDAT 2.1	=> p. 114	X10	30
Encoder SinCos ENDAT 2.2	=> p. 115	X10	31
Sistema Smart Abs de Tamagawa	=> p. 119	X10	42
Hiperfaz de Encoder SinCos	=> p. 116	X10	33
Encoder senoidal + Hall	=> p. 117	X10	20
Encoder senoidal (Wake&Shake)	=> p. 117	X10	21
Encoder incremental + Hall	=> p. 118	X10	10
Encoder incremental (wake&shake)	=> p. 118	X10	11

9.12.1 Conector de retroalimentación (X10)

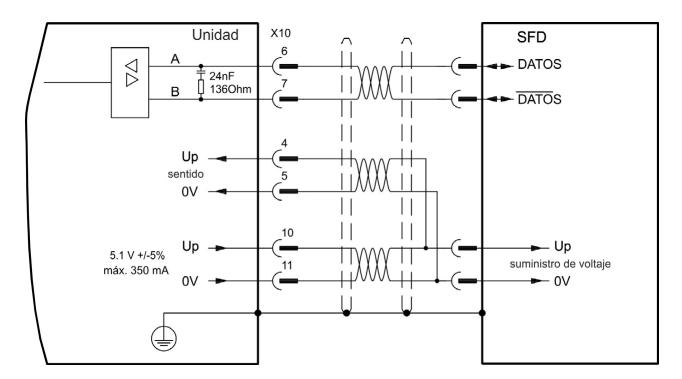

Pin	SFD	Resolver	BiSS A (analógico)	BiSS C (digital)	EnDAT 2.1	EnDAT 2.2	Hiperfaz	Encoder SINidal + Hall	Sistema Smart Abs de Tamagawa	Encoder incremental + Hall
1	-	-	-	-	-	-	-	Hall U	-	Hall U
2	-	-	CLOCK+	CLOCK+	CLOCK+	CLOCK+	-	Hall V	-	Hall V
3	-	-	CLOCK-	CLOCK-	CLOCK-	CLOCK-	-	Hall W	-	Hall W
4	SENSE+	-	SENSE+	SENSE+	SENSE+	SENSE+	SENSE+	SENSE+	SENSE+	SENSE+
5	SENSE-	-	SENSE-	SENSE-	SENSE-	SENSE-	SENSE-	SENSE-	SENSE-	SENSE-
6	COM+	R1 Ref+	DATA+	DATA+	DATA+	DATA+	DATA+	Null+	SD+	Null+
7	COM-	R2 Ref-	DATA-	DATA-	DATA-	DATA-	DATA-	Null-	SD-	Null-
8	-		Control térmico (PTC)							
9	-				Control	térmico (P	TC, GND)		
10	+5 V	-	+5 V	+5 V	+5 V	+5 V	+8 a +9 V	+5 V	+5 V	+5 V
11	0 V	-	0 V	0 V	0 V	0 V	0 V	0 V	0 V	0 V
12	-	S1 SIN+	A+	-	A+	-	SIN+	A+	-	A+
13	-	S3 SIN-	A-		A-	-	SIN-	A-	-	A-
14	-	S2 COS+	B+	-	B+	-	COS+	B+	-	B+
15	-	S4 COS-	B-	-	B-	-	COS-	B-	-	B-

9.12.2 Resolver

En el diagrama que aparece a continuación, se muestra la conexión de un resolver (de 2 a 36 polos) como sistema de retroalimentación. El control térmico del motor se conecta mediante el cable del resolver y se evalúa en la unidad. Si no hay control térmico en el motor, el cable debe pasar por los pines 8 y 9.

Si se planea tener cables de más de 100 m de longitud, comuníquese con el servicio de atención al cliente.

Tipo	FBTYPE	Descripción
Resolver	40	Precisión: 14 bits (0,022°), resolución: 16 bits (0,006°)

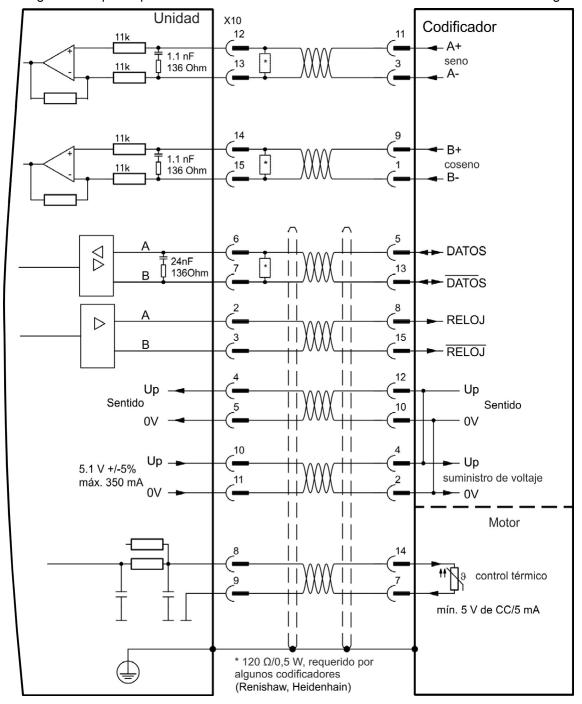


9.12.3 SFD

En el diagrama que aparece a continuación se muestra la conexión de un sistema de retroalimentación Kollmorgen™.

La entrada "Sentido" solo es necesaria para los cables de más de 50 m de longitud o si la resistencia de cables desde la unidad hasta el sensor supera los $3,3~\Omega$.

Tipo	FBTYPE	Arriba	Comentarios
Resolver inteligente	41	5 V +/-5 %	precisión: 14 bits (0,022°), resolución 24 bits (2 x 10E-5°)

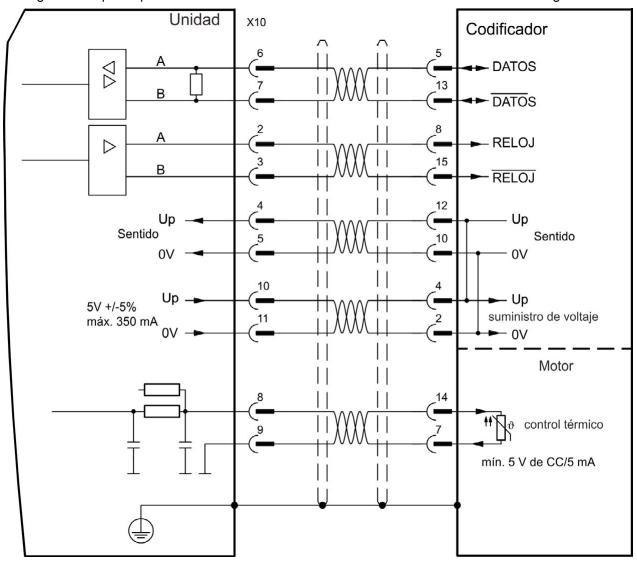

9.12.4 Encoder con BiSS

9.12.4.1 BiSS (Modo A) analógico

En el siguiente diagrama, se muestra el cableado de un encoder de vuelta simple o vuelta múltiple con interfaz BiSS Modo A como sistema de retroalimentación. El control térmico del motor se conecta mediante el cable de encoder y se evalúa en la unidad.

Si se planea tener cables de más de 50 m de longitud, consulte al servicio de atención al cliente.

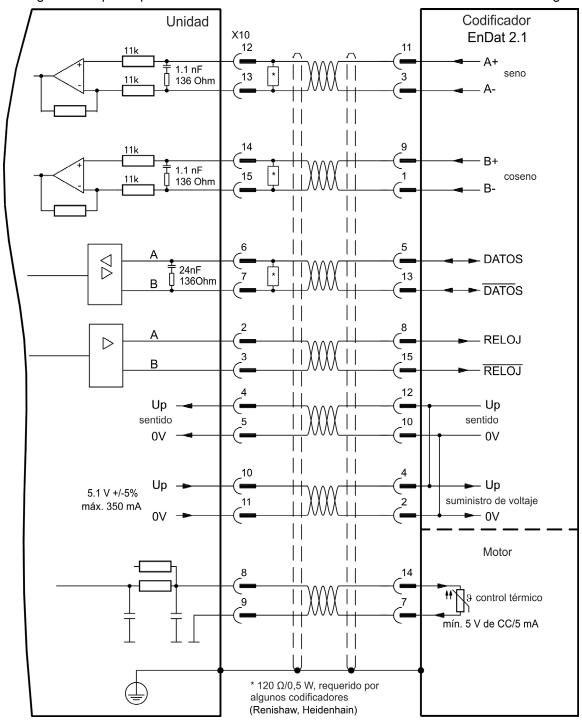
Tipo	FBTYPE	Arriba	Límite de frecuencia
BiSS (Modo A) analógico	32	5 V +/-5 %	1 MHz



9.12.4.2 BiSS (Modo C) digital

En el siguiente diagrama, se muestra el cableado de un encoer de vuelta simple o vuelta múltiple con interfaz BiSS Modo C de Renishaw (específicamente, el modelo Resolute RA26B) como sistema de retroalimentación. El control térmico del motor se conecta mediante el cable de encoder y se evalúa en la unidad.

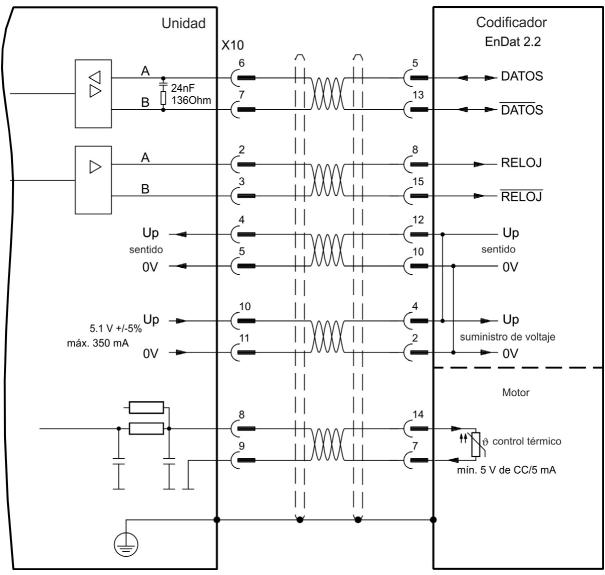
Si se planea tener cables de más de 25 m de longitud, consulte al servicio de atención al cliente.


Tipo	FBTYPE	Arriba	Límite de frecuencia
BiSS Modo C	34	5 V +/-5 %	2.5 MHz

9.12.5 Encoder senoidal con EnDat 2.1

En el siguiente diagrama, se muestra el cableado de un encoder seno-coseno de vuelta simple o vuelta múltiple con interfaz EnDat 2.1 como sistema de retroalimentación. Se prefieren los encoders de tipo ECN1313 y EQN1325. El control térmico del motor se conecta mediante el cable del encoder y se evalúa en la unidad. Todas las señales se conectan mediante el cable de conexión del encoder armado previamente. Si se planea tener cables de más de 50 m de longitud, consulte al servicio de atención al cliente.

Tipo	FBTYPE	Límite de frecuencia
ENDAT 2.1	30	1 MHz

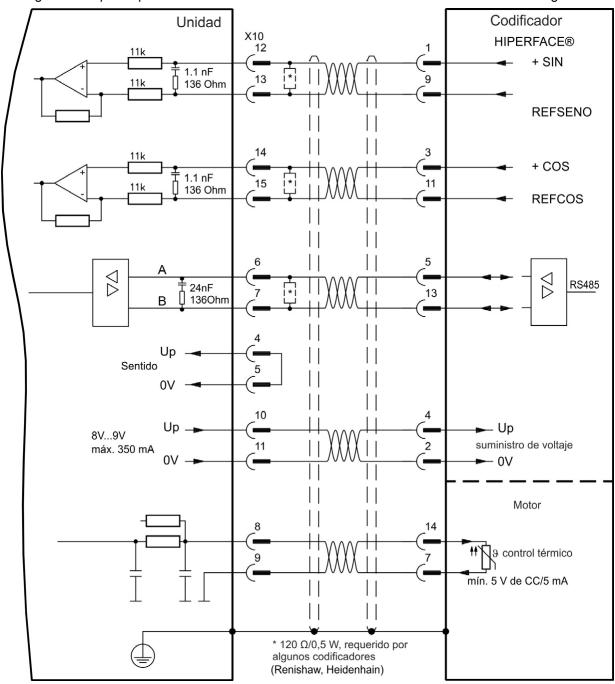

9.12.6 Encoder con EnDat 2.2

En la siguiente tabla y la siguiente figura, se muestra el cableado de un encoder de vuelta simple o vuelta múltiple con interfaz EnDat 2.2 como sistema de retroalimentación. Se prefieren los encoders de tipo ECN1313 y EQN1325.

El control térmico del motor se conecta mediante el cable de encoder y se evalúa en la unidad. Todas las señales se conectan mediante el cable de conexión del encoder armado previamente.

Si se planea tener cables de más de 50 m de longitud, consulte al servicio de atención al cliente.

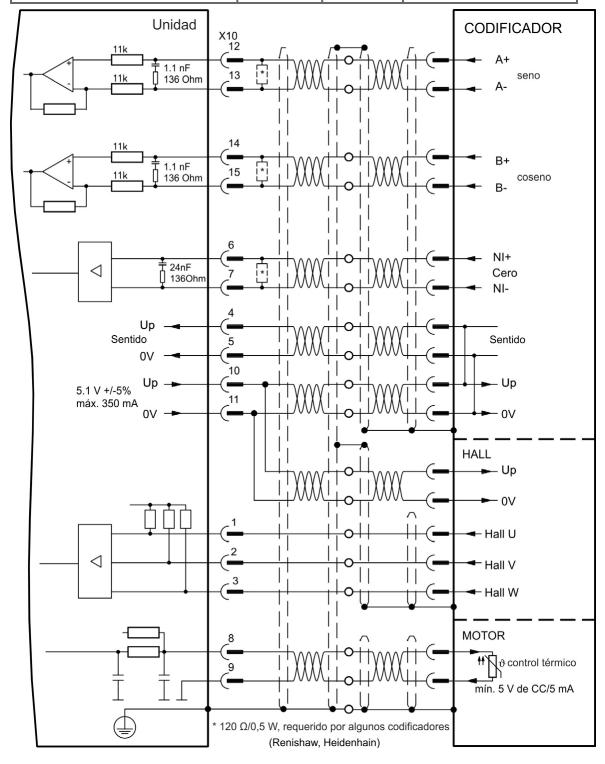
Tipo	FBTYPE	Límite de	Descripción
		frecuencia	
ENDAT	31	1 MHz	Ajuste en página de la pantalla
2.2			RETROALIMENTACIÓN


9.12.7 Encoder senoidal con hiperfaz

En el siguiente diagrama, se muestra el cableado de un encoder de seno-coseno de vuelta simple o vuelta múltiple con interfaz hiperfaz como sistema de retroalimentación.

El control térmico del motor se conecta mediante el cable de encoder y se evalúa en la unidad. Todas las señales se conectan mediante el cable de conexión del encoder armado previamente.

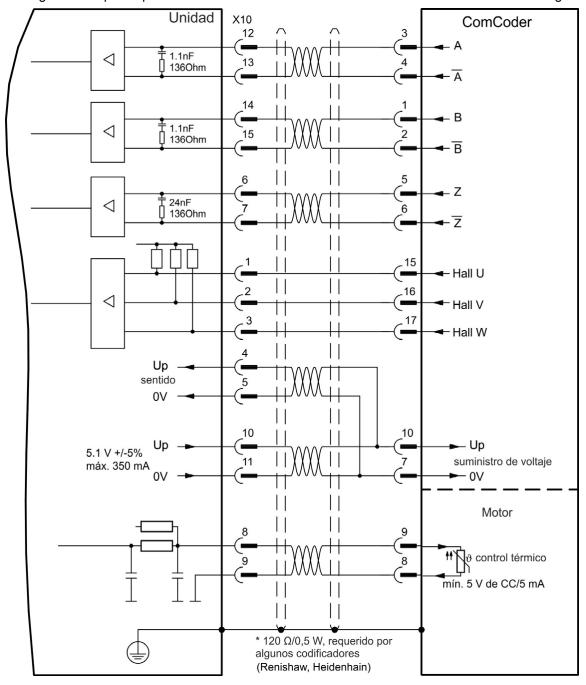
Si se planea tener cables de más de 50 m de longitud, consulte al servicio de atención al cliente.


Tipo	FBTYPE	Límite de	Descripción
		frecuencia	
Hiperfaz	33	1 MHz	Al conectar los pines 4 y 5 juntos, se produce un aumento de
			8a9V

9.12.8 Encoder senoidal

Los dispositivos de retroalimentación, que no proporcionan información absoluta para conmutación, pueden funcionar con la conmutación wake&shake (*consulte la Guía del usuario de AKD*) o se pueden utilizar como un sistema completo de retroalimentación cuando se lo combina con un encoder Hall adicional. Todas las señales se conectan a X10 y se evalúan allí. Si se planea tener cables de más de 25 m de longitud, consulte al servicio de atención al cliente.

Tipo	FBTYPE	Arriba	Límite de frecuencia (seno,
			coseno)
SinCos 1 V p-p con Hall	20	5 V +/-5 %	1 MHz
SinCos 1 V p-p (wake&shake)	21	5 V +/-5 %	1 MHz

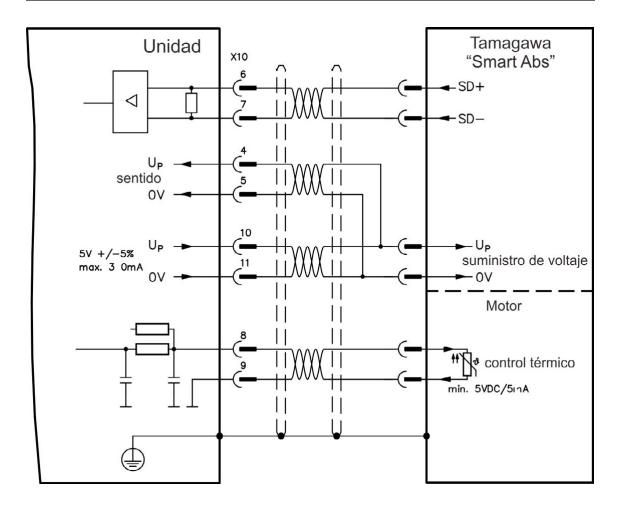


9.12.9 Encoder incremental

Los dispositivos de retroalimentación, que no proporcionan información absoluta para conmutación, pueden funcionar con la conmutación wake&shake (*consulte la Guía del usuario de AKD*) o se pueden utilizar como un sistema completo de retroalimentación cuando se lo combina con un encoder Hall adicional. Todas las señales se conectan mediante un cable de conexión comcoder armado previamente. El control térmico del motor se conecta mediante el cable de encoder y se evalúa en la unidad.

Si se planea tener cables de más de 25 m de longitud, consulte al servicio de atención al cliente.

Tipo	FBTYPE	Límite de frecuencia
Conmutadores Encoder&Hall incrementales (Comcoder)	10	2.5 MHz
Encoder incremental (wake&shake)	11	2.5 MHz



9.12.10 Encoder Smart Abs de Tamagawa

En el diagrama que aparece a continuación, se muestra el cableado de los encoders "Smart Abs" de Tamagawa (Tamagawa Seiki Co. Ltd. S48-17/33bit-LPS-5V o similar) como sistema de retroalimentación primario. El control térmico del motor se conecta mediante el cable de encoder y se evalúa en la unidad. Si no hay control térmico en el motor, el cable debe pasar por los pines 8 y 9. La señal de "Sentido" es opcional, pero se puede omitir si el cable del encoder es corto y no hay caída de voltaje significativa en el cable. La caída de voltaje depende del tamaño y la longitud del cable y del consumo actual del encoder.

Si se planea tener cables de más de 25 m de longitud, consulte al servicio de atención al cliente.

Tipo	FBTYPE	Arriba	Límite de frecuencia
S48-17/33bit-LPS-5V	42	5 V +/-5 %	2.5 MHz

9.13 Engranaje electrónico, operación maestro/esclavo

Es posible configurar sistemas maestros/esclavos, utilizar un encoder externo como encoder de comando, dispositivo de retroalimentación secundario (control de doble bucle) o conectar el amplificador a un controlador de paso externo. Según el nivel de voltaje de la señal, se deben utilizar los modelos X9 (5 V TTL) o X7 (24 V).

Para la configuración, se utiliza el software de instalación WorkBench. Consulte la pantalla "Retroalimentación 2" en WorkBench para obtener información sobre la instalación. FB2.SOURCE, FB2.MODE, FB2.ENCRES y otros se utilizan para configurar una aplicación con estas interfaces.

El conector X9 se puede configurar como entrada o salida para las señales de 5 V (nivel TTL).

KOLLMORGEN 5	Modos de entrada X9	Modo de salida
	Pulso y dirección, 5 V	Salida del encoder emulado (A cuad B), 5 V
	Up/Down, 5 V	
	Encoder incremental (A cuad B), 5 V	
1 6	Encoder con EnDat 2.2, 5 V	

El conector X7, DIGITAL-IN 1/2 se puede configurar como entrada para señales de 24 V.

KOLLMORGEN 1 X7 X8 X	Modos de entrada X7 DIGITAL-IN 1/2	Modo de salida
	Pulso y dirección, 24 V	
	Up/Down, 24 V	
10	Encoder incremental (A cuad B), 24 V	

9.13.1 Características técnicas y asignación de pines

9.13.1.1 Entrada del conector X7

Características técnicas

- La línea común de referencia flotante es DCOM7
- Frecuencia máxima de entrada de señal: 500 kHz
- Es posible realizar una conexión de tipo receptora o de origen
- Alta: 15 a 30 V/2 a 15 mA, Baja: -3 a 5 V/<15 mA
- Tasa de actualización: Hardware 2 µs

Pin	Pulso/Dirección	Arriba/abajo	Encoder incremental
9	Pulso	Up (CW)	Canal A
10	Dirección	Down (CCW)	Canal B
1	Común	Común	Común

9.13.1.2 Entrada al conector X9

Características técnicas

- Interfaz eléctrica: RS-485
- Frecuencia máxima de entrada de señal: 3 MHz
- Rango de voltaje de la señal de entrada: +12 V hasta -7 V
- Voltaje de alimentación (solo es aplicable a la entrada incremental del encoder): +5 V ±5 %
- Corriente máxima de alimentación: 250 mA

Pin	Pulso/Dirección	Arriba/abajo	ba/abajo Encoder incremental Encoder con EnD	
1	Pulso+	Up+	A+	CLOCK+
2	Pulso-	Up-	A-	CLOCK-
3	GND	GND	GND	GND
4	Dirección+	Down+	B+	DATA+
5	Dirección-	Down-	B-	DATA-
6	Protección	Protección	Protección	Protección
7	-	-	Cero+	-
8	-	-	Cero-	-
9	-	-	+ 5 V (alimentación, salida)	+5V (alimentación, salida)

AVISO

La longitud máxima del cable de un solo es aplicable a la entrada incremental del encoder incremental externo mediante X9 depende de la caída de voltaje del cable y los requisitos de alimentación del encoder externo. Consulte el ejemplo de cálculo en el capítulo "Engranaje electrónico" de la guía del usuario.

9.13.1.3 Salida del conector X9

Características técnicas

Interfaz eléctrica: RS-485
Frecuencia máxima: 3 MHz

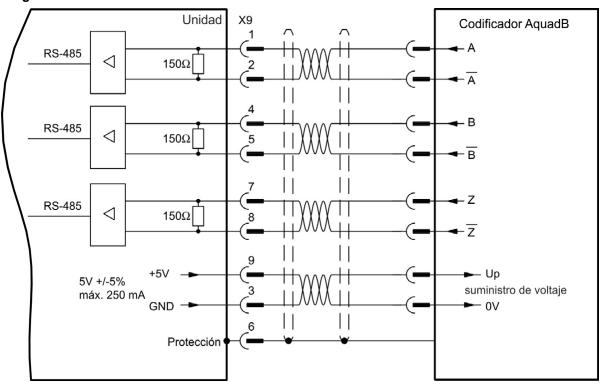
• Resolución: Hasta 16 bits

• Los valores de pulsos por revolución se pueden configurar.

• Cambio de fase de pulso: 90°±20°

Pin	Salida del encoder emulado			
1	Canal A+			
2	Canal A-			
3	GND			
4	Canal B+			
5	Canal B-			
6	Protección			
7	Canal cero+			
8	Canal cero-			
9	-			

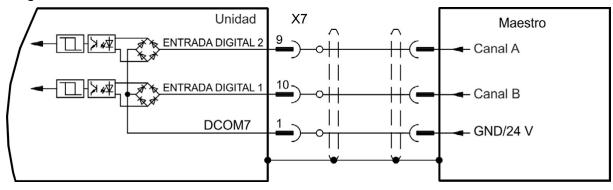
NOTA


La longitud máxima permitida del cable es de 100 metros.

