Back to top

Welcome to Kollmorgen's Blog in Motion.  We have been adding information and knowledge to the great web based world for many years - through white papers, technical documents, and even webinars.  Kollmorgen enjoys sharing our knowledge with you, as well as identifying other motion related tidbits through our Twitter, Facebook, LinkedIn and YouTube feeds.  Our newest source is Blog in Motion, covering a wide range of topics, as well as some interesting contributing authors with lots of Motion experience.  If Motion Matters to you, stop by, follow, like, and sign up so you can stay tuned for what Kollmorgen has in store for you!

There aren't many of us that open up the hefty manual that you receive with your new lawn tractor or dishwasher but if you did there would be a section in there on "preventative maintenance." There's a similar section in the documentation that comes along with most IVD analyzers and other lab equipment. The documentation often includes recommended activities to be done on a weekly, monthly and yearly basis to keep your instrument running as intended.
There has been a lot of discussion over the years as to who created the stepping motor, or at least the industrial 1.8° motor we know today. The two relevant companies involved with the design were Superior Electric, originally in Bristol Connecticut, and Sigma Instruments, originally in Braintree, Massachusetts. Although Superior Electric seems to have the leading edge as being the first, it appears that Sigma Instruments may have been the true innovator.
Machine builders focus on functionality and reliability when first designing a new machine. Ideas are put on paper and components are strung together in block diagrams with thin lines to show the association of all the pieces. It is the most creative time in the cycle. Things can be moved and shifted with ease because everything is on a whiteboard. Even if you are far enough in the cycle to work in a CAD model, changes require no physical effort and the task of putting it together is still just an idea.
Although my blog entries will generally call attention to new ideas we think will end up someday on the factory floor, drive-by-wire actually lags industry: this type of following, such as electronic gearing (a.k.a. cam profiling or camming), has been available in Industrial Automation for years.
Coating and lamination applications demand precise speed regulation in order to avoid velocity ripple that causes uneven coating and undesirable horizontal bars across the substrate. The key to achieving the most uniform coating is minimizing the variations in velocity as well as in metering of the coating material.
If you have been following along on our Evolution of Kollmorgen posts, you realize Hugo Unruh was one of the first to successfully commercialize frameless motor technology. What most people don't realize is that Kollmorgen's motor-drive phase identification standards (A, B, C) were based on these frameless motors. Now the issue at hand is both sides of a frameless motor typically look the same, except for the side where the wire leads exit.

A specification will often state the required stroke for the application. What is frequently seen is that units are damaged by not following a simple requirement stated in the Installation Manual. Best practices dictate the utilization of End of Travel (EOT) sensors used with actuators and drives. This is done to prevent the actuators from striking the mechanical stops at each end, and typically a manual will clearly show where these sensors should be placed on the device. Actuators do have built in "bumpers" to help absorb energy when the mechanical stops are struck, but they are not designed to provide unlimited protection against repeated strikes.

So up until now, we've seen how a couple of German immigrants came to America and turned their dreams into a reality. Fredrick came to America at the turn of the Century, Hugo a few decades later, and now Otto Kollmorgen had the reins of Kollmorgen firmly in his hands. Just how did these two companies come together? Here is a first hand account from Herb Torberg (Chief Engineer, Kollmorgen). "In the late 1950's, Kollmorgen was very busy updating submarine periscope features capabilities. Submarines were going deeper, faster and the capabilities of the periscope were greatly expanded. Included was the need to take better photographs, including sextant navigation, provide Passive electronic countermeasure, and to aid the operator in training (turning) the periscope."

Moore's Law has long applied to advancements in technology-based industries. Servo- and Automation have benefited particularly from exponential advancements in memory as well as processing power, and most recently, astounding gains in sensor technology performance vs. price. Here is one definition of a servo system that I will use to limit the scope of what I share in this and future blog posts:
Frequently, servo motors are returned where the brakes are worn. This is almost always due to the brake being applied repeatedly while the motor/load is moving. The application of a motor brake in a "dynamic / moving" scenario will result in dramatic wear of the brake mechanism.

Pages

Blog Taxonomy Helper

Aerospace & Defense
Applications
Automated Guided Vehicles
Business
Embedded Motion
Engineering
Fieldbus
Food Regulations
General
History
Installation Tips
Interconnectivity
Medical
Oil and Gas
Packaging
Robotics
Technology
University Partnerships
Subscribe to Blog in Motion