Back to top

Most machine builders are familiar with modern touch screen HMI's. They have all but replaced older style toggle switch panels. It has also enabled machine builders give operators much more information on the process going on in a machine. HMI's can look at a multitude of machine variables and they can be presented in a more relatable graphical format than digital readout or analog meters. For instance, instead of a tank volume number, you visually show the operator much fluid is in the tank. HMI's however can go even beyond these operator related touch-screen graphics. Some of the more sophisticated features can really benefit machine builders and end-users of machines. Here are a few capabilities you might not have known about modern HMI's.

So up until now, we've seen how a couple of German immigrants came to America and turned their dreams into a reality. Fredrick came to America at the turn of the Century, Hugo a few decades later, and now Otto Kollmorgen had the reins of Kollmorgen firmly in his hands. Just how did these two companies come together? Here is a first hand account from Herb Torberg (Chief Engineer, Kollmorgen). "In the late 1950's, Kollmorgen was very busy updating submarine periscope features capabilities. Submarines were going deeper, faster and the capabilities of the periscope were greatly expanded. Included was the need to take better photographs, including sextant navigation, provide Passive electronic countermeasure, and to aid the operator in training (turning) the periscope."

Coating and lamination applications demand precise speed regulation in order to avoid velocity ripple that causes uneven coating and undesirable horizontal bars across the substrate. The key to achieving the most uniform coating is minimizing the variations in velocity as well as in metering of the coating material.
Quick recap form our last post: In 1948, the company called Inland was formed by an out-of-work immigrant whose net worth was approximately $4000. Six employees ran the facility in the basement and garage of the Unruh home. The company's first employee, Tom Bain, described conditions there as "quite crude". He recalls the cold triple garage and the problems posed by a leaky basement after a spring rain. Just about a year later - Hugo moves to Pear River and by 1957, the plant is bursting at the seams with 60 employees and a growing workload. Now let's continue…
A critical element of any servo system is the feedback device - after all, that's what makes it a servo to begin with! How about a very simple example to start off with: I have a bow and arrow, a target 30 feet away, and I left my glasses at home. So while I do see a large round "thing" in the distance, I have trouble making out the edges of the rings on the target. My feedback is not very accurate at the moment - so I'm likely not going to hit the bull's-eye. I discover my glasses in my pocket, slip them on - and now I can see the target much better, and I at least have a better chance now of hitting the target. Yes, there are other factors, environmental, arrow construction, etc., but you get the point (pun intended)!
Linear motors fill an important role in providing a robust and high precision direct drive solution in many high performance applications.  In order to achieve the highest level of performance, the linear motor system must be commissioned properly.  This blog post addresses key areas to consider when setting up and commissioning a linear motor system.  It is always important to refer to the installation and set -up instructions provided by the manufacturer.
In our previous post of this series, we learned that the selection of a feedback device is critical for precise motion applications, and that where it's located is important as well. Today's post covers some additional information regarding the difference between absolute and incremental feedback and why should I care, as well as a few other considerations.

Over the next few months, we will be publishing a blog series about how Kollmorgen evolved from its humble beginnings to today. Follow us on this journey and learn about the visionaries that built the foundation of our company.

Turn back time – to the 1900’s, the turn of the century, the industrial revolution in full force. A young man who was skilled in optics left his homeland of Germany to work under the auspices of optics pioneer, Karl Reichert in Vienna. Frederick Kollmorgen decided to bring his skills to America, passing through London with a brief stint with Ross, Ltd. Kollmorgen settled in New York, providing optic skills for Keuffel & Esser, who manufactured drafting and surveying instrumentation.

Prior to leaving Europe, Fredrick became the proud father of a baby boy – Ernest Otto. This would be the first of three children, the other girls (Hildegard and Dorthea). From various records, I can only piece together a few bits of information regarding the early 1900’s. It appears Frederick’s wife (Agnes Hunt), an English woman, whom he married in Italy, traveled back and forth to the United States from England, bringing the children over at certain times. Otto was born in 1901 and came to the US in 1907, two years after Fredrick immigrated. Hildegard, was born in 1903 and followed to the US in 1910. Finally, Otto’s youngest sister, Dorthea, was born in 1914 in Italy –right in the midst of World War I.

While all of this work by Fredrick Kollmorgen was going on another immigrant, named Hugo Unruh, was growing up in Germany. About the same age as Frederick’s son Otto, Hugo faced the harsh conditions in post WWI Germany with its rampant inflation and struggling economy. His family encouraged him to emigrate to the United States so he could realize his dreams.

Hugo was partially educated in Germany, but finished high school and two years of college while in the US. To help get through school, Hugo worked as a repairman at an X-Ray company.


Blog Taxonomy Helper

Aerospace & Defense
Automated Guided Vehicles
Embedded Motion
Food Regulations
Installation Tips
Oil and Gas
University Partnerships