9.13.2 Conexión de señal de encoder de comando

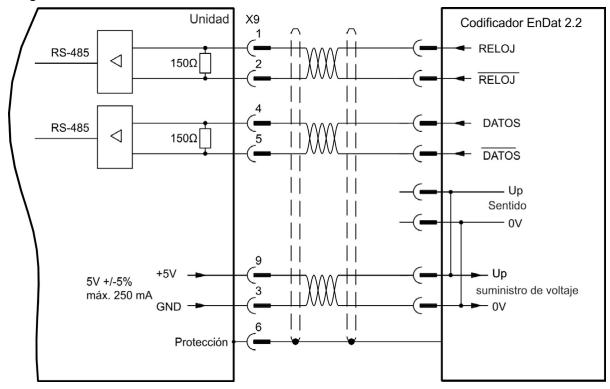
9.13.2.1 Entrada incremental del encoder de 5 V (X9)

Se puede conectar un encoder de 5 V A cuad B o la salida de emulación del encoder de otra unidad a esta entrada, que se puede utilizar como encoder de comando, retroalimentación de doble bucle, engranajes o entrada del mecanismo. ¡No la utilice como conexión de retroalimentación del motor principal!


Diagrama de conexión

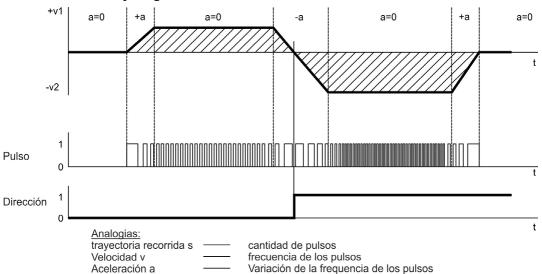
9.13.2.2 Entrada incremental del encoder de 24 V (X7)

Se puede conectar un encoder de 24 V A cuad B a las entradas digitales 1 y 2, que se pueden utilizar como encoder de comando, retroalimentación de doble bucle, engranajes o entrada del mecanismo. ¡No la utilice como conexión de retroalimentación del motor principal!

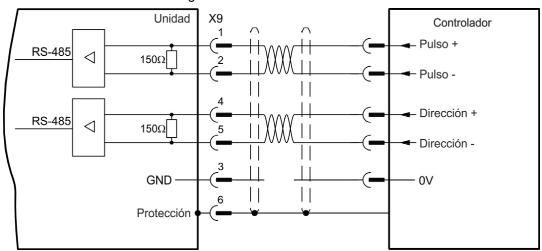

Diagrama de conexión

9.13.2.3 Encoder con entrada EnDat 2.2 de 5 V (X9)

Se puede conectar un encoder EnDat 2.2 de vuelta simple o vuelta múltiple a esta entrada, que se puede utilizar como encoder de comando, retroalimentación de doble bucle, engranajes o entrada del mecanismo. ¡No la utilice como conexión de retroalimentación del motor principal!


Diagrama de conexión

9.13.3 Conexión de señal de pulso/dirección

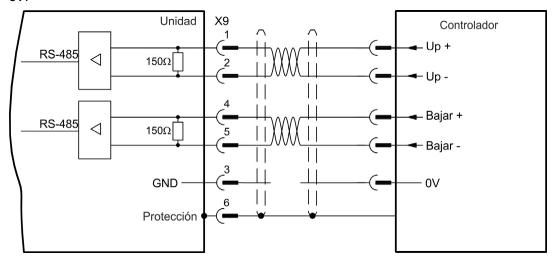

La unidad se puede conectar a un controlador motor gradual. Configure los parámetros de la unidad con WorkBench. Se puede ajustar la cantidad de pulsos, de manera que la unidad se pueda adaptar para ajustarse con cualquier controlador gradual.

Perfil de velocidad y diagrama de señal

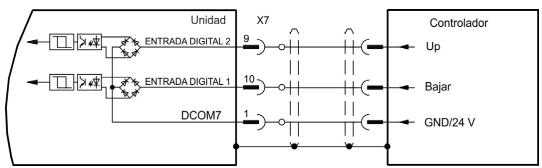
9.13.3.1 Entrada de pulso/dirección de 5 V (X9)

Conexión a controladores motor gradual con nivel de señal de 5 V.

9.13.3.2 Entrada de pulso/dirección de 5V (X7)

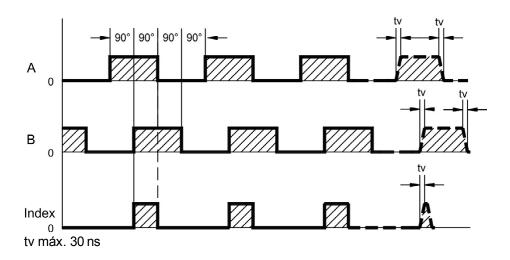

Controladores motor gradual lógicos de 5 V estándar de la industria con salidas de pulso/dirección o gradual/dirección. Tenga en cuenta que las entradas opto X7 pueden funcionar con 5V hasta una entrada lógica de 24V y, por lo tanto, estas entradas además se pueden llevar con entradas lógicas de 24V.

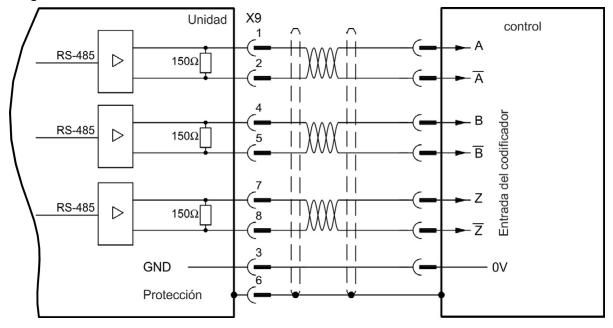
9.13.4 Conexión de señal ascendente/descendente


9.13.4.1 Entrada ascendente/descendente de 5 V (X9)

Se puede conectar la unidad a un controlador externo que proporciona señales ascendentes-descendentes de 5V.

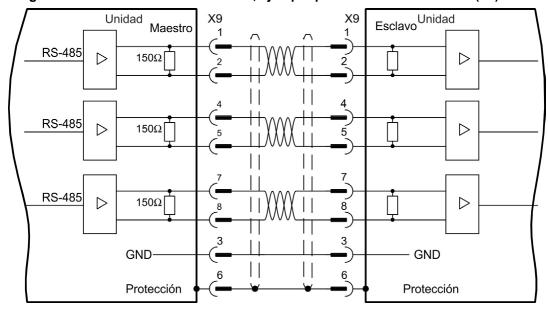
9.13.4.2 Entrada ascendente/descendente de 24 V (X7)


Se puede conectar la unidad a un controlador externo que proporciona señales ascendentes-descendentes de 24 V.


9.13.5 Salida del encoder emulado (EEO)

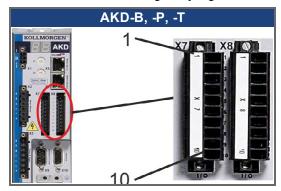
La unidad calcula la posición del eje del motor desde las señales cíclicas absolutas de la retroalimentación principal, generando pulsos compatibles con el encoder incremental a partir de esta información. Las salidas de pulsos del conector SubD X9 son 3 señales, A, B e Index, con una diferencia de fases de 90° (es decir, de cuadratura, de ahí el término alternativo salida "A cuad B"), con pulso cero.

La resolución (antes de la multiplicación) se puede configurar mediante el parámetro DRV.EMUERES. Utilice el parámetro DRV.EMUEZOFFSET para ajustar y guardar la posición de pulso cero dentro de un giro mecánico. Las unidades funcionan con el voltaje de alimentación interna.


Diagrama de conexión

9.13.6 Control maestro-esclavo

Se pueden conectar diversos AKD como unidades esclavos en el AKD maestro. Las unidades esclavas utilizan las señales de salida del encoder maestro como entrada del comando y siguen estos comandos (velocidad y dirección).

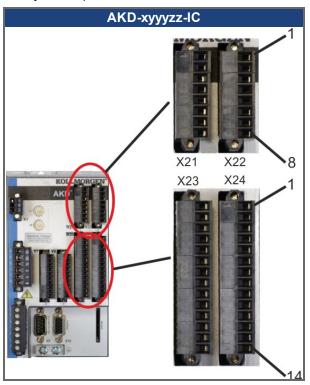

Diagrama de conexión maestro/esclavo, ejemplo para nivel de señal de 5V (X9)

9.14 Conexión de E/S

9.14.1 Conectores de E/S X7 y X8 (todas las variantes de AKD)

Las señales de E/S analógicas y digitales estándar se conectan a X7 y X8.

Con.	Pin	Señal	Abreviatura	Función	Diagrama de cableado
X7	1	Digital común X7	DCOM7	Línea común para pines X7 2, 3, 4, 9, 10	
X7	2	Entrada digital 7	DIGITAL-IN 7	Programable	=> p. 135
X7	3	Entrada digital 4	DIGITAL-IN 4	Programable	
X7	4	Entrada digital 3	DIGITAL-IN 3	Programable	
X7	5	Salida digital 2-	DIGITAL-OUT2-	Programable	
X7	6	Salida digital 2+	DIGITAL-OUT2+	Programable	=> p. 138
X7	7	Salida digital 1-	DIGITAL-OUT1-	Programable	-> μ. 130
X7	8	Salida digital 1+	DIGITAL-OUT1+	Programable	
X7	9	Entrada digital 2	DIGITAL-IN 2	Programable, alta velocidad	-> n 125
X7	10	Entrada digital 1	DIGITAL-IN 1	Programable, alta velocidad	=> p. 135
X8	1	Salida del relevador de falla	Salida del relevador de falla	Salida del relevador de falla	-> n 120
X8	2	Salida del relevador de falla	Salida del relevador de falla	Salida del relevador de falla	=> p. 139
X8	3	Digital común X8	DCOM8	Línea común para pines X8 4, 5, 6	
X8	4	Entrada digital 8	DIGITAL-IN 8	Activar etapa de salida, no programable	=> p. 135
X8	5	Entrada digital 6	DIGITAL-IN 6	Programable	
X8	6	Entrada digital 5	DIGITAL-IN 5	Programable	·
X8	7	Conexión a tierra analógica	AGND	GND analógica	=> p. 134
X8	8	Salida analógica +	Analog-Out	Voltaje real de velocidad	
X8	9	Entrada analógica -	Analog-In-	Punto fijo de velocidad	=> p. 133
X8	10	Entrada analógica +	Analog-In+	i unio njo de velocidad	-> μ. 100

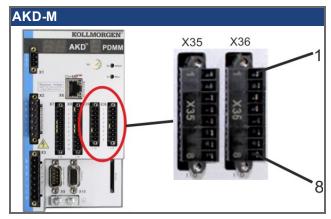

Las líneas comunes digitales para X7 y X8 no son comunes entre sí.

La línea DCOMx debe estar conectada a 0V de la alimentación de E/S cuando se utilizan los sensores del tipo "Origen" con entradas digitales.

La línea DCOMx debe estar conectada a 24V de la alimentación de E/S cuando se utilizan los sensores del tipo "Receptora" con entradas digitales.

9.14.2 Conectores de E/S X21, X22, X23 y X24 (unidades solo con tarjeta de opción de E/S)

La tarjeta de opción de E/S ofrece cuatro conectores X21, X22, X23, X24 adicionales para señales de E/S.



Con.	Pin	Señal	Abreviatura	Función	Diagrama de cableado
X21	1	Entrada digital 21	DIGITAL-IN 21	Programable	
X21	2	Entrada digital 22	DIGITAL-IN 22	Programable	
X21	3	Entrada digital 23	DIGITAL-IN 23	Programable	
X21	4	Digital común X21/1_3	DCOM21.1_3	Línea común para pines X21 1, 2, 3	=> p. 140
X21	5	Entrada digital 24	DIGITAL-IN 24	Programable	-> μ. 140
X21	6	Entrada digital 25	DIGITAL-IN 25	Programable	
X21	7	Entrada digital 26	DIGITAL-IN 26	Programable	
X21	8	Digital común X21/5_7	DCOM21.5_7	Línea común para pines X21 5, 6, 7	
X22	1	Entrada digital 27	DIGITAL-IN 27	Programable	
X22	2	Entrada digital 28	DIGITAL-IN 28	Programable	
X22	3	Entrada digital 29	DIGITAL-IN 29	Programable	
X22	4	Digital común X22/1_3	DCOM22.1_3	Línea común para pines X22 1, 2, 3	=> p. 140
X22	5	Entrada digital 30	DIGITAL-IN 30	Programable	-> μ. 140
X22	6	Entrada digital 31	DIGITAL-IN 31	Programable	
X22	7	Entrada digital 32	DIGITAL-IN 32	Programable	
X22	8	Digital común X22/5_7	DCOM22.5_7	Línea común para pines X22 5, 6, 7	

Con.	Pin	Señal	Abreviatura	Función	Diagrama de cableado
X23	1	Salida analógica 2 +	Analog-Out 2	Programable	
X23	2	reservado	n.c.	n.c.	=> p. 134
X23	3	Conexión a tierra analógica	AGND	Programable	-> p. 10 4
X23	4	reservado	n.c.	n.c.	
X23	5	Salida digital 21+	DIGITAL-OUT 21+	Programable	
X23	6	Salida digital 21-	DIGITAL-OUT 21-	Programable	
X23	7	Salida digital 22+	DIGITAL-OUT 22+	Programable	
X23	8	Salida digital 22-	DIGITAL-OUT 22-	Programable	=> p. 142
X23	9	Salida digital 23+	DIGITAL-OUT 23+	Programable	-> μ. 142
X23	10	Salida digital 23-	DIGITAL-OUT 23-	Programable	
X23	11	Salida digital 24+	DIGITAL-OUT 24+	Programable	
X23	12	Salida digital 24-	DIGITAL-OUT 24-	Programable	
X23	13	Salida del relevador 25	DIGITAL-OUT 25	Programable, relevador	=> p. 143
X23	14	Salida del relevador 25	DIGITAL-OUT 25	Programable, relevador	-> μ. 143
X24	1	Entrada analógica 2+	Analog-In 2+	Programable	
X24	2	Entrada analógica 2-	Analog-In 2-	Programable	=> p. 133
X24	3	Conexión a tierra analógica	AGND	Programable	-> μ. 133
X24	4	reservado	n.c.	n.c.	
X24	5	Salida digital 26+	DIGITAL-OUT 26+	Programable	
X24	6	Salida digital 26-	DIGITAL-OUT 26-	Programable	
X24	7	Salida digital 27+	DIGITAL-OUT 27+	Programable	
X24	8	Salida digital 27-	DIGITAL-OUT 27-	Programable	=> p. 142
X24	9	Salida digital 28+	DIGITAL-OUT 28+	Programable	μ. 142
X24	10	Salida digital 28-	DIGITAL-OUT 28-	Programable	
X24	11	Salida digital 29+	DIGITAL-OUT 29+	Programable	
X24	12	Salida digital 29-	DIGITAL-OUT 29-	Programable	
X24	13	Salida del relevador 30	DIGITAL-OUT 30	Programable, relevador	=> p. 143
X24	14	Salida del relevador 30	DIGITAL-OUT 30	Programable, relevador	μ. 143

9.14.3 Conectores de E/S X35 y X36 (AKD-M solamente)

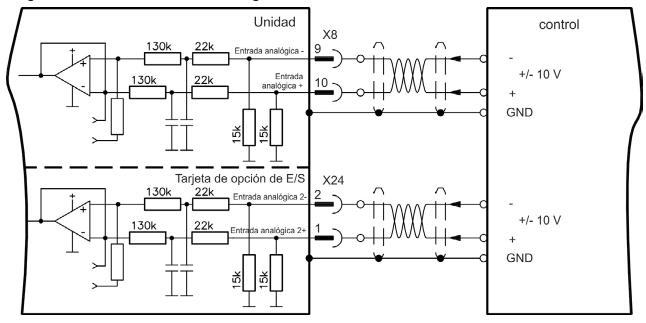
AKD PDMM ofrece dos conectores X35 y X36 adicionales para señales de E/S digitales.

Con.	Pin	Señal	Abreviatura	Función	Diagrama de cableado	
X35	1	Común digital X35	DCOM35	Línea común para pines X35 2, 3, 4		
X35	2	Entrada digital 21	DIGITAL-IN 21	Programable	=> p. 144	
X35	3	Entrada digital 22	DIGITAL-IN 22	Programable		
X35	4	Entrada digital 23	DIGITAL-IN 23	Programable		
X35	5	n.c.	n.c.	-	-	
X35	6	n.c.	n.c.	-	-	
X35	7	Salida digital 21-	DIGITAL-OUT 21-	Programable	-> n 146	
X35	8	Salida digital 21+	DIGITAL-OUT 21+	Programable	=> p. 146	
X36	1	Común digital X36	DCOM36	Línea común para pines X36 2, 3, 4		
X36	2	Entrada digital 24	DIGITAL-IN 24	Programable	=> p. 144	
X36	3	Entrada digital 25	DIGITAL-IN 25	Programable		
X36	4	Entrada digital 26	DIGITAL-IN 26	Programable		
X36	5	n.c.	n.c.	-	-	
X36	6	n.c.	n.c.	-	-	
X36	7	Salida digital 22-	DIGITAL-OUT 22-	Programable	-> n 1/6	
X36	8	Salida digital 22+	DIGITAL-OUT 22+	Programable	=> p. 146	

Las líneas comunes digitales para X35 y X36 no son comunes entre sí.

La línea DCOMx debe estar conectada a 24V de la alimentación de E/S cuando se utilizan los sensores del tipo "Receptora" con entradas digitales.

La línea DCOMx debe estar conectada a 0V de la alimentación de E/S cuando se utilizan los sensores del tipo "Origen" con entradas digitales.


9.14.4 Entrada analógica (X8, X24)

La unidad está equipada con entradas diferenciales para control de posiciones, velocidades o torque analógico. La unidad estándar ofrece una entrada analógica en X8, las unidades con tarjeta de opción de E/S incorporada ofrecen una segunda entrada en X24.

Características técnicas

- Rango de voltaje de la entrada diferencial: ± 12,5 V
- Voltaje máximo de entrada referido al regreso de E/S: -12,5, +16,0 V
- Resolución: 16 bits y completamente monotónico
- Desplazamiento sin ajuste: < 50 mV
- Tipo de desplazamiento de salida: 250 μV/°C
- Tolerancia de gradiente o ganancia: +/- 3%
- No linealidad: < 0,1 % de escala completa o 12,5 mV
- Proporción de rechazo de modo común: > 30 dB a 60 Hz
- Impedancia de entrada: > 13 000 Ω
- Proporción de señal y ruido denominada a escala completa:
 - AIN.CUTOFF = 3000 Hz: 14 bits
 AIN.CUTOFF = 800 Hz: 16 bits

Diagrama de cableado de entrada analógica

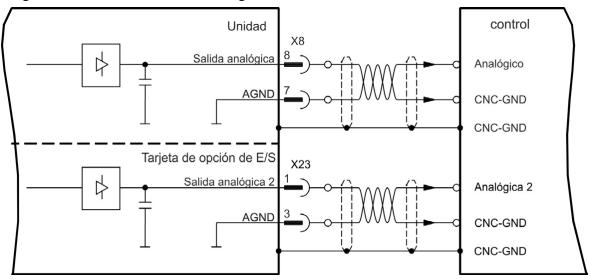
Ejemplos de aplicación para entrada analógica de punto fijo:

- entrada con sensibilidad reducida para operaciones de configuración/salto
- · control previo/sustituir

Definición de la dirección de rotación

Configuración estándar: rotación del eje del motor en sentido de las agujas del reloj (orientado hacia el extremo del eje) afectado por el voltaje positivo entre los terminales (+) y (-)

Para revertir la dirección de la rotación, cambie las conexiones a terminales +/-, o cambie el parámetro DRV.DIR en la página de pantalla "Retroalimentación 1".


9.14.5 Salida analógica (X8, X23)

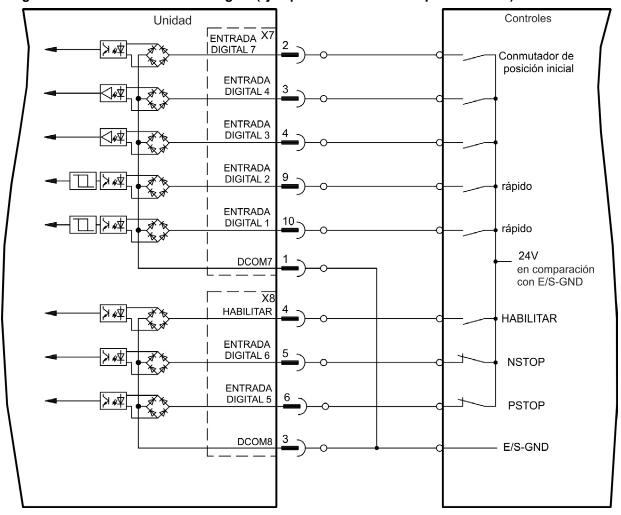
Las salidas analógicas se pueden utilizar para los valores analógicos convertidos de salida de las mediciones digitales registradas en la unidad. La unidad estándar ofrece una salida analógica en X8, las unidades con tarjeta de opción de E/S incorporada ofrecen una segunda entrada en X23. Podrá encontrar una lista de funciones programadas previamente en el software de configuración WorkBench.

Características técnicas

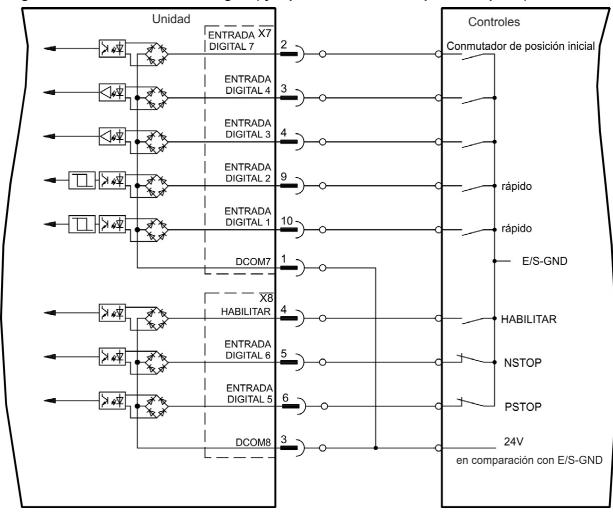
- Rango de voltaje de salida respecto a AGND: ± 10 V
- Resolución: 16 bits y completamente monotónico
- Desplazamiento sin ajuste: < 50 mV
- Tipo de desplazamiento de salida: 250 μV/°C
- Tolerancia de gradiente o ganancia: +/- 3%
- No linealidad: < 0,1 % de escala completa o 10 mV
- Impedancia de salida: 110 Ω
- La especificación cumple con la norma IEC 61131-2, Tabla 11
- Ancho de banda -3 dB: >8 kHz
- Corriente máxima de salida: 20 mA
- Carga de capacidad: cualquier valor excepto la velocidad de respuesta limitada por lout máx. y Rout
- Protegido contra cortocircuito con AGND

Diagrama de cableado de salida analógica

9.14.6 Entradas digitales (X7/X8)


La unidad proporciona 8 entradas digitales (=> p. 128). Se pueden utilizar para iniciar las funciones programadas previamente almacenadas en la unidad. Podrá encontrar una lista de estas funciones programadas previamente en WorkBench. La entrada digital 8 no se puede programar, pero está conectada a la función ENABLE (ACTIVAR).

Si se programa una entrada, se debe guardar en la unidad.


NOTA Según la función seleccionada, las entradas tienen una actividad baja o alta.

Las entradas se pueden utilizar con +24 V conmutado (tipo de origen) o GND conmutado (tipo receptora). Para conocer los ejemplos típicos del cableado de entrada digital, consulte los diagramas a continuación.

Diagrama de cableado de entrada digital (ejemplo de conexión del tipo de entrada)

Diagrama de cableado de entrada digital (ejemplo de conexión del tipo de recepción)

9.14.6.1 Entradas digitales 1 y 2

Estas entradas (X7/9 y X7/10) son particularmente rápidas y, por lo tanto, adecuadas para las funciones de pestillo. También se pueden utilizar como entradas de 24 V para equipos electrónicos (=> p. 120).

Características técnicas

- La línea común de referencia flotante es DCOM7
- Es posible tener sensores de tipo receptores o de origen
- Alta: 3,5 a 30 V/2 a 15 mA, Baja: -2 a +2 V/<15 mA
- Tasa de actualización: Hardware 2 µs

9.14.6.2 Entradas digitales 3 a 7

Estas entradas se pueden programar con el software de configuración. De manera predeterminada, no están programadas todas las entradas (apagado).

Para obtener más información, consulte el software de configuración.

Características técnicas

Elija la función que necesita en WorkBench.

- La línea común de referencia flotante es DCOM7 o DCOM8
- Es posible tener sensores de tipo receptores o de origen
- Alta: 3,5 a 30 V/2 a 15 mA, Baja: -2 a +2 V/<15 mA
- Tasa de actualización: Software 250 µs

9.14.6.3 Entrada digital 8 (ACTIVAR)

La entrada digital 8 (terminal X8/4) está configurada con la función Enable (Activar).

