Connecting Motion Control in the Factory
Carroll Wontrop

December 7, 2017
The need for Ethernet-based communication within the factory has grown over the last 10 years. Detailed information about the tasks and performance of machines at every stage is critical to productivity. As capabilities have expanded from performance reporting to predictive maintenance warnings and beyond, the need to connect multiple controllers within the same machine or even elsewhere within the factory has also grown.
This paper reviews options that are available for Ethernet and non-Ethernet connections within the motion controller. We will begin with a summary of what information can be transferred in and out of the motion controller followed by network and non-network examples for communicating with controllers. Finally, we will present the factors that need to be considered when choosing the right solutions for your factory
Machine Control Formats
There are two formats when incorporating high performance servo motion control in a machine. The first (figure 1) has separate motion and machine controllers. The motion controller focuses on motion and the machine control (resident PLC or PC) handles the rest of the machine control. The advantage of having a separate motion controller is it will often have more functionality and processing power dedicated to performing the machine’s motion. Examples: more motion types such as camming, more operational modes such as: torque speed, gearing, and more I/O, plus with motion control as the central focus, higher motion performance is often possible.
 [image:]
 Figure 1
The second type of machine control (figure 2) combines both the machine and motion control into one controller. With increasingly powerful processors, there are PLC now available to incorporate the motion control. Also, some non-PLC type controllers will include motion control with the other machine control in the CPU. There are also traditional motion controllers with the processing power to provide complete control eliminating the PLC. The advantage of the integrated control is potentially lower total machine control cost.

 [image:]
 Figure 2
Information Transferred
Motion controllers are used in a variety of industries including medical, laboratory automation, robotics, printing, labeling, material forming, pharmaceutical, packaging and converting, food and beverage, tire and rubber, and postal sorting.
The primary data out of motion controller (Figure 3) is performance related. For example, how well a machine is making the “widgets”, how many widgets have been made, machine errors or limitations, and unexpected variations such as a heater on the machine that is not operating at the expected temperature.
While knowing that a machine is operating properly and at peak efficiency provides peace of mind, knowing when it is not running properly can save money, time and resources. Suppose you have a motor drawing more current than it should indicating a mechanical problem or a cut-to-length machine making improper cuts? Having a system programmed to provide machine performance data is critical to identifying and fixing these issues quickly.
[image:]
 Figure 3
Information moving in the opposite direction, from the machine controller to the motion controller, is more command focused (Figure 4). This type of information might include instructions or recipes for machine set up such as part numbers or the parameters for making a specific widget type. It may also include motion specs such as distance, speed, camming motion points and other operation details. An example would be temperature changes in the heater required for the next part to be made.
[image:]
 Figure 4
Information Transfer Mediums
Three types (Figure5):
· Ethernet - PLC oriented: These are the Industrial Ethernet Fieldbuses that a lot of us are aware of. Examples: Ethernet/IP, Profinet, EtherCAT, SERCOS III, vendor specific and others. Many are incorporated in traditional PLCs.
· Ethernet - PC oriented: These are traditional PC based networks. Examples: UDP and HTTP
· Non-Ethernet network methods. Examples: web server, SD card, remote memory, FTP and VPN/eon.
 [image:]
 Figure 5

Ethernet Communications Basics
Before getting into specific networks let’s review Ethernet communication basics:
· The transportation medium is copper wire, CAT5 or CAT6 cable with RJ45 termination. Cables can be up to 100 meters in length between each node.
· The connection topology can be a line, star, or ring, although many networks only support a subset of the three.
· Built in electrical isolation which is needed in a lot of motion applications to help eliminate part variances and maintain precision motion control.
· Deterministic or non-deterministic transfer of information, depending on the network and how it is configured.
· Update times can be 500 milliseconds or higher down to 250 microseconds depending on the application and the network.
· Automatic network configuration and integrity checks are sometimes available to ensure the quality of the network transmission.
· Information passed between the motion controller and the machine controller or external controller is often called parameters, variables or tags, in the form of single objects or in the form of a data array or structure.
Modbus TCP/IP
The Modbus TCP/IP (Figure 6) is a long-time industrial standard built on the Modbus RTU standard. It’s used with HMIs and other devices, and is supported by many control products. Modbus TCP/IP has a standard address block scheme for transferring binary and non-binary data typically in 32-bit or 16-bit formats. It is non-deterministic, and the data update time can vary. In general, the performance range for update times between two devices is 20 to 500 milliseconds.

