AKD Ethernet IP: Diagnostics and Dynamic Mapping Rev B 2-27-2019

One question that comes up often is how to read parameters for information (i.e. position feedback) and diagnostics
beyond the Sample Project provided.

For users of Compactlogix and Contrologix, cyclic data is supported with the AKD Ethernet IP drive (note the Micrologix
1400 does not support cyclic data and parameter read/writes must be achieved explicitly via the MSG blocks. This
application note is specific to cyclic data.

Per the AKD Ethernet IP manual there is the command assembly and the response assembly both 0 to 63 (total 64
bytes). How this correlates to the PLC and drive is the AKD is setup as a Generic Ethernet Module in the AB PLC. Note
there are 64 bytes for the input and 64 bytes for the output for the assemblies.

=%

5] Module Properties: LocalEMB (ETHERNET-MODULE11) Ll

T pe— : 1
General | Connsction | Module Info

Type: ETHERMET-MODIILE Generic Ethernet Module

Wendor: Allen-Bradley

Farent: LocalEMEB

s AKD 1 Connection Parameters

= Azzembly !
Description: = — Instance: .-S'Z_E: —— -
| Input: 102 B4 = [2-hit)

" oupwe 101 B4 = [ahil

. 2 A A = == —

SR Configuration; 100 0 — | [8-bit]

Addrezz / Host Name
@ P Address; 192 162 . 0 . &

71 Host MNarme:

Status: Offine ok || Cancel Apply Help |

The configuration of the Generic Ethernet Module added the following to the controller tags:

| Controller Organizer S l Soope: ﬁﬂtestm v Show AllTags * T
=7 Controller test! 23 —
Ty Hame zsle | e *| FoceMask €| Siyle Data Type Description
\ [Controller Tags 2 7
\ |3 Controller Fault Handler + AKD_TC i e B:ETHERNET_MODULE:C0
L3 Power-Up Handler + KD T Fonih [oni] ABETHERNET_MODLULE_SINT_B4Bytest:0
A0 T b L ABETHERNET_MODULE SIMT_G4Bptes:0:0

-ﬁ Tasks
HE - B

L

Static vs. Dynamic Mapping

It is important to note there are portions of the assemblies that are static (preconfigured) and dynamic (flexible; not
preconfigured). For example, below shows color coded portions of the command assembly. Bytes 0-32 are static and
preconfigured. This mapping cannot be changed. Byte 33 is the Map Type. By default the Map Type is 0 which means
only the static portion of both the Command and Response Assemblies are on the cyclic data. Per the description if Byte
33 in the command assembly is set to a value of 2 it “enables” Bytes 36-63 to be dynamically configured. Parameters
dynamically mapped to the Command and Response Assemblies in the AKD drive will not be written to or read from
unless the Map Type is 2: Dynamic.

Static Command Assembly:

6.2.2.1 Command Assembly Data Structure

Byte | Data Comment

0 Control Word The cpntrni word contains bits for enabling, moving, and handshaking with
the drive.

1 Block # The block number is used to star a particular Motion Task, in combination

with the Start Block bit in the Control Word.

Specifies the desired command to execute, such as Set Position or Set Para-

2 Command Type Ao

3 Response Type Specifies the desired response data to return in the Response Assembly.

4-7 |Data The command data for most Command Types*®

8-11 | Position Position data for Command Type 6 {Position Move)*

:g Velocity Velocity data for Command Type 6 (Position Move) and 7 (Jog)*

:g’ Acceleration Acceleration data for Command Type 6 (Position Move) and 7 (Jog)*
20- < 2 o "
=z Deceleration Deceleration data for Command Type 6 (Position Move) and 7 (Jog)

24- | Parameter/Attribute Command Data for Command Type 0x1B (Set Position Controller Attribute)
31 Data and Ox1F (Set Parameter)*

Index of desired Position Controller Attribute value to return in the Response
Assembly bytes 24-31)

32 Aftribute to Get

Map Type and Dynamic Command Assembly:
The Map Type in the command assembly determines what bytes and mapping are used.
The default is 0: Static Map where only bytes 0-35 are used.

If the PLC sets the value of byte 33 (Map Type) then this enables the dynamic mapping which means bytes 36-63 that
are dynamically configured will also be sent in the case of the command assembly and received in the case of the
response assembly. This means the data to/from the drive will be on the cyclic data updated every RPI scan.