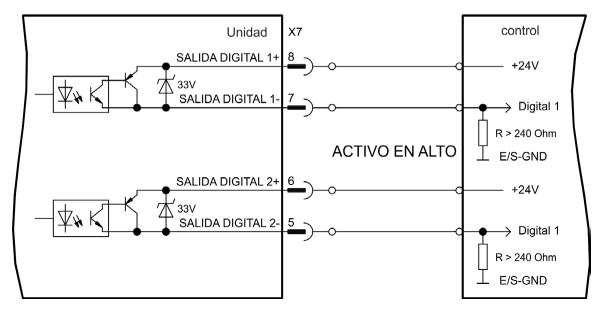
- La línea común de referencia flotante es DCOM8
- Es posible tener cableado de tipo receptor o de origen
- Alta: 3,5 a 30 V/2 a 15 mA , Baja: -2 a +2 V/<15 mA
- Tasa de actualización: conexión directa con hardware (FPGA)

La etapa de salida de la unidad se activa al aplicar la señal ENABLE (Terminal X8/4, activo en alto). La activación solo es posible si la STO de salida tiene una señal de 24 V (consulte "Desactivación de torque por seguridad (STO)" en p.58). En el estado desactivado (señal baja), el motor conectado no tiene torsión.

También es necesario contar con activación de software mediante el software de configuración (enlace AND), aunque también se puede activar de forma permanente con WorkBench.

9.14.7 Salidas digitales (X7/X8)


9.14.7.1 Salidas digitales 1 y 2


La unidad proporciona 2 salidas digitales (X7/5 a X7/8, => p. 128). Seleccione la función necesaria en el software de configuración. Aquí se pueden encontrar los mensajes de las funciones programadas previamente almacenadas en la unidad. Podrá encontrar una lista de estas funciones programadas previamente en el software de configuración. Si se debe asignar una salida a una función programada previamente, se debe guardar el parámetro configurado en la unidad.

Características técnicas

- Suministro de energía de E/S 24 V en terminales X7/8 y X7/6, 20 a 30 V de CC
- Todas las salidas digitales son flotantes, SALIDA DIGITAL 1/2: terminales X7/7-8 y X7/5-6), máx. 100
- Se pueden cablear como activas bajas o activas altas (consulte los ejemplos a continuación)
- Tasa de actualización: 250 μs

Diagrama de cableado

9.14.7.2 Contactos del relevador con FALLA

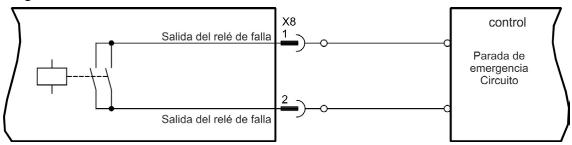
La preparación operativa (terminales X8/1 y X 8/2) está señalada por un contacto de relevador flotante.

El relevador defectuoso se puede programar con dos modos de operación:

- Contacto cerrado cuando no hay fallas
- Contacto cerrado cuando no hay fallas y la unidad está habilitada.

La señal no está influenciada por la señal de activación, el límite t l², ni el umbral de regeneración.

Características técnicas


- FALLA: Salida máxima de relevador 30 V de CC o 42 VCA, 1 A
- Tiempo de cierre: máx. 10 ms
 Tiempo de apertura: máx. 10 ms

• Tiempo de apertura: máx. 10 ms

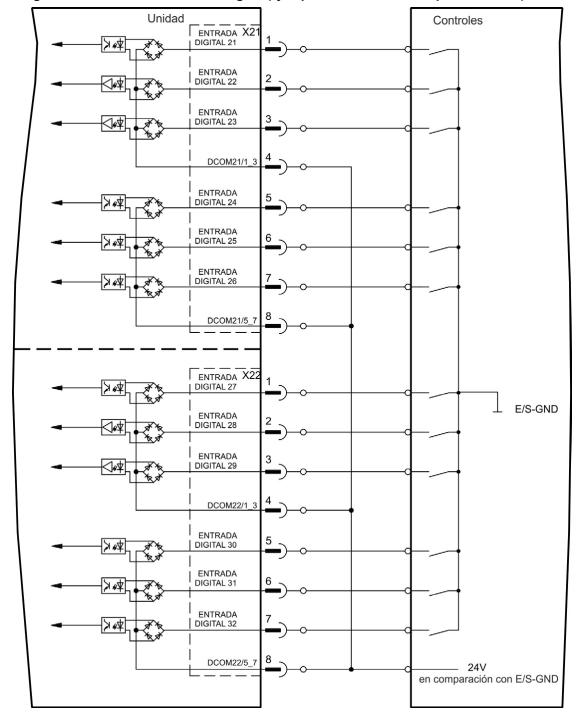
NOTA

Todas las fallas hacen que el contacto de FALLA se abra y la etapa de salida se desconecte (si el contacto de FALLA está abierto, se inhibe la etapa de salida -> sin salida de energía). Lista de los mensajes de fallas: => p. 189.

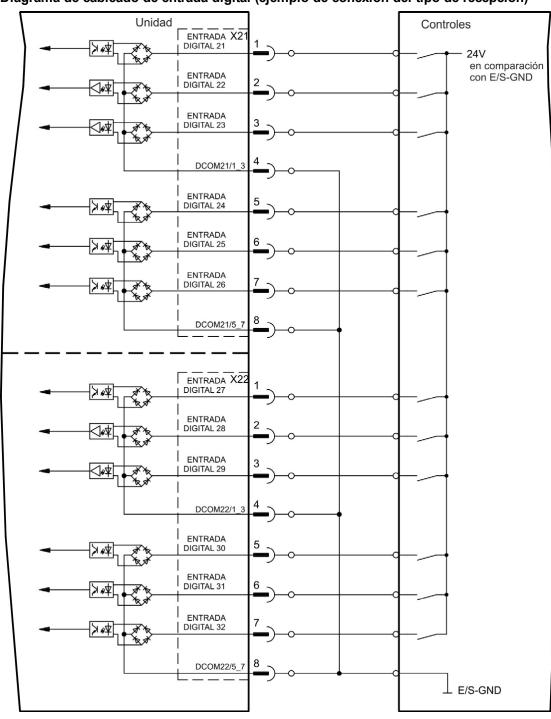
Diagrama de cableado

9.14.8 Entradas digitales con opción de E/S (X21, X22)

La opción de unidad "IC" proporciona 12 entradas digitales adicionales (=> p. 128). Se pueden utilizar para iniciar las funciones programadas previamente almacenadas en la unidad. Podrá encontrar una lista de estas funciones programadas previamente en WorkBench. Si se programa una entrada, se debe guardar en la unidad.


NOTA Según la función seleccionada, las entradas tienen una actividad baja o alta.

Las entradas se pueden utilizar con +24 V conmutado (tipo de origen) o GND conmutado (tipo receptora).

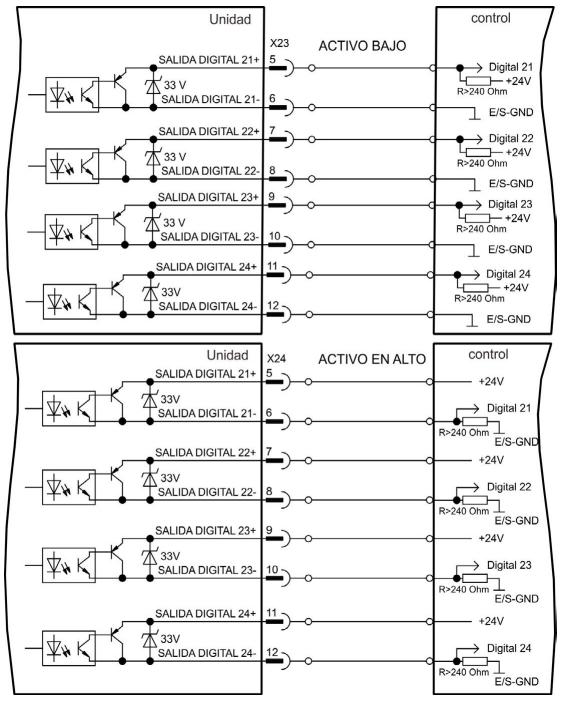

Características técnicas

- Es posible tener sensores de tipo receptores, de origen o flotantes
- Alta: 3,5 a 30 V/2 a 15 mA, Baja: -2 a +2 V/<15 mA, Velocidad de actualización: Software 250 µs

Diagrama de cableado de entrada digital (ejemplo de conexión del tipo de entrada)

Diagrama de cableado de entrada digital (ejemplo de conexión del tipo de recepción)

9.14.9 Salidas digitales con opción de E/S (X23/X24)


9.14.9.1 Salidas digitales 21 a 24, 26 a 29

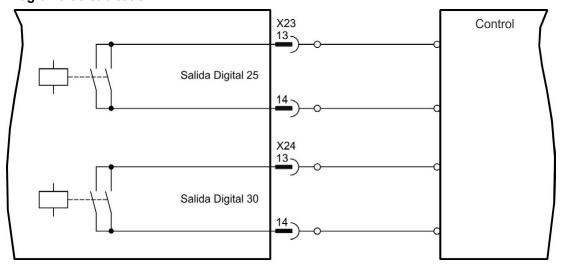
La opción "IC" de la unidad proporciona 10 salidas digitales (=> p. 128). Seleccione la función necesaria en el software de configuración. Aquí se pueden encontrar los mensajes de las funciones programadas previamente almacenadas en la unidad. Podrá encontrar una lista de estas funciones programadas previamente en el software de configuración. Si se debe asignar una salida a una función programada previamente, se debe guardar el parámetro configurado en la unidad.

Características técnicas

- Suministro de energía de E/S de 24 V, 20 a 30 V de CC, flotante, máx. 100 mA
- Se pueden cablear como activas bajas o activas altas (consulte los ejemplos a continuación)
- Tasa de actualización: 250 μs

Diagrama de cableado

9.14.9.2 Salidas del relevador digital 25, 30


La opción "IC" de la unidad proporciona dos salidas digitales, señalizadas mediante los contactos de relevador flotantes (=> p. 128). Seleccione la función necesaria en el software de configuración. Aquí se pueden encontrar los mensajes de las funciones programadas previamente almacenadas en la unidad. Podrá encontrar una lista de estas funciones programadas previamente en el software de configuración. Si se debe asignar una salida a una función programada previamente, se debe guardar el parámetro configurado en la unidad.

Características técnicas

• Salida máxima de relevador 30 V de CC o 42 VCA, 1 A

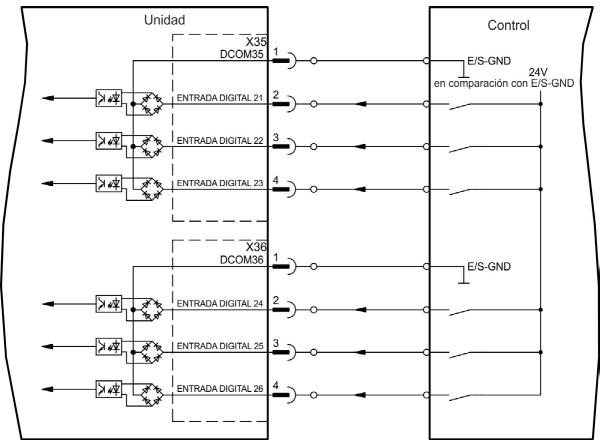
Tiempo de cierre: máx. 10 msTiempo de apertura: máx. 10 ms

Diagrama de cableado

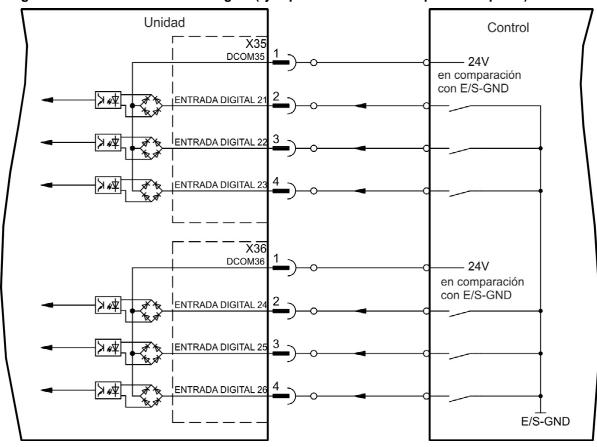
9.14.10 Entradas digitales (X35/X36) con AKD-M

Además de las 8 entradas digitales en X7 y X8 (=> p. 128), AKD PDMM proporciona 6 salidas digitales en X35 y X36. Se pueden utilizar para iniciar las funciones programadas previamente almacenadas en la unidad. Podrá encontrar una lista de estas funciones programadas previamente en KAS IDE. Si se programa una entrada, se debe guardar en la unidad. De manera predeterminada, no están programadas todas las entradas (apagado). Para obtener más información, consulte el software de configuración.

NOTA Según la función seleccionada, las entradas tienen una actividad baja o alta.


Características técnicas

Elija la función que necesita en KAS IDE.

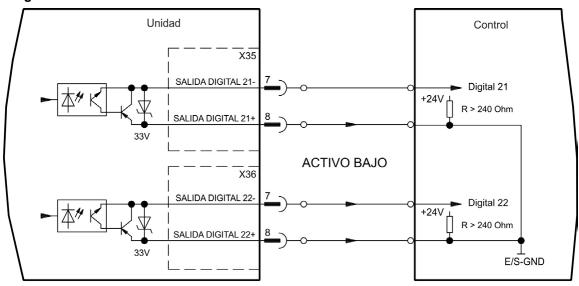

- La línea común de referencia flotante es DCOM35 o DCOM36
- Es posible tener sensores de tipo receptores o de origen
- Alta: 3,5 a 30 V/2 a 15 mA, Baja: -2 a +2 V/<15 mA
- Tasa de actualización: Software 250 μs

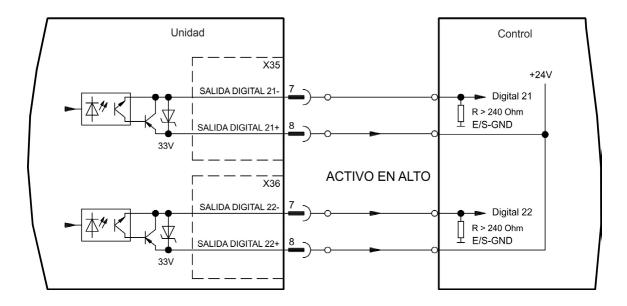
Las entradas se pueden utilizar con +24 V conmutado (tipo de origen) o GND conmutado (tipo receptora). Para conocer los ejemplos típicos del cableado de entrada digital, consulte los diagramas a continuación.

Diagrama de cableado de entrada digital (ejemplo de conexión del tipo de entrada)

Diagrama de cableado de entrada digital (ejemplo de conexión del tipo de recepción)

9.14.11 Salidas digitales (X35/X36) con AKD-M


9.14.11.1 Salidas digitales 21 y 22


Además de las 2 salidas digitales de X7 (=> p. 128), AKD PDMM proporciona 2 salidas digitales, X35 y X36. Seleccione la función necesaria en el software de configuración. Aquí se pueden encontrar los mensajes de las funciones programadas previamente almacenadas en la unidad. Podrá encontrar una lista de estas funciones programadas previamente en el software de configuración. Si se debe asignar una salida a una función programada previamente, se debe guardar el parámetro configurado en la unidad.

Características técnicas

- Suministro de energía de E/S de 24 V en terminales X35/8 y X36/8, 20 a 30 V de CC
- Todas las salidas digitales son flotantes, máx. 100 mA
- Se pueden cablear como activas bajas o activas altas (consulte los ejemplos a continuación)
- Tasa de actualización: 250 μs

Diagrama de cableado

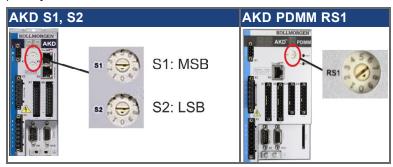
9.15 Pantalla LED

La pantalla LED de siete segmentos indica el estado de la unidad después de encender la alimentación de 24 V. Si la conexión de servicio al equipo o PAC no funciona, la pantalla LED es la única manera de obtener información.

AKD de dos dígitos

Los códigos de falla o advertencia de AKD se muestran constantemente si se producen. Los mensajes de falla están codificados con "F" o "E", los de advertencia están codificados con "n". La dirección IP parpadea en la pantalla LED si se presiona el botón B1.

AKD-M dígitos dos + uno



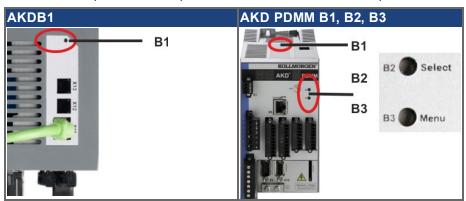
La pantalla LED de dos dígitos indica los mensajes de AKD. Los mensajes de fallas tienen código "F", los de advertencia tienen código "n".

La luz LED de un dígito indica los mensajes de PDMM de AKD PDMM. Los mensajes de error tienen código "E", los de advertencia (alarmas) tienen código "A". También se indica el estado de los programas de indicación. Se puede iniciar un menú con diversas funciones al presionar los botones B2 y B3 (=> p. 149).

9.16 Conmutadores rotativos (S1, S2, RS1)

Los conmutadores rotativos se pueden utilizar para elegir una dirección IP o funciones definidas previamente para ejecutar.

9.16.1 Conmutadores rotativos S1 y S2 conAKD-B, -P, -T


S1	S2	Función	Configurar mientras	Comentarios
0	0	DHCP IP	El indicador 24 V está APAGADO	La unidad obtiene la dirección IP de un servidor DHCP externo. Para obtener más información, consulte => p. 154.
X	у	IP estático	El indicador 24 V está APAGADO	La dirección IP es 192.168.0.nn, los valores válidos son de 01 a 99. Para obtener más información, consulte => p. 154.
Unio	dade	s AKD-x****-	CC únicamente	
8	9	Alternar DRV.TYPE	El indicador 24 V está ENCENDIDO y la unidad está desactivada	Presione B1 durante 3 segundos para cambiar de CAN a bus de campo EtherCAT o viceversa (=> p. 158 y=> p. 164). Apague y encienda nuevamente el indicador 24V.
Unio	dade	s con tarjeta o	de opción de E/S úı	nicamente
1	0	Cargar datos	El indicador 24 V está ENCENDIDO y la unidad está desactivada	Presione B1 durante 5 segundos para cargar los datos de la tarjeta SD a la unidad. Para obtener más información, consulte => p. 150.
1	1	Guardar datos	El indicador 24 V está ENCENDIDO y la unidad está desactivada	Presione B1 durante 5 segundos para cargar los datos de la unidad a la tarjeta SD. Para obtener más información, consulte => p. 150.
Unio	dade	s AKD-T únic	amente	
1	_	Detener programa	El indicador 24 V está ENCENDIDO	Presione B1 durante 5 segundos para detener el programa BASIC
1		Reiniciar programa	El indicador 24 V está ENCENDIDO	Presione B1 durante 5 segundos para reiniciar el programa BASIC

9.16.2 Conmutador rotativo RS1 con AKD-M

RS1	Función	Configurar mientras	Comentarios
0	1	El indicador 24 V está	La unidad obtiene la dirección IP de un servidor DHCP externo (=> p.
	IP	APAGADO	156).
1	IP	El indicador 24 V está	La dirección IP es un software que se puede configurar desde el
	estático	APAGADO	navegador web (=> p. 156).
2 a	IP	El indicador 24 V está	La dirección IP es 192.168.0.10n, los valores válidos son de 2 a 9 (=>
9	estático	APAGADO	p. 156).

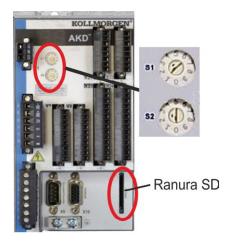
9.17 Botones (B1, B2, B3)

Los botones se pueden utilizar para iniciar las funciones definidas previamente.

9.17.1 Botón B1 con AKD-B, -P, -T

Función	Botón	Comentarios
Mostrar dirección IP	B1	Presione brevemente para mostrar la dirección IP en la pantalla de dos dígitos.
Cambia el tipo de unidad del modelo AKD-x***CC	B1	Configure los conmutadores rotativos S1 a 8 y S2 a 9. Presione B1 durante 3 segundos para cambiar desde CAN a EtherCAT o al revés.
Cargar datos desde la tarjeta SD	B1	Unidades solo con tarjeta de opción de E/S. Configure los conmutadores rotativos S1 en 1 y S2 en 0. Presione B1 durante 5 segundos para cargar datos de la tarjeta SD a la unidad.
Guardar datos en la tarjeta SD	B1	Unidades solo con tarjeta de opción de E/S. Configure los conmutadores rotativos S1 en 1 y S2 en 1. Presione B1 durante 5 segundos para guardar los datos de la tarjeta SD en la unidad.

9.17.2 Botones B1, B2, B3 con AKD-M


Función	Botón	Comentarios		
-	B1	Sin usar		
Funciones del tier de encendido)	Funciones del tiempo de arranque (mantenga presionado el botón durante la secuencia de arranque de encendido)			
Modo de recuperación	B2	Mantenga presionado para iniciar en modo de recuperación.		
Menú	В3	Mantenga presionado para bloquear el arranque automático de la aplicación y comenzar a desplazarse por los elementos del menú.		
Funciones operati	Funciones operativas (presione el botón durante el modo de operación normal)			
Menú	В3	Presione para desplazarse por los elementos del menú. Los elementos del menú se mostrarán en la pantalla LED de 7 segmentos en forma reiterada durante 10 segundos y, para seleccionarlos, debe presionar B2.		

Función	Botón	Comentarios
Seleccionar un elemento del menú	В2	Presione mientras se muestra el elemento del menú requerido para llevar a cabo la acción. La aplicación está en ejecución, elementos del menú disponibles: Dirección "IP" "stop" (detener) aplicación (confirmar) No hay una aplicación en ejecución, elementos del menú disponibles: Dirección "IP" "start" (iniciar) aplicación (confirmar) "reset" (restaurar) a las opciones predeterminadas (confirmar) "backup" (realizar copia de seguridad) a la tarjeta SD (confirmar) (=> p. 152) "restore" (restaurar) de la tarjeta SD (confirmar) (=> p. 152)
Confirmar	B2	Si la selección del menú requiere una confirmación, se muestra la letra "y" durante 10 segundos, presione B2 para confirmar.

9.18 Ranura para tarjeta SD

9.18.1 Ranura para tarjeta SD con tarjeta de opción de E/S

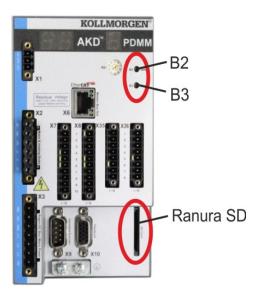
Las unidades con tarjeta de opción de E/S ofrecen una ranura para tarjeta SD para activar transferencias de archivos desde/hacia AKD y la tarjeta de memoria SD. Estas funciones se pueden activar desde el software WorkBench o con el botón B1 (parte superior de la unidad) combinado con la configuración de conmutador rotativo 10 u 11. Podrá encontrar una descripción detallada en la *Guía del usuario de AKD*.

Las operaciones guardar/cargar (de AKD a SD o de SD a AKD) solamente son posibles mientras no haya ningún programa en ejecución y la unidad esté desactivada. Se pueden guardar/cargar programas BASIC y parámetros no volátiles. Si se produce una falla durante las operaciones guardar/cargar, se muestra el número de falla en la pantalla con la letra E seguida de cuatro dígitos. Códigos de error => p. 189.

Tipos de tarjetas SD compatibles

Las tarjetas SD son formateadas previamente por el fabricante. La siguiente tabla describe los tipos de tarjetas SD y la compatibilidad con AKD.

Tipo de SD	Sistema de archivos	Capacidad	Compatible
SD (SDSC)	FAT16	1MB hasta 2GB	SÍ
SDHC	FAT32	4 GB hasta 32 GB	SÍ
SDXC	exFAT (Microsoft)	>32 GB a 2 TB	NO


Características

Si se coloca una tarjeta SD en la ranura SD, la unidad no está activada y no hay ningún programa en ejecución, configure los conmutadores rotativos como se muestra a continuación y presione B1 durante 5 segundos para iniciar la función de configuración.

Función	S1	S2	Comentarios
Guardar datos en la tarjeta SD	1	1	Presione B1 durante 5 segundos para guardar los datos de la unidad en la tarjeta SD.
Cargar datos desde la tarjeta SD	1	0	Presione B1 durante 5 segundos para cargar los datos de la tarjeta SD en la unidad.

9.18.2 Ranura de tarjeta SD con AKD-M

AKD PDMM ofrece una ranura de tarjeta SD y botones B2 y B3 para activar transferencias de archivos desde/hacia AKD PDMM y la tarjeta de memoria SD. Estas características también se pueden iniciar desde el software KAS IDE. Podrá encontrar una descripción detallada en la *Guía del usuario de AKD PDMM*.

NOTA

Las operaciones de copia de seguridad/restauración (de AKD PDMM a SD o de SD a AKD PDMM) no serán posibles si la aplicación se está ejecutando.

