Back to top

These 3 characteristics are crucial when sizing a motor for any application from military to industrial and beyond. In this day and age where everything seems to be getting smaller and more compact, we all want our toys to take up less space, but we don’t want to sacrifice any performance. Let’s use cars as an example. When someone is shopping for a sports car, they may be looking for things like high speed, quick acceleration, low center of gravity, small body, etc. These are all reasonable things to look for in a sports car. However, if someone was to say, “I need a two-door sports car with a top speed of 160mph, but I also need it to tow my 10,000 lb trailer”, we might have a problem. This is the same principle when we’re talking about motors. Just like cars, generally smaller motors have much higher speeds than larger motors. However, the large motors are the ones towing that 10,000 lb trailer, or in our case, exerting the most torque.

Search the web for frameless or kit motors and you will find many offerings to choose from.  When looking at the motor specifications, there are many important parameters to consider such as rated speed, rated current, peak current, etc.  What do all these things mean and why is it important to understand how the values are being presented?

Electric motors are used in machines and processes all around us.  You can find them in factories, automobiles, airplanes, robots and even your favorite DVD vending machine.  Regardless of the application, managing heat dissipation is a common theme. Electric motors are often selected based upon a particular work or load requirement.  One consideration of this selection process is managing heat dissipation.  Although electric motor design is constantly improving, all generate heat through losses and inefficiencies.  This needs to be evaluated when selecting the proper motor for your needs.

Blog Taxonomy Helper

Aerospace & Defense
Applications
Automated Guided Vehicles
Business
Embedded Motion
Engineering
Fieldbus
Food Regulations
General
History
Installation Tips
Interconnectivity
Medical
Oil and Gas
Packaging
Robotics
Technology
University Partnerships