Note the comment in Bytes 36-63 “See EIP.CMDMAP” (more on this later).

Comment

0: Static Map (only bytes 0 to 35 are sent)
33 MapType 1: Custorm Map 1
2: Dynaric Map (bytes 36-63 are dynamically configurable)

63 | DynamoMap SeeEIP.CMDMAP (+ p.32)

Like the Command Assembly, the Response Assembly has 0-63 bytes. Bytes 0-35 make up the response assembly’s static
mapping. Byte 33: Map Type will reflect the current Map Type as set by Byte 33 in the command assembly. If Byte 33 is 0
then only the static bytes 0-35 are read. If byte 33 reads a 2 (as in the case the PLC sets byte 33 to a value of 2) then the
bytes 36-63 when dynamically mapped will read the drive’s parameter data every RPI scan.

Static Response Assembly:

6.2.3.1 Response Assemly Data Structure
0 | Status Word 1 Various status bits

1 Executing Block # | The index of the Motion Task which is curently being executed
2 StalusWord2 Various status bits

Specifies the response type of this assembly, echeoing the Response Type

4 |Bespuselype set in the command assembly.

47 Data The response data for most Response Types®

8-11 | Position Actual Position®

:g' Velocity Actual Velocity*

16 | Motion Stat Status bits. This provides the status word DRV.MOTIONSTAT. See the
19 i U5 Parameter Reference Guide.

20-

P Reserved

Note the comment in Bytes 36-63 “See EIP.RSPMAP” (more on this later).

Map Type and Dynamic Response Assembly:

Byte | Data Comment

24- | Parameter/Attribute Response Data for Command Type Ox1F (Set Parameter) and the Attribute
31 |Data to Get*

' Mirrors the Attribute to Get from the Command Assembly. If non-zero. the
data will be in the Parameter Data field.

o Static Map (only bytes 0to35are sent)

32 | Attribute to Get

33 MapType 1: Custom Map 1

-2 Dynamic Map (bytes 36-63 are dynamically configurable)
g Reserved
| HesponseDYNAMIC eq 1p RSPMAP (+ p. 42).

Using Static Mapping:

There is

already important diagnostic information built in to the default static map of the response assembly without

additional dynamic mapping. These are:

1.

2.

3.

4.

Status Words 1 and 2
Actual Position
Actual Velocity

Motion Status (equivalent to the AKD parameter DRV.MOTIONSTAT).

6.2.3.1 Response Assemly Data Structure

0 StausWord1 Various status bits

1 Executing Block # The index of the Motion Task which is cumrently being executed

2 StatusWord2 Various status bits

3 RS el fﬁﬁﬁ éﬁnr:.lsapnc;r::;;ﬂe b;:ff this assembly, echoing the Response Type
4-7 | Data ' The response data for most Response Types*

If other parameters and diagnostics are desired beyond what is contained in the static assembly then these drive

parameters can be mapped using 2 methods in Workbench.

1.

2.

Using the terminal in Workbench with the EIP.CMDMAP and EIP.RSPMAP keywords (these methods are
described in the AKD Ethernet IP Communications manual)

Using the Workbench GUI under device_name(Online)->Settings->Communication->Ethernet IP.

Before proceeding there are a few details to review historically related to firmware and dynamic mapping.

Changes were made in FW 1-17-3-000 where issues were resolved so 32 bit (4 byte) instances of the 64 bit (8 byte)
instances make it easier to read and write data either via the AKD_Set_Parameter or AKD_Get_Parameter AOls which
can only handle 4 bytes of data (an AOI limitation) or as in the case when you are attempting to map a parameter
dynamically (8 byte mapping quickly consumes the available number of bytes for the dynamic map area (bytes 36-63)
so 4 byte versions may allow you to map more parameters.

Note while the keywords were added in FW 1-13-09-000 there were issues using them which was remedied in 1-17-03-
000 per below.

Initially added but with issues:

Version: 01-13-09-000 Release Date: June 18, 2015

Field Bus Specific Issues
New Features

« Added 32-bit access to 64-bit wide keywords for EthernetIP. (S-15756)

New Feature Details:
Added 32-bit access o 64-bit wide keywords for EthernetlP.

