Back to top

There are several considerations when selecting a direct drive linear actuator for a specific application, such as the required speed, force, motion profile, available physical envelope, and environmental factors. This means the chosen actuator solution must produce the load force and speed requirements, fit in the available space, and perform as required under the subjected environmental conditions of the application.

A linear servo motor is a linear actuator that produces force and velocity based on the supplied current and voltage and provides a linear movement along the axis being driven.  In simple terms, a linear servo motor behaves identically as a rotary servo motor – it’s just rolled out flat and straight.

Phase margin is a measurement in the frequency domain, taken from a Bode plot, that calculates the amount of phase lag above -180 degrees at the point on the amplitude plot that crosses 0dB (gain cross over frequency).

Amplitude gain margin is a measurement in the frequency domain, taken from a Bode plot, that takes the amplitude below 0 dB at the lowest frequency point that the phase reaches -180 degrees (phase crossover frequency).

A servo drive should be selected based on the specific servo motor used in the application. The motion requirements of the driven mechanism determines the voltage and current requirements of the servo motor – the key information required when selecting a servo drive.

In simplified terms, bandwidth can be calculated as 1/(settling time) of a given step response of a servo system.

A servo drive is an electronic device that is part of a closed loop system, producing current and voltage to rotate a servo motor. The closed loop system includes the servo drive, servo motor and feedback device, and is commanded from an analog or digital signal.

A stable servo system is essential for optimal machine performance, durability, safety, and consistent machine performance, which improves overall machine operation. Servo systems operate in various degrees of stability, with a fine line between stable and unstable. Changes in the mechanical system over time or machines with varying loads can move the system from a stable to unstable operating condition. This article unveils four key values that determine the stability level of a servo system.

There are several considerations when selecting a servo motor for a specific application, such as the required speed, torque or force, motion profile, available physical envelope, and environmental factors. This means that the chosen motor solution must produce the load torque and speed requirements, fit in the available space, and perform as required under the subjected environmental conditions of the application.

Bode plots have existed since the 1930’s when Hendrik Bode devised a way to display gain and phase-shift plots in the frequency domain. Today, to produce a detailed frequency response plot that reveals the unique fingerprint of a servo mechanism in the frequency domain is as simple as pressing a computer key. This paper discusses five key items in a Bode plot and what they reveal about the machine.

Pages

Blog Taxonomy Helper

Aerospace & Defense
Applications
Automated Guided Vehicles
Business
Embedded Motion
Engineering
Fieldbus
Food Regulations
General
History
Installation Tips
Interconnectivity
Medical
Oil and Gas
Packaging
Robotics
Technology
University Partnerships
Subscribe to Blog in Motion