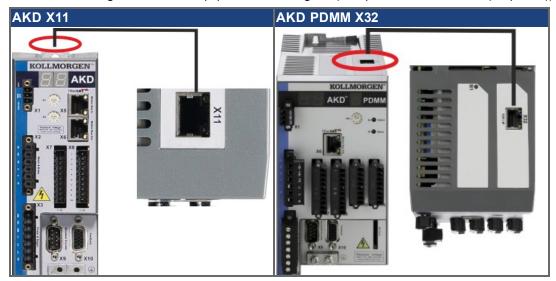
Detenga la aplicación desde el navegador web o utilice la acción de "detención" de B2/B3 antes de comenzar cualquier funcionalidad de tarjeta SD.

Si se produce una falla durante las operaciones guardar/cargar, se muestra el número de falla en la pantalla con la letra E seguida de dos dígitos. Códigos de error => p. 206.

Tipos de tarjetas SD compatibles

Las tarjetas SD son formateadas previamente por el fabricante. La siguiente tabla describe los tipos de tarjetas SD y la compatibilidad con AKD PDMM.

Tipo de SD	Sistema de archivos	Capacidad	Compatible
SD (SDSC)	FAT16	1MB hasta 2GB	SÍ
SDHC	FAT32	4 GB hasta 32 GB	SÍ
SDXC	exFAT (Microsoft)	>32 GB a 2 TB	NO


Características

Si se coloca una tarjeta SD en la ranura SD y no hay ningún programa de aplicación en ejecución, el menú del botón (que se inicia con B3, => p. 149) muestra las funciones posibles de transferencia de datos:

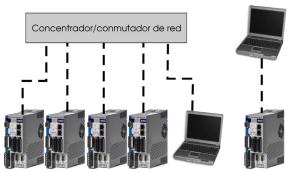
- "backup" (copia de seguridad) para copiar firmware, configuraciones, aplicación del usuario y archivos de datos del usuario de AKD PDMM a la tarjeta SD.
- "restore" (restaurar) para cargar firmware, configuración, aplicación del usuario y archivos de datos del usuario de la tarjeta SD a AKD PDMM.

9.19 Interfaz de servicio (X11, X32)

Los parámetros de operación, control de posición y bloque de movimiento se pueden configurar mediante el software de configuración en un equipo comercial regular ("Requisitos de hardware" (=> p. 174)).

Conecte la interfaz de servicio (X11 o X32) de la unidad a una interfaz Ethernet directamente en el equipo o mediante un concentrador/conmutador de red, **mientras está apagada la alimentación al equipo.** Utilice cables Ethernet Cat- 5 estándar para la conexión (en algunos casos, también podrá utilizar cables cruzados).

Confirme que la luz LED de enlace en AKD (luz LED verde en el conector RJ45) y en su equipo (en el concentrador/conmutador de red) están iluminadas. Si ambas luces están iluminadas, tiene una buena conexión eléctrica.


9.19.1 Asignación de pin X11, X32

Pin	Señal	Pin	Señal
1	Transmisión +	5	n.c.
2	Transmisión -	6	Recepción -
3	Recepción +	7	n.c.
4	n.c.	8	n.c.

9.19.2 Protocolos de bus de servicio X11, X32

Protocolo	Tipo	Conector
Modbus TCP	Bus de servicio	X11, X32
Ethernet TCP/IP	Bus de servicio	X11, X32

9.19.3 Posibles configuraciones de red

9.19.4 Configurar la dirección IP AKD-B, AKD-P, AKD-T

La dirección IP puede destellar en la pantalla de LED si presiona el botón B1.

Presione B1 para ver la dirección IP.

Puede usar conmutadores rotativos para configurar la dirección IP de AKD. En cuanto a CANopen y algunos otros buses de campo, los conmutadores rotativos también configuran la dirección del nodo de la unidad para esa red específica.

Configuración del conmutador rotativo	Dirección IP de la unidad		
00	Dirección DHCP/IP automática. La dirección IP de la unidad se obtiene del servidor DHCP de su red. Si no se encuentra un servidor DHCP, la dirección IP es una dirección IP automática (se genera internamente a partir del protocolo de IP automática y tiene el formato 169.254.xx.xx).		
De 01 a 99	Dirección IP estática. La dirección IP es 192.168.0.nn, donde nn es el número del conmutador rotativo. Esta configuración genera direcciones en un rango de 192.168.0.1a 192.168.0.99. Por ejemplo: si S1 se establece en 2 y S2 se establece en 5, la dirección IP es 192.168.0.25		
NOTA	La máscara de subred del equipo debe estar configurada en 255.255.255.0 o 255.255.128		
NOTA	Cuando conecte AKD directamente en un equipo, use la dirección IP estática (no 00).		

Direccionamiento de IP estática

Cuando conecte la unidad directamente al equipo, debe usar la dirección IP estática. Configure los conmutadores rotativos S1 y S2 en un número distinto de 00.

Esta configuración genera direcciones en un rango de 192.168.0.001 a 192.168.0.099.

Direccionamiento de IP dinámica (DHCP e IP automática)

Con S1 y S2 configuradas en 0, la unidad se encuentra en modo DHCP. La unidad adquirirá una dirección IP de un servidor DHCP externo si está presente en la red. Si el servidor DHCP no está presente, la unidad adquirirá una dirección IP privada automática con formato: 169.254.x.x.

Si su equipo está directamente conectado a la unidad y se configura para obtener una dirección IP automáticamente en las opciones de configuración de TCP/IP, se establecerá una conexión cuyos dispositivos usarán una dirección generada automáticamente. Puede ocupar hasta 60 segundo la configuración de una dirección IP privada automática (169.254.x.x) en un equipo.

Cambiar la dirección IP

Si los conmutadores se cambian mientras se suministra energía lógica de 24 V a la unidad, debe apagar y, luego, encender nuevamente el suministro de voltaje de 24 V. Esta acción restablecerá la dirección.

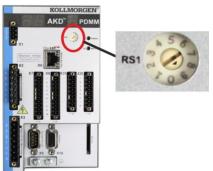
Modo de dirección IP

De manera predeterminada, la unidad usa el método descrito arriba para adquirir su dirección IP. Está a disposición un método de configuración de dirección IP independiente de los conmutadores rotativos. Puede encontrar más información en la Guía del usuario AKD o en la pantalla de Settings Screen-> Fieldbus-> TCP/IP (Configuración-> Bus de campo -> TCP/IP) en WorkBench.

Recuperar la comunicación con una unidad o una dirección IP inaccesible

Si el MODO IP se configuró en 1 (con el software definido en la IP estática), la unidad arrancará en esa dirección IP, que puede ser inalcanzable con la configuración del equipo del host.

Si la dirección IP impide la comunicación, es posible restablecer los valores predeterminados de la configuración IP mediante el siguiente procedimiento:


- 1. Configure los dos conmutadores rotativos en 0
- 2. Mantenga presionado el botón B1 (parte superior de la unidad) durante 5 segundos.

En pantalla, destellará 0.0.0.0 y, luego, se intentará descubrir una dirección mediante DHCP.

Sin eliminar la energía lógica de la unidad, use WorkBench para conectarse a la unidad, vuelva a configurar la dirección IP como desee y guarde los valores en la memoria no volátil.

9.19.5 Configurar la Dirección IP AKD-M

Puede utilizar el conmutador rotativo RS1 para configurar la dirección IP de AKD PDMM. La dirección IP configurada (según la posición del conmutador rotativo RS1 actual) se mostrará en los 7 segmentos en el momento de conectar el cable Ethernet y durante el encendido, si hay un cable Ethernet conectado. Si no, no se indicará una dirección IP en la pantalla.

Configuración del conmutador rotativo	Dirección IP de la unidad
0	Dirección DHCP/IP automática. La dirección IP de la unidad se obtiene del servidor DHCP de su red. Si no se encuentra un servidor DHCP, la dirección IP es una dirección IP automática (se genera internamente a partir del protocolo de IP automática y tiene el formato 169.254.xx.xx).
1	Dirección IP estática. La dirección IP se puede configurar mediante un software desde un navegador web. La dirección IP predeterminada en la posición del conmutador 1 es 192.168.1.101. Para configurar la dirección IP, abra un navegador web y escriba la dirección del IP en el cuadro de URL. Aparecerá la página web AKD PDMM. Vaya a la pestaña Settings (Configuración) y, luego, a la pestaña Network (Red) para configurar la dirección de IP estática para AKD PDMM.
2 a 9	Dirección IP estática. La dirección IP es 192.168.0.10n, donde nn es el número del conmutador rotativo. Esta configuración genera direcciones en un rango desde 192.168.0.102 hasta 192.168.0.109. Por ejemplo: si RS1 se configura en 5, la dirección IP es 192.168.0.105
NOTA	La máscara de subred del equipo debe estar configurada en 255.255.255.0 o 255.255.128

Direccionamiento de IP estática

Cuando conecta la unidad directamente a un equipo, debe utilizar el direccionamiento de IP estática. Configure el conmutador rotativo RS1 a un número del 2 al 9. Esta configuración genera direcciones en un rango desde 192.168.0.10**2** hasta 192.168.0.10**9**.

Por ejemplo: si RS1 está configurado en 5, la dirección IP es 192.168.0.105

Direccionamiento de IP dinámica (DHCP e IP automática)

Cuando RS1 está configurado en 0, la unidad se encuentra en modo DHCP. La unidad obtendrá su dirección IP de un servidor DHCP externo, si está presente en la red. Si el servidor DHCP no está presente, la unidad asumirá que tiene una dirección IP privada automática con la forma 169.254.x.x.

Si su equipo o PAC está conectado directamente con la unidad, y está configurado para obtener una dirección IP automáticamente en la configuración TCP/IP, se establecerá una conexión donde ambos dispositivos utilizan direcciones compatibles generadas automáticamente. Puede llevar hasta 60 segundos a un equipo configurar una dirección IP privada automática (169.254.x.x).

Cambiar la dirección IP

Si se altera el conmutador mientras se suministra a la unidad la alimentación lógica de 24V, debe apagar y encender nuevamente el voltaje de alimentación de 24V. Esta acción restaurará la dirección.

9.19.6 Modbus TCP

Se puede conectar la unidad a Modbus HMI mediante el conector RJ-45 X11 (AKD) o X32 (AKD PDMM, solo para paneles táctiles Kollmorgen™). El protocolo permite tener acceso a lectura y escritura de los parámetros de la unidad.

El estado de la comunicación se indica en las luces LED incorporadas.

Conector	LED N.	Nombre	Función
X11, X32	LED1	Enlace de puerto de ENTRADA	ON = activo, OFF= inactivo
	LED2	EN EJECUCIÓN	ON = en ejecución, OFF= fuera de ejecución

Conecte la interfaz de servicio (X11, X32) de la unidad a una interfaz Ethernet en Modbus HMI directamente o mediante un interruptor de red, **mientras está desconectada la alimentación del equipo.** Para la conexión, utilice cables Ethernet estándar de categoría 5.

Se necesita lo siguiente para conectar un HMI a la unidad:

- El HMI debe ser compatible con el Modbus TCP.
- Debe tener hardware para Ethernet y una unidad para Modbus TCP, aunque la unidad no debe estar construida específicamente para la línea de productos AKD.

Los HMI Kollmorgen™ AKI son compatibles con la unidad "Kollmorgen Modbus Master".

La máscara subred de AKD es 255.255.255.0. Los primeros tres octetos de la dirección IP de la unidad deben coincidir con los primeros tres octetos de la dirección IP del HMI. El último octeto debe ser diferente.

Confirme que la luz LED de enlace en AKD (luz LED verde en el conector RJ45) y el maestro o interruptor están iluminados. Si ambas luces están iluminadas, tiene una buena conexión eléctrica.

Modbus TCP y WorkBench/KAS IDE pueden funcionar simultáneamente si se utiliza un interruptor.

9.20 Interfaz de bus de la CAN (X12/X13)

Dos conectores de 6 pines RJ-12 X12/X13 se usan para la conexión del bus de la CAN.

Con.	Pin	Señal	Con.	Pin	Señal
X12	1 Resistor de terminación interna		X13	1	Resistor de terminación interna
X12	X12 2 Escudo de CAN		X13	2	Escudo de CAN
X12	3	Entrada de CANH	X13	3	Salida de CANH
X12	4 Entrada de CANL		X13	4	Salida de CANL
X12	5	GND	X13	5	GND
X12	6	Resistor de terminación interna	X13	6	Resistor de terminación interna

9.20.1 Activación del bus de la CAN con AKD (modelos CC)

Las unidades AKDmodelo CC son unidades compatibles con los tipos de bus de campo EtherCAT y CAN dentro de un software común. Estos modelos de unidades CC permiten seleccionar un soporte de bus de campo mediante la configuración del parámetro DRV.TYPE en un valor determinado. Los modelos de unidades CC se entregan con el conjunto EtherCAT activo.

Para activar CANopen, se debe cambiar el parámetro DRV.TYPE.

- 1. Mediante software: conecte el equipo a AKD y cambie el parámetro DRV.TYPE en la pantalla terminal de WorkBench (consulte la documentación del parámetro DRV.TYPE).
- 2. Mediante hardware: con los conmutadores rotativos S1 y S2 en la parte frontal y el botón B1 en la parte superior de la unidad.

Los siguientes pasos son necesarios para cambiar el tipo de bus de campo de EtherCAT a CAN con los conmutadores rotativos.

1. Configure los conmutadores rotativos de la parte frontal de AKD en el valor 89.

Configure S1 en 8 y S2 en 9

Presione el botón B1 durante, aproximadamente, 3 segundos (inicia DRV.NVSAVE).
 Presione B1 durante 3 segundos.

La pantalla de siete segmentos muestra **Cn** durante el proceso de cambio de DRV.TYPE a CAN. **No desconecte el suministro de energía de 24 [V] mientras los siete segmentos muestran Cn.**

- 3. Espere hasta que la pantalla con siete segmentos vuelva al estado original; ahora, la unidad está preparada para CAN.
- 4. Inicie el ciclo de energía de la unidad; para ello, **apague** el suministro de energía de 24 V y, luego, **enciéndalo** nuevamente.

NOTA

La pantalla con siete segmentos mostrará Er (Error) en caso de que la instrucción DRV.TYPE falle. En este caso, inicie el ciclo de energía de la unidad y comuníquese con el servicio de atención al cliente de Kollmorgen™ para solicitar más ayuda.

9.20.2 Tasa de baudios para el bus de la CAN

El usuario puede decidir usar una tasa de baudios fija o un algoritmo para la detección automática de baudios durante el comportamiento de arranque de la unidad. La velocidad de transmisión se puede configurar a través del parámetro FBUS.PARAM01. El parámetro FBUS.PARAM01 se puede configurar a través de WorkBench o de un mecanismo especial con los conmutadores rotativos en la parte frontal de AKD.

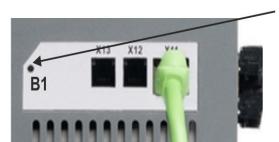
Tasa de baudios [kBit/s]	FBUS.PARAM01	Conmutador rotativo superior S1	Conmutador rotativo inferior S2
automático	0	9	0
125	125	9	1
250	250	9	2
500	500	9	3
1000	1000	9	4

En el caso de la tasa de baudios fija, la unidad envía el mensaje de arranque con la tasa de baudios guardada en la memoria no volátil de la unidad después del ciclo de energía. En caso de la detección automática de la tasa de baudios, la unidad busca un marco de CAN válido en el bus. Cuando se recibe el marco válido, la unidad envía el mensaje de arranque con el tiempo medido en bits. Luego, la tasa de baudios puede guardarse en la memoria no volátil mediante el sub. 1 del objeto 1010, o siempre se usará el mecanismo de detección automática de baudios.

NOTA

Para lograr una detección automática de baudios confiable, se recomienda usar un cableado adecuado en el bus de la CAN (dos terminadores, conexión con puesta a tierra, etc.). Los saltos u otros efectos sonoros producidos en el bus de la CAN pueden perturbar la medición. La unidad debe ser desactivada si se está empleando la detección de baudios automática.

Para la configuración de la tasa de baudios con conmutadores rotativos, siga el procedimiento que se detalla a continuación (estado de la unidad: desactivada).

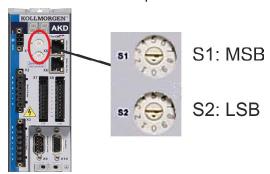

1. Desactive la unidad. Establezca los conmutadores rotativos en una de las siguientes direcciones entre 90 a 94 (consulte la tabla anterior).

Configure S1 en 9 y S2 en 0 o 4

2. Presione el botón B1 de AKD durante, por lo menos, 3 segundos hasta que la configuración del conmutador rotativo aparezca en la pantalla de AKD.

3. Cuando en la pantalla parpadee la configuración del conmutador rotativo, deje de presionar B1 hasta que deje de parpadear. Durante ese tiempo, el parámetro FBUS.PARAM01 se configura con el valor nuevo y todos los parámetros se guardan en la memoria no volátil. La nueva configuración se tomará con el nuevo encendido de la unidad.

Si se produce un error, los siguientes mensajes de error destellarán 5 veces:


- E1: la unidad está activada
- E2: se produjo un error en el almacenamiento no volátil de la nueva configuración
- E3: selección de conmutador rotativo no válida

9.20.3 Dirección de nodos para bus de la CAN

NOTA

Después de cambiar la dirección del nodo, debe apagar el suministro auxiliar de 24 V de la unidad y, luego, encenderlo nuevamente.

Durante la instalación, use los conmutadores rotativos del panel frontal de AKD para configurar previamente la dirección de la estación para establecer la comunicación.

Los conmutadores rotativos de la parte frontal de AKD (S1 y S2) corresponden a la dirección del nodo de CAN.

Los conmutadores S1 y S2 también corresponden a la dirección IP configurada en la unidad. Tanto los esquemas de direcciones de red CAN e IP deben configurarse para esta dependencia si ambas redes de TCP/IP y CAN se ejecutan al mismo tiempo en una aplicación. Por ejemplo:

S1 (MSB)	S2 (LSB)	Dirección CAN	Dirección IP
4	5	45	192.168.0.45

La configuración de dirección IP se puede separar de los conmutadores giratorios que usan la configuración en la unidad. Use Settings -> Fieldbus-> TCP/IP (Configuración -> Bus de campo-> TCP/IP) para ajustar estas opciones.

9.20.4 Terminación del bus de la CAN

El último dispositivo de bus en ambos extremos del sistema del bus de la CAN debe tener resistores de terminación. La unidad AKD tiene resistores incorporados de $132\,\Omega$ que se pueden activar al conectar los pines 1 y 6. Un enchufe de terminación opcional está disponible para AKD (*P-AKD-CAN-TERM*). El enchufe de terminación opcional es un conector RJ-12 con una conexión puente entre los pines 1 y 6. Un enchufe debe introducirse en el conector de X13 de la última unidad en la red CAN.

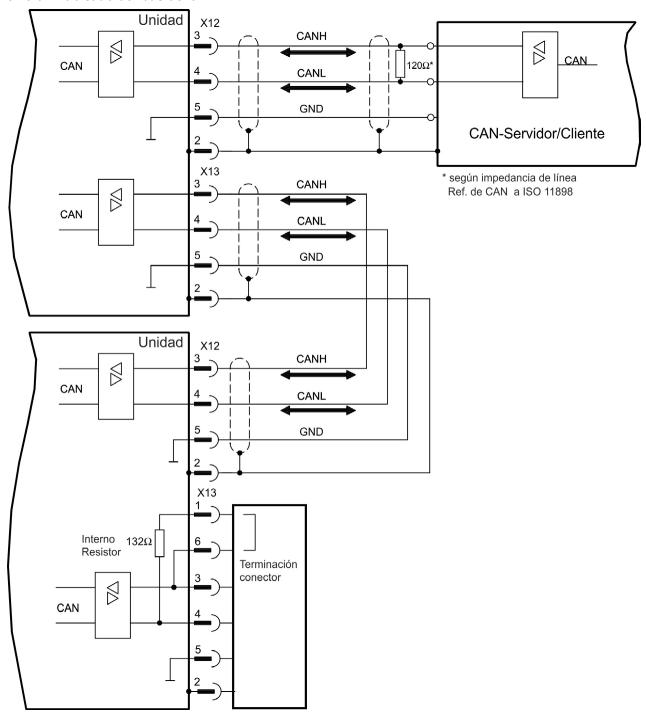
NOTA Elimine el conector de terminación si AKD no es el último dispositivo de bus de la CAN, y use X13 para conectar el siguiente nodo de CAN.

9.20.5 Cable del bus de la CAN

Para cumplir con la norma ISO 11898, se debe utilizar un cable de bus con una impedancia característica de 120 Ω. La longitud del cable máxima que se puede utilizar para obtener una comunicación confiable disminuye a medida que aumenta la velocidad de transmisión. Puede utilizar los siguientes valores como guía medidos por Kollmorgen™; sin embargo, estos valores no conforman límites garantizados:

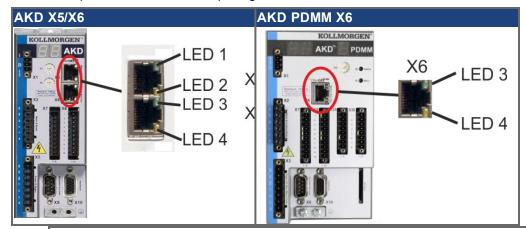
- Impedancia característica: 100–120 Ω
- Capacitancia máxima del cable: 60 nF/km
- Resistencia del bucle del conductor: 159,8 Ω/km

Longitud del cable, según la velocidad de transmisión:


Velocidad de transmisión (kBaud)	Longitud máxima del cable (m)
1,000	10

Velocidad de transmisión (kBaud)	Longitud máxima del cable (m)
500	70
250	115

La menor capacitancia del cable (máxima 30 nF/km) y la menor resistencia del conductor (resistencia del bucle, $115 \Omega/1000 m$) permiten alcanzar mayores distancias.


(La impedancia característica de 150 \pm 5 Ω requiere un resistor terminal de 150 \pm 5 Ω).

9.20.6 Cableado del bus de la CAN

9.21 Interfaz de bus de movimiento (X5/X6/X11)

La interfaz bus de movimiento tiene conectores RJ-45 que se pueden utilizar para establecer comunicación con diversos dispositivos de bus de campo según la versión de la unidad utilizada.

AVISO

No conecte la línea Ethernet para PC o PAC con software de configuración a la interfaz bus de movimiento X5/X6.

El cable Ethernet de conexión debe estar conectado a X11 o X32.

9.21.1 Pines X5, X6, X11

Pin	Señal X5	Señal X6	Señal X11
1	Transmisión +	Recepción +	Transmisión +
2	Transmisión -	Recepción -	Transmisión -
3	Recepción +	Transmisión +	Recepción +
4	n.c.	n.c.	n.c.
5	n.c.	n.c.	n.c.
6	Recepción -	Transmisión -	Recepción -
7	n.c.	n.c.	n.c.
8	n.c.	n.c.	n.c.

9.21.2 Protocolos de bus X5, X6, X11

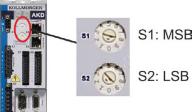
Protocolo	Tipo	Opción de conectividad	Conector
EtherCAT	Bus de movimiento	EC o CC	X5, X6
SynqNet	Bus de movimiento	SQ	X5, X6
PROFINET RT	Bus de movimiento	PN	X11
Ethernet/IP	Bus de movimiento	El	X11

9.21.3 EtherCAT

Las unidades AKD (variantes de conexión EC y CC) se pueden conectar como unidades esclavas a la red EtherCAT (CoE) mediante los conectores RJ-45 X5 (en el puerto) y X6 (fuera del puerto). El estado de comunicación se indica mediante las luces LED del conector incorporado.

Las unidades AKD PDMM (variante de la unidad AKD-M) actúan como EtherCAT (CoE) maestros y, por lo tanto, proporcionan el conector X6 (salida) para obtener una topología de cadena con tiempo de ciclo de 250 ms y 8 esclavos como máximo.

Variante de la unidad	Conector	LED N.	Nombre	Función
AKD			Enlace de puerto de ENTRADA	ON = activo, OFF= inactivo
		LED2	EN EJECUCIÓN	ON = en ejecución, OFF= fuera de ejecución
AKD y AKD PDMM	X6	LED3	Enlace a puerto EXTERNO	ON = activo, OFF= inactivo
		LED4	-	-


9.21.3.1 Activación de ETHERCAT con modelos AKD-CC

Los modelos de unidades AKD-CC son unidades compatibles con tipos de bus de campo CAN y EtherCAT dentro de un software común. Estos modelos de CC permiten seleccionar la compatibilidad de con fieldbus al configurar el parámetro DRV.TYPE con un valor determinado. Los modelos de unidades CC se ofrecen con el conjunto EtherCAT activo. Si debe cambiar una unidad desde CANopen hacia EtherCAT, se debe cambiar el parámetro DRV.TYPE

- 1. Mediante software: conecte el equipo a AKD y cambie el parámetro DRV.TYPE en la pantalla terminal de WorkBench (consulte la documentación del parámetro DRV.TYPE).
- 2. Mediante hardware: con los conmutadores rotativos S1 y S2 en la parte frontal y el botón B1 en la parte superior de la unidad.

Los siguientes pasos son necesarios para cambiar el tipo de bus de campo de CAN a EtherCAT con los conmutadores rotativos.

