DDL

Direct Drive Linear Motor

English

Installation Manual

<u>∧</u>WARNING

- Due to the high magnetic attractive forces of the magnet way, exercise extreme caution during handling, installation and operation to avoid damage to equipment or personnel injury.
- Always keep Ironcore coils and other magnetic metal items at a safe distance from magnet ways.

Edition: F, April 2025

Part Number M-LN-016-0702

For safe and proper use, follow these instructions. Keep for future use.

Record of Document Revisions

Revision	Date	Remarks
Α	September 1996	Initial Release
В	June 2002	Corrected wiring information
С	September 2004	Update corporate identity and contact information
D	May 2007	Corrected airgap and shim information
E	April 2024	Updated for UL certification 480V _{DC}
F	April 2025	Major content overhall, removed flex cables, removed ICH, added high voltage IC options, new coil options, removed all Servostar drive content, added AKD / AKD2G content, new cabling/wiring content, added new performance data, curves, and new dimensional drawings, updated several graphics, updated branding, updated instructions.

Copyright © 2025 Regal Rexnord Corporation, All Rights Reserved.

Information in this document is subject to change without notice. The software package described in this document is furnished under a license agreement. The software package may be used or copied only in accordance with the terms of the license agreement.

This document is the intellectual property of Kollmorgenand contains proprietary and confidential information. The reproduction, modification, translation or disclosure to third parties of this document (in whole or in part) is strictly prohibited without the prior written permission of Kollmorgen.

Trademarks

- · Regal Rexnord and Kollmorgen are trademarks of Regal Rexnord Corporation or one of its affiliated companies.
- AKD is a registered trademark of Kollmorgen.
- EnDat is a registered trademark of Dr. Johannes Heidenhain GmbH.
- EtherCAT® is a registered trademark and patented technology, licensed by Beckhoff Automation GmbH, Germany.
- HIPERFACE is a registered trademark of Max Stegmann GmbH.
- SpeedTec is a registered trademark of TE Connectivity Industrial GmbH.
- Windows is a registered trademark of Microsoft Corporation.

Disclaimer

Technical changes which improve the performance of the device may be made without prior notice!

This document is the intellectual property of Kollmorgen. All rights reserved. No part of this work may be reproduced in any form (by photocopying, microfilm or any other method) or stored, processed, copied or distributed by electronic means without the written permission of Kollmorgen.

The information in this document is believed to be accurate and reliable at the time of its release. Kollmorgen assumes no responsibility for any damage or loss resulting from the use of this help, and expressly disclaims any liability or damages for loss of data, loss of use, and property damage of any kind, direct, incidental or consequential, in regard to or arising out of the performance or form of the materials presented herein or in any software programs that accompany this document.

Table of Contents

1 About this Manual	6
1.1 Symbols Used	6
1.2 Abbreviations Used	<i>6</i>
2 Part Number Scheme	7
2.1 Coil Part Number Scheme	7
2.2 Hall Effect Part Number Scheme	ε
2.3 Magnetic Way Part Number Scheme	ε
3 Safety	g
4 Before You Begin	10
4.1 Unpacking	
4.2 Definitions	11
5 Setup	13
5.1 Installation Procedure Overview	
5.2 Installation Design Requirements	
5.2.1 Encoder Considerations	
5.2.2 Cable Considerations	
6 Mechanical Installation	16
6.1 Ironcore Linear Motor	
6.1.1 Ironcore - Typical Installation Specifications	
6.1.2 Ironcore Magnet Way - Typical Installation Specifications	
6.1.2.1 Multiple Magnet Assemblies	
6.1.2.2 MCxxx Magnetic Way Typical Dimension Data	
6.1.2.3 MCDxxx Magnetic Way Typical Dimension Data	
6.1.3 Ironcore Magnet Plate and Coil Assembly Mounting	
6.1.3.1 Mounting and Design Considerations	
6.1.4 Ironcore Magnet Plate Installation	
6.1.4.1 Ironcore Multiple Magnet - Installation Diagram	
6.2 Ironless Linear Motor	
6.2.1 Ironless - Typical Dimensions	
6.2.2 Ironless Magnet Way and Coil Assembly Mounting	
6.2.2.1 Mounting and Design Considerations	
6.2.2.2 Coil Installation	
6.2.3 Ironless Linear Motor Installation	24
6.2.3.1 Ironless Linear Motor Installation Diagram	
6.2.3.2 Ironless Typical Bottom Mounting Installation Diagram	
6.2.3.3 Ironless Typical Side Mounting Installation Diagram	
7 Electrical Installation	
7.1 Electrical Installation Guide	
7.1.1 Shields	
7.2 Earth Ground (E1)	
7.3 Cabling	
7.3.0.1 Cable Connection	
7.3.0.2 Cable Material Requirements - Capacity	
7.4 Wiring the Motor Drive	
7.5 DDL to Drive Cable Connection Diagrams	
7.5.1 DDLto AKD / AKD2G Connection Via High-Flex Extension Cables	

7.5.2 DDL to AKD2G / AKD Pinout Configurations	31
7.6 Encoder Sensor and Scale Setup	
7.7 Back EMF / Hall Signal Phasing	
7.7.1 Wiring	34
7.7.2 Verify BEMF Voltage and Hall Sensor Alignment	34
7.7.3 Hall Phase Diagram	
7.7.4 Ironcore and Ironless Commutation Diagram	
7.8 Set Up the Motor in WorkBench	36
7.8.1 Wake and Shake Routine	36
7.9 Encoder Setup and Verification in WorkBench	37
7.9.1 Configure the Encoder Resolution	
7.9.2 Encoder Resolution	39
7.9.3 Verify the Encoder Direction	40
7.9.4 Verify the Motor Feedback Resolution	
7.10 Verifying the Motor Setup	
8 Ironcore DDL Motors - Technical Data	
8.1 IC Ironcore - General Specifications	
8.2 Ironcore DDL Motors (Natural-Cooled / Water-Cooled) - Performance Data	
8.2.1 IC11 Natural Cooled Motor Series - Performance Data	
8.2.1.1 IC11 Natural Cooled Motor Series - Performance Data (continued)	
8.2.2 IC11 Water Cooled Motor Series - Performance Data	
8.2.2.1 IC11 Water Cooled Motor Series - Performance Data (continued)	
8.2.3 IC22 Natural Cooled Motor Series - Performance Data	
8.2.3.1 IC22 Natural Cooled Motor Series - Performance Data (continued)	
8.2.4 IC22 Water Cooled Motor Series - Performance Data	
8.2.4.1 IC22 Water Cooled Motor Series - Performance Data (continued)	
8.2.5 IC33 Natural Cooled Motor Series - Performance Data	
8.2.5.1 IC33 Natural Cooled Motor Series - Performance Data (continued)	
8.2.6 IC33 Water Cooled Motor Series - Performance Data	
8.2.6.1 IC33 Water Cooled Motor Series - Performance Data (continued)	
8.2.7 IC44 Natural Cooled Motor Series - Performance Data	
8.2.7.1 IC44 Natural Cooled Motor Series - Performance Data (continued)	
8.2.8 IC44 Water Cooled Motor Series - Performance Data (continued)	
8.2.8.1 IC44 Water Cooled Motor Series - Performance Data (continued)	
8.3 IC Ironcore - Performance Curves	
8.3.1 IC Ironcore - Performance Curves, continued	
8.4 IC Ironcore - Dimensional Drawings	
8.4.1 IC Ironcore - Dimensional Drawings continued	
8.5 MC Magnet Way - Dimensional Drawings, continued	
9 Ironcore DDL Low Profile Motors - Technical Data	
9.1 ICD Ironcore Low Profile - General Specifications	
9.2 Ironcore DDL Low Profile Motors - Technical Data	
9.2.1 ICD05 - Performance Data	
9.2.2 ICD10 - Performance Data	
9.2.2.1 ICD10 - Performance Data, continued	
9.3 MCD Magnet Way - Dimensional Drawing and Data	
10 Ironless DDL Motors - Performance Data	
10.1 IL Ironless - General Specifications	/5

10.2 Ironless DDL Motors - Performance Data	76
10.2.1 IL03 - Performance Data	77
10.2.2 IL06 - Performance Data	78
10.2.3 IL12 - Performance Data	79
10.2.4 IL18 - Performance Data	80
10.2.4.1 IL18 - Performance Data, continued	81
10.2.5 IL24 - Performance Data	82
10.2.5.1 IL24 - Performance Data, continued	83
10.3 IL Ironless - Dimensional Drawings	84
10.3.1 IL Ironless - Dimensional Drawings, continued	85
10.4 MW Magnet Way - Dimensional Drawings and Data	86
10.4.1 MW Magnet Way - Dimensional Drawings and Data, continued	87
11 Thermal Sensor Protective Devices	88
12 Approvals	89
12.1 Conformance with UL	89
12.2 Conformance with CE	89
12.3 Conformance with RoHS	89
12.4 Conformance with REACH	89
12.5 CE Mark Conformance	90
12.6 European Directives and Standards for the Machine Builder	90
Support and Services	91

1 About this Manual

This manual provides a guideline and procedures for installing the Kollmorgen DDL Ironcore Linear Motor and Ironless Linear Motor.

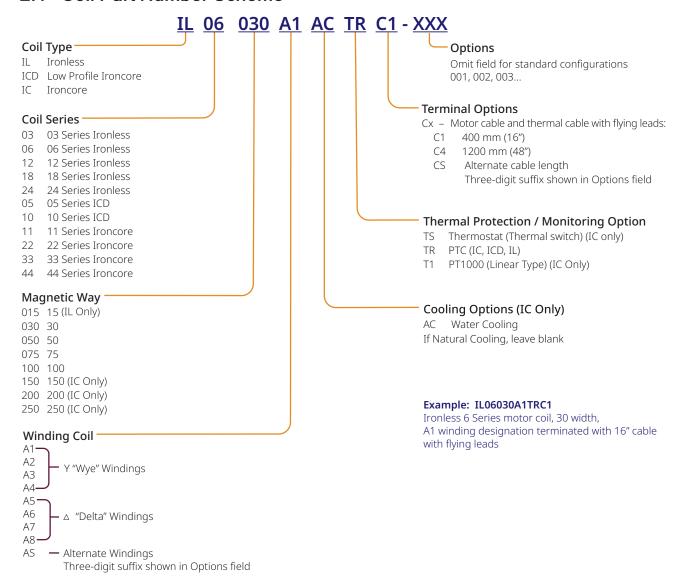
- Troubleshooting procedures are provided to assist with any problems that may occur during installation.
- These procedures assume that all other devices pertinent to system operation have been installed and are operating normally.
- Manual updates can be downloaded from the www.kollmorgen.com.

1.1 Symbols Used

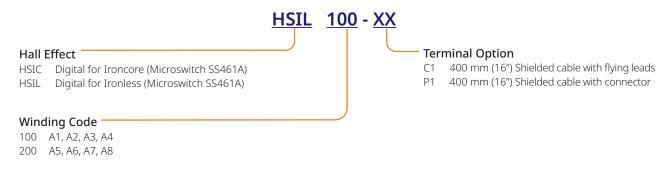
Symbol	Indication
⚠ DANGER	Indicates a hazardous situation which, if not avoided, will result in death or serious injury.
MARNING	Indicates a hazardous situation which, if not avoided, could result in death or serious injury .
⚠ CAUTION	Indicates a hazardous situation which, if not avoided, could result in minor or moderate injury.
NOTICE	Indicates situations which, if not avoided, could result in property damage.
NOTE	Indicates important notes.
<u>^</u>	Warning of a danger (general). The type of danger is specified by the text next to the symbol.
	Warning of danger from automatic start.
4	Warning of danger from electricity and its effects.
	Warning of danger from hot surface.
	Warning of danger of magnetized environment.
	Warning of danger from suspended loads.

1.2 Abbreviations Used

See Technical Data Terminology-Technical Data Terminology.

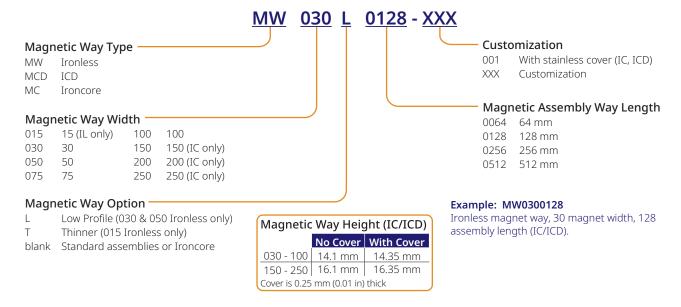

NOTE In this document, the symbol (→ p. 53) means: see page 53.

2 Part Number Scheme


This section provides the nomenclatures for the:

- "Coil Part Number Scheme" (→ p. 7)
- "Magnetic Way Part Number Scheme" (→ p. 8)
- "Hall Effect Part Number Scheme" (→ p. 8)

2.1 Coil Part Number Scheme


2.2 Hall Effect Part Number Scheme

Example: HSIL100-C1

Hall effect assembly with digital outputs for Ironless motor terminated with 400 mm cable.

2.3 Magnetic Way Part Number Scheme

Safety

Only qualified personnel are permitted to transport, assembly, commission, and maintenance this equipment. Properly qualified personnel are persons who are familiar with the transport, assembly, installation, commissioning and operation of motors, and who have the appropriate qualifications for their jobs. The qualified personnel must know and observe these standards and regulations:

- IEC 60364
 - IEC 364 resp. CENELEC HD 384 or DIN VDE 0100
- IEC 60664
 - IEC report 664 or DIN VDE 0110
- National regulations for safety and accident prevention or VBG 4

- Read all available documentation before assembly and commissioning.
 - Incorrect handling of products in this manual can result in injury and damage to persons and machinery.
 - Strictly adhere to the technical information on the installation requirements.
- It is vital to ensure that all system components are connected to earth ground.
 - Electrical safety is impossible without a low-resistance earth connection.

- During operation keep all covers and cabinet doors shut.
 - There are deadly hazards that could possibility cause severe damage to health or the product.
- · In operation, depending on the degree of enclosure protection, the product can have bare components that are live or have hot surfaces.
 - Control and power cables can carry a high voltage even when the motor is not moving.
- Never pull out or plug in the product while the system is live.
 - There is a danger of electric arcing and danger to persons and contacts.
- After powering down the product, wait at least 10 minutes before touching live sections of the equipment or undoing connections (e.g., contacts, screwed connections).
 - Capacitors can store dangerous voltages for long periods of time after power has been switched off.
- To be safe, measure the contact points with a meter before touching.

4 Before You Begin

- · Electrical shock may damage equipment!
- Follow proper handling procedures of static-sensitive equipment when handling these products.
- Remove all power to the stage and controlling device.
- Gather additional personnel and suitable lifting devices, if needed.

- Due to the high magnetic attractive forces of the magnet way, exercise extreme caution during handling, installation and operation to avoid damage to equipment or personnel injury.
- Always keep Ironcore coils and other magnetic metal items at a safe distance from magnet ways.

4.1 Unpacking

Do not dispose of the packing material until all the components of the packing list have been accounted for and verified.

- Check the package and contents upon arrival.
 If the packaging was damaged upon delivery, contact the shipping carrier prior to removing the components from the container.
- 2. Check the shipping invoice against the purchase order to make sure that the factory has sent all the ordered components.
 - If a discrepancy exists, contact the factory immediately.
- Remove all the packing material and equipment from the shipping container.
 Exercise caution when unpacking the components to be sure that smaller components are not accidentally discarded.

4.2 Definitions

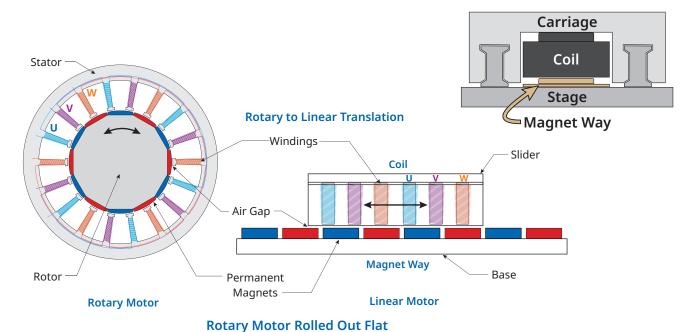


Figure 6-1: Example for Definitions

Carriage:

The carriage is the moving portion of the direct drive linear system in the machine builder's design.

- A typical carriage assembly provides mounting locations for the motor coil, linear ball bearings, an encoder sensor, a cable track, and any other sensors or equipment specific to the process that the machine is being designed for.
- The carriage's main plate usually doubles as a heat sink for the motor coil.

Coil:

The coil is portion of the frameless direct drive linear motor that contains windings.

- The coil causes motion by creating a moving magnetic field according to the current supplied by the drive.
- The coil is equivalent to the stator in a typical permanent magnet brushless rotary motor.

Ironcore:

Ironcore is the type of linear motor constructed with steel laminations incorporated into the coil assembly.

- It is best suited for applications requiring high acceleration of large masses or maintaining stiffness during machining or process forces.
- Due to the steel laminations, Ironcore motors have high magnetic attractive forces ranging from over 300 pounds up to many tons.
- Special attention must be paid to this attractive force when designing stages for this type of motor.

Ironless:

Ironless is the type of linear motor that contains no steel within the coil.

- It is best suited for applications that require very high positional accuracy or precise constant velocity movement.
- Ironless motors offer the advantages of light mass, zero cogging force, and absolutely no magnetic attraction.

Magnet Way / Magnet Plate:

The magnet way is the portion of the frameless direct drive linear motor containing the permanent magnets.

- The magnet way creates a stationary magnetic field that interacts with the moving field created by the coil.
- Typically, the magnet ways are fixed in position and the motor coil moves along them.
- The magnet ways are equivalent to the rotor in a typical permanent magnet brushless rotary motor.

- Due to the high magnetic attractive forces of the magnet way, exercise extreme caution during handling, installation and operation to avoid damage to equipment or personnel injury.
- Always keep Ironcore coils and other magnetic metal items at a safe distance from magnet ways.

Motor: The frameless direct drive linear motor; the combination of a coil and magnet ways.

Stage: The stage is the portion of the machine builder's design that incorporates the frameless DDL motor.

- A typical stage provides mounting locations for the magnet ways, linear bearing rails, an encoder scale, cable routing, endstops, limit switches, and other sensors or equipment specific to the process the machine is designed for.
- Ironcore: The stage must be designed to withstand the motor's attractive force and any loads incurred during the machine's operation.

5 Setup

Only specialist personnel with extensive knowledge in the areas of electrical engineering / drive technology are allowed to commission the drive unit of servo drive and motor.

Danger of light burns!

- The surface temperature of the motor can exceed 100 °C in operation.
- Check (measure) the temperature of the motor.
- Wait until the motor has cooled down below 40 °C before touching it.

Risk of electric shock!

- Deadly voltages can occur, up to 900V_{DC}. Risk of electric shock!
 - Check that all live connection points are safe against accidental contact.
- Never undo the electrical connections to the motor when it is live.
- The residual charge in the capacitors of the drive can produce dangerous voltages up to 10 minutes after the mains supply has been switched off.
- Even when the motor is not rotating, control and power leads may be live.
- Measure the DC-link voltage and wait until it has fallen below 60V_{DC}.

Secure unplanned movements!

The drive performing unplanned movements during commissioning cannot be ruled out

- Make sure that, even if the drive starts to move unintentionally, no danger can result for personnel or machinery.
- The measures you must take in this regard for your task are based on the risk assessment of the application

- Due to the high magnetic attractive forces of the magnet way, exercise extreme caution during handling, installation and operation to avoid damage to equipment or personnel injury.
- Always keep Ironcore coils and other magnetic metal items at a safe distance from magnet ways.

5.1 Installation Procedure Overview

This procedure outlines the sequential steps required to install and set up DDL coils and magnet ways for operation.

- This setup procedure is an example only!
- · Change this procedure depending on the application of your equipment.

See either:

- "Ironcore Linear Motor" (→ p. 17)
- "Ironless Linear Motor" (→ p. 22)

Procedure

- 1. Design, fabricate, and assemble the stage and carriage.
- 2. Install the magnet ways to the stage.
- 3. Install the DDL coil to the carriage.
- 4. If applicable, install the Hall sensor module to the coil.
- 5. If applicable, install encoder scale and sensor following the manufacturer's installation instructions.
- 6. Run the cables.
 - Motor, Hall sensor, and thermal sensor leads must be fixed in place.
 - They are **not** rated for high-flex operation.
 - High-flex extension cables must be connected to leads coming from the motor, Hall sensors, thermal
 device, and encoder sensor, if present, and run through the cable track. KOLLMORGEN does not
 provide high-flex extension cables.
 - The extension cables can then be connected to the AKD/AKD2G drive using KOLLMORGEN supplied power connectors and standard HD15 male Dsub feedback connectors.
 See "DDL to Drive Cable Connection Diagrams" (→ p. 30).
- 7. Set up and wire your AKD/AKD2G drive as instructed by the drive's Installation Manual.
- 8. Install WorkBench on the computer that will connect to the AKD/AKD2G drive.
- 9. Connect the drive via the service port to the network hub or directly to the WorkBench computer Ethernet port.
- 10. Open WorkBench and perform the following steps:
 - a. Connect to the drive.
 - b. Set the motor parameters. Motor Setup Instructions
 - c. Set the feedback parameters and verify the encoder scaling and direction is correct.
 - d. Verify the BEMF and Hall signals align according to the Hall Phase Diagram.
- 11. Take safety precautions before enabling the motor.
 - a. Decrease limits in drive for safety during setup (motor current limit and user overspeed limit).
 - b. Place wood blocks between carriage and endstops.
 - The carriage should only travel several inches in each direction.
- 12. If using Hall sensors, set MOTOR.PHASE (AKD) AXISx.MOTOR.PHASE (AKD2G) to 120.

This is the standard convention for Kollmorgen DDL motors.

• If **not** using Hall sensors, find the phase angle using the "Wake and Shake Routine" (→ p. 36).

It is possible, but unlikely, for the motor to enter a runaway condition during the Wake and Shake routine if something is incorrectly wired.

13. Verify proper movement direction and correct behavior in all operation modes.

This is the most likely place for a dangerous runaway condition to occur!

- a. Set the drive to torque mode and enable the drive.
- b. Use service motion in pulse mode to apply a low current level for a short duration to verify that a positive current command causes positive motion.

A runaway condition WILL occur here if:

- The BEMF/Hall phasing is incorrect.
- The MOTOR.PHASE angle is incorrect.
 - Be careful of 180° offsets in MOTOR.PHASE!
- The motor leads are connected to the drive in the wrong order.
- The encoder is counting in the wrong direction.
 - The encoder MUST count positive in the direction of the motor lead-exit end
- c. Set the drive to Velocity mode.
- d. Jog in positive and negative directions at a slow speed to verify the correct movement direction.
- e. Set the drive to Position mode.
- f. Jog in positive and negative directions at a slow speed to verify the correct movement direction.
- 14. Verify all required measures have been taken to prevent accidental contact with live and moving parts.
- 15. In non-gantry multi-axis systems, individually commission each drive unit (drive and motor).

The motor is now ready for tuning.

5.2 Installation Design Requirements

These elements should be accounted for in the machine design before installing a Kollmorgen Platinum DDL:

- The assembly is designed so the motor coil and magnet ways can be installed.
 - The assembly must allow for the appropriate dimensions to be maintained, including the air gap, distance between adjacent magnet plates, and so on.
 - See "Ironcore Typical Installation Specifications" (→ p. 17).
- The bearings/rails are rated for the motor's attractive force and the speeds and loads that the machine will experience.
 - · Lubricate bearings/rails properly and install them parallel to each other with no binding and minimal
- The carriage must have endstops on each end that do not break if the motor enters a runaway condition and goes to the end of the stage.

Endstops must have dampers or rubber bumpers to protect the carriage.

5.2.1 Encoder Considerations

- Install the encoder scale following the manufacturer's instructions.
- The encoder sensor must be installed and calibrated following the manufacturer's instruction.
- Fix the encoder sensor to carriage with a bracket sturdy enough to prevent vibrations or movement from occurring when the machine moves.
- The encoder scale and sensor must be installed so the encoder counts positive in the same direction that the motor moves towards its lead-exit end.

5.2.2 Cable Considerations

- Cables coming directly from the DDL are not rated for flex operation.
 - This includes the cables for motor power, thermal sensors, and the cable from the Hall sensor module.
 - These cables must be fixed in position on the carriage.
 - · High-flex rated extender cables must be connected from a bulkhead on the carriage to the drive through a suitable cable track. Kollmorgen provides the drive mating connectors, but does not offer the extension cables.
- All cables must be strain-relieved properly and fixed on one end of the cable track.
- The cable track must not bend tighter than the high-flex extender cables' minimum bend radius.

6 Mechanical Installation

Review this information for the installation method appropriate for the application:

- "Ironcore Magnet Plate Installation" (→ p. 20)
- "Ironless Linear Motor Installation" (→ p. 24)

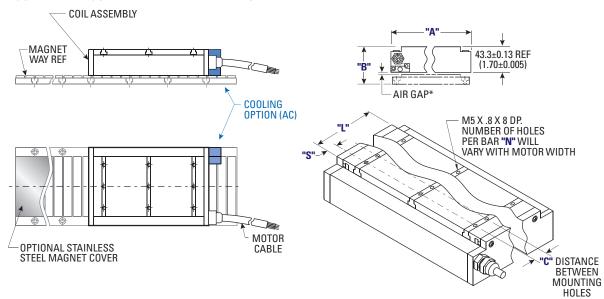
MARNING

- The magnetic field of the magnet ways, as well as the electromagnetic field generated by the coil and magnet way, can prevent pacemakers from functioning properly.
 - Avoid contact with magnetic fields as much as possible.
- Power magnetic fields and mechanical forces generated from magnet plates can create hazards to personnel through chipping, shattering, or pinching upon impact.
- Whenever possible, leave the protective cardboard and steel plates on the magnets.
- Keep hand tools and equipment away from the magnet plate.
- Use extreme caution when installing the coil assembly over the magnet plate.

6.1 Ironcore Linear Motor

The Kollmorgen Ironcore (IC) Linear Motor is best suited for applications requiring high acceleration of large masses or maintaining stiffness during machining or process forces.

- Due to the steel laminations incorporated in the coil assembly, this type of motor has high magnetic attractive forces ranging from over 300 pounds up to many tons.
- Special attention must be paid to this attractive force when designing stages for this type of motor.


6.1.1 Ironcore - Typical Installation Specifications

Dimension B determines the air gap.

- The airgap must be installed correctly to ensure proper operation of the motor.
- Failure to install the airgap correctly could result in equipment malfunction.
- A large airgap can reduce motor performance.
- A small airgap may cause the coil to contact and damage the magnet way.