Resolved:

Version: 01-17-03-000 Release Date: February 28, 2018

Field Bus Specific Issues
Fixed Bugs

» Ethernet/IP: Set 'In Motion" bit during movement in torque mode. (6052)
Issue:
When the drive was set to DRV.OPMODE 0, bit 0 in Ethernet/IP Status Word 1 was never sel.

Solution:
With DRV.OPMODE set to 0, the drive will set bit 0 in Ethernet/IP Status Word 1 as long as it has not detected zero velocity.
Detection of zero velocity can be influenced using the parameters CSTO and CS.VTHRESH.

+ Ethernet/IP: Error when adding 32-bit versions of 64-bit parameters to EIP.CMDMAP or EIP.RSPMAP (5141,D-
07536)
Issue:
When trying to add a 32-bit instance of a 64-bit parameter (e.g. inslance 147: FB1.OFFSET (32 bil version)) to the dynamically
mappable partof the Ethernet/IP command or response assembly via EIP.CMDMAPR or EIP.RSPMAP. an error was returned, stating
that the address to be mapped is invalid.

Solution:
The 32-bit instances of 64-bit parameters can now be added to the dynamically mappable part of the Ethemet/IP command or
response assembly.

» Ethernet/IP: Issues writing negative values to 32-bit instances of 64-bit parameters (4835,D-07536)
Issue:
Negative values written to 32bit instances of 64bit parameters (e.g. instance 147: FB1.OFFSET (32 bit version)) were not praperly
extended to 64 bit, leading to large posilive values being sel instead. This was happening when writing via explicit messaging,
Command Type 0x1F and dynamically mapped instance.

Solution:
Wiriting a negative value to 32-bit instances of 64-bil parameters now sets the correct value.

Also related in the same FW release:

New Features

« CANopen-objects for DREV.WARNING1-3 and DRV.FAULT1-10 were missing on AKD-C. (9601,5-18760)

Solution:
Add support of DRVWARNING1-3 and DRV.FAULT 1-10 on AKD-C (objects 2000h and 2001h).

« Ethernet/IP: Added missing 32-bit instances of G4-bit parameters (D-07536)

Solution:

Several 64-bil paramelers did nol have 32-bit instances, causing issues for Ethernel/IP masters unable to handle 64-bil inslances.
Those missing instances have been added. To be consistent with 32-bil instances always being on the index after their 64-bit
counterpart, additional 64-bit inslances have also been crealed. The new instances are located on indices 1071 o 1116,

Notice in the Workbench GUI under Communication->Ethernet/IP in the listing for example there are 2 instances of
AOUT.VALUE: The original instance ID15 which is 8 byte signed and the 32 bit version (4 byte signed) ID 16. You can
check in the listing for other parameters with both versions and instances.

EtherNet/IP

> Configures the EtherMet/IP fieldbus parameters.

Connected: o

| Scaling | Mofion | Command | Respanse |

Address id Parameter Type Size Value EIF Value
-ljc.\ E Jet/IP C 5
Available: Search P
Id Parameter Type Size
1 AIN.CUTOFF Integer 4 Byte
2 AIN.DEADBAND Integer 2 Byte
3 AIN.ISCALE Integer 4 Byte
4 AIN.OFFSET Integer 2 Byte Signed
i AIN.PSCALE Position 8 Byte Signed
] AIM.PSCALE (32 bit version) Position 4 Byte Signed
7 AINVALUE Integer 2 Byte
8 AINNVSCALE Velocity 8 Byte
10 AQUT.ISCALE Integer 4 Byte
11 ACUT.MODE Integer 2 Byte
12 AQUT.OFFSET Integer 2 Byte Signed
13 AOQUT.PSCALE Position 8 Byte Signed
14 ACQUTPSCALE {32 bit version) Position 4 Bwte Sianed
§ ADUTNALUE Integer 8 Byte Signed
16 ADUTMALUE (32 bit version) Integar 4 Byte Signad
17 ADUTNVALUEU Integer 8 Byte Signed
138 AQUTNMALUEU (32 bit version) Integer 4 Byte Signed
19 ACQUT.VSCALE Velocity 8 Byte
20 BODE.EXCITEGAP Integer 1 Byte
21 BODEFREQ Integer 4 Byte
22 BODE.IAMP Integer 4 Byte Signed
Selected bytes: 0/ ltems: 0

It is also worth mentioning the Parameter Listings in the manuals of all the available instances will sometimes shows a
Data Type of “Float” but in the Workbench GUI Dynamic Mapping List will shot it as “Integer”. Note the details below in
regards to floating point values over Ethernet/IP. Also note the Parameter Listing table in the manual (shown below)
doesn’t list the 32 bit version instances but indicates that to determine that ID take the ID of the 8 byte version and add
1 to it. Example: AIN.PSCALE, 8 byte instance 5. Since 5+1=6 then the AIN.PSCALE (32 bit version) will be ID6. If you
refer to the screenshot of the Workbench Dynamic Mapping List above you can verify this is the case.

