

Motion Controller MC-600
Programmable in MotionBasic

Add-on card for the servo amplifier
SERVOSTARTM 600

User’s Manual
February 2004

MC-600 User’s Manual V2.1 2 Danaher Motion

Index
Safety information 4
Installation 5
Block diagram 7
Technical data 7
Connections 8
Serial interface RS-232 / PC 8
Servobus 9

Msetsb(mode) 9
Mcantx(id,data) 9
Mcanrx(id,data) 10

Digital Inputs 11
Digital Outputs 13
How the MC-600 works 14
The “Motion planner” 15
The “Motion planner” Units 17
The Motion functions 18

Mspeed(vel) 18
Mmove(pos) 19
Mimove(ipos) 19
Msmove(pos) 19
Msimove(ipos) 19
Mmerge(pos) 20
Mimerge(ipos) 20
Mgear(type) 21
mcam(table) 24
mspline(xy%,np%,camtab%) 26
Mvirtualax(pos) 27
Mvspeed(vel) 27
Mphase(pos) 27
Midle() 28
Mhome(cmd) 28

The Interrupt functions 30
Source 30

The Drive related functions 32
The I/O functions 34
The other system variables of the 36
“Motion planner” 36

MC-600 User’s Manual V2.1 3 Danaher Motion

Introduction 38
The operating system 38
Basic programming rules 40

CHARACTER 40
NAME and DESCRIPTION 40

Programming numbers and variables 42
Integer, floating point and string constants 42
Integer floating point and string variables 45
Integer, floating point and string arrays 45
Expressions and operators 47
Arithmetic expressions 47
Arithmetic operators 47
Relational operators 49
Logical operators 50
Hierarchy of operations 52
String operations 53
String expressions 53
Programming techniques 54
The BASIC Filesystem 55
Description of BASIC keywords 57

MC-600 User’s Manual V2.1 4 Danaher Motion

Safety information

Using the motion controller MC-600 it is possible change on
line system parameters whilst motor is running in order to
increase the performances of the system.

Before to use this MC-600 capability be sure that does give not
rise to dangerous situations that could endanger the safety of
people close to the moving part of the machine or lead to
damage to the machine itself.

To avoid any risk take in consideration the following basic
rules:

- Before to change the value of any motion variable check that
it is correct and evaluate what the possible effect could be.

- Take adequate electrical safety precautions such as fitting
limit switches and emergency off switches.

- Only qualified and trained personnel with a good knowledge
of electronics, motion programming and converter technology
is allowed to commissioning.

The add-on card MC-600 is intend for operating with the servo
amplifier SERVOSTAR 600 manufactured by Kollmorgen Seidel
gmbh, please refer to the supplied installation manual for the
SERVOSTAR 600. There pay attention to the safety notes at
the start of the manual as well as the information given about
directives and standard.

!

MC-600 User’s Manual V2.1 5 Danaher Motion

Installation

Power-off the SERVOSTAR 600 before installing or removing the
MC-600.

Remove the blanking plate from the SERVOSTAR 600.

Insert the card into the guide rails in the slot and without tilting
it push it in all the way, you must be able to fill the bus
connector clipping into place.

Fit the two screws using them to fix the card in place.

Perform the electrical connections.

Download the application software.

MC-600 User’s Manual V2.1 6 Danaher Motion

Servostar 600 It assumed that the servo amplifier is already fitted into the
cubicle and all the electrical connections have been done and
checked. If this isn’t the case please do it now with the MC-
600 unplugged. To do this, refer to the assembly and
installation instructions and the quickstart manual as well as the
commissioning software of the SERVOSTAR 600.

 The firmware installed in the Servostar 600 must be greater or
 equal to 4.94

A few parameters of the SERVOSTAR 600 have a special
meaning in conjunction with the MC-600 (set them using the
commissioning software):

- OPMODE (screen page “amplifier’) setting is made

automatically from the MC-600.
- If used chose the encoder type for the master axis.
- Use of the amplifier’s own output by the MC-600:

Set code 6 under ‘I/O analog’ for the ‘MONITOR 1/2 ‘
variables.
Set code 23 under ‘I/O digital’ for the
‘DIGITAL-OUT 1/2 ’ variables.

- Load one of the standard setup file in the Servostar
- Set the name of the application to run in the Servostar ASCII

command ALIAS, or set the password to start in command
mode. The default password is PASSWORD, refer to the basic
command password to change it.

MC-600 User’s Manual V2.1 7 Danaher Motion

Block diagram

Motion
Controller

&
MotionBasic
interfaces

RS-232

Profibus

CanBus

MC-600

 R O D
 input sin/cos

 R O D
 output

Servostar 600

8 digital
inputs

8 digital
outputs

4 digital
inputs

2 digital
outputs

TTL
encoder

input

Sin/cos
encoder

input

TTL
encoder
output

Technical data

Motion controller Processor SAB C167
 Flash memory 1 Mbyte
 RAM 1 Mbyte
 E2PROM 2 Kbyte
Digital inputs 8 electrically isolated
 Input impedance >2 Kohm
 Low logic level 0 to 5V
 High logic level 15 to 30V
Digital outputs 8 electrically isolated
 Surge current 20mA
Profibus-dp up to 12 Mbps
CanBus Application layers ServoBus
 DeviceNet
RS-232 9600 bauds
Programming tool Windows MC600 tools or Hyper Terminal

MC-600 User’s Manual V2.1 8 Danaher Motion

Connections

D
IG

IT
A

L
O

UT
 5

 2
3

D
IG

IT
A

L
O

UT
 1

 2
5

10
 D

IG
IT

A
L

O
UT

 6

11
 D

IG
IT

A
L

O
UT

 4

6
D

IG
IT

A
L

IN
 6

8
D

IG
IT

A
L

IN
 2

5
R

ES
ER

V
ED

7
D

IG
IT

A
L

IN
 4

12
 D

IG
IT

A
L

O
UT

 2

9
D

IG
IT

A
L

IN
 0

2
R

ES
ER

V
ED

4
R

ES
ER

V
ED

1
G

RO
U

ND

3
R

ES
ER

V
ED

13
 D

IG
IT

A
L

O
UT

 0

D
IG

IT
A

L
IN

 5
 1

9

D
IG

IT
A

L
IN

 1
 2

1

D
IG

IT
A

L
IN

 7
 1

8

D
IG

IT
A

L
IN

 3
 2

0

D
IG

IT
A

L
O

UT
 7

 2
2

D
IG

IT
A

L
O

UT
 3

 2
4

+2
4V

 IN
 1

5

G
RO

U
ND

 1
7

+2
4V

 IN
 1

4

G
RO

U
ND

 1
6

R
ES

ER
V

ED
 1

3
6

R
ES

ER
V

ED

8
R

ES
ER

V
ED

5
G

RO
U

ND

7
R

ES
ER

V
ED

2
RS

-2
32

 R
X

4
CA

N
H

IG
H

1
FR

A
M

E
G

N
D

3
RS

-2
32

 T
X

R
ES

ER
V

ED
 1

4
R

ES
ER

V
ED

 1
5

R
ES

ER
V

ED
 1

0

CA
N

LO
W

 1
2

R
ES

ER
V

ED
 9

R
ES

ER
V

ED
 1

1

D1

D2

Serial interface RS-232 / PC

Rx

Tx

Ground

PC

Rx

Tx

Ground

2

M C-600

3

5

(3) 2

(2) 3

(7) 5

(25) 9 pins D type connector

MC-600 User’s Manual V2.1 9 Danaher Motion

Servobus
Using the ServoBus it is possible synchronize up to 16 MC-600 motion cards. When is
used the synchronization at every sampling time the MC-600 master send the sync
command to any MC-600 slave, along with the sync command is also sent one of the
position variables which can be selected as master position from any slave unit. With
the ServoBus it is also possible exchange MotionBasic variables among the MC-600
cards connected via the ServoBus using the MotionBasic functions MCantx() and
MCanrx().

Msetsb(mode)

When the function msetsb(1) is performed, the MC-600 is set
as master otherwise, with the function msetsb(0), it’s set as
slave.
The data sent from the master can be read in the variable
gv_canout%.
The data received from the slave can be read in the variable
gv_canin%.

vs_acc%
vs_flag%

vx_acc%
vx_dec%
vx_speed%
vx_flag%

mvspeed()

mvirtualax()

gv_encoder%

Virtual master
Block Diagram

sl_posdemand%

gv_canout%

gv_vxcfg% bit4

gv_vxcfg% bit7

gv_vxcfg% bit5

gv_vxcfg% bit6

gv_feedback%
gv_vxcfg% bit8

Any change in variable gv_vxcfg is taken in account only if the motion planner is in
idle mode.

MC-600 User’s Manual V2.1 10 Danaher Motion

Mcantx(id,data)

The function mcantx(id,data) send the data data with the
identifier id. The identifier must be between 1 and 2047.

Mcanrx(id, box)
The function mcanrx(id, box) program the mailbox box in
order to receive the telegram with the identifier id. The box
must be between 0 and 7, the identifier between 1 and 2047.
The data received will be stored in the array can_data%().
The variable can_flag% signal if the mailboxes have been
updated (bit 0 mailbox 0, bit 7 mailbox 7).

Setcanspd(speed)
The function Setcanspd(speed) can be used to reduce the
communication speed of the Servobus interface.

Speed Baudrate Max. length Virtual master
0 1 Mbps 20 m Yes
1 500 Kbps 70 m Yes
2 250 Kbps 115 m No

If the MC-600 has to be a CanOpen slave it is possible to use
the Can interface built in the SERVOSTAR 600 through the 8
user variables of the amplifier.

If the module is the first or the last unit of the Bus, the line
must be terminated with an external resistor of 120 ohm
(soldered into the plug).

CANH

CANL

Ground

CAN client

CANL

CANH

Ground

4

M C-600

12

5

MC-600 User’s Manual V2.1 11 Danaher Motion

Profibus option

Profibus option, when installed, allows the MC-600 to exchange data with a Profibus
Master PLC. The system receives an array of 8 long integer variables from the Master
PLC and sends an array of 8 long integer variables to the Master PLC.

PROFIINI (address)

The function PROFIINI (address) initializes the MC-600
Profibus controller with the address address. The address must
be between 1 and 99. Profibus network can be initialized only
once, the system must be restated if the user wants to redefine
the network address.

TO_PROFI% [n]
The TO_PROFI% array (n = 0..7) contains 8 variables sent
from MC-600 to Profibus Master.

FROM_PROFI% [n]

The FROM_PROFI% array (n = 0..7) contains 8 variables sent
from Profibus Master to MC-600.

PROFI_STAT%

The PROFI_STAT% variable contains the Profibus network
status: its value has the following meaning:
0 when Profibus network is not working
2 when Profibus network is initialized and there is information
exchange between PLC and MC-600 card.

M C- 6 0 0

7

1 4

6

1 3

8

1 5

NRT S

P RT S

P RO FIH

P RO FIL

P G N D

P P W

8

3

5

6

9

4

NRT S

P RT S

P RO FIH

P RO FIL

P G N D

P P W

1 5 p ins fe m a le
“ D” T Y P E

C O NN EC T O R
D 2

M a x le n g th 5 0 m m

9 p ins fe m a le
“ D” T Y P E

C O NN EC T O R

P ro fib u s D P in te r fac e ca b le

MC-600 User’s Manual V2.1 12 Danaher Motion

Digital Inputs

Digital inputs are 8, numbered 0 to 7; they are electrically
insulated via optocouplers.
The function of any input can be defined using the application
program written in MotionBasic.

Digital inputs 2 and 3 can be used as dimension capture inputs.
(The same function is available on D1 and D2 on the
SERVOSTAR 600).

The 4 digital inputs on the SERVOSTAR 600 can be used from
the application program, this capability expand the number of
digital inputs available to 12.

Ground
I/O
Ground

M C-600

5

digital in 0

digital in 7

I/O 24V

MC-600 User’s Manual V2.1 13 Danaher Motion

Digital Outputs

On the MC-600 8 floating digital outputs are available,
numbered 0 to 7; their function is defined by the application
program running on the card.

Ground

I/O
Ground

M C-600

digital out 0

digital out 7

I/O 24V

The ground connection shown as a dashed line is only required if
the same external auxiliary power supply is used for the digital
inputs.

The 2 digital outputs on the SERVOSTAR 600 can be used by
the application program, this capability expand the number of
digital inputs available to 10.

If in your application you are going to use the digital outputs on
the SERVOSTAR 600 pay attention that they are NPN instead of
the PNP polarity of the MC-600 digital outputs.

MC-600 User’s Manual V2.1 14 Danaher Motion

How the MC-600 works

In the firmware of the MC-600 card are running two mains
software layers, the first one is called “motion planner” and its
task is to compute the trajectory of the motor following the
command coming from the “MotionBasic” layer.
The sampling time of the “motion planner” is 2.

The MC-600 don’t perform any position loop but it use the
regulation loop built in the SERVOSTAR 600 which is running
every 250uS, refer to the SERVOSTAR 600 documentation to
get detail about the position loop.
The hardware resources of the SERVOSTAR 600 can be used by
the MC-600 so you can connect different position sensor to the
MC-600 to get for instance the main motor position.
The different interfaces for encoders available are:

Incremental encoder 24V – plug X3
Accept both tracks, quadrature A/B and pulse/direction.
Counting frequency 10kHz
Power supply from the auxiliary voltage.

Incremental encoder 5V – plug X5
Max counting frequency 2MHz

Sin/Cosin encoder – plug X1
Max. frequency 250kHz.
Resolution is 1024 steps for sin period.

The application program has to be written in MotionBasic, the
MotionBasic of the MC-600 is a standard BASIC interpreter so
any programmer with a few experience in this language will find
the MC-600 environment familiar. To use the MotionBasic you
need only the HyperTerminal program supplied with any PC
system, and then you are ready to program your first instruction
without reading the manual, for instance typing
 >10 print “Hello I’am the MC-600”
 >20 end
 >run [return]
it will work in few seconds.

The interface with the “motion planner” is done through
MotionBasic functions and system variables.

MC-600 User’s Manual V2.1 15 Danaher Motion

The “Motion planner”

The “Motion Planner” block diagram is shown in the figure
below. The 4 trajectory compute blocks are:
Velocity – It computes a position trajectory so the motor will
be running at constant speed, the acceleration, deceleration are
limited at the set value.
Move – Is computed a trajectory to have a point to point
positioning using linear acceleration, acceleration, deceleration
and cruise speed can be changed on fly.
Smove – Is computed a trajectory to have a point to point
positioning using sinusoidal acceleration, acceleration,
deceleration and cruise speed can be changed on fly.
Gearing – The controlled motor will follow the master encoder;
the ratio and the limits of acceleration can be defined as well as
the engage and release methods.
Camming – Using the camming function it is possible any kind
of motion profile as function of the master position, the master
position could be both a real axis and a virtual one.
Master position – Added to the master position is a move
generator block using it is possible to adjust the master encoder
position or, disabling the master encoder, to use it as a virtual
axis.
Phasing – At the position demand, before to be sent to the
SERVOSTAR 600, are added two move block generators to give
the possibility to adjust the phase of the controlled axis. The
first one is for having a phase adjust as function of the time,
the second one is intended to adjust the phase as function of
the master position.
Homing – The MC-600 use the homing procedures available on
the SERVOSTAR 600. Please refer to the SERVOSTAR 600 if
details are needed.