ICxx Typical Coil Type Dimensional Drawings and Data

ICxx Dimensional Data, Typical Mounting Bar Lengths & Mounting Holes Tabulation

Motor	Coil Width	Height w	/ Air Gap	Spacing Between Holes	Mounting Bar Length	# Holes		1			
Coil Type	"A"	"B" w/ mag. cvr	"B" w/o mag. cvr	"C"	"L"	"N"	"S"	2			
ICxx030	65.0 (2.559) ± 1.0 (.04)			16.0 (0.630)	30 (1.18)	2	7.0 (0.28)				
ICxx050	85.0 (3.346) ± 1.0 (.04)		58.3±0.1	36.0 (1.417)	50 (1.97)	2	7.0 (0.28)				
ICxx075	110.0 (4.331) ± 1.0 (.04)		(2.307±.004)	(2.307±.004)	(2.307±.004)	(2.307±.004)	(2.307±.004) (2.295±.004)	32.0 (1.260)	75 (2.95)	3	5.5 (0.21)
ICxx100	135.0 (5.315) ± 1.0 (.04)			36.0 (1.417)	100 (3.94)	3	14.0 (0.55)				
ICxx150	185.0 (7.283) ± 1.5 (.06)			32.0 (1.260)	150 (5.91)	5	11.0 (0.43)				
ICxx200	235.0 (9.252) ± 1.5 (.06)	60.6±0.1 (2.386±.004)	60.6±0.1		60.3±0.1 (2.374±.004)	36.0 (1.417)	200 (7.87)	6	10.0 (0.39)		
ICxx250	285.0 (11.22) ± 1.5 (.06)	(2.5002.001)	(2.57 12.00 1)	38.0 (1.496)	250 (9.84)	7	11.0 (0.43)				

Note:

1. Dimensions in mm (inches)

2. Tolerances (unless otherwise specified):

No decimal places: ±0.8 One decimal place: ±0.1 Two decimal places: ±0.05

Dimensions in mm (in.)

*AIR GAP:

A suitable air gap should be set to ensure that the feeler gauge of the corresponding size can pass smoothly between the coil and the magnetic circuit.

For the magnetic circuit without cover, the air gap is 0.8 ± 0.1 mm

For the covered magnetic circuit, the air gap is 0.55 ± 0.1 mm

(Stainless steel cover plate thickness 0.25mm)

6.1.2 Ironcore Magnet Way - Typical Installation Specifications

Ironcore and Ironless linear motor assemblies may be configured using a single, or multiple magnet ways.

Since magnet plates are sold in standard incremental sizes, it is possible to have a number of magnet plates installed together within one linear stage.

6.1.2.1 Multiple Magnet Assemblies

Magnet Way widths correspond to the mating coil assembly width.

- Magnet Way assemblies are modular and come in standard lengths: 64, 128, 256, 512 mm.
- Multiple magnet assemblies can be installed to obtain the desired length.

Figure 8-1 shows multiple mount assemblies.

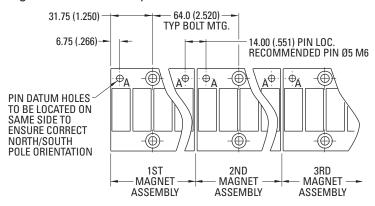
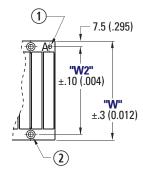
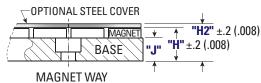



Figure 8-1: Mount Multiple Assemblies

6.1.2.2 MCxxx Magnetic Way Typical Dimension Data


MCxxx Magnetic Way Typical Dimensions

Magnet Way	Assembly Width	Mounting Hole Width	Base Height	Base + Magnet Height	Total Height with Cover
Type	"W"	"W2"	"J"	"H"	"H2"
MC030xxxx	60.0 (2.362)	45.0 (1.772)			
MC050xxxx	80.0 (3.150)	65.0 (2.560)	100(0304)	141(0 555)	144(0 550)
MC075xxxx	105.0 (4.134)	90.0 (3.544)	10.0 (0.394)	14.1 (0.555)	14.4 (0.556)
MC100xxxx	130.0 (5.118)	115.0 (4.528)			
MC150xxxx	180.0 (7.087)	165.0 (6.496)			
MC200xxxx	230.0 (9.055)	215.0 (8.464)	12.0 (0.472)	16.1 (0.634)	16.4 (0.645)
MC250xxxx	285.0 (11.22)	270.0 (10.63)			

Dimensions in mm (in.)

- Ø5.110-5.135 (.201-.202) THRU 2 PL. MARKED "A" FOR RECOMMENDED 5mm M6 LOCATING PINS
- 2. Ø6.6 (.260) THRU C'BORE Ø11.0 (.433) X 6.2 (.246) DP. 2 PL. LOCATED AS SHOWN. RECOMMENDED MOUNTING HARDWARE: M6 SOC. HD. CAP DIN 912 (1/4" SOC. HD. CAP SCREW)

6.1.2.3 MCDxxx Magnetic Way Typical Dimension Data

MCDxxx Magnet Way Typical Dimensional Data

Туре	"W" ±.25 (.010)	"W2" ±.08 (.003)	"J"	�H"±.25 (.010)
MCD0300xxx001	55.0 (2.165)	45.0 (1.772)		
MCD0500xxx001	75.0 (2.953)	65.0 (2.559)	4.0 (.157)	8.25 (.325)
MCD0750xxx001	100.0 (3.937)	90.0 (3.543)	4.0 (.157)	0.23 (.323)
MCD1000xxx001	125.0 (4.921)	115.0 (4.528)		

Dimensions in mm (in.)

- Ø5.110-5.135 (.201-.202) THRU 2 PL. MARKED "A" FOR RECOMMENDED 5mm M6 LOCATING PINS
- 2. Ø4.7 (.185) THRU C'BORE Ø8.3 (.327) X 1.6 $^{+0.25}_{-0.00}$ (.063) DP. 2 PL. LOCATED AS SHOWN. RECOMMENDED MOUNTING HARDWARE: M4 SOCKET CAP DIN 912 8-32 SOCKET CAP SCREW

STAINLESS STEEL COVER BASE "J" "H"

MAGNET WAY

MCDxxx-xxxx

6.1.3 Ironcore Magnet Plate and Coil Assembly Mounting

- Remove all power to the motor and controlling device.
- Gather additional personnel and suitable lifting devices, if needed.

- Due to the high magnetic attractive forces of the magnet way, exercise extreme caution during handling, installation and operation to avoid damage to equipment or personnel injury.
- Always keep Ironcore coils and other magnetic metal items at a safe distance from magnet ways.

6.1.3.1 Mounting and Design Considerations

NOTE

The magnet way assembly is bolted to the base plate portion of the stage.

- The coil assembly and the encoder sensor are mounted to the stage's carriage component.
- The stage's clearance (or cavity) for the linear motor components must be designed to provide adequate clearance for the motor's maximum outline dimensions.

Design the stage and carriage to maintain the prescribed gap between the coil and magnet way.

- If shimming is required to achieve the correct air gap, use shim stock that is thermally and electrically conductive.
- Verify the shims cover the full mounting surface of the coil to preserve heat-sinking.

Procedure

- 1. The magnet way mounting surface must be flat relative to the carriage travel within 0.127mm (0.005 inches).
- 2. To install the magnet way properly, it is recommended that the stage base include precision 5mm dowel pins.
- 3. If multiple magnet ways are designed into the stage, locating dowel pins should be installed to position and align each magnet way assembly.
 - See "Ironcore Multiple Magnet Installation Diagram" (→ p. 21).

NOTE

- The high magnetic attractive forces of the motor can cause the carriage plate to deflect.
 - These attractive forces must be considered in the design stage.
- The attractive forces must be considered when selecting the linear rails and bearings for the stage.
 - The bearings must be able to withstand the preload supplied by the motor.
 - For high speed applications, the maximum speed and acceleration must be factored into the bearing selection.

6.1.4 Ironcore Magnet Plate Installation

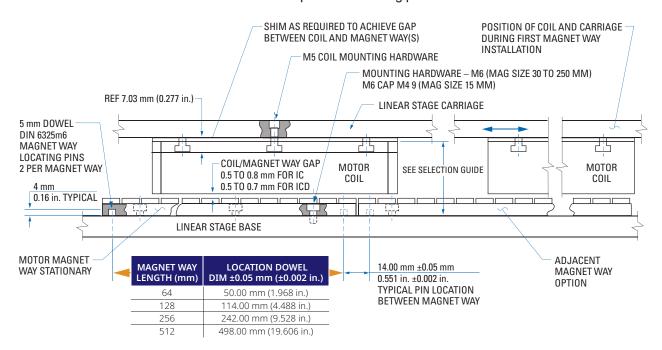
- Due to the high magnetic attractive forces of the magnet way, exercise extreme caution during handling, installation and operation to avoid damage to equipment or personnel injury.
- Always keep Ironcore coils and other magnetic metal items at a safe distance from magnet ways.

Procedure

- 1. Lightly stone and thoroughly clean the mounting surfaces on the stage for both the coil assembly and magnet plates.
- 2. Use the M5 screws to securely mount the coil assembly to the carriage. See "Ironcore Multiple Magnet Installation Diagram" (→ p. 21).
- 3. Push the carriage to one end of travel to clear the first magnet way location.
- 4. Install the first magnet way assembly on the 5 mm locating dowel pins of the stage's mounting surface.

NOTE

- The locating pins ensure the magnet way is parallel to the carriage travel and that the critical magnet spacing between magnet way sections is met.
- The dowel locating pins ensure the magnet plates are lined up with the correct polarity so the North - South - North - South progression is maintained between separate plates.
- 5. Carefully and slowly move the carriage over the magnet plate.
- 6. Using soft non-magnetic shim stock, check the air gap between the top of the magnets and the coil.
- 7. Set a suitable air gap to ensure the feeler gauge of the corresponding size can pass smoothly between the coil and the magnetic circuits.


- The air gap is:
 - Magnetic circuit without stainless steel cover: 0.8 ± 0.1mm.
 - Covered magnetic circuit: 0.55 ± 0.1mm.
- The stainless steel cover plate thickness is 0.25mm.
- 8. Move the carriage away from the magnet way to correct the clearance gap.
- 9. Remove the coil assembly.
- 10. Place the required shim stock between the coil mounting surface and the carriage.

- The shim stock cannot be made of plastic.
- The shim stock is needed to maintain heat-sinking between motor coil and carriage assembly.
- 11. Move the coil over the magnet way to recheck the air gap.
- 12. When the air gap is properly set, move the carriage to the end of travel over the mounted magnet plate to install the remaining magnet ways.

6.1.4.1 Ironcore Multiple Magnet - Installation Diagram

This is the recommended Ironcore installation with precision locating pins.

6.2 Ironless Linear Motor

The Kollmorgen Ironless (IL) Linear Motor is best suited for applications that require very high positional accuracy or precise constant velocity movement.

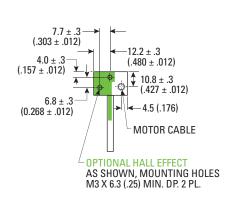
The motor offers the advantages of light mass, zero cogging force, and absolutely no magnetic attraction.

6.2.1 Ironless - Typical Dimensions

ILxx Typical Dimensions

ILxx Dimensional Data

	Coil Width	Typ. Assy. Width	Typ. Assy. Width
Motor Coil	"A" ILxx015: +0.5 (0.020) ILxx030-100: +0.7 (0.027) -0.3 (0.012)	"B" ±.6 (0.024)	"T" ±.4 (0.016)
ILxx015	42.30 (1.665)	52.10 (2.051)	25.40 (1.000)
ILxx015 T	42.30 (1.665)	52.10 (2.051)	21.70 (0.854)
ILxx030	57.30 (2.256)	78.50 (3.091)	25.40 (1.000)
ILxx030 L	57.30 (2.256)	67.30 (2.650)	25.40 (1.000)
ILxx050	77.30 (3.043)	98.50 (3.878)	25.40 (1.000)
ILxx050 L	77.30 (3.043)	87.30 (3.437)	25.40 (1.000)
ILxx075	102.30 (4.028)	123.50 (4.862)	30.00 (1.181)
ILxx100	127.30 (5.012)	148.50 (5.846)	34.00 (1.339)


Dimensions in mm (in.)

Note:

- 1. Dimensions in mm (inches)
- 2. Tolerances (unless otherwise specified):

No decimal places: ±0.8 One decimal place: ±0.1 Two decimal places: ±0.05

ILxx Typical Cable Port and Hall Mount Dimensions

6.2.2 Ironless Magnet Way and Coil Assembly Mounting

⚠ CAUTION

- Remove all power to the motor and controlling device.
- · Gather additional personnel and suitable lifting devices, if needed.

6.2.2.1 Mounting and Design Considerations

⚠ CAUTION

- The stage should be designed to center the coil in the magnet way with provisions for adjustment in order to maintain proper coil to magnet clearance.
- The relationship of the moving coil relative to the stationary magnet way is critical.
 - The magnet way-mounting surface should be parallel within 0.005 inches total runout with respect to the coil/carriage travel.
- The setup gap between the coil surface and the magnet face surface is required, regardless of motor mounting configuration (bottom or side mount).

See:

- "Ironless Linear Motor Installation Diagram" (→ p. 25)
- "Ironless Typical Side Mounting Installation Diagram" (→ p. 26)
- H1-Installation Guidelines

- Precision 5mm dowel pins in the stage base are recommended to position the magnet way accurately.
- · Two dowels are required for each magnet way.

NOTE

- Typically, the coil assembly and the encoder reader head are mounted to the same plate.
 - It is a good practice to provide a means to independently align both the reader head and the coil assembly.
- The bracket the encoder reader head is mounted on must be sturdy enough to prevent any vibrations or movement during operation.
- The reader head must be critically adjusted for height, rotation, and perpendicularity.

6.2.2.2 Coil Installation

Top Installation

If the coil is installed from the top (opposite the coils), the coil mounting holes should be slotted to allow for setting up the required airgap between the coil and inside the magnet way.

Side Installation

- If the coil is side mounted, place metal shims between the coil and mounting surface to adjust the coil position and to set up the prescribed airgap between the coil and the magnet surface in the magnet way.
 - If shimming is required to achieve the correct air gap, use shim stock that is thermally and electrically conductive.
 - Verify the shims cover the full mounting surface of the coil to preserve heat-sinking.
- The setup airgap should be done on the reference side of the magnet way.
 - The reference side is the side contacting the stage-mounting surface.

6.2.3 Ironless Linear Motor Installation

- 1. Lightly stone and thoroughly clean the mounting surfaces on the stage for both the coil assembly and magnet channel.
- 2. Check the parallelism of the magnet way-mounting surface to the carriage/coil travel. The total runout of the surface must be within 0.005 inches to provide working clearance between the magnet way and the coil.

NOTE

- It is not necessary to consider the magnetic polarity in the linear stage with multiple magnet ways.
- · Magnetic orientation is not required.
- Install the magnet ways using two 5 mm locational dowels (recommended).See:
 - "Ironless Linear Motor Installation Diagram" (→ p. 25)
 - "Ironless Typical Bottom Mounting Installation Diagram" (→ p. 26)
 - "Ironless Typical Side Mounting Installation Diagram" (→ p. 26)

NOTE

- Two pins are required per magnet way.
- The pin location between magnet ways is 1.811 ± 0.002 inches for all magnet way lengths.
- For pin location dimensions, see "Ironcore Magnet Way Typical Installation Specifications" (→ p. 18).
- 4. The shims used for the air gap setup clearances between the side surface of the coil and either magnet surface of the magnet way should be:
 - 0.020 to 0.025 inches for 75 and 100 mm magnet ways.
 - 0.010 to 0.015 inches for all smaller sizes.
- 5. The shims used for the setup clearance dimension between the top of the magnet way and the coil should be 0.050 inches.
 - See the "Ironless Linear Motor Installation Diagram" (→ p. 25).
- 6. After installation of the coil and the magnet ways, slowly move the carriage/coil through the magnet ways to examine the clearances.
- 7. If necessary, re-shim or re-position the coil.

6.2.3.1 Ironless Linear Motor Installation Diagram

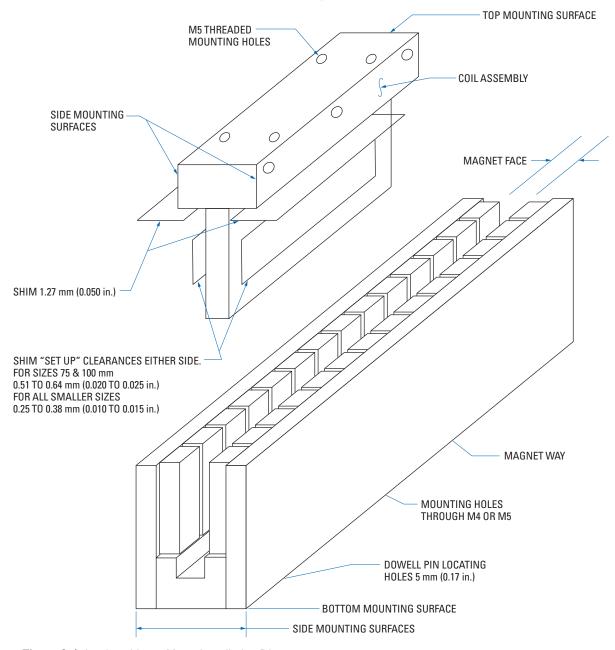


Figure 9-1: Ironless Linear Motor Installation Diagram

6.2.3.2 Ironless Typical Bottom Mounting Installation Diagram

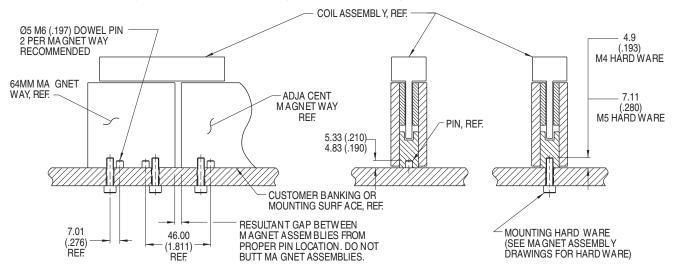


Figure 9-2: Typical Bottom Mounting Installation Diagram

6.2.3.3 Ironless Typical Side Mounting Installation Diagram

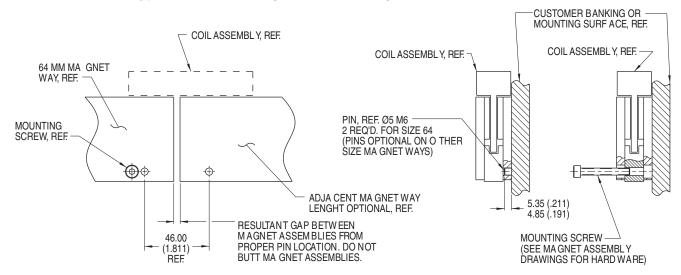


Figure 9-3: Typical Side Mounting Installation Diagram

7 Electrical Installation

7.1	Electrical Installation Guide	28
	7.1.1 Shields	28
7.2	Earth Ground (E1)	28
7.3	Cabling	29
7.4	Wiring the Motor Drive	29
7.5	DDL to Drive Cable Connection Diagrams	30
	7.5.1 DDLto AKD / AKD2G Connection Via High-Flex Extension Cables	30
	7.5.2 DDL to AKD2G / AKD Pinout Configurations	31
7.6	Encoder Sensor and Scale Setup	33
7.7	Back EMF / Hall Signal Phasing	34
	7.7.1 Wiring	34
	7.7.2 Verify BEMF Voltage and Hall Sensor Alignment	34
	7.7.3 Hall Phase Diagram	35
	7.7.4 Ironcore and Ironless Commutation Diagram	35
7.8	Set Up the Motor in WorkBench	36
	7.8.1 Wake and Shake Routine	36
7.9	Encoder Setup and Verification in WorkBench	37
	7.9.1 Configure the Encoder Resolution	38
	7.9.2 Encoder Resolution	39
	7.9.3 Verify the Encoder Direction	40
	7.9.4 Verify the Motor Feedback Resolution	41
7.10	0 Verifying the Motor Setup	42

7.1 Electrical Installation Guide

NOTE

- Only staff qualified and trained in electrical engineering are allowed to wire up the motor.
- Use the wiring diagrams and connector pinout in the servo drive's installation guide to wire the motor.

- · Always verify the motors are de-energized during assembly and wiring.
 - No voltage may be switched on for any piece of equipment that will be connected.
- Risk of death or severe injury from touching exposed contacts!
 - Verify the switch cabinet remains turned off (barrier, warning signs etc.).
 - The individual voltages will only be turned on again during setup.
- Risk of electric shock!
 - Never undo the electrical connections to the motor while it is energized.
 - In unfavorable circumstances, electric arcs can arise causing harm to people and damaging contacts.
- A dangerous voltage, resulting from residual charge, can be still present on the capacitors up to 10 minutes after switch-off of the mains supply.
 - Even when the motor is not rotating, control and power leads may be live.
- Measure the DC-link voltage and wait until it has fallen below 60V_{DC}.

NOTE

- The ground symbol (,,), used in the wiring diagrams, indicates that you must provide an electrical connection, with as large a surface area as possible, between the unit indicated and the mounting plate in the switch cabinet.
- This connection is to suppress HF interference and must not be confused with the protective earth (PE) symbol () (protective measure to EN 60204).
- · Verify the servo drive and motor match each other.
 - Compare the rated voltage and rated current of the unit.
 - · Complete the wiring according to the wiring diagram in the servo drive instruction manual.
- Install all cables carrying a heavy current with an adequate cross-section, as per EN 60204.

NOTE

- In case of long motor cables (>25m), and dependent on the type of the servo drive used, a motor choke (3YL or 3YLN) must be switched into the motor cable.
- See the servo drive's instruction manual and accessory manual.
- Verify there is proper earthing of the servo drive and the motor.
 - Use the correct earthing and EMC-shielding according to the servo drive's instruction manual.
 - Earth the mounting plate and motor casing.

7.1.1 Shields

- · Connect shields to shielding terminals or EMC connectors at both ends.
- · Connect shielding at both ends.
- Connect up all shielding via a wide surface-area contact (low impedance) and metallized connector housings or EMC-cable glands.

7.2 Earth Ground (E1)

- A solid low-impedance connection to this product must be established.
- · All shields must tie to this net.
- One or more screw holes for mounting the board are also connected to this net.

7.3 Cabling

All Kollmorgen Platinum DDL brushless motors are wired using the same convention.

See the servo drive's documentation for the connector pinout.

- Before the power supply is connected to the motor, position two wood blocks on either side of the carriage assembly so the carriage can only travel a few inches in either direction.
 - These blocks ensure the carriage cannot accelerate to dangerous speeds if the motor is improperly connected.
- Failure to add these blocks during the setup procedure puts the equipment and personnel at risk!
- You can remove these blocks after setup after the carriage is proven to accelerate and decelerate in a controlled manner.

Motor, Hall sensor, and thermal sensor leads are not rated for high-flex operation so they should be fixed in place.

- High-flex extension cables should be connected to leads coming from the motor power, Halls, and thermal leads, and run through the cable track.
- These can then be connected to the drive using the appropriate cable connectors that match up with the drive connectors.
 - See "DDL to Drive Cable Connection Diagrams" (→ p. 30).

7.3.0.1 Cable Connection

- Route power cables as separately as possible from control cables.
- · Connect the feedback device.
- · Connect the motor cables.
- · Install motor chokes (if applicable) close to the drive.

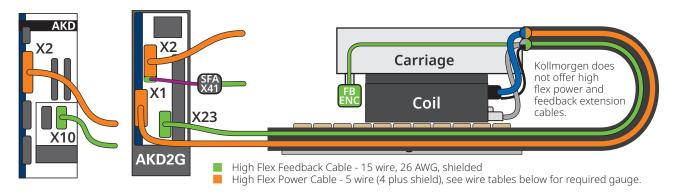
7.3.0.2 Cable Material Requirements - Capacity

- Motor cable: Less than 150 pF/m.
- Resolver cable: Less than 120 pF/m.

7.4 Wiring the Motor Drive

Install and wire (e.g., power, STO, etc.) the motor drive per the drive's installation manual.

Use these links for Kollmorgen drive installation manuals.


- Kollmorgen AKD Documentation
- Kollmorgen AKD2G Documentation

Only connect the motor's power leads to the drive after the motor is set up in the drive's software via WorkBench.

7.5 DDL to Drive Cable Connection Diagrams

7.5.1 DDLto AKD / AKD2G Connection Via High-Flex Extension Cables

 \mbox{AKD} and $\mbox{AKD2G}$ power connectors are available through Kollmorgen. Please contact Customer Support for more information.

Wiring Specification Tables for High Flex Extension Cables

Motor Wire Ta SEE TABLE BE LOW FO	Hall Effect Wire Table 26 AWG 6.0 DIA (.24")			
Wire Color	Function	Pin #	Color	Function
-	-	1	Red	+5 VDC
Red	U	2	Orange	S1
White	V	3	Yellow	S2
Black	W	4	Brown	S3
Grn/Yel	GND	5	Black	Return
Violet	Shield	Shell	Shield	Shield

Thermal Protection Wire Table Cable Diameter 3.8 (.15 in.)						
Туре	Thermostat Thermistor					
Wire Gauge 22 AWG 26 AWG			AWG			
Code	TS	TR - PTC	T1 - PT1000			
Wire/Pin#		Color				
1	Black/White	Black/White	Blue			
2	Black/White	Black/White	Blue			

Notes:

PTC - Transition point 120° C (IC/ICD) / 90° C (IL) PT1000 - Linear 180° C max. (IC only)

Note: Ground and shield connection at shell: first make/last break

IC WIRE TABLE NON-COOLED				
WINDING CODE	AWG	APPROX. CBL. DIA.		
A1	18	6.69 mm (.265 in)		
A2	18	6.69 mm (.265 in)		
A3	14	7.96 mm (.315 in)		
A5	18	6.69 mm (.265 in)		
A6	14	7.96 mm (.315 in)		
A7	12	8.97 mm (.355 in)		

IC WIRE TABLE COOLED (AC)				
WINDING CODE	AWG	APPROX. CBL. DIA.		
A1	18	6.69 mm (.265 in)		
A2	14	7.96 mm (.315 in)		
A3	12	8.97 mm (.355 in)		
A5	14	7.96 mm (.315 in)		
A6	12	8.97 mm (.355 in)		

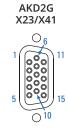
ICD WIRE TABLE				
WINDING CODE	AWG	APPROX. CBL. DIA.		
ALL (A1 - A4)	22	6 18 mm (245 in)		

IL WIRE TABLE		
WINDING CODE	AWG	APPROX. CBL. DIA.
ALL (A1,A2,A3,A4)	18	6.69 mm (.265 in)

NOTE

The Smart Feedback Adapter (SFA) X41 port accepts the same HD15 male cable connector as the AKD X10 and AKD2G X23 ports.

