Back to top

Welcome to Kollmorgen's Blog in Motion.  We have been adding information and knowledge to the great web based world for many years - through white papers, technical documents, and even webinars.  Kollmorgen enjoys sharing our knowledge with you, as well as identifying other motion related tidbits through our Twitter, Facebook, LinkedIn, Google+, and YouTube feeds.  Our newest source is Blog in Motion, covering a wide range of topics, as well as some interesting contributing authors with lots of Motion experience.  If Motion Matters to you, stop by, follow, like, and sign up so you can stay tuned for what Kollmorgen has in store for you!

This blog was originally posted back on June 18, 2012 - I wanted to update this with some new activities regarding our work with Universities since that date...

There has been a long standing cooperation between Industry and Academics throughout the recent centuries. Just look at the companies that pop up near Universities - like the Route 128 corridor near MIT, or Silicon Valley's influence by Stanford, UCB and UCSF. Every major research university houses a "technology park" filled with start-ups incubating their new ideas and inventions. But it's not just the entrepreneurs that latch on to collaboration with academics. Established firms also find it beneficial to work with universities on various projects of interest, especially where an emerging industry may be getting ready to take off.

Among the simplest and least expensive feedback devices are Hall-effect sensors.  These are digital on-off devices that detect the presence of magnetic fields.  Made of semiconductor material, they are rugged, can be operated at very high frequencies (equating to tens of thousands of motor rpm), and are commonly used to provide six-step commutation of brushless motors.

Most machine builders are familiar with modern touch screen HMI's. They have all but replaced older style toggle switch panels. It has also enabled machine builders give operators much more information on the process going on in a machine. HMI's can look at a multitude of machine variables and they can be presented in a more relatable graphical format than digital readout or analog meters. For instance, instead of a tank volume number, you visually show the operator much fluid is in the tank. HMI's however can go even beyond these operator related touch-screen graphics. Some of the more sophisticated features can really benefit machine builders and end-users of machines. Here are a few capabilities you might not have known about modern HMI's.

There are a number of situations that call for crossing over and replacing an existing motor with a newer servo. These can include: product obsolescence, cost savings, lead time issues, or upgrading to newer technology. The specifics of each application could lead to an endless number of important factors to consider. In this post I will try to (briefly) identify those that are most common and their correct order of concern.
In our previous post of this series, we learned that the selection of a feedback device is critical for precise motion applications, and that where it's located is important as well. Today's post covers some additional information regarding the difference between absolute and incremental feedback and why should I care, as well as a few other considerations.

As soon as you walk into a quiet space, you know it. In the world of automation, noise tends to be considered a necessary byproduct. A number of my colleagues have become very adept at describing the various noises made by stepper motors, leadscrews, cams, gearboxes, etc. Wheeeeeew. Wheeeeeeeeeeew. Wheeeeeeeeew, clack. This tends to be fine if you're talking about a single axis of motion, but imagine a hospital lab with hundreds or perhaps thousands of axes of motion all moving at the same time. Try having a quiet conversation in a large lab around the 8:00am sample rush - just about impossible.

Normally my blogs are light hearted and meant to provide some thought provoking ideas in entertaining ways. Today's blog does not have that tone. On February 21st, a recall for a soft cheese was issued due to high amounts of Listeria monocytogenes. Virginia and Maryland have been investigating the products from the manufacturer, but the sad truth is there has been a death associated with this disease. Adding to the sadness is that the CDC is not reporting the age of the person who died, but nearly half of the reported sick were newborns.

In July of last year I posted a blog about the CHIMP robotic platform. CHIMP stands for CMU Highly Intelligent Platform. It was one of 16 entries under the DARPA (Defense Advanced Research Agency Projects) sponsored Robotics Challenge program with the goal of developing robotic technologies that can be used in harsh environments such as man-made or natural disasters in lieu of humans. The robots will be required to open doors, turn valves, connect hoses, use hand tools to cut through panels, drive a vehicle, clear debris, and climb a ladder.
A critical element of any servo system is the feedback device - after all, that's what makes it a servo to begin with! How about a very simple example to start off with: I have a bow and arrow, a target 30 feet away, and I left my glasses at home. So while I do see a large round "thing" in the distance, I have trouble making out the edges of the rings on the target. My feedback is not very accurate at the moment - so I'm likely not going to hit the bull's-eye. I discover my glasses in my pocket, slip them on - and now I can see the target much better, and I at least have a better chance now of hitting the target. Yes, there are other factors, environmental, arrow construction, etc., but you get the point (pun intended)!
The utilization of robotics in manufacturing is currently a $5B industry and is projected to grow to a $20B industry (Source: A Roadmap for U.S. Robotics, From Internet To Robotics - 2013 Edition). A major contributor to the projected growth will come from small to mid-size users in a variety of industries where historically the demand was from the very large corporations in the automotive and aerospace sectors. Counter to traditional industrial robots that are big, noisy, and costly, companies are developing innovative lightweight robots designed for small to mid-sized users.

Pages

Blog Taxonomy Helper

Aerospace & Defense
Applications
Automated Guided Vehicles
Business
Embedded Motion
Engineering
Fieldbus
Food Regulations
General
History
Installation Tips
Interconnectivity
Medical
Oil and Gas
Packaging
Robotics
Technology
University Partnerships
Subscribe to Blog in Motion