__

MC-600 User’s Manual V2.1 16 Danaher Motion

vs_acc%
vs_flag%

hm_flag%

vx_acc%
vx_dec%
vx_speed%
vx_flag%

cm_offs%

gv_mmod%

MOD

midle()

mvspeed()

mvirtualax()

mspeed()

mmove()
mmerge()
mimove()
immerge()

mgear()

mhome()

gv_smod%

MOD

Motion Planner
Block Diagram

sm_acc%
sm_flag%

mv_acc%
mv_dec%
mv_speed%
mv_flag%

gr_ration%
gr_ratiod%
gr_speed%
gr_acc%
gr_prepost%
gr_f lag%

cm_num%
cm_index%
cm_camout%
cm_flag%

mcam()
mcamend()

 mcamhard()
 mcamoffs()
 mcaminit()

mphase()

ph_acc%
ph_dec%
ph_speed%
ph_flag%

sl_posdemand%

gv_master%

gv_vxcfg% bit1

gv_vxcfg% bit2

ph_position%

cm_master%

cm_offsout%

cm_camout%

mv_acc%
mv_dec%
mv_speed%
mv_flag%

msmove()
msimove()

msyncmove()

ms_acc%
ms_master%
ms_slave%

ms_position%

gv_master%

gv_encoder%

gv_vxcfg% bit0

gv_vxcfg% bit3

gv_canin%

gv_encoder%

gv_vxcfg% bit10

gv_vxcfg% bit9

gv_canin%

Clear

Clear

vs_pos%

vx_pos%

MC-600 User’s Manual V2.1 17 Danaher Motion

The “Motion planner” Units

All the variables in the “motion planner” have the same format,
they are 32 bits signed.

The unit of any position variable is count considering that one
motor revolution is 4096 counts (mres% = 0), 65536 counts
(mres% = 1) or 16384 counts (mres% = 2). This variable
must not be changed after the homing.

The unit of any speed variable is (count*256)/Sampling time.

With mres% = 0, considering the typical sampling time equal
to 2mS, to get the right speed unit you have to multiply the
speed in r.p.m. by 34.952.

The unit for any acceleration variable is (count*256)/(Sampling
time)2. Considering the typical sampling time equal to 2mS, to
get the right acceleration unit you have to multiply the
acceleration in rpm variation for mS by 69.904.

MC-600 User’s Manual V2.1 18 Danaher Motion

The Motion functions

Mspeed(vel)
 When the function mspeed(vel) is performed the motor will be

driven generating a position trajectory to reach the velocity
“vel” as a constant speed.
The acceleration / deceleration limits are defined via the system
variable sm_acc%.
The variable sm_flag% has in general utility flags. Bit 0 is 1
when the speed mode does not contribute to the motor
movement, otherwise it is 0. Bit 2 is 1 when a reference is
generated such that a speed equal to the reference and no
limits to the active acceleration are required.

When the function mspeed(vel) is performed if a trajectory
generator is active it will be aborted.
It is possible change on fly the variable sm_acc% or invoking
the speed function with a different vel parameter, the new
speed demand will become active immediately.

If the “speed” trajectory generator has to be released the
function midle() has to be invoked.

The actual speed demand can be read in the variable
sm_speed%

V1

V2

mspeed(v1) mspeed(v1)

sm_acc%=acc1
sm_acc%=acc2

mspeed(0)

time

MC-600 User’s Manual V2.1 19 Danaher Motion

Mmove(pos)
The mmove(pos) function start the generation of a move
trajectory to reach the position pos starting from the actual
position and the actual speed.
The move trajectory will be generated according to the
acceleration limit in mv_acc%, the deceleration limit in
mv_dec% and the maximum velocity in mv_speed%.
Mv_flag% is a general utility flags variable. Bit 0 is 1 when the
target position is reached therefore no moving operation is
active.

Setting the bit 4 of mv_flag% the movement direction will be
always positive. Setting the bit 5 of mv_flag% the movement
direction will be always negative. Setting the bit 6 of
mv_flag% the motor will follow the shortest path.

V1

V2

mmove(100000) mv_speed%=V2

gets position 100000

time

mmove(101000)

gets position 101000

Mimove(ipos)
 The function mimove(ipos) works as the function

mmove(pos) with the difference that instead to perform an
absolute move it perform an incremental move. The ipos
parameter will be added to the present position .

Msmove(pos)
Msimove(ipos)

The functions msmove and msimove work like the functions
mmove and mimove with the difference that they use a
sinusoidal ramp instead of a linear ramp. If the speed is
changed during the profile a linear ramp will be used.

MC-600 User’s Manual V2.1 20 Danaher Motion

Mmerge(pos)
The mmerge(pos) function start the generation of a move
trajectory to reach the position pos starting from the actual
position and the actual speed.

 If the actual speed if smaller of minspeed% the trajectory
speed will minspeed%.
The move trajectory will be generated according to the
acceleration limit in mv_acc%, the deceleration limit in
mv_dec% and the maximum velocity during the trajectory will
be the motor speed when the mmerge(pos) function has been
invoked.
Mv_flag% is a general utility flags variable. Bit 0 is 1 when the
target position is reached therefore no moving operation is
active.

Mimerge(ipos)
The function mimerge(ipos) works as the function
mmerge(pos) with the difference that instead to perform an
absolute move it perform an incremental move. The ipos
parameter will be added to the target position reference so if an
mimerge(ipos) is invoked while a move is in progress the
target position will be increased of ipos.

If it is invoked either the mmerge(pos) or mimerge(ipos)
while the motor is stopped at zero speed will be not possible to
reach the target position, the move command will stay active till
an other trajectory generator will be invoked.

mmove(100000)

mv_speed%

mmerge(100000)

time position=100000

cam profile

The figure is showing the difference between the functions
merge and move for example to release a cam profile reaching
the position 100000.

MC-600 User’s Manual V2.1 21 Danaher Motion

Mgear(type)

The mgear(type) function generates a position trajectory for
the position loop in such a way that the controlled motor
accurately follows the master encoder selected on the input, the
master/follower speed ratio can be programmed via the system
variables gr_ration% and gr_ratiod%, they are respectively the
numerator and denominator of the intended ratio.
Different engage modes are available and which is used can be
selected trough the type parameter

If type is 2 will be selected the hardware engage with no phase
recovering. After invoking mgear(2) no action will be taken till
a positive edge on Digital input 3 is detected. The motor will
start to accelerate according to the acceleration limit in
gr_acc%, when the motor will get the master speed the
controlled axis will follow the master unit according to the gear
ratio selected. The bit 0 of gr_flag% gets 1 when the motor is
performing the engage procedure; Bit 1 gets 1 when the master
and the follower axes are digitally locked.

follower speed master speed

Digital_in3

time

Bit 0 gets 1

mgear(2)

Bit 1 gets 1

With type=1 the mgear() function works as the function with
type = 2 but the motor will start accelerating to reach the
master speed immediately regardless of the status of digital
input3.
With type=3 the mgear() function works as the function with
type = 2 but the motor will wait a negative edge of digital
input3.
With type=4 the mgear() function works as the function with
type = 2 but the motor will wait the first edge of digital input3.

MC-600 User’s Manual V2.1 22 Danaher Motion

If type is 6 will be selected the hardware engage with phase
recovering. After invoking mgear(6) no action will be taken till
a positive edge on Digital input 3 is detected. The motor will
start to accelerate according to the acceleration limit in
gr_acc%, when the motor will get the master speed, in order to
recover the space lost during the acceleration, a recovering
trajectory will be generated in accordance with both gr_acc%
and gr_speed%, then the controlled axis will follow the master
unit according to the gear ratio selected. The bit 0 of gr_flag%
gets 1 when the motor is performing the engage procedure; Bit
1 gets 1 when the master and the follower axes are digitally
locked. The position latched by the input is stored in the
variable gr_trigger% (master phase).

follower speed

master speed

Digital_in3

time

Bit 0 gets 1

mgear(6)

Bit 1 gets 1

gr_speed%

With type=5 the mgear() function works as the function with
type = 6 but the motor will start accelerating to reach the
master speed immediately regardless of the status of digital
input3. The variable gr_trigger% can be used to define the
master phase.
With type=7 the mgear() function works as the function with
type = 6 but the motor will wait a negative edge of digital
input3.
With type=8 the mgear() function works as the function with
type = 6 but the motor will wait the first edge of digital input3.
If the engage methods 5 thru 8 are used then become active
the pre-post triggering variable gr_prepost%.
Usually, the interlock phase is divided into two actions; in the
first action the follower-axis accelerates in order to reach the
master axis speed, loosing space; in the second action the
follower exceeds the master axis speed in order to recover
space lost during acceleration. In some applications, it is
necessary that the space recovered and the space lost does not

MC-600 User’s Manual V2.1 23 Danaher Motion

coincide. To do this, the gr_prepost% variable will add to the
space to be recovered.

If the space which the axis is going to loose during the
acceleration is less of the pre-trigger space (P.I. space which is
going to loose 10000, gr_prepost%=-12000), automatically the
trajectory generator will use a lower acceleration rate in order to
get the master speed with no space to recover so no overshoot
will be generated.

gr_prepost%=0

master speed

time

mgear(5)

gr_speed%

10000

10000 2000

2000

gr_prepost%=2000

gr_prepost%=-12000

The gr_prepost% variable is used mainly to solve two typical
needs:

If you set gr_acc% with high acceleration rate (over the physical
limit) the engage action will take always the space in
gr_prepost% and no overshoot will be got.

It is possible to use gr_prepost% to adjust via software the
position of the engage sensor.

Pay attention of the sign of the variable gr_prepost%, if the
motor will run clockwise a positive value means post trigger, a
negative value pre trigger. If the motor will run counter
clockwise it is the opposite.

To release the mgear(type) function an other trajectory
generator has to be invoked as for example mmove(pos),
mspeed(vel) or midle().

Any change of the system variable gr_….% will take its effect on
fly.

MC-600 User’s Manual V2.1 24 Danaher Motion

mcam(table)
The mcam(table) function provides a tracking function where
the motion law of the follower-axis is described through points
in a specific table. Each point describing the follower = f (
master) function is described by setting only the Y coordinate of
the Cartesian coordinate couple in the table; the X coordinates
are considered at steady X intervals (equidistant).
The mcam(table) function between two x,y coordinates will
perform a linear interpolation in order to have the trajectory
smoother.
The engage procedure will be done as follow:
The motor accelerates or decelerates as necessary to the speed
required by the present motion of the master and the slave
position profile defined in the cam table using an implicit
mspeed(vel%).
Than, using an implicit mphase(cm_camout%) function the
motor gets the position at the output of the camming generator
and then it will be directly connected to the output at the
camming generator to drive the position loop.
Using the function mcamhard(table) the engage procedure
will be skipped and the output of the camming generator will be
connected to the position loop.
Using the function mcamoffs(table, offsetIn, offsetOut) the
engage procedure will be skipped and the output of the
camming generator will be connected to the position loop. The
variable cm_offs% will be set to the value offsetIn and the
variable cm_offsout% will be set to the value offsetOut.

The system variables related to the cam generator are:
Cm_camout% It is the position demand at the output of the

trajectory generator, its value is always inside
the slave modulus (to refer to the general
system variables).

Cm_num% It is the number of point of the table
describing the caming profile. Pay attention to
set the right number to avoid undesired
effects.

Cm_index% It is a read only variable and is reporting the
last point in the table used for the calculation
of the follower-axis position. For example if
the table is 360 points long, cm_index% is the
master position in degree.

Cm_stat% The Bit0 gets 1 after invoking mcamend(),
Bit0 indicates the trajectory generator is going
to release the caming function at the end of
the present modulus.

MC-600 User’s Manual V2.1 25 Danaher Motion

To release the mcam(table) function an other trajectory
generator has to be invoked as for example mmove(pos),
mspeed(vel) or midle(); or it is possible release the
mcam(table) at the end of the present modulus invoking
mcamend().

Any change of the system variable cm_….% will take its effect
on fly.

Invoking a mcam(table) function while is active the trajectory
generator, using a different table, cause the on fly change of
table used. The application software must be written to handle
the change avoiding undesired effects.

MC-600 User’s Manual V2.1 26 Danaher Motion

mspline(xy%,np%,camtab%)

The function performs a cubic spline interpolation among np%
pair points describing the motion profile through cartesian
coordinates, in output the function fill a 360 element array to
use with the motion function mcam(camtab%)
In the specific table XY%. each point X represents the master
position and the Y point represents the follower position.

Filling the XY% table you have to pay attention that:

The X’s value must be increasing
The point XY%(0,0) must be 0
The point XY%(0,1) must be 0
The number of pair point must be greater of 7

For example if XY% is:

XY%(0,0) = 0 XY%(0,1) = 0
XY%(1,0) = 0 XY%(1,1) = 0
XY%(2,0) = 60 XY%(2,1) = 100
XY%(3,0) = 120 XY%(3,1) = 40
XY%(4,0) = 180 XY%(4,1) = 300
XY%(5,0) = 340 XY%(5,1) = 0
XY%(6,0) = 350 XY%(6,1) = 0
XY%(7,0) = 360 XY%(7,1) = 0

Invoking the function mspline(XY%,7,camtab%)
You will get a camtab% profile better described in the graph
below

p o s i t i o n

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350

master

fo
llo

w
er

XY% profile

CAMTAB% profile

MC-600 User’s Manual V2.1 27 Danaher Motion

Mvirtualax(pos)
The mvirtualax(pos) function perform the generation of a
move trajectory in order to reach the position pos, but the
position demand at the output of the trajectory generator will
not drive the position loop, it will be added to the master
position coming from the selected encoder.
The move trajectory will be generated in accordance to the limit
programmed in vx_acc% vx_dec% and vx_speed%.
Vx_pos% is a read only variable reporting the position at the
output of the virtual axis trajectory generator.
vx_flag% is a general utility flags variable. Bit 0 is 1 when the
target position is reached therefore no moving operation is
active.
If Bit 2 = 1 the selected encoder will not be added to get the
master position.
If you need the generation of a virtual axis only, pay attention
to set to 1 Bit2 of vx_flag%.