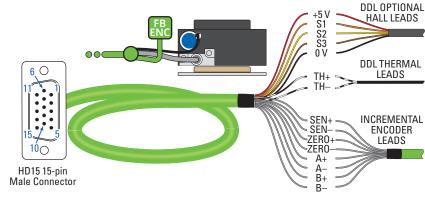
7.5.2 DDL to AKD2G / AKD Pinout Configurations


for more information.

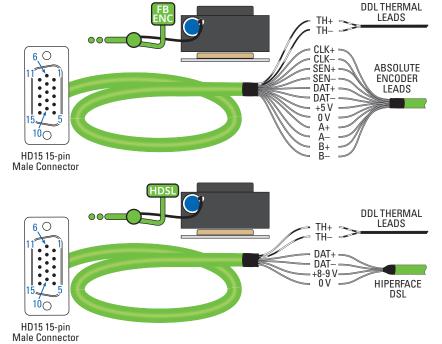
DDL to AKD2G / AKD Power Connection AKD **X2** MOTOR LEADS • Ŵ GŇD PΕ O AKD and AKD2G power connectors are available through Kollmorgen. AKD2G AKD X10 Please contact Customer Support X1/X2 X2

DDL to AKD2G / AKD Hall, Thermal Device, and Feedback Connections

AKD/AKD2G Connector Pinouts to DDL Optional Hall Leads


Hall U 1 **S1** Hall V S2 2 Hall W 3 8 TH+ TH+ 9 TH-TH-10 +5 V +5 V 0 V Return

AKD X10 HD15 Female Connector

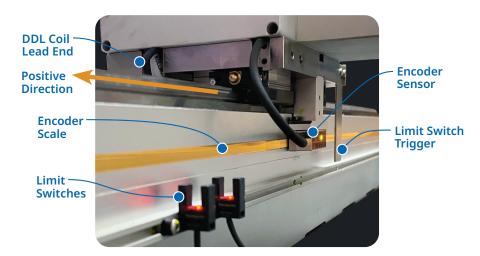

Hall, Thermal Device, and Optional Feedback Leads to HD15 15-pin AKD/AKD2G Mating Connector

AKD2G

AKD/AKD2G Connector Pinouts to Feedback Leads

- If supplied, both inner and outer shield of the encoder cable are to be terminated to the connector shell.
- Verify the encoder wire function before powering system.Failure to verify the pin-out configuration may result in damage to the encoder, amplifier, or both.

7.6 Encoder Sensor and Scale Setup


- Verify the encoder counts positive in the positive direction!
- The positive direction is the direction the motor coil's lead-exit end points to.

- Install the encoder scale and sensor following the manufacturer's installation instructions.
- If using a Kollmorgen drive, follow this procedure to set up your encoder.

Procedure

- Connect the encoder cable to drive using the "DDL to Drive Cable Connection Diagrams" (→ p. 30).
 Note the encoder pinout table.
- 2. Set the feedback type in WorkBench so DC power is applied properly to the encoder.
- 3. Follow the encoder manufacturer's sensor calibration and setup procedures.
- 4. Setup the feedback parameters in WorkBench.
- 5. Verify these are correct:
 - Encoder scaling and direction.
 - · Hall sequence.

7.7 Back EMF / Hall Signal Phasing

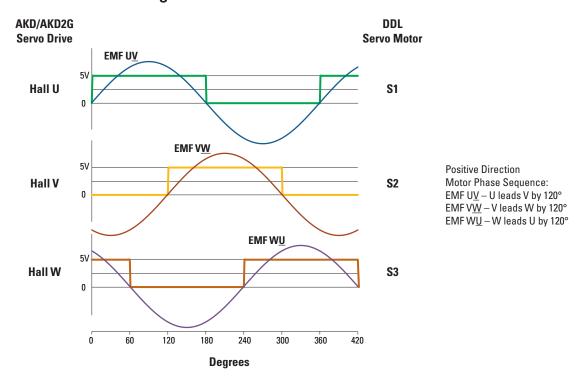
All Kollmorgen Platinum DDL brushless motors are wired using the same convention.

- · Verify the Back EMF (BEMF) and Hall effect signals align.
- See the "Hall Phase Diagram" (→ p. 35).

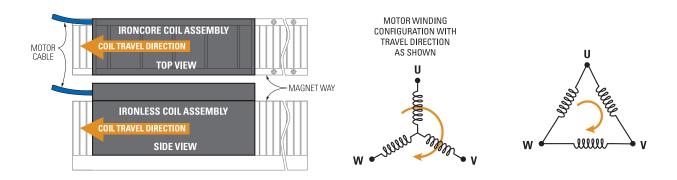
7.7.1 Wiring

All Kollmorgen Platinum DDL brushless motors are wired using the same convention.

- Phase UV leads phase VW by 120° with the cable exit leading.
 - · See either:
 - "Hall Phase Diagram" (→ p. 35)
 - "Ironcore and Ironless Commutation Diagram" (→ p. 35)
- The term UV is defined as the back EMF (BEMF) voltage produced by the motor as it moves over the
 magnet way and can be veiwed and measured by connecting the probe of an oscilloscope to motor phase
 U and the probe return to motor phase V
- You can observe the BEMF of the motor with a two channel storage oscilloscope.


7.7.2 Verify BEMF Voltage and Hall Sensor Alignment

- 1. If the motor power leads are connected to the drive, verify the drive is disabled.
- 2. Disconnect the motor leads.
- 3. Connect the Channel 1 probe to motor phase U, reference to phase V.
- 4. Connect the Channel 2 probe to motor phase W, reference to phase V.
- 5. Set both inputs to DC.
- 6. Invert the Channel 2 input.
- 7. Push the carriage back and forth by hand.
- 8. Adjust the scope's vertical scale so that the waveform is fully displayed without clipping
- 9. Adjust the scope's horizontal scale so that several full sine cycles can be displayed on the screen at once.
- 10. Push the carriage in the positive direction, so the motor cable exit is leading.
- 11. Stop the scope recording to capture this waveform.
 - The positive direction is shown in the "Ironcore and Ironless Commutation Diagram" (→ p. 35).


You will see two sinusoidal waveforms on the scope.

- These waveforms represent the BEMF voltage of motor phases UV and VW.
- Notice that phase UV (channel 1) leads phase VW (channel 2) by 120°.
- This agrees with the waveforms in the "Hall Phase Diagram" (→ p. 35).
 - By monitoring the Hall effect signals, you can find a pair of motor phases aligned with each individual Hall effect.

7.7.3 Hall Phase Diagram

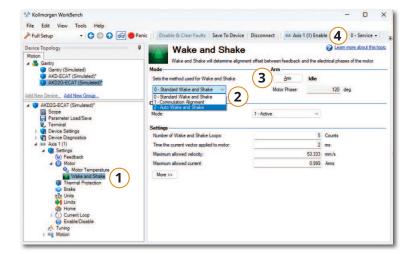
7.7.4 Ironcore and Ironless Commutation Diagram

7.8 Set Up the Motor in WorkBench

Follow the procedure in the AKD or AKD2G installation manual to select your motor model.

- If your motor cannot be found in the WorkBench selection database, set it up as a custom motor following the procedure in the drive's installation manual.
- If you require additional assistance, contact Kollmorgen Customer Service to ensure the motor is set up correctly.
 - See "Support and Services" (→ p. 91).
- If the feedback device is an absolute encoder, or if Hall sensors are used, the motor phase = 120.
- If the feedback device is not an absolute encoder, run the "Wake and Shake Routine" (→ p. 36) to find the
 motor phase.

- The motor parameters must be set up properly in the drive's software before the axis is enabled.
- The motor can enter a runaway condition if certain parameters are incorrect.
- After the motor is setup in WorkBench, connect the motor leads to the drive connector per the cable connection diagram
- · Verify UVW and PE connect to the correct terminals on the drive!


7.8.1 Wake and Shake Routine

The Wake and Shake routine determines the alignment offset between feedback and the electrical phases of the motor and finds the MOTOR.PHASE offset value.

- When commissioning the linear motor system, the Wake and Shake routine should be performed in several different positions of the motor's travel.
- The MOTOR.PHASE values should be no more than 5 degrees different in each position.

In WorkBench, complete this procedure:

- 1. In the navigation tree, select Motor > Wake and Shake.
- 2. In the drop-down menu under **Mode**, select **2-Auto Wake and Shake**.
- 3. Click the Arm button.
- 4. Click **Enable** for the appropriate axis in the WorkBench toolbar.

The motor may shake during the phase seeking process. Please ensure the safety of the operating environment before proceeding.

7.9 Encoder Setup and Verification in WorkBench

This section is the process of configuring the feedback resolution and verifying proper setup.

7.9.1 Configure the Encoder Resolution	38
7.9.2 Encoder Resolution	39
7.9.3 Verify the Encoder Direction	40
7.9.4 Verify the Motor Feedback Resolution	41

7.9.1 Configure the Encoder Resolution

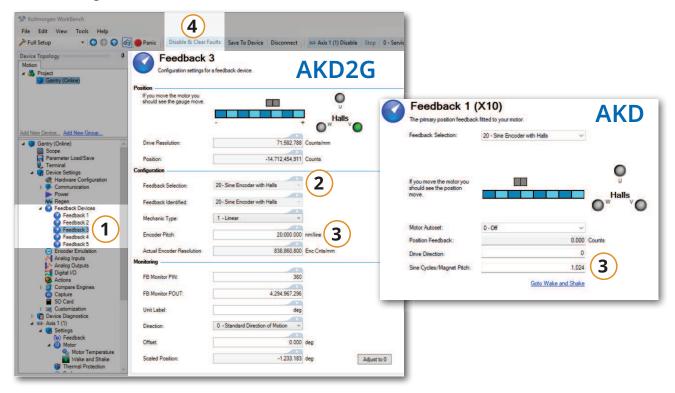


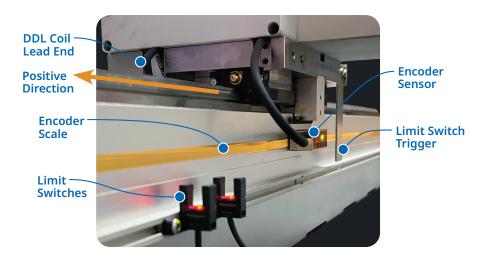
Figure 10-1: DDL Feedback window

- 1. In the navigation tree, select the feedback device you're using to commutate the motor (described in the drive documentation).
- 2. In the Feedback view, select the feedback in the Feedback Selection drop-down menu.
- 3. In the **Sine Cycles/Magnet Pitch** (AKD) or **Encoder Pitch** (AKD2G) text box, set the feedback resolution. See "Encoder Resolution" (→ p. 39).
- 4. In the toolbar, click the **Disable & Clear Faults** button to reset the drive.

7.9.2 Encoder Resolution

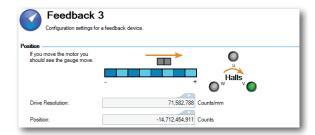
The encoder resolution is based on the magnet pitch of the motor divided by the encoder resolution.

- The units are lines/pitch.
- Kollmorgen DDL motors have a magnet pitch of 32mm.
- Example:
 - If the encoder has a 20 micron pitch, enter (32mm / 20 micron pitch *1000) = 1600 line count (lines per 32mm) as your encoder resolution.
 - For AKD2G values, enter the encoder pitch in nm/line.


This table provides typical encoder resolution figures and their equivalent AKD / AKD2G value.

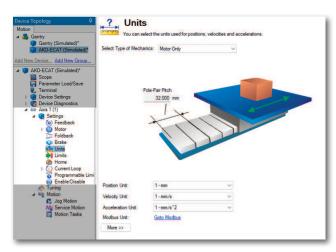
	AKD	AKD2G
Encoder Signal Period (μm)	Sine Cycles/Magnet Pitch	Encoder Pitch (nm/line)
2000	16	2000000
1000	32	1000000
40	800	40000
20	1600	20000
2	16000	2000
1	8000	1000
0.8	40000	800
0.4	80000	400
0.2	160000	200
0.08	400000	80
0.05	640000	50
0.04	800000	40
0.02	1600000	20
0.008	4000000	8
0.004	8000000	4

7.9.3 Verify the Encoder Direction


The direction of the encoder, the motor phase sequence, and Hall sequence must match exactly.

- The Hall phasing must match the motor phasing exactly.
 - Drive direction must be set to zero (DRV.DIR = 0).
- The motor's positive direction is toward the end of the motor, where the wire exits.
 - See "Ironcore and Ironless Commutation Diagram" (→ p. 35).

Procedure


- 1. In the navigation tree, select the feedback device being used to commutate the motor (described in the drive documentation).
- Move your motor forward.If the encoder is properly set up, the indicator in the Feedback view will move left to right as the motor is moved forward.

7.9.4 Verify the Motor Feedback Resolution

- Mark two lines on the magnet way.
 The farther apart they are, the more accurate the test is.
- 2. In the navigation tree, select Units.
- 3. Set the Position Unit to 1 mm.
- 4. Set the Velocity Unit to 1 mm/s.
- 5. Set the Acceleration Unit to 1 mm/s^2.
- Click the More button to show the position feedback counter.
 This field should change when you move the motor from one line to the other.
- 7. Move the motor from one line to the other.
- 8. Verify the position counter changes the correct amount in the correct direction.

 If the position display does not match the distance the motor is moved, confirm the feedback device scale.

7.10 Verifying the Motor Setup

A DANGER

A runaway condition WILL occur here if the:

- BEMF / Hall phasing is incorrect.
- · Motor phase angle is incorrect.
 - Be careful of 180° offsets in motor phase!
 In WorkBench, check the motor phase value in the Terminal pane:
 MOTOR.PHASE for AKD, or AXISx.MOTOR.PHASE for AKD2G
- Motor leads are connected to the drive in the wrong order.
- Encoder is counting in the wrong direction.
 - The encoder **must** count positive in the direction of the motor lead-exit end.

These steps help protect the stage and user in case a runaway condition occurs.

- Set the user overspeed limit to a low value, such as 500mm/s.
- · Reduce the current limit to a low level.

Procedure

- 1. Set drive to torque mode and enable.
- 2. Use service motion in pulse mode to apply a low current level for a short duration. Example: Apply 0.3 Arms for 250ms.
 - The current level should be the minimal amount required to overcome friction.
 - The current should be applied for less than one second.
 - The pulse should verify that a positive current command causes positive motion, so the encoder counts positive and the motor moves towards the cable-exit end.
 - A negative current command causes negative motion.
- 3. Set the drive to Velocity Mode.
- 4. Jog in positive and negative directions at a slow speed to verify correct movement direction.
- 5. Set the drive to Position Mode.
- 6. Jog in positive and negative directions at a slow speed to verify correct movement direction.
- 7. If the motor operates normally in each mode, the system is ready for tuning. You can safely remove the wood blocks.

8 Ironcore DDL Motors - Technical Data

8.1 IC Ironcore - General Specifications	44
8.2 Ironcore DDL Motors (Natural-Cooled / Water-Cooled) - Performance Data	45
8.2.1 IC11 Natural Cooled Motor Series - Performance Data	46
8.2.2 IC11 Water Cooled Motor Series - Performance Data	48
8.2.3 IC22 Natural Cooled Motor Series - Performance Data	50
8.2.4 IC22 Water Cooled Motor Series - Performance Data	52
8.2.5 IC33 Natural Cooled Motor Series - Performance Data	54
8.2.6 IC33 Water Cooled Motor Series - Performance Data	56
8.2.7 IC44 Natural Cooled Motor Series - Performance Data	58
8.2.8 IC44 Water Cooled Motor Series - Performance Data	60
8.3 IC Ironcore - Performance Curves	62
8.3.1 IC Ironcore - Performance Curves, continued	63
8.4 IC Ironcore - Dimensional Drawings	64
8.4.1 IC Ironcore - Dimensional Drawings, continued	65
8.5 MC Magnet Way - Dimensional Drawings and Data	66

8.1 IC Ironcore - General Specifications

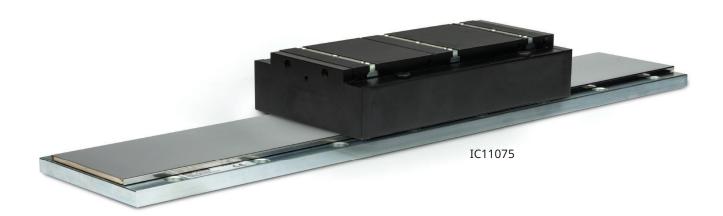
Ironcore DDL linear motors have the highest rated force per size, a high Km motor constant (equals low thermal losses), and low cogging forces without the need for skewing of the magnets. The high thrust forces possible with these motors make them ideal for accelerating and moving high masses, and maintaining stiffness during machining or process forces.

General Specifications

- » Coil frame size 11, 22, 33, 44
- » Coil width 030, 050, 075, 100, 150, 200, 250
- » Low and high-speed coil winding designs fit various application needs
- » Water cooling increased continuous force output in the same profile
- » Low cogging electrical magnetic design for smooth force output

IC11/22/33/44

Peak force range 320 – 12500N Continuous force range 144 – 9620 N Insulation voltage rating 230/400/480VAC


Cooling options Non-cooling and water-cooling

Feedback Optional hall sensor

Thermal Devices Thermostat

Thermistor – PTC Thermistor – PT-1000

Certification UL, CE, RoHS, REACH

8.2 Ironcore DDL Motors (Natural-Cooled / Water-Cooled) - Performance Data

8.2.1 IC11 Natural Cooled Motor Series - Performance Data	46
8.2.2 IC11 Water Cooled Motor Series - Performance Data	48
8.2.3 IC22 Natural Cooled Motor Series - Performance Data	50
8.2.4 IC22 Water Cooled Motor Series - Performance Data	52
8.2.5 IC33 Natural Cooled Motor Series - Performance Data	54
8.2.6 IC33 Water Cooled Motor Series - Performance Data	56
8.2.7 IC44 Natural Cooled Motor Series - Performance Data	58
8 2 8 IC44 Water Cooled Motor Series - Performance Data	60

45

8.2.1 IC11 Natural Cooled Motor Series - Performance Data

	Symbol	Tol	Units	IC11	-030	IC11	-050	IC11	-075	IC11	-100
Winding Code ②	- J			A1	A5	A1	A5	A1	A5	A1	A5
Rated Performance				711	7 1.0	711	7.0	711	7.0	711	7.0
Max Rated Voltage	Un		VAC	480	230	480	400	480	480	480	480
Max Continuous Force @ Tmax			N	14	40	2	56	40	02	5.5	54
① ⑤	Fc		lbf		1.5		58		10		25
Motor constant	Km		N/√W	0.3	322	0.3	313	0.3	323	0.3	339
Continous Current @ Tmax	Ic		Arms	3.97	6.9	4.35	7.5	4.56	7.9	4.71	8.2
			N	369	369	641	642	982	980	1324	1323
Peak Force @ Tmax ⑤	Fp		lbf	83	83	144	144	221	220	298	297
Peak Current @ Tmax ⑤	qI		Arms	13.9	24.0	15.2	26.4	16.0	27.6	16.5	28.5
Private and Consider	Fall		N	129	112	246	230	394	380	547	534
Rated force @ Speed ⑤	Frtd		lbf	29	25.2	55	52	89	85	123	120
Rated Speed	Nrtd		m/s	8.4	13.5	4.86	8.7	3.15	5.7	2.25	4.14
Peak Force @ Tmax ⑤	Гп		N	369	-	641	642	982	980	1324	1323
reak roice w iiilax o	Fp		lbf	83	-	144	144	221	220	298	297
Peak Current @ Tmax ⑤	Ip		Arms	13.9	-	15.2	26.4	16.0	27.6	16.5	28.5
Rated force @ Speed ⑤	Frtd		N	112	-	229	189	380	336	534	496
<u> </u>			lbf	25.2	-	51	42.5	85	76	120	112
Rated Speed	Nrtd		m/s	13.5	-	8.8	13.5	5.8	10.3	4.23	7.6
Peak Force @ Tmax ③	Fp		N	369	-	641	-	982	980	1324	1323
Park Comment O Transport	<u>'</u>		lbf	83	-	144	-	221	220	298	297
Peak Current @ Tmax ⑤	Ip		Arms	13.9	-	15.2	-	16.0	27.6 302	16.5	28.5 470
Rated force @ Speed ⑤	Frtd		N lbf	24.5	-	217 48.8	-	370 83	68	526 118	106
Rated Speed	Nrtd		m/s	13.5	_	10.7	_	6.9	12.5	5.1	9.2
Electrical Specifications ②	TVICA		111/3	13.3		10.7		0.5	12.3	3.1	3.2
Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	1.95	0.66	2.68	0.9	3.6	1.21	4.51	1.51
Electrical Inductance L-L	L	±20%	mh	17.8	5.9	28.0	9.3	40.8	13.6	54	17.8
	_		N/Arms	35.8	20.7	60	34.5	90	52	119	69
Force Constant @ 25°C	Kf	±10%	lbf/Arms	8	4.65	13.5	7.8	20.2	11.7	26.8	15.5
			Vpeak/m/s	29.3	16.9	48.8	28.2	73	42.2	98	56
Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/in/sec	0.74	0.43	1.24	0.72	1.86	1.07	2.48	1.43
Figures of Merit and Additional	Data										
Electrical Time Constant	Te		ms	9	.1	10	0.4	11	1.3	11	.9
Max. Theoretical Acceleration ③	Amax		g's	15	5.1	18	3.2	20).1	20).8
			kN	1	.4	2	.4	3	.7	4	.9
Magnetic Attraction	Fa		lbf	3	15	5-	40	83	32	11	02
Thermal Resistance ④	Rthw-a		°C/Watt	1.	64	0.	99	0.	67	0	.5
Max. Allowable Coil Temp. 4	Tmax		°C				1:	30			
Mechanical Specifications											
· ·		. 1 50/	kg	2.5		3	.6		5	6	.5
Coil Assembly Weight	Mc	±15%	lbs	5.5		7	.9	11		14.3	
Magnet Way Type (MCxxx)				0:	30	0	50	0 075		10	00
	N 4	1150/	kg/m	5	.4	7	.5	10	0.1	12	2.7
Magnet Way Weight	Mw	±15%	lbs/in	0.3	302	0.	42	0.	57	0.	71
	l	1	'	0.502		0.42				-····	

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

③ Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

① Please see the application sizing section for more details on sizing and thermal considerations.

