Back to top
In our last blog related to decentralized drives, we indicated several key customer benefits tied to using this approach.  First, you can reduce your cable costs significantly in machine configurations with lots of axes spread apart throughout the machine.  Second, a reduction in cabinet space and cooling requirements since you’ve taken a number of heat producing elements (Servo drives) from the enclosure.  Thirdly, you increase flexibility in design. In this blog entry, we will explore what is meant by flexibility and how this offers several advantages.
Less Cabling, Smaller Cabinet, Less Heat…More Flexibility!  Less Cabling, Smaller controls cabinet, Less heat…wow, that’s all great stuff.  I can achieve this all with a decentralized solution?   Absolutely – and even more! Decentralized Control Architecture means shifting the motion control drives from the crowded cabinets, and moving them near to the motors – out on the machine where the action is.  Immediately you can see that this can reduce the size of the controls cabinet, moving all of those drives out onto the machine – but how do I see these other advantages?

Question: What does TENV, or Totally Enclosed Non-Ventilated mean in regard to a servo motor?

Answer: Well – the answer is simply the motor is Totally Enclosed, and Non-Ventilated. Based on NEMA (National Electrical Manufacturers Association) definition, TENV states that the motor housing is fully enclosed and is not ventilated with a fan.

In our last Block and Tackle posting, we touched on operating a motor in a hotter ambient temperature.  For this posting, we take a look at the Root Mean Square (RMS) Torque and why it is important. Typically an axes’ motion profile is broken up into multiple segments, each segment is found to require a specific torque for a specific amount of time to complete the desired motion.  For example this can include torque required to accelerate, traverse (against an external force and/or friction),  decelerate, and dwell.  Each of these segments affects the amount of heating the motor experiences and thus the equivalent steady state continuous requirement utilized to select the correct motor.

How do I calculate a motor’s continuous torque when it is operating in an environment above its rated temperature? Since the motor’s continuous torque (Tc) is rated in a 40°C ambient, how can I estimate the motor’s continuous torque during my worst-case ambient temperature of 55°C?  

Collaborative robots are designed to work safely with and next to their human counterparts.  A subset of collaborative robotics has innovative safety techniques that completely eliminate the need for a safety barrier between the human and the robot.  This enables a wide range of applications to deploy and benefit from this collaborative robot technology.
We are excited to introduce the launch of a brand new product selection tool – Kollmorgen Stepper Optimizer. Optimizer provides multiple ways for you to discover what Kollmorgen stepper motor works best in your application. Comprised in the tool are Kollmorgen’s most highly recommended stepper series. This includes our newest stepper product, the PMX Series, as well as our  popular Powermax and POWERPAC product families.
Horsepower (hp) is a measure of power, which can be further described as the rate at which work is performed.  There are slightly different definitions for its conversion to the unit watts depending on the mechanism being described: mechanical, electric, boiler, metric, etc..   Our focus here will be on servo motor systems.
Linear motors fill an important role in providing a robust and high precision direct drive solution in many high performance applications.  In order to achieve the highest level of performance, the linear motor system must be commissioned properly.  This blog post addresses key areas to consider when setting up and commissioning a linear motor system.  It is always important to refer to the installation and set -up instructions provided by the manufacturer.

Question: I need to operate a servo motor in a vacuum, what are some considerations? 

Answer: In a word?  Outgassing.  You might think that proper motor sizing is a big issue, it always is, however if you can't conform to the other process requirements, there is no point to attempting to size the motor.  The biggest issue for any given motor selection to be run in a given vacuum for a specific process is the outgassing requirement, or rather, the avoidance of materials that would affect the process being performed and/or the life of the motor.

Pages

Blog Taxonomy Helper

Aerospace & Defense
Applications
Automated Guided Vehicles
Business
Embedded Motion
Engineering
Fieldbus
Food Regulations
General
History
Installation Tips
Interconnectivity
Medical
Oil and Gas
Packaging
Robotics
Technology
University Partnerships
Subscribe to Blog in Motion