Mvspeed(vel)
 When the function mvspeed(vel) is invoked a speed trajectory

will be generated and added to the master position coming from
the selected encoder.
The acceleration / deceleration limits are defined via the system
variable vs_acc%.
The variable vs_flag% has in general utility flags. Bit 0 is 1
when the speed mode does not contribute to the motor
movement, otherwise it is 0. Bit 2 is 1 when a reference is
generated such that a speed equal to the reference and no
limits to the active acceleration are required.
The actual speed demand can be read in the variable
vs_speed%
It is also possible use the function mvirtualax(pos) and
mvspeed(vel) to adjust the master position (re-phasing).

Mphase(pos)
The mphase(pos) function perform the generation of a move
trajectory in order to reach the position pos but the position
demand at the output of the trajectory generator will be added
to the active trajectory generator before to drive the position
loop.
The move trajectory will be generated according to the limit
programmed in ph_acc% ph_dec% and ph_speed%.
ph_flag% is a general utility flags variable. Bit 0 is 1 when the
target position is reached therefore no moving operation is
active.
The function phase(pos) is normally used to adjust the follower
position (re-phasing).
Ph_position% return the actual phasing value.

MC-600 User’s Manual V2.1 28 Danaher Motion

Msyncmove()
The msyncmove() function generates a move trajectory in
order to perform a phase shift of ms_slave% steps during the
next ms_master% steps of the variable gv_master%
regardless if the “master” displacement is in the positive or
negative direction. The max speed contribution of the trajectory
generated will be defined as the speed of the master, multiplied
the ratio ms_ratio% / 1000 , the position demand at the
output of the trajectory generator will be added to the active
trajectory generator before to drive the position loop.
The move trajectory phase = f (master) will be automatically
generated when the function msyncmove() is invoked and can
be aborted using the function msyncabort(), the abort of the
phase action will use the max deceleration programmed in
ms_acc%.
ms_position% return the actual phasing value.

Midle()
 The function midle abort the trajectory generator active and

drive the motor at zero speed using an implicit invoking of
speed(0). Reached zero speed the position demand variable is
no more update so the axis stays at zero speed locked in
position.

Mhome(cmd)
The mhome(cmd) function perform one of the 8 homing
procedure available in the SERVOSTAR 600.

 Cmd equal 1 start the homing procedure, cmd equal 2 abort
immediately the homing procedure, cmd equal 3 stop the
homing procedure.

 The homing will be executed only if the motion planner is in idle.
The variable Hm_flag% show the status of the homing, BIT0 get
1 when homing is in progress, BIT1 get 1 when homing is
normally terminate.

The type of homing will be selected thru the Servostar variable
NREF, the type available are the following:

Homing 0 Sets the reference point to the setpoint position

(the following error is lost).
Homing 1 Traverse to the reference switch with zero-mark

recognition.
Homing 2 Move to hardware limit switch, with zero-mark

recognition. The reference point is set to the first
zero-crossing of the feedback unit beyond the limit
switch.

Homing 3 Move to reference switch, without zero-mark
recognition. The reference point is set to the
transition of the reference switch.

MC-600 User’s Manual V2.1 29 Danaher Motion

Homing 4 Move to hardware limit switch, without zero-mark
recognition. The reference point is set to the
transition of the reference switch.

Homing 5 Move to the next zero-mark of the feedback unit.
The reference point is set to the next zero-mark of
the feedback unit.

Homing 6 Sets the reference point to the actual position (the
following error is lost).

Homing 7 Move to mechanical stop, with zero-mark
recognition. The reference point is set to the first
zero-crossing of the feedback unit beyond the limit
switch.

Homing 8 Drives to an absolute SSI position. At the start of
the homing run, a position is read in from the SSI
input and then used as the target position.

The repetition accuracy of the homing procedure that are made
without zero-point recognition depends of the traversing speed
and the mechanical design of the reference switch or limit
switch.

-For a better understanding about the
different type of homing procedures work,
please refer to SERVOSTAR 600 setup
software manual.

The Servostar variables relatives to the homing procedure are:
VREF is the traverse speed.
ACCR is the acceleration limit.
DECR is the deceleration limit.
REFIP is the torque limit when the homing is in

progress.
DREF is the direction of the homing.
ROFFS position offset.

!

MC-600 User’s Manual V2.1 30 Danaher Motion

The Interrupt functions

In order to provide a faster reaction to the external events some interrupt functions
has been provided.

The events able to generate the interrupt are in the R/O variable GV_INTSTAT%:

Event GV_INTSTAT% bit
MC-600 digital input 0 0
MC-600 digital input 1 1
MC-600 digital input 2 2
MC-600 digital input 3 3
MC-600 digital input 4 4
MC-600 digital input 5 5
MC-600 digital input 6 6
MC-600 digital input 7 7
Gv_mflag% bit 0 8
Gv_mflag% bit 1 9
Gv_mflag% bit 2 10
Gv_mflag% bit 3 11
Gv_mflag% bit 4 12
Gv_status% bit 3 13
Gv_status% bit 7 14
Gv_status% bit 8 15
Gv_status% bit 10 16
Timer interrupt 17
CAM Index Interrupt 18
Servobus message received 19
Reserved 20
Reserved 21
Gv_compare% bit 0 22
Gv_compare% bit 1 23
Gv_compare% bit 2 24
Gv_compare% bit 3 25
Gv_compare% bit 4 26
Gv_compare% bit 5 27
Gv_compare% bit 6 28
Gv_compare% bit 7 29
Input capture on input 2 30
Input capture on input 3 31

If a the programmed transition will be detected the normal program execution will be
interrupted, the interrupt source will be disabled and the programmed subroutine
will be called.

Intdisable() The Intdisable function disable the interrupt

Intenable() The Intenable function enable the interrupt

MC-600 User’s Manual V2.1 31 Danaher Motion

Intsetup(Line%, Source%, Edge%)
 The Intsetup() function program the interrupt vector.
 Line% define the starting line of the interrupt handling

subroutine.
Source% select the interrupt source to program.

 Edge% define the edge of the transition:
- 0 Disable the source
- 1 On 0 1 transition
- 2 On 1 0 transition
- 3 On both transitions
The variable gv_intnum% return the number of the active
interrupt.

Reti The Reti statement is used to exit from an interrupt subroutine.
The Reti restarts the rest of your program at the next
executable statement following the interruption and re-enable
the interrupt.

Mquotecmp(Source, Dest, On, Off)
 The Mquotecmp function set the threshold for the quote

comparator.
 Source selects the variable to be compared:

- 0 gv_feedback%
- 1 gv_master%
- 2 cm_master%
Dest selects the number of comparator (0 to 7)
On is the first valid position

Off is the last valid position

T

motor position gv_feedback%

gv_compare%.1

on=1000 off =2000
gv_smod%=10000

Mquotecmp(0, 1, 1000, 2000)

MC-600 User’s Manual V2.1 32 Danaher Motion

The Drive related functions

Mclrfault() The mclrfault function reset the drive fault.

The variable GV_HWEN% select the input to be used as
hardware enable:
Bit 0 MC600 digital input 0
Bit 1 MC600 digital input 1
Bit 2 MC600 digital input 2
Bit 3 MC600 digital input 3
Bit 4 MC600 digital input 4
Bit 5 MC600 digital input 5
Bit 6 MC600 digital input 6
Bit 7 MC600 digital input 7
Bit 8 SR600 ENABLE not usable
Bit 9 SR600 digital input 4 (NSTOP)
Bit 10 SR600 digital input 3 (PSTOP)
Bit 11 SR600 digital input 2
Bit 12 SR600 digital input 1

 Leaving the variable GV_HWEN% = 0 the drive could be enabled

and disabled with the following two functions:

Mdrven() The mdrven function enable the drive.

Mdrvdis() The mdrvdis function disable the drive.

Sdoread(Idx) The sdoread(idx) function return the value of the drive

parameter with object number idx.

Sdowrite(Idx, Data)
 The sdowrite(idx,data) function write the value data into the

parameter with object number idx.

Sdoerror() The sdoerror() function return the error code of the last SDO

operation.

MC-600 User’s Manual V2.1 33 Danaher Motion

 Error code for PLD read/write SDO
Code Description
&H00000001 Invalid access on used SDO channel
&H00000002 Drive timeout by SDO reading
&H00000003 Drive internal SDO access error
&H00000004 Drive SDO receipt missing
&H00000005 DPRSTATE HS error
&H00000007 Invalid SDO number
&H00000009 Invalid control code request
&H0000000A Invalid write SDO index
&H0000000B Invalid write access (read only)
&H0000000C Invalid write data
&H0000000D Invalid drive state (Enable / Opmode)
&H0000000E Invalid write data < minimum
&H0000000F Invalid write data > maximum
&H00000010 Invalid write data wrong parameter length

MC-600 User’s Manual V2.1 34 Danaher Motion

The I/O functions

msetoutcmp (on,off)

The msetoutcmp (on,off) function enable the MC-600 to drive
automatically the digital output 7.
The output do will be 1 if the motor position is between on and
off positions.
The variable gv_outcmpsrc% can be used to select the source
of the comparator, 0 motor position 1 master position.
This variable must be set before the msetoutcmp() function is
invoked.

Dimension capture

Msetincap (in, edge, time)

 The Msetincap function enables the position capture on a

transition of digital input 2 (in = 0) and input 3 (in = 1).
 The edge parameter selects the active edge of the input:

- 0 Capture disabled
- 1 Capture on 0 1 transition
- 2 Capture on 1 0 transition
- 3 Capture on both transitions

The time parameter is a correction value related to the reaction
delay of the sensor (unit 0.8 microseconds).

T

motor position

DO7

on=3000 off =8000
gv_smod%=10000

msetoutcmp(3000,8000)

MC-600 User’s Manual V2.1 35 Danaher Motion

Both inputs are able to capture a programmable position and
return the latched position into the system variables
gv_cappos2% (input 2) and gv_cappos3% (input 3).

The variables gv_capsel2% and gv_capsel3% select the
Capture source as follows:
- 0 master position gv_master%
- 1 cam master position cm_master%
- 2 motor position sl_posdemand%
- 3 feedback position gv_feedback%

For compatibility reasons, the following variables are
maintained:
gv_capposf%, equivalent to gv_cappos2%
gv_cappos%, equivalent to gv_cappos3%
gv_capsel%, equivalent to gv_capsel3%
Moreover, the default value of gv_capsel2% is 3, which
means input 2, by default, captures the feedback position.
The flag variable gv_capstat% signal if a quote has been
latched.
Bit 0 Input 2
Bit 1 Input 3
The variables gv_caplv% and gv_caplvf% return the status
of the input captured.

Outw(value) The outw function write the digital output of the MC-600.
 A single output can be set or reset thru the variable gv_outx%.

Outsta() The outsta function return the status of the digital output of the

MC-600.
The status of a single output can be read thru the variable
gv_outx%.

Insta() The insta function return the status of the digital input of the

MC-600.
The status of a single input can be read thru the variable
gv_inx%.

Setxcng(Num,Src,Dest)
The setxcng() function enable the cyclic background variable
copy task.
Num is the number of “copier” (range 0 to 15)
Src is the source variable
Dest is the destination variable .

Example:
Setxcng(2,gv_feedback%,gv_usvar1%)
The variable gv_feedback% is copied into gv_usvar1% every
realtime cycle.

MC-600 User’s Manual V2.1 36 Danaher Motion

The other system variables of the
“Motion planner”

Gv_master% It is the master position. It is the value of the selected
encoder added of the value coming from the virtualax
trajectory generator

Gv_mastspeed% Return the actual speed of the selected master
Gv_feedback% It is the actual position of the controlled axis
Gv_encoder% It is the value of the selected encoder
Gv_encspeed% It is the speed value of the selected encoder
Gv_inx% (x=0..12) They are the status of the digital inputs, from 0 to 7 they are

located on the MC-600, from 8 to 12 are located on the
SERVOSTAR 600.

Gv_outx% (x=0..9) They are the status of the digital output, from 0 to 7 they are
located on the MC-600, the outputs 8 and 9 are located on
the SERVOSTAR 600.

Gv_mmod% Is the master modulus. If its value is 0 means no modulus
correction will be done on the master position. If for example
gv_mmod%=4096 the range of the master position will be
from 0 to 4095.

Gv_smod% Is the modulus of the controlled axis. If its value is 0 means
no modulus correction will be done on the feedback unit.
If for example gv_smod%=4096 the range of the feedback
position will be from 0 to 4095.

Sl_posdemand% Is the reference of the position loop
Sl_spddemand% Is the speed of the position reference.
Gv_status% Bit 0 – ready for switch on

Bit 1 – switched on
Bit 2 – operation enabled
Bit 3 - error
Bit 4 - reserved
Bit 5 – not in emergency stop
Bit 6 – switch on inhibit
Bit 7 - warning
Bit 8 – following error
Bit 9 - reserved
Bit 10 – idle
Bit 11 – speed active
Bit 12 – gear active
Bit 13 – move active
Bit 14 – cam active
Bit 15 – home active

Gv_command% Bit 0 – enable
Bit 1 – emergency stop and disable (1 0)
Bit 2 – emergency stop (1 0)
Bit 3 – reference enable

Gv_error% Drive error code (See drive documentation ERRCODE)

MC-600 User’s Manual V2.1 37 Danaher Motion

Gv_warning% Drive warning code (See drive documentation STATCODE)
Gv_anin1% Value of drive analog input 1
Gv_anin2% Value of drive analog input 2
Gv_trjstat% Drive status information (See drive documentation TRJSTAT)
Gv_latch1% Drive dimensione capture 1 (positive edge)
Gv_latch1n% Drive dimensione capture 1 (negative edge)
Gv_monitor1% Setting of drive analog output 1 (+/- 400 +/- 10V)
Gv_monitor2% Setting of drive analog output 2 (+/- 400 +/- 10V)
Gv_timer% Free running 32 bit timer, increments every 2ms
Gv_instat% Bit 0..7 - Value of Digital Input 0..7

Bit 8 - Value of Servostar 600 Enable Input
Bit 9..12 - Value of Servostar 600 Digital Input 0..3

Gv_usvar1% Setting of drive DPRVAR1 (CANOpen object 36A6h)
Gv_usvar2% Setting of drive DPRVAR2 (CANOpen object 36A7h)
Gv_usvar3% Setting of drive DPRVAR3 (CANOpen object 36A8h)
Gv_usvar4% Setting of drive DPRVAR4 (CANOpen object 36A9h)
Gv_usvar5% Setting of drive DPRVAR5 (CANOpen object 36AAh)
Gv_usvar6% Setting of drive DPRVAR6 (CANOpen object 36ABh)
Gv_usvar7% Setting of drive DPRVAR7 (CANOpen object 36ACh)
Gv_usvar8% Setting of drive DPRVAR8 (CANOpen object 36ADh)
Gv_usvar9% Value of drive DPRVAR9 (CANOpen object 36AEh)
Gv_usvar10% Value of drive DPRVAR10 (CANOpen object 36AFh)
Gv_usvar11% Value of drive DPRVAR11 (CANOpen object 36B0h)
Gv_usvar12% Value of drive DPRVAR12 (CANOpen object 36B1h)
Gv_usvar13% Value of drive DPRVAR13 (CANOpen object 36B2h)
Gv_usvar14% Value of drive DPRVAR14 (CANOpen object 36B3h)
Gv_usvar15% Value of drive DPRVAR15 (CANOpen object 36B4h)
Gv_usvar16% Value of drive DPRVAR16 (CANOpen object 36B5h)
Gv_velmot% Real motor speed value (1rpm = 33554432/240000 counts)
Gv_curmot% Torque demand value (Drive peak current = 3280)
Gv_mflag% Bit 0 – Final position reached (Position mode)

Bit 1 – Follower axis locked to the master (Gear mode)
Bit 2 – At speed (Speed mode)
Bit 3 – Cam locked (Cam mode)
Bit 4 – Homing done (Home mode)

Gv_timeint% Downcounter timer with 1mSec resolution. It’s set by the
Settime() instruction

Gv_release Return the MC600 firmware release

MC-600 User’s Manual V2.1 38 Danaher Motion

The “MotionBasic”

Introduction

This chapter is designed as a REFERENCE GUIDE, it is not
designed to teach the BASIC programming language. There is,
however, an extensive glossary of terms and a "semi-tutorial"
approach to many of the sections in the book. If you don't
already have a working knowledge of BASIC and how to use it
to program, we suggest that you study the BASIC language
using other books available on the market.