⑤ All data referenced to sinusoidal commutation

8.2.1.1 IC11 Natural Cooled Motor Series - Performance Data (continued)

	Symbol	Tol	Units	IC11-150		IC11	-200	IC11-250			
Winding Code ②				A1	A5	A1	A5	A1	A5		
Rated Performance											
Max Rated Voltage	Un		VAC	480	480	480	480	480	480		
Max Continuous Force @ Tmax			N	8	37	11	63	14	134		
1 3	Fc		lbf	1	88	2	61	3	22		
Motor constant	Km		N/√W	0.3	383	0.	42	0.46			
Continous Current @ Tmax	Ic		Arms	4.74	8.2	4.9	8.6	4.87	8.5		
Peak Force @ Tmax ③	Fp		N	1990	1991	2687	2688	3336	3344		
DA	'		lbf	447	448	604	604	750	752		
Peak Current @ Tmax ⑤	Ip		Arms	16.6	28.8	17.3	30.0	16.9	29.5		
Rated force @ Speed ⑤	Frtd		N	832	820	1158	1150	1429	1421		
			lbf	187	184	260	259	321	319		
Rated Speed	Nrtd		m/s	1.35	2.70	0.99	1.89	0.72	1.44		
Peak Force @ Tmax ⑤	Fp		N Ibf	1990 447	1991	2687 604	2688 604	3348	3344 752		
Peak Current @ Tmax ⑤	Ip		Arms	16.6	448 28.8	17.3	30.0	753 17.1	29.5		
0	1p		N	820	789	1150	1121	1421	1398		
Rated force @ Speed ⑤	Frtd		lbf	184	177	259	252	319	314		
Rated Speed	Nrtd		m/s	2.70	4.95	1.89	3.60	1.44	2.79		
			N	1990	1991	2687	2688	3348	3344		
Peak Force @ Tmax ③	Fp		lbf	447	448	604	604	753	752		
Peak Current @ Tmax ⑤	Ip		Arms	16.6	28.8	17.3	30.0	17.1	29.5		
Rated force @ Speed ⑤	Frtd		N	813	768	1143	1103	1416	1381		
<u> </u>			lbf	183	173	257	248	318	310		
Rated Speed	Nrtd		m/s	3.33	6.0	2.34	4.41	1.80	3.42		
Electrical Specifications ②					_						
Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	6.3	2.12	8.2	2.74	10.0	3.35		
Electrical Inductance L-L	L	±20%	mh	79	26.4	105	34.9	130	43.4		
Force Constant @ 25°C	Kf	±10%	N/Arms	179	103	239	138	299	172		
			lbf/Arms	40.2	23.2	54	31	67	38.7		
Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/m/s	146	84	195	113	244	141		
			Vpeak/in/sec	3.71	2.14	4.95	2.86	6	3.57		
Figures of Merit and Additional									_		
Electrical Time Constant	Те		ms		2.5		2.8		3		
Max. Theoretical Acceleration ③	Amax		g's		1.6		2.3		2.5		
Magnetic Attraction	Fa		kN		'.3 - 41		.9		2.3		
	Dele		lbf °C (Matt		541		26		⁷ 65		
Thermal Resistance ④	Rthw-a		°C/Watt	0.35			25	0.	21		
Max. Allowable Coil Temp. 4	Tmax		°C			1.	30				
Mechanical Specifications			ka	0.4		1	2	1	- n		
Coil Assembly Weight	Мс	±15%	kg	9.4			2.3		5.2		
Magnet Way Type (MCyes)			lbs				7.1 00	33.5 250			
Magnet Way Type (MCxxx)			l/a/m	150 20.7			00 5.8	33.2			
Magnet Way Weight	Mw	±15%	kg/m								
	14144		lbs/in	1.	.16	1	.5	1.	86		

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- ② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

- Please see the application sizing section for more details on sizing and thermal considerations.
- (§) All data referenced to sinusoidal commutation

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

8.2.2 IC11 Water Cooled Motor Series - Performance Data

		Symbol	Tol	Units	IC11	IC11-030 IC11-050			IC11	-075	IC11-100		
	Winding Code ②				A1	A5	A1	A5	A1	A5	A1	A5	
	Rated Performance												
	Max Rated Voltage	Un		VAC	480	230	480	230	480	400	480	480	
	Max Continuous Force @ Tmax	Fc		N	25	51	4	18	62	26	82	20	
	① ⑤	FC		lbf	5	6	9	94	14	41	18	34	
	Motor constant	Km		N/√W	0.1	81	0.1	191	0.2	205	0.2	22	
	Continous Current @ Tmax	Ic		Arms	9.8	17.0	9.8	17.1	9.8	17.0	9.6	16.6	
	Peak Force @ Tmax ⑤	Fp		N	384	385	641	641	961	960	1270	1270	
AC				lbf	86	87	144	144	216	216	286	286	
>	Peak Current @ Tmax ⑤	Ip		Arms	19.6	34.0	19.6	34.0	19.6	33.9	19.2	33.2	
230	Rated force @ Speed ⑤	Frtd		N II- f	241	230	410	395	619	606	814	802	
* *	<u> </u>	N I set el		lbf	54 9.2	52	92 5.3	9.9	139 3.4	136	183	180 4.77	
	Rated Speed	Nrtd		m/s N	384	13.5	641	9.9	961	6.5 960	2.43 1270	1270	
ш	Peak Force @ Tmax ⑤	Fp	\vdash	lbf	86	-	144	_	216	216	286	286	
Š	Peak Current @ Tmax ③	Ip		Arms	19.6	-	19.6	-	19.6	33.9	19.2	33.2	
400				N	230	-	395	-	606	565	802	766	
4	Rated force @ Speed ⑤	Frtd		lbf	52	-	89	-	136	127	180	172	
	Rated Speed	Nrtd		m/s	13.5	-	10.0	-	6.5	11.9	4.77	8.8	
	Peak Force @ Tmax ⑤	Fp		N	384	-	641	-	961	-	1270	1270	
Ą		<u> </u>		lbf	86	-	144	-	216	-	286	286	
>	Peak Current @ Tmax ⑤	Ip		Arms	19.6	-	19.6	-	19.6	-	19.2	33.2	
480	Rated force @ Speed ⑤	Frtd		N	228	-	384	-	597	-	795	742	
Ì	Rated Speed	Nrtd		lbf m/s	51 13.5	-	86 12.2	-	134 7.9	-	179 5.6	167	
	Electrical Specifications ②	TVICA		111/3	13.3		12.2		7.5		3.0	10.7	
	Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	1.58	0.53	2.17	0.73	2.90	0.97	3.64	1.22	
	Electrical Inductance L-L	L	±20%	mh	11.4	3.80	18.0	6.0	26.2	8.7	34.4	11.5	
				N/Arms	28.7	16.6	47.8	27.6	72	41.4	96	55	
	Force Constant @ 25°C	Kf	±10%	lbf/Arms	6.5	3.73	10.7	6.2	16.2	9.3	21.6	12.4	
				Vpeak/m/s	23.4	13.5	39.1	22.6	59	33.8	78	45.1	
	Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/in/sec	0.6	0.344	0.99	0.57	1.49	0.86	1.98	1.15	
	Figures of Merit and Additional I	Data											
	Electrical Time Constant	Te		ms	7	.2	8	1.3	9	.0	9.	5	
	Max. Theoretical Acceleration ③	Amax		g′s	15	5.8	18	8.2	19	9.6	20	0.0	
	Magnetic Attraction	Fa		kN	1	.4	2	4	3	.7	4.	.9	
		I a		lbf		15		40		32		02	
	Thermal Resistance ④	Rthw-a		°C/Watt	0.	33	0.	.24	0.	18	0.	15	
	Max. Allowable Coil Temp. ④	Tmax		°C				1:	30				
	Min. Flow Rate of Coolant @ 25°C Max.			liters/min				2	.8				
	Mechanical Specifications	<u> </u>											
				kg	2	5	3	1.6		5	6	5	
	Coil Assembly Weight	Mc	±15%	lbs	2.5 5.5			'.9	11		14.3		
	Magnet Way Type (MCxxx)	·	' '		03	30	0.	050 075		75	100		
			. 4 50.	kg/m	5	.4	7	'.5	10).1	12	1.7	
	Magnet Way Weight	Mw	±15%	lbs/in	0.3	302	0.	.42	0.	57	0.	71	

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

① Please see the application sizing section for more details on sizing and thermal considerations.

⑤ All data referenced to sinusoidal commutation

8.2.2.1 IC11 Water Cooled Motor Series - Performance Data (continued)

		Symbol	Tol	Units	IC11-150		IC11	I-200	IC11-250		
	Winding Code ②				A1	A5	A1	A5	A1	A5	
	Rated Performance						·	'			
	Max Rated Voltage	Un		VAC	480	480	480	480	480	480	
	Max Continuous Force @ Tmax	_		N	1.	262	16	555	20)13	
	① ⑤	Fc		lbf	2	284	3	72	4	53	
	Motor constant	Km		N/√W	0.	249	0.2	281	0.3	308	
	Continous Current @ Tmax	Ic		Arms	9.9	17.1	9.7	16.8	9.4	16.2	
		_		N	1929	1929	2552	2552	3141	3141	
ں	Peak Force @ Tmax ⑤	Fp		lbf	434	434	574	574	706	706	
\$	Peak Current @ Tmax ⑤	Ip		Arms	19.8	34.3	19.4	33.6	18.7	32.4	
230		F-+-I		N	1257	1247	1651	1643	2010	2002	
7	Rated force @ Speed ⑤	Frtd		lbf	283	280	371	369	452	450	
	Rated Speed	Nrtd		m/s	1.44	2.97	0.99	2.07	0.63	1.62	
	Peak Force @ Tmax ⑤	Гп		N	1929	1929	2552	2552	3140	3141	
٧	reak fuice w iilidx 3	Fp		lbf	434	434	574	574	706	706	
>	Peak Current @ Tmax ⑤	Iр		Arms	19.8	34.3	19.4	33.6	18.7	32.4	
400	Rated force @ Speed ⑤	Frtd		N	1247	1220	1643	1617	2002	1979	
7		TITU		lbf	280	274	369	364	450	445	
	Rated Speed	Nrtd		m/s	2.97	5.6	2.07	4.14	1.62	3.24	
	Peak Force @ Tmax ⑤	Fp		N	1929	1929	2552	2552	3141	3141	
AC		<u> </u>		lbf	434	434	574	574	706	706	
>	Peak Current @ Tmax ⑤	Ip		Arms	19.8	34.3	19.4	33.6	18.7	32.4	
쯀	Rated force @ Speed ⑤	Frtd		N	1241	1201	1637	1601	1997	1964	
	<u> </u>			lbf	279	270	368	360	449	442	
	Rated Speed	Nrtd		m/s	3.69	6.8	2.61	5.0	2.07	3.96	
	Electrical Specifications ②							1			
	Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	5.1	1.70	6.6	2.19	8.0	2.68	
	Electrical Inductance L-L	L	±20%	mh	51	16.9	67	22.4	84	27.9	
	Force Constant @ 25°C	Kf	±10%	N/Arms	144	83	191	110	239	138	
		10		lbf/Arms	32.4	18.7	42.9	24.7	54	31	
	Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/m/s	117	68	156	90	195	113	
			1070	Vpeak/in/sec	2.98	1.72	3.97	2.29	4.96	2.86	
	Figures of Merit and Additional I	1									
	Electrical Time Constant	Te		ms		0.0		0.2		0.5	
	Max. Theoretical Acceleration ③	Amax		g's		1.0		1.2		1.1	
	Magnetic Attraction	Fa		kN		7.3		0.9		2.3	
		1 4		lbf	1	641	22	226	27	765	
	Thermal Resistance ④	Rthw-a		°C/Watt	0	.10	0.	08	0.	07	
	Max. Allowable Coil Temp. ④	Tmax		°C			1	30			
	Min. Flow Rate of Coolant @ 25°C Max.			liters/min			2	1.8			
	Mechanical Specifications										
	Coil Assembly Weight	Mc	±15%	kg	(9.4	1.	2.3	1!	5.2	
	, ,	IVIC	E1370	lbs	20.7		2	7.1	33.5		
	Magnet Way Type (MCxxx)				1	50	2	00	2	50	
		N //	1.1.50/	kg/m	2	0.7	20	5.8	33	3.2	
	Magnet Way Weight	Mw	±15%	lbs/in	1	.16	1	.5	1.	86	

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- $\textcircled{9} \ \ \text{Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.}$

- ① Please see the application sizing section for more details on sizing and thermal considerations.
- $\ensuremath{\mathfrak{D}}$ All data referenced to sinusoidal commutation

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

8.2.3 IC22 Natural Cooled Motor Series - Performance Data

	Complete	Tal	llm!ta			0	- 7	C22 0F	^	IC22-075			IC22 100		
Winding Code	Symbol	101	Units	A1	C22-03 A2	A6	A1	C22-05 A2	0 A6	A1	A2	A6	IC22-100 A1 A2 A		0 A6
Winding Code ②				AI	AZ	Αb	AI	AZ	Ab	AI	AZ	Ab	AI	AZ	Ab
Rated Performance	I		\	400	400	220	400	400	220	400	400	220	400	400	400
Max Rated Voltage	Un		VAC	480	480	230	480	480	230	480	480	230	480	480	400
Max Continuous Force @ Tmax	Fc		N		283			512		802			1112		
① ⑤			lbf		64			115			180			250	
Motor constant	Km		N/√W		0.41			0.41			0.44			0.46	
Continous Current @ Tmax	Ic		Arms	4.00	8.0	13.9	4.35	8.7	15.1	4.55	9.1	15.8	4.73	9.5	16.4
Peak Force @ Tmax ⑤	Fp		N lbf	741 167	741 167	741 167	1283 288	1285 289	1284 289	1959 440	1959 440	1960 441	2648 595	2650 596	2516 566
Peak Current @ Tmax ⑤	Ip		Arms	14.0	28.0	48.5	15.2	30.5	53	15.9	31.8	55	16.5	33.1	50
Rated force @ Speed ③	Frtd		N lbf	276 62	261 59	227 51	507 114	494 111	460 103	798 179	786 177	758 170	1108 249	1098 247	1073 241
Rated Speed	Nrtd		m/s	3.96	8.4	13.5	2.25	4.90	8.7	1.35	3.15	5.7	0.90	2.25	4.14
Rateu Speeu	MILU		N N	741	741	-	1283	1285	-	1959	1959	-	2648	2650	2516
Peak Force @ Tmax ⑤	Fp		lbf	167	167	-	288	289	_	440	440	-	595	596	566
Peak Current @ Tmax ③	Ip		Arms	14.0	28.0	_	15.2	30.5	_	15.9	31.8	_	16.5	33.1	50
<u> </u>			N	265	227	_	498	459	_	789	757	_	1102	1073	997
Rated force @ Speed ⑤	Frtd		lbf	60	51	-	112	103	_	177	170	_	248	241	224
Rated Speed	Nrtd		m/s	7.2	13.5	-	4.14	8.8	-	2.70	5.8	-	1.89	4.14	7.6
			N	741	741	-	1283	1285	-	1959	1959	-	2648	2650	-
Peak Force @ Tmax ⑤	Fp		lbf	167	167	-	288	289	-	440	440	-	595	596	-
Peak Current @ Tmax ⑤	gI		Arms	14	28	-	15.2	30.5	-	15.9	31.8	-	16.5	33.1	-
0.5 1.0			N	259	221	-	492	435	-	785	739	-	1097	1055	-
Rated force @ Speed ⑤	Frtd		lbf	58	49.7	-	111	98	-	176	166	-	247	237	-
Rated Speed	Nrtd		m/s	8.7	13.5	-	5.1	10.7	-	3.24	6.9	-	2.34	5.1	-
Electrical Specifications ②															
Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	3.81	0.96	0.324	5.3	1.33	0.45	7.1	1.79	0.60	8.9	2.25	0.75
Electrical Inductance L-L	L	±20%	mh	35.5	8.9	2.96	56	14.0	4.66	82	20.4	6.8	107	26.8	8.9
			N/Arms	72	35.8	20.7	119	60	34.5	179	90	52	239	119	69
Force Constant @ 25°C	Kf	±10%	lbf/Arms	16.2	8	4.65	26.8	13.5	7.8	40.2	20.2	11.7	54	26.8	15.5
			Vpeak/m/s	59	29.3	16.9	98	48.8	28.2	146	73	42.2	195	98	56
Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/in/sec	1.49	0.74	0.43	2.48	1.24	0.72	3.71	1.86	1.07	4.95	2.48	1.43
Figures of Merit and Additional	Data														
Electrical Time Constant	Te		ms		9.3			10.6			11.5			12	
Max. Theoretical Acceleration ③	Amax		g's		15.8			19.0			20.8			21.6	
Max. Theoretical Acceleration			kN		2.9			4.9			7.3			9.8	
Magnetic Attraction	Fa		lbf		652			1102			1641			2203	
Thermal Resistance ®	Rthw-a		°C/Watt		0.82			0.50			0.34			0.25	
			°C		0.02			0.50	1:	L 30	0.54			0.23	
Max. Allowable Coil Temp. 4 Mechanical Specifications	Tmax								13	JU					
-Mechanical Specifications	1		kg		4.8			6.9			9.6			12.5	
Coil Assembly Weight	Мс	±15%	lbs		10.6			15.2			21.2			27.6	
Magnet Way Type (MCxxx)		1	.55		030			050			075			100	
agrice tray Type (MCAAA)			kg/m		5.4			7.5			10.1			12.7	
Magnet Way Weight	Mw	±15%	lbs/in		0.302			0.42			0.57			0.71	
	1		IDS/III		0.302			0.42			0.57		I	0.71	

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

[•] Please see the application sizing section for more details on sizing and thermal considerations.

③ All data referenced to sinusoidal commutation

8.2.3.1 IC22 Natural Cooled Motor Series - Performance Data (continued)

	Symbol	Tol	Units	IC22-150			C22-200)	IC22-250				
Winding Code ②		'	'	A1	A2	A6	A1	A2	A6	A1	A2	A6	
Rated Performance													
Max Rated Voltage	Un		VAC	480	480	480	480	480	480	480	480	480	
Max Continuous Force @ Tmax	_		N		1656			2286			2806		
1 (5)	Fc		lbf		372			514			631		
Motor constant	Km		N/√W		0.54			0.59			0.65		
Continous Current @ Tmax	Ic		Arms	4.69	9.4	16.3	4.86	9.7	16.8	4.77	9.5	16.5	
Peak Force @ Tmax ⑤	Гп		N	3628	3963	3428	4151	5347	4570	4494	6646	5713	
reak Force @ Illiax ®	Fp		lbf	816	891	771	933	1202	1027	1010	1494	1284	
Peak Current @ Tmax ⑤	Ip		Arms	13.4	32.8	42.0	10.4	34.0	42.0	8.5	33.4	42.0	
Rated force @ Speed ③	Frtd		N	1653	1643	1622	2285	2277	2259	2805	2797	2782	
<u> </u>			lbf	372	369	365	514	512	508	631	629	625	
Rated Speed	Nrtd		m/s	0.54	1.44	2.70	0.27	0.99	1.89	0.18	0.72	1.44	
Peak Force @ Tmax ⑤	Fp		N lbf	3963	3963	3428 771	5347	5347	4570	6333	6646	5713	
Peak Current @ Tmax ⑤	Ip		Arms	891 16.4	891 32.8	42.0	1202 17.0	1202 34.0	1027 42.0	1424 14.8	1494 33.4	1284 42.0	
Peak Current @ Illiax ®	ıρ		N N	1647	1621	1559	2278	2259	2202	2801	2780	2735	
Rated force @ Speed ⑤	Frtd		lbf	370	364	350	512	508	495	630	625	615	
Rated Speed	Nrtd		m/s	1.17	2.70	4.95	0.81	1.89	3.60	0.54	1.53	2.79	
			N	3963	3963	3428	5347	5347	4570	6646	6646	5713	
Peak Force @ Tmax ⑤	Fp		lbf	891	891	771	1202	1202	1027	1494	1494	1284	
Peak Current @ Tmax ⑤	Ip		Arms	16.4	32.8	42.0	17.0	34.0	42.0	16.7	33.4	42.0	
Dated force @ Creed @	Frtd		N	1643	1608	1516	2276	2246	2165	2797	2770	2700	
Rated force @ Speed ⑤	Frta		lbf	369	361	341	512	505	487	629	623	607	
Rated Speed	Nrtd		m/s	1.44	3.33	6.0	0.99	2.34	4.41	0.72	1.89	3.42	
Electrical Specifications ②													
Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	12.6	3.16	1.06	16.3	4.08	1.36	19.9	5.0	1.67	
Electrical Inductance L-L	L	±20%	mh	158	39.6	13.2	209	52	17.4	260	65	21.7	
Force Constant @ 25°C	Kf	±10%	N/Arms	358	179	103	478	239	138	597	299	172	
	IXI	21070	lbf/Arms	80	40.2	23.2	107	54	31	134	67	38.7	
Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/m/s	293	146	84	390	195	113	488	244	141	
		_ 1070	Vpeak/in/sec	7	3.71	2.14	10	4.95	2.86	12	6	3.57	
Figures of Merit and Additional I	1												
Electrical Time Constant	Te		ms		12.5			12.8			13.1		
Max. Theoretical Acceleration ③	Amax		g's		22.3			23.1			23.0		
Magnetic Attraction	Fa		kN		14.6			19.7			24.6		
			lbf		3282			4429			5530		
Thermal Resistance 4	Rthw-a		°C/Watt		0.18			0.13			0.11		
Max. Allowable Coil Temp. ④	Tmax		°C					130					
Mechanical Specifications													
Coil Assembly Weight	Mc	±15%	kg		18.1			23.7			29.3		
			lbs	39.9			52			65			
Magnet Way Type (MCxxx)	1				150			200			250		
Magnet Way Weight	Mw	±15%	kg/m		20.7			26.8			33.2		
. g	IVIVV ±	±15%	lbs/in		1.16			1.5		1.86			

- ② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

- Please see the application sizing section for more details on sizing and thermal considerations.
- (§) All data referenced to sinusoidal commutation

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

8.2.4 IC22 Water Cooled Motor Series - Performance Data

		Symbol	Tol	Units	_ I	IC22-030 IC2			IC22-050 IC22-075				′5	IC22-100		
	Winding Code ②	- J		J	A1	A2	A6	A1	A2	A6	A1	A2	A6	A1	A2	A6
	Rated Performance															
	Max Rated Voltage	Un		VAC	480	230	230	480	480	230	480	480	230	480	480	230
	Max Continuous Force @ Tmax			N	100	512	250	100	841		1252		230	100	1664	
	(1) (5)	Fc		lbf		115			189			281			374	
	Motor constant	Km		N/√W		0.239			0.256			0.279			0.305	
	Continous Current @ Tmax	Ic		Arms	10.1	20.2	34.9	9.9	19.8	34.3	9.8	19.6	33.9	9.8	19.5	33.8
		_		N	777	777	777	1286	1286	1286	1922	1922	1922	2557	2557	2558
پ	Peak Force @ Tmax ⑤	Fp		lbf	175	175	175	289	289	289	432	432	432	575	575	575
>	Peak Current @Tmax ⑤	Ip		Arms	20.2	40.3	70	19.8	39.6	67	19.6	39.2	68	19.5	39.0	68
230	Rated force @ Speed ⑤	Frtd		N	507	494	471	837	825	795	1248	1238	1213	1661	1652	1629
	-	Nistal		lbf m/s	114 4.05	9.1	106 13.5	188	185 5.3	179 9.9	281 1.35	278 3.42	273 6.4	373 0.90	371 2.43	366 4.68
	Rated Speed	Nrtd		N	777	9.1	15.5	1286	1286	9.9	1922	1922	- 0.4	2557	2557	4.00
u	Peak Force @ Tmax ③	Fp		lbf	175	_	-	289	289	-	432	432	-	575	575	-
Š	Peak Current @ Tmax ③	Ip		Arms	20.2	-	-	19.8	39.6	-	19.6	39.2	-	19.5	39.0	-
2				N	498	-	-	829	795	-	1241	1212	-	1655	1629	-
4	Rated force @ Speed ⑤	Frtd		lbf	112	-	-	186	179	-	279	272	-	372	366	-
	Rated Speed	Nrtd		m/s	7.7	-	-	4.50	9.9	-	2.88	6.5	-	2.07	4.68	-
	Peak Force @ Tmax ⑤	Fp		Ν	777	-	-	1286	1286	-	1922	1922	-	2557	2557	-
Ų		гþ		lbf	175	-	-	289	289	-	432	432	-	575	575	-
>	Peak Current @ Tmax ⑤	Ip		Arms	20.2	-	-	19.8	39.6	-	19.6	39.2	-	19.5	39.0	-
8	Rated force @ Speed ③	Frtd		N	492	-	-	824	774	-	1237	1194	-	1650	1614	-
7	Rated Speed	Nrtd		lbf m/s	111 9.5	-	-	185 5.6	174 12.2	-	278 3.60	268 7.9	-	371 2.61	363 5.8	-
	Electrical Specifications ②	INITU		111/3	7.5	_	_	5.0	12.2	_	3.00	7.5	_	2.01	5.0	_
	•	Dm	±10%	Ohms	3.08	0.77	0.260	4.26	1.07	0.358	5.7	1.43	0.48	7.2	1.80	0.60
	Electrical Resistance @ 25°C L-L	Rm	±10%	mh	22.8	5.7	1.90	35.9	9.0	2.99	5.7	13.1	4.36	69	17.2	5.7
	Electrical Inductance L-L	L	12U90	N/Arms	57	28.7	16.6	96	47.8	27.6	144	72	41.4	191	96	5.7
	Force Constant @ 25°C	Kf	±10%	lbf/Arms	12.8	6.5	3.73	21.6	10.7	6.2	32.4	16.2	9.3	42.9	21.6	12.4
				Vpeak/m/s	46.9	23.4	13.5	78.1	39.1	22.6	117	59	33.8	156	78	45.1
	Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/in/sec	1.19	0.6	0.344	1.98	0.99	0.57	2.98	1.49	0.86	3.97	1.98	1.15
	Figures of Merit and Additional I	Data		,												
	Electrical Time Constant	Te		ms		7.4			8.4			9.1			9.6	
	Max. Theoretical Acceleration ③	Amax		g's		16.5			19.0			20.4			20.8	
	Magnetic Attraction	F-0		kN		2.9			4.9			7.3			9.8	
	Magnetic Attraction	Fa		lbf		652			1102			1641			2203	
	Thermal Resistance ④	Rthw-a		°C/Watt		0.16			0.12			0.091			0.073	
	Max. Allowable Coil Temp. ④	Tmax		°C						13	30					
	Min. Flow Rate of Coolant @ 25°C Max.			liters/min						2.	.8					
	Mechanical Specifications															
			.450	kg		4.8			6.9			9.6			12.5	
	Coil Assembly Weight	Mc	±15%	lbs		10.6			15.2			21.2			27.6	
	Magnet Way Type (MCxxx)					030			050			075			100	
	Magnet Way Weight	Mw	±15%	kg/m		5.4			7.5			10.1			12.7	
	wagnet way weight	IVIVV	1 370	lbs/in		0.302			0.42			0.57			0.71	

- 1 The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- ② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

 $[{]f \odot}$ Please see the application sizing section for more details on sizing and thermal considerations.