12 Appendix B: Parameter Listing

The parameters in this list comespond to drive parameters available in Workbench and are described in the
Workbench help documentation and the AKD User's Guide.

Paosition values are scaled according to EIP.PROSUNIT.
Velocity and Acceleration values are scaled according to EIP PROFUNIT

Other floating point values are multiplied by 1000, such that a value displayed in Workbench as 1.001 will be
transmitted through EtherNet/IP as 1001.

The lower 32-bits of parameters with the data size 8 can be read by accessing the instance number for the 8
byte parameter incremented by 1.

Instance Parameter Data Size Data Type
1 AIN.CUTOFF 4 Byte Float

2 AIN DEADBAND 4 Byte Float

3 AIN.ISCALE 4 Byte Float

4 AIN.OFFSET 2 Byte Signed Float

5 AIN_.PSCALE 8 Byte (truncated to 4 Byte) Position
7 AIN.VALUE 4 Byte Float

8 AIN VSCALE 4 Byte Velocity
9 AIN.ZERO Command None
10 AOQUT.ISCALE 4 Byte Float

11 AOUT.MODE 2 Byte Integer

There was also an issue in Workbench version 1.15 The issue was when you setup the AKD-EIP dynamic mapping the
first time — you just select the parameters you want to map (in any order you want) and that all worked fined. For
example — ID order 11, 1, 10.

If you went back and edited the dynamic mapping (clicking “configure”) it re-ordered the dynamic mapping “currently
configured list” by lowest to highest ID number instead of keeping it in the previous order the user defined it as. For
example it showed — ID order 1, 10, 11 (ascending order).

This was resolved in Workbench version 1.16.
Key takeaways:
e |tis best to use the latest versions of Workbench and AKD firmware on new applications.

e In general, every read/write should be tested for data validity between the PLC and the AKD by the programmer.

In this example | will be using the Workbench GUI to perform the mapping. To begin, | click on the “Configure” button. |
will show only the Response mapping but the Command mapping works the same way.

Device Topology Leam more sbout this {opic
i EtherNet/IP @
4 @ no_name (Online) Cortigures the Etherhiet/IP ildbus parameters
4 @ Settings
4 @ Communication Connected Q
® TCPIP
Modbus | Scaling | Motion | Command | Response ||

i £t I Address id Parameter Type Size Value EIP Value

A Regen

Motor
Feedback 1
Feadback 2

= Foldback
(@) Brake
w2 Units
g Modulo

Limits
@ Home
(i) Current Loop
() Velogity Loop
(1)) Pasition Loop
Y Service Motion

=

i

() Encoder Emulation (X3 Cig)
V] Analog Input
|- Analog Output
Digital 10
© Programmable Limit Switches
J Compare Engines
@) Erable/Disable
@ Position Capture
; Motion Profile Table:
Performanc Servo Tuner
£, Siider Tuning
B3 Motion Tasks
&, Drive Motion Status
@ Fauls and Warnings
Scove
Add New Kolmorgen Device...

Watrh ow

Free remaining bytes: 28 | | Configure.

Clicking on the Response tab and then the configure button calls up the following window:

EtherNet/IP

Configures the EtherMNet/IP fieldbus parameters.

