Back to top

Welcome to Kollmorgen's Blog in Motion.  We have been adding information and knowledge to the great web based world for many years - through white papers, technical documents, and even webinars.  Kollmorgen enjoys sharing our knowledge with you, as well as identifying other motion related tidbits through our Twitter, Facebook, LinkedIn and YouTube feeds.  Our newest source is Blog in Motion, covering a wide range of topics, as well as some interesting contributing authors with lots of Motion experience.  If Motion Matters to you, stop by, follow, like, and sign up so you can stay tuned for what Kollmorgen has in store for you!

As it turns out, "going small" is an effort that traces back to the first steppers ever manufactured. Released in 1952, the Sigma "Cyclonome 9" series, one of the first steppers ever designed, was the first standard offering of its kind. Motors had a frame size of 1 3/16 inches, roughly the size of a modern day NEMA 11 motor. With a torque range of 1 - 12 oz-in, common applications at the time included printers, tape readers, and chart drive and display controls. Just like today, the small form factor of these motors allowed OEMs to reduce the overall size and footprint of their machines.

I often see some confusion in various customers’ minds regarding encoder performance with automation systems which have servo drives or variable frequency drives (VFD). Some customers feel that when they are providing best in class encoders, the system must be highly accurate.

Sounds logical? … Yes, but there are some other points to consider also.

Brushless AC servo motors  and  stepper motors  have long life spans, which are largely due to the lack of wearing components.  Unlike brush type motors, other than the bearings, brushless AC servo motors and stepper motors have no wearing components.  Additionally you do not have conductive brush dust, which, as it collects on the commutator, may short the armature. 

Never sized a servo before? Well, we want to share with you some of the best practices we have found over the years. Over the next few months, we will continue this series with a variety of tidbits that will help you become more comfortable with the job of sizing a servo. In this post, we’ll start with the basics of good preparation.

So everyone’s heard the phrase “think outside the box.”

And at Kollmorgen we do that. But the reality is we have to think about inside the box. It’s our job to protect inside the box. Our OEMs need us to be ever conscious of inside the box so that the box works and is dependable. But OEMs also look outside the box - does it fit, is it smaller, what’s the advantage?

By definition, Eccentricity is a measure of how much a roll deviates from being perfectly circular. Ideally, eccentricity should be zero, but in reality, it is never zero. Practically not a single roll is a perfect circle because it is produced using a machine which itself is prone to some machining errors (since it is product of some other machine and so on).

What should you consider when factoring IP Rating into your specification and what other environmental factors should be considered when specifying motion products?

As a manufacturer of motion control products for a variety of markets, Kollmorgen Application and Sales engineers get involved in specifying products into all kinds of environments. Often these environments can be wet and thus an IP (International Protection) rating needs to be considered as a part of the specification of our product.

Unlike fieldbus communications only being supported by particular models of the AKD servo drive, Modbus TCP communication is supported by all of the AKD models. Whether you have a simple "analog" drive, an indexing drive, or an AKD with BASIC programming, you have the capability of using Modbus communication. It is a simple, easy to use, standard communication protocol that can be used in a PC, PLC, or HMI to talk to any AKD drive.
Setting up an Ethernet network can be frustrating if you don't understand the basics. A network is just the communication connection between two or more devices. These devices can be computers, PLC's, servo drives, HMI's, sensors, cameras…anything that supports Ethernet communication.

A key driver for the current trends towards increasing use of electric motors in oil and gas applications is the ability of electrically driven systems to substantially improve system reliability, reduce downtime, and the limit the possibility of a leaked fluid discharge into the environment. Designers of oil and gas equipment are looking for the smallest, lightest, simplest solution with the least impact on the environment. While the best solution will be different for every application, it’s clear that the trend in the industry is favoring electric motors.

Pages

Blog Taxonomy Helper

Aerospace & Defense
Applications
Automated Guided Vehicles
Business
Embedded Motion
Engineering
Fieldbus
Food Regulations
General
History
Installation Tips
Interconnectivity
Medical
Oil and Gas
Packaging
Robotics
Technology
University Partnerships
Subscribe to Blog in Motion