^(§) All data referenced to sinusoidal commutation

8.2.4.1 IC22 Water Cooled Motor Series - Performance Data (continued)

		Symbol	Tol	Units	IC22-150 IC22-200)	IC22-250		
	Winding Code ②	Symbol	101	Offics	A1	A2	A6	A1	A2	A6	A1	A2	A6
	Rated Performance				711	7.2	7.0	711	7 1.	7.0	711	7.2	7.0
	Max Rated Voltage	Un		VAC	480	480	230	480	480	230	480	480	230
	Max Continuous Force @ Tmax			N	100	2493	250	100	3333	250	100	4012	250
	① ⑤	Fc		lbf		560			749			902	
	Motor constant	Km		N/√W		0.349			0.391			0.44	
	Continous Current @ Tmax	Ic		Arms	9.7	19.5	33.7	9.8	19.6	33.9	9.3	18.6	32.2
				N	3570	3832	3834	4084	5119	5118	-	6267	6270
ں	Peak Force @ Tmax ⑤	Fp		lbf	803	861	862	918	1151	1151	-	1409	1410
>	Peak Current @ Tmax ⑤	Ip		Arms	16.7	38.9	68	13.0	39.1	68	-	37.2	65
30	Dated force & Creed ®	Frtd		N	2491	2483	2464	3332	3325	3309	-	4006	3989
2	Rated force @ Speed ⑤	Fria		lbf	560	558	554	749	747	744	-	901	897
	Rated Speed	Nrtd		m/s	0.36	1.44	2.97	0.13	0.99	2.07	-	0.63	1.62
	Peak Force @ Tmax ⑤	Fp		N	3535	3832	-	5114	5119	-	6236	6267	-
AC		· '		lbf	795	861	-	1150	1151	-	1402	1409	-
>	Peak Current @ Tmax ⑤	Ip		Arms	19.5	38.9	-	19.5	39.1	-	18.4	37.2	-
§	Rated force @ Speed ⑤	Frtd		N	2486	2464	-	3327	3309	-	4008	3988	-
	Pated Cased	Nistal		lbf	559	554	-	748	744 2.07	-	901	897 1.62	-
	Rated Speed	Nrtd		m/s N	1.17 3835	2.97 3832	-	0.72 5114	5119	-	0.45 6267	6267	-
	Peak Force @ Tmax ⑤	Fp		lbf	862	861	-	1150	1151	-	1409	1409	-
₹	Peak Current @ Tmax ③	Ip		Arms	19.5	38.9	_	19.5	39.1	_	18.6	37.2	_
0		i '		N	2482	2451	-	3325	3297	_	4004	3979	_
84	Rated force @ Speed ⑤	Frtd		lbf	558	551	-	747	741	-	900	895	-
	Rated Speed	Nrtd		m/s	1.53	3.69	-	0.99	2.61	-	0.72	2.07	-
	Electrical Specifications ②			'				1					
	Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	10.1	2.54	0.85	13.1	3.27	1.09	16.0	4.00	1.34
	Electrical Inductance L-L	L	±20%	mh	102	25.4	8.5	134	33.6	11.2	167	41.8	13.9
		146	. 4.00/	N/Arms	287	144	83	383	191	110	478	239	138
	Force Constant @ 25°C	Kf	±10%	lbf/Arms	65	32.4	18.7	86	42.9	24.7	107	54	31
	D 5145 G 1 0 050G 1	1,4	. 4.00/	Vpeak/m/s	234	117	68	313	156	90	391	195	113
	Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/in/sec	6	2.98	1.72	8	3.97	2.29	10	4.96	2.86
	Figures of Merit and Additional I	Data											
	Electrical Time Constant	Te		ms		10.1			10.2			10.4	
	Max. Theoretical Acceleration ③	Amax		g′s		21.6			22.1			21.7	
	Magnetic Attraction	F-0		kN		14.6			19.7			24.6	
	Magnetic Attraction	Fa		lbf		3282			4429			5530	
	Thermal Resistance ④	Rthw-a		°C/Watt		0.052			0.040			0.036	
	Max. Allowable Coil Temp. ④	Tmax		°C					130				
	Min. Flow Rate of Coolant @ 25°C Max.			liters/min					2.8				
	Mechanical Specifications												
	Coil Assambly Waisht	Mc	±15%	kg		18.1			23.7			29.3	
	Coil Assembly Weight	IVIC	±13%	lbs		39.9			52			65	
	Magnet Way Type (MCxxx)					150			200			250	
	Magnet Way Weight	Mw	±15%	kg/m		20.7			26.8			33.2	
	iviagilet vvay vvelgiit	IVIVV	I 1 3%0	lbs/in		1.16			1.5			1.86	

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- ② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

- ① Please see the application sizing section for more details on sizing and thermal considerations.
- ⑤ All data referenced to sinusoidal commutation

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

8.2.5 IC33 Natural Cooled Motor Series - Performance Data

	Symbol	Tol	Units		IC33	-030			IC3 <u>3</u>	-050			IC33	-075	_		IC33	-100	
Winding Code ②				A1	А3	A5	A7	A1	А3	A5	A7	A1	А3	A5	A7	A1	А3	A5	
Rated Performance																			
Max Rated Voltage	Un		VAC	480	400	480	230	480	400	480	230	480	400	480	230	480	400	480	230
Max Continuous Force @ Tmax	_		N		42	24			77	74			12	24			16	54	
1 3	Fc		lbf		9	5			17	74			2	75			37	72	
Motor constant	Km		N/√W		0.4	49			0.4	49			0.	52			0.	57	
Continous Current @ Tmax	Ic		Arms	4.00	12.0	6.9	20.8	4.39	13.2	7.6	22.8	4.62	13.9	8.0	24.0	4.69	14.1	8.1	24.4
			N	1112	1112	1113	1112	1935	1933		1896		2957	2957	2844	3536	3963	_	379
Peak Force @ Tmax ⑤	Fp		lbf	250	250	250	250	435	435	434	426	665	665	665	639	795	891	891	853
Peak Current @ Tmax ⑤	Ip		Arms	14.0	42.0	24.3	73	15.4	46.1	26.6	76	16.2	48.5	28.0	76	12.8	49.2	28.4	76
B + 15	- · ·		N	419	391	411	339	770	746	763	695	1220	1199	1215	1157	1652	1633	1646	159
Rated force @ Speed ⑤	Frtd		lbf	94	88	92	76	173	168	172	156	274	270	273	260	371	367	370	359
Rated Speed	Nrtd		m/s	2.52	8.4	4.68	13.5	1.35	4.86	2.61	8.7	0.81	3.15	1.62	5.7	0.45	2.25	1.17	4.14
,			N	1112	1112	1113	-	1935	1933	1932	-	2959	2957	2957	-	3963	3963	3963	-
Peak Force @ Tmax ⑤	Fp		lbf	250	250	250	-	435	435	434	-	665	665	665	-	891	891	891	-
Peak Current @ Tmax ⑤	Ip		Arms	14.0	42.0	24.3	-	15.4	46.1	26.6	-	16.2	48.5	28.0	-	16.4	49.2	28.4	-
Patrid farma C Sarrad C	F		N	411	339	390	-	763	693	746	-	1215	1155	1199	-	1646	1593	1633	-
Rated force @ Speed ⑤	Frtd		lbf	92	76	88	-	172	156	168	-	273	260	270	-	370	358	367	-
Rated Speed	Nrtd		m/s	4.68	13.5	8.5	-	2.61	8.8	4.86	-	1.62	5.8	3.15	-	1.17	4.23	2.25	-
			N	1112	-	1113	-	1935	-	1932	-	2959	-	2957	-	3963	-	3963	-
Peak Force @ Tmax ⑤	Fp		lbf	250	-	250	-	435	-	434	-	665	-	665	-	891	-	891	-
Peak Current @ Tmax ⑤	Ip		Arms	14.0	-	24.3	-	15.4	-	26.6	-	16.2	-	28.0	-	16.4	-	28.4	-
D			N	407	-	377	-	759	-	734	-	1211	-	1189	-	1643	-	1624	
Rated force @ Speed ⑤	Frtd		lbf	91	-	85	-	171	-	165	-	272	-	267	-	369	-	365	-
Rated Speed	Nrtd		m/s	5.7	-	10.2	-	3.24	-	5.9	-	2.07	-	3.87	-	1.44	-	2.79	-
Electrical Specifications ②																			
Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	5.7	0.64	1.90	0.213	7.9	0.88	2.63	0.294	10.6	1.19	3.55	0.396	13.4	1.49	4.47	0.50
Electrical Inductance L-L	L	±20%	mh	52	5.8	17.4	1.93	82.1	9.1	27.4	3.04	120	13.3	39.9	4.43	157	17.4	52	5.8
			N/Arms	107	35.8	62	20.7	179	60	103	34.5	269	90	155	52	358	119	207	69
Force Constant @ 25°C	Kf	±10%	lbf/Arms	24.1	8	13.9	4.65	40.2	13.5	23.2	7.8	60	20.2	34.8	11.7	80	26.8	46.5	15.5
			Vpeak/m/s	88	29.3	51	16.9	146	48.8	84	28.2	219	73	127	42.2	293	98	169	56
Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/in/sec					-		2.14		6	_	3.22	1.07	7	2.48		-
Figures of Merit and Additiona	Data		vpcarvii i/3cc	2.23	0.74	1.23	0.45	5.71	1.27	2.17	0.72	U	1.00	J.22	1.07	,	2.40	7.23	1.45
Electrical Time Constant	Te		ms		9.	1			10) 4			11	1.3			11	.7	
					15														
Max. Theoretical Acceleration ③	Amax		g's						19					1.0				.4	
Magnetic Attraction	Fa		kN		4.				7.					7.0				1.7	
	D.I.		lbf		98					64				73			33		
Thermal Resistance 4	Rthw-a		°C/Watt		0.5	55			0.3	33			0.	22			0.	17	
Max. Allowable Coil Temp. ④	Tmax		°C								13	30							
Mechanical Specifications				ı															
Coil Assembly Weight	Мс	±15%	kg		7.				10).4			14	1.4			18	3.9	
	1410	- 15/0	lbs		16	5.1			22	2.9			31	.7			41	.7	
Magnet Way Type (MCxxx)					03	30			05	50			0	75			10	00	
Magnet Way Weight	Mw	±15%	kg/m		5.	.4			7.	.5			10).1			12	2.7	
Magnet Way Weight	IVIVV	1=10%	lbs/in		0.3	302			0.4	42			0.	57			0.	71	

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

[•] Please see the application sizing section for more details on sizing and thermal considerations.

③ All data referenced to sinusoidal commutation

8.2.5.1 IC33 Natural Cooled Motor Series - Performance Data (continued)

	Symbol Tol Units IC33-150				IC33	-200			IC33	-250					
Winding Code ②	,	1		A1	А3	A5	A7	A1	А3	A5	A7	A1	А3	A5	A7
Rated Performance															
Max Rated Voltage	Un		VAC	480	400	480	230	480	400	480	230	480	400	480	230
Max Continuous Force @ Tmax			N		24	86			34	86			43	11	
① ③	Fc		lbf		5.5	59			78	34			96	59	
Motor constant	Km		N/√W		0.	65			0.	71			0.	78	
Continous Current @ Tmax	Ic		Arms	4.70	14.1	8.1	24.4	4.90	14.8	8.6	25.7	4.89	14.7	8.5	25.4
Dools Force @ Transis @	F		N	4235	5949	5837	5689	4640	7991	6840	7585	4904	9988	7498	9482
Peak Force @ Tmax ⑤	Fp		lbf	952	1337	1312	1279	1043	1796	1538	1705	1102	2245	1686	2132
Peak Current @ Tmax ⑤	Ip		Arms	9.0	49.3	27.0	76	7.0	50	20.9	76.0	5.7	50	17.1	76
Rated force @ Speed ⑤	Frtd		N	2484	2467	2480	2434	3485	3471	3482	3445	4311	4298	4308	4274
			lbf	558	555	558	547	783	780	783	774	969	966	968	961
Rated Speed	Nrtd		m/s	0.18	1.44	0.63	2.70	0.09	0.99	0.36	1.89	0.01	0.72	0.27	1.44
Peak Force @ Tmax ⑤	Fp		N	5853	5949	5952	-	6865	7991	8057	-	7528	9988	10042	-
Peak Current @ Tmax ⑤	<u> </u>		lbf Arms	1316 15.7	1337 49.3	1338 28.5	-	1543 12.2	1796 50	1811 29.9	-	1692 9.9	2245 50	2258 29.6	-
Peak Current @ Imax 5	Ip		N N	2480	2434	2467	-	3482	3445	3471	-	4308	4274	4298	-
Rated force @ Speed ⑤	Frtd		lbf	558	547	555	-	783	774	780	-	968	961	966	-
Rated Speed	Nrtd		m/s	0.63	2.70	1.44	-	0.36	1.89	0.99	_	0.27	1.44	0.72	_
			N	5945	-	5952	-	7557	-	8057	-	8469	-	10042	-
Peak Force @ Tmax ⑤	Fp		lbf	1336	-	1338	-	1699	-	1811	-	1904	-	2258	-
Peak Current @ Tmax ⑤	Ip		Arms	16.4	-	28.5	-	14.6	-	29.9	-	11.9	-	29.6	-
Dated force @ Creed @	Frtd		N	2476	-	2459	-	3479	-	3464	-	4306	-	4292	-
Rated force @ Speed ®	Fria		lbf	557	-	553	-	782	-	779	-	968	-	965	-
Rated Speed	Nrtd		m/s	0.90	-	1.80	-	0.54	-	1.26	-	0.36	-	0.90	-
Electrical Specifications ②															
Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	18.9	2.10	6.3	0.70	24.4	2.71	8.1	0.90	29.9	3.32	10.0	1.11
Electrical Inductance L-L	L	±20%	mh	232	25.8	77	8.6	307	34.1	102	11.4	382	42.4	127	14.1
Force Constant @ 25°C	Kf	±10%	N/Arms	537	179	310	103	716	239	414	138	896	299	517	172
	IXI	-1070	lbf/Arms	121	40.2	70	23.2	161	54	93	31	201	67	116	38.7
Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/m/s	439	146	253	84	585	195	338	113	731	244	422	141
Back Livii Constant @ 25 C L-L	INC	-1070	Vpeak/in/sec	11	3.71	6	2.14	15	4.95	9	2.86	19	6	11	3.57
Figures of Merit and Additional I															
Electrical Time Constant	Te		ms		12					2.6			12		
Max. Theoretical Acceleration ③	Amax		g's			2.3				2.9				3.3	
Magnetic Attraction	Fa		kN		22					9.4			36		
			lbf			68			66				82		
Thermal Resistance 4	Rthw-a		°C/Watt		0.	12			0.0				0.0	70	
Max. Allowable Coil Temp. ④	Tmax		°C						13	30					
Mechanical Specifications															
Coil Assembly Weight	Mc	±15%	kg 		27				35				44		
			lbs			0			7					7	
Magnet Way Type (MCxxx)						50			20					50	
Magnet Way Weight	Mw	±15%	kg/m		20					5.8			33		
. J			lbs/in		1.	16			1.	.5			1.	86	

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- ② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

- ④ Please see the application sizing section for more details on sizing and thermal considerations.
- ③ All data referenced to sinusoidal commutation

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

8.2.6 IC33 Water Cooled Motor Series - Performance Data

		Symbol	Tol	Units	I	C33-03	0	I	C33-05	0	I	C33-07	5	I	C33-10	0
	Winding Code ②				A1	А3	A5	A1	А3	A5	A1	A3	A5	A1	А3	A5
	Rated Performance															
	Max Rated Voltage	Un		VAC	480	230	480	480	230	480	480	230	480	480	230	480
	Max Continuous Force @ Tmax			N		761			1259			1877			2513	
	(1) (5)	Fc		lbf		171			283			422			565	
	Motor constant	Km		N/√W		0.289			0.307			0.339			0.372	
	Continous Current @ Tmax	Ic		Arms	10.0	29.9	17.3	9.9	29.6	17.1	9.8	29.4	17.0	9.8	29.5	17.0
				N	1160	1160	1160	1925	1927	1927	2882	2880	2881	3483	3848	3850
ں	Peak Force @ Tmax ⑤	Fp		lbf	261	261	261	433	433	433	648	647	648	783	865	866
≶	Peak Current @ Tmax ⑤	Ip		Arms	19.9	60	34.3	19.7	59	34.2	19.6	59	33.9	16.0	59	34.1
30	Date of farmer of Council of	F-4-1		N	757	733	750	1255	1233	1250	1875	1856	1869	2510	2494	2506
7	Rated force @ Speed ⑤	Frtd		lbf	170	165	169	282	277	281	422	417	420	564	561	563
	Rated Speed	Nrtd		m/s	2.52	9.2	4.95	1.35	5.4	2.79	0.63	3.42	1.71	0.270	2.43	1.17
	Peak Force @ Tmax ③	Fp		N	1160	-	1160	1925	-	1927	2882	-	2881	3851	-	3850
Ų	reak Force @ Illiax ®	гр		lbf	261	-	261	433	-	433	648	-	648	866	-	866
>	Peak Current @ Tmax ⑤	Ip		Arms	19.9	-	34.5	19.7	-	34.2	19.6	-	33.9	19.7	-	34.1
8	Rated force @ Speed ⑤	Frtd		N	750	-	732	1250	-	1233	1869	-	1856	2506	-	2494
4	•			lbf	169	-	165	281	-	277	420	-	417	563	-	561
	Rated Speed	Nrtd		m/s	3.72	-	9.3	2.79	-	5.4	1.71	-	3.42	1.17	-	2.43
	Peak Force @ Tmax ⑤	Fp		N	1160	-	1160	1925	-	1927	2882	-	2881	3851	-	3850
AC		'		lbf	261	-	261	433	-	433	648	-	648	866	-	866
2	Peak Current @ Tmax ⑤	Ip		Arms	19.9	-	34.5	19.7	-	34.2	19.6	-	33.9	19.7	-	34.1
48	Rated force @ Speed ⑤	Frtd		N lbf	746 168	-	720 162	1246 280	-	1223 275	1867 420	-	1846 415	2503 563	-	2486 559
	Rated Speed	Nrtd		m/s	6.1	-	11.3	3.51	_	6.7	2.16	-	4.32	1.53	-	3.06
	Electrical Specifications ②	MILU		111/3	0.1	_	11.5	3.51	_	0.7	2.10	_	4.52	1.55	_	3.00
	Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	4.58	0.51	1.53	6.3	0.71	2.12	8.5	0.95	2.85	10.8	1.20	3.58
			±10%	mh	33.5	3.72	11.2	53.0	5.9	17.6	77	8.5	25.6	10.8	11.2	33.6
	Electrical Inductance L-L	L	12U%	N/Arms	86	28.7	49.7	144	47.8	83	215	72	124	287	96	166
	Force Constant @ 25°C	Kf	±10%	lbf/Arms	19.3	6.5	11.2	32.4	10.7	18.7	48.3	16.2	27.9	65	21.6	37.3
					70	23.4	40.6	117	39.1	68	176	59	101	234	78	
	Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/m/s Vpeak/in/sec	1.79	0.6	1.03	2.98	0.99	1.72	4.46	1.49	2.58	6	1.98	135 3.44
	Figures of Mouit and Additions	I Doto		vpeak/iri/sec	1.79	0.6	1.03	2.98	0.99	1.72	4.40	1.49	2.58	О	1.98	3.44
	Figures of Merit and Additiona Electrical Time Constant	Te		ms		7.3			8.4			9.1			9.4	
						16.2										
	Max. Theoretical Acceleration ③	Amax		g's kN		4.40			18.9 7.4			20.4			20.8	
	Magnetic Attraction	Fa		Ibf		989			1664			2473			3305	
	The arrest Desisters of ®	Delevis		-		0.110			0.081			0.061			0.048	
	Thermal Resistance 4	Rthw-a		°C/Watt		0.110			0.081	1.	l 30	0.061			0.048	
	Max. Allowable Coil Temp. 4	Tmax		-(13	30					
	Min. Flow Rate of Coolant @ 25°C Max.			liters/min						2	.8					
	Mechanical Specifications															
	Mechanical specifications			kg		7.3			10.4			14.4			18.9	
	Coil Assembly Weight	Мс	±15%	lbs		16.1			22.9			31.7			41.7	
	Magnet Way Type (MCxxx)	I	l	103		030			050			075			100	
	magnet way Type (MCXXX)			kg/m		5.4			7.5			10.1			12.7	
	Magnet Way Weight	Mw	±15%			0.302			0.42			0.57			0.71	
		l	l	lbs/in		0.502		I	0.42		l	0.57		I	U. / I	

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax. ② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

[•] Please see the application sizing section for more details on sizing and thermal considerations.

• Please see the application sizing section for more details on sizing and thermal considerations.

• Please see the application sizing section for more details on sizing and thermal considerations.

• Please see the application sizing section for more details on sizing and thermal considerations.

• Please see the application sizing section for more details on sizing and thermal considerations.

• Please see the application sizing section for more details on sizing and thermal considerations.

• Please see the application sizing section for more details on sizing and the section for more details on the section for more details of the section for more details on the section for more details of the sectio

^(§) All data referenced to sinusoidal commutation

8.2.6.1 IC33 Water Cooled Motor Series - Performance Data (continued)

		Symbol	Tol	Units	1	C33-150)		C33-200)		IC33-250)
	Winding Code ②			0	A1	А3	A5	A1	А3	A5	A1	A3	A5
	Rated Performance												
	Max Rated Voltage	Un		VAC	480	230	480	480	230	480	480	230	480
	Max Continuous Force @ Tmax			N		3729			4979			6021	
	1 5	Fc		lbf		838			1119			1354	
	Motor constant	Km		N/√W		0.43			0.48			0.53	
	Continous Current @ Tmax	Ic		Arms	9.7	29.1	16.8	9.7	29.2	16.8	9.3	27.9	16.1
	Peak Force @ Tmax ③	Fp		N	4173	5741	5741	-	7660	6745	-	9408	7394
Ą	reak Force @ Illiax ®	гр		lbf	938	1291	1291	-	1722	1516	-	2115	1662
\geq	Peak Current @ Tmax ⑤	Ip		Arms	11.3	58	33.6	-	58	26.1	-	56	21.3
33	Rated force @ Speed ⑤	Frtd		N	3728	3725	3725	-	4967	4977	-	6012	6020
•	,			lbf	838	837	837	-	1117	1119	-	1352	1353
	Rated Speed	Nrtd		m/s N	0.020	1.44	0.54 5741	- 6764	0.99	0.27	- 7417	0.63	0.120 9411
	Peak Force @ Tmax ⑤	Fp		lbf	5741 1291	-	1291	6764 1521	-	7664 1723	7417 1667	-	2116
Ĭ	Peak Current @ Tmax ③	Ip		Arms	19.4		33.6	15.2	_	33.7	12.4	_	32.3
é	-			N	3725	_	3714	4977	_	4967	6020	_	6012
4	Rated force @ Speed ⑤	Frtd		lbf	837	-	835	1119	-	1117	1353	-	1352
	Rated Speed	Nrtd		m/s	0.54	-	1.44	0.27	-	0.99	0.12	-	0.63
	Dook Force & Troop &	F.5		N	5741	-	5741	7446	-	7664	8344	-	9411
بر	Peak Force @ Tmax ③	Fp		lbf	1291	-	1291	1674	-	1723	1876	-	2116
\geq	Peak Current @ Tmax ⑤	Iр		Arms	19.4	-	33.6	18.2	-	33.7	14.8	-	32.3
8	Rated force @ Speed ⑤	Frtd		N	3722	-	3707	4975	-	4962	6019	-	6005
	·			lbf	837	-	833	1118	-	1116	1353	-	1350
	Rated Speed	Nrtd		m/s	0.81	-	1.89	0.45	-	1.26	0.27	-	0.99
	Electrical Specifications ②		4.00/	01	45.0	4.50		40.5	0.47		0.4.0	0.55	0.0
	Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	15.2	1.68	5.1	19.6	2.17	6.5	24.0	2.66	8.0
	Electrical Inductance L-L	L	±20%	mh	149	16.5	49.6	197	21.9	66	245	27.2	82
	Force Constant @ 25°C	Kf	±10%	N/Arms lbf/Arms	431 97	144 32.4	249 56	574 129	191 42.9	331 74	718 161	239 54	414 93
						32.4 117		_			_	195	338
	Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/m/s Vpeak/in/sec	352 9	2.98	203 5	469 12	156 3.97	271 7	586 15	4.96	9
	Figures of Merit and Additional I	Data		vpeak/iii/sec	9	2.90	3	12	3.97	/	15	4.90	9
	Electrical Time Constant	Te		ms		9.8			10.1			10.2	
	Max. Theoretical Acceleration ③	Amax		q's		21.5			21.8			21.8	
				kN		22.1			29.4			36.8	
	Magnetic Attraction	Fa		lbf		4968			6609			8273	
	Thermal Resistance ④	Rthw-a		°C/Watt		0.035			0.027			0.022	
	Max. Allowable Coil Temp. ④	Tmax		°C					130				
	Min. Flow Rate of Coolant	1											
	@ 25°C Max.			liters/min					2.8				
	Mechanical Specifications												
	Coil Assembly Weight	Mc	±15%	kg		27.3			35.7			44.1	
	, 3	IVIC	-15/0	lbs		60			79			97	
	Magnet Way Type (MCxxx)					150			200			250	
	Magnet Way Weight	Mw	±15%	kg/m		20.7			26.8			33.2	
	ag.icc riaj rreigiic		5,0	lbs/in		1.16			1.5			1.86	

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- ② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

- ① Please see the application sizing section for more details on sizing and thermal considerations.
- ⑤ All data referenced to sinusoidal commutation

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

8.2.7 IC44 Natural Cooled Motor Series - Performance Data

		Symbol	Tol	Units	IC44-030				IC44	-050			IC44	-075			IC44	-100		
	Winding Code ②	-,		J	A1	A2		A7	A1	A2	A3	A7	A1	A2	A3	A7	A1	A2		A7
	Rated Performance																			
	Max Rated Voltage	Un		VAC	480	480	230	230	480	480	230	230	480	480	400	230	480	480	480	230
	Max Continuous Force @ Tmax			N		56				10					09			21		
	(1) (S)	Fc		lbf		12				23	31				62			40		
	Motor constant	Km		N/√W		0.5	55			0.5	57			0.	61			0.0	56	
	Continous Current @ Tmax	Ic		Arms	4.02	8.0	16.1	27.9	4 37			30.3	4 56		_	31.6	4.64		18.6	32.2
				N	1487	1487	1486	1293	2573	2573		2156	3403		_	3234	3903	5267		
ب	Peak Force @ Tmax ⑤	Fp		lbf	334	334	334	291	578	578	578	485	765	882	788	727	877	1184		969
≶	Peak Current @ Tmax ③	gI		Arms	14.1	28.2	56	76	15.3	30.6	61	76	12.0	31.9	50	76	9.5	32.5	42.0	76
8				N	563	555	524	455	1025	1017	990	922	1607	1600	1576	1520	2184	2178	2157	2104
23	Rated force @ Speed ⑤	Frtd		lbf	127	125	118	102	230	229	223	207	361	360	354	342	491	490	485	473
	Rated Speed	Nrtd		m/s	1.80	3.96	8.4	13.5	0.90	2.25	4.86	8.7	0.45	1.35	3.15	5.7	0.270	0.99	2.25	4.23
	Peak Force @ Tmax ⑤	Γn		N	1487	1487	-	-	2573	2573	-	-	3928	3923	3505	-	5273	5267	4176	-
٧	reak roice @ IIIIax ③	Fp		lbf	334	334	-	-	578	578	-	-	883	882	788	-	1185	1184	939	-
>	Peak Current @ Tmax ⑤	Iр		Arms	14.1	28.2	-	-	15.3	30.6	-	-	16.0	31.9	50.4	-	16.3	32.5	42.0	-
400	Rated force @ Speed ⑤	Frtd		N	557	533	-	-	1020	999	-	-	1602	1583	_	-	2179	2165	2104	-
4	•			lbf	125	120	-	-	229	225	-	-	360	356	341	-	490	487	473	-
	Rated Speed	Nrtd		m/s	3.42	7.2	-	-	1.89	4.14	-	-	1.17	2.70	5.8	-	0.81	1.89	4.23	-
	Peak Force @ Tmax ⑤	Fp		N	_	1487	-	-		2573	-	-	3928		-	-	-	5267	_	_
AC		'		lbf	334	334	-	-	578	578	-	-	883	882	-	-	1185			-
2	Peak Current @ Tmax ⑤	Ip		Arms	14.1	28.2	-	-	15.3	30.6	-	-		31.9	-	-	16.3	32.5	42.0	-
<u>∞</u>	Rated force @ Speed ⑤	Frtd		N	554	519	-	-	1016	987	-	-		1574	_	-	2178		2071	-
		N. I. I.		lbf	125	117	-	-	228	222	-	-	359	354	-	-	490	484	466	-
	Rated Speed	Nrtd		m/s	4.14	8.8	-	-	2.34	5.1	-	-	1.44	3.24	-	-	0.99	2.34	5.1	-
	Electrical Specifications ②	-	400/	0.1		4.00	0.40		40.5	0.50		0.004		0.54			47.0			0.074
	Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	7.5	1.89		0.160				0.221		3.54	_	0.297		4.46		0.374
	Electrical Inductance L-L	L	±20%	mh	70	17.4	4.35	1.45	110	27.4	6.8	2.28	159	39.9	10.0	3.32	209	52	13.1	4.36
	Force Constant @ 25°C	Kf	±10%	N/Arms	143	72	35.8	20.7	239	119	60	34.5	358	179	90	52	478	239	119	69
				lbf/Arms	32.1	16.2	8	4.65	54	26.8	13.5	7.8	80	40.2	20.2	11.7	107	54	26.8	15.5
	Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/m/s	117	59	29.3	16.9	195	98	48.8	28.2	293	146	73	42.2	390	195	98	56
				Vpeak/in/sec	2.97	1.49	0.74	0.43	4.95	2.48	1.24	0.72	7	3.71	1.86	1.07	10	4.95	2.48	1.43
	Figures of Merit and Additiona			l																
	Electrical Time Constant	Te		ms		9.				10					1.3				.7	
	Max. Theoretical Acceleration ③	Amax		g's		15				18					0.9				.5	
	Magnetic Attraction	Fa		kN		5.				9.					1.7				0.6	
				lbf		13				22					805			44		
	Thermal Resistance ④	Rthw-a		°C/Watt		0.4	41			0.2	50			0.1	170			0.1	30	
	Max. Allowable Coil Temp. ④	Tmax		°C								13	30							
	Mechanical Specifications																			
	Coil Assembly Weight	Мс	±15%	kg		9.	.6			13	.9			19	9.2			25	5.0	
	, -	IVIC	-15/0	lbs		21				30	1.6			42	2.3			5	5	
	Magnet Way Type (MCxxx)					03	30			05	0			0	75			10	00	
	Magnet Way Weight	Mw	±15%	kg/m		5.	.4			7.	5			10	0.1			12		
	wagnet way weight	IVIVV	1 5 70	lbs/in		0.3	02			0.4	42			0.	57			0.	71	

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

③ Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

[•] Please see the application sizing section for more details on sizing and thermal considerations.

