
1

AKD Ethernet IP: Diagnostics and Dynamic Mapping Rev B 2-27-2019

One question that comes up often is how to read parameters for information (i.e. position feedback) and diagnostics

beyond the Sample Project provided.

For users of Compactlogix and Contrologix, cyclic data is supported with the AKD Ethernet IP drive (note the Micrologix

1400 does not support cyclic data and parameter read/writes must be achieved explicitly via the MSG blocks. This

application note is specific to cyclic data.

Per the AKD Ethernet IP manual there is the command assembly and the response assembly both 0 to 63 (total 64

bytes). How this correlates to the PLC and drive is the AKD is setup as a Generic Ethernet Module in the AB PLC. Note

there are 64 bytes for the input and 64 bytes for the output for the assemblies.

The configuration of the Generic Ethernet Module added the following to the controller tags:

2

Static vs. Dynamic Mapping

It is important to note there are portions of the assemblies that are static (preconfigured) and dynamic (flexible; not

preconfigured). For example, below shows color coded portions of the command assembly. Bytes 0-32 are static and

preconfigured. This mapping cannot be changed. Byte 33 is the Map Type. By default the Map Type is 0 which means

only the static portion of both the Command and Response Assemblies are on the cyclic data. Per the description if Byte

33 in the command assembly is set to a value of 2 it “enables” Bytes 36-63 to be dynamically configured. Parameters

dynamically mapped to the Command and Response Assemblies in the AKD drive will not be written to or read from

unless the Map Type is 2: Dynamic.

Static Command Assembly:

Map Type and Dynamic Command Assembly:

The Map Type in the command assembly determines what bytes and mapping are used.

The default is 0: Static Map where only bytes 0-35 are used.

If the PLC sets the value of byte 33 (Map Type) then this enables the dynamic mapping which means bytes 36-63 that

are dynamically configured will also be sent in the case of the command assembly and received in the case of the

response assembly. This means the data to/from the drive will be on the cyclic data updated every RPI scan.

Note the comment in Bytes 36-63 “See EIP.CMDMAP” (more on this later).

3

Like the Command Assembly, the Response Assembly has 0-63 bytes. Bytes 0-35 make up the response assembly’s static

mapping. Byte 33: Map Type will reflect the current Map Type as set by Byte 33 in the command assembly. If Byte 33 is 0

then only the static bytes 0-35 are read. If byte 33 reads a 2 (as in the case the PLC sets byte 33 to a value of 2) then the

bytes 36-63 when dynamically mapped will read the drive’s parameter data every RPI scan.

Static Response Assembly:

Note the comment in Bytes 36-63 “See EIP.RSPMAP” (more on this later).

Map Type and Dynamic Response Assembly:

4

Using Static Mapping:

There is already important diagnostic information built in to the default static map of the response assembly without

additional dynamic mapping. These are:

1. Status Words 1 and 2

2. Actual Position

3. Actual Velocity

4. Motion Status (equivalent to the AKD parameter DRV.MOTIONSTAT).

If other parameters and diagnostics are desired beyond what is contained in the static assembly then these drive

parameters can be mapped using 2 methods in Workbench.

1. Using the terminal in Workbench with the EIP.CMDMAP and EIP.RSPMAP keywords (these methods are

described in the AKD Ethernet IP Communications manual)

2. Using the Workbench GUI under device_name(Online)->Settings->Communication->Ethernet IP.

5

Before proceeding there are a few details to review historically related to firmware and dynamic mapping.

Changes were made in FW 1-17-3-000 where issues were resolved so 32 bit (4 byte) instances of the 64 bit (8 byte)
instances make it easier to read and write data either via the AKD_Set_Parameter or AKD_Get_Parameter AOIs which
can only handle 4 bytes of data (an AOI limitation) or as in the case when you are attempting to map a parameter
dynamically (8 byte mapping quickly consumes the available number of bytes for the dynamic map area (bytes 36-63)
so 4 byte versions may allow you to map more parameters.

Note while the keywords were added in FW 1-13-09-000 there were issues using them which was remedied in 1-17-03-

000 per below.

Initially added but with issues:

Resolved:

6

Also related in the same FW release:

Notice in the Workbench GUI under Communication->Ethernet/IP in the listing for example there are 2 instances of

AOUT.VALUE: The original instance ID15 which is 8 byte signed and the 32 bit version (4 byte signed) ID 16. You can

check in the listing for other parameters with both versions and instances.

7

It is also worth mentioning the Parameter Listings in the manuals of all the available instances will sometimes shows a

Data Type of “Float” but in the Workbench GUI Dynamic Mapping List will shot it as “Integer”. Note the details below in

regards to floating point values over Ethernet/IP. Also note the Parameter Listing table in the manual (shown below)

doesn’t list the 32 bit version instances but indicates that to determine that ID take the ID of the 8 byte version and add

1 to it. Example: AIN.PSCALE, 8 byte instance 5. Since 5+1=6 then the AIN.PSCALE (32 bit version) will be ID6. If you

refer to the screenshot of the Workbench Dynamic Mapping List above you can verify this is the case.