The operating system

The Operating System is contained in firmware of the MC-600
and is a combination of six separate, but interrelated, program
modules.

1) The BASIC Interpreter
2) The Filesystem
3) The KERNEL
4) The Screen Editor
5) The Motion planner
6) The Field buses activity

1) The BASIC Interpreter is responsible for analyzing BASIC
statement syntax and for performing the required
calculations and/or data manipulation. The BASIC Interpreter
has a vocabulary of 65 "keywords" which have special
meanings. The upper and lower case alphabet and the digits
0-9 are used to make both keywords and variable names.
Certain punctuation characters and special symbols also have
meanings for the Interpreter. Table Table 0-1. BASIC
Character Set lists the special characters and their uses.

2) The Filesystem handles the storage of user’s programs and

data; it is organized into two solid state disk units, named A
and B, residing in RAM and in FLASH memory. A is a RAM
disk, and its data is lost upon system power off, while B is a
FLASH disk and its data is retained in nonvolatile storage.
Because of this different nature, disk units have different
usage capabilities, which will be explained in next section.

3) The KERNEL handles most of the interrupt level processing in

the system. The KERNEL also does the actual input and
output of data.

4) The Screen Editor controls the output to the terminal screen

and the editing of BASIC program text. In addition, the

MC-600 User’s Manual V2.1 39 Danaher Motion

Screen Editor intercepts keyboard input so that it can decide
whether the characters put in should be acted upon
immediately, or passed on to the BASIC Interpreter.

5) The Motion planner module has been already described.

6) The Field buses activity will be described in the next section

of this user’s manual.

MC-600 User’s Manual V2.1 40 Danaher Motion

Basic programming rules

Table 0-1. BASIC Character Set

CHARACTER NAME and DESCRIPTION

 BLANK - separates keywords and variable names
; SEMI-COLON - used in variable lists to format output
= EQUAL SIGN - value assignment and relationship testing
+ PLUS SIGN - arithmetic addition or string concatenation

concatenation: linking together in a chain)
- MINUS SIGN - arithmetic subtraction, unary minus
* ASTERISK - arithmetic multiplication
/ SLASH - arithmetic division
^ UP ARROW - arithmetic exponentiation
(LEFT PARENTHESIS - expression evaluation and functions
) RIGHT PARENTHESIS - expression evaluation and functions

% PERCENT - declares variable name as an integer
NUMBER - comes before logical file number in input/ output

statements
$ DOLLAR SIGN - declares variable name as a string
, COMMA - used in variable lists to format output; also

Separates command parameters
. PERIOD - decimal point in floating point constants
" QUOTATION MARK - encloses string constants
: COLON - separates multiple BASIC statements in a line
? QUESTION MARK - abbreviation for the keyword PRINT
< LESS THAN - used in relationship tests
> GREATER THAN - used in relationship tests

{pi} the numeric constant 3.141592654

The Operating System gives you two modes of BASIC operation:

 1) DIRECT Mode
 2) PROGRAM Mode

1) When you're using the DIRECT mode, BASIC statements

don't have line numbers in front of the statement. They are
executed whenever the <RETURN> key is pressed.

2) The PROGRAM mode is the one you use for running

programs.

When using the PROGRAM mode, all of your BASIC statements
must have line numbers in front of them. You can have more
than one BASIC statement in a line of your program, but the
number of statements is limited by the fact that you can only
put 80 characters on a logical screen line. This means that if you
are going to go over the 80 character limit you have to put the

MC-600 User’s Manual V2.1 41 Danaher Motion

entire BASIC statement that doesn't fit on a new line with a new
line number.

Always type NEW and hit <RETURN> before starting a new
program.

MC-600 User’s Manual V2.1 42 Danaher Motion

Programming numbers and variables

Integer, floating point and string constants

Constants are the data values that you put in your BASIC
statements. BASIC uses these values to represent data during
statement execution. The MC-600 BASIC can recognize and
manipulate three types of constants:

 1) INTEGER NUMBERS
 2) FLOATING-POINT NUMBERS
 3) STRINGS

Integer constants are whole numbers (numbers without
decimal points).
Integer constants have 32 bits format. Integer constants do not
have decimal points or commas between digits. If the plus (+)
sign is left out, the constant is assumed to be a positive
number. Zeros coming before a constant are ignored and
shouldn't be used since they waste memory and slow down your
program. However, they won't cause an error. Integers are
stored in memory as four-byte binary numbers. Some examples
of integer constants are:

 -12
 8765
 -3276878
 +44
 0
 -3276767

MC-600 User’s Manual V2.1 43 Danaher Motion

Floating-point constants are positive or negative numbers
and can contain fractions. Fractional parts of a number may be
shown using a decimal point. Once again remember that
commas are NOT used between numbers. If the plus sign (+) is
left off the front of a number, the MC-600 assumes that the
number is positive. If you leave off the decimal point the
computer will assume that it follows the last digit of the number.
And as with integers, zeros that come before a constant are
ignored. Floating-point constants can be used in two ways:

 1) SIMPLE NUMBER
 2) SCIENTIFIC NOTATION

Floating-point constants will show you up to nine digits on your
screen. These digits can represent values between -999999999.
and +999999999. If you enter more than nine digits the
number will be rounded based on the tenth digit. if the tenth
digit is greater than or equal to 5 the number will be rounded
upward. Less than 5 the number be rounded downward. This
could be important to the final totals of some numbers you may
want to work with.
Floating-point numbers are stored (using eigth bytes of
memory) and are manipulated in calculations with ten places of
accuracy. However, the numbers are rounded to nine digits
when results are printed. Some examples of simple floating-
point numbers are:

 1.23 .7777777
 -.998877 -333.
 +3.1459 .01

Numbers smaller than .01 or larger than 999999999. will be
printed in scientific notation. In scientific notation a floating-
point constant is made up of three parts:

 1) THE MANTISSA
 2) THE LETTER E
 3) THE EXPONENT

The mantissa is a simple floating-point number. The letter E is
used to tell you that you're seeing the number in exponential
form. In other words E represents * 10 (eg., 3E3 = 3*10^3 =
3000). And the exponent is what multiplication power of 10 the
number is raised to.
Both the mantissa and the exponent are signed (+ or -)
numbers. The exponent's range is from -39 to +38 and it
indicates the number of places that the actual decimal point in
the mantissa would be moved to the left (-) or right (+) if the
value of the constant were represented as a simple number.

MC-600 User’s Manual V2.1 44 Danaher Motion

There is a limit to the size of floating-point numbers that BASIC
can handle, even in scientific notation: the largest number is
 +1.70141183E+38 and calculations which would result in a
larger number will display the BASIC error message
?OVERFLOW ERROR. The smallest floating-point number is
+2.93873588E-39 and calculations which result in a smaller
value give you zero as an answer and NO error message. Some
examples of floating-point numbers in scientific notation (and
their decimal values) are:

 235.988E-3 (.235988)
 2359E6 (2359000000.)
 -7.09E-12 (-.00000000000709)
 -3.14159E+5 (-314159.)

String constants are groups of alphanumeric information like
letters, numbers and symbols. When you enter a string from the
keyboard, it can have any length up to the space available in an
80-character line (that is, any character spaces NOT taken up
by the line number and other required parts of the statement).
A string constant can contain blanks, letters, numbers,
punctuation in any combination. You can even put commas
between numbers. The only character which cannot be included
in a string is the double quote mark ("). This is because the
double quote mark is used to define the beginning and end of
the string.
A string can also have a null value-which means that it can
contain no character data. You can leave the ending quote mark
off of a string if it's the last item on a line or if it's followed by a
colon (:). Some examples of string constants are:

 "" (a null string)
 "HELLO"
 "$25,000.00"
 "NUMBER OF EMPLOYEES"

MC-600 User’s Manual V2.1 45 Danaher Motion

Integer floating point and string variables

Variables are names that represent data values used in your
BASIC statements. The value represented by a variable can be
assigned by setting it equal to a constant, or it can be the result
of calculations in the program. Variable data, like constants, can
be integers, floating point numbers, or strings. If you refer to a
variable name in a program before a value has been assigned,
the BASIC Interpreter will automatically create the variable with
a value of zero if it's an integer or floating-point number. Or it
will create a variable with a null value if you're using strings.
Variable names can be a max length of 20 characters.
Variable names may NOT be the same as BASIC keywords and
they may NOT contain keywords in the middle of variable
names. Keywords include all BASIC commands, statements,
function names and logical operator names. If you accidentally
use a keyword in the middle of a variable name, the BASIC error
message ?SYNTAX ERROR will show up on your screen.
The characters used to form variable names are the alphabet
and the numbers 0-9. The first character of the name must be a
letter. Data type declaration characters (%) and ($) can be used
as the last character of the name. The percent sign declares the
variable to be an integer and the dollar sign ($) declares a string
variable. If no type declaration character is used the Interpreter
will assume that the variable is a floating-point. Some examples
of variable names, value as signments and data types are:

 A$="DRIVE ENABLED" (string variable)
 MTH$="JAN"+A$ (string variable)
 K%=5 (integer variable)
 CNT%=CNT%+1 (integer variable)
 FP=12.5 (floating-point variable)
 SUM=FP*CNT% (floating-point variable)

Integer, floating point and string arrays

An array is a table (or list) of associated data items referred to
by a single variable name. In other words, an array is a
sequence of related variables. A table of numbers can be seen
as an array, for example. The individual numbers within the
table become "elements" of the array. Arrays are a useful
shorthand way of describing a large number of related variables.
Take a table of numbers for instance. Let's say that the table
has 10 rows of numbers with 20 numbers in each row. That
makes total of 200 numbers in the table. Without a single array
name to call on, you would have to assign a unique name to
each value in the table. But, because you can use arrays, you

MC-600 User’s Manual V2.1 46 Danaher Motion

only need one name for the array and all the elements in the
array are identified by their individual locations within the array.
Array names can be integers, floating-points or string data
types and all elements in the array have the same data type as
the array name. Arrays can have a single dimension (as in a
simple list) or they can have multiple dimensions. Each element
of an array is uniquely identified and referred to by a subscript
(or index variable) following the array name, enclosed within
parentheses ().
The maximum number of dimensions an array can have is 4 and
the number of elements in each dimension is limited to 32767.
If an array has only one dimension and its subscript value will
never exceed 10 (11 items: 0 thru 10) then the array will be
created by the Interpreter and filled with zeros (or nulls if string
type) the first time any element of the array is referred to,
otherwise the BASIC DIM statement must be used to define the
shape and size of the array.
Value assignments and data types are:

 A(5)=0 (sets the 5th element in the 1 dimensional
 array called "A" equal to 0)

 B(5,6)=0 (sets the element in row position 5 and column
 position 6 in the 2 dimensional array called "B"
 equal to 0)

MC-600 User’s Manual V2.1 47 Danaher Motion

Expressions and operators

Expressions are formed using constants, variables and/or
arrays. An expression can be a single constant, simple variable,
or an array variable of any type. It can also be a combination of
constants and variables with arithmetic, relational or logical
operators designed to produce a single value. How operators
work is explained below. Expressions can be separated into two
classes:

 1) ARITHMETIC
 2) STRING

Expressions are normally thought of as having two or more data
items called operands. Each operand is separated by a single
operator to produce the desired result. This is usually done by
assigning the value of the expression to a variable name. All of
the examples of constants and variables that you've seen so far,
were also examples of expressions.
An operator is a special symbol the BASIC Interpreter in your
MC-600 motion platform recognizes as representing an
operation to be performed on the variables or constant data.
One or more operators, combined with one or more variables
and/or constants, form an expression. Arithmetic, relational and
logical operators are recognized by MC-600 BASIC.

Arithmetic expressions

Arithmetic expressions, when solved, will give an integer or
floating point value. The arithmetic operators (+, -, *, /, ^) are
used to perform addition, subtraction, multiplication, division
and exponentiation operations,respectively.

Arithmetic operators

An arithmetic operator defines an arithmetic operation which is
performed on the two operands on either side of the operator. If
one of the operands is floating point, the arithmetic operations
are performed using floating-point numbers. If needed, integers
are converted to floating-point numbers before an arithmetic
operation is performed. The result is converted back to an
integer if it is assigned to an integer variable name.
If all the operands are integer the arithmetic operation will be
performed using 32 bits integer mathematics.
ADDITION (+): The plus sign (+) specifies that the operand on
the right is added to the operand on the left.

MC-600 User’s Manual V2.1 48 Danaher Motion

EXAMPLES:
 2+2
 A+B+C
 X%+1
 BR+10E-2

SUBTRACTION (-): The minus sign (-) specifies that the operand
on the right is subtracted from the operand on the left.

EXAMPLES:
 4-1
 100-64
 A-B
 55-142

The minus can also be used as a unary minus. That means that
it is the minus sign in front of a negative number. This is equal
to subtracting the number from zero (0).

EXAMPLES:
 -5
 -9E4
 -B
 4-(-2) same as 4+2

MULTIPLICATION (*): An asterisk (*) specifies that the operand
on the left is multiplied by the operand on the right.

EXAMPLES:
 100*2
 50*0
 A*X1
 R%*14

DIVISION (/): The slash (/) specifies that the operand on the
left is divided by the operand on the right.

EXAMPLES:
 10/2
 6400/4
 A/B
 4E2/XR

EXPONENTIATION (^): The up arrow (^) specifies that the
operand on the left is raised to the power specified by the
operand on the right (the exponent). If the operand on the
right is a 2, the number on the left is squared; if the exponent is
a 3, the number on the left is cubed, etc. The exponent can be
any number so long as the result of the operation gives a valid
floating-point number.

MC-600 User’s Manual V2.1 49 Danaher Motion

EXAMPLES:
 2^2 Equivalent to: 2*2
 3^3 Equivalent to: 3*3*3
 4^4 Equivalent to: 4*4*4*4
 AB^CD
 3^-2 Equivalent to: 1/3*1/3

Relational operators

The relational operators (<, =, >, <=, >=, <>) are primarily
used to compare the values of two operands, but they also
produce an arithmetic result. The relational operators and the
logical operators (AND, OR, and NOT), when used in
comparisons, actually produce an arithmetic true/false
evaluation of an expression. If the relationship stated in the
expression is true, the result is assigned an integer value of – 1
and, if it's false, a value of 0 is assigned. These are the
relational operators:
 < LESS THAN
 = EQUAL TO
 > GREATER THAN
 <= LESS THAN OR EQUAL TO
 >= GREATER THAN OR EQUAL TO
 <> NOT EQUAL TO

EXAMPLES:

 1 =5-4 result true (-1)
 14>66 result false (0)
 15>=15 result true (-1)

Relational operators can be used to compare strings. For
comparison purposes, the letters of the alphabet have the order
A<B<C<D, etc.
Strings are compared by evaluating the relationship between
corresponding characters from left to right (see String
Operations).

EXAMPLES:

 "A" < "B" result true (-1)
 "X" = "YY" result false (0)
 BB$ <> CC$

Numeric data items can only be compared (or assigned) to other
numeric items. The same is true when comparing strings,
otherwise the BASIC error message ?TYPE MISMATCH will occur.
Numeric operands are compared by first converting the values
of either or both operands from integer to floating-point form, if

MC-600 User’s Manual V2.1 50 Danaher Motion

necessary. Then the relationship of the two values is evaluated
to give a true/false result.
At the end of all comparisons, you get an integer no matter
what data type the operand is (even if both are strings).
Because of this, a comparison of two operands can be used as
an operand in performing calculations. The result will be - 1 or 0
and can be used as anything but a divisor, since division by zero
is illegal.

Logical operators

The logical operators (AND, OR, NOT) can be used to modify the
meanings of the relational operators or to produce an arithmetic
result. Logical operators can produce results other than -1 and
0, though any nonzero result is considered true when testing
for a true/false condition. The logical operators (sometimes
called Boolean operators) can also be used to perform logic
operations on individual binary digits (bits) in two operands. But
when you're using the NOT operator, the operation is performed
only on the single operand to the right. The operands must be in
the integer range of values (floating-point numbers are
converted to integers) and logical operations give an integer
result.
Logical operations are performed bit-by-corresponding-bit on
the two operands. The logical AND produces a bit result of 1
only if both operand bits are 1. The logical OR produces a bit
result of 1 if either operand bit is 1. The logical NOT is the
opposite value of each bit as a single operand. In other words,
it's really saying, "If it's NOT 1 then it is 0. If it's NOT 0 then it
is 1."
The exclusive OR (XOR) means that if the bits of two operands
are equal then the result is 0 otherwise the result is 1. Logical
operations are defined by groups of statements which, taken
together, constitute a Boolean "truth table" as shown in Table 1-
2.

MC-600 User’s Manual V2.1 51 Danaher Motion

Table 0-2. Boolean Truth Table

The logical operators AND, OR, XOR and NOT specify a Boolean
arithmetic operation to be performed on the two operand
expressions on either side of the operator. In the case of NOT,
ONLY the operand on the RIGHT is considered. Logical
operations (or Boolean arithmetic) aren't performed until all
arithmetic and relational operations in an expression have been
completed.

EXAMPLES:

 IF A=100 AND B=100 THEN 10 (if both A and B have a

value of 100 then the
result is true)

 A=96 AND 32: PRINT A (A = 32)

The AND operation results in a 1 only if both bits are 1:

1 AND 1 = 1
0 AND 1 = 0
1 AND 0 = 0
0 AND 0 = 0

The OR operation results in a 1 if either bit is 1:

1 OR 1 = 1
0 OR 1 = 1
1 OR 0 = 1
0 OR 0 = 0

The NOT operation logically complements each bit:

NOT 1 = 0
NOT 0 = 1

The exclusive OR (XOR) operation results in a 0 if both bits are equal

1 XOR 1 = 0
1 XOR 0 = 1
0 XOR 1 = 1
0 XOR 0 = 0

MC-600 User’s Manual V2.1 52 Danaher Motion

 IF A=100 OR B=100 THEN 20 (if A or B is 100 then the
 result is true)

 A=64 OR 32: PRINT A (A = 96)

 IF NOT X<Y THEN 30 (if X>=Y the result is true)

 X= NOT 96 (result is -97 (two's

complement))

Hierarchy of operations

All expressions perform the different types of operations
according to a fixed hierarchy. In other words, certain
operations are performed before other operations. The normal
order of operations can be modified by enclosing two or more
operands within parentheses (), creating a "subexpression."
The parts of an expression enclosed in parentheses will be
reduced to a single value before working on parts outside the
parentheses.
When you use parentheses in expressions, they must be paired
so that you always have an equal number of left and right
parentheses. Otherwise the BASIC error message ?SYNTAX
ERROR will appear.
Expressions which have operands inside parentheses may
themselves be enclosed in parentheses, forming complex
expressions of multiple levels. This is called nesting.
Parentheses can be nested in expressions to a maximum depth
of ten levels-ten matching sets of parentheses.
The inner-most expression has its operations performed first.
Some examples of expressions are:

 A+B
 C^(D+E)/2
 ((X-C^(D+E)/2)*10)+1
 GG$>HH$
 JJ$+"MORE"
 K%=1 AND M<>X
 K%=2 OR (A=B AND M<X)
 NOT (D=E)

The BASIC Interpreter will normally perform operations on
expressions by performing arithmetic operations first, then
relational operations, and logical operations last. Both arithmetic
and logical operators have an order of precedence (or hierarchy
of operations) within themselves. On the other hand, relational
operators do not have an order of precedence and will be
performed as the expression is evaluated from left to right.
If all remaining operators in an expression have the same level
of precedence, then operations happen from left to right. When

MC-600 User’s Manual V2.1 53 Danaher Motion

performing operations on expressions within parentheses, the
normal order of precedence is maintained. The hierarchy of
arithmetic and logical operations is shown in Table 1-3 from first
to last in order of precedence.

Table 1-3. Hierarchy of Operations Performed on Expressions

OPERATOR DESCRIPTION EXAMPLE
^ Exponentiation BASE ^ EXP
- Negation (Unary Minus) -A

* / Multiplication Division AB * CD EF / GH
+ - Addition Subtraction CNT + 2 JK – PQ

> = < Relational Operations A <= B
NOT Logical NOT (Integer Two's

Complement)
NOT K%

AND Logical AND JK AND 128
OR Logical OR PQ OR 15

String operations

Strings are compared using the same relational operators
(=, <>, <=, >=, <, >) that are used for comparing numbers.
String comparisons are made by taking one character at a time
(left-to-right) from each string and evaluating each character
code position from the standard ASCII character set. If the
character codes are the same, the characters are equal. If the
character codes differ, the character with the lower code
number is lower in the character set. The comparison stops
when the end of either string is reached. All other things being
equal, the shorter string is considered less than the longer
string. Leading or trailing blanks ARE significant.
Regardless of the data types, at the end of all comparisons you
get an integer result. This is true even if both operands are
strings.
Because of this a comparison of two string operands can be
used as an operand in performing calculations. The result will be
- 1 or 0 (true or false) and can be used as anything but a divisor
since division by zero is illegal.

String expressions

Expressions are treated as if an implied "<>0" follows them.
This means that if an expression is true then the next BASIC
statements on the same program line are executed. If the
expression is false the rest of the line is ignored and the next
line in the program is executed.
Just as with numbers, you can also perform operations on string
variables. The only string arithmetic operator recognized by MC-
600 BASIC is the plus sign (+) which is used to perform

MC-600 User’s Manual V2.1 54 Danaher Motion

concatenation of strings. When strings are concatenated, the
string on the right of the plus sign is appended to the string on
the left, forming a third string as a result.
The result can be printed immediately, used in a comparison, or
assigned to a variable name. If a string data item is compared
with (or set equal to) a numeric item, or vice-versa, the BASIC
error message ?TYPE MISMATCH will occur. Some examples of
string expressions and concatenation are:

 10 A$="FILE": B$="NAME"
 20 NAM$=A$+B$ (gives the string: FILENAME)
 30 RES$="NEW "+A$+B$ (gives the string: NEW

FILENAME)

Programming techniques

DATA CONVERSIONS

When necessary, the MC-600 BASIC Interpreter will convert a
numeric data item from an integer to floating-point or viceversa,
according to the following rules:

• All arithmetic and relational operations are performed in
integer format whenever is possible, otherwise in floating
point format. Integers are converted to floating-point form
for evaluation of the expression, and the result is
converted back to integer, if needed. Logical operations
convert their operands to integers an return an integer
result.

• If a numeric variable name of one type is set equal to a

numeric data item of a different type, the number will be
converted and stored as the data type declared in the
variable name.

• When a floating-point value is converted to an integer, the

fractional portion is truncated (eliminated) and the integer
result is less than or equal to the floating-point value.

MC-600 User’s Manual V2.1 55 Danaher Motion

The BASIC Filesystem

A FLASH/RAM Filesystem has been provided on the MC-600 board to allow the
storage of user’s programs and data.
Two virtual disk units are provided, named with alphabet letters, like into any DOS
based system.
Disk unit A: is the RAM disk, while disk unit B: is the FLASH disk.
RAM disk A: is formatted during startup, at system power on, and provides storage
for up to 512 Kbytes of information. Informations contained into RAM disk are LOST
upon system shut down.
FLASH disk B: can be formatted at user’s need, and provides nonvolatile storage for
up to 768 Kbytes of information.
Informations are organized in files, like in DOS or any other common disk operating
system.
File functions are provided in order to create, open, read, write, append, close and
delete the files. A file COPY function allows copying of RAM resident files into
nonvolatile FLASH storage.
The main difference between the two virtual disk units is that the FLASH disk does
not offer an easy random access as the RAM disk, due to non immediate rewritability
of data (in order to rewrite any byte into the flash disk, an entire 64K flash sector
must be erased and rewritten), thus we decided to allow random read/write access
only into RAM disk, which offers higher speed, and to provide FLASH disk only as a
backup media, to copy and store the data once this has been definitely written and
fixed.

FILENAMES
BASIC filenames consist of a file name (maximum length 8 characters) followed by
an extension (maximum length 3 characters). For example, BOOK.TXT,
CONVERT.BAS, SECTION.12.

WILDCARDS
In some special case (directory listing, file deletion), wildcard characters can be put
into filenames to allow you to select the files that match a particular filename
pattern.
These are the general rules for wildcard interpretation:
* matches any number of characters
? matches one character
Like in DOS, filename and extension are treated separately. Wildcards can appear in
either filename or extension, or both.
For example,
files *.txt
lists all files with extension .txt, eg free.txt, big.txt, readme.txt
files chap*.zip
lists all files that start with chap and have extension .zip, eg chapter1.zip,
chapter2.zip chapsum.zip
files big*.*
lists all files that start with big and have any extension, eg. bignews.exe, bigstuff.txt,
bignews.tst
erase yah???.bas

MC-600 User’s Manual V2.1 56 Danaher Motion

deletes all files whose name begins with ‘yah’ and is 6 chars long; and whose
extension is bas.

MC-600 User’s Manual V2.1 57 Danaher Motion

Description of BASIC keywords

ABS TYPE: Function-Numeric

FORMAT: ABS(<expression>)

Action: Returns the absolute value of the number, which is its value without
any signs. The absolute value of a negative number is that number
multiplied by -1.

EXAMPLES of ABS Function:

10 X = ABS (Y)
10 PRINT ABS (X*J)
10 IF X = ABS (X) THEN PRINT "POSITIVE"

ACOS TYPE: Function-Numeric

FORMAT: ACOS(<number>)

Action: This mathematical function returns the arccosine of the number.
The result is the angle (in radians) whose cosine is the number given.
The result is always in the range -pi/2 to +pi/2.

EXAMPLES of ACOS Function:

10 PRINT ACOS(0)
20 X = ACOS(J)*180/ {pi} : REM CONVERT TO DEGREES

AND TYPE: Operator

FORMAT: <expression> AND <expression>

Action: AND is used in Boolean operations to test bits. it is also used in
operations to check the truth of both operands.
In Boolean algebra, the result of an AND operation is 1 only if both numbers
being ANDed are 1. The result is 0 if either or both is 0 (false).

EXAMPLES of 1-Bit AND operation:

 0 1 0 1
 AND 0 AND 0 AND 1 AND 1
 ------ ----- ----- -----
 0 0 0 1

The MC-600 performs the AND operation on numbers in the 32 bits range.
Any fractional values are not used, and numbers beyond the range will
cause an ?ILLEGAL QUANTITY error message.
When converted to binary format, the range allowed yields 16 bits for each
number.
Corresponding bits are ANDed together, forming a 16-bit result in the same
range.

EXAMPLES of 16-Bit AND Operation:
 17
 AND 194

 0000000000010001
 AND 0000000011000010

 (BINARY) 0000000000000000

 (DECIMAL) 0

MC-600 User’s Manual V2.1 58 Danaher Motion

When evaluating a number for truth or falsehood, the computer assumes the
number is true as long as its value isn't 0. When evaluating a comparison, it
assigns a value of -I if the result is true, while false has a value of 0. In
binary format, -1 is all 1's and 0 is all 0's.
Therefore, when ANDing true/false evaluations, the result will be true if any
bits in the result are true.

EXAMPLES of Using AND with True/False Evaluations:

50 IF X=7 AND W=3 THEN GOTO 10: REM ONLY TRUE IF BOTH X=7 AND
W=3 ARE TRUE
60 IF A AND Q=7 THEN GOTO 10: REM TRUE IF A IS NON-ZERO AND Q=7
IS TRUE

ASIN TYPE: Function-Numeric

FORMAT: ASIN(<number>)

Action: This mathematical function returns the arcsine of the number.
The result is the angle (in radians) whose sine is the number given.
The result is always in the range -pi/2 to +pi/2.

EXAMPLES of ASIN Function:

10 PRINT ASIN(0)
20 X = ASIN(J)*180/ {pi} : REM CONVERT TO DEGREES

ATN TYPE: Function-Numeric

FORMAT: ATN(<number>)

Action: This mathematical function returns the arctangent of the number.
The result is the angle (in radians) whose tangent is the number given.
The result is always in the range -pi/2 to +pi/2.

EXAMPLES of ATN Function:

10 PRINT ATN(0)
20 X = ATN(J)*180/ {pi} : REM CONVERT TO DEGREES

ASC TYPE: Function-Numeric

FORMAT: ASC(<string>)

Action: ASC will return a number from 0 to 255 which corresponds to the
ASCII value of the first character in the string.

EXAMPLES OF ASC Function:

10 PRINT ASC("Z")
20 X = ASC("ZEBRA")
30 J = ASC(J$)

AUTO TYPE: Statement

FORMAT: AUTO <starting line number> <, increment>

Action: AUTO statement allow automatic numbering of program lines. When
no argument is entered, AUTO uses its default values (starting line number
= 10, increment = 10)

EXAMPLES of AUTO Statement:

>AUTO 100, 25

MC-600 User’s Manual V2.1 59 Danaher Motion

Automatically generates line numbers, starting at line 100, increment of 25.

BITSET TYPE: Function

FORMAT: BITSET (<number%>, <bitposition%>, <value>)

Action: This function returns the value of <number%> with the bit at
<bitposition%> (0..31) set to value <value> (0..1).

EXAMPLE of BITSET Function:

10 ALFA% = 1234
20 BETA% = BITSET (ALFA%, 12, 1)

BETA% will contain ALFA% with bit 12 set to value 1

BITTEST TYPE: Function

FORMAT: BITTEST (<number%>, <bitposition%>)

Action: This function returns the value (0..1) of bit at <bitposition%> into
the variable <number%>.

EXAMPLE of BITTEST Function:

10 ALFA% = 1234
20 BETA% = BITTEST (ALFA%, 12)

BETA% will contain bit 12 of variable ALFA%

CHR$ TYPE: Function-String

FORMAT: CHR$ (<number>)

Action: This function converts a ASCII code to its character equivalent.
The number must have a value between 0 and 255, or an ?ILLEGAL
QUANTITY error message results.

EXAMPLES of CHR$ Function:

10 PRINT CHR$(65) : REM 65 = UPPER CASE A
20 A$=CHR$(13) : REM 13 = RETURN KEY
50 A=ASC(A$) : A$ = CHR$(A) : REM CONv. TO ASCII CODE AND BACK

CONT TYPE: Command

FORMAT: CONT

Action: This command re-starts the execution of a program which was
halted by a STOP or END statement or the <[ctrl]C> key being pressed.
The program will re-start at the exact place from which it left off.
While the program is stopped, the user can inspect or change any variables
or look at the program. When debugging or examining a program, STOP
statements can be placed at strategic locations to allow examination of
variables and to check the flow of the program.

EXAMPLE of CONT Command:

10 PI=0:C=1
20 PI=PI+4/C-4/(C+2)
30 PRINT PI
40 C=C+4:GOTO 20

This program calculates the value of PI. RUN this program, and after a short

MC-600 User’s Manual V2.1 60 Danaher Motion

while hit the <[ctrl]C> key. You will see the display:

>BREAK IN 20 NOTE: Might be different number.
>

Type the command PRINT C to see how far the MC-600 has gotten.
Then use CONT to resume from where the MC-600 left off.

COS TYPE: Function

FORMAT: COS (<number>)

Action: This mathematical function calculates the cosine of the number,
where the number is an angle in radians.

EXAMPLES of COS Function:

10 PRINT COS(0)
20 X = COS(Y* {pi} /180) : REM CONVERT DEGREES TO RADIANS

DATA TYPE: Statement

FORMAT: DATA <list of constants>

Action: DATA statements store information within a program. The program
uses the information by means of the READ statement, which pulls
successive constants from the DATA statements.
The DATA statements don't have to be executed by the program, they only
have to be present. Therefore, they are usually placed at the end of the
program. All data statements in a program are treated as a continuous list.
Data is READ from left to right, from the lowest numbered line to the
highest. If the READ statement encounters data that doesn't fit the type
requested (if it needs a number and finds a string) an error message occurs.
Any characters can be included as data, but if certain ones are used the data
item must be enclosed by quote marks (" "). These include punctuation like
comma (,), colon (:), blank spaces, and shifted letters, graphics, and cursor
control characters.

EXAMPLES of DATA Statement:

10 DATA 1,10,5,8
20 DATA JOHN,PAUL,GEORGE,RINGO
30 DATA "DEAR MARY, HOW ARE YOU, LOVE, BILL"
40 DATA -1.7E-9, 3.33

DEL TYPE: Statement

FORMAT: DEL <startlinenumber><-<endlinenumber>>
 [<, startlinenumber><-<endlinenumber>>...]

Action: This statement deletes program lines whose line number is
comprised into the interval given in the argument. More than one interval
can be specified, each of them separated by commas.

EXAMPLES of DEL Statement:

>DEL 100
Deletes program line 100
>DEL 100-
Deletes program, starting at line 100, up to end
>DEL 100-200
Deletes program lines from 100 to 200
>DEL 100-200, 300
Deletes program lines from 100 to 200 and line 300

MC-600 User’s Manual V2.1 61 Danaher Motion

DIM TYPE: Statement

FORMAT: DIM <variable> (<subscripts>)[<variable> (<subscripts>)...]

Action: This statement defines an array or matrix of variables. This allows
you to use the variable name with a subscript. The subscript points to the
element being used. The lowest element number in an array is zero, and the
highest is the number given in the DIM statement, which has a maximum of
32767. The DIM statement must be executed once and only once for each
array. A REDIM'D ARRAY error occurs if this line is re-executed. Therefore,
most programs perform all DIM operations at the very beginning. There may
be 4 dimensions and 4 subscripts in an array, limited only by the amount of
RAM memory which is available to hold the variables. The array may be
made up of normal numeric variables, as shown above, or of strings or
integer numbers. If the variables are other than normal numeric, use the $
or % signs after the variable name to indicate string or integer variables. If
an array referenced in a program was never DiMensioned, it is automatically
dimensioned to 11 elements in each dimension used in the first reference.

EXAMPLES of DIM Statement:

10 DIM A(100)
20 DIM Z (5,7), Y(3,4,5)
30 DIM Y7%(Q)
40 DIM PH$(1000)
50 F(4)=9 : REM AUTOMATICALLY PERFORMS DIM F(10)

EEREADF TYPE: Function

FORMAT: EEREADF (<address>)

Action: This function reads a FLOATING POINT VALUE from nonvolatile
storage at address <address>.

EXAMPLES of EEREADF Function:

10 PRINT EEREADF (34)
20 X = EEREADF (FOO)

EEREADL TYPE: Function

FORMAT: EEREADL (<address>)

Action: This function reads an INTEGER VALUE from nonvolatile storage at
address <address>.

EXAMPLES of EEREADL Function:

10 PRINT EEREADL (34)
20 X% = EEREADL (FOO)

EEWRITEF TYPE: Function

FORMAT: EWRITEF (<address>, <value>)

Action: This function writes the FLOATING POINT VALUE <value>, into
nonvolatile storage at address <address>.

EXAMPLE of EEWRITEF Function:

10 ALFA = 1234.56
20 EEWRITEF (123, ALFA)

MC-600 User’s Manual V2.1 62 Danaher Motion

EEWRITEL TYPE: Function
FORMAT: EWRITEL (<address>, <value%>)

Action: This function writes the INTEGER VALUE <value>, into nonvolatile
storage at address <address>.

EXAMPLE of EEWRITEL Function:

10 ALFA% = 1234
20 EEWRITEL (123, ALFA%)

END TYPE: Statement

FORMAT: END

Action: This finishes a program's execution and displays the READY
message, returning control to the person operating the MC-600. There may
be any number of END statements within a program. While it is not
necessary to include any END statements at all, it is recommended that a
program does conclude with one, rather than just running out of lines. The
END statement is similar to the STOP statement. The only difference is that
STOP causes the computer to display the message BREAK IN LINE XX and
END just displays READY. Both statements allow the computer to resume
execution by typing the CONT command.

EXAMPLES of END Statement:

10 PRINT"DO YOU REALLY WANT TO RUN THIS PROGRAM"
20 INPUT A$
30 IF A$ = "NO" THEN END
40 REM REST OF PROGRAM . . .
999 END

ERASE TYPE: File Function

FORMAT: ERASE <filename mask>

Action: This function ERASEs the file or files specified by filename. Filename
must be a valid file name, wildcards can be included; files to be erased must
be closed.
WARNING: an ERASEd file is definitely lost and CANNOT BE RECOVERED

EXAMPLES of ERASE Function:

>ERASE "A:FILE1.BAS"
Erase the file named FILE1.BAS from the RAM disk
>ERASE "A:FIL*.BAS"
Erase any .BAS file beginning with FIL from the RAM disk
>ERASE "B:PROG1.BAS"
Erase the file named PROG1.BAS from the FLASH disk
>ERASE "B:PRO*.BAS"
Erase any .BAS file beginning with PRO from the FLASH disk

EXP TYPE: Function-Numeric

FORMAT: EXP (<number>)

Action: This mathematical function calculates the constant e (2.71828183)
raised to the power of the number given. A value greater than 88.0296919
causes an ?OVERFLOW error to occur.
EXAMPLES of EXP Function:

10 PRINT EXP (1)
20 X = Y*EXP (Z*Q)

MC-600 User’s Manual V2.1 63 Danaher Motion

FILES TYPE: File Function
FORMAT: FILES [“<filename mask>”]

Action: This function FILES lists the file directory of the specified disk unit; if
no disk unit is specified, FILES lists the directory of the default disk.

EXAMPLES of FILES Function:

>FILES
Prints a listing of all the files present on the default disk
>FILES "A:”
Prints a listing of all the files present on RAM disk A:
>FILES "B:FIL*.BAS"
Prints a listing of all the files present on RAM disk A:

FOR ... TO ...
[STEP …

TYPE: Statement
FORMAT: FOR <variable> = <start> TO <limit> [STEP <increment>]

Action: This is a special BASIC statement that lets you easily use a variable
as a counter. You must specify certain parameters: the floating-point
variable name, its starting value, the limit of the count, and how much to
add during each cycle.

Here is a simple BASIC program that counts from 1 to 10, PRINTing each
number and ENDing when complete, and using no FOR statements:

100 L = 1
110 PRINT L
120 L = 1 + 1
130 IF L <= 10 THEN 110
140 END
Using the FOR statement, here is the same program:

100 FOR L = 1 TO 10
110 PRINT L
120 NEXT L
130 END

As you can see, the program is shorter and easier to understand using the
FOR statement. When the FOR statement is executed, several operations
take place. The <start> value is placed in the <variable> being used in the
counter. In the example above, a I is placed in L. When the NEXT statement
is reached, the <increment> value is added to the <variable>. If a STEP
was not included, the <increment> is set to + 1. The first time the program
above hits line 120, 1 is added to L, so the new value of L is 2. Now the
value in the <variable> is compared to the <limit>. If the <limit> has not
been reached yet, the program G0es TO the line after the original FOR
statement. In this case, the value of 2 in L is less than the limit of 10, so it
GOes TO line 110. Eventually, the value of <limit> is exceeded by the
<variable>. At that time, the loop is concluded and the program continues
with the line following the NEXT statement. In our example, the value of L
reaches 11, which exceeds the limit of 10, and the program goes on with
line 130. When the value of <increment> is positive, the <variable> must
exceed the <limit>, and when it is negative it must become less than the
<limit>.

NOTE: A loop always executes at least once.

EXAMPLES of FOR...TO...STEP...Statement:

100 FOR L = 100 TO 0 STEP -1

MC-600 User’s Manual V2.1 64 Danaher Motion

100 FOR L = PI TO 6* {pi} STEP .01
100 FOR AA = 3 TO 3

FORMAT TYPE: Command
FORMAT: FORMAT["<diskname>"]

Action: The FORMAT command is used to erase all the programs that are
currently stored on the disk

EXAMPLES of FORMAT Command.

FORMAT “B:”

GOSUB TYPE: Statement

FORMAT: GOSUB <line number>

Action: This is a specialized form of the GOTO statement, with one important
difference: GOSUB remembers where it came from. When the RETURN
statement (different from the <RETURN> key on the keyboard) is reached in
the program, the program jumps back to the statement immediately
following the original GOSUB statement. The major use of a subroutine
(GOSUB really means GO to a SUBroutine) is when a small section of
program is used by different sections of the program. By using subroutines
rather than repeating the same lines over and over at different places in the
program, you can save lots of program space. Each time the program
executes a GOSUB, the line number and position in the program line are
saved in a special area called the "stack", which takes up some bytes of your
memory. This limits the amount of data that can be stored in the stack.
Therefore, the number of subroutine return addresses that can be stored is
limited, and care should be taken to make sure every GOSUB hits the
corresponding RETURN, or else you'll run out of memory even though you
have plenty of bytes free.

GOTO TYPE: Statement

FORMAT :GOTO <line number>

Action: This statement allows the BASIC program to execute lines out of
numerical order. The word GOTO followed by a number will make the
program jump to the line with that number. GOTO NOT followed by a
number equals GOTO 0. It must have the line number after the word GOTO.
It is possible to create loops with GOTO that will never end. The simplest
example of this is a line that GOes TO itself, like 10 GOTO 10. These loops
can be stopped by typing <CTRL-C> key on the keyboard.

EXAMPLES of GOTO Statement:

GOTO 100
10 GO TO 50
20 GOTO 999

IF...THEN... ELSE TYPE: Statement

FORMAT: IF <expression> THEN <line number>
 IF <expression> GOTO <line number>
 IF <expression> THEN <statements>

Action: This is the statement that gives BASIC most of its "intelligence," the
ability to evaluate conditions and take different actions depending on the
outcome. The word IF is followed by an expression, which can include
variables, strings, numbers, comparisons, and logical operators. The word
THEN appears on the same line and is followed by either a line number or

MC-600 User’s Manual V2.1 65 Danaher Motion

one or more BASIC statements. When the expression is false, everything
after the word THEN on that line is ignored, and execution continues with
the next line number in the program. A true result makes the program either
branch to the line number after the word THEN or execute whatever other
BASIC statements are found on that line.

EXAMPLE of IF...GOTO...Statement:

100 INPUT "TYPE A NUMBER"; N
110 IF N <= 0 GOTO 200
120 PRINT "SQUARE ROOT=" SQR(N)
130 GOTO 100
200 PRINT "NUMBER MUST BE >0"
210 GOTO 100

This program prints out the square root of any positive number. The IF
statement here is used to validate the result of the INPUT. When the result
of N <= 0 is true, the program skips to line 200, and when the result is false
the next line to be executed is 120. Note that THEN GOTO is not needed
with IF...THEN, as in line 110 where GOTO 200 actually means THEN GOTO
200.

