Back to top
Frameless, or “servo motor kits”, open up numerous possibilities in designing motion elements for your machine related to performance.  A frameless motor consists of rotor and stator components which are built into a machine assembly to transmit torque to a load.  Many applications which take advantage of a frameless motor are direct driven, which eliminates bandwidth robbing compliance.  Effectively, this means you have eliminated torsional losses and any wind-up or spring losses.  
Trending in the automation world these days is the merging of the collaborative robot and the AGV, creating a mobile Cobot with the navigational capabilities of today’s AGV’s. This opens new opportunities in warehouse logistics that improves the entire supply chain. With additional power demands created by this combination, innovative motor and drive solutions become paramount.

Usually, in discussion about these terms, we tie in the word actuator – so more precisely, what is the difference between a linear actuator vs a rotary actuator?

Linear actuators, in essence, move something along a straight line, usually back and forth.  Rotary actuators, on the other hand will turn something a number of degrees in a circle – it might be a limited number or an infinite number.

So, linear actuator – back and forth, Rotary actuator - round and round

Who you are defines how you think of robotics and automation.  Software experts and IT may think of internet bots.  They might also think about the new, emerging field of Robotics Process Automation (RPA), which is software that can do mundane and administrative computer tasks.  RPA reduces repetitive tasks such as checking, verifying and transferring data.  Manufacturing facilities will think about physical robots or cobots that are also deployed to handle repetitive tasks such as loading and unloading a CNC machine or installing a computer cover.  They can also be used to automate dangerous tasks such as lifting, welding or removing paint.

Huge demand for robots, cobots, AI and Industry 4.0 is driving innovation hubs across the globe.  Whether the focus is software, industrial robots, cobots, medical robots or something else - the best way to facilitate and attract talent is to huddle around academic centers and universities.  Thus is born a Robotics Cluster, which is a group of entities that – formally or informally – locate in close geographical proximity.

On November 13, 2017 FDA approved a pill that can digitally track if a patient has taken their medication.  The pill is called “Abilify MyCite” and is used to make sure that patients with conditions such as schizophrenia have actually ingested their medication.  As news broke about this new tracking pill it rekindled both concern and excitement about technology in the field of medicine.

Less Cabling, Smaller Cabinet, Less Heat…More Flexibility!  Less Cabling, Smaller controls cabinet, Less heat…wow, that’s all great stuff.  I can achieve this all with a decentralized solution?   Absolutely – and even more! Decentralized Control Architecture means shifting the motion control drives from the crowded cabinets, and moving them near to the motors – out on the machine where the action is.  Immediately you can see that this can reduce the size of the controls cabinet, moving all of those drives out onto the machine – but how do I see these other advantages?
In our last blog related to decentralized drives, we indicated several key customer benefits tied to using this approach.  First, you can reduce your cable costs significantly in machine configurations with lots of axes spread apart throughout the machine.  Second, a reduction in cabinet space and cooling requirements since you’ve taken a number of heat producing elements (Servo drives) from the enclosure.  Thirdly, you increase flexibility in design. In this blog entry, we will explore what is meant by flexibility and how this offers several advantages.
Mechatronics is taking a holistic look at a complete machine solution, taking account of all elements that make up that system that are part of the machine, including mechanisms, motors, drive electronics, controls, interfaces, and ergonomics.  A variety of disciplines are involved when considering a machine design utilizing a mechatronics approach. It is a melding of the physical expectations of a motion system whether mechanical, electronic, hydraulic, pneumatic or any hybrid of technologies used to accomplish a physical task. Often, these systems are trying to duplicate, simplify, or assist a human function, most often a repetitive motion that a machine can do better.
Never sized a servo before? Well, we want to share with you some of the best practices we have found over the years. Over the next few months, we will continue this series with a variety of tidbits that will help you become more comfortable with the job of sizing a servo. In this post, we’ll start with the basics of good preparation.


Blog Taxonomy Helper

Aerospace & Defense
Automated Guided Vehicles
Embedded Motion
Food Regulations
Installation Tips
Oil and Gas
University Partnerships