Back to top

Usually, in discussion about these terms, we tie in the word actuator – so more precisely, what is the difference between a linear actuator vs a rotary actuator?

Linear actuators, in essence, move something along a straight line, usually back and forth.  Rotary actuators, on the other hand will turn something a number of degrees in a circle – it might be a limited number or an infinite number.

So, linear actuator – back and forth, Rotary actuator - round and round

Mechatronics is taking a holistic look at a complete machine solution, taking account of all elements that make up that system that are part of the machine, including mechanisms, motors, drive electronics, controls, interfaces, and ergonomics.  A variety of disciplines are involved when considering a machine design utilizing a mechatronics approach. It is a melding of the physical expectations of a motion system whether mechanical, electronic, hydraulic, pneumatic or any hybrid of technologies used to accomplish a physical task. Often, these systems are trying to duplicate, simplify, or assist a human function, most often a repetitive motion that a machine can do better.
In our last blog related to decentralized drives, we indicated several key customer benefits tied to using this approach.  First, you can reduce your cable costs significantly in machine configurations with lots of axes spread apart throughout the machine.  Second, a reduction in cabinet space and cooling requirements since you’ve taken a number of heat producing elements (Servo drives) from the enclosure.  Thirdly, you increase flexibility in design. In this blog entry, we will explore what is meant by flexibility and how this offers several advantages.
Less Cabling, Smaller Cabinet, Less Heat…More Flexibility!  Less Cabling, Smaller controls cabinet, Less heat…wow, that’s all great stuff.  I can achieve this all with a decentralized solution?   Absolutely – and even more! Decentralized Control Architecture means shifting the motion control drives from the crowded cabinets, and moving them near to the motors – out on the machine where the action is.  Immediately you can see that this can reduce the size of the controls cabinet, moving all of those drives out onto the machine – but how do I see these other advantages?
Never sized a servo before? Well, we want to share with you some of the best practices we have found over the years. Over the next few months, we will continue this series with a variety of tidbits that will help you become more comfortable with the job of sizing a servo. In this post, we’ll start with the basics of good preparation.

Noise, and I'm not talking about that terrible band you heard at the summer fest last year, but electromagnetic interference (EMI) noise. There are 8 key steps to consider when trying to eliminate EMI noise issues. If you follow these guidelines, you are much less likely to have problems with electrical noise in your application.

Prior to leaving Europe, Fredrick became the proud father of a baby boy – Ernest Otto. This would be the first of three children, the other girls (Hildegard and Dorthea). From various records, I can only piece together a few bits of information regarding the early 1900’s. It appears Frederick’s wife (Agnes Hunt), an English woman, whom he married in Italy, traveled back and forth to the United States from England, bringing the children over at certain times. Otto was born in 1901 and came to the US in 1907, two years after Fredrick immigrated. Hildegard, was born in 1903 and followed to the US in 1910. Finally, Otto’s youngest sister, Dorthea, was born in 1914 in Italy –right in the midst of World War I.

A critical element of any servo system is the feedback device - after all, that's what makes it a servo to begin with! How about a very simple example to start off with: I have a bow and arrow, a target 30 feet away, and I left my glasses at home. So while I do see a large round "thing" in the distance, I have trouble making out the edges of the rings on the target. My feedback is not very accurate at the moment - so I'm likely not going to hit the bull's-eye. I discover my glasses in my pocket, slip them on - and now I can see the target much better, and I at least have a better chance now of hitting the target. Yes, there are other factors, environmental, arrow construction, etc., but you get the point (pun intended)!
In our previous post of this series, we learned that the selection of a feedback device is critical for precise motion applications, and that where it's located is important as well. Today's post covers some additional information regarding the difference between absolute and incremental feedback and why should I care, as well as a few other considerations.

This blog was originally posted back on June 18, 2012 - I wanted to update this with some new activities regarding our work with Universities since that date...

There has been a long standing cooperation between Industry and Academics throughout the recent centuries. Just look at the companies that pop up near Universities - like the Route 128 corridor near MIT, or Silicon Valley's influence by Stanford, UCB and UCSF. Every major research university houses a "technology park" filled with start-ups incubating their new ideas and inventions. But it's not just the entrepreneurs that latch on to collaboration with academics. Established firms also find it beneficial to work with universities on various projects of interest, especially where an emerging industry may be getting ready to take off.

Pages

Blog Taxonomy Helper

Aerospace & Defense
Applications
Automated Guided Vehicles
Business
Embedded Motion
Engineering
Fieldbus
Food Regulations
General
History
Installation Tips
Interconnectivity
Medical
Oil and Gas
Packaging
Robotics
Technology
University Partnerships