[image:]
 Figure 6
To integrate a Modbus TCP/IP interface into a motion controller, there will typically be a configuration setup in the motion controller’s programming software. In figure 7, on the right-hand side there is a selection for inserting a network into a Fieldbus editor.
 [image:]
Figure 7
There is no text programming for this. Once you have set it up, it’s straight forward to link Modbus addresses to tags or variables (figure 8) already in your motion controller’s project, either by a drag and drop method or by adding them via a drop-down dialog box.
 [image:]
Figure 8
To setup the Modbus connection on the external controller side, there is often a set up screen (Figure 9) to configure the IP address.

 [image:]
Figure 9
Then, by importing a tag file, motion parameters are available for use in the external controller’s tag or variable dictionary (Figure 10).

 [image:]
Figure 10

Ethernet/IP
Ethernet/IP can come in various configurations (Figure 11). It also is built into some motion controllers and can provide direct access to the motion controller’s machine and process parameters. Transmission update rates, can go down to 10 milliseconds with the Kollmorgen PxMM controller, although many applications work well with update times in the 30 to 100 milliseconds range.
 [image:]
Figure 11
Implementation on the motion control side is accomplished via a set up screen that allows a user to set parameters pertinent to Ethernet/IP, and easily tie in to variable (tags) that are in the application program (Figure 12).
. [image:]
Figure 12

From the external controller side (Figure 13), in this case it’s a PLC, you also have built-in set up screens. There is a screen for node set up as well as a screen to set up the data table, which are the parameters tags that are going to be passed back and forth.

 [image:]
Figure 13
Figure 14 shows an example of integration in the external controller’s program code, specifically it shows a rung on a ladder that’s setting a motion parameter called machine state.

 [image:]
Figure 14

UDP
UDP (User Datagram Protocol) didn’t grow out of the industrial automation world but is now being used in different machine control applications (Figure 15). UDP is often used in applications developed with Visual Basic, Visual Studio and others. These languages have typically been used outside the PLC world, in the PC control world. UDP, with a low communication overhead, it can provide update rates down to 1-4 milliseconds.
 [image:]
Figure 15
A UDP connection in a Kollmorgen PDMM motion controller is implemented differently, there is no fieldbus screen as with Ethernet/IP. Communications is set-up via PLC function blocks directly in the application program. Figure 16 shows programming code for implementing a UDP interface, specifically initializing communication by creating and validating the socket and ensuring it is ready to receive information.

 [image:]
Figure 16

Figure 17 then shows sample code to read incoming information and parse it into the motion controller parameters.
 [image:]

Figure 17
 HTTP
HTTP (Hypertext Transfer Protocol) has been called the language that “makes the web work.” Although not specifically developed for machine automation, HTTP can also be used in the factory automation application world (Figure 18). Languages used in PC-based controllers such as Visual Basic (VB), Visual Studio (VS), Excel, C#, C++, and Java offer HTTP communications support. HTTP is non-deterministic with communication rates of 50 to 300 milliseconds, which works out well in applications that don’t need to pass time-critical information at the servo update rate.
 [image:]
Figure 18

In a PxMM motion controller, implementing the HTTP interface is done by selecting an option in the controller setup screen. In figure 19, on the right-hand (highlighted by the red box) there is an option, “enable PLC variable code access”. By checking this option all the variables in the dictionary (or tag list) are made available through the HTTP network.
 [image:]
Figure 19
For external controller side, HTTP set up and communication is very simple. To execute a transmission the motion controller’s IP address and parameter name are only needed.
Figure 20 shows an example of C# code to read/write parameters from the external controller side. [image:]
 Figure 20

Figure 21 is an example of HTTP communication from a VB2008 platform to the motion controller. The right side of the slide shows a machine control screen/panel to both read and write motion parameters. The data from the motion controller is read using a cyclic read command. Data is transferred or written to the motion controller is event driven when a user clicks on a button or enters a motion parameter value.