1. Configure los conmutadores rotativos de la parte frontal de AKD en el valor 89.

Configure S1 en 8 y S2 en 9

2. Presione el botón B1 durante, aproximadamente, 3 segundos (inicia DRV.NVSAVE).

Presione B1 durante 3 segundos.

La pantalla de siete segmentos muestra **En** durante el proceso de cambio de DRV.TYPE a EtherCAT. **No desconecte el suministro de energía de 24 [V] mientras los siete segmentos muestran En.**

3. Espere hasta que la pantalla vuelva a su estado original; ahora, la unidad está preparada para EtherCAT.

4. Inicie el ciclo de energía de la unidad; para ello, **apague** el suministro de energía de 24 V y, luego, **enciéndalo** nuevamente.

NOTA

La pantalla con siete segmentos mostrará Er (Error) en caso de que la instrucción DRV.TYPE falle. En este caso, inicie el ciclo de energía de la unidad y comuníquese con el servicio de atención al cliente de Kollmorgen™ para solicitar más ayuda.

9.21.4 SynqNet

Puede conectarse a la red Synqnet mediante los conectores RJ-45 X5 (en el puerto) y X6 (fuera del puerto). El estado de comunicación se indica mediante las luces LED del conector incorporado.

Conector	LED N.°	Nombre	Función
X5	LED1	LINK_IN	ENCENDIDO = recepción válida (IN el puerto)
			APAGADO = no válida, apagado o reinicio.
	LED2	CÍCLICA	ENCENDIDO = cíclica de red
			INTERMITENCIA = no cíclica de red
			APAGADO = apagado o reinicio
X6	LED3	LINK_OUT	ENCENDIDO = recepción válida (FUERA del puerto)
			APAGADO = no válida, apagado o reinicio.
	LED4	REPETIDOR	ENCENDIDO = repetidor encendido, cíclica de red
			INTERMITENCIA = repetidor encendido, no cíclica de red
			APAGADO = repetidor apagado, apagado o reinicio

9.21.5 PROFINET

AKD con opción de conectividad **PN** se puede conectar a una red de PROFINET mediante el conector RJ-45 X11. Se utiliza el protocolo PROFINET RT. El estado de comunicación se indica en las luces LED incorporadas.

Conector	LED N.	Nombre	Función
X11	LED1	Enlace de puerto de ENTRADA	ON = activo, OFF= inactivo
	LED2	EN EJECUCIÓN	ON = en ejecución, OFF= fuera de ejecución

Conecte la interfaz de servicio (X11) de la unidad a una interfaz Ethernet en el Master PROFINET directamente o mediante un interruptor de red, **mientras está desconectada la alimentación del equipo.** Para la conexión, utilice cables estándar de categoría 5.

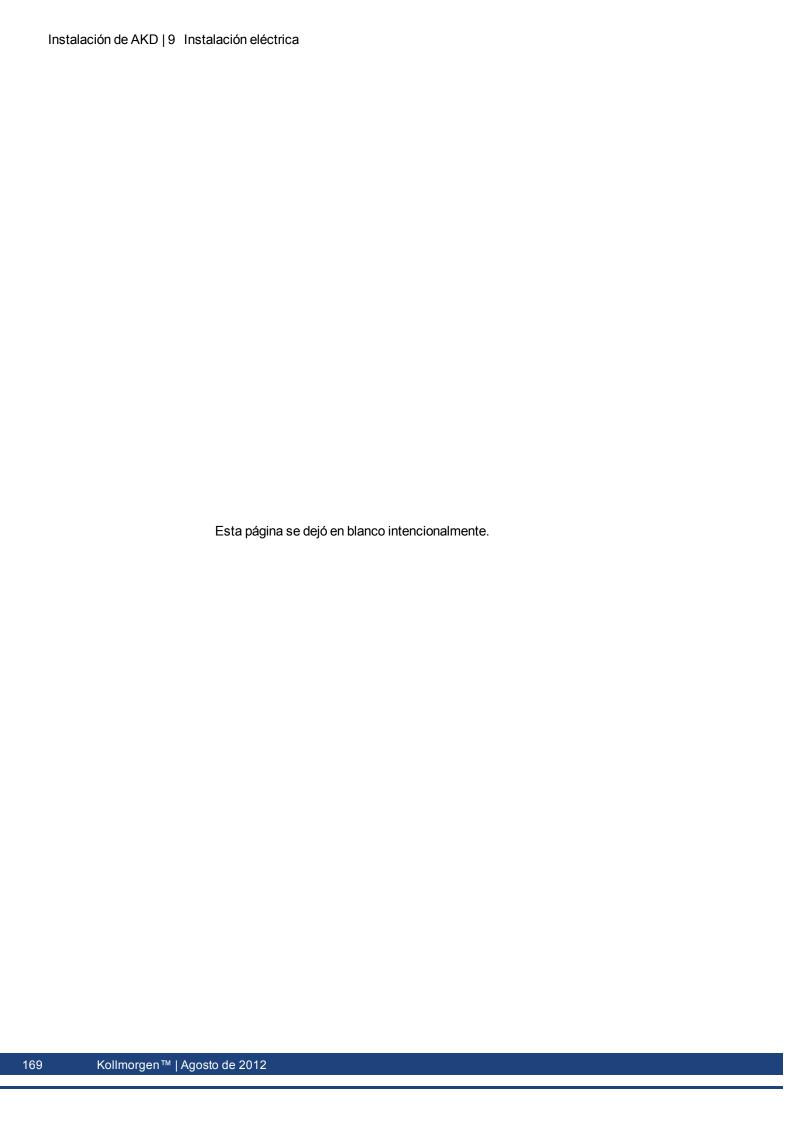
Confirme que la luz LED de enlace en AKD (luz LED verde en el conector RJ45) y el maestro o interruptor están iluminados. Si ambas luces están iluminadas, tiene una buena conexión eléctrica.

La máscara subred de AKD es 255.255.255.0. Los primeros tres octetos de la dirección IP de la unidad deben coincidir con los primeros tres octetos de la dirección IP del HMI. El último octeto debe ser diferente.

PROFINET RT y WorkBench pueden operar simultáneamente si se utiliza un interruptor.

9.21.6 Ethernet/IP

AKD con opción de conectividad **EI** se puede conectar a una red Ethernet/IP mediante el conector RJ-45 X11. El estado de comunicación se indica en las luces LED incorporadas.


Conector	LED N.	Nombre	Función
X11	LED1 Enlace de puerto de ENTRADA		ON = activo, OFF= inactivo
	LED2	EN EJECUCIÓN	ON = en ejecución, OFF= fuera de ejecución

Conecte la interfaz de servicio (X11) de la unidad a una interfaz Ethernet en el Master Ethernet/IP directamente o mediante un interruptor de red, **mientras está desconectada la alimentación del equipo.** Para la conexión, utilice cables Ethernet estándar de categoría 5.

Confirme que la luz LED de enlace en AKD (luz LED verde en el conector RJ45) y el maestro o interruptor están iluminados. Si ambas luces están iluminadas, tiene una buena conexión eléctrica.

La máscara subred de AKD es 255.255.255.0. Los primeros tres octetos de la dirección IP de la unidad deben coincidir con los primeros tres octetos de la dirección IP del HMI. El último octeto debe ser diferente.

Ethernet/IP y WorkBench pueden operar simultáneamente si se utiliza un interruptor.

Esta página se dejó en blanco intencionalmente.

10 Configuración

10.1	Instrucciones de seguridad	172
10.2	Configuración AKD-B, AKD-P, AKD-T	173
10.3	Instale AKD-M	179
10.4	Mensajes de falla y advertencia	189
10.5	Resolución de problemas de la unidad AKD	.211

Instrucciones de seguridad

APELIGRO

El equipo produce voltajes potencialmente letales de hasta 900 V. Verifique que todos los componentes de conexión activos estén protegidos de manera segura contra el contacto físico.

No quite las conexiones eléctricas de la unidad mientras está activa. Los capacitores pueden tener cargas residuales peligrosas hasta 7 minutos después del apagado del voltaje de alimentación.

▲ PRECAUCIÓN

La recepción de calor de la unidad puede alcanzar temperaturas de hasta 80 °C durante el funcionamiento. Verifique la temperatura de recepción de calor antes de manipular la unidad. Espere hasta que la recepción de calor se haya enfriado hasta 40 °C antes de tocarla.

A PRECAUCIÓN Antes de llevar a cabo las pruebas y la configuración, el fabricante de la máquina debe generar una evaluación de riesgos de la máquina y tomar las medidas adecuadas de manera que los movimientos imprevistos no puedan ocasionar lesiones ni dañar a ninguna persona o propiedades.

▲ PRECAUCIÓN

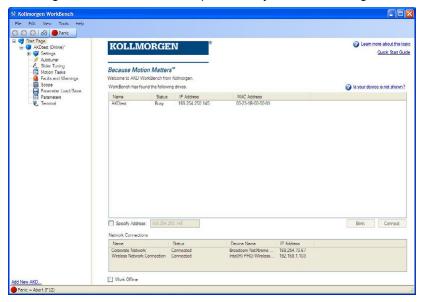
Solo el personal profesional con amplia experiencia en los campos de ingeniería eléctrica y tecnología de unidades puede probar y configurar la unidad.

AVISO

Si la unidad ha estado almacenada durante más de 1 año, deberá reformar los capacitores en el circuito de enlace del bus DC. Para reformar los capacitores, desconecte todas las conexiones eléctricas y aplique una fase única de 208 a 240 V de CA a los terminales L1/L2 de la unidad durante aproximadamente 30 minutos.

NOTA

Información adicional sobre la configuración del equipo:


- La programación de parámetros y el comportamiento de control de bucle se describen en la ayuda en línea del software de configuración.
- La configuración de la tarjeta de expansión se describe en el manual correspondiente en DVD.
- Kollmorgen™ puede brindar cursos de capacitación sobre la unidad a pedido.

10.2 Configuración AKD-B, AKD-P, AKD-T

10.2.1 Software de configuración WorkBench

En este capítulo, se describe la instalación del software de configuración WorkBench para las unidades AKD-B, AKD-P yAKD-T. WorkBench no se utiliza para configurar AKD-M (AKD PDMM), ya que para esta variante de unidad se debe utilizar el software KAS IDE (=> p. 179).

Kollmorgen™ ofrece cursos de capacitación y conocimientos generales a pedido.

10.2.2 Use según se indica

El software de instalación está pensado para alterar y guardar los parámetros de funcionamiento de la serie de unidades AKD. La unidad adjunta se puede instalar con la ayuda de este software y, durante este procedimiento, la unidad puede ser controlada directamente a través de las funciones de servicio.

ADVERTENCIA Solo el personal profesional con experiencia relevante (=> p. 11) tiene autorización para llevar a cabo la configuración del parámetro en línea de una unidad que se está ejecutando. Los conjuntos de datos que se guardaron en los medios de datos no están seguros cuando otras personas pueden alterarlos sin intención. Se puede producir una transferencia inesperada si se utilizan datos sin verificar. Por lo tanto, después de cargar un conjunto de datos, siempre debe verificar todos los parámetros antes de activar la unidad.

10.2.3 Descripción de software

Todas las unidades deben estar adaptadas según los requisitos de su equipo. Para la mayoría de las aplicaciones, puede utilizar un equipo y WorkBench (el software de configuración de la unidad) para definir las condiciones operativas y los parámetros de su unidad. El equipo se conecta a la unidad mediante un cable Ethernet (=> p. 153). El software de configuración proporciona comunicación entre el equipo y AKD. Puede encontrar el software de configuración en el DVD adjunto y en el área de descarga del sitio web Kollmorgen™.

Con poco esfuerzo, puede alterar los parámetros y observar instantáneamente el efecto de la unidad, dado que hay una conexión (en línea) continua con la unidad. Además, pude leer valores importantes de la unidad, los cuales se muestran en el monitor del equipo (funciones de osciloscopio).

Puede guardar conjuntos de datos en los medios de datos (archivo) y guardarlos en otras unidades o usarlos para copias de seguridad. Además, puede imprimir los conjuntos de datos.

La mayoría de las retroalimentaciones estándar (SFD, EnDAT 2.2, 2.1, y BiSS) son compatibles con Plug and Play. Los datos de la placa de identificación se almacena en el dispositivo de retroalimentación y son leídos por la unidad automáticamente en el arranque. Los motores que no son compatibles con Plug and Play Kollmorgen™ se almacenan en WorkBench y se pueden mediante un en la pantalla Motor del software de WorkBench.

Una ayuda en línea extensiva con la descripción integrada de todas las variables y las funciones le ofrecen soporte para las distintas situaciones.

10.2.4 Requisitos de hardware

La interfaz de servicio (X11, RJ45) de la unidad se conecta en la interfaz del equipo mediante un cable Ethernet (=> p. 153).

Requisitos mínimos para el equipo:

Procesador: como mínimo, Pentium[®] II o comparable Sistema operativo: Windows 2000, XP, VISTA o 7 Adaptador de gráficos: de color, compatible con Windows

Unidades: disco duro con, al menos, 20 MB de espacio libre, unidad DVD

Interfaz: una interfaz Ethernet libre o un puerto de concentrador o puerto conmutador

10.2.5 Sistemas operativos

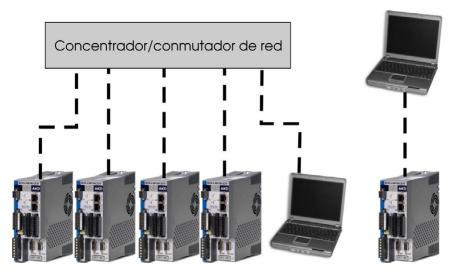
Windows 2000/XP/VISTA/7

WorkBench funciona con Windows 2000, Windows XP, Windows VISTA y Windows 7

Unix. Linux

El funcionamiento del software no ha sido probado para sistemas Windows que se ejecutan dentro de Unix o Linux.

10.2.6 Instalación en Windows 2000/XP/VISTA/7

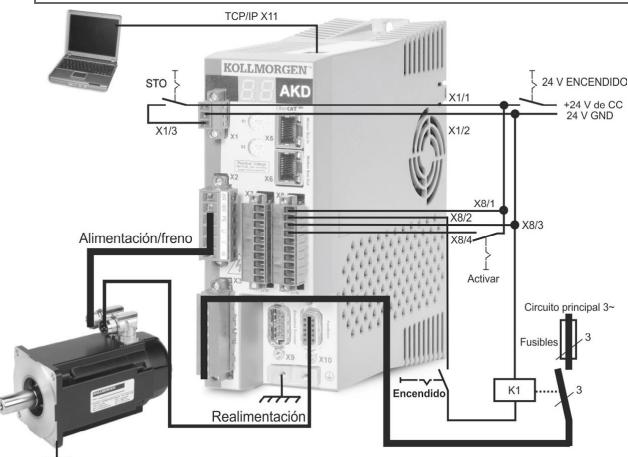

El DVD incluye un programa de instalación para el software de instalación.

Instalación

- Función de inicio automático activada:
 Introduzca el DVD en la unidad libre. Se abre una ventana con la pantalla de inicio. Allí, encontrará un enlace al software de instalación WorkBench. Haga clic en este enlace y siga las instrucciones.
- Función de inicio automático desactivada:
 Introduzca el DVD en una unidad libre. Haga clic en Start (Inicio) (barra de tareas); luego, haga clic en Run (Ejecutar). Escriba la llamada del programa: x:\index.htm (x = letra correcta de la unidad de DVD).
 Haga clic en OK (Aceptar) y prosiga tal como se describió anteriormente.

Conexión a la interfaz Ethernet del equipo

• Conecte el cable de interfaz a una interfaz Ethernet de su equipo o a un concentrador/conmutador y a la interfaz de servicio X11 de AKD (=> p. 153).


10.2.7 Prueba inicial de la unidad AKD-B, AKD-P, AKD-T

10.2.7.1 Desempaque, montaje y cableado de la unidad AKD

- 1. Desempaque la unidad y los accesorios. Siga las instrucciones de seguridad de la documentación.
- 2. Monte la unidad.
- 3. Realice el cableado de la unidad o realice el cableado mínimo para la realización de pruebas tal como se describe debajo.
- 4. Asegúrese de tener a mano la siguiente información acerca de los componentes de la unidad:
 - Voltaje nominal de suministro eléctrico
 - Tipo de motor (datos del motor, si el tipo de motor no está en la lista de la base de datos de motores)
 - Unidad de retroalimentación incorporada en el motor (tipos, polos/líneas/protocolo)
 - Momento de inercia de la carga

10.2.7.2 Cableado mínimo para la prueba de la unidad sin carga

El diagrama de cableado es solamente una ilustración general y no cumple con los requisitos de EMC sobre seguridad ni funcionalidad de uso.

Cuando conecte la unidad AKD directamente en un equipo, se recomienda usar la dirección IP estática (no 00).

10.2.7.3 Configurar la dirección IP

Establezca la dirección IP de la unidad tal como se describe en "Configurar la dirección IP AKD-B, AKD-P, AKD-T" (=> p. 154).

10.2.7.4 Confirmar conexiones

Puede encender la energía lógica de la unidad a través del conector X1 (el voltaje del bus no es necesario para las comunicaciones).

Después de que la energía se suministra, la unidad muestra una secuencia de destellos LED:

- 1. –
- 2. []
- 3.][
- 4. I-P
- 5. La dirección IP de la unidad parpadeó en secuencias (por ejemplo, 192.168.0.25).
- 6. Estado de la unidad (modo de funcionamiento "o0", "o1" o "o2") o código de falla si la unidad se encuentra en estado de falla.

Confirme que los LED del enlace en la unidad (LED verde en el conector RJ45) y en su equipo estén encendidos. Si ambos LED están encendidos, entonces, tiene una conexión eléctrica en funcionamiento.

El indicador LED es verde si la unidad está conectada mediante un dispositivo de red.

Mientras que el equipo se conecta, en su barra de estado mostrará el siguiente ícono de adquisición:

Espere para que aparezca el ícono de funcionalidad limitada (este proceso puede tardar hasta un minuto).

Aunque Windows muestra este ícono de funcionalidad limitada para la conexión de la unidad, el equipo puede comunicarse completamente con la unidad. Con el uso de WorkBench, puede configurar la unidad a través de esta conexión.

10.2.7.5 Instale e inicie WorkBench

WorkBench instala automáticamente desde el DVD incluido con la unidad. WorkBench está también disponible en el sitio web de Kollmorgen™: www.kollmorgen.com.

Una vez que la instalación se complete, haga clic en el ícono de WorkBench para iniciar el programa. WorkBench mostrará una lista de unidades que puede encontrar en su red local. Seleccione la unidad que desea configurar y, luego, haga clic en **Next** (Siguiente).

Si se detectan múltiples unidades, se puede identificar una unidad de forma exclusiva usando uno de los siguientes métodos:

- 1. La dirección MAC de la unidad. Esta dirección está impresa en la calcomanía del lateral de la unidad.
- 2. El nombre de la unidad. El nombre de la unidad se configura mediante WorkBench. Una nueva unidad tiene el nombre predeterminado "No Name."
- 3. Parpadeo de la pantalla. Seleccione una unidad y haga clic en **Blink** (Parpadear) para hacer que la pantalla frontal de la unidad parpadee durante 20 segundos.

10.2.7.6 Configure la dirección IP en WorkBench

Si WorkBench no muestra automáticamente la unidad, debe configurar la dirección IP de manera manual en WorkBench de la siguiente manera:

1. Visualice la dirección IP. Puede ver la dirección IP de la unidad en la pantalla de la unidad si presiona el botón B1. La pantalla muestra los dígitos y los puntos de la dirección IP en secuencia (por ejemplo,

Presione B1 para ver la dirección IP.

192.168.0.25).

2. Escriba la dirección IP. Una vez que la dirección IP ha sido determinada, escriba manualmente la dirección IP de la unidad en el cuadro **Specify Address** (Especificar dirección) de WorkBench. A continuación, haga clic en **Next** (Siguiente) para establecer la conexión.

10.2.7.7 Active la unidad mediante el asistente de instalación

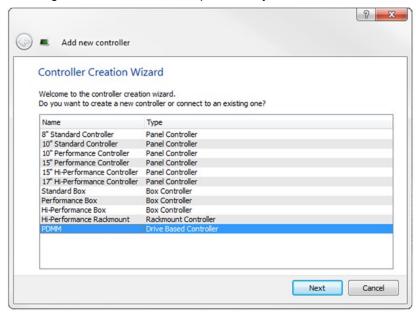
Una vez que se haya establecido la conexión a la unidad, aparecerá la pantalla Overview (Descripción general) de AKD. Su unidad aparece en el área de navegación en la parte izquierda de la pantalla. Haga clic con el botón derecho del mouse y seleccione **Setup Wizard** (Asistente de instalación) desde el menú desplegable. El asistente de instalación lo guiará a través de la configuración inicial de la unidad, la cual incluye un movimiento de pruebas simple.

Después de completar el asistente de instalación, la unidad debe quedar activada. Si la unidad no está activada, verifique lo siguiente:

- 1. El hardware activado (HW) debe estar en el estado activado (pin 4 en el conector X8).
- El software activado (SW) debe estar en el estado activado. Actívelo mediante el botón
 Enable/Disable (Activar/Desactivar) de la barra de herramientas superior de WorkBench o en la pantalla Overview (Descripción general).
- 3. No puede haber fallas (haga clic en el botón **Clear Fault** [Eliminar falla] de la barra de herramientas superior para eliminar las fallas).

El estado de HW activado, SW activado y fallas se muestra en la barra de herramientas inferior del software de WorkBench. La unidad está conectada si en la esquina inferior derecha se muestra **Online** (En línea).

Ahora, puede usar la vista Settings (Configuración) en WorkBench para completar la configuración avanzada de su unidad.


10.3 Instale AKD-M

10.3.1 Software de configuración KAS IDE

Este capítulo describe la instalación del software de instalación KAS IDE para las unidades AKD-M (AKD PDMM). KAS IDE no se usa para instalar las unidades AKD-B, AKD-P y AKD-T, para estas variantes de unidades, se debe usar el software de WorkBench (=> p. 173).

El entorno de desarrollo integrado de KAS IDE contiene herramientas para configurar la red EtherCAT, instalar y preparar las unidades, crear un programa de PLC y crear un HMI.

Kollmorgen™ ofrece cursos de capacitación y familiarización cuando solicite.

10.3.2 Use según se indica

El software de instalación está pensado para alterar y guardar los parámetros de funcionamiento de la serie de unidades AKD PDMM. La unidad adjunta se puede instalar con la ayuda de este software y, durante este procedimiento, la unidad puede ser controlada directamente a través de las funciones de servicio.

ADVERTENCIA Solo el personal profesional con experiencia relevante (=> p. 11) tiene autorización para llevar a cabo la configuración del parámetro en línea de una unidad que se está ejecutando. Los conjuntos de datos que se guardaron en los medios de datos no están seguros cuando otras personas pueden alterarlos sin intención. Se puede producir una transferencia inesperada si se utilizan datos sin verificar. Por lo tanto, después de cargar un conjunto de datos, siempre debe verificar todos los parámetros antes de activar la unidad.

10.3.3 Descripción de software

Cada unidad debe adaptarse a los requisitos de su máquina. Para la mayoría de los usos, puede usar un equipo o software de KAS IDE ("entorno de desarrollo Kollmorgen Automation Suite Integrated") para instalar las condiciones operativas y los parámetros para su unidad. El equipo se conecta a la unidad a través de un cable Ethernet (=> p. 153). El software de instalación proporciona la comunicación entre el equipo y AKD PDMM. Puede encontrar el software de instalación de KAS IDE en el DVD incluido y en el área de descarga del sitio web de Kollmorgen™.

Con poco esfuerzo, puede alterar los parámetros y observar instantáneamente el efecto de la unidad, dado que hay una conexión (en línea) continua con la unidad. Además, pude leer valores importantes de la unidad, los cuales se muestran en el monitor del equipo (funciones de osciloscopio).

Puede guardar conjuntos de datos en los medios de datos (archivo) y guardarlos en otras unidades o usarlos para copias de seguridad. Además, puede imprimir los conjuntos de datos.

La mayoría de las retroalimentaciones estándar (SFD, EnDAT 2.2, 2.1 y BiSS) son compatibles con Plug and Play. Los datos del nombre de la placa del motor se almacenan en el dispositivo de retroalimentación y son leídos por la unidad automáticamente en el arranque. Los motores Kollmorgen™ que no son compatibles con Plug and Play se almacenan en KAS IDE y se pueden cargar mediante un clic en la pantalla Motor del software de KAS IDE.

Una ayuda en línea extensiva con la descripción integrada de todas las variables y las funciones le ofrecen soporte para las distintas situaciones.

10.3.4 Requisitos de hardware

La interfaz de servicio (X32, RJ45) de la unidad se conecta en la interfaz del equipo mediante un cable Ethernet (=> p. 153).

Requisitos mínimos para el equipo:

Procesador: como mínimo, sistema operativo Pentium® II o superior

- : Adaptador gráfico para Windows XP o 7
- : de color, compatible con Windows

Unidades: disco duro con, al menos, 20 MB de espacio libre, unidad de DVD

Interfaz: una interfaz Ethernet libre o un puerto de concentrador o puerto conmutador

10.3.5 Sistemas operativos

Windows XP/7

KAS IDE funciona con Windows XP y Windows 7

Unix, Linux

El funcionamiento del software no ha sido probado para sistemas Windows que se ejecutan dentro de Unix o Linux.

