Back to top

Welcome to Kollmorgen's Blog in Motion.  We have been adding information and knowledge to the great web based world for many years - through white papers, technical documents, and even webinars.  Kollmorgen enjoys sharing our knowledge with you, as well as identifying other motion related tidbits through our Twitter, Facebook, LinkedIn and YouTube feeds.  Our newest source is Blog in Motion, covering a wide range of topics, as well as some interesting contributing authors with lots of Motion experience.  If Motion Matters to you, stop by, follow, like, and sign up so you can stay tuned for what Kollmorgen has in store for you!

Trending in the automation world these days is the merging of the collaborative robot and the AGV, creating a mobile Cobot with the navigational capabilities of today’s AGV’s. This opens new opportunities in warehouse logistics that improves the entire supply chain. With additional power demands created by this combination, innovative motor and drive solutions become paramount.

Search the web for frameless or kit motors and you will find many offerings to choose from.  When looking at the motor specifications, there are many important parameters to consider such as rated speed, rated current, peak current, etc.  What do all these things mean and why is it important to understand how the values are being presented?

On November 13, 2017 FDA approved a pill that can digitally track if a patient has taken their medication.  The pill is called “Abilify MyCite” and is used to make sure that patients with conditions such as schizophrenia have actually ingested their medication.  As news broke about this new tracking pill it rekindled both concern and excitement about technology in the field of medicine.

Collaborative robots are designed to work safely with and next to their human counterparts.  A subset of collaborative robotics has innovative safety techniques that completely eliminate the need for a safety barrier between the human and the robot.  This enables a wide range of applications to deploy and benefit from this collaborative robot technology.
In July of last year I posted a blog about the CHIMP robotic platform. CHIMP stands for CMU Highly Intelligent Platform. It was one of 16 entries under the DARPA (Defense Advanced Research Agency Projects) sponsored Robotics Challenge program with the goal of developing robotic technologies that can be used in harsh environments such as man-made or natural disasters in lieu of humans. The robots will be required to open doors, turn valves, connect hoses, use hand tools to cut through panels, drive a vehicle, clear debris, and climb a ladder.
The utilization of robotics in manufacturing is currently a $5B industry and is projected to grow to a $20B industry (Source: A Roadmap for U.S. Robotics, From Internet To Robotics - 2013 Edition). A major contributor to the projected growth will come from small to mid-size users in a variety of industries where historically the demand was from the very large corporations in the automotive and aerospace sectors. Counter to traditional industrial robots that are big, noisy, and costly, companies are developing innovative lightweight robots designed for small to mid-sized users.

Pages

Blog Taxonomy Helper

Aerospace & Defense
Applications
Automated Guided Vehicles
Business
Embedded Motion
Engineering
Fieldbus
Food Regulations
General
History
Installation Tips
Interconnectivity
Medical
Oil and Gas
Packaging
Robotics
Technology
University Partnerships
Subscribe to Blog in Motion