Connected: 0

| Scaling | Mogion | Command | Response
& EtherNet/IP Dynamic Response Mapping i - - - — [
Available: Search ﬁ Currently Configured:
Id Parameter Type + Id Parameter Type Size
T AIN.CUTOFF Integer »
2 AIN.DEADBAND Integer =
3 AIMISCALE Integer
4 AIMN.OFFSET Integer 2B
5 AIM.PSCALE Position 8B
6 AIN.PSCALE (32 bit version) Pasition 4B S
7 AN VALUE Integer |
8 AIMNVSCALE Velocity '
] AIN.ZERC None 1Byt [
10 ACUTISCALE Integer !
11 AQUT.MODE Integer
12 ADUT.OFFSET Integer 2B
13 AOQUT.PSCALE Position BB
14 AQUT.PSCALE (32 bit version) Position 4B
15 ACQUT.MALUE Integer 8B
16 AQUTVALUE (32 bit version) Integer 4B -
‘| [| »
Selected bytes: 0/ tems: 0 Free remaining bytes: 28 / Items: 16
@ Fanic [ok][cancet |[appiy |

The available list of instances (ID#) with the corresponding AKD parameter name, data type, and data size (# of bytes)
are given on the left. Currently configured (mapped) list with remaining free bytes and number of items. An important
note is that as you add instances to the dynamic map, depending on data size, the dynamic map will begin to populate
and fill bytes 36-63 according to size.

In this example, | will begin adding parameters to the dynamic map (the parameters selected in this example are
arbitrary and actual mapping will be application dependent). You can scroll using the scroll bar and then highlight the
desired instance (parameter) on the left and then to add to the dynamic map, click on the right arrow button:

r 5

%2 EtherNet/IP Dynamic Response Mapping = y
Available: Search P Currently Configured:
Id Parameter Type ! Id Parameter Type Size
783 DOUTY.5TATE Integer -
784 DOUTS.5TATEU Integer
785 DRV.BLINKDISPLAY None 1Byt
786 DRV.CLRCRASHDUMP None 1 Byt
789 DRV.INVLOAD MNone 1Byt
791 DRV.SETUPREQBITS Integer
792 DRV.WARNING1 Integer
793 DRV.WARNING2 Integer
794 DRV.WARNING3 Integer
796 EIP.POSUNIT Integer
797 EIP.PROFUNIT Integer =
798 FAULT139ACTION Integer
806 FBLP Position 8B
807 FBLP (32 bit version) Pasition 4B
808 FB1.PDIR Integer -
‘| m | »
Selected bytes: 1/Items: 1 Free remaining bytes: 28 /Items: 16
| . Panic | | Ck | [Cancel | | Apply

Repeat until the mapping appears as shown below:

Note that the free remaining bytes are 12 indicating how many bytes remain in the response assembly for dynamic
mapping (36-63). Click Apply and Ok.

% EtherNet/IP Dynamic Response Mapping

Awailable: Currently Configured:
Id Parameter Type Size Id Parameter Type Size
795 EIP.CONNECTED Integer 1 Byte
382 STO.STATE Integer 1 Byte

385 SWLS.LIMITO (32 bit version) Position 4 Byte Signed
387 SWLS.LIMIT1 (32 bit version) Position 4 Byte Signed
207 HOME.P (32 bit version} Position 4 Byte Si

ned

g

Selected bytes: 0/ ltems: 0

Free remaining bytes: 12 / ltems: 10
| W

The configuration is now as shown. Note the “Address” column indicates what bytes in the Response Assembly are used
for the given ID/Parameter. This is important to note when referencing the data on the PLC side. Also notice the Value

column which is the Workbench displayed value and the EIP value is the equivalent value over Ethernet IP (these are
not always the same).

a’ EtherNet/IP

-~ Corfigures the Btherfet /1P fieldbus parameters.

Connected: o

| Scaling | Motion | Command | Response |

Address id Paramester Type Size Value EIP Yalue
36 795 EIF.COMNECTED Integer 1 Byte 0 0
ar a8z STOSTATE Integer 1 Byte 1[H 1

3a-41 385 SWLS LIMITO (32 bit version) Position 4 Byte Signed 0.000 [Counts16Bit] 0
42-45 387 SWLS.LIMITT (32 bit version) Position 4 Byte Signed 1,048, 576.000 [Counts16Bit] 1048576
26-49 207 HOME_P (32 bit version) Position 4 Byte Signed [0.000 [Counts16Bif] 0
50-51 875 TEMP.CONTROL Integer 2 Byte Signed 44 [degC] 44

10

Note the GUI achieved the same mapping as if it was done in Workbench terminal:

Terminal

A command line intefface to the device. Type a command and press retum.

——>EIP.RSEPMALFP
[T 725

[1] 382

[2] 385

[2] 387

[4] 207

[2] B75

[e] O
[71 ©
[B] O
[5]1 O
[1o]
[11]
[12]
[13]
[14]
[13]
——>

[o R Y e

When you’ve configured your mapping it is important to type a DRV.NVSAVE in the Workbench terminal or click on the
“Save To Device” button on the Workbench toolbar to save the configuration to the drive’s non-volatile memory.