10.3.6 Instalación en Windows XP/7

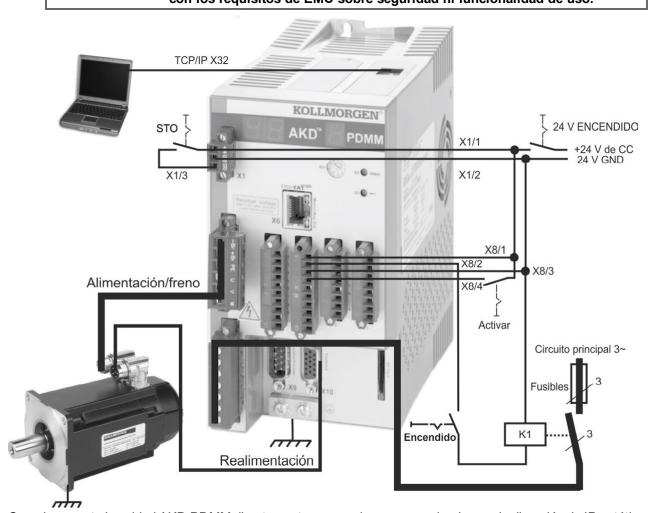
El DVD incluye un programa de instalación para el software de instalación.

Instalación

- Función de inicio automático activada:
 Introduzca el DVD en la unidad libre. Se abre una ventana con la pantalla de inicio. Allí, encontrará un enlace al software de instalación KAS IDE. Haga clic en este enlace y siga las instrucciones.
- Función de inicio automático desactivada:
 Introduzca el DVD en una unidad libre. Haga clic en Start (Inicio) (barra de tareas); luego, haga clic en Run (Ejecutar). Escriba la llamada del programa: x:\index.htm (x = letra correcta de la unidad de DVD).
 Haga clic en OK (Aceptar) y prosiga tal como se describió anteriormente.

Conexión a la interfaz Ethernet del equipo

• Conecte el cable de interfaz a una interfaz Ethernet de su equipo o a un concentrador/conmutador y a la interfaz de servicio X32 de AKD PDMM (=> p. 153).


10.3.7 Prueba inicial de la unidad AKD-M

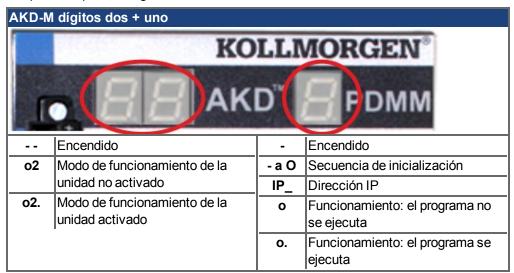
10.3.7.1 Desempaque, montaje y cableado de la unidad AKD PDMM

- 1. Desempaque la unidad y los accesorios. Siga las instrucciones de seguridad de la documentación.
- 2. Monte la unidad.
- 3. Realice el cableado de la unidad o realice el cableado mínimo para la realización de pruebas tal como se describe debajo.
- 4. Asegúrese de tener a mano la siguiente información acerca de los componentes de la unidad:
 - Voltaje nominal de suministro eléctrico
 - Tipo de motor (datos del motor, si el tipo de motor no está en la lista de la base de datos de motores)
 - Unidad de retroalimentación incorporada en el motor (tipos, polos/líneas/protocolo)
 - Momento de inercia de la carga

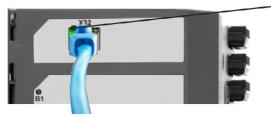
10.3.7.2 Cableado mínimo para la prueba de la unidad sin carga

▲ PRECAUCIÓN El diagrama de cableado es solamente una ilustración general y no cumple con los requisitos de EMC sobre seguridad ni funcionalidad de uso.

Cuando conecte la unidad AKD PDMM directamente a un equipo, se recomienda usar la dirección de IP estática (no 0).


10.3.7.3 Configurar la dirección IP

Establezca la dirección IP de la unidad tal como se describe en "Configurar la Dirección IP AKD-M" (=> p. 156).


10.3.7.4 Confirmar conexiones

Puede encender la energía lógica de la unidad a través del conector X1 (el voltaje del bus no es necesario para las comunicaciones).

Después de que la energía se suministra, la unidad muestra una secuencia de destellos LED:

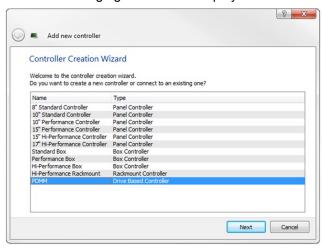
Confirme que los LED del enlace en la unidad (LED verde en X32 del conector RJ45) y en su equipo estén encendidos. Si ambos LED están encendidos, entonces, tiene una conexión eléctrica en funcionamiento.



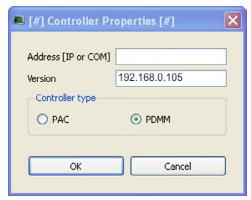
El indicador LED es verde si la unidad está conectada mediante un dispositivo de red.

Mientras que el equipo se conecta, en su barra de estado mostrará el siguiente ícono de adquisición:

Espere para que aparezca el ícono de funcionalidad limitada (este proceso puede tardar hasta un minuto).



Aunque Windows muestra este ícono de funcionalidad limitada para la conexión de la unidad, el equipo puede comunicarse completamente con la unidad. Con el uso de KAS IDE, puede configurar la unidad a través de esta conexión.


10.3.7.5 Instale e inicie KAS IDE

KAS IDE está incluido en el DVD que viene con AKD PDMM, así como también en Internet en www.kollmorgen.com. Introduzca el DVD y espere que el instalador se inicie automáticamente. Una vez que la instalación esté completa, haga clic en el ícono KAS IDE para iniciar el programa.

Para comenzar un nuevo proyecto, seleccione *File > New* (Archivo > Nuevo). Se abrirá la ventana *Add a New Controller* (Agregar un controlador nuevo). Seleccione el modelo de AKD PDMM de la lista. Luego, el controlador se agregará a la vista de proyecto.

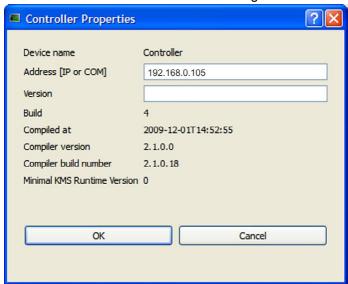
Para asociar el proyecto con la dirección IP del controlador de AKD PDMM, haga clic con el botón secundario del mouse en la opción Controller (Controlador) de la vista de proyecto. Seleccione **Properties** (Propiedades) y aparece la siguiente pantalla:

Escriba la dirección IP de AKD PDMM, configure el *tipo de controlador* en PDMM y haga clic en OK (Aceptar). Para conectar una PDMM, descargue y ejecute el proyecto mediante los siguientes controles:

Haga doble clic en EtherCAT en la vista de proyecto para abrir la vista de dispositivos EtherCAT. Haga clic en los dispositivos de escaneo de la esquina superior derecha y KAS IDE identificará su unidad automáticamente y la agregará.

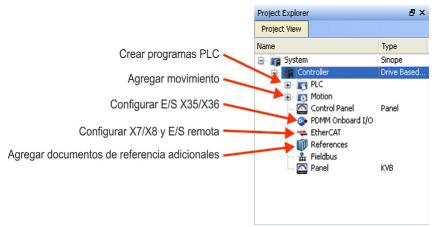
Si se detectan múltiples unidades, se puede identificar una unidad de forma exclusiva usando uno de los siguientes métodos:

- 1. La dirección MAC de la unidad. Esta está impresa en la calcomanía del lateral de la unidad.
- 2. El nombre de la unidad. El nombre de la unidad se configura mediante KAS IDE. Una nueva unidad tiene el nombre predeterminado "No Name."
- 3. Parpadeo de la pantalla. Seleccione una unidad y haga clic en Blink (Parpadear) para hacer que la pantalla frontal de la unidad parpadee durante 20 segundos.

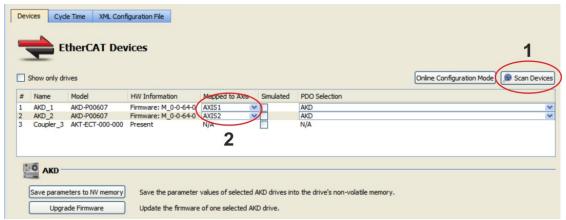

10.3.7.6 Configure la dirección IP en KAS IDE

Si KAS IDE no muestra automáticamente la unidad, debe configurar la dirección IP de manera manual en KAS IDE de la siguiente manera:

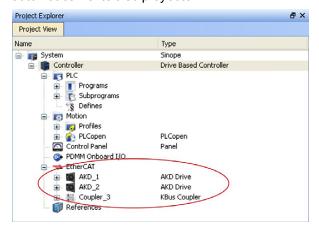
- 1. Visualice la dirección IP. Puede ver la dirección IP de la unidad en la pantalla de la unidad si presiona el botón B2 y selecciona "IP" presionando B2 nuevamente. La pantalla muestra los dígitos y los puntos de la dirección IP en secuencia (por ejemplo, 192.168.0.105).
- La dirección IP de AKD PDMM se configura en el archivo de proyecto dentro de KAS IDE. Para ver las direcciones IP, abra un proyecto o cree un proyecto nuevo. Haga clic con el botón derecho del mouse en el elemento del controlador de Project Explorer/Project view (Explorador de proyectos/Vista de proyecto) y seleccione *Properties* (Propiedades).

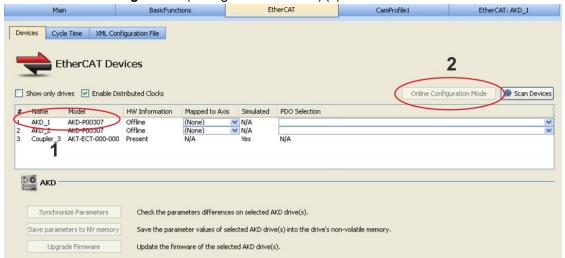


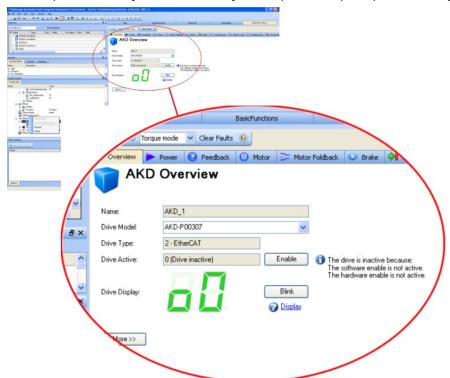
3. Escriba la dirección de AKD PDMM de la siguiente manera:



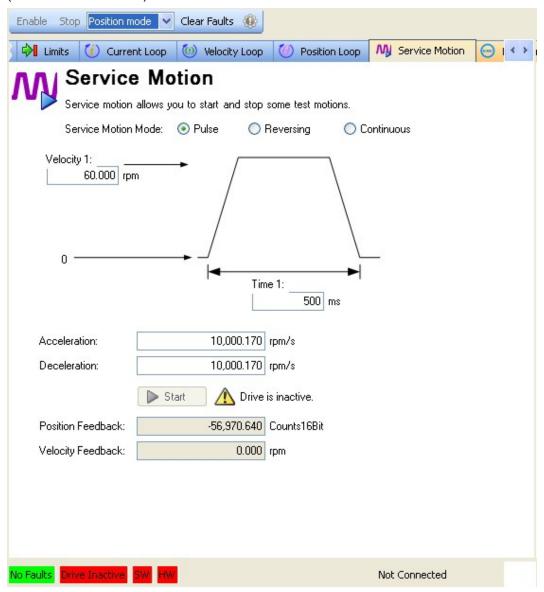
10.3.7.7 Comenzar un proyecto nuevo


Una vez que el proyecto (nuevo o guardado) se abre desde el explorador de proyectos, puede abrir una variedad de elementos para crear un proyecto:


Todas las unidades, incluida la AKD PDMM y la E/S remota pueden configurarse mediante KAS IDE. Agregue las unidades al proyecto: haga clic en el elemento EtherCAT y examine los dispositivos (1).


Asigne las unidades detectadas a ejes de su uso (2). Todos los elementos detectados se agregan automáticamente a su proyecto.

Para comunicarse directamente con una unidad sin tener que ejecutar un proyecto, haga clic en EtherCAT en el árbol del proyecto. Haga clic en la unidad en el árbol del proyecto para configurar (1); a continuación, haga clic en el botón *Online Configuration* (Configuración en línea) (2):


En el espacio de trabajo, se abre un conjunto de pantallas que le permite configurar completamente la unidad:

Asimismo, el asistente de instalación lo guiará a través de un conjunto de pasos para llevar a cabo la configuración:

Para realizar movimientos básicos sin ejecutar un proyecto, se puede usar la pantalla **Service Motion** (Movimiento de servicio).

10.4 Mensajes de falla y advertencia

10.4.1 Mensajes de falla y advertenciaAKD

Cuando se produce una falla, se abre el relevador de falla de la unidad, se desconecta la etapa de salida (el motor pierde toda la torsión) o se frena dinámicamente la carga. El comportamiento específico de la unidad depende del tipo de falla. La pantalla de LED en el panel frontal de la unidad muestra el número de la falla producida. Si se emite una advertencia antes de que se produzca la falla, la advertencia se muestra en el LED y tiene el mismo número que la falla asociada. Las advertencias no desconectan la etapa de potencia de la unidad o la salida de relevador de la falla.

Los códigos de falla o los códigos de advertencia de AKD se muestran constantemente, en caso de que estén presentes. Los mensajes de falla están codificados con la letra "F", y las advertencias están codificadas con la letra "n".

Con la tarjeta de opción de E/S integrada, los errores de operación de la tarjeta SD se muestran con la letra "E" seguida de 4 dígitos.

En el lado izquierdo del LED, se muestra F (o E) para una falla o n para una advertencia. En el lado derecho del LED, se muestra el número de la falla o la advertencia tal como se describe a continuación: 1-0-1-[interrupción]. Se muestra la falla con la prioridad más alta. En el momento en que se está produciendo una condición de falla, puede haber múltiples fallas presentes. Verifique la pantalla de falla de AKD WorkBench o el estado de DRV.FAULTS a través del controlador o de la HMI para toda la lista de fallas.

NOTA

Puede encontrar más información acerca de los mensajes de falla y de la eliminación de fallas en la ayuda en línea de WorkBench. Los procedimientos para la eliminación de fallas se describen en la ayuda en línea, en la sección "Fallas y advertencias".

Falla	Mensaje/Advertencia	Causa	Solución
		Interruptor DIP de voltaje de entrada del control de encendido de 24 V.	Garantice una capacidad de corriente de alimentación adecuada de 24 V para el sistema.
		0	0
		Encoder auxiliar de 5 V (X9-9) en cortocircuito.	Verifique y repare el cableado de la conexión X9.
E0082	No se insertó la tarjeta SD.	No se insertó la tarjeta SD o la tarjeta SD se insertó con orientación incorrecta.	Inserte la tarjeta SD con orientación correcta.
E0083	La tarjeta SD está protegida contra escritura.	La protección de la tarjeta SD se encuentra en posición incorrecta.	Quite la protección contra escritura de la tarjeta SD.
E0084	El hardware de la tarjeta SD no está instalado.	La placa de opción de E/S no está instalada ni el dispositivo de la tarjeta SD presenta fallas.	-
E0095	No se encontró el archivo en la tarjeta SD.	La tarjeta SD está dañada o el nombre de archivo se cambió manualmente o se eliminó.	-
E0096	Error de archivo al intentar acceder a la tarjeta SD.	No se puede leer el archivo de la tarjeta SD.	-

Falla	Mensaje/Advertencia	Causa	Solución
E0097	Error del sistema de archivos al acceder a la tarjeta SD.	No se puede leer el sistema de archivos de la tarjeta SD.	Solamente use tarjetas SD admitidas. (=> p. 150)
E0098	No se pudo configurar un parámetro en la unidad.	-	-
E0099	Se produjo un error al escribir en el archivo de la tarjeta SD.	-	-
E0100	La lectura/escritura de la tarjeta SD está en progreso.	-	Espere hasta que finalice el proceso de lectura/escritura.
E0101	Se produjo un error al acceder al archivo binario en BASIC.	No se puede leer el archivo de programa Basic.	-
F0		Reservado.	N/D
F101	Discrepancia con el tipo de firmware.	El firmware instalado no es compatible con el hardware de la unidad.	Cargue un firmware compatible en la unidad.
n101	La FPGA es una FPGA de laboratorio.	La FPGA es una FPGA de versión de laboratorio.	Cargue la versión de FPGA que sea compatible con el firmware operacional.
F102	Falló el firmware residente.	Se detectó una falla de software.	Reinicie la unidad. Si el problema persiste, comuníquese con el servicio de soporte técnico.
n102	La FPGA operacional no es una FPGA predeterminada.	La versión menor de FPGA es más grande que la versión menor de FPGA predeterminada del firmware operacional.	Cargue la versión de FPGA que sea compatible con el firmware operacional.
F103	Falló el FPGA residente.	Se detectó una falla de software. Se produjo una falla del FPGA residente de carga (varios casos de acuerdo con el diagrama de flujo, incluso una imagen incompatible con el tipo de FPGA y el tipo de bus de campo).	Reinicie la unidad. Si el problema persiste, comuníquese con el servicio de soporte técnico.
F104	Falló el FPGA operacional.	Se detectó una falla de software. Se produjo una falla de la FPGA operacional de carga (varios casos de acuerdo con el diagrama de flujo).	Reinicie la unidad. Si el problema persiste, comuníquese con el servicio de soporte técnico.
F105	Sello de memoria no volátil inválido.	El sello de memoria no volátil está dañado o no es válido.	Restablezca los valores predeterminados de la memoria de la unidad.

Falla	Mensaje/Advertencia	Causa	Solución
F106	Datos de memoria no volátil	Los datos de memoria no volátiles están dañados o no son válidos. Cuando esta falla se produce después de una descarga de firmware, no es una indicación de que existe un problema (elimine la falla y realice	Restablezca los valores predeterminados de la memoria de la unidad.
F107 n107	Se superó el límite del conmutador positivo.	Se superó el límite de posición de software positivo.	Aleje las cargas de los límites.
F108 n108	Se superó el límite del conmutador negativo.	Se superó el límite de posición de software negativo.	Aleje las cargas de los límites.
F121	Error de colocación en posición inicial.	La unidad no finalizó la secuencia de colocación en posición inicial.	Verifique el sensor de colocación en posición inicial, el modo de colocación en posición inicial y la configuración de colocación en posición inicial.
F123 n123	Tarea de movimiento no válida.	Tarea de movimiento no válida.	Verifique la configuración y los parámetros de la tarea de movimiento para asegurarse de que los valores ingresados produzcan una tarea de movimiento válida.
F125 n125	Se perdió la sincronización.	El bus de campo perdió sincronización.	Verifique la conexión del bus de campo (X5 y X6 si usa EtherCAT; X12 y X13 si usa CANopen) o la configuración de EtherCAT o CANopen maestro.
F126 n126	Demasiado movimiento.	Se creó demasiado movimiento durante un diagrama de Bode. El motor es inestable y no sigue las instrucciones de la unidad.	Verifique que el sistema sea estable con bucle cerrado. Consulte la guía de ajuste del sistema.
F127	Procedimiento de parada de emergencia incompleto.	Procedimiento de parada de emergencia incompleto (problema con la tarea de movimiento de la parada de emergencia).	Desconecte la alimentación de la unidad y verifique el procedimiento de parada de emergencia.
F128	VL.LIMITP and VL.LIMITN no son números enteros.	La relación de los polos del motor con los polos de retroalimentación debe ser un número entero.	Cambie a un dispositivo de retroalimentación compatible.
F129	Se perdió el latido.	Se perdió el latido.	Verifique el cableado de CANopen. Reduzca la carga del bus o aumente el tiempo de actualización del latido.
F130	Sobrevoltaje de suministro de retroalimentación secundaria.	Se provocó un cortocircuito del suministro de energía de 5 V en X9.	Verifique la conexión X9.

Falla	Mensaje/Advertencia	Causa	Solución
F131	Caída de línea A/B de retroalimentación secundaria.	Se detectó un problema en la retroalimentación secundaria.	Verifique la retroalimentación secundaria (conexión X9).
F132	Caída de línea Z de retroalimentación secundaria.	Se detectó un problema en la retroalimentación secundaria.	Verifique la retroalimentación secundaria (conexión X9).
F133	Número de falla cambiado a F138. Consulte F138 para obtener detalles.		
F134	Estado ilegal de la retroalimentación secundaria.	Se detectaron señales de retroalimentación en una combinación ilegal.	Verifique la conexión X9.
F135 n135	Se necesita colocación en posición inicial.	Intento de emitir una tarea de movimiento antes de que el eje se coloque en posición inicial. El eje debe colocarse en posición inicial antes de que se inicie la tarea de movimiento.	Cambie el modo de funcionamiento o el eje de posición inicial.
F136	La versión del firmware y la de FPGA no son compatibles	La versión de FPGA no coincide con las constantes de la versión de FPGA del firmware.	Cargue la versión de FPGA que sea compatible con el firmware.
n137	Discrepancia entre la colocación en posición inicial y la retroalimentación.	El tipo de retroalimentación del motor usado no admite el modo de colocación en posición inicial.	Cambiar el modo de colocación en posición inicial.
F138		La corriente de la unidad (IL.CMD) o la retroalimentación de la velocidad (VL.FB) excede el límite permitido (BODE.IFLIMIT O BODE.VFLIMIT). Se produce en BODE.MODE 5, cuando la mecánica, los cinturones y las cargas compatibles están presentes.	Si corresponde, cambiar BODE.MODE. Si BODE.MODE 5 es adecuado y la falla se produce al final de un autoajuste, entonces, el motor tiene una estabilidad sólida. es posible que se requiera un autoajuste manual para estabilizar el motor.
F139	movimiento no válida.	La unidad no puede desacelerar de su velocidad actual para alcanzar el punto final de la segunda tarea de movimiento sin pasar por este punto.	Aumente la velocidad de desaceleración en el movimiento o active antes el movimiento. Elimine la falla con DRV.CLRFAULTS. O cambie el valor de FAULT139.ACTION = 1 para ignorar esta condición.

Falla	Mensaje/Advertencia	Causa	Solución
n140	VBUS.HALFVOLT ha cambiado. Guarde los parámetros y reinicie la unidad.	El usuario ha cambiado el valor numérico de VBUS.HALFVOLT. Este cambio solo surte efecto después del comando DRV.NVSAVE y después de reiniciar la unidad.	Guarde los parámetros en la memoria no volátil a través del comando DRV.NVSAVE y conecte o desconecte el suministro de energía de 24 [V] para reiniciar la unidad o restaure la configuración original de VBUS.HALFVOLT.
n151	No hay distancia suficiente para el desplazamiento. Excepción de movimiento.	Para las tareas de movimiento de la tabla de cliente y trapezoidal: La velocidad objetivo especificada en la tarea de movimiento no se puede alcanzar mediante el uso de la aceleración y desaceleración seleccionadas, ya que la distancia del recorrido no es suficiente. Para un perfil 1:1: Se extenderá la aceleración y la desaceleración seleccionadas, ya que no hay mucha distancia de recorrido y la tarea de movimiento	La activación de un nuevo movimiento o el uso de DRV.CLRFAULTS eliminará la advertencia. Verifique la configuración y los parámetros de la tarea de movimiento para asegurarse de que los valores ingresados produzcan una tarea de movimiento válida.
n152	No hay distancia suficiente para el desplazamiento. Excepción de movimiento posterior.	movimiento nueva, cuando una tarea de movimiento ya está activa y la posición objetivo especificada en los parámetros de la tarea de movimiento no se pueden alcanzar con parámetros específicos de velocidad objetivo, aceleración y desaceleración.	La activación de un nuevo movimiento o el uso de DRV.CLRFAULTS eliminará la advertencia. Verifique la configuración y los parámetros de la tarea de movimiento para asegurarse de que los valores ingresados produzcan una tarea de movimiento válida.
n153	Violación del límite de velocidad; se superó el límite máximo.	Se calculó una nueva velocidad objetivo de manera interna debido a una excepción y está limitada debido al límite de velocidad del usuario.	La activación de un nuevo movimiento o el uso de DRV.CLRFAULTS eliminará la advertencia. Verifique la configuración y los parámetros de la velocidad objetivo de la tarea de movimiento para asegurarse de que los valores ingresados no excedan la configuración de VL.LIMITP y VL.LIMITN.