 [image:]
Figure 21
EtherCAT
EtherCAT is a motion bus primarily used for connecting devices to the motion controller such as remote IO or drives (Figure 22). A common format in industrial automation applications is COE (Can Over EtherCAT). It can send data deterministically in which the data update time is repeatable. The update time can be down to ¼ millisecond or 250 microseconds. With a performance spec rate down to 250 microseconds, the network can be updated 4,000 times a second. You also have, as part of that communication, a non-deterministic side, called SDO or Mailbox, typically transferring data that doesn’t need to be transferred every update cycle. For instance, typically something that would be sent every update cycle is a position command. An example of something that would not need to be sent every cycle would be a motion profile start command or type of widgets to make, where a 30 or greater milliseconds transfer update rate would not affect performance.
 [image:]
Figure 22
On the device side, a predefined ESI (EtherCAT Slave Information) file (Figure 23) from the vendor defines a set of parameters that can be transferred. Figure 15 shows an ESI file that contains parameters that are updated cyclically, called process data objects (PDO). Other parameters that are transferred at a slower rate in the background (SDO or mailbox channel) can also be defined. Additionally, the motion controller, containing the Ethercat master, can set device parameters when the network is initialized that can configure the device for how it will be used in the application
 [image:]
Figure 23
For network initialization, some motion controllers have the capability to scan for devices on the EtherCAT network. In figure 24 on the left-hand side under Ethercat, a scan discovered and mapped 5 devices.

 [image:]
Figure 24
In the motion controller (Figure 25) there is a window that will show the PDO parameters and can be sent cyclically. In the setup screen, the user can map the PDO parameters to PLC variables in the application.

 [image:]
Figure 25
Parameters that are coming through the Ethercat network can also be linked to PLC programming variables through specific controller function blocks.
For example, if you want to read the position of a servo axis you can use a standard PLC open function block such as MC_ReadActPosition. On the motion controller side, there is also a wide range of variables that can be passed non-cyclically. Figure 26 shows an example of changing a servo gain value Position Proportional Gain via a drive write parameter function block.

 [image:]
Figure 26

Figure 27

Multiple Interfaces (at the same time)
What if the application requires multiple Ethernet based network interfaces to connect to the motion controller? If the motion controller’s processor can adapt to it, one way to configure it is through an external switch connected to a single RJ45 port on the motion controller. In the PxMM motion controller example below, there are three connections, Modbus TCP/IP, Ethernet/IP and UDP. Modbus TCP/IP is going to the HMI. External controller #1 is connected via Ethernet IP, and then a third connection uses UDP to connect to external controller #2 for SCADA control. One practical question to ask is: How will using 3 networks affect performance? It can have some influence on performance. The user should carefully plan the networks that are going to be used, optimizing the update rate for each and the information transferred, as well as the update rates of the programs in the motion controller to minimize any negative effects on performance
 [image:]
Figure 28

Web Server
[bookmark: _GoBack]In addition to Ethernet based communications (Figure 29), there are other ways of getting information in and out of a motion controller. One way is through a web server. To access, a web server built into the motion controller simply requires an IP address be entered in the web browser. Once connected, machine operation information is available as well as a certain amount of remote control, even though that is often limited because the connection can be to a remote location and controller manufacturers are concerned about safety with remote operation.

 [image:]
Figure 29

 Figure 30, controller log information, displays another PxMM controller web server screen showing log files that can be opened and reviewed. For the controls engineer, the log files detail what is going on with the machine operation to monitor performance and help trouble shoot issues. The right side of the figure (Machine performance data) shows how machine performance data files created by the machine programmer can be exported through the web server.
 [image:]
Figure 30

Memory Card
Another common way to access information, which is not network based is with a memory card (Figure 31). These allow users to import production recipes and other data into the motion controller, as well as get operational data written from the application program to a file. In addition, an SD card can be used to transfer controller, system, and drive configuration information from one motion controller to another. This provides a time efficient setup method for duplication of the controller’s firmware, application software, and parameters from one machine to the next.
 [image:]
Figure 31

Remote Memory
Connecting to an external hard drive through an Ethernet connection is another option to pass information (Figure 32). To make the connection, the motion controller’s web server is used. An external hard drive can be accessed in the same building or elsewhere making it easier for the user to place controller data on a remote central memory location that stores factory-wide operation information. Also in the motion controller’s program, the remote memory can be read when running the machine.
 [image:]
Figure 32

Which network to choose?
With all the options available, which one makes the most sense for your application (Figure 33)? Considerations include:
· What is available on the present controllers you are using?
· What is your personal experience with the network? Experience with a particular network, example: Ethernet/IP or HTTP, will help minimize the time to get the network up and working.
· What is your supplier’s experience with a specific network? Do they have application experience that is often critical for a timely integration?
· Can the network update at the rates the machine requires? Look at your application specifics to determine what update times you need to pass data. In many applications, there will be two levels. Example: information that needs to get there in 1 to 10 milliseconds and information that can get there in 50 to 200 milliseconds.
· What is the network’s effect on other areas of motion controller performance? Will the network loading compromise other areas of machine performance?
· Tools – For a particular network, what tools and documentation does the product/vendor have to help establish communications and monitor network performance?
· What technical support (human interaction) does the supplier have in case you need it?
· What Third party tools are available? Example: – With Modbus or HTTP or UDP, there are free tools available online for setting up an interface to communicate with the motion controller.
· Finally, security and safety are becoming more important/popular.
· LINK TO COMPARISON CHART - https://kdn.kollmorgen.com/content/kas-network-overview

 [image:]

Figure 33

Commissioning
. Steps to getting the network to work and achieve the desired performance goals.
· Define the need. What information needs to be passed through the network: Motion, process, IO, status, etc?
· What is the required update rate of each parameter?
· Use an industrial grade Ethernet cable, the extra cost is well worth it to prevent any noise issue and machine down time.
· Setup communication parameters such as update rate, data size, IP address on the controller to establish the connection
· Start small. Get basic communication working first. Pick one or a few parameters to send and receive successfully. It is faster to make adjustments to a few parameters during the development process.
· Add the rest of the parameters
· Verify machine performance on both sides of the network. Is all the information getting there and at the needed update rate? Any effect on motion or other aspects of the control?

 [image:]

Figure 34

Final thoughts
Transferring information in and out of a motion controllers is a function that is critical to the daily operation and overall productivity of today’s factories. This paper has presented many of the set up options that are available, and many of the factors that need to be considered when determining which one works best for you.
Ethernet-based communication within factories has been on the rise over the last 10 years, and as more capabilities are developed to measure and track machine performance it is sure to keep growing. The diversity of applications and information available can provide a competitive edge for those factories making use of the technology. Building the expertise of your staff to include the most current technologies will put you in position to capitalize on new advancements.

image5.png
Network Types

Y

PLC Oriented PC Oriented Other

Industrial Ethernet and
Fieldbus- Examples:
*Ethernet/IP

PC-based Other methods to
Examples: transfer information.
UDP Examples:

* Profinet HTTP

Web server
* EtherCAT TCP/IP <D card
* SERCOS Il car

others

Remote memory
FTP
VPN/eWON

« vendor specific
« others

image6.png
Modbus TCP/IP

+ Description

Along time standard
Use with HMI and other devices odbus
Many control products support it

Standard address blocks
Non-Deterministic — Data update time varies

00000

o Performance Spec
Update Rate: 20 to 500 milliseconds:

image7.png
Modbus TCP/IP

* Motion
Controller side

9 9 Type
o Configuration o
inope
a Controller [10.156.238.203] PAC ...
setup i Undo az
> [W] Programs. Redo Celvy
o No text T Subprograms |
R <§ Delines Copy. CtrieC
programming 4 19 Motion cut Crriex
Profiles Paste Ctrl+V.
g PipeNetwork
Control Panel Panel Clear
= EtherCAT
P References licest Nehwok
& Fieldbus Tnsh¥ Master/Port
D Panel KvB1 Insert Slave/Data Block
Insert Symbol
Move Up
Move Down
Dictionary | Project Explorer | Libraries.
1§ Locak ModbusConfiguratorDemo (6):19 inactive. Not Conr

image8.png
Modbus TCP/IP

* Motion Controller side
o Link to machine / motion parameters

& Kollmorgen Automation Suite Integrated Development Environment - ModbusConfiguratorDemo (6) [F=FE)
“mmvﬂmmmm., _5x“
GaHmbo e G eld:X8 k29500 L oM > i@
[1.) FieldBus Edtor
7] Track Selection
g Neme | Value
[eroves | Ems [tFeds | (&) | © % Sever-Slave number-1
7 Name | Type | Dim.| -8 Coil Bits [1.5] - Coils
© &9 Global variables < (8@ @ +0:bEStop
TravelSpeed LREAL = @ +1:bledStatus[0]
MasterAbsPos 3 @ +2:bledStatus1]
MasterDeltaPos 3: bledStatus[?)
g @ +4 bledStatus[3]
Axis1Status *8 Holding Registers [1.4) - Holding Reg|
Axis2Status +0.1: MosterAbsPos
MachineState DINT +2.3 MasterDeltaPos
bMasterAbs BOOL
R Bo 5 Slave number | Server ID
1
Desion Word 1§ Local: ModbusConfiguratorDemo (6)19 inactive Not Connected

image9.png
Modbus TCP/IP

» External Controller side
o Many have built in support

screens
T)| ostes s s s
Settings | Stations | I Settings Stationss | |

Modbus Master RTU/TCPIP 5.02.02

Settings g
Communication mode Ethernet TCP/IP

Default station o

Modbus protocol RTU

32-bit word mapping Motorola

Addressing Decmal

Start address 0-based

Max block size (words) 16

Force function code 0x10 Disable

String swap. Enable
silent tme (ms) 0
40000

Lo

| [
ok 1 comest | soow | reb C o 1 cuoel | ook | v |

image10.png
Madbus TCP/IP

» External Controller
side
o Through import file,

link to machine /
motion parameters
B Columns Visible
o Using standard S —
Modbus addressing Data Exchange
format = [Scaing Controlers
Name [oatatype [Accessright | offet \ea'm Data Type
Tagl DEFAULT ReadWrite 1 DEFAULT
> [n [l
bLedStatus_elem0 DEFAULT ReadWrite 0 18T
[bLedstatus_elemt DEFAULT ReadWrite o 16T
[bLedstatus_elem2 DEFAULT ReadWrite 0 16T
bledStatus_elem3 DEFAULT ReadWrite 0 1 BIT
| Masterabspos DEFALLT Readrite o 1 FLOAT
| | Mastereltapos DEFAULT ReadWrite o 1 FLoAT

image11.png
Ethernet/|IP

- Description *

o Multiple Configurations: Polled /0, Flex

110, Explicit Messaging Ethenet/IP

o Built is communication setup in some
Motion Controller

o Direct access to machine parameters and
process parameters

o Performance Spec
Update Rate — down to 10 milliseconds (or lower)

image12.png
BERRRE]

= ENEI

Motion Controller side
o Link to parameters
o Setup

Fieldbus Editor

®
&
[

[5)=G= Ethemet/IP Adapter [server)
£ Served1/0s and objects
1 [i/0] 1 [64]- witen by PLC / read by KAS
@ 0 JogSpeed =00
4.0: bEStop = FALSE
-0 8 MachineStae=1
£ (0] 2 [64] - read by PLC / witen by KAS
0: MachineSpeed = 0.0

@ 40 bLedstatus(0] = TRUE
5 - EtemeyiP /0 Scanne (chen) Nome [Veo @ 41 bledstatus{1] = TRUE
@ & Server127.00.1 - Home P Address 1921680105 Q
Config instance 3 a
Flags (OEM) 0
|Configuration dete Q
N (Description Home @ 12 Ais2Status = 4415
Type | Instance | Size | Connectiont.. | Priority | 32 bitheader | RPi (ms) | Description
WO:npws(Ta 100 2 Pointtopoint Low O 100 TogetToOn
VO Oupus(. 101 2 Poimtopoint Low @ 100 OriginetorTo Symbol | Offset | Bit | Fomat_
|[JogSpeed=0.0 0 0 32 bit - signed
\ 4 0 Bit

0 32 bit - signed

image13.png
Ethernet/|IP

» External Controller Side

o Node Setup

Data Table Setup

Scape ﬁKAs_Aw_anz_v‘ Sho: 8l Tags

Nem «[FerceMzh [Sule [Dats Type |

o Data Table Setup _'E KAS_EIPslavaC. ool fioacl) ABETHERNET ..

K85 ElPslaval (oo} fiosal] ABETHERKET_..

?E«As_m-lmzl Dala = {--+) | Docimal DINTNE]
[+ Fa5_EIPdave] Data0] 0 Dociral ot
[+ Ké5_EIPsave Datall]] Deciral DINT
[+ Ka5_EIPsave Datal2] [Deciral DINT
Node Setup || 4Ke5_EIPdaved Datald) 0 Deciral DINT
|| ka5 ElPdovei Dotld) 0 Deciral DINT
[| 0 Desiral DINT
Toper ETHERNETMODULE Geneic Eneret Mode n 0 Decinel DINT
Vedor Aterdey K4S EIPdaved Delo7) 0 Degimal oIt
poenc [LocsEND Consactin Pamtis | 41KA5_ElPsaved Data] o Deciral DINT
Nome: [R5 ElPave sty _7&%1?5_[1!‘:45« Datald] o Decimal DINT
Descipton: Lot = [41K45,_ EIPSlave! Data[10] o Decinal DINT
foz] e o becied ot
Outui () KAS_EIPave Date12) o Deciral Nt
Comn Format [Data-DINT Confpualon: o lem KAS_EIPslave Dats[13] o Decinal DINT
o F45_EIFsave Data[14] o Decitnal DINT
@Paddess [12 188 0 105 e lnput

FAS_EIPsiave Data[15) o Decinal DT

O Host Name: Stat KAS_EIPslavel0 Coact) [AB:ETHERNET_..

s = FAS_ EIPaleve0.Dala. ool {--+)) Decimal DINT[1]

Open Mo Propeties [/ Fa5_EIPdave0 Daall] 0 Dogal ot
RAS_EIPdave0.Datall] [Dogiral ot
4] RAS_EIPelave:0.DatalZ] [Doginsl DINT

image14.png
Ethernet/IP

» External Controller Side

o Integration into Programming
code

Program Integration

SetState
0 = Move
Source MachineState
1€
Dest KAS_EPPslave:0.Data[2]
1€

MOV-

image15.png
UDP

« Description
o UDP (User Datagram Protocol)
o Industry standard, not just automation

o Applications using Visual Basic, Visual
Studio, others

Non - deterministic and near - deterministic

Direct access to machine parameters and
process parameters

o Performance Spec
Update Rate — down to 1 millisecond

image16.png
UDP

« Motion Controller side

o Setup Communications in Program via

Function Blocks

o

Initialize communication

Supporting Function Blocks

.
c
o
o

udpAddrMake
udpClose
udpCreate
udplsValid
udpRevFrom
udpRevFromArray
udpSendTo
udpSendToArray

Prepare a UDP address
Close a socket

Create a UDP socket
Check if a socket is valid
Receive a telegram
Receive a telegram

Send a telegram

Send a telegram

Initialize Communications

oke TN TapCreate (20) 7
TestState := TestState + 1;
if 0 = SocketNumber then
bTestFailed := true;
TestState := 100;
printmessage (LEVEL_ERROR, 'Create Socket Failed');
end_if:

@ =1idate Socket
IT true = Gaplsvalid (SocketNumber) then

TestState := TestState + 1;

else
bTestFailed := true;
TestState := 100;
printmessage (LEVEL_ERROR, 'Socket is invalid’
end_if;

T//Indicate that ready to receive

IF true = udphddrHake TTS.238.207" (*STRING*), 20 (*DINT*), Ac
bSendStatus := udpSendTo (SocketNumber,20,Address, 'I am ready !
if true = bSendStatus then

TestState := TestState + 1;
else

bTestFailed := true;

TestState 00;

printmessage (LEVEL_ERROR, 'Failed to send acknowledgement'):
end_if;

end_if;

image17.png
UDP

Motion Controller
side
o Read/Write Parameters
in Application Code

Read/Write Values

ReceivedBytes := udpRcvFromArray (SocketNumber,

Instl TON(true, T#1S5);

if ReceivedBytes > 0 then
Instl _TON(false, T#1S);
//Initialize data variables to 0
Inst_Test_Structure.Speed := 500;
Inst_Test_Structure.AccelRate
Inst_Test_Structure.VAR _Absolute
Inst_Test_Structure.VAR POaition :

ReceivedAddress, ReceivedDataFrame) ;

4

image18.png
HTTP

» Description
o Industry standard — “Makes the web work”

o Standard for Ethernet communication, not just in

automation industry m
o Many programming languages, development

environments support HTTP

« Example: Visual Basic (VB), Visual
Studio(VS), Excel, C#, C++, Java.

Non-deterministic

Built-in communication setup in some Motion
Controller

o Performance Spec
Update Rate: ~ 50 to 300 millisecond

image19.png
HTTP

* Motion Controller side i —a—
o Remote access to S :
A ESS 0541661 pOMM or PR B
motion/application parameters = . N
" e Conones Properias
o Simple External Controller o
Communications Setup P y Controller Configuration
. raties
Only need to know the IP o & Prsictmnk o s [
address and parameter 2 & CowagarGebosmavo Controler Type
name i Ak Orme o ne
LF il |-
Ao Adome
@ e prosect
T R
esion
[¥] Download project source to the controller
Fr—
P—
© other ot deies
==

esign W

image20.png
HTTP

» External Controller Side
o Example : C# code , Reading Parameters

static void Main(string() azrgs)
3

string controllerIPAddress = “nc 0.17; // Replace this with your Controller IP address

3Tring hotpIncerfaceURL = /kas/nlcvariabics’s
string format = "json”; // "textn is also supported

/712

//Freming GET request for PLC variables travelspeed, machinespeed and machinestate
sctring hotpRequestScring = concrollerIPAddress + hoepInterfaceURL + ©7varianios
WenClient client = mew WenClient ():

try
i

String nttpResponseString = client.DownloadString (hTTPRequestSTring): // Send the GET HITP request
if (formac == myment)
B

JavascriptSerializer serializer = new JavaScriptSerializex():
7/ Use JavascriptSerializer to convert the response string into JSON specific dictionary object

Dictionary<string, Dictionary<string, sctring>> responseDictionary = serializer.Deserialize<Dictionary<string, D
/7 Now responseDictionary will contain a map of variable name and its attributes (chat is value and errorscatus

Dictionary<scring, string> afiributeDictionary = mew Dictionary<string, string>():
7/To get get the value and erborstatus we can use cthe following way:
atcribuceDictionary = responseDictionary(canyy

String variablevalue = attributeDictionary(valucr]:

string variableErrorStacus = atcribuceDictionary(“c

Console.Writeline ("varianlename: ravelsoeedinval

orstacus®l:
{0} \merrorstatuse(1)v, variableValue, variableErrorStacus):

)
else // format == "cexcr

i
/7 The ntcpResponseString will contain comma separated values in the requested order

image21.png
HTTP

. | = KAS PipeNetworksample 010_en
» External Controller Side oo

101559065 .« [StatApplcation KAS 2.11.1.63816

o Example VB2008 application

+ Reading parameters Kollmorgen Automation Suite

« Data read using CyclicRead(). at

y - #Machine STATE EsTOP i
a time fixed trigger rate ® Aotbode . : -

« Data written is event triggered © ManualHode @ Fumig
®of Run @ FAuLT
Marual Mode Functons #uto Mods Functions
Trovel Speed 0,000000 Machine Speed 0.000000
User Defined Variable access
Variable name Read or Wite Value

Read Variable

image22.png
« Description
o Usually connecting devices (Drives, Remote |0,

—
etc) to the motion controller Eth e rCAt’ .-

Common format — COE (Can Over Ethercat)
Deterministic (critical communications) — PDO

+ Data update time repeatable and set to
specific amount of time
o Non-Deterministic (non-critical communications)
— SDO/Mailbox

o Performance Spec
Update Rate down to 250 microseconds

image23.png
EtherCAT

Device Side <pxm verson=1.07) B

o Communications defined by e 011
ESl file on parameters:
+ Updated cyclically (PDO) - <veie riovrion- ‘700"

Cid- 06 /is-
+ Updated in the SHame Kollmorgen< iame.

“Hp:/ e .07 2001 XMLSchema nstanee” Varsion="1.2°>

B —————————
background (SDO) P
- Sent during network

initialization
ek
LD physc

(COATA(AKD EercAT e (CoE) 1>
<pmes
Stniy

ign Word Vikinar Sevs | #D

<oreopTincou 50000 respTimenst >

<ackTes ieopTimeouts 1000 < BacTobsieopTimeouts
<rrimesus
ZachaviorstartTosafeoposyne=true'/>

image24.png
EtherCA

» Motion Controller side
o Optional scan to find
connected devices
+ Added under Ethercat
Network in Project

o Cyclic Parameter
configuration

s | v e spainad

YT r———————

o Word Webis

image25.png
EtherCAT

Motion Controller side

o Linking to parameters [eneralpropertes [700 selectoraping | oo editr | pirbuted oce [Cof it Commands | cof object
o Also link to a specific E Device_2 (EL2521) PDO Selection/Mapping
Controller Function Blocks
®9
Example: MC_ReadActPos il
-
|4 0x1601 PTO Control /
Index | Subindex Object Name Size (bf] PLC Variable
u%w:u:r jl Control_Frequency select 1 (Global)/ControlFreqSelector
0x7010 (2 Control_Disable ramp (Global)/ControlDisableRamp

0x7010 |3 Control_Go counter

1
1
07010 (17 Frequency value 6 | [GobalyFrequaiue

(Global)/ControlGoCounter

4 0x1602 ENC Control compact
ln;m Subindex Object Name Size [bit] PLC Variable
02020 |3 Control_Set coun... |1 | GtobaiCantrolsetCounter

0020 |17 Set countervalue |16 | (Globai)/NewCounterposition

image26.png
EtherCAT

* Motion Controller side

o Read/Write Non-Cyclic Parameter
SDO/Mailbox) through ECAT
Read/Write Function Bocks

rInst_DriveParamWrite—

DriveParamWrite
WritePropGain WritePropGain
———— b————JExecute Done —®—
INT#1001 >-|Drive Error -
PLKP' >—Param ErrorlD -

PositionProportionalGain | > Value

image27.png
Multiple Networks

* Multiple Interfaces possible at
one time
» Via external Ethernet switch
» Example - 3 connection to:
o HMI via Modbus TCP/IP

o External Controller1 via
Ethernet/IP (Operation PLC)

o External Controller2 via
UDP(SCADA control)

» Can affect network performance

Modbus TCP/IP -=
Ethernet/IP =

upP -~

image28.png
Other methods to access informatio

Logged n as administrator

* Web Server

o Machine Operation
information

o Remote operation of
controller — often limited

LOGOUT| HOME | CONTACT Us | ABOUT
KAS Application _ Settings _Backup & Restore _ Diagnostics _Help.

KAS Application
Versen ot KAS 95 _timamecrocc 2 &
[P —

savsen X e Em

o Connect through common b Dl

web server

‘Spinning Wheel

PLCOpenaxist

PLCOpenAxist PLCOpenAxis2
‘Axis positons snapshot
acton 102 185331
Conmana -102 189331
Nomal 102 188331
Prase 0000000
Super mposed 0000000

qezisiozls) 64136413

image29.png
Other methods to access informati

* Web Server
o Controller log information o Machine performance data (files)

KAS Appl "
Version of

HIGH PERFORMANCE
ION & PLC ENGINE

Status of ks
Starustop

Options.

Cloar all axi

0000000414 &,

image30.png
Other methods to access information

* Memory Card
o Transfer recipes
o Get performance/operation data

image31.png
Other methods to access information

Remote Memory

o Connect to external
memory

o Allows application
program to access
remote memory
outside the machine

KAS Application

Sottings

Backup & Rostoro

Dlagnostics Help

‘|

P Addioss

Domain

NoIBIOS Name
Shared Directory Name
User Name

User Password

Windows File System

Mount Status:

HIGH PERFORMANCE
MOTION (8 PLC ENGINE

KAS Application

Version of KAS 9pp.

_tUnnamedProject:12 &

oot snn e
Options. 2 Autostart

i croocaite |

An apprcetin pronam can access fies from o shared
ey ey fomat compter. In orde for e shaved
hreciary 1 e moanted A sl Do contguress or shan
Pormiaans mast bo Sot such that e spacstod ases ca
ocess the ahared draciory

ot ihe computer's (2 Ad
Sharedt Brecioey Name

raine 30 password) On o

(6153 Narme 15 tymcaty e

Compiter name

oth Windows and non Windows fie systems are.
Surpevied

The controter wi fteenotfo mount the ahaced drectory
Whan the Apply’ Dution 1 pressed 0 af mer-on

image32.png
Which Networ

» Decision Factors

What is already available with present products?
What is your experience with?

Specific value a new network will bring?

The suppliers experience mating to the controller?
Supplier's complimentary products

Security, Safety

Free Tools Machine Controller

0O 0 0 0O O O ©O

Outside Controller \

image33.png
+ Commissioning
o Use vendor supplied tools
« Setup screens
« Documentation and personal support
o Try simple communications first
+ Get 1 to 3 parameters communicating

Machine Controller .
Motion Controller

Outside Controller _ \

image1.png
Machine Control Formats

» Separate Motion and Machine Controllers
o Motion control connects to machine resident PLC or PC
o Potentially more motion control functionality
« Motion types/configurations/ 1/O
« Motion precision

External Controller /T T TSI T TSI TSI TSI m e =

———————,

image2.png
Machine Control Formats

* Integrated Machine / Motion Controller
o Dedicated Motion Control card or module in PLC
o Full integration into central CPU(s)
o Potentially lower cost

External Controller P e -

image3.png
Available Information

* From the Motion Controller
o DATA focused
o Machine performance
+ Example: How many widgets made
o Machine warnings and errors
o Machine unexpected variations
« Example: Motor Current Draw
« Example: Registration correction off

Motion Controller

feasible
region

image4.png
Available Information

&
« To the Motion Controller Motion Controller

o CONTROL focused E

o Machine Setup

« Part type and number to make ‘
o Recipes

« Motion specs (distance, speed, cam
points, etc)

o Other operation variations

Prompt operator to conduct periodic
maintenance