EXAMPLE OF IF...THEN...Statement:

100 FOR L = 1 TO 100
110 IF RND(1) < .5 THEN X=X+1: GOTO 130
120 Y=Y+1
130 NEXT L
140 PRINT "HEADS=" X
150 PRINT "TAILS= " Y

The IF in line 110 tests a random number to see if it is less than .5. When
the result is true, the whole series of statements following the word THEN
are executed: first X is incremented by 1, then the program skips to line
130. When the result is false, the program drops to the next statement, line
120.

INPUT TYPE: Statement

FORMAT: INPUT ["<prompt>" ;] <variable list>

Action: This is a statement that lets the person RUNning the program "feed"
information into the MC-600. When executed, this statement PRINTs a
question mark (?) on the screen, and positions the cursor 1 space to the
right of the question mark. Now the computer waits, cursor blinking, for the
operator to type in the answer and press the <RETURN> key. The word
INPUT may be followed by any text contained in quote marks (""). This text
is PRINTed on the screen, followed by the question mark. After the text
comes a semicolon (;) and the name of one or more variables separated by
commas. This variable is where the computer stores the information that the
operator types. The variable can be any legal variable name, and you can
have several different variable names, each for a different input.

EXAMPLES of INPUT Statement:

100 INPUT A
110 INPUT B, C, D
120 INPUT "PROMPT"; E

When this program RUNs, the question mark appears to prompt the operator
that the MC-600 is expecting an input for line 100. Any number typed in
goes into A, for later use in the program. If the answer typed was not a

MC-600 User’s Manual V2.1 66 Danaher Motion

number, the ?REDO FROM START message appears, which means that a
string was received when a number was expected. If the operator just hits
<RETURN> without typing anything, the variable's value doesn't change.
Now the next question mark, for line 110, appears. If we type only one
number and hit the <RETURN>, MC-600 will now display 2 question marks
(??), which means that more input is required. You can just type as many
inputs as you need separated by commas, which prevents the double
question mark from appearing. If you type more data than the INPUT
statement requested, the ?EXTRA IGNORED message appears, which means
that the extra items you typed were not put into any variables. Line 120
displays the word PROMPT before the question mark appears. The semicolon
is required between the prompt and any list of variables. The INPUT
statement can never be used outside a program. The MC-600 needs space
for a buffer for the INPUT variables, the same space that is used for
commands.

INSTA TYPE: Integer Function

FORMAT: INTSTA ()

Action: Returns the input value of the MC-600 input port.

EXAMPLES of INTSTA Function:

120 PRINT INTSTA()

129

Indicates that MC-600 board’s INPUT7 and INPUT0 are active, while all
others are not.

INT TYPE: Integer Function

FORMAT: INT (<numeric>)

Action: Returns the integer value of the expression. If the expression is
positive, the fractional part is left off. If the expression is negative, any
fraction causes the next lower integer to be returned.

EXAMPLES of INT Function:

120 PRINT INT(99.4343), INT(-12.34)

 99 -13

LEFT$ TYPE: String Function

FORMAT: LEFT$ (<string>, <integer>)

Action: Returns a string comprised of the leftmost <integer> characters of
the <string>. The integer argument value must be in the range 0 to 255. If
the integer is greater than the length of the string, the entire string will be
returned. If an <integer> value of zero is used, then a null string (of zero
length) is returned.

EXAMPLES of LEFT$ Function:

10 A$ = "MC-600 motion platform"
20 B$ = LEFT$(A$,6): PRINT B$
RUN

MC-600

MC-600 User’s Manual V2.1 67 Danaher Motion

LEN TYPE: Integer Function
Format: LEN (<string>)

Action: Returns the number of characters in the string expression. Non-
printed characters and blanks are counted.

EXAMPLE of LEN Function:

CC$ = "MC-600 motion platform": PRINT LEN(CC$)

22

LET TYPE: Statement
FORMAT: [LET] <variable> = <expression>

Action: The LET statement can be used to assign a value to a variable. But
the word LET is optional and therefore most advanced programmers leave
LET out because it's always understood and wastes valuable memory. The
equal sign (=) alone is sufficient when assigning the value of an expression
to a variable name.

EXAMPLES of LET Statement:

10 LET D= 12 (This is the same as D = 12)
20 LET E$ = "ABC"
30 F$ = "WORDS"
40 SUM$= E$ + F$ (SUM$ would equal ABCWORDS)

LIST TYPE: Command
FORMAT: LIST [[<first-line>]-[<last-line>]]

Action: The LIST command allows you to look at lines of the BASIC program
currently in the memory of the MC-600. The LIST system command displays
all or part of the program that is currently in memory on screen. If no line-
numbers are given the entire program is listed. If only the first-line number
is specified, and followed by a hyphen (-), that line and all higher-numbered
lines are listed. If only the last line-number is specified, and it is preceded
by a hyphen, then all lines from the beginning of the program through that
line are listed. If both numbers are specified, the entire range, including the
line-numbers LISTed, is displayed.

EXAMPLES of LIST Command:

LIST (Lists the program currently in memory.)

LIST 500 (Lists line 500 only.)

LIST 150- (Lists all lines from 150 to the end.)

LIST -1000 (Lists all lines from the lowest through 1000.)

LIST 150-1000 (Lists lines 150 through 1000, inclusive.)

LOAD TYPE: Command
FORMAT: LOAD “filename”

Action: The LOAD statement reads the contents of a program file from the
specified filename; filename must be unique and does not allow the use of
wildcards; if no disk letter is specified into filename, the default disk unit is
assumed. The LOAD command executes an implicit NEW command before

MC-600 User’s Manual V2.1 68 Danaher Motion

loading the new program; any program previously present in memory is
erased.

EXAMPLES of LOAD Command:

LOAD “TEST.BAS”
Loads the program file TEST.BAS saved on the default disk

LOAD “B:TEST2.BAS”
Loads the program file TEST2.BAS saved on the FLASH disk

LOG TYPE: Floating-Point Function
FORMAT: LOG(<numeric>)

Action: Returns the natural logarithm (log to the base of e) of the argument.
If the value of the argument is zero or negative the BASIC error message
?ILLEGAL QUANTITY will occur.

EXAMPLES of LOG Function:

25 PRINT LOG(45/7)
 1.86075234

10 NUM=LOG(ARG)/LOG(10) (Calculates the LOG of ARG to the base 10)

MERGE TYPE: Command
FORMAT: MERGE “filename”

Action: The MERGE statement reads the contents of a program file from the
specified filename; filename must be unique and does not allow the use of
wildcards; if no disk letter is specified into filename, the default disk unit is
assumed. The MERGE command loads the program into the existing
workspace; any program previously present in memory is mantained; lines
with same number are replaced by lines present in the new loaded file.

EXAMPLES of MERGE Command:

MERGE “TEST.BAS”
Loads the program file TEST.BAS saved on the default disk

MERGE “B:TEST2.BAS”
Loads the program file TEST2.BAS saved on the FLASH disk

MID$ TYPE: String Function
FORMAT: MID$(<string>,<numeric-1>[,<numeric-2>])

Action: The MID$ function returns a sub-string which is taken from within a
larger <string> argument. The starting position of the sub-string is defined
by the <numeric-1> argument and the length of the sub-string by the
<numeric-2> argument. Both of the numeric arguments can have values
ranging from 0 to 255. If the <numeric-1> value is greater than the length
of the <string>, or if the <numeric-2> value is zero, then MID$ gives a null
string value. If the <numeric-2> argument is left out, then the computer will
assume that a length of the rest of the string is to be used. And if the source
string has fewer characters than <numeric-2>, from the starting position to
the end of the string argument, then the whole rest of the string is used.

EXAMPLE of MID$ Function:

10 A$="GOOD"

MC-600 User’s Manual V2.1 69 Danaher Motion

20 B$="MORNING EVENING AFTERNOON"
30 PRINT A$ + MID$(B$,8,8)

GOOD EVENING

MOD TYPE: Integer Function
FORMAT: <numeric3%> = <numeric1%> MOD <numeric2%>

Action: Returns the remainder of the integer division of numeric1 by
numeric2. If the value of the numeric2 argument is zero, the BASIC error
message DIVISION BY ZERO will occur.

EXAMPLES of MOD Function:

25 PRINT 9 MOD 2
 1 (9 / 2 = 4, remainder is 1)

NEW TYPE: Command
FORMAT: NEW

Action: The NEW command is used to delete the program currently in
memory and clear all variables. Before typing in a new program, NEW
should be used in direct mode to clear memory. NEW can also be used in a
program, but you should be aware of the fact that it will erase everything
that has gone before and is still in the MC-600's memory. This can be
particularly troublesome when you're trying to debug your program.

BE CAREFUL: Not clearing out an old program before typing a new one can
result in a confusing mix of the two programs.

EXAMPLES of NEW Command:

NEW (Clears the program and all variables)
10 NEW (Performs a NEW operation and STOPs the program.)

NEXT TYPE: Statement
FORMAT: NEXT[<counter>][,<counter>]...

Action: The NEXT statement is used with FOR to establish the end of a
FOR...NEXT loop. The NEXT need not be physically the last statement in the
loop, but it is always the last statement executed in a loop. The <counter>
is the loop index's variable name used with FOR to start the loop. A single
NEXT can stop several nested loops when it is followed by each FOR's
<counter> variable name(s). To do this each name must appear in the order
of inner-most nested loop first, to outer-most nested loop last. When using a
single NEXT to increment and stop several variable names, each variable
name must be separated by commas. Loops can be nested to 9 levels. If the
counter variable(s) are omitted, the counter associated with the FOR of the
current level (of the nested loops) is incremented. When the NEXT is
reached, the counter value is incremented by 1 or by an optional STEP
value. It is then tested against an end-value to see if it's time to stop the
loop. A loop will be stopped when a NEXT is found which has its counter
value greater than the end-value.

EXAMPLES of NEXT Statement:

10 FOR J=1 TO 5: FOR K=10 TO 20: FOR N=5 TO -5 STEP - 1

20 NEXT N,K,J (Stopping Nested Loops)

MC-600 User’s Manual V2.1 70 Danaher Motion

10 FOR L=1 TO 100
20 FOR M=1 TO 10
30 NEXT M
400 NEXT L (Note how the loops do NOT cross each other)

10 FOR A=1 TO 10
20 FOR B=1 TO 20
30 NEXT
40 NEXT (Notice that no variable names are needed)

NOT TYPE: Logical Operator
FORMAT: NOT <expression>

Action: The NOT logical operator "complements" the value of each bit in its
single operand, producing an integer "twos-complement" result. In other
words, the NOT is really saying, "if it isn't. When working with a floating-
point number, the operands are converted to integers and any fractions are
lost. The NOT operator can also be used in a comparison to reverse the
true/false value which was the result of a relationship test and therefore it
will reverse the meaning of the comparison. In the first example below, if
the "twos-complement" of "AA" is equal to "BB" and if "BB" is NOT equal to
"CC" then the expression is true.

EXAMPLES of NOT Operator:

10 IF NOT AA = BB AND NOT(BB = CC) THEN...

NN% = NOT 96: PRINT NN%
-97

NOTE: TO find the value of NOT use the expression X=(-(X+1)). (The two's
complement of any integer is the bit complement plus one.)

ON TYPE: Statement
FORMAT: ON <variable> GOTO / GOSUB <line-number>[,<line-number>]...

Action: The ON statement is used to GOTO one of several given line-
numbers, depending upon the value of a variable. The value of the variables
can range from zero through the number of lines given. if the value is a non-
integer, the fractional portion is left off. For example, if the variable value is
3, ON will GOTO the third line-number in the list. If the value of the variable
is negative, the BASIC error message ?ILLEGAL QUANTITY occurs. If the
number is zero, or greater than the number of items in the list, the program
just "ignores" the statement and continues with the statement following the
ON statement. ON is really an underused variant of the
IF...THEN...statement. Instead of using a whole lot of IF statements each of
which sends the program to 1 specific line, 1 ON statement can replace a list
of IF statements. When you look at the first example you should notice that
the 1 ON statement replaces 4 IF...THEN... statements.

EXAMPLES of ON Statement:

ON -(A=7)-2*(A=3)-3*(A<3)-4*(A>7)GOTO 400,900,1000,100
ON X GOTO 100,130,180,220
ON X+3 GOSUB 9000,20,9000
100 ON NUM GOTO 150,300,320,390
500 ON SUM/2 + 1 GOSUB 50,80,20

MC-600 User’s Manual V2.1 71 Danaher Motion

OR TYPE: Logical Operator
FORMAT: <operand> OR <operand>

Action: Just as the relational operators can be used to make decisions
regarding program flow, logical operators can connect two or more relations
and return a true or false value which can then be used in a decision. When
used in calculations, the logical OR gives you a bit result of I if the
corresponding bit of either or both operands is 1. This will produce an
integer as a result depending on the values of the operands. When used in
comparisons the logical OR operator is also used to link two expressions into
a single compound expression. If either of the expressions are true, the
combined expression value is true (-1). In the first example below if AA is
equal to BB OR if XX is 20, the expression is true. Logical operators work by
converting their operands to 16-bit, signed, two's complement integers in
the range of -32768 to +32767. If the operands are not in the range an
error message results. Each bit of the result is determined by the
corresponding bits in the two operands.

EXAMPLES of OR Operator:

100 IF (AA=BB) OR (XX=20) THEN...

230 KK%=64 OR 32: PRINT KK% (You typed this with a bit
 value of 1000000 for 64
 and 100000 for 32)

96 (the computer responded with
 bit value 1100000.
 1100000=96.)

PASSWORD TYPE: Command
FORMAT: PASSWORD

Action: The PASSWORD statement can be used to specify a PASSWORD to
be used by the system in order to avoid unauthorized access or modification
to the BASIC program; upon entering the PASSWORD command, the user is
asked to type its current pasword and to type a new system’s password
twice.

PRINT TYPE: Statement
FORMAT: PRINT [<variable>][<,/;><variable>]...

Action: The PRINT statement is used to write data items to the screen. The
<variable(s)> in the output-list are expressions of any type. If no output-list
is present, a blank line is printed. The position of each printed item is
determined by the punctuation used to separate items in the output-list. The
punctuation characters that you can use are blanks, commas, or semicolons.
The 80-character logical screen line is divided into 8 print zones of 10 spaces
each. In the list of expressions, a comma causes the next value to be
printed at the beginning of the next zone. A semicolon causes the next value
to be printed immediately following the previous value. However, there are
two exceptions to this rule:

1) Numeric items are followed by an added space.
2) Positive numbers have a space preceding them.

When you use blanks or no punctuation between string constants or variable
names it has the same effect as a semicolon. However, blanks between a
string and a numeric item or between two numeric items will stop output
without printing the second item. If a comma or a semicolon is at the end of

MC-600 User’s Manual V2.1 72 Danaher Motion

the output-list, the next PRINT statement begins printing on the same line,
and spaced accordingly. If no punctuation finishes the list, a carriage-return
and a line-feed are printed at the end of the data. The next PRINT statement
will begin on the next line. There is no statement in BASIC with more variety
than the PRINT statement. There are so many symbols, functions, and
parameters associated with this statement that it might almost be
considered as a language of its own within BASIC; a language specially
designed for writing on the screen.

EXAMPLES of PRINT Statement:

1)
5 X = 5
10 PRINT -5*X,X-5,X+5,X^5

 -25 0 10 3125

2)
5 X=9
10 PRINT X;"SQUARED IS";X*X;"AND";
20 PRINT X "CUBED IS" X^3

9 SQUARED IS 81 AND 9 CUBED IS 729

READ TYPE: Statement
FORMAT: READ <variable>[,<variable>]...

Action: The READ statement is used to fill variable names from constants in
DATA statements. The data actually read must agree with the variable types
specified or the BASIC error message ?SYNTAX ERROR will result.(*)
Variables in the DATA input-list must be separated by commas. A single
READ statement can access one or more DATA statements, which will be
accessed in order (see DATA), or several READ statements can access the
same DATA statement. If more READ statements are executed than the
number of elements in DATA statements(s) in the program, the BASIC error
message ?OUT OF DATA is printed. If the number of variables specified is
fewer than the number of elements in the DATA statement(s), subsequent
READ statements will continue reading at the next data element. (See
RESTORE.)

EXAMPLES of READ Statement:

110 READ A,B,C$
120 DATA 1,2,HELLO

100 FOR X=1 TO 10: READ A(X):NEXT

200 DATA 3.08, 5.19, 3.12, 3.98, 4.24
210 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Fills array items (line 1) in order of constants shown (line 5))

1 READ CITY$,STATE$,ZIP
5 DATA DENVER,COLORADO, 80211

REM TYPE: Statement
FORMAT: REM [<remark>]

Action: The REM statement makes your programs more easily understood
when LISTed. It's a reminder to yourself to tell you what you had in mind

MC-600 User’s Manual V2.1 73 Danaher Motion

when you were writing each section of the program. For instance, you might
want to remember what a variable is used for, or some other useful
information. The REMark can be any text, word, or character including the
colon (:) or BASIC keywords.
The REM statement and anything following it on the same line-number are
ignored by BASIC, but REMarks are printed exactly as entered when the
program is listed. A REM statement can be referred to by a GOTO or GOSUB
statement, and the execution of the program will continue with the next
higher program line having executable statements.

EXAMPLES of REM Statement:

10 REM CALCULATE AVERAGE VELOCITY
20 FOR X= 1 TO 20 :REM LOOP FOR TWENTY VALUES
30 SUM=SUM + VEL(X): NEXT
40 AVG=SUM/20

RENUM TYPE: Command
FORMAT: RENUM [<start>[,<increment>]]

Action: Renumber program lines. By default, the new sequence is
10,20,30,... The first argument is a new initial line number; the second
argument is the increment between line numbers.

RESTORE TYPE: Statement
FORMAT: RESTORE

Action: BASIC maintains an internal pointer to the next DATA constant to be
READ. This pointer can be reset to the first DATA constant in a program
using the RESTORE statement. The RESTORE statement can be used
anywhere in the program to begin re-READing DATA.

EXAMPLES of RESTORE Statement:

100 FOR X=1 TO 10: READ A(X): NEXT
200 RESTORE
300 FOR Y=1 TO 10: READ B(Y): NEXT

4000 DATA 3.08, 5.19, 3.12, 3.98, 4.24
4100 DATA 5.08, 5.55, 4.00, 3.16, 3.37

(Fills the two arrays with identical data)

10 DATA 1,2,3,4
20 DATA 5,6,7,8
30 FOR L= 1 TO 8
40 READ A: PRINT A
50 NEXT
60 RESTORE
70 FOR L= 1 TO 8
80 READ A: PRINT A
90 NEXT

RETI See the interrupt section

RETURN TYPE: Statement
FORMAT: RETURN

Action: The RETURN statement is used to exit from a subroutine called for
by a GOSUB statement. RETURN restarts the rest of your program at the

MC-600 User’s Manual V2.1 74 Danaher Motion

next executable statement following the GOSUB. If you are nesting
subroutines, each GOSUB must be paired with at least one RETURN
statement. A subroutine can contain any number of RETURN statements, but
the first one encountered will exit the subroutine.

EXAMPLE of RETURN Statement:

10 PRINT"THIS IS THE PROGRAM"
20 GOSUB 1000
30 PRINT"PROGRAM CONTINUES"
40 GOSUB 1000
50 PRINT"MORE PROGRAM"
60 END
1000 PRINT"THIS IS THE GOSUB":RETURN

RIGHT$ TYPE: String Function
FORMAT: RIGHT$ (<string>,<numeric>)

Action: The RIGHT$ function returns a sub-string taken from the right-most
end of the <string> argument. The length of the sub-string is defined by the
<numeric> argument which can be any integer in the range of 0 to 255. If
the value of the numeric expression is zero, then a null string ("") is
returned. If the value you give in the <numeric> argument is greater than
the length of the <string> then the entire string is returned.

EXAMPLE of RIGHT$ Function:

10 MSG$="MC-600"
20 PRINT RIGHT$(MSG$,3)
RUN

600

RUN TYPE: Command
FORMAT: RUN [<”file”>,][<line-number>]

Action: The system command RUN is used to start the program currently in
memory, if no file name is given, or to LOAD a new program (from “file”)
and start it; before LOADing the new program, the BASIC workspace is
cleared by an internally executed NEW function. If a <line-number> is
specified, your program will start on that line. Otherwise, the RUN command
starts at first line of the program. The RUN command can also be used
within a program. If the <line-number> you specify doesn't exist, the BASIC
error message UNDEFINED LINE NUMBER occurs. If the <file> you specify
doesn't exist, the BASIC error message FILE NOT FOUND occurs. A RUNning
program stops and BASIC returns to direct mode when an END or STOP
statement is reached, when the last line of the program is finished, or when
a BASIC error occurs during execution.

EXAMPLES of RUN Command:

RUN (Starts at first line of program)
RUN 500 (Starts at line-number 500)
RUN X (Starts at line X, or UNDEFINED LINE NUMBER
 if there is no line X)
RUN “FOO.BAS” (Loads FOO.BAS and starts it at first line)
RUN “FOO.BAS”,500 (Loads FOO.BAS and starts it at line 500)

MC-600 User’s Manual V2.1 75 Danaher Motion

SAVE TYPE: Command
FORMAT: SAVE ["<filename>"]

Action: The SAVE command is used to store the program that is currently in
memory into a file [“<filename”] on the Flash or RAM disk; if no filename
extension is given, the default BAS extension will be appended.

EXAMPLES of SAVE Command.

SAVE “TEST” (Write to the default disk unit the present program as
 file TEST.BAS)

SETTIME TYPE: Command
FORMAT: SETTIME (<numeric>)

Action: The SETTIME command is used to set the MC-600 internal
decrement timer to the value <numeric>, expressed in milliseconds. The
timer is immediately started; an interrupt (Timer Interrupt, 17) can be
triggered when timer reaches zero. The flag gv_timeflag% is set when the
time is expired.

EXAMPLES of SETTIME Command:

SETTIME(1000) (Set the decrement timer to 1000 ms and start it)

SGN TYPE: Integer Function
FORMAT: SGN (<numeric>)

Action: SGN gives you an integer value depending upon the sign of the
<numeric> argument. If the argument is positive the result is 1, if zero the
result is also 0, if negative the result is -1.

EXAMPLE of SGN Function:

90 ON SGN(DV)+2 GOTO 100, 200, 300
(jump to 100 if DV=negative, 200 if DV=0, 300 if DV=positive)

SIN TYPE: Floating-Point Function
FORMAT: SIN (<numeric>)

Action: SIN gives you the sine of the <numeric> argument, in radians. The
value of COS(X) is equal to SIN(x+3.14159265/2).

EXAMPLE of SIN Function:

235 AA=SIN(1.5):PRINT AA
 .997494987

SPC TYPE: String Function
FORMAT: SPC (<numeric>)

Action: The SPC function is used to control the formatting of data, as either
an output to the screen or into a logical file. The number of SPaCes given by
the <numeric> argument are printed, starting at the first available position.
For screen or tape files the value of the argument is in the range of 0 to 255
and for disk files up to 254.

EXAMPLE of SPC Function:

MC-600 User’s Manual V2.1 76 Danaher Motion

10 PRINT"RIGHT "; "HERE &";
20 PRINT SPC(5)"OVER" SPC(14)"THERE"
RUN

RIGHT HERE & OVER THERE

SQR TYPE: Floating-Point Function
FORMAT: SQR (<numeric>)

Action: SQR gives you the value of the SQuaRe of the <numeric> argument.
EXAMPLE of SQR Function:

FOR J = 2 TO 5: PRINT J*5, SQR(J*5): NEXT

10 100
15 225
20 400
25 626

SQRT TYPE: Floating-Point Function
FORMAT: SQRT (<numeric>)

Action: SQRT gives you the value of the SQuare RooT of the <numeric>
argument. The value of the argument must not be negative, or the BASIC
error message ?ILLEGAL QUANTITY will happen.

EXAMPLE of SQRT Function:

FOR J = 2 TO 5: PRINT J*5, SQRT(J*5): NEXT

10 3.16227766
15 3.87298335
20 4.47213595
25 5

READY

STEP TYPE: Statement
FORMAT: [STEP <expression>]

Action: The optional STEP keyword follows the <end-value> expression in a
FOR statement. It defines an increment value for the loop counter variable.
Any value can be used as the STEP increment. Of course, a STEP value of
zero will loop forever. If the STEP keyword is left out, the increment value
will be + 1. When the NEXT statement in a FOR loop is reached, the STEP
increment happens. Then the counter is tested against the end-value to see
if the loop is finished. (See FOR statement for more information.)

NOTE: The STEP value can NOT be changed once it's in the loop.

EXAMPLES of STEP Statement:

25 FOR XX=2 TO 20 STEP 2 (Loop repeats 10 times)
35 FOR ZZ=0 TO -20 STEP -2 (Loop repeats 11 times)

STOP TYPE: Statement
FORMAT: STOP

Action: The STOP statement is used to halt execution of the current program

MC-600 User’s Manual V2.1 77 Danaher Motion

and return to direct mode. Typing the <CTRL-C> key on the keyboard has
the same effect as a STOP statement. The BASIC error message ?BREAK IN
LINE nnnnn is displayed on the screen, followed by READY. The "nnnnn" is
the line-number where the STOP occurs. Any open files remain open and all
variables are preserved and can be examined. The program can be restarted
by using CONT or GOTO statements.

EXAMPLES of STOP Statement:

10 INPUT#1,AA,BB,CC
20 IF AA=BB AND BB=CC THEN STOP
30 STOP
 (If the variable AA is -1 and BB is equal to CC then:)
BREAK IN LINE 20
BREAK IN LINE 30 (For any other data values)

STR$ TYPE: String Function
FORMAT: STR$ (<numeric>)

Action: STR$ gives you the STRing representation of the numeric value of
the argument. When the STR$ value is converted to each variable
represented in the <numeric> argument, any number shown is followed by
a space and, if it's positive, it is also preceded by a space.

EXAMPLE of STR$ Function:

100 FLT = 1.5E4: ALPHA$ = STR$(FLT)
110 PRINT FLT, ALPHA$

15000 15000

TAB TYPE: String Function
FORMAT: TAB (<numeric>)

Action: The TAB function moves the cursor to a relative SPC move position
on the screen given by the <numeric> argument, starting with the left-most
position of the current line. The value of the argument can range from 0 to
255. The TAB function should only be used with the PRINT statement, since
it has no effect if used with PRINT# to a logical file.

EXAMPLE of TAB Function:

100 PRINT"NAME" TAB(25) "AMOUNT": PRINT
110 INPUT#1, NAM$, AMT$
120 PRINT NAM$ TAB(25) AMT$

NAME AMOUNT

G.T. JONES 25.

TAN TYPE: Floating-Point Function
FORMAT: TAN (<numeric>)

Action: Returns the tangent of the value of the <numeric> expression in
radians. If the TAN function overflows, the BASIC error message ?DIVISION
BY ZERO is displayed.

EXAMPLE of TAN Function:

10 XX=.785398163: YY=TAN(XX):PRINT YY

MC-600 User’s Manual V2.1 78 Danaher Motion

VAL TYPE: Numeric Function
FORMAT: VAL (<string>)
Action: Returns a numeric VALue representing the data in the <string>
argument. If the first non-blank character of the string is not a plus sign
(+), minus sign (-), or a digit the VALue returned is zero. String conversion
is finished when the end of the string or any non-digit character is found
(except decimal point or exponential e).

EXAMPLE of VAL Function:

10 INPUT NAM$, ZIP$
20 IF VAL(ZIP$) < 19400 OR VAL(ZIP$) > 96699
 THEN PRINT NAM$ TAB(25) "GREATER PHILADELPHIA"

WHILE…WEND TYPE: Statement
FORMAT: WHILE <expression>

 <statements>
 WEND <expression>

Action: The WHILE command is used to Execute <statements> repeatedly
until the WHILE condition (if given) becomes false, or until the WEND
condition becomes true. This structure can emulate Pascal's WHILE-DO and
REPEAT-UNTIL, or even both at once. If no conditions are given, the loop
will never terminate unless the GOTO is used.

EXAMPLE of WHILE <expression>...WEND Statement:

100 M = 0
110 INPUT "TYPE A NUMBER"; N
110 WHILE (M < N)
120 PRINT "SQUARE OF M IS=" SQR(M)
130 M=M+1
140 WEND
150 PRINT “END OF PROGRAM”

This program prints out the square of all numbers comprised between 0 and
N. The WHILE statement here is used to validate the INPUT: if INPUT is <=
0, no action is taken and lines between 120 and 140 are not executed.

EXAMPLE of WHILE...WEND <expression> Statement:
100 M = 0
110 INPUT "TYPE A NUMBER"; N
110 WHILE
120 PRINT "SQUARE OF M IS=" SQR(M)
130 M=M+1
140 WEND (M < N)
150 PRINT “END OF PROGRAM”

In this case, the program prints out the square of all numbers comprised
between 0 and N, but the WEND statement is used here to validate the exit
condition: program lines 110..140 are executed at least once, before loop
exit condition is evaluated.

XOR TYPE: Logical Operator
FORMAT: <operand> XOR <operand>

Action: When used in calculations, the XOR gives you a bit result of 1 if the
corresponding bit of the operands are different, while results in a 0 if the
corresponding bits are equal.