Falla	Mensaje/Advertencia	Causa	Solución
n154	Falló el siguiente movimiento; verifique los parámetros de movimiento.	Falló la activación de la tarea de movimiento siguiente debido a parámetros incompatibles o a que la tarea de movimiento no existe.	La activación de un nuevo movimiento o el uso de DRV.CLRFAULTS eliminará la advertencia. Verifique la configuración y los parámetros de la tarea de movimiento siguiente para asegurarse de que los valores ingresados produzcan una tarea de movimiento válida.
n156	Posición de destino anulada debido a comando de detención.	La tarea de movimiento anula la posición objetivo después de activar un comando DRV.STOP. Esta situación puede producirse al procesar un cambio sobre la marcha de la tarea de movimiento y activar un comando DRV.STOP cerca de una posición objetivo de la tarea de movimiento actual en ejecución.	La activación de un movimiento nuevo o el uso de DRV.CLRFAULTS eliminará la advertencia.
n157	No se encontró pulso de índice de colocación en posición inicial.	Se activó un modo de colocación de posición inicial con detección de índice y no se detecta el pulso de índice mientras se traslada por el rango determinado por los conmutadores de límite de hardware.	La activación de un movimiento nuevo o el uso de DRV.CLRFAULTS eliminará la advertencia.
n158	No se encontró el conmutador de referencia de colocación de posición inicial.	Se activa un modo de colocación de posición inicial con detección de conmutador de referencia y el conmutador de referencia no se detecta al trasladarse por el rango determinado por el conmutador de límite de hardware.	La activación de un movimiento nuevo o el uso de DRV.CLRFAULTS eliminará la advertencia.
n159	No se pudieron establecer los parámetros de la tarea de movimiento.	Asignación de los parámetros de la tarea de movimiento no válidos. Esta advertencia puede aparecer en un comando MT.SET.	La activación de un movimiento nuevo o el uso de DRV.CLRFAULTS eliminará la advertencia. Verifique la configuración y los parámetros de la tarea de movimiento.

Falla	Mensaje/Advertencia	Causa	Solución
n160	Falló la activación de la tarea de movimiento.	que no existe la tarea de	La activación de un nuevo movimiento o el uso de DRV.CLRFAULTS eliminará la advertencia. Verifique la configuración y los parámetros de la tarea de movimiento para asegurarse de que los valores ingresados produzcan una tarea de movimiento válida.
n161	Falló el procedimiento de colocación en posición inicial.	Se observó un error de colocación en posición inicial durante el funcionamiento del procedimiento de colocación en posición inicial.	La activación de un movimiento nuevo o el uso de DRV.CLRFAULTS eliminará la advertencia.
n163	MT.NUM supera el límite.	Aparece con n160, cuando intenta activar una tarea de movimiento > 128 (por ejemplo, MT.MOVE 130).	Solo active las tareas de movimiento entre 0 y 128. La activación de un movimiento nuevo o el uso de DRV.CLRFAULTS eliminará la advertencia.
n164	No se inicializó la tarea de movimiento.	Aparece con n160, cuando intenta activar una tarea de movimiento no inicializada.	Inicialice la tarea de movimiento antes de iniciar la tarea. La activación de un movimiento nuevo o el uso de DRV.CLRFAULTS eliminará la advertencia.
n165	La posición de destino de la tarea de movimiento se encuentra fuera del rango.	Aparece con n160, cuando intenta activar una tarea de movimiento con una posición de destino absoluta fuera del rango del módulo seleccionado (también consulte MT.CNTL).	Mueva la posición de destino absoluta de la tarea de movimiento dentro del rango del módulo. La activación de un movimiento nuevo o el uso de DRV:CLRFAULTS eliminará la advertencia.
n168	Combinación de bits no válida en la palabra de control de la tarea de movimiento.	Aparece con n160, cuando intenta activar una tarea de movimiento con una combinación de bits no válida en la palabra de control de la tarea de movimiento (también consulte MT.CNTL).	DRV.CLRFAULTS eliminará la
n169	El perfil 1:1 no se puede activar sobre la marcha.	Aparece con n160, cuando activa una tarea de movimiento de la tabla del perfil 1:1 mientras se está ejecutando otra tarea de movimiento.	Las tareas de movimiento de la tabla del perfil 1:1 deben iniciarse con velocidad 0. La activación de un movimiento nuevo o el uso de DRV.CLRFAULTS eliminará la advertencia.

Follo	Managia/Advertagais	Cause	Colusión
Falla n170	Mensaje/Advertencia No se inicializó la tabla de	Causa Aparece con n160, cuando	Solución Cambie el parámetro MT.TNUM para
	perfil de cliente.	intenta activar una tarea de movimiento que usa una tabla de perfil de cliente para generar el perfil de velocidad u cuando la tabla de perfil seleccionada está vacía (consulte MT.CNTL y MT.TNUM).	inicializada. La activación de un
F201	Falló la RAM interna.	Se detectó una falla de hardware.	Reinicie la unidad. Si el problema persiste, comuníquese con el servicio de soporte técnico.
F202	Falló la RAM externa.	Se detectó una falla de hardware.	Reinicie la unidad. Si el problema persiste, comuníquese con el servicio de soporte técnico.
F203	Falló la integridad del código.	Se detectó una falla de software. Se produjo una falla de acceso de registro de FPGA.	Reinicie la unidad. Si el problema persiste, comuníquese con el servicio de soporte técnico.
F204 a F232	Se detectó una falla de EEPROM	Se detectó una falla de EEPROM	Reinicie la unidad. Si el problema persiste, cambie la unidad.
F234 a F237 n234 a n237	Sensor de temperatura alta.	Se alcanzó el límite de temperatura alta.	Verifique el sistema de ventilación del gabinete.
F240 a F243 n240 a n243	Sensor de temperatura baja.	Se alcanzó el límite de temperatura baja.	Verifique el sistema de ventilación del gabinete.
F245	Falla externa.	Esta falla es generada por el usuario y es provocada por la configuración del usuario.	Los usuarios pueden configurar una entrada digital para activar este falla (DINx.MODE = 10). La falla se produce de acuerdo con esta configuración de entrada. Elimine la entrada para eliminar la falla.
F247	El voltaje del bus excedió los umbrales permitidos.	Problema de hardware en la medición del bus.	Solucione y repare el problema de hardware.
F248	EEPROM de la placa de opción dañada.	Se detectó una falla de EEPROM.	Reinicie la unidad. Si el problema persiste, cambie la unidad.
F249	Suma de control descendente de la placa de opción.	Fallaron las comunicaciones con la E/S de la placa de opción.	DRV.CLRFAULTS. Si el problema persiste, comuníquese con el servicio de soporte técnico.
F250	Suma de control ascendente de la placa de opción.	Fallaron las comunicaciones con la E/S de la placa de opción.	DRV.CLRFAULTS. Si el problema persiste, comuníquese con el servicio de soporte técnico.
F251	Dispositivo de vigilancia de la placa de opción.	Fallaron las comunicaciones con la E/S de la placa de opción.	DRV.CLRFAULTS. Si el problema persiste, comuníquese con el servicio de soporte técnico.
F252	Los tipos de FPGA del firmware y de la placa de opción no son compatibles.	La FPGA de la placa de opción no es compatible con este hardware.	Descargue el archivo de firmware correcto para esta unidad.

Falla	Mensaje/Advertencia	Causa	Solución
F253	Las versiones de FPGA del firmware y de la placa de opción no son compatibles	La versión de la FPGA de la placa de opción no es compatible con este firmware.	Descargue el archivo de firmware correcto para esta unidad.
F301 n301	Sobrecalentamiento del motor.	Sobrecalentamiento del motor.	Verifique la temperatura ambiente. Verifique la capacidad del disipador de calor de montaje del motor
F302	Exceso de velocidad.	El motor superó el valor VL.THRESH.	Aumente VL.THRESH o disminuya el comando de velocidad.
F303	Fuera de control.	El motor no siguió los valores de los comandos.	El comando de corriente al motor es muy alto para una distancia muy larga. Reduzca las ganancias servo reduzca la agresividad de la trayectoria del comando.
F304 n304	Reducción de voltaje en el motor.	Se superó la potencia máxima del motor; se limitó la potencia para proteger el motor.	El movimiento requiere mucha potencia. Cambie el perfil de movimiento para reducir la carga de motor. Verifique la interferencia o la interrupción de la carga. Verifique que los límites se establezcan de manera correcta.
F305	Circuito abierto en el freno.	Circuito abierto del freno del motor. El umbral de la falla es de 200 mA.	Verifique el cableado y la funcionalidad general. Para aplicaciones especiales de freno de corriente baja, la falla F305 se pued evitar mediante el uso de la configuración motor.break = 100.
F306	Cortocircuito en el freno.	Cortocircuito en el freno del motor.	Verifique el cableado y la funcionalidad general.
F307	Freno cerrado durante estado activado.	El freno de motor se cerró inesperadamente.	Verifique el cableado y la funcionalidad general.
F308	El voltaje supera la potencia del motor.	El voltaje del bus de la unidad supera el voltaje nominal definido del motor.	Asegúrese de que el motor concuerde con la potencia motriz.
F309	Carga de l2t del motor.	La carga de l2t del motor (IL.MI2T) superó el umbral de advertencia IL.MI2TWTHRESH. Solo se puede generar si IL.MIMODE se configuró en 1.	Reduzca la carga de la unidad al ajustar las rampas de desaceleració / aceleración inferiores.
F401	No se pudo establecer el tipo de retroalimentación.	La retroalimentación no está conectada o se seleccionó el tipo de retroalimentación incorrecto	Verifique la retroalimentación principal (X10).

Falla	Mensaje/Advertencia	Causa	Solución
F402	Falla de la amplitud de señal analógica.	La amplitud de la señal analógica es muy baja. Falla analógica (amplitud de la señal del resolver o amplitud de una función seno y coseno)	Verifique solamente la retroalimentación primaria (X10), el resolver y el encoder de seno y coseno.
F403	Falla de comunicación de EnDat.	Problema de comunicación general con la retroalimentación.	Verifique la retroalimentación principal (X10), solamente EnDat
F404	Error de Hall.	El sensor de Hall devuelve un estado de Hall no válido (111, 000); todos los sensores de Hall están encendidos o apagados. Puede estar ocasionado por una conexión interrumpida en una de las señales de Hall.	Verifique el cableado de la retroalimentación; verifique todos los conectores de retroalimentación para garantizar que todos los pines estén posicionados de manera correcta.
F405	Falla del dispositivo de vigilancia de BiSS.	Mala comunicación con el dispositivo de	Verifique la retroalimentación principal (X10), solamente Biss.
F406	Falla de varios ciclos de BiSS.	retroalimentación.	
F407	Falla del sensor de BiSS.		
F408 a F416	Falla de retroalimentación del SFD.	Mala comunicación con el dispositivo SFD.	Verifique la retroalimentación primaria (X10). Si la falla continua, es una falla de retroalimentación interna. Devuelva al fabricante para reparación.
F417	Cable roto en la retroalimentación principal.	Se detectó un cable dañado en la retroalimentación principal (amplitud de señal del encoder incremental).	Verifique la continuidad del cable de la retroalimentación.
F418	Suministro de energía principal de la retroalimentación.	Falla del suministro de energía de la retroalimentación principal.	Verifique la retroalimentación principal (X10).
F419	Falló el procedimiento de inicialización del encoder.	El procedimiento de búsqueda de fase no se completó correctamente.	Verifique el cableado del encoder, reduzca o equilibre la carga del motor antes de llevar a cabo la búsqueda de fase.
F420	Falla de comunicaciones de EnDat de FB3.	Se detectó un error de comunicación con el dispositivo EnDat 2.2 conectado al conector X9.	
F421	Falla del sensor de posición del SFD.	Falla de sensor o del cableado del sensor dentro del motor	Intente restablecer la falla. Si vuelve a producirse, devuelve el motor para reparación.
F423	Falla NV, desbordamiento multiespiras.	La posición guardada en la memoria está dañada.	Coloque el eje en posición inicial o desactive el desbordamiento multiespiras. Si la falla continúa, envíe la unidad para reparación.

Falla	Mensaje/Advertencia	Causa	Solución
F424	Amplitud del resolver baja.	La amplitud de señal del resolver está por debajo del nivel mínimo.	Verifique la retroalimentación principal (X10).
F425	Amplitud del resolver alta.	La amplitud de señal del resolver está por encima del nivel mínimo.	Verifique la retroalimentación principal (X10).
F426	Error del resolver.	Falla de excitación del resolver.	Verifique la retroalimentación principal (X10).
F427	Analógico bajo.	Amplitud de señal analógica baja.	Verifique la retroalimentación principal (X10).
F428	Analógico alto.	Amplitud de señal analógica alta.	Verifique la retroalimentación principal (X10).
F429	Incremental bajo.	La amplitud de señal del encoder incremental está por debajo del nivel mínimo.	Verifique la retroalimentación principal (X10).
F430	Incremental alto.	La amplitud de señal de encoder incremental está por encima del nivel mínimo.	Verifique la retroalimentación principal (X10).
F432	Falla de comunicación.	Problema de comunicación general con la retroalimentación secundaria.	Verifique la retroalimentación secundaria (X10).
F437	Cerca del límite.	Advertencia de exceso de velocidad o sobrecarga de corriente del motor o de la unidad.	Verifique si hay un aumento de la carga, una interferencia o interrupción. ¿El error de posición está configurado en un valor muy bajo?
F438 n439	Error de seguimiento (numérico)	El motor no siguió los valores de los comandos. El motor superó el error de seguimiento (numérico) de posición máxima permitida.	Verifique si hay un aumento de la carga, una interferencia o interrupción. ¿El error de posició está configurado en un valor muy bajo?
F439 n439	Error de seguimiento (usuario)	El motor no siguió los valores de los comandos. El motor superó el error de seguimiento (usuario) de posición máxima permitida.	Verifique los parámetros de instalación y ajuste de la conmutación de retroalimentació
F450	Error de seguimiento (presentación).	El motor no siguió los valores de los comandos. El motor superó la posición máxima permitida; error de seguimiento (presentación).	Verifique los parámetros de instalación y ajuste de la conmutación de retroalimentació

Falla	Mensaje/Advertencia	Causa	Solución
F451 n451	Encoder Tamagawa: batería.	El voltaje de la batería externa es muy bajo. La falla F451 se genera si el dispositivo AKD no está encendido. La advertencia n451 se genera si el dispositivo AKD está encendido. Esta falla se puede inhibir con FAULT451.ACTION.	Se debe verificar o reemplazar la batería externa.
F452	Desbordamiento multiespiras no admitido con esta retroalimentación.	Retroalimentación sin multiespiras conectada mientras FB1.PMTSAVEEN está activo.	Conecte la retroalimentación multiespiras a la unidad o desactive el desbordamiento multiespiras.
F453 a F459	Encoder Tamagawa: comunicación.	Mala comunicación con el dispositivo de retroalimentación.	Falla de cableado o protección o falla de retroalimentación interna. Verifique el cableado hasta la unidad. Si el problema continúa devuelva el dispositivo de retroalimentación al fabricante para su preparación.
F460	Encoder Tamagawa: exceso de velocidad.	Cuando se apagó la unidad y la batería externa encendió el dispositivo de retroalimentación, esta falla se genera si se rota el eje por encima de la velocidad máxima que se puede mantener con al batería encendida.	Restablezca la falla en la unidad con DRV.CLRFAULTS.
F461	Encoder Tamagawa: Error de conteo.	Cuando se encendió el dispositivo de retroalimentación, la posición (dentro de la revolución) era incorrecta debido a un problema con el dispositivo de retroalimentación.	Restablezca la falla en la unidad con DRV.CLRFAULTS, si el problema continúa devuelva el dispositivo de retroalimentación al fabricante para su reparación.
F462	Encoder Tamagawa: desbordamiento de conteo.	El contador multiespiras se desbordó.	Restablezca la falla en la unidad con DRV.CLRFAULTS.
F463	Encoder Tamagawa: sobrecalentamiento.	La temperatura del sustrato del encoder supera la temperatura de detección de sobrecalentamiento durante el encendido principal.	Restablezca la falla en la unidad con DRV.CLRFAULTS después de que se disminuye la temperatura del encoder.
F464	Encoder Tamagawa: error de multiespiras.	Todos los saltos de bit se producen en la señal multiespiras durante el encendido principal.	Regrese al origen. Restablezca la falla en la unidad con DRV.CLRFAULTS.
F473	Vibración. Movimiento insuficiente	Había menos movimiento que el definido por WS.DISTMIN.	Aumente WS.IMAX o WS.T. O intente usar WS.MODE 1 o 2.

Falla	Mensaje/Advertencia	Causa	Solución
F475	Vibración. Movimiento en exceso.	Se superó WS.DISTMAX en WS.MODE 0. Se recorrió más de 360 grados en WS.MODE 2.	Aumente el valor de WS.DISTMAX reduzca WS.IMAX o WS.T. No se admite vibración para cargas verticales o en voladizo.
F476	Vibración. Delta fino- grueso demasiado grande.	La diferencia angular entre el cálculo fino y grueso fue mayor que 72 grados.	Modifique WS.IMAX o WS.T y vuelva a intentarlo.
F478 n478	Vibración. Exceso de velocidad.	Se superó WS.VTHRESH.	Aumente el valor de WS.VTHRES o reduzca WS.IMAX o WS.T.
F479 n479	Vibración. Delta del ángulo del bucle demasiado grande.	El ángulo entre bucles completos fue mayor que 72 grados.	Modifique WS.IMAX o WS.T y vuelva a intentarlo.
F480	Velocidad del comando de bus de campo muy alta.	La velocidad del comando de bus de campo supera VL.LIMITP.	Disminuya la trayectoria del comando del bus de campo o aumente el valor de VL.LIMITP.
F481	Velocidad del comando de bus de campo muy baja.	La velocidad del comando de bus de campo supera VL.LIMITN.	Aumente la trayectoria del comano del bus de campo o disminuya el valor de VL.LIMITN.
F482	No se inicializó la conmutación.	El motor requiere la inicialización de la conmutación (no existen vías de conmutación del encoder, sensores de Hall, etc.) y no se ha realizado una secuencia de vibración correcta.	Elimine todas las fallas, active el procedimiento de vibración (WS.ARM) y active la unidad.
F483	Falta la fase U del motor.	No se detectó corriente en la fase U del motor durante la inicialización de vibración (solo Modo 0).	Verifique las conexiones del motor WS.IMAX (una corriente muy baja puede producir este error).
F484	Falta la fase V del motor.	No se detectó corriente en la fase V del motor durante la inicialización de vibración (solo Modo 0).	Verifique las conexiones del motor WS.IMAX (una corriente muy baja puede producir este error).
F485	Falta la fase W del motor.	No se detectó corriente en la fase W del motor durante la inicialización de vibración (solo Modo 0).	Verifique las conexiones del motor WS.IMAX (una corriente muy baja puede producir este error).
F486	La velocidad del motor superó la velocidad de EMU.	La velocidad del motor supera la velocidad máxima que la salida del encoder emulado puede generar.	Reduzca el valor de DRV.EMUEPULSEIDTH.
F487	Validación - Falló la validación del movimiento positivo.	Después de aplicar una corriente positiva, el motor se desplazó en la dirección incorrecta.	Verifique el cableado de fase del motor y el cableado del encoder de motor es correcto.
F489	Vibración - Falló la validación del movimiento negativo.	Después de aplicar una corriente negativa, el motor se desplazó en la dirección incorrecta.	Verifique el cableado de fase del motor y el cableado del encoder de motor es correcto.

Falla	Mensaje/Advertencia	Causa	Solución
F490	Vibración - Se interrumpió la validación del ángulo de conmutación.	Durante una de las etapas de validación de vibración, la unidad dejó de responder a los comandos.	Comuníquese con el servicio de atención al cliente.
F491	Vibración - La validación del ángulo de conmutación se desplazó demasiado - Ángulo de conmutación defectuoso	Después de aplicar una corriente, el motor se desplazó demasiado (>15 grados eléctricos).	Esto indica que se encontró un ángulo de fase del motor mediante vibración. Revise los parámetros de vibración y vuelva a ejecutar la vibración.
F492	Vibración - La validación del ángulo de conmutación requirió más que MOTOR.ICONT.	excitar el motor.	Esto indica una de las siguientes posibilidades: El ángulo de fase es incorrecto debido a una vibración defectuosa. El motor tiene fricción muy alta y requiere corriente alta para liberarse. El cable de alimentación del motor
F493	Se detectó una conmutación no válida - el motor está acelerando en la dirección incorrecta.	Se produjo un error de conmutación cuando la corriente tiene un signo diferente al de la aceleración y la velocidad durante un tiempo definido.	está desconectado o mal conectado. Verifique el valor de la fase del motor.
F501 n501	Sobrevoltaje en el bus.	El voltaje del bus es muy alto. Generalmente, este problema está relacionado con la carga.	Reduzca la carga o cambie el perfil de movimiento. Verifique la capacidad del regenerador del sistema. Verifique el voltaje de la red de alimentación eléctrica.
F502	Subvoltaje en el bus. Se emitió una advertencia antes de que se produjera la falla.	El voltaje del bus se encuentra por debajo del valor del umbral.	Verifique el voltaje de la red de alimentación eléctrica.
F503 n503	Sobrecarga del capacitor del bus.	Entrada de CA de fase única en una unidad clasificada solamente para entrada de tres fases o carga de energía excesiva de fase única.	Verifique el voltaje de la red de alimentación eléctrica.
F504 a F518	Falla del voltaje de alimentación interna	Se detectó una falla del voltaje de alimentación interna	Verifique el cableado para la compatibilidad electromagnética (EMC). Si el problema continúa, intercambie la unidad.
F519	Cortocircuito en el regenerador.	Cortocircuito en la resistencia regenerativa.	Cortocircuito en el transistor bipolar de puerta aislada del regenerador. Comuníquese con el soporte técnico.
F520	Sobrecarga del regenerador.	Sobrecarga de la resistencia regenerativa.	Se está realizando una revisión del motor o el motor se detuvo demasiado rápido.

Falla	Mensaje/Advertencia	Causa	Solución
F521 n521	Sobrecarga del generador.	Mucha energía almacenada en la resistencia regenerativa.	Obtenga una resistencia regenerativa más grande o use un bus de CC compartido para disipar la energía.
F523	Sobrevoltaje del bus de la FPGA.	Falla grave de sobrevoltaje del bus.	Verifique el voltaje de la red de alimentación eléctrica y verifique la capacidad de frenado del sistema.
F524 n524	Reducción de voltaje en la unidad.	Se superó la potencia máxima de la unidad. Se limitó la potencia para proteger la unidad.	El movimiento requiere mucha potencia. Cambie el perfil para reducir la carga.
F525	Sobrecorriente de salida.	La corriente supera la intensidad máxima de la unidad.	Verifique fallas de cortocircuito o retroalimentación.
F526	Cortocircuito en el sensor de corriente.	Cortocircuito en el sensor de corriente.	Reinicie la unidad. Si el problema persiste, comuníquese con el servicio de soporte técnico.
F527	Conversor AD de corriente lu atascado.	Se detectó una falla de hardware.	Reinicie la unidad. Si el problema persiste, comuníquese con el servicio de soporte técnico.
F528	Conversor AD de corriente Iv atascado. Conversor AD de corriente Iv atascado.	hardware.	Reinicie la unidad. Si el problema persiste, comuníquese con el servicio de soporte técnico.
F529	Se excedió el límite de desplazamiento de corriente lu.	Se detectó una falla de hardware.	Reinicie la unidad. Si el problema persiste, comuníquese con el servicio de soporte técnico.
F530	Se excedió el límite de desplazamiento de corriente lv.	Se detectó una falla de hardware.	Reinicie la unidad. Si el problema persiste, comuníquese con el servicio de soporte técnico.
F531	Falla en etapa de alimentación.	Se detectó una falla de hardware.	Reinicie la unidad. Si el problema continúa, intercambie la unidad.
F532	No se completó la configuración de los parámetros del motor de la unidad.	Antes de que se pueda activar un motor, debe configurar un conjunto mínimo de parámetros. Estos parámetros no se configuraron.	Emita el comando DRV.SETUPREQLIST para mostrar la lista del los parámetros que debe configurar. Configure estos parámetros ya sea de manera manual o automática. Los parámetros para BiSS analógico, Endat o el dispositivo de retroalimentación de SFD, se establecen automáticamente cuando MOTOR.AUTOSET está configurado en 1.