As stated before, the cyclic data that is mapped using the EIP.CMDMAP or EIP.RSPMAP (or Communications->Ethernet
IP GUI) are not active until the MAP TYPE set in the command assembly is set to a value of 2: Dynamic Map (bytes 36-
63 are dynamically configurable. This essentially enables the dynamic mapped data to be passed on the RPI scan.

| added a rung (rung 1 below) that moves a value of 2 into byte 33 of the command assembly to enable the dynamic
mapping and dynamic data transfer.

Simple Example Project RSLogixS000 v4.0 with A0! library v4.0

Drive Communication
KD_Dri
0 Drive Communication —
AKD_Drive AKD_1 [
Axis_Input AKD_1:
Axis_Output AKD_1:0
Axis_Internal AXIS_ONE

Axis Data:
Data to the drive
Mo
1 Move —
Source 2

Dest AXIS_OMNE.Output.Data[33]
2+

11

In order to read the values mapped in the PLC easily, | copied the data from the response assembly into tags. Note that
some of the parameters I've chosen are 1, 2, and 8 bytes of data.

On the PLC side you have SINT, DINT, and LINT as choices (for these data types; for a complete listing see the table
below). LINT is a 64 byte integer (8 bytes). DINT can handle 4 bytes of signed data. It is important to check that the
data values from the drive over Ethernet IP will not be outside of the range of the data type for your controller tag. As
mentioned before changes were made in FW 1-17-3-000 where issues were resolved so 32 bit (4 byte) instances of the
64 bit (8 byte) instances make it easier to read and write data either via the AKD_Set_Parameter or
AKD_Get_Parameter AOIs which can only handle 4 bytes of data or in the case when you are attempting to map a
parameter dynamically where 8 byte mapping quickly consumes the available number of bytes for the dynamic map
area (bytes 36-63) so 4 byte versions may allow you to map more parameters.

In summary:

AKD Instance Data Type | AB PLC Tag Type (to copy the value into)
Command SINT
1 Byte SINT
1 Byte Signed SINT
2 Byte INT
2 Byte Signed INT
4 Byte DINT
4 Byte Signed DINT
8 Byte LINT
8 Byte Signed LINT

* Tag Type REAL is not applicable with the AKD Ethernet IP parameters.

Next the mapped bytes for the given axis (AKD) are copied from the mapped bytes for that parameter/instance into a
tag in the ladder to hold the value (and dimension the data from bytes to SINT, INT, DINT, etc.).

Copy Flie
Source AXIS_ONE input Datz[3]
Dest EP_CONNECTED
Lengin 1

Copy Flie
Source AXIS_ONE nput Dat(37]
Dest STO_STATE
Lengin 1

Camy File —
Source AXIS_ONE nput Dat(33]
Dest SNLS_LIMITO
Lengin 1

Camy File —
Source AXIS_ONE input Datf42]
Dest SNLS_LIMIT1
Lengin 1

Copy Flie —
Source AXIS_ONE nput Datz(48]
Dest HOME P

Lengt 1

Camy File —
Source AXIS_ONE mput Dat(s0]
Dest TEMP_CONTROL
Lengin 1

12

Tags:

Tagname

Data Type

Bytes

of Bytes

EIP_CONNECTED

SINT

36

STO_STATE

SINT

37

SWLS_LIMITO

DINT

38-41

SWLS_LIMIT1

DINT

42-45

HOME_P

DINT

46-49

TEMP_CONTROL

INT

40-51

Also recall that the source tags above in the ladder logic come from:

| Controller Organizer

> 0 X

Scope: [Example_PLC

~ Show All Tags

e Name =)o | Value «|ForceMask €] style Dals Type Description
+ AKD_1 S e AKD_Drive Diive Communication
[Power-Up Handler L AKD_T:C Foel o AE:ETHERNET_MODULE:CO
-6 Tasks + AKD_T: Gk) AB:ETHERNET_MODULE SINT_B4Bytes]0
-8 MainTask + AKD_1:0 Taa) f-e:1 AB:ETHERNET_MODULE_SINT_G4Bytes:0:0
=8 MainProgram i 1 el Fagis) AKD_Dirive Diive Communication
i.[@ Program Tags Auis_1_Dis Las} s AKD_Disable Disable Diive
.. MainRoutine o+ Ais 1_EN ol ok AKD_Enable Enables Diive:
.71 Unscheduled Programs + fuis_1_HOME Lol Lol £KD_Home Home Axis
3 Motion Groups = Awis_1_Move Da i AKD_Mave Mation wis Move - Positian Mave
.. Ungrouped Axes fis_Is Moving 0 Decimal BOOL
=43 Add-On Instructions = A45_ONE T e “AKD_ A ks Data
(@ AKD_Command_Assembly H+ A5 ONE.Control Tl Tl AKD_Control s Datar Control bits to send to the dive
- g ﬁig—gw"b'l"a"‘*—C“‘”"“‘—W“"* i+ AIS_ONE.Slatus ! T BKD_Stalus i Data:_Status bis received fiam the drive
-) Disable R =
1.3 AKD Drive mmn@”fb‘m
5 (@ AKD_Enable — — AFHT .
s e + AI5_ONE.ResponseMsaType [Decimal SINT vis Dats: Pesgonse e contaned n aist 0 2
1D RKD G At + &5 _ONE CommandTimeout 0 Decimal INT #uis Data. Time b alow for command response fic
|] AKD, Get Parameter £5_ONE.PositionF eedback 25023867 Decimal DINT ‘ais Data: Actual Posiian Value
.03 AKD Home o+ AHI5_ONE VeloclyFendhack -93 Decimel DINT iz Dot Actual Velocity Value
{3 AKDJog B_DRV_ACTIVE T fee. AKD_Get Parameter Get Diive Parameter
53 AKD Motion Status BLK_DRV_DISSOURCE Gy o) AKD_Get Paramster Giet Diive Parameter
13 AKD_Move BLK_DRY_MOTIONSTAT ity) AKD_Get_Parameter Giet Drive Parameter
(i1 AKD_Response Assembly + BLK_FAULT_RESET {---1 RO AKD_Fault_Resst Drive Fault Resst

The structure and tags above are created when you give the AKD_Drive (Drive Communication) AOI an Axis_Internal
name (in this example “AXIS_ONE”). Hence the response assembly will be AXIS_ONE.Input.Data[Byte#]. If you name
your axis a different name or you have multi-axes and multiple AKD_Drive blocks, reference the axis you want to
dynamically map.

13

Simpie Exampie Project RSLogecS000 v4.0 with ACH lbrary ve.0

Drive Communicatian
——4KD_Dr

Drive C

AKD_Dive

Auxis_lnput
0

Axis Data
[Cata to the drive

10

Move
Source 2

Dest AXIS_OME Output Data{33]
24

After downloading and running the PLC code, | setup a watch window and compared the values in the PLC with the EIP

value in the Workbench GUI:

rkBench - O X B2
¢ Tool Help Value] Fonce Mok Siyle Dats Typs Description Corstant ~
Jisable | Stop | O-Service = | 2 - Position Mode - | Dissble & Clear Faults | Save To Device | Disconnect @) Panic 7047 Decimal DINT L]
@ L= e fen-l f.-.F AKD_Diive Dirive Commurica]
m more st this topic - trordp e s
EtherNet/IP 8 R — =
Watch
Configures the EtherMet/IP fieldbus parameters
Huick Watch o
Connected: Q b | |
[Scaling | Mation | Command | Response | | Name =2l | Scope Walug «| ForceMask €| Desciiption
— - |+ ElP_CONNECTED Conlroller 3
Address 1d Parsmster Type Size Vaive EIP Valus TR T =
® 7B EIP.CONNECTED Integer 1Byte 1H 1 T P
37 38 STO.STATE Integer 1Byte 1H 1 + SWLS_LIMITD Contraller 0
3841 385 SWLSLIMITO (32 bitversion) Position 4 Byts Signed D.000 [Counts 168 0 + SWLS_LIMIT Controller 1048576
U643 207 HOMEP(btvemen) Coston Aopeemed | 12S00(Camatend | 1zv | i AOMEE ot fk
version ositicn e Signes ; aun sl : -
5051 875 TEMP.CONTROL Integer 2 Byte Signed 42[deqC] 12 + TEMP_CONTROL Controller 42
< b 3
= =

14