③ All data referenced to sinusoidal commutation

8.2.7.1 IC44 Natural Cooled Motor Series - Performance Data (continued)

		Symbol	Tol	Units		IC44	-150			IC44	-200			IC44	-250	
Winding Code	2	•	'	l	A1	A2	A3	A7	A1	A2	A3	A7	A1	A2	А3	A7
Rated Perform	ance															
Max Rated Volt		Un		VAC	480	480	480	230	480	480	480	230	480	480	480	230
Max Continuo	us Force @ Tmax	_		N		33	53			46	49			58	34	
1 5		Fc		lbf		75	54			10	45			13	12	
Motor constan	t	Km		N/√W		0.	75			0.8	82			0	.9	
Continous Curi	rent @ Tmax	Ic		Arms	4.75	9.5	19.0	32.9	4.94	9.9	19.8	34.2	4.96	9.9	19.8	34.4
Peak Force @ T	may ®	Fp		N	4505	7264	6264	6467	-	8309	8352	8623	-	8996	10440	10779
OA		<u>'</u>		lbf	1013	1633	1408	1454	-	1868	1878	1939	-	2022	2347	2423
Peak Current @	Tmax ⑤	Ip		Arms	6.7	26.9	42.0	76	-	20.8	42.0	76	-	17.0	42.0	76
Rated force @ :	Speed ®	Frtd		N	3352	3347	3329	3285	-	4646	4630	4595	-	5830	5816	5784
				lbf	754	752	748	738	-	1044	1041	1033	-	1311	1307	1300
Rated Speed		Nrtd		m/s	0.090	0.54	1.44	2.70	-	0.27	0.99	1.89	-	0.180	0.72	1.44
Peak Force @ T	max ⑤	Fp		N Ibf	6716 1510	7967 1791	6264 1408	-	7546 1696	10750 2417	8352 1878	-	8090 1819	12637 2841	10440 2347	-
Peak Current @	Tmay (S)	Ip		Arms	11.7	33.3	42.0	-	9.1	34.6	42.0	-	7.4	29.6	42.0	
o reak current g	y IIIIax ③	<u> </u>		N	3350	3336	3285	-	4647	4633	4595	_	5832	5822	5784	_
Rated force @ :	Speed ⑤	Frtd		lbf	753	750	738	-	1045	1042	1033	-	1311	1309	1300	_
Rated Speed		Nrtd		m/s	0.360	1.17	2.70	-	0.18	0.81	1.89	-	0.11	0.54	1.44	-
,				N	7426	7967	6264	-	8550	10750	8352	-	9288	13448	10440	-
Peak Force @ T	max ⑤	Fp		lbf	1669	1791	1408	-	1922	2417	1878	-	2088	3023	2347	-
Peak Current @	Tmax ⑤	Ip		Arms	14.1	33.3	42.0	-	10.9	34.6	42.0	-	8.9	34.7	42.0	-
Rated force @	Spood ®	Frtd		N	3347	3328	3257	-	4646	4630	4569	-	5830	5816	5761	-
	Speed 🥹			lbf	752	748	732	-	1044	1041	1027	-	1311	1307	1295	-
Rated Speed		Nrtd		m/s	0.54	1.44	3.33	-	0.27	0.90	2.34	-	0.18	0.72	1.80	-
Electrical Spec			ı	ı				ı			ı					
	tance @ 25°C L-L	Rm	±10%	Ohms	25.1	6.3	1.58	0.53	32.5	8.1	2.03	0.68	39.8	10.0	2.49	0.83
Electrical Indu	ctance L-L	L	±20%	mh	309	77	19.3	6.4	409	102	25.6	8.5	510	127	31.8	10.6
Force Constant	t @ 25°C	Kf	±10%	N/Arms	716	358	179	103	955	478	239	138	1194	597	299	172
		- "		lbf/Arms	161	80	40.2	23.2	215	107	54	31	268	134	67	38.7
Back EMF Cons	stant @ 25°C L-L	Ke	±10%	Vpeak/m/s	585	293	146	84	780	390	195	113	975	488	244	141
				Vpeak/in/sec	15	7	3.71	2.14	20	10	4.95	2.86	25	12	6	3.57
	it and Additional I		ı				_				_		ı		_	
Electrical Time		Te		ms ,		12					2.6				2.8	
Max. Theoretic	al Acceleration ③	Amax		g's			2.4				3.2				3.4	
Magnetic Attra	iction	Fa		kN lbf		29				88	9.4).2)61	
Thormal Dociet		D+byy a		-		0.0)52	
Thermal Resist		Rthw-a		°C/Watt		0.0	88			0.0				0.0	152	
Max. Allowable		Tmax		٠,٢						13	30					
Mechanical Sp	echications			ka		36	. 2			1	7.4			E (3.5	
Coil Assembly	Weight	Mc	±15%	kg Ibs			0.2				7.4 04				3.5 29	
Magnet May T	uno (MCvov)	1	l	Inz			0 5 0			20					29 5 0	
Magnet Way T	ype (IVICXXX)			ka/m		20					5.8			33		
Magnet Way W	/eight	Mw	±15%	kg/m												
•				lbs/in	l	1.	10			1.	.5		I	1.3	86	

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- ② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

- ④ Please see the application sizing section for more details on sizing and thermal considerations.
- ③ All data referenced to sinusoidal commutation

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

8.2.8 IC44 Water Cooled Motor Series - Performance Data

		Symbol	Tol	Units	I	C44-03	0 _	I	C44-05	0 _	I	C44-07	5	I	C44-10	0 _
	Winding Code ②				A1	A2	А3	A1	A2	А3	A1	A2	А3	A1	A2	А3
	Rated Performance															
	Max Rated Voltage	Un		VAC	480	480	230	480	480	230	480	480	230	480	480	230
	Max Continuous Force @ Tmax	-		N		1019			1678			2500			3352	
	1 3	Fc		lbf		229			377			562			754	
	Motor constant	Km		N/√W		0.33			0.354			0.393			0.43	
	Continous Current @ Tmax	Ic		Arms	10.0	20.0	40.1	9.9	19.7	39.4	9.8	19.5	39.1	9.8	19.7	39.4
	Peak Force @ Tmax ⑤	Γn		N	1549	1551	1521	2567	2567	2535	3347	3839	3803	3839	5134	5071
Ų	reak Force @ Illiax ®	Fp		lbf	348	349	342	577	577	570	752	863	855	863	1154	1140
>	Peak Current @ Tmax ⑤	Iр		Arms	20.0	40.1	76	19.7	39.4	76	14.9	39.1	76	11.8	39.4	76
300	Rated force @ Speed ⑤	Frtd		N	1016	1008	981	1675	1668	1644	2499	2492	2471	3352	3346	3327
(4	<u> </u>			lbf	228	227	221	377	375	370	562	560	556	754	752	748
	Rated Speed	Nrtd		m/s	1.62	4.14	9.2	0.72	2.34	5.4	0.27	1.35	3.42	0.05	0.90	2.43
	Peak Force @ Tmax ⑤	Fp		N	1549	1551	-	2567	2567	-	3835	3839	-	5134	5134	-
AC		'		lbf	348	349	-	577	577	-	862	863	-	1154	1154	-
2	Peak Current @ Tmax ⑤	Ip		Arms	20.0	40.1	-	19.7	39.4	-	19.5	39.1	-	19.7	39.4	-
4	Rated force @ Speed ⑤	Frtd		N lbf	1010 227	989 222	-	1671 376	1652 371	-	2494 561	2478 557	-	3348 753	3333 749	-
	Rated Speed	Nrtd		m/s	3.51	7.8	-	1.89	4.59	-	1.08	2.88	-	0.63	2.07	
	kated Speed	MILU		N N	1549	1551	-	2567	2567	-	3835	3839	-	5134	5134	_
O	Peak Force @ Tmax ⑤	Fp		lbf	348	349	-	577	577	_	862	863	-	1154	1154	_
Š	Peak Current @ Tmax ⑤	qI		Arms	20.0	40.1	_	19.7	39.4	-	19.5	39.1	-	19.7	39.4	_
ő				N	1007	978	-	1667	1642	-	2492	2468	-	3346	3324	_
4	Rated force @ Speed ⑤	Frtd		lbf	226	220	-	375	369	-	560	555	-	752	747	-
	Rated Speed	Nrtd		m/s	4.32	9.6	-	2.43	5.7	-	1.44	3.60	-	0.99	2.61	-
	Electrical Specifications ②															
	Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	6.08	1.52	0.382	8.4	2.11	0.53	11.4	2.84	0.71	14.3	3.58	0.90
	Electrical Inductance L-L	L	±20%	mh	44.7	11.2	2.79	70	17.6	4.39	102	25.6	6.4	134	33.6	8.4
				N/Arms	115	57	28.7	191	96	47.8	287	144	72	383	191	96
	Force Constant @ 25°C	Kf	±10%	lbf/Arms	25.9	12.8	6.5	42.9	21.6	10.7	65	32.4	16.2	86	42.9	21.6
				Vpeak/m/s	94	46.9	23.4	156	78	39.1	234	117	59	313	156	78
	Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/in/sec	2.38	1.19	0.6	3.97	1.98	0.99	6	2.98	1.49	8	3.97	1.98
	Figures of Merit and Additiona	l Data														
	Electrical Time Constant	Te		ms		7.4			8.3			8.9			9.4	
	Max. Theoretical Acceleration ③	Amax		q's		16.5			18.9			20.4			21.0	
		-		kN		5.9			9.8			14.7			19.6	
	Magnetic Attraction	Fa		lbf		1326			2203			3305			4406	
	Thermal Resistance ④	Rthw-a		°C/Watt		0.082			0.061			0.046			0.036	
	Max. Allowable Coil Temp. ④	Tmax		°C						13	30					
	Min. Flow Rate of Coolant			liters/min						2	.8					
	@ 25°C Max.															
	Mechanical Specifications					0.5			10.5			40.5			05.5	
	Coil Assembly Weight	Мс	±15%	kg lbs		9.6			13.9 30.6			19.2 42.3			25.0 55	
	Magnet Way Type (MCxxx)	1		103		030			050			075			100	
	magnet way Type (mcxxx)			kg/m		5.4			7.5			10.1			12.7	
	Magnet Way Weight	Mw	±15%			0.302			0.42			0.57			0.71	
		I		lbs/in		0.502		I	0.42		I	0.57		I	U. / I	

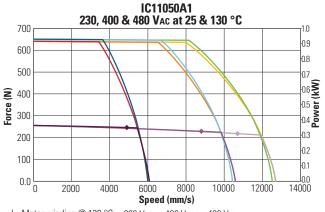
- \odot The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- ② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

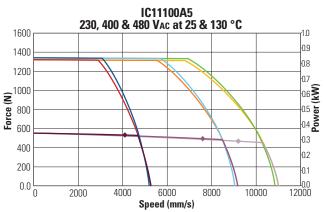
① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

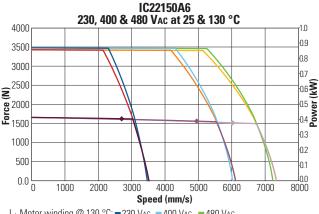
[•] Please see the application sizing section for more details on sizing and thermal considerations.

③ All data referenced to sinusoidal commutation

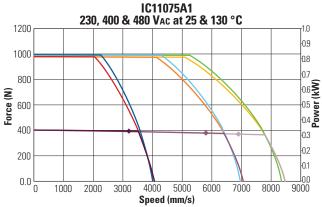
8.2.8.1 IC44 Water Cooled Motor Series - Performance Data (continued)

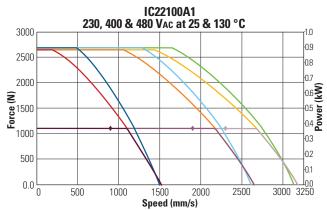

		Symbol	Tol	Units	IC44-150		,		C44-200	1		IC44-250	
	Winding Code ②	Syllibol	101	Ullits	A1	A2	A3	A1	A2	A3	A1	A2	A3
	Rated Performance				AI	AZ.	Α3	Ai	A2	7.5	AI	\AZ	73
	Max Rated Voltage	Un		VAC	480	480	230	480	480	230	480	480	230
	Max Continuous Force @ Tmax	OII		N	400	4992	230	400	6673	230	400	8211	230
	① ⑤	Fc		lbf		1122			1500			1846	
	Motor constant	Km		N/√W		0.49			0.55			0.61	
	Continous Current @ Tmax	Ic		Arms	9.8	19.5	39.0	9.8	19.6	39.1	9.6	19.2	38.4
				N	-	7153	7606	-	8183	10142	-	-	12677
ب	Peak Force @ Tmax ⑤	Fp		lbf	-	1608	1710	-	1840	2280	-	-	2850
≶	Peak Current @ Tmax ③	Ip		Arms	-	33.5	76	-	26.0	76	-	-	76
30	Dated force & Creed ®	Frtd		N	-	4989	4972	-	6671	6657	-	-	8198
7	Rated force @ Speed ⑤	Frid		lbf	-	1122	1118	-	1500	1497	-	-	1843
	Rated Speed	Nrtd		m/s	-	0.36	1.44	-	0.130	0.99	-	-	0.63
	Peak Force @ Tmax ⑤	Fp		N	6610	7671	-	7428	10238	-	-	12484	-
AC		<u> </u>		lbf	1486	1725	-	1670	2302	-	-	2807	-
>	Peak Current @ Tmax ⑤	Ip		Arms	14.6	39.0	-	11.3	39.1	-	-	36.9	-
6	Rated force @ Speed ⑤	Frtd		N	4990	4978	-	6673	6662	-	-	8203 1844	-
	Pated Speed	Netd		lbf m/s	1122 0.18	1119 1.17	-	1500 0.010	1498 0.72	-	-	0.45	-
	Rated Speed	Nrtd		111/S N	7311	7671	-	8417	10238	-	9144	12705	-
o.	Peak Force @ Tmax ⑤	Fp		lbf	1644	1725	_	1892	2302	-	2056	2856	-
₹	Peak Current @ Tmax ③	Ip		Arms	17.5	39.0	_	13.6	39.1	_	11.1	38.4	_
õ		<u> </u>		N	4989	4970	_	6671	6657	_	8211	8196	-
4	Rated force @ Speed ⑤	Frtd		lbf	1122	1117	-	1500	1497	-	1846	1843	-
	Rated Speed	Nrtd		m/s	0.36	1.53	-	0.160	0.99	-	0.01	0.72	-
	Electrical Specifications ②												
	Electrical Resistance @ 25°C L-L	Rm	±10%	Ohms	20.2	5.0	1.26	26.0	6.5	1.63	31.9	8.0	2.00
	Electrical Inductance L-L	L	±20%	mh	198	49.6	12.4	263	66	16.4	327	82	20.4
	F 6	1/5	±10%	N/Arms	574	287	144	765	383	191	957	478	239
	Force Constant @ 25°C	Kf	±10%	lbf/Arms	129	65	32.4	172	86	42.9	215	107	54
	Darle FME Countries & 250C L L	1/-	±10%	Vpeak/m/s	469	234	117	625	313	156	781	391	195
	Back EMF Constant @ 25°C L-L	Ke	±10%	Vpeak/in/sec	12	6	2.98	16	8	3.97	20	10	4.96
	Figures of Merit and Additional l	Data											
	Electrical Time Constant	Te		ms		9.8			10.1			10.2	
	Max. Theoretical Acceleration ③	Amax		g's		21.6			22.1			22.1	
	Magnetic Attraction	Fa		kN		29.4			39.4			49.2	
		I a		lbf		6609			8857			11061	
	Thermal Resistance ④	Rthw-a		°C/Watt		0.026			0.020			0.017	
	Max. Allowable Coil Temp. ④	Tmax		°C					130				
	Min. Flow Rate of Coolant @ 25°C Max.			liters/min					2.8				
	Mechanical Specifications												
	Coil Assembly Weight	Мс	±15%	kg Ibs		36.2 80			47.4 104			58.5 129	
	Magnet Way Type (MCxxx)	1		103		150			200			250	
	magnet way Type (MCAAA)			kg/m		20.7			26.8			33.2	
	Magnet Way Weight	Mw	±15%	lbs/in		1.16			1.5			1.86	

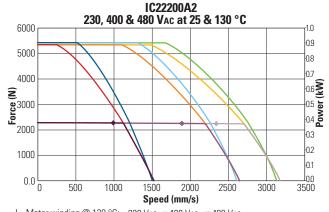

- ① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.
- ② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.


- ① Please see the application sizing section for more details on sizing and thermal considerations.
- (5) All data referenced to sinusoidal commutation

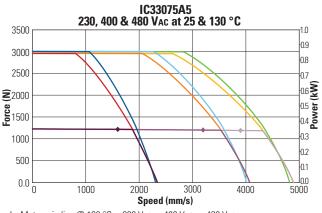
① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.


8.3 IC Ironcore - Performance Curves

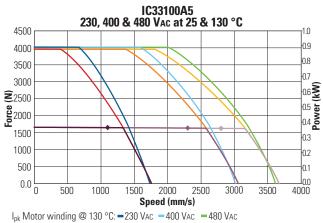




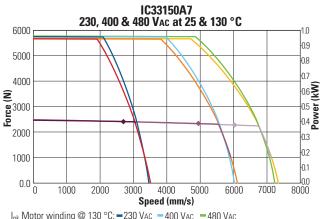
 I_{pk} Motor winding @ 130 °C: −230 VAC −400 VAC −480 VAC I_{pk} Motor winding @ 25 °C ambient: −230 VAC −400 VAC −480 VAC Rated Power: •230 •400 •480 SOAC (cont. operation): −230 −400 −480

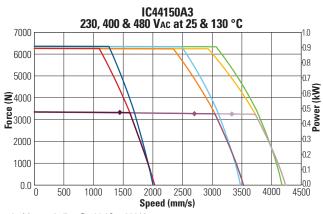


 $\begin{array}{l} I_{pk} \ Motor \ winding @ 130 \ ^{\circ}C: -230 \ Vac \ -400 \ Vac \ -480 \ Vac \\ I_{pk} \ Motor \ winding @ 25 \ ^{\circ}C \ ambient: -230 \ Vac \ -400 \ Vac \ -480 \ Vac \\ Rated \ Power: •230 \ •400 \ •480 \ SOAC \ (cont. \ operation): -230 \ -400 \ -480 \end{array}$

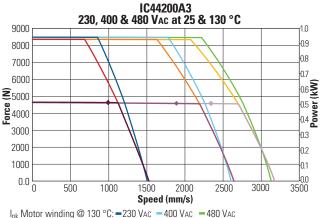


 I_{pk} Motor winding @ 130 °C: −230 Vac −400 Vac −480 Vac I_{pk} Motor winding @ 25 °C ambient: −230 Vac −400 Vac −480 Vac Rated Power: •230 •400 •480 SOAC (cont. operation): −230 −400 −480


8.3.1 IC Ironcore - Performance Curves, continued

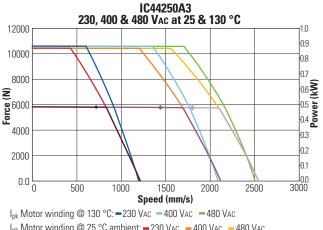


 $I_{pk} \ \, \text{Motor winding} \ \, @ \ \, 130 \, ^{\circ}\text{C:} -230 \, \text{Vac} -400 \, \text{Vac} -480 \, \text{Vac} \\ I_{pk} \ \, \text{Motor winding} \ \, @ \ \, 25 \, ^{\circ}\text{C ambient:} -230 \, \text{Vac} -400 \, \text{Vac} -480 \, \text{Vac} \\ \text{Rated Power:} \, • 230 \, • 400 \, • 480 \, \text{SOAC (cont. operation):} -230 \, -400 \, -480 \, \text{Vac} \\ \text{Rated Power:} \, • 230 \, • 400 \, • 480 \, \text{SOAC (cont. operation):} -230 \, -400 \, -480 \, \text{Vac} \\ \text{Rated Power:} \, • 230 \, • 400 \, • 480 \, \text{Vac} \\ \text{Rated Power:} \, • 230 \, • 230 \, • 230 \, \bullet 400 \, \text{Vac} \\ \text{Rated Power:} \, • 230 \, • 230 \, • 230 \, \bullet 400 \, \text{Vac} \\ \text{Rated Power:} \, • 230 \, • 230 \, • 230 \, \bullet 400 \, \text{Vac} \\ \text{Rated Power:} \, • 230 \, • 230 \, \bullet 400 \, \bullet 400 \, \text{Vac} \\ \text{Rated Power:} \, • 230 \, • 230 \, \bullet 400 \, \text{Vac} \\ \text{Rated Power:} \, • 230 \, • 230 \, \bullet 400 \, \text{Vac} \\ \text{Rated Power:} \, • 230 \, • 230 \, \bullet 400 \, \text{Vac} \\ \text{Rated Power:} \, \bullet 230 \, \bullet 400 \, \text{Vac} \\ \text{Rated Power:} \, \bullet 230 \, \bullet 400$



I_{pk} Motor winding @ 150 °C. = 250 VAC = 400 VAC = 400 VAC = 480 VAC Rated Power: ◆230 ◆400 ◆480 SOAC (cont. operation): = 230 = 400 = 480

 $\begin{array}{l} I_{pk} \ \text{Motor winding} \ @ \ 130 \ ^{\circ}\text{C} : = 230 \ \text{Vac} \ = 480 \ \text{Vac} \ = 480 \ \text{Vac} \\ I_{pk} \ \text{Motor winding} \ @ \ 25 \ ^{\circ}\text{C} \ \text{ambient:} = 230 \ \text{Vac} \ = 400 \ \text{Vac} \ = 480 \ \text{Vac} \\ \text{Rated Power:} \ \spadesuit 230 \ \ \spadesuit 400 \ \ \spadesuit 480 \ \ \ \text{SOAC (cont. operation):} = 230 \ \ = 400 \ \ = 480 \end{array}$

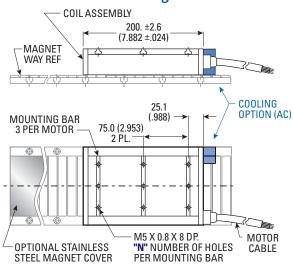


Speed (minys)

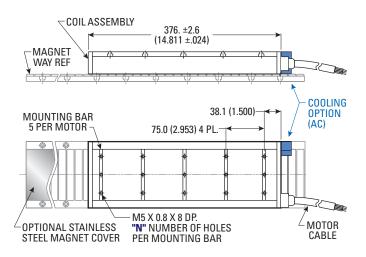
I_{pk} Motor winding @ 130 °C: −230 Vac −400 Vac −480 Vac

I_{pk} Motor winding @ 25 °C ambient: −230 Vac −400 Vac −480 Vac

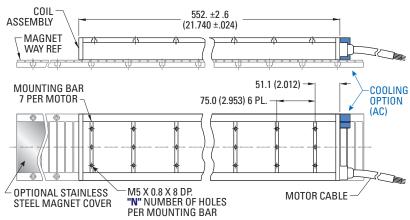
Rated Power: ◆230 ◆400 ◆480 SOAC (cont. operation): −230 −400 −480

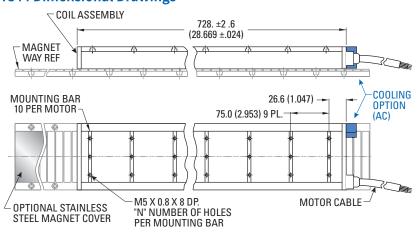

I_{pk} Motor winding @ 130 °C. = 230 Vac = 400 Vac = 480 Vac I_{pk} Motor winding @ 25 °C ambient: = 230 Vac = 400 Vac = 480 Vac Rated Power: ◆230 ◆400 ◆480 SOAC (cont. operation): = 230 = 400 = 480

8.4 IC Ironcore - Dimensional Drawings

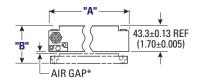


- All drawings are in principle (not scaled).
- 3D Models are available at Kollmorgen Design Tools 3D Models.


IC11 Dimensional Drawings


IC22 Dimensional Drawings

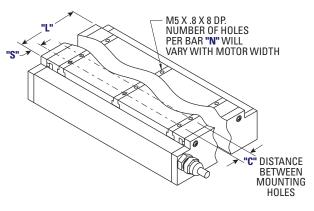
IC33 Dimensional Drawings



IC44 Dimensional Drawings

Dimensions in mm (in)

8.4.1 IC Ironcore - Dimensional Drawings, continued


*AIR GAP:

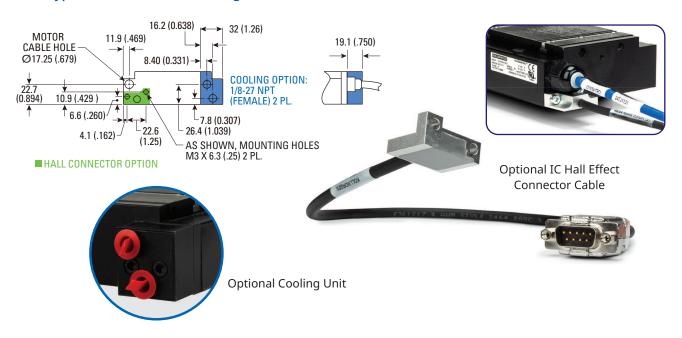
A suitable air gap should be set to ensure that the feeler gauge of the corresponding size can pass smoothly between the coil and the magnetic circuit.