Falla	Mensaje/Advertencia	Causa	Solución
F534	Error al leer los parámetros del motor desde el dispositivo de retroalimentación.	El motor no tiene memoria de retroalimentación del motor o la memoria de retroalimentación del motor no está programada de manera adecuada de modo que no se pueden leer los parámetros.	Intente leer los parámetros nuevamente al hacer clic en el botón Desactivar y eliminar fallas . Si este intento no es satisfactorio, configure MOTOR.AUTOSET en 0 y programe los parámetros mediante el uso del asistente de instalación o de manera manual. Si el motor tienen memoria de motor (BiSS analógico, Endat y SFD), devuelva el motor al fabricante para que se programe la memoria.
F535	Falla de exceso de temperatura en el tablero de alimentación.	El sensor de temperatura del tablero de alimentación indica más de 85 °C.	Reduzca la carga de la unidad o garantice una mejor refrigeración.
F601	La tasa de datos de Modbus es demasiado alta.	La tasa de datos del controlador de Modbus es demasiado alta.	Reduzca la tasa de datos.
F602	Desactivación de torque por seguridad.	Se activó la función de desactivación de torque por seguridad.	Vuelva a aplicar el voltaje de alimentación a STO, siempre que sea seguro realizar esta acción.
n603	OPMODE no compatible con CMDSOURCE.	Esta advertencia se genera cuando la unidad se activa y la fuente del comando engranaje se selecciona al mismo tiempo que el modo de funcionamiento de velocidad o torsión.	Seleccione una combinación de DRV.OPMODE y DRV.CMDSOURCE diferente.
n604	EMUEMODE no es compatible con DRV.HANDWHEELSRC.	El modo de codificación emulado no es compatible con la fuente de volante seleccionada.	Seleccione un modo de codificación emulado compatible o cambie la fuente de volante.
F701	Tiempo de ejecución del bus de campo.	Falla de comunicación de tiempo de ejecución.	Verifique las conexiones del bus de campo (X11), la configuración y la unidad de control.
F702 n702	Se perdió la comunicación con el bus de campo.	Se perdió toda comunicación con el bus de campo.	Verifique las conexiones del bus de campo (X11), la configuración y la unidad de control.
F703	Se venció el tiempo de espera de emergencia; el eje se debería haber desactivado	El motor no se detuvo en el tiempo de espera definido.	Cambie le valor del tiempo de espera, cambie los parámetros de detención, mejore el ajuste.

10.4.2 Mensajes de falla adicionales AKD-T

Las fallas de tiempo de ejecución de la unidad AKD BASIC se muestran en la pantalla de 7 segmentos y dos dígitos de la unidad:

Todas las fallas activan los relevadores de fallas, y no se necesita realizar el ciclo de energía.

NOTA	Puede encontrar más información acerca de los mensajes de falla y de la
	eliminación de fallas en la ayuda en línea de WorkBench. Los procedimientos para
	la eliminación de fallas se describen en la ayuda en línea, en la sección "Fallas y
	advertencias".

Resolución para todos los errores: eliminar la falla, reparar del programa del usuario, recopilar, descargar e intentar ejecutar el programa nuevamente.

Error	Descripción	Causa
F801	División por cero.	El programa del usuario intentó dividir por cero.
F802	Desbordamiento de pila.	El programa del usuario contiene una recursividad infinita o una matriz incorrecta.
F803	Memoria insuficiente.	El programa del usuario crea una demanda excesiva de memoria.
F804	No se definió un manejador de interrupción.	Al programa del usuario le falta una rutina de servicio de interrupción, pero se llama a una interrupción.
F805	Error de interrupción.	El programa del usuario contiene un error en la rutina de interrupción.
F806	Se excedió la longitud máxima de la cadena.	El programa del usuario intentó usar una cadena que supera los 255 caracteres.
F807	Desbordamiento de cadena.	El programa del usuario tiene una excepción que causa el uso excesivo de la cadena.
F808	Matriz fuera de los límites.	La excepción del programa del usuario hizo que la matriz exceda sus límites.
F809	Función no admitida.	El programa del usuario contiene una función que no es compatible con la versión actual del firmware.
F810	Error de firmware/hardware interno.	El programa del usuario intentó realizar una acción que produjo un error de firmware o hardware.
F812	Parámetro no admitido.	El programa del usuario llama un parámetro que no es compatible con el firmware.
F813	Error de acceso al parámetro.	El programa del usuario contiene un error de acceso al parámetro.
F814	No se encontraron datos.	El programa del usuario intentó escribir un parámetro de grabadora no válido.
F815	Datos no válidos.	El programa del usuario intentó ejecutar un comando no válido.
F816	Datos muy altos.	El programa del usuario contiene un parámetro que está por encima del rango aceptado.
F817	Datos muy bajos.	El programa del usuario contiene un parámetro que está por debajo del rango aceptado.
F818	Tipo de parámetro fuera de rango.	El programa del usuario intentó escribir un valor que está fuera de rango.
F819	Datos no divisibles por 2.	El programa del usuario ejecutó una función que requiere que sea divisible por dos.

Error	Descripción	Causa
F820	Configuración de posición no válida del módulo.	El programa del usuario contiene una configuración del módulo incorrecta.
F821	No se puede leer desde el comando.	El programa del usuario intentó realizar una lectura del parámetro que es un comando o una declaración.
F823	Activar la unidad primero.	El programa del usuario está intentando ejecutar un movimiento que requiere que la unidad esté activada.
F824	DRV.OPMODE debe ser 2 (posición).	El programa del usuario está intentando ejecutar un movimiento que requiere que la unidad esté en el modo programa.
F825	DRV.CMDSOURCE debe ser 5 (programa).	El programa del usuario está intentando ejecutar un movimiento que requiere que la unidad esté en el modo posición.
F826	No se puede ejecutar durante un movimiento.	El programa del usuario está intentando una ejecución no válida durante un movimiento.
F827	Parámetro de escritura a solo lectura.	El programa del usuario intentó escribir un parámetro de solo lectura.
F828	Primero desactivar la unidad.	El programa del usuario está intentando ejecutar una función que requiere que la unidad esté desactivada.

10.4.3 Mensajes de error y alarma adicionales AKD-M

Las fallas/errores y las advertencias/alertas se muestran en las pantallas de 7 segmentos de la unidad:

Para simplificar el manejo, el proceso de manejo de errores y alarmas es consistente, de manera que siempre puede aplicar los mismos pasos de recuperación. Cuando se produce un error o se dispara una alarma, se muestra en la pantalla de un dígito; puede identificar el error en la tabla de abajo y seguir las recomendaciones para solucionar el problema, limpiar la pantalla y reanudar el funcionamiento de la máquina.

Los errores y las alarmas activos se pueden eliminar con el comando del controlador *ClearCtrlErrors*, (Nota: permanecerán los errores que no pueden eliminarse).

Cuando se produce un error o se dispara una alarma, siempre controle los mensajes del registro del controlador. Los mensajes de registro brindarán más detalles acerca de la falla y el historial de eventos que llevan a la falla. En los mensajes de registro, puede determinar las especificaciones acerca del origen de la falla para corregir el problema subyacente.

10.4.3.1 Errores

Error	Descripción	Causa	Solución
E01	Se superó la temperatura crítica. Se detiene el funcionamiento de PDMM, la CPU se pone en suspensión.	La temperatura de la CPU superó el límite de temperatura segura en funcionamiento.	Apague la unidad. Verifique si el entorno de flujo de aire y de funcionamiento estén dentro de las especificaciones del hardware. Permita que la unidad se enfríe antes de encenderla.
E02	Sin memoria. Se detiene el tiempo de ejecución de KAS.	Pérdida de memoria, memoria dañada o falla en la memoria de hardware.	Apague/encienda la unidad. Si el problema es recurrente, verifique las notas de prensa para obtener las actualizaciones de firmware o envíe el hardware a reparación.
E03	Falla del ventilador.	El ventilador de enfriamiento de la CPU no funciona correctamente.	Verifique si la temperatura y el monitor tienen alarma de temperatura alta (A01). Devuelva el hardware para que reemplacen el ventilador.
E10	El firmware está dañado.	La memoria flash se dañó durante la descarga de firmware o hay una falla en el hardware flash.	Vuelva a descargar el firmware o arranque en el modo recuperación. Si el problema persiste, apague y encienda la unidad. Verifique las notas de prensa para conocer si hay actualizaciones de firmware. Descargue el firmware y apague/encienda la unidad. Si el problema persiste, envíe el hardware a reparación.
E11	La memoria flash está dañada, el sistema de archivos no está disponible.	En el arranque, el sistema de archivos no se pudo montar en la memoria flash.	Restablezca los valores predeterminados de fábrica de la unidad. Si el problema persiste, envíe el hardware a reparación.
E12	No se dispone de la memoria flash suficiente.	La memoria flash está llena, no es posible escribir en ella.	Limpie la memoria flash mediante la eliminación de archivos de registro, programas de aplicaciones, recetas u otros archivos de datos.
E13	Sin espacio de NVRAM para las variables retenidas.	NVRAM está lleno.	Cambie la aplicación para reducir el monto de variables retenidas.
E14	Se produjo un error al restablecer a los valores predeterminados de fábrica.	La memoria flash no pudo formatearse durante un procedimiento de restablecimiento de los valores predeterminados de fábrica.	Intente restablecer los valores predeterminados de fábrica nuevamente desde el encendido. Si el problema persiste, envíe el hardware a reparación.
E15	No se pueden leer/escribir archivos desde una tarjeta SD o en ésta.	La tarjeta SD no está conectada o el sistema de archivos está dañado y no se puede montar.	Introduzca una tarjeta SD válida o vuelva a formatear la tarjeta SD mediante Settings->SD card->Format (Configuración ->Tarjeta SD->Formatear).
E16	No hay espacio disponible en la tarjeta SD.	La tarjeta SD está llena, no se puede escribir en la tarjeta SD.	Para limpiar la tarjeta SD para obtener espacio, elimine los archivos o vuelva a formatear la tarjeta mediante Settings->SD card->Format (Configuración->Tarjeta SD->Formatear).

Error	Descripción	Causa	Solución
E20	Error al iniciarse el complemento de tiempo de ejecución, el proceso, la cadena o la aplicación.	El código de tiempo de ejecución de KAS o de la aplicación no pudo iniciarse automáticamente en el arranque.	Apague/encienda la unidad. Restablezca los valores predeterminados de fábrica. Si el problema es recurrente, verifique las notas de prensa para obtener las actualizaciones de firmware o descargue el firmware.
E21	Error de respuesta del complemento de tiempo de ejecución, el proceso o la cadena durante el funcionamiento.	Se produjo un error en el código de tiempo de ejecución de KAS durante el funcionamiento normal.	Apague/encienda la unidad. Si el problema es recurrente, verifique las notas de prensa para obtener las actualizaciones de firmware.
E22	Error fatal en el programa de PLC, la aplicación se detuvo.	La máquina virtual no pudo ejecutar una instrucción.	Vuelva a recopilar la aplicación, descargue, reinicie.
E23	La CPU está sobrecargada.	Ni el ciclo del motor de movimiento ni el programa de PLC se completaron dentro del período de ejecución debido a la carga excesiva de la CPU.	Detenga la aplicación o apague/encienda la unidad. Reduzca la velocidad de muestra, simplifique la aplicación o reduzca los ciclos de la aplicación y reiníciela.
E30	Se produjo un error en la comunicación de EtherCAT durante el modo de funcionamiento.	El funcionamiento de la red EtherCAT falló debido a un error de comunicación de la red.	Verifique el estado del cableado y de los dispositivos de red de EtherCAT. Reinicie la aplicación.
E31	Se produjo un error en la comunicación de EtherCAT durante el modo de funcionamiento previo.	El funcionamiento de la red EtherCAT falló debido a un error de comunicación de la red.	Verifique el estado del cableado y de los dispositivos de red de EtherCAT. Reinicie la aplicación.
E32	Se produjo un error en la comunicación de EtherCAT durante el modo de arranque.	El funcionamiento de la red EtherCAT falló debido a un error de comunicación de la red.	Verifique el estado del cableado y de los dispositivos de red de EtherCAT. Reinicie la aplicación.
E33	Se produjo un error de EtherCAT al inicializar en el modo de funcionamiento.	La inicialización de la red EtherCAT falló debido a un error de comunicación de la red.	Verifique el estado del cableado y de los dispositivos de red de EtherCAT. Reinicie la aplicación.
E34	Se produjo un error de EtherCAT al inicializar en el modo de funcionamiento previo.	La inicialización de la red EtherCAT falló debido a un error de comunicación de la red.	Verifique el estado del cableado y de los dispositivos de red de EtherCAT. Reinicie la aplicación.

Error	Descripción	Causa	Solución
E35	Se produjo un error de EtherCAT al inicializar en el modo de arranque.	La inicialización de la red EtherCAT falló debido a un error de comunicación de la red.	Verifique el estado del cableado y de los dispositivos de red de EtherCAT. Reinicie la aplicación.
E36	Se produjo un error de EtherCAT al detectar los dispositivos esperados.	La detección de red de EtherCAT falló debido a una discrepancia entre los dispositivos detectados y los esperados.	Verifique el orden de los dispositivos y el cableado de EtherCAT. Corrija el cableado y el orden de los dispositivos o vuelva a examinar la red, recopile y descargue la aplicación actualizada. Reinicie la aplicación.
E37	Se produjo un error en EtherCAT al volver al estado inicial.	La inicialización de la red EtherCAT falló debido a un error de comunicación de la red.	Verifique el estado del cableado y de los dispositivos de red de EtherCAT. Reinicie la aplicación.
E50	Se produjo un error al realizar las copias de seguridad en la tarjeta SD.	l. ,	Repita la tarea de copia de seguridad de la tarjeta SD. Si vuelve a producirse el error, cambie la tarjeta SD.
E51	Se produjo un error al restaurar elementos de la tarjeta SD.	Un error irrecuperable se produjo durante la tarea de restauración.	¡NO reinicie el PDMM! Repita la tarea de restauración. Si vuelve a producirse el error, restablezca los valores predeterminados de fábrica de PDMM. Si el problema persiste, envíe el hardware a reparación.
E52	Los archivos de copia de seguridad de SD no se encuentran o están dañados.	Se produjo un error en la tarea de restauración debido a que los archivos de la tarjeta SD no se encuentran, están incompletos o están dañados.	Realice una tarea de copia de seguridad antes de restaurar o usar una tarjeta SD con los archivos de copia de seguridad válidos.

10.4.3.2 Alarmas

Alarma	Descripción	Causa	Solución
A01	Se excedió la temperatura alta	La temperatura de la CPU se encuentra cerca del límite de temperatura segura en funcionamiento.	Verifique que el flujo de aire y el entorno de funcionamiento estén dentro de las especificaciones de hardware.
A02	Poca memoria.	Pérdida de memoria o memoria dañada.	Apague/encienda la unidad. Si el problema es recurrente, verifique las notas de prensa para obtener las actualizaciones de firmware o envíe el hardware a reparación.
A04	Voltaje de entrada bajo	La energía de entrada de +24 V es de +19 V o menos.	Verifique el voltaje del suministro de energía y la conexión a PDMM.
A12	Hay poco espacio libre en la memoria flash.	La memoria flash está casi llena.	Limpie la memoria flash mediante la eliminación de archivos de registro, programas de aplicaciones, recetas u otros archivos de datos. Restablezca los valores predeterminados de fábrica.

Alarma	Descripción	Causa	Solución
A21	Se produjo un error recuperable en el proceso o la cadena de respuesta durante el funcionamiento.	Se produjo un error en el código de tiempo sin ejecución de KAS durante el funcionamiento normal y se reinició automáticamente.	Si el problema es recurrente, apague/encienda la unidad. Verifique las notas de prensa para obtener las actualizaciones de firmware.
A23	La CPU está sobrecargada		Reduzca la velocidad de muestra, simplifique la operación o reduzca los ciclos de la aplicación.
A30	EtherCAT perdió los ciclos de comunicación durante el modo de funcionamiento.	Los marcos de EtherCAT no pueden enviar ni recibir uno o más ciclos.	Verifique el cableado y los dispositivos de red de EtherCAT.
A40	Falta una actualización cíclica de ES digital local	La ES digital local no se actualizó durante un ciclo o las actualizaciones ya no son sincrónicas.	Reduzca la velocidad de muestra, simplifique la operación o reduzca los ciclos de la aplicación.

10.5 Resolución de problemas de la unidad AKD

Los problemas de la unidad se producen por varios motivos de acuerdo con las condiciones de su instalación. Las causas de las fallas en sistemas de ejes múltiples pueden ser especialmente complejas. Si no resuelve una falla u otro problema mediante la orientación para la resolución de problemas que se presenta a continuación, el servicio de atención al cliente puede darle más asistencia.

Puede encontrar información más detallada acerca de la eliminación de fallas en la ayuda en línea y en la tabla de mensajes de fallas y advertencias "Mensajes de falla y advertencia" (=> p. 189).

Problema	Causas posibles	Solución
Mensaje de HMI: Falla de comunicación	 Se usó el cable incorrecto, el cable está conectado en la posición incorrecta en la unidad o el equipo Se seleccionó la interfaz del equipo incorrecta 	 Conecte el cable en la toma correcta de la unidad o el equipo Seleccione la interfaz correcta
El motor no gira	 La unidad no está activada El software no está configurado Interrumpa el cable del punto de ajuste Fases del motor intercambiadas No se liberó el freno La unidad está bloqueada mecánicamente Núm. del polo del motor. con configuración incorrecta Retroalimentación configurada incorrectamente 	 Aplique señal ACTIVAR Configuración de software activado Verifique el cable de punto de ajuste Secuencia de fase del motor correcta Verifique el control de freno Verifique el mecanismo Configure el número de polo del motor Configure la retroalimentación correctamente
El motor oscila	 La ganancia es demasiado alta (controlador de velocidad) Escudo de cable de retroalimentación roto AGND no está conectado 	 Reduzca VL.KP (controlador de velocidad) Reemplace el cable de retroalimentación Una AGND con CNC-GND
La unidad informa el siguiente error	 Irms o Ipeak establecida demasiado baja Se aplican los límites de corriente o velocidad La rampa de acel./desacel. es demasiado larga 	 Verifique el tamaño del motor/de la unidad Verifique que IL.LIMITN/P, VL.LIMITN/P no limiten la unidad Reduzca DRV.ACC/DRV.DEC
Sobrecalentamiento del motor	 El motor funciona por encima de su clasificación La configuración actual del motor es incorrecta 	 Verifique el tamaño del motor/de la unidad Verifique que los valores de la corriente continua y la corriente máxima del motor estén configurados correctamente
Falta potencia en la unidad	 Kp (controlador de velocidad) demasiado baja Ki (controlador de velocidad) demasiado baja Filtros configurados demasiado altos 	 Aumente VL.KP (controlador de velocidad) Aumente VL.KI (controlador de velocidad) Consulte la documentación para obtener información acerca de la reducción de filtrado (VL.AR*)

Problema	Causas posibles	Solución
La unidad funciona toscamente	 Kp (controlador de velocidad) demasiado alta Ki (controlador de velocidad) demasiado alta Filtros configurados demasiado bajos 	 Reduzca VL.KP (controlador de velocidad) Reduzca VL.KI (controlador de velocidad) Consulte la documentación para obtener información acerca del aumento de filtrado (VL.AR*)
Durante la instalación, aparece un cuadro de diálogo que dice "Please wait while the installer finishes determining your disk space requirements" (Espere mientras el instalador termina de determinar los requisitos de espacio de su disco), el cual nunca desaparece.	 Problema en el instalador de MSI. No hay suficiente espacio en el disco duro 	 Cancele la instalación. Vuelva a iniciar el instalador (es posible que deba intentar varias veces, el problema aparece al azar). Asegúrese de tener espacio suficiente en el disco duro (~500 MB para permitir la actualización de Windows .NET si es necesario); si no tiene, libere un poco de espacio.

		Descripción general de la conexión	
Índias		Variantes B,P,T	83
Indice		Variantes M	
		Desinstalación	28
A		Diagrama de conexión	
A		Variantes B, P, T	85
A buse distances	40	Variantes M	90
Abreviaturas		Dimensiones	
ACTIVAR		Ancho de extendido	75
Advertencia		Ancho estándar	
Alimentación auxiliar de 24 V		Dirección IP	
Altitud del sitio	35	Variante M	156
Asignación de los conectores		Variante N. P. T	
Variantes B,P,T		Diseño del gabinete de control	. 134
Variantes M	88		70
		Ancho de extendido	
В		Ancho estándar	69
		-	
Botones	149	E	
		Eliminación	20
C			
		Emisión de ruidos	
Cableado	80	Empaque	21
CANbus		Empaque suministrado	
Cable	160	Encoder con BiSS	
Dirección de nodos	160	Encoder con EnDat 2.2	
Interfaz de bus de la CAN	157	Encoder senoidal con EnDat 2.1	
Tasa de baudios	159	Encoder senoidal con Hall	
Terminación		Encoder senoidal con hiperfaz	
Capacitancia de bus de CC		Engranaje electrónico	. 120
Circuito del regenerador		Enlace de bus de CC	. 104
Comcode		Entrada analógica	.133
Componentes de un sistema servo,	81	Entrada ascendente/descendente	
Descripción general	• •	Entradas	
	49	Activar	137
Comportamiento del encendido y el		Analógica	
apagado		Datos básicos	
Concepto de protección		Digitales con -M	
Conector de retroalimentación		Digitales todas las variantes	
Conectores		Digitales, Opción de E/S	
Conexión a PC		Programable137	
Conexión a tierra			
Conexión de alimentación principal	101	STO	
Conexión de E/S	128	Entradas digitales con -M	
Conexión de retroalimentación	108	Entradas digitales todas las variantes	
Conexión del motor	105	Entradas digitales, Opción de E/S	
Configuración	172	Esquema de números de parte	
Variantes B, P, T		Estándares	
Variantes M		EtherCAT	. 164
Conformidad con CE		EtherNet	
Consignas analógicas		EtherCAT	. 164
		Ethernet/IP	166
Corriente de fuga		Modbus TCP	
D		PROFINET RT	
ט		SynqNet	
Declaración de conformidad de CE	24	Ethernet/IP	
Desactivación de emergencia		F	
Desactivación de torque por seguridad	58	•	
(STO)		Freno de contención del motor	107

Freno dinámico45	Placas de conexión a tierra	
Fusión40	Posición de montaje	35
	Potencia del motor	106
G	PROFINET	166
	Protección	79
Grupo de destino11	Protección contra riesgo de descarga eléctrica	
H	Protección de la caja	35
	Prueba inicial de la unidad	
Humedad	Variantes B,P,T	176
Almacenamiento27	Variantes M	
En funcionamiento35	Pulso/dirección	
Transporte27		
I .	R	
	Redes de alimentación principal	97
Instalación	Reformar	
Eléctrica	Relevador FALLA	139
Mecánica68	Reparación	
Software KAS IDE	Requisitos de cables y alambres	
Software WorkBench	Requisitos de hardware	
Instrucciones de seguridad	KAS IDE	180
Configuración172	WorkBench	
Général17	Resistencia regenerativa externa	
Instalación eléctrica	Resolución de problemas	
Instalación mecánica68	Resolver	
STO59	ROD 5V con Hall	
Interfaz de servicio		
κ	S	
VA 0 IDE	Salida del encoder emulado	126
KAS IDE179	Salidas	
1	Analógica	134
L	Datos básicos	
La familia AKD33	Digitales con -M	
Lugar 68	Digitales todas las variantes	
Lugai00	Digitales, opción de E/S	
M	Relevador FALLA	
IVI	Relevador, opción de E/S	143
Maestro-esclavo	Salidas del relevador, opción de E/S	
Mantenimiento	SFD	
Marcas de UL	Símbolos utilizados	
Máxima altura	Sistemas operativos	
Máxima altura, Almacenamiento	KAS IDE	180
Mensajes de falla	WorkBench	
Modbus	Software de configuración	
Moubus	KAS IDE	179
N	WorkBench	
	STO	
Nivel de contaminación35	Storage	
Normas empleadas	SynqNet	
Troming omprouded10	Synditot	100
P	Т	
Parada 56	Temperatura	
Parada de emergencia	Almacenamiento	27
Placa de identificación30	En funcionamiento	
40 (40)(6)(10)(10)(11)(

I ransporte	21
Temperatura ambiente	35
Torsiones de ajuste, conectores	
Transporte	
U	
Use según se indica	
Software de configuración KAS IDE	179
Software de configuración, WorkBench	173
STO	58
Unidades	
Uso prohibido	
STO	
V	
Ventilación	
Condiciones ambientales	. 35
Instalación mecánica	
Vibraciones	

Acerca de KOLLMORGEN

Kollmorgen es un proveedor líder de sistemas y componentes de movimiento para fabricantes de máquinas. A través del conocimiento de categoría mundial sobre movimiento, la calidad líder en la industria y la amplia experiencia en la vinculación y la integración de productos convencionales y a medida, Kollmorgen presenta soluciones de avanzada e inigualables con respecto a rendimiento, fiabilidad y facilidad de uso; esto permite que los fabricantes de máquinas obtengan una ventaja irrefutable en el mercado.

Para obtener asistencia con sus necesidades de aplicaciones, visite www.kollmorgen.com o contáctenos en:

América del Norte		Europa		Asia	
KOLLMORGEN		KOLLMORGEN Europe GmbH		KOLLMORGEN	
203A West Rock Road		Pempelfurtstraße 1		Rm 2205, Scitech Tower, China	
Radford, VA 24141, EE. UU.		40880 Ratingen, Alemania		22 Jianguomen Wai Street	
Web:	www.kollmorgen.com	Web:	www.kollmorgen.com	Web:	www.kollmorgen.com
Correo: support@kollmorgen.co-		Correo: technik@kollmorgen.co-		Correo: sales.asia@kollmorgen.co-	
	<u>m</u>		<u>m</u>		<u>m</u>
Tel.:	+1 - 540 - 633 - 3545	Tel.:	+49 - 2102 - 9394 - 0	Tel.:	+86 - 400 666 1802
Fax:	+1 - 540 - 639 - 4162	Fax:	+49 - 2102 - 9394 - 3155	Fax:	+86 - 10 6515 0263