Back to top

Welcome to Kollmorgen's Blog in Motion.  We have been adding information and knowledge to the great web based world for many years - through white papers, technical documents, and even webinars.  Kollmorgen enjoys sharing our knowledge with you, as well as identifying other motion related tidbits through our Twitter, Facebook, LinkedIn and YouTube feeds.  Our newest source is Blog in Motion, covering a wide range of topics, as well as some interesting contributing authors with lots of Motion experience.  If Motion Matters to you, stop by, follow, like, and sign up so you can stay tuned for what Kollmorgen has in store for you!

Over the years there have been discussions about the 1.8 degree step angle versus 0.9 degree step angle of industrial hybrid stepper motors.  Most stepper motors today have the standard step angle of 1.8 degrees, resulting in a 200 step per revolution.   However, in the early days of stepper motors, before microstepping, low end resonance played a significant role in many applications.  Most application engineers suggested either increasing the load, to lower the bandwidth frequency, or simply avoiding this low end resonance region altogether.

I often see some confusion in various customers’ minds regarding encoder performance with automation systems which have servo drives or variable frequency drives (VFD). Some customers feel that when they are providing best in class encoders, the system must be highly accurate.

Sounds logical? … Yes, but there are some other points to consider also.

Never sized a servo before? Well, we want to share with you some of the best practices we have found over the years. Over the next few months, we will continue this series with a variety of tidbits that will help you become more comfortable with the job of sizing a servo. In this post, we’ll start with the basics of good preparation.

So everyone’s heard the phrase “think outside the box.”

And at Kollmorgen we do that. But the reality is we have to think about inside the box. It’s our job to protect inside the box. Our OEMs need us to be ever conscious of inside the box so that the box works and is dependable. But OEMs also look outside the box - does it fit, is it smaller, what’s the advantage?

By definition, Eccentricity is a measure of how much a roll deviates from being perfectly circular. Ideally, eccentricity should be zero, but in reality, it is never zero. Practically not a single roll is a perfect circle because it is produced using a machine which itself is prone to some machining errors (since it is product of some other machine and so on).

What should you consider when factoring IP Rating into your specification and what other environmental factors should be considered when specifying motion products?

As a manufacturer of motion control products for a variety of markets, Kollmorgen Application and Sales engineers get involved in specifying products into all kinds of environments. Often these environments can be wet and thus an IP (International Protection) rating needs to be considered as a part of the specification of our product.

Setting up an Ethernet network can be frustrating if you don't understand the basics. A network is just the communication connection between two or more devices. These devices can be computers, PLC's, servo drives, HMI's, sensors, cameras…anything that supports Ethernet communication.
Unlike fieldbus communications only being supported by particular models of the AKD servo drive, Modbus TCP communication is supported by all of the AKD models. Whether you have a simple "analog" drive, an indexing drive, or an AKD with BASIC programming, you have the capability of using Modbus communication. It is a simple, easy to use, standard communication protocol that can be used in a PC, PLC, or HMI to talk to any AKD drive.

A key driver for the current trends towards increasing use of electric motors in oil and gas applications is the ability of electrically driven systems to substantially improve system reliability, reduce downtime, and the limit the possibility of a leaked fluid discharge into the environment. Designers of oil and gas equipment are looking for the smallest, lightest, simplest solution with the least impact on the environment. While the best solution will be different for every application, it’s clear that the trend in the industry is favoring electric motors.

This blog was originally posted back on June 18, 2012 - I wanted to update this with some new activities regarding our work with Universities since that date...

There has been a long standing cooperation between Industry and Academics throughout the recent centuries. Just look at the companies that pop up near Universities - like the Route 128 corridor near MIT, or Silicon Valley's influence by Stanford, UCB and UCSF. Every major research university houses a "technology park" filled with start-ups incubating their new ideas and inventions. But it's not just the entrepreneurs that latch on to collaboration with academics. Established firms also find it beneficial to work with universities on various projects of interest, especially where an emerging industry may be getting ready to take off.

Pages

Blog Taxonomy Helper

Aerospace & Defense
Applications
Automated Guided Vehicles
Business
Embedded Motion
Engineering
Fieldbus
Food Regulations
General
History
Installation Tips
Interconnectivity
Medical
Oil and Gas
Packaging
Robotics
Technology
University Partnerships
Subscribe to Blog in Motion