For the magnetic circuit without cover, the air gap is 0.8 ± 0.1 mm

For the covered magnetic circuit, the air gap is 0.55 ± 0.1 mm

(Stainless steel cover plate thickness 0.25mm)

ICxx Dimensional Data, Typical Mounting Bar Lengths & Mounting Holes Tabulation

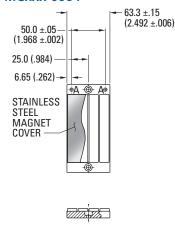

	tor	Coil Width	·	Heigh Air G			acing en Holes	Moun Bar Le		# Holes		
Coil 7 Coil	туре	"A"	w/ mag	"B' g. cvr		nag. cvr	C" _	"L	•	_"N"	<u>."</u> S"	"S"
ICxx030	65.0	(2.559) ± 1.0 (.04)					16.0 (0.	630)	30 (1.18)	2	7.0 (0.28)
ICxx050	85.0	(3.346) ± 1.0 (.04)	58.6±	±0.1	58.3	3±0.1	36.0 (1.	417)	50 (1.97)	2	7.0 (0.28)
ICxx075	110.0	(4.331) ± 1.0 (.04)	(2.307±	:.004)	(2.29	5±.004)	32.0 (1.	260)	75 (2.95)	3	5.5 (0.21)
ICxx100	135.0	(5.315) ± 1.0 (.04)					36.0 (1.	417)	100	(3.94)	3	14.0 (0.55)
ICxx150	185.0	(7.283) ± 1.5 (.06)					32.0 (1.	260)	150	(5.91)	5	11.0 (0.43)
ICxx200	235.0	(9.252) ± 1.5 (.06)		60.6±0.1 (2.386±.004)		3±0.1 4±.004)	36.0 (1.	417)	200	(7.87)	6	10.0 (0.39)
ICxx250 Dimer	285.0 sions i	(11.22) ± 1.5 (.06) n mm (in.)	(=	,	(=	,	38.0 (1.	496)	250	(9.84)	7	11.0 (0.43)

Note:

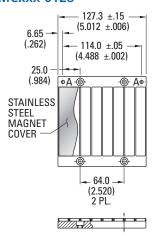
- 1. Dimensions in mm (inches)
- 2. Tolerances (unless otherwise specified):

No decimal places: ±0.8 One decimal places: ±0.1 Two decimal places: ±0.05

ICxx Typical Cable Port and Cooling Unit Dimensions

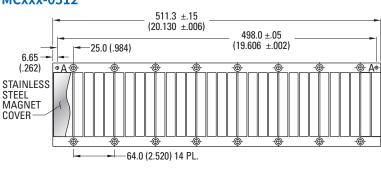


8.5 MC Magnet Way - Dimensional Drawings and Data

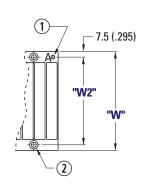


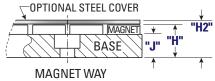
- All drawings are in principle (not scaled).
- 3D Models are available at Kollmorgen Design Tools 3D Models.

MCxxx-0064


MCxxx-0128

MCxxx-0256


MCxxx-0512


Magnetic Way Typical Dimensions

	, ,,				
Magnet Way	Assembly Width	Mounting Hole Width	Base Height	Base + Magnet Height	Total Height with Cover
Туре	"W"	"W2"	"J"	"H"	"H2"
MC030xxxx	60.0 (2.362)	45.0 (1.772)			
MC050xxxx	80.0 (3.150)	65.0 (2.560)	10000000	141(0 555)	144(0 550)
MC075xxxx	105.0 (4.134)	90.0 (3.544)	10.0 (0.394)	14.1 (0.555)	14.4 (0.556)
MC100xxxx	130.0 (5.118)	115.0 (4.528)			
MC150xxxx	180.0 (7.087)	165.0 (6.496)			
MC200xxxx	230.0 (9.055)	215.0 (8.464)	12.0 (0.472)	16.1 (0.634)	16.4 (0.645)
MC250xxxx	285.0 (11.22)	270.0 (10.63)			

Dimensions in mm (in.)

- 1. \emptyset 5.110-5.135 (.201-.202) THRU 2 PL. MARKED "A" FOR RECOMMENDED 5mm M6 LOCATING PINS
- Ø6.6 (.260) THRU C'BORE Ø11.0 (.433) X 6.2 (.246) DP. 2 PL. LOCATED AS SHOWN. RECOMMENDED MOUNTING HARDWARE: M6 SOC. HD. CAP DIN 912 (1/4" SOC. HD. CAP SCREW)

9 Ironcore DDL Low Profile Motors - Technical Data

9.1 ICD Ironcore Low Profile - General Specifications	68
9.2 Ironcore DDL Low Profile Motors - Technical Data	69
9.2.1 ICD05 - Performance Data	70
9.2.2 ICD10 - Performance Data	71
9.3 MCD Magnet Way - Dimensional Drawing and Data	73

9.1 ICD Ironcore Low Profile - General Specifications

Ironcore DDL linear motors have a compact profile to provide force moving load.

General Specifications

- » Coil frame size 05, 10
- » Coil width 030, 050, 075, 100
- » Low and high-speed coil winding designs fit various application needs

ICD05/10

Peak force range 165 – 1099N Continuous force range 57 – 315 N Insulation voltage rating 230VAC

Cooling optionsNatural-cooled onlyFeedbackOptional hall sensorThermal DevicesThermistor – PTCCertificationRoHS, REACH

9.2 Ironcore DDL Low Profile Motors - Technical Data

9.2.1 ICD05 - Performance Data	70
9.2.2 ICD10 - Performance Data	71

9.2.1 ICD05 - Performance Data

	Symbol	Units	ICD05030		ICD05050		ICD05075		ICD05100		
Rated Performance											
Peak Force	Fp	N	16	55	295		441		588		
		lbf	37.1		66.3		99.1		132		
Santing on Santa O. Tarana	Fc	N	57	7.0	87.0		125		157		
Continuous Force @ Tmax ①		lbf	12.8		19.6		28.1		35.3		
Motor Constant @ 25°C	Km	N/√W	12.3		17.2		22.0		26.0		
Motor Constant @ 25 C	KIII	lbf/√W	2.8		3.9		4.9		5.9		
Electrical Specifications											
Winding Code ②			A1	A5	A1	A5	A1	A5	A1	A5	
Peak Current	lp	Arms	7.9	13.7	8.5	14.7	8.5	14.7	8.5	14.7	
Continuous Current @ Tmax	lc	Arms	2.1	3.7	2.0	3.4	1.9	3.3	1.8	3.1	
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	3.2	1.1	4.5	1.5	6.1	2.0	7.7	2.6	
Electrical Inductance ±20%	L	mh L-L	9.1	3.0	14.4	4.8	21.0	7.0	27.6	9.2	
Back EMF Constant @ 25°C±10%	Ke	Vpeak/m/s L-L	21.8	12.6	36.3	21.0	54.3	31.4	72.4	41.8	
		Vpeak/in/sec L-L	0.55	0.32	0.92	0.53	1.38	0.80	1.84	1.06	
Force Constant @ 25°C±10%	Kf	N/Arms	26.7	15.4	44.5	25.7	66.5	38.4	88.7	51.2	
		lbf/Arms	6.0	3.5	10.0	5.8	15.0	8.6	19.9	11.5	
Mechanical Specifications											
Coil Assembly Weight ±15%	Мс	kg	0.62		0.95		1.36		1.71		
		lbs	1.4		2.1		3.0		3.8		
Magnetic Way Type (MCDxxx)	y Type (MCDxxx)		030		050		075		100		
Magnetic Way Weight ±15%	Mw	kg/m	2.70		3.93		5.48		7.04		
magnetic way weight 113%		lbs/in	0.15		0.22		0.31		0.39		
Figures of Merit and Additio	nal Data										
Electrical Time Constant	Te	ms	2.9		3.2		3.4		3.6		
Max. Theoretical Acceleration ③	Amax	g's	28.0		30.2		31.9		32.8		
Magnetic Attraction	Fa	kN	0.53		0.89		1.33		1.78		
		lbf	119		200		299		400		
Thermal Resistance (9 (Coils to External Structure)	Rth	°C/Watt	3.50		2.90		2.30		2.06		
Max. Allowable Coil Temp. ④	Tmax	°C	130		130		130		130		

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

① Please see the application sizing section for more details on sizing and thermal considerations.

9.2.2 ICD10 - Performance Data

	Symbol	Units	ICD10030				ICD10050			
Rated Perfomance										
Peak Force	Fp	N		33	30		550			
		lbf		74	1.2			12	24	
Continuous Force @ Tmax ①	Fc	N		1(04		171			
		lbf	23.4				38.4			
Motor Constant @ 25°C	Km	N/√W	17.3				24.3			
	IXIII	lbf/√W		3	.9		5.5			
Electrical Specifications										
Winding Code ②			A1	A4	A5	A8	A1	A4	A5	A8
Peak Current	lp	Arms	7.9	15.8	13.7	27.4	7.9	15.8	13.7	27.4
Continuous Current @ Tmax	lc	Arms	1.9	3.9	3.4	6.8	1.9	3.8	3.3	6.6
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	6.4	1.6	2.1	0.5	9.0	2.2	3.0	0.7
Electrical Inductance ±20%	L	mh L-L	18.3	4.6	6.1	1.5	29.0	7.3	9.7	2.4
Back EMF Constant @ 25°C±10%	Ke	Vpeak/m/s L-L	43.7	21.8	25.2	12.6	72.8	36.4	42.0	21.0
	INC.	Vpeak/in/sec L-L	1.11	0.55	0.64	0.32	1.85	0.92	1.07	0.53
Force Constant @ 25°C±10%	Kf	N/Arms	53.5	26.8	30.9	15.4	89.2	44.6	51.5	25.7
		lbf/Arms	12.0	6.0	6.9	3.5	20.1	10.0	11.6	5.8
Mechanical Specifications							_			
Coil Assembly Weight ±15%	Мс	kg	1.1				1.9			
Con Assembly Weight 113%		lbs		2	.5		4.1			
Magnetic Way Type (MCDxxx)				03	30		050			
Magnetic Way Weight ±15%	Mw	kg/m	2.70				3.93			
		lbs/in		0.	15		0.22			
Figures of Merit and Additio	nal Data									
Electrical Time Constant	Te	ms	2.9				3.2			
Max. Theoretical Acceleration ③	Amax	g's	30.7				30.7			
Magnetic Attraction	Fa	kN	1.06			1.78				
		lbf	2.38				400			
Thermal Resistance ^① (Coils to External Structure)	Rth	°C/Watt	2.05				1.52			
Max. Allowable Coil Temp. ④	Tmax	°C	130				130			

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

Please see the application sizing section for more details on sizing and thermal considerations.

9.2.2.1 ICD10 - Performance Data, continued

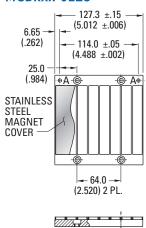
	Symbol	Units	ICD10075				ICD10100				
Rated Perfomance											
Peak Force	Fp	N		8.	24		1099				
		lbf	185				247				
Continuous Force @ Tmax ①	Fc	N		24	46		315				
		lbf		55	5.3		70.8				
Motor Constant @ 25°C	Km	N/√W		31	1.3		37.1				
Motor Constant @ 25 C	IXIII	lbf/√W		7	.0		8.3				
Electrical Specifications											
Winding Code ②			A1	A4	A5	A8	A1	A4	A5	A8	
Peak Current	lp	Arms	7.9	15.8	13.7	27.4	7.9	15.8	13.7	27.4	
Continuous Current @ Tmax	lc	Arms	1.8	3.7	3.2	6.4	1.8	3.5	3.1	6.1	
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	12.2	3.0	4.1	1.0	15.4	3.9	5.1	1.3	
Electrical Inductance ±20%	L	mh L-L	42.4	10.6	14.1	3.5	55.8	13.9	18.6	4.6	
Back EMF Constant	Ke	Vpeak/m/s L-L	109.2	54.6	63.1	31.5	145.7	72.8	84.1	42.0	
@ 25°C±10%		Vpeak/in/sec L-L	2.77	1.39	1.60	0.80	3.70	1.85	2.14	1.07	
Force Constant @ 25°C±10%	Kf	N/Arms	134	66.9	77.2	38.6	178	89.2	103	51.5	
		lbf/Arms	30.1	15.0	17.4	8.7	40.1	20.1	23.2	11.6	
Mechanical Specifications	1	ı									
Coil Assembly Weight ±15%	Мс	kg	2.7				3.4				
		lbs			.9		7.5				
Magnetic Way Type (MCDxxx)				0	75		100				
Magnetic Way Weight ±15%	Mw	kg/m	5.48				7.04				
	, ,			0.	31		0.39				
Figures of Merit and Addition		ı					l				
Electrical Time Constant	Te	ms	3.5				3.6				
Max. Theoretical Acceleration ③	Amax	g's	32.5				33.7				
Magnetic Attraction	Fa	kN	2.66			3.56					
		lbf	598				800				
Thermal Resistance ④ (Coils to External Structure)	Rth	°C/Watt	1.21				1.04				
Max. Allowable Coil Temp. ®	Tmax	°C	130				130				

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

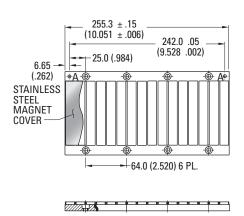
① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

① Please see the application sizing section for more details on sizing and thermal considerations.

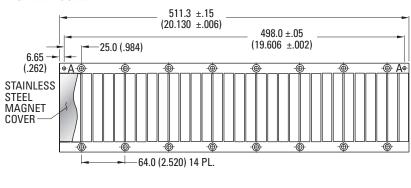
9.3 MCD Magnet Way - Dimensional Drawing and Data



- All drawings are in principle (not scaled).
- 3D Models are available at Kollmorgen Design Tools 3D Models.

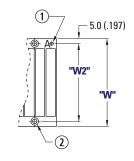

MCDxx-0064

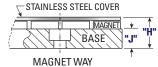
63.3 ±.15 (2.492 ±.006) 50.0 ±.05 (1.968 ±.002) 25.0 (.984) 6.65 (.262) - STAINLESS STEEL MAGNET COVER


MCDxxx-0128

MCDxxx-0256

MCDxxx-0512


MCDxxx Magnet Way Typical Dimensional Data


Туре	"W"	"W2"	"J"		"H"	"H2"
MCD0300xxx001	55.0 (2.165)	45.0 (1.772)				
MCD0500xxx001	75.0 (2.953)	65.0 (2.559)	40/15		0.25 (.22)	5) 8.50 (.335)
MCD0750xxx001	100.0 (3.937)	90.0 (3.543)	4.0 (.157	1	8.25 (.32	0.30 (.333)
MCD1000xxx001	125.0 (4.921)	115.0 (4.528				

Dimensions in mm (in.)

- 1. Ø5.110-5.135 (.201-.202) THRU 2 PL. MARKED "A" FOR RECOMMENDED 5mm M6 LOCATING PINS
- 2. Ø4.7 (.185) THRU C'BORE Ø8.3 (.327) X 1.6 $^{+0.25}_{-0.00}$ (.063) DP. 2 PL. LOCATED AS SHOWN. RECOMMENDED MOUNTING HARDWARE: M4 SOCKET CAP DIN 912 8-32 SOCKET CAP SCREW

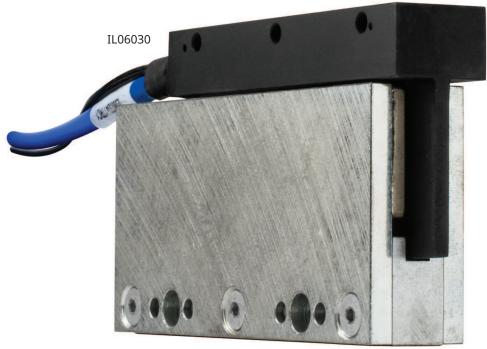
MCDxxx-xxxx

10 Ironless DDL Motors - Performance Data

10.1 IL Ironless - General Specifications	75
10.2 Ironless DDL Motors - Performance Data	
10.2.1 IL03 - Performance Data	77
10.2.2 IL06 - Performance Data	78
10.2.3 IL12 - Performance Data	79
10.2.4 IL18 - Performance Data	80
10.2.5 IL24 - Performance Data	82
10.3 IL Ironless - Dimensional Drawings	84
10.3.1 IL Ironless - Dimensional Drawings, continued	85
10.4 MW Magnet Way - Dimensional Drawings and Data	86
10.4.1 MW Magnet Way - Dimensional Drawings and Data, continued	87

10.1 IL Ironless - General Specifications

Ironless motors have no iron, or slots for the coils to be wound on. Therefore, these motors have zero cogging, a very light mass, and absolutely no attractive forces between the coil assembly and the magnet way. These characteristics are ideal for applications requiring very low bearing friction, high acceleration of lighter loads, and for maximizing constant velocity, even at ultra low speeds. The modular magnet ways consists of a double row of magnets to maximize the generated thrust force DDL linear motors have a compact profile to provide force moving load.


General Specifications

- » Coil frame size 03, 06, 12, 18, 24
- » Coil width 015, 030, 050, 075, 100
- » Low and high-speed coil winding designs fit various application needs

IL03/06/12/18/24

Peak force range 30 - 1600 N 10 - 262 N Continuous force range 230 VAC Insulation voltage rating

Cooling options Natural-cooled only Feedback Optional hall sensor Thermal Devices Thermistor - PTC Certification RoHS, REACH, UL, CE

10.2 Ironless DDL Motors - Performance Data

1	0.2.1 IL03 - Performance Data	.77
1	0.2.2 IL06 - Performance Data	.78
1	0.2.3 IL12 - Performance Data	.79
1	0.2.4 IL18 - Performance Data	.80
1	0.2.5 II.24 - Performance Data	82

10.2.1 IL03 - Performance Data

	Symbol	Units	IL03015	IL03030	IL03050
Rated Perfomance					
Deel Ferre	F.	N	30	60	100
Peak Force	Fp	lbf	6.74	13.5	22.5
Continuous Force @ Tmov (1)	Fc	N	10	19	31
Continuous Force @ Tmax ①	FC	lbf	2.3	4.3	7.0
Motor Constant	Km	N√W	2.4	3.9	5.6
Electrical Specifications					
Winding Code ②			A1	A1	A1
Peak Current	lp	Arms	7.2	7.1	7.0
Continuous Current @ Tmax	lc	Arms	2.5	2.3	2.1
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	2.1	3.1	4.3
Electrical Inductance ±20%	L	mH L-L	0.25	0.65	1.50
Back EMF Constant	Ke	Vpeak/m/s L-L	3.4	6.9	11.6
@ 25°C±10%	Ke	Vpeak/in/sec L-L	0.1	0.2	0.3
Force Constant @ 25°C±10%	kf	N/Arms	4.2	8.4	14.3
Force Constant @ 25 C±10%	KI	lbf/Arms	0.9	1.9	3.2
Mechanical Specifications					
Coil Assambly Weight 1150/	Mc	kg	0.12	0.14	0.16
Coil Assembly Weight ±15%	IVIC	lbs	0.26	0.31	0.35
Magnetic Way Type (MWxxx)			015	030	050
Magnetic Way Weight 150/	Mw	kg/m	5.1	9.4	12.2
Magnetic Way Weight ±15%	IVIVV	lb/in	0.29	0.51	0.68
Figures of Merit and Additi	onal Data				
Electrical Time Constant	Te	ms	0.12	0.21	0.35
Max. Theoretical Acceleration ③	Amax	g's	25.5	43.7	63.7
Managaria Abbusahian	F-	kN	0	0	0
Magnetic Attraction	Fa	lbf	0	0	0
Thermal Resistance	Rth	°C/Watt	3.94	3.22	2.52
Max. Allowable Coil Temp. ④	Tmax	°C	130	130	130

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

③ Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

Please see the application sizing section for more details on sizing and thermal considerations.

10.2.2 IL06 - Performance Data

Rated Perfomance	_											
	_											
De ele Ferrer		N	6	0	12	0	20	00	30	00	40	00
Peak Force	Fp	lbf	13	3.5	27		45		68		90	
Continuous Force @ Tmax ①	Fc	N	2	1	30	.3	49	9.7	67	7.6	82	.8
	FC	lbf	4.	72	6.8	31	11.2		15.2		18.6	
Motor Constant	Km	N√W	3	.3	5.6		8	.0	10).2	12	.1
Electrical Specifications												
Winding Code ②			A1	A4	A1	A4	A1	A4	A1	A4	A1	A4
Peak Current	lp	Arms	7.2	14.4	7.1	14.2	7.0	14.0	7.0	14.0	7.0	14.0
Continuous Current @ Tmax	lc	Arms	2.5	4.9	1.8	3.6	1.7	3.5	1.6	3.2	1.5	2.9
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	4.2	1.1	6.1	1.5	8.6	2.2	11.7	2.9	14.7	3.7
Electrical Inductance ±20%	L	mH L-L	0.50	0.13	1.3	0.33	3.00	0.75	5.00	1.25	7.00	1.75
Back EMF Constant	Ke	Vpeak/m/s L-L	6.9	3.4	13.7	6.9	23.3	11.6	34.9	17.5	46.5	23.3
@ 25°C±10%	I C	Vpeak/in/sec L-L	0.18	0.09	0.35	0.17	0.59	0.30	0.89	0.44	1.18	0.59
Force Constant @ 25°C±10%	kf	N/Arms	8.4	4.2	16.8	8.4	28.5	14.3	42.8	21.4	57.0	28.5
		lbf/Arms	1.9	0.9	3.8	1.9	6.4	3.2	9.6	4.8	12.8	6.4
Mechanical Specifications												
Coil Assembly Weight ±15%	Mc	kg	0.23		0.27		0.32		0.38		0.45	
Coll Assembly Weight ±13%	IVIC	lbs	0	.5	0.	6	0	.7	0	.8	1.	0
Magnetic Way Type (MWxxx)	L = low prof	ile T = Thinner	015	015T	030	030L	050	050L	07	75	10	0
Magnetic Way Weight ±15%	Mw	kg/m	5.1	4.2	9.4	7.3	12.2	10.2	18	3.9	27	.3
ag.reac rray rreigne = 1070		lb/in	0.29	0.24	0.51	.040	0.68	0.56	1.0	05	1.5	51
Figures of Merit and Additi	onal Data											
Electrical Time Constant	Te	ms	0.	12	0.2	21	0	35	0.4	43	0.4	18
Max. Theoretical Acceleration ③	Amax	g's	26	5.8	45	.2	63	3.6	80).6	90	.7
Magnetic Attraction	Fa	kN	()	0		()	()	C)
	1 4	lbf	()	0		0		()	0	
Thermal Resistance (4) (Coils to External Structure)	Rth	°C/Watt	1.	97	1.6	51	1.26		1.04		0.87	
Max. Allowable Coil Temp. ④	Tmax	°C	13	30	13	0	13	30	13	30	13	0

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

① Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

[•] Please see the application sizing section for more details on sizing and thermal considerations.

10.2.3 IL12 - Performance Data

	Symbol	Units	Ιl	.120	15	IL	.120	30	Ιl	.120	50	ΙL	.1207	75	IL12	2100												
Rated Performance																												
Dools Fores	F	N		120			240			400			600		80	00												
Peak Force	Fp	lbf		27			54			90			135		18	30												
Continuous Force @ Tmax ①	Fc	N		41			62.1			88.4			119		14	18												
	FC	lbf	9.22 14.0		19.9			26.8		33.3																		
Motor Constant @ 25°C	Km	N√W		4.8			7.8			11.3			14.5		17.2													
Electrical Specifications																												
Winding Code ②			A1	A2	A4	A1	A2	A4	A1	A2	A4	A1	A2	A4	A2	A4												
Peak Current	lp	Arms	7.1	14.3	28.3	7.1	14.2	28.5	7.0	14.0	28.1	7.0	14.0	28.1	14.0	28.1												
Continuous Current @ Tmax	lc	Arms	2.4	4.9	9.8	1.8	3.7	7.4	1.6	3.1	6.2	1.4	2.8	5.6	2.6	5.2												
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	8.5	2.1	0.5	12.2	3.1	0.8	17.2	4.3	1.1	23.3	5.8	1.5	7.4	1.8												
Electrical Inductance ±20%	L	mH L-L	1.00	0.25	0.06	2.60	0.65	0.16	6.00	1.5	0.38	10.0	2.5	0.63	3.5	0.88												
Back EMF Constant	Ke	Vpeak/m/s L-L	13.7	6.9	3.4	27.5	13.8	6.9	46.5	23.3	11.6	69.8	34.9	17.5	46.5	23.3												
@ 25°C±10%	IXC	Vpeak/in/sec L-L	0.35	0.18	0.09	0.70	0.35	0.17	1.18	0.59	0.30	1.77	0.89	0.44	1.18	0.59												
Force Constant @ 25°C±10%	Kf	N/Arms	16.8	8.4	4.2	33.7	16.9	8.4	57.0	28.5	14.3	85.5	42.8	21.4	57.0	28.5												
. 5. 55 55.151.111 (25 52.157.	1	lbf/Arms	3.78	1.89	0.94	7.6	3.8	1.9	12.8	6.4	3.2	19.2	9.6	4.8	12.8	6.4												
Mechanical Specifications																												
Coil Assembly Weight ±15%	Mc	kg		0.35			0.42		0.52		0.52		0.52		0.52		0.52		0.52		0.52		0.52		0.65		0.	77
Coll Assembly Weight ±15%	IVIC	lbs		8.0			0.9			1.1			1.4		1.7													
Magnetic Way Type (MWxxx) L	= low prof	ile T = Thinner	01	5 0	15T	03	0	030L	050	0 0	50L		075		10	00												
Magnetic Way Weight ±15%	Mw	kg/m	5.1		4.2	9.4	4	7.3	12.	2 '	10.2		18.9		27	7.3												
magnetic way weight 11970		lb/in	0.2	9 (0.24	0.5	1	0.40	0.6	8 (0.56		1.05		1.	51												
Figures of Merit and Addit	ional Dat	ta																										
Electrical Time Constant	Те	ms		0.12			0.21			0.35			0.43		0.4	48												
Max. Theoretical Acceleration ③	Amax	g's		35.0			58.2			78.4			94.1		10	06												
Magnetic Attraction	Fa	kN		0			0			0			0		()												
	га	lbf	0 0			0		0			0																	
Thermal Resistance ④ (Coils to External Structure)	Rth	°C/Watt		0.984	1		0.804	4	0.629		0.519		0.433															
Max. Allowable Coil Temp. ④	Tmax	°C		130			130			130			130		13	30												

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

③ Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

Please see the application sizing section for more details on sizing and thermal considerations.