There was also an issue in Workbench version 1.15 The issue was when you setup the AKD-EIP dynamic mapping the

first time – you just select the parameters you want to map (in any order you want) and that all worked fined. For

example – ID order 11, 1, 10.

If you went back and edited the dynamic mapping (clicking “configure”) it re-ordered the dynamic mapping “currently

configured list” by lowest to highest ID number instead of keeping it in the previous order the user defined it as. For

example it showed – ID order 1, 10, 11 (ascending order).

This was resolved in Workbench version 1.16.

Key takeaways:

 It is best to use the latest versions of Workbench and AKD firmware on new applications.

 In general, every read/write should be tested for data validity between the PLC and the AKD by the programmer.

8

In this example I will be using the Workbench GUI to perform the mapping. To begin, I click on the “Configure” button. I

will show only the Response mapping but the Command mapping works the same way.

Clicking on the Response tab and then the configure button calls up the following window:

9

The available list of instances (ID#) with the corresponding AKD parameter name, data type, and data size (# of bytes)

are given on the left. Currently configured (mapped) list with remaining free bytes and number of items. An important

note is that as you add instances to the dynamic map, depending on data size, the dynamic map will begin to populate

and fill bytes 36-63 according to size.

In this example, I will begin adding parameters to the dynamic map (the parameters selected in this example are

arbitrary and actual mapping will be application dependent). You can scroll using the scroll bar and then highlight the

desired instance (parameter) on the left and then to add to the dynamic map, click on the right arrow button:

Repeat until the mapping appears as shown below:

10

Note that the free remaining bytes are 12 indicating how many bytes remain in the response assembly for dynamic

mapping (36-63). Click Apply and Ok.

The configuration is now as shown. Note the “Address” column indicates what bytes in the Response Assembly are used

for the given ID/Parameter. This is important to note when referencing the data on the PLC side. Also notice the Value

column which is the Workbench displayed value and the EIP value is the equivalent value over Ethernet IP (these are

not always the same).

11

Note the GUI achieved the same mapping as if it was done in Workbench terminal:

When you’ve configured your mapping it is important to type a DRV.NVSAVE in the Workbench terminal or click on the

“Save To Device” button on the Workbench toolbar to save the configuration to the drive’s non-volatile memory.

As stated before, the cyclic data that is mapped using the EIP.CMDMAP or EIP.RSPMAP (or Communications->Ethernet

IP GUI) are not active until the MAP TYPE set in the command assembly is set to a value of 2: Dynamic Map (bytes 36-

63 are dynamically configurable. This essentially enables the dynamic mapped data to be passed on the RPI scan.

I added a rung (rung 1 below) that moves a value of 2 into byte 33 of the command assembly to enable the dynamic

mapping and dynamic data transfer.

12

In order to read the values mapped in the PLC easily, I copied the data from the response assembly into tags. Note that
some of the parameters I’ve chosen are 1, 2, and 8 bytes of data.
On the PLC side you have SINT, DINT, and LINT as choices (for these data types; for a complete listing see the table
below). LINT is a 64 byte integer (8 bytes). DINT can handle 4 bytes of signed data. It is important to check that the
data values from the drive over Ethernet IP will not be outside of the range of the data type for your controller tag. As
mentioned before changes were made in FW 1-17-3-000 where issues were resolved so 32 bit (4 byte) instances of the
64 bit (8 byte) instances make it easier to read and write data either via the AKD_Set_Parameter or
AKD_Get_Parameter AOIs which can only handle 4 bytes of data or in the case when you are attempting to map a
parameter dynamically where 8 byte mapping quickly consumes the available number of bytes for the dynamic map
area (bytes 36-63) so 4 byte versions may allow you to map more parameters.

In summary:

AKD Instance Data Type AB PLC Tag Type (to copy the value into)

Command SINT

1 Byte SINT

1 Byte Signed SINT

2 Byte INT

2 Byte Signed INT

4 Byte DINT

4 Byte Signed DINT

8 Byte LINT

8 Byte Signed LINT

* Tag Type REAL is not applicable with the AKD Ethernet IP parameters.

Next the mapped bytes for the given axis (AKD) are copied from the mapped bytes for that parameter/instance into a

tag in the ladder to hold the value (and dimension the data from bytes to SINT, INT, DINT, etc.).

13

Tags:

Tagname Data Type Bytes # of Bytes

EIP_CONNECTED SINT 36 1

STO_STATE SINT 37 1

SWLS_LIMIT0 DINT 38-41 4

SWLS_LIMIT1 DINT 42-45 4

HOME_P DINT 46-49 4

TEMP_CONTROL INT 40-51 2

Also recall that the source tags above in the ladder logic come from:

The structure and tags above are created when you give the AKD_Drive (Drive Communication) AOI an Axis_Internal

name (in this example “AXIS_ONE”). Hence the response assembly will be AXIS_ONE.Input.Data[Byte#]. If you name

your axis a different name or you have multi-axes and multiple AKD_Drive blocks, reference the axis you want to

dynamically map.

14

After downloading and running the PLC code, I setup a watch window and compared the values in the PLC with the EIP

value in the Workbench GUI:

