Back to top

Wie funktioniert ein Schrittmotor?

02 Mär 2021
Kollmorgen Experten

Ein Schrittmotor ist ein einfacher zweiphasiger, bürstenloser Synchronmotor, der einen segmentierten, magnetisierten Rotor und einen Stator enthält, der aus einer vorgeschriebenen Anzahl von elektromagnetischen Spulen besteht. Wenn die Spulen erregt werden, erzeugen sie einen Nord- und einen Südpol, die den segmentierten, magnetisierten Rotor drücken bzw. ziehen, wodurch er in eine Drehbewegung versetzt wird. Die Abbildung zeigt den inneren Aufbau und die Zahnausrichtung eines typischen Hybrid-Schrittmotors. Die feinen Zähne, die gleichmäßig über den gesamten Durchmesser verteilt sind, sorgen für die inkrementelle Winkeldrehung, die zu einer mechanischen Bewegung führt.

Schrittmotoren bestehen aus zwei Wicklungen (2 Phasen), die mit Gleichstrom versorgt werden. Wenn der Strom in einer Wicklung umgekehrt wird, wird die Motorwelle um einen Schritt bewegt. Durch die Umkehr der Stromrichtung in jeder Wicklung werden die Position und die Geschwindigkeit des Motors mühelos und präzise gesteuert, sodass sich der Schrittmotor hervorragend für viele verschiedene Motion Control-Anwendungen eignet. Die Schrittgröße wird von den Eigenschaften des Motordesigns bestimmt. Die Schrittweite von 1,8° wird am häufigsten eingesetzt (bestehend aus 200 Zähnen). Auch andere Schrittweiten sind verfügbar. Die Anzahl der Schritte pro Umdrehung wird berechnet, indem 360° durch die Schrittweite dividiert wird.

Schrittmotoren werden anhand des Haltemoments und des entsprechenden Nennstroms ausgewählt. Der Haltemoment gibt das maximale externe Drehmoment an, das auf einen Motor (erregt mit Nennstrom) angewandt wird, ohne eine kontinuierliche Drehung zu verursachen. An dem Punkt, an dem der Motor beginnt sich zu drehen, wird das verfügbare Drehmoment als Außertrittfallmoment bezeichnet. Die Außertrittfallmomentwerte werden in Drehzahl/-Drehmoment-Kurven dargestellt.

Die Spulen eines Schrittmotors können in unipolarer oder bipolarer Anordnung konfiguriert werden. Da einfache Schrittmotor-Ansteuerelektroniken eingesetzt werden können, um die Spulen zur Drehung der Motorwelle zu bestromen, stellen unipolare Konfigurationen die einfachste Steuerungsart dar. Eine bipolare Anordnung erfordert einen anspruchsvolleren Antrieb, um die Wicklungen richtig zur Motorsteuerung zu sequenzieren, was auch zusätzliche Leistungsvorteile bietet, wie zum Beispiel ein höheres Haltemoment.

Schrittantriebe sind in einer Vielzahl von Spannungs- und Stromstärken erhältlich. Die Leistung eines Motors hängt in hohem Maße von dem Strom und der Spannung ab, die der Antrieb liefert. Im Zusammenhang mit Schrittmotoren werden häufig die Begriffe Vollschritt, Halbschritt und Mikroschritt verwendet. Ein 1,8° Schrittmotor hat bei einer vollständigen 360° Umdrehung beispielsweise 200 einzelne Positionen. Da 360° geteilt durch 200 gleich 1,8° ist, wird die Motorwelle jedes Mal, wenn der Motor den Befehl erhält, einen Schritt auszuführen (Vollschritt), um 1,8° bewegt. Mit dem Begriff „Halbschritt“ ist eine 0,9° Schrittweite (die Hälfte eines vollen 1,8° Schritts) gemeint. Hierzu wirken abwechselnd positiver Strom, kein Strom und negativer Strom durch eine Ansteuerungstechnologie auf jede einzelne Wicklung ein. Der Begriff „Mikroschritt“ bezieht sich auf eine ausgeklügeltere Steuerungsart, die über das einfache Umschalten von Strom zwischen den Motorwicklungen hinausgeht, um die Menge des Stroms zu steuern, der zu den einzelnen Wicklungen geleitet wird. Ein großer Vorteil des Mikroschrittes ist die Reduzierung der Resonanzamplitude, die auftritt, wenn der Motor mit seiner Eigenfrequenz arbeitet. Durch die Mikroschrittmethode kann die Welle an anderen Stellen als 1,8° (Vollschritt) oder 0,9° (Halbschritt) platziert werden. Die Mikroschrittpositionen befinden sich zwischen den beiden Schritten während der Rotordrehung. Die häufigsten Mikroschrittinkremente sind 1/5, 1/10, 1/16, 1/32, 1/125 und 1/250 eines Vollschritts.

Andere Ressourcen

Verfolgen Sie die Schritte des ersten Industrieschrittmotors »

Ein kleiner Schritt... Der ideale Schrittwinkel – 0,9 Grad oder 1,8 Grad? »

Über den Autor

Kollmorgen Experten

Kollmorgen Experts

Dieses Blogthema wurde in Zusammenarbeit von Motion- und Automationsexperten bei Kollmorgen erstellt, darunter Ingenieure, Customer Service - Mitarbeiter und Applikateure. Gerne helfen wir auch bei Ihrem Projekt.

Kontaktieren Sie uns

Blog Taxonomy Helper

Allgemein
Applikationen
Business
Embedded Motion
Engineering
Fahrerlose Transportfahrzeuge (FTF)
Fieldbus
Food Regulations
Geschichte
Installationshinweise
Interconnectivity
Luftfahrt und Verteidigung
Medical
Oil and Gas
Packaging
Robotics
Technologie
Universitätspartnerschaften