10.2.4 IL18 - Performance Data

	Symbol	Units		IL18	8015			IL18	8030			IL18	050	
Rated Performance														
Peak Force	Fn	N		18	30			36	50			60	00	
Peak Force	Fp	lbf		4	0			8	11			13	35	
Continuous Force @ Tmax ①	Fc	N		6	2			92	2.1			13	31	
	FC	lbf		13	1.9		20.7				29.4			
Motor Constant @ 25°C	Km	N√W	5.8		9.7					13	.8			
Electrical Specifications														
Winding Code ②			A1	A2	А3	A4	A1	A2	А3	A4	A1	A2	А3	A4
Peak Current	lp	Arms	7.1	14.2	21.3	42.6	7.1	14.3	21.4	42.8	7.0	14.0	21.0	42.1
Continuous Current @ Tmax	lc	Arms	2.4	4.9	7.3	14.7	1.8	3.6	5.5	11.0	1.5	3.1	4.6	9.2
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	12.7	3.2	1.4	0.4	18.2	4.6	2.0	0.5	25.7	6.4	2.9	0.7
Electrical Inductance ±20%	L	mH L-L	1.50	0.38	0.17	0.04	3.8	0.95	0.42	0.11	9.00	2.25	1.00	0.25
Back EMF Constant	Ke	Vpeak/m/s L-L	20.7	10.3	6.9	3.4	41.2	20.6	13.7	6.9	69.8	34.9	23.3	11.6
@ 25°C±10%	Ne	Vpeak/in/sec L-L	0.53	0.26	0.18	0.09	1.05	0.52	0.35	0.17	1.77	0.89	0.59	0.30
Force Constant @ 25°C±10%	Kf	N/Arms	25.3	12.7	8.4	4.2	50.5	25.3	16.8	8.4	85.5	42.8	28.5	14.3
Torce constant @ 25 Ci 10%	IXI	lbf/Arms	5.7	2.9	1.9	0.9	11.4	5.7	3.8	1.9	19.2	9.6	6.4	3.2
Mechanical Specifications														
Coil Assembly Weight ±15%	Mc	kg		0.	46			0.	57		0.72		72	
Con Assembly Weight 11570	IVIC	lbs		1	.0			1.	.3			1.	6	
Magnetic Way Type (MWxxx) L	= low pro	file T = Thinner	0	15	01	5T	03	30	03	0L	05	0	05	0L
Magnetic Way Weight ±15%	Mw	kg/m	5	.1	4	.2	9.	4	7.	3	12	.2	10	.2
Magnetic Way Weight 11370	10100	lb/in	0.	29	0	24	0.5	51	0.4	40	0.6	58	0.5	56
Figures of Merit and Additi	onal Dat	a												
Electrical Time Constant	Те	ms		0.	12			0.21			0.:	35		
Max. Theoretical Acceleration ③	Amax	g's		40	40.2 64.5			84	l.9					
Magnetic Attraction	Fa	kN		()			()			()	
	ı a	lbf)		0			()			
Thermal Resistance ④ (Coils to External Structure)	Rth	°C/Watt		0.6	556		0.536			0.4	19			
Max. Allowable Coil Temp. ④	Tmax	°C		13	30			130		130				

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

③ Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

[•] Please see the application sizing section for more details on sizing and thermal considerations.

10.2.4.1 IL18 - Performance Data, continued

	Symbol	Units	IL18075			IL18100					
Rated Performance											
Park Farra	F	N		9(00			12	00		
Peak Force	Fp	lbf		20	02		270				
Continuous Force @ Tmax ①	Fc	N		17	73		211				
Continuous Force @ Imax ()	FC	lbf		38	3.9		47.4				
Motor Constant @ 25°C	Km	N√W		17	7.7			21	.0		
Electrical Specifications											
Winding Code ②			A1	A2	А3	A4	A1	A2	A3	A4	
Peak Current	lp	Arms	7.0	14.0	21.0	42.1	7.0	14.0	21.0	42.1	
Continuous Current @ Tmax	lc	Arms	1.4	2.7	4.0	8.1	1.2	2.5	3.7	7.4	
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	35.0	8.8	3.9	1.0	44.2	11.1	4.9	1.2	
Electrical Inductance ±20%	L	mH L-L	15.0	3.75	1.67	0.42	21.0	5.25	2.33	0.58	
Back EMF Constant	Ke	Vpeak/m/s L-L	105	52.4	34.9	17.5	140	69.9	46.6	23.3	
@ 25°C±10%	IVE.	Vpeak/in/sec L-L	2.66	1.33	0.89	0.44	3.55	1.77	1.18	0.59	
Force Constant @ 25°C±10%	Kf	N/Arms	128	64.2	42.8	21.4	171	85.6	57.0	28.5	
Torce constant @ 25 C±1070	IXI	lbf/Arms	28.8	14.4	9.6	4.8	38.5	19.2	12.8	6.4	
Mechanical Specifications											
Coil Assembly Weight ±15%	Mc	kg		0.	91			1.	10		
Conviscentially Weight 113%	IVIC	lbs		2	.0			2	.4		
Magnetic Way Type (MWxxx)				0	75			10	00		
Magnetic Way Weight ±15%	Mw	kg/m		18	3.9			27	7.3		
Wagnetic Way Weight 113%	10100	lb/in		1.	05			1.	51		
Figures of Merit and Additio	nal Data										
Electrical Time Constant	Te	ms	0.43			0.	48				
Max. Theoretical Acceleration ③	Amax	g's	101				11	11			
Magnetic Attraction	Fa	kN			0			()		
	ı a	lbf	0					()		
Thermal Resistance ④ (Coils to External Structure)	Rth	°C/Watt	0.35				0.29				
Max. Allowable Coil Temp. ④	Tmax	°C	130				130				

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

③ Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

[•] Please see the application sizing section for more details on sizing and thermal considerations.

10.2.5 IL24 - Performance Data

	Symbol	Units]	[L2401	5	l	L2403	0]	L240!	50
Rated Performance											
Peak Force	Гр	N		240			480			800	
reak Force	Fp	lbf		54			108			180	
Continuous Force @ Tmax ①	Fc	N		83			109		155		
	FC	lbf		18.7		24.5			34.8		
Motor Constant @ 25°C	Km	N√W		6.7			11.2		15.9		
Electrical Specifications											
Winding Code ②			A1	A2	A3	A1	A2	A3	A1	A2	A3
Peak Current	lp	Arms	7.1	14.2	28.4	7.1	14.2	28.5	7.0	14.0	28.1
Continuous Current @ Tmax	lc	Arms	2.4	4.9	9.8	1.6	3.2	6.4	1.4	2.7	5.4
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	16.9	4.20	1.10	24.3	6.1	1.5	34.3	8.6	2.1
Electrical Inductance ±20%	L	mH L-L	2.00	0.50	0.13	5.1	1.28	0.32	12.0	3.00	0.75
Back EMF Constant	Ke	Vpeak/m/s L-L	27.5	13.8	6.9	55.0	27.5	13.8	93.1	46.5	23.3
@ 25°C±10%	ixe	Vpeak/in/sec L-L	0.70	0.35	0.18	1.40	0.70	0.35	2.36	1.18	0.59
Force Constant @ 25°C ±10%	Kf	N/Arms	33.7	16.9	8.4	67.4	33.7	16.9	114	57.0	28.5
Torce constant @ 25 C 11070	101	lbf/Arms	7.6	3.8	1.9	15.2	7.6	3.8	25.6	12.8	6.4
Mechanical Specifications											
Coil Assembly Weight ±15%	Mc	kg		0.57			0.72		0.92		
Con Assembly Weight 115%	IVIC	lbs		1.3			1.6			2.0	
Magnetic Way Type (MWxxx) L =	low prof	ile T = Thinner	015		015T	030)	030L	050		050L
Magnetic Way Weight ±15%	Mw	kg/m	5.1		4.2	9.4		7.3	12.2		10.2
age.e rray rreigine = 1070		lb/in	0.29		0.24	0.51		0.40	0.68		0.56
Figures of Merit and Addit	ional D	ata									
Electrical Time Constant	Te	ms		0.12			0.21			0.35	
Max. Theoretical Acceleration ③	Amax	g's	42.9			68.0			88.7		
Magnetic Attraction	Fa	kN		0			0		0		
	I u	lbf	0		0			0			
Thermal Resistance ④ (Coils to External Structure)	Rth	°C/Watt	0.49		0.40			0.32			
Max. Allowable Coil Temp. ④	Tmax	°C		130		130			130		

① The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

③ Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.

Please see the application sizing section for more details on sizing and thermal considerations.

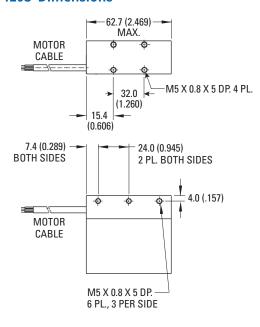
10.2.5.1 IL24 - Performance Data, continued

	Symbol	Units		IL24	1075			IL24	1100		
Rated Performance											
Paris Faura		N		12	.00			16	00		
Peak Force	Fp	lbf		27	70			36	50		
Santinua Carana	F-	N		2	11			20	52		
Continuous Force @ Tmax ①	Fc	lbf		47	7.4			58	3.9		
Motor Constant @ 25°C	Km	N√W		20.6				24	1.4		
Electrical Specifications											
Winding Code ②			A1	A2	А3	A4	A1	A2	А3	A4	
Peak Current	lр	Arms	7.0	14.0	28.0	56.1	7.0	14.0	28.1	56.1	
Continuous Current @ Tmax	lc	Arms	1.2	2.5	4.9	9.9	1.2	2.3	4.6	9.2	
Electrical Resistance @ 25°C±10%	Rm	Ohms L-L	46.6	11.7	2.9	0.73	58.9	14.7	3.7	0.92	
Electrical Inductance ±20%	L	mH L-L	20.0	5.0	1.25	0.31	28.0	7.00	1.75	0.44	
Back EMF Constant	Ke	Vpeak/m/s L-L	140.	69.9	34.9	17.5	186	93.1	46.6	23.3	
@ 25°C±10%	I/C	Vpeak/in/sec L-L	3.55	1.77	0.89	0.44	4.73	2.37	1.18	0.59	
Force Constant @ 25°C ±10%	Kf	N/Arms	171	85.6	42.8	21.4	228	114	57.0	28.5	
Torce constant @ 25 C 110%	IXI	lbf/Arms	38.5	19.2	9.6	4.8	51.3	25.6	12.8	6.4	
Mechanical Specifications											
Coil Assembly Weight ±15%	Mc	kg		1.	17			1.	42		
Con Assembly Weight 11570	IVIC	lbs		2	.6			3	.1		
Magnetic Way Type (MWxxx)	,			07	75			10	00		
Magnetic Way Weight ±15%	Mw	kg/m		18	3.9			27	7.3		
Wagnetic Way Weight 11370	10100	lb/in		1.0	05			1.	51		
Figures of Merit and Additio	nal Dat	:a									
Electrical Time Constant	Te	ms	0.43				0.	48			
Max. Theoretical Acceleration ③	Amax	g's	105					11	15		
Magnetic Attraction	Fa	kN		()			()		
	Га	lbf	0					()		
Thermal Resistance ④ (Coils to External Structure)	Rth	°C/Watt	0.26					0.	0.22		
Max. Allowable Coil Temp. ④	Tmax	°C	130 130					30			

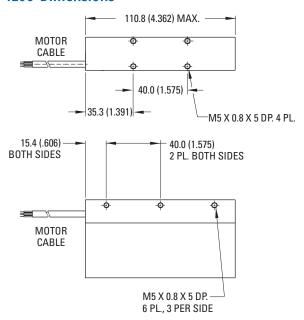
 $[\]textcircled{1}$ The motor continuous rated force is measured with the motor coils achieving the motor maximum allowable temperature Tmax.

② Alternate windings can be made available. Please consult Kollmorgen Customer Support for design options.

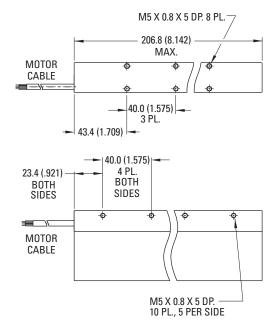
③ Maximum theoretical acceleration is based on the motor's peak force and the motor mass alone. Limitations due to such factors as the additional mass of the load, the bearing type and design, the shock rating of the feedback, and the peak current available from the amplifier etc., must be considered to determine the achievable acceleration in each application.


[•] Please see the application sizing section for more details on sizing and thermal considerations.

10.3 IL Ironless - Dimensional Drawings



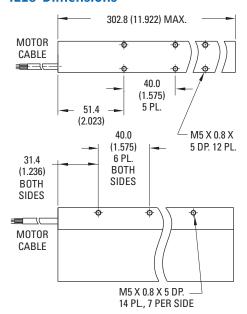
- All drawings are in principle (not scaled).
- 3D Models are available at Kollmorgen Design Tools 3D Models.


IL03 Dimensions

IL06 Dimensions

IL12 Dimensions

Continued on next page

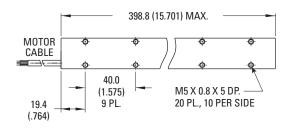

Note:

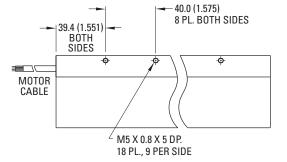
- 1. Dimensions in mm (inches)
- 2. Tolerances (unless otherwise specified):

No decimal places: ±0.8 One decimal place: ±0.1 Two decimal places: ±0.05

10.3.1 IL Ironless - Dimensional Drawings, continued

IL18 Dimensions

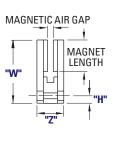



Note:

- 1. Dimensions in mm (inches)
- 2. Tolerances (unless otherwise specified):

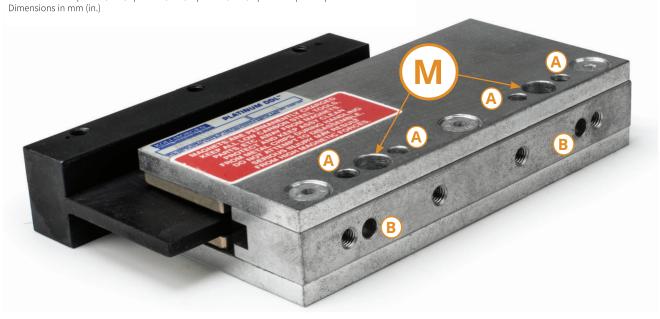
No decimal places: ±0.8 One decimal place: ±0.1 Two decimal places: ±0.05

IL24 Dimensions


10.4 MW Magnet Way - Dimensional Drawings and Data

- All drawings are in principle (not scaled).
- 3D Models are available at Kollmorgen Design Tools 3D Models.

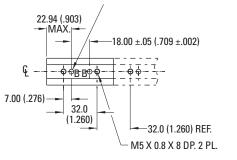
Magnet Way MWxxx-0xxx Standard Dimensions



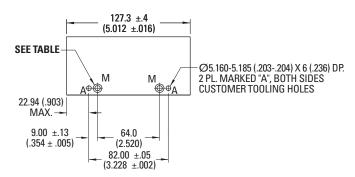
Magnet Way	Magnet Size	"H"	"W"	"Z"
Magnet Way	Reference	±.8 (.003)	±.4 (.016)	±.4 (.016)
MW0150xxx	15 mm	5.69 (.224)	33.80 (1.331)	25.40 (1.000)
MW015T0xxx	15 mm	5.69 (.224)	33.80 (1.331)	21.8 (0.858)
MW0300xxx	30 mm	7.11 (.280)	60.20 (2.370)	25.40 (1.000)
MW030L0xxx	30 mm	5.69 (.224)	49.00 (1.929)	25.40 (1.000)
MW0500xxx	50 mm	7.11 (.280)	80.20 (3.158)	25.40 (1.000)
MW050L0xxx	50 mm	5.69 (.224)	69.00 (2.716)	25.40 (1.000)
MW0750xxx	75 mm	8.23 (.324)	105.20 (4.142)	30.00 (1.181)
MW1000xxx	100 mm	8.23 (.324)	130.20 (5.126)	34.00 (1.339)

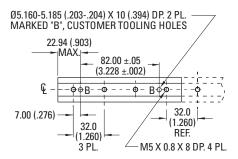
"M" Dimensional Specifications

	Hardware (Hex, Socket Head Cap)											
Magnet Way	Hole Dia.	C'bore Dia.	C'bore Depth	Metric	Inch	Bottom Mount Thread Option						
	±.13 (.005)	±.13 (.005)	±.13 (.005)			Tiffead Option						
MW0150xxx	4.70 (.185)	7.80 (.307)	4.00 (.158)	M4	#8	M4 X 0.7 X 6.0 DP.						
MW015T0xxx	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.						
MW0300xxx	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.						
MW030L0xxx	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.						
MW0500xxx	5.70 (.224)	9.35 (.368)	5.79 (.228)	M5	#10	M5 X 0.8 X 8.0 DP.						
MW050L0xxx	4.70 (.185)	7.80 (.307)	5.79 (.228)	M4	#8	M4 X 0.7 X 6.0 DP.						
MW0750xxx	5.70 (.224)	9.35 (.368)	7.95 (.313)	M5	#10	M5 X 0.8 X 8.0 DP.						
MW1000xxx	5.70 (.224)	9.35 (.368)	9.96 (.392)	M5	#10	M5 X 0.8 X 8.0 DP.						

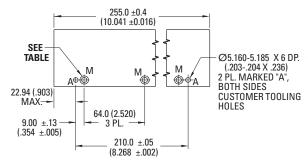


10.4.1 MW Magnet Way - Dimensional Drawings and Data, continued

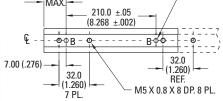

MWxxx-0064 Dimensional Data

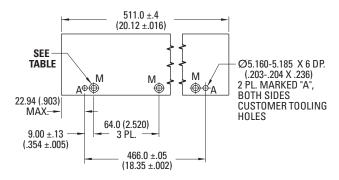

63.0 ±0.4 (2.482 ±0.016) Ø5.160-5.185 (.203-.204) X 6 (.236) DP. 2 PL. MARKED "A", BOTH SIDES CUSTOMER TOOLING HOLES SEE **TABLE** фф'д 9.00 ±.13 (.354 ±.005) 22 94 (.903) -18.00 ±.05 (.709 ±.002)

Ø5.160-5.185 (.203-.204) X 10 (.394) DP. 2 PL. MARKED "B", CUSTOMER TOOLING HOLES



MWxxx-0128 Dimensional Data




MWxxx-0256 Dimensional Data

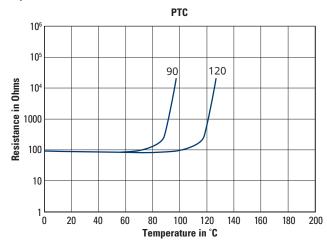
Ø5.160-5.185 (.203-.204) X 10 (.394) DP. 2 PL. MARKED "B", CUSTOMER TOOLING HOLES 22.94 (.903) MAX

MWxxx-0512 Dimensional Data

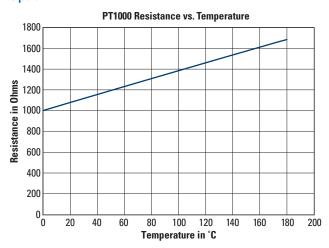
Ø5.160-5.185 (.203-.204) X 10 (.394) DP. 2 PL. MARKED "B", CUSTOMER TOOLING HOLES ________ 22.94 (.903) MAX. 466.0 ±.05 (18.35 ±.002) **о**фВ – Вфф 32.0 7.00 (.276) (1.260)32.0 RFF (1.260)M5 X 0.8 X 8 DP. 8 PL.

7 PL.

11 Thermal Sensor Protective Devices


The standard version of each motor is fitted with a choice of an electrically isolated PTC Avalanche-Type thermal sensor, a PT1000 RTD Linear thermal sensor, or a thermostat. The thermal sensors do not provide any protection against short, heavy overloading.

The sensor is integrated into the monitoring system of the digital servo amplifiers with correct connection.


Thermal Device Options: Resistance vs. Temperature Graphs

Kollmorgen AKD drives can directly interpret information from the motor thermal sensors to properly reflect the motor winding temperature. For other drives please refer to the graph Delta Between Motor Winding and Thermal Device on the following page.

Option TR

Option T1

Note: PTC thermistor (155°C \pm 5°C switching temperature) installed.

Resistance at 25°C: ≤ 550 ohms.

Switching Resistance: \geq 1330 ohms within \pm 5°C of switch temperature.

12 Approvals

Certificates are on the DDL product page of the Kollmorgen website.

12.1 Conformance with UL

Motor uses UL certified insulation system class F UL File E136406.

12.2 Conformance with CE

The motors have been tested by an authorized testing laboratory in a defined configuration. Any divergence from the configuration and installation described in this documentation means that the user will be responsible for carrying out new measurements to ensure conformance with regulatory requirements.

- Feedback systems and contacts must not be tested with high voltage.
- Feedback systems are not suitable for high voltage testing.
 - It is allowed to exclude sensitive electronic components from these tests.
- Feedback systems might be destroyed during a high voltage test.

The EU Declaration of Conformity are on the <u>DDL product page</u> of the Kollmorgen website.

Kollmorgen declares the conformity of the product series Direct Drive Linear with these directives:

- EC Directive 2014/30/EU, Electromagnetic compatibility
- EC Directive 2014/35/EU, Low voltage

12.3 Conformance with RoHS

DIRECTIVE 2011/65/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL OF 8 JUNE 2011 ON THE RESTRICTION OF THE USE OF CERTAIN HAZARDOUS SUBSTANCES IN ELECTRICAL AND ELECTRONIC EQUIPMENT, INCLUDING COMMISSION DELEGATED DIRECTIVE (EU) 2015/863.

Products: All standard DDL models. This covers all models who numbers start with (IC, ICD, or IL), and followed by (03, 06, 12, 18, 24, 05, 10, 11, 22, 33, or 44), followed by (015, 030, 050, 075, 100, 150, 200, or 250), followed by (A1, A2, A3, A4, A5, A6, A7, A8, or AS), followed by (AC or a blank), followed by (TS, TR, or T1), followed by (C1, C2, C3, C4, CS, or P1, P2, P3, P4, PS), followed by optional dash and three-digit alphanumeric code.

The declaration may be viewed/downloaded here: Kollmorgen Support Network.

12.4 Conformance with REACH

REGULATION (EC) No 1907/2006 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL as of 18 December 2006 concerning the Registration, Evaluation, Authorization and Restriction of Chemicals [REACH Regulations]

Information based on REACH Art. 33 (1) regarding Substances of Very High Concern [SVHC] as referenced by Candidate List last amended on 14, June 2023.

Products: All standard DDL models. This covers all models who numbers start with (IL, ICD, or IC), and followed by (03, 06, 12, 18, 24, 05, 10, 11, 22, 33, or 44), followed by (015, 030, 050, 075, 100, 150, 200 or 250), followed by (A1, A2, A3, A4, A5, A6, A7, A8, or AS), followed by (AC or a blank), followed by (TS, TR, or T1), followed by (C1, C2, C3, C4, CS, or P1, P2, P3, P4, PS), followed by optional dash and three-digit alphanumeric code.

The declaration may be viewed/downloaded here: Kollmorgen Support Network.

12.5 CE Mark Conformance

Servo drives are components that are intended to be incorporated into electrical plant and machines for industrial use. When the servo drives are built into machines or plants, drives cannot be operated until the machine or plant fulfills the requirements of the Machinery Regulation (EU) 2023/1230 and the EC Directive on EMC (2014/30/EU). EN 60204 and EN 292 must also be observed.

In connection with the Low Voltage Directive 2014/35/EU, the harmonized standards of the EN 50178 series are applied to the amplifiers, together with EN 60146, EN 60204, and EN 60439-1.

The manufacturer of the machine or plant is responsible for ensuring that they meet the limits required by the EMC regulations. Advice on the correct installation for EMC - such as shielding, grounding, arrangement of filters, treatment of connectors and the laying out of cabling - can be found within this documentation.

Conformance with the EC Directive on EMC 2014/30/EU and the Low Voltage Directive 2014/35/EU is mandatory for the supply of servo drives within the European Community.

An authorized testing laboratory in a defined configuration with the system components has tested the servo drives. Any divergence from the configuration and installation described in this documentation means that you are responsible for the performance of new measurements to ensure that the regulatory requirements are met.

- Installation of the equipment is critical in designing for system and machine electromagnetic compatibility (EMC).
- You must apply the installation recommendations and the CE filtering Practices when mounting and installing the drive system for CE conformance.

12.6 European Directives and Standards for the Machine Builder

The AKD and AKD2G product series are UL recognized components under file E136406 and have been evaluated to UL/cUL 61800-5-1.

This standard describes the fulfillment by design of minimum requirements for electrically operated power conversion equipment, such as frequency converters and servo amplifiers, which is intended to eliminate the risk of fire, electric shock, or injury to persons, being caused by such equipment.

Support and Services

About Kollmorgen

When you need motion and automation systems for your most demanding applications and environments, count on Kollmorgen - the innovation leader for more than 100 years. We deliver the industry's highest-performing, most reliable motors, drives, AGV control solutions and automation platforms, with over a million standard and easily modifiable products to meet virtually any motion challenge. We offer manufacturing facilities, distributors and engineering expertise in all major regions around the world, so you can bring a better machine to market faster and keep it profitable for many years to come.

Kollmorgen Developer Network

Join the Kollmorgen Support Network for product support.

Ask the community questions, search the knowledge base for answers, get downloads, and suggest improvements.

Kollmorgen Support Locations

Kollmorgen

201 West Rock Road Radford, VA 24141, USA

Web: www.kollmorgen.com

Email: kollmorgen.support@regalrexnord.com

Tel.: +1-540-633-3545 **Fax:** +1-540-639-4162

Kollmorgen Europe GmbH

Pempelfurtstr. 1

40880 Ratingen, Germany

Web: www.kollmorgen.com

Email: Technical.Support.EU@regalrexnord.com

Tel.: +49-2102-9394-0 **Fax:** +49-2102-9394-3155

Altra Industrial Motion do Brasil

Equipamentos Industriais LTDA. Avenida João Paulo Ablas, 2970 Jardim da Glória, Cotia – SP CEP 06711-250, Brazil

Web: www.kollmorgen.com

Email: kollmorgen.contato@regalrexnord.com

Tel.: (+55 11) 4615-6300

KOLLMORGEN

Room 302, Building 5, Libao Plaza, 88 Shenbin Road, Minhang District, Shanghai, China.

Web: www.kollmorgen.cn

Email: Sales.China@regalrexnord.com

Tel.